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Abstract—The McEliece public key cryptosystem is an attrac-
tive general construction that has received extensive attention
over the years. Recently, a very promising version called QC-
MDPC, was proposed. By using binary quasi-cyclic codes, the size
of the public key can be decreased significantly. The decryption
step involves iterative decoding of moderate density parity check
codes (MDPC). In this paper we propose a non-binary version of
QC-MDPC. The errors in the new scheme are discrete Gaussian
and the decryption involves a new type of iterative decoding with
a non-binary alphabet. The resulting scheme improves upon the
binary QC-MDPC in that the size of the pubic key can be even
smaller.

I. INTRODUCTION

Cryptosystems based on the hardness of factoring or discrete
logarithm will be broken if a quantum computer is avail-
able [1]. Most of today’s public-key cryptosystems used in
practice, such as RSA or DSA, will thus be broken in such an
event. Code-based cryptography is, on the opposite, believed
to be quantum resistant and considered as an option for future
applications.

A. Related Works

The McEliece cryptosystem [2] is the first code-based cryp-
tosystem, originally proposed using Goppa codes. Although
its implementation is efficient, it suffers from a very large
key-size. A lot of proposals have been made to replace
the originally proposed Goppa code family with other code
families and many of them have failed. In particular, attempts
have been made to considerably reduce the key-size, e.g. by
using codes with a large automorphism group, such as quasi-
cyclic codes. This has proved to be difficult due to the strong
structure of such codes, giving security weaknesses.

However, in 2013 the QC-MDPC scheme was proposed [3]
and this is today the most attractive McEliece type cryptosys-
tem. The QC-MDPC scheme uses a family of simple quasi-
cyclic codes which are of MDPC type. The parity checks
in an MDPC code are similar to an LDPC code, with the
difference that the weight of a parity checks in an MDPC

The authors are supported by the Swedish Research Council (Grants No.
2015-04528). Qian Guo is also supported by an Erasmus Mundus Scholarship.
This is the author’s version of the paper “A p-ary MDPC scheme”, which
was published in the proceedings of the IEEE International Symposium on
Information Theory (ISIT) 2016. The final, published version is available
through IEEE Xplore at doi:10.1109/ISIT.2016.7541520. Minor differences
may exist between this version and the version of record due to copyediting
and publisher formatting.

code is not as low. The decryption step uses iterative decoding
techniques, which in its simplest form can be Gallager’s bit
flipping algorithm [4]. The QC-MDPC scheme has a simple
algebraic description and comes with some security reductions.
As the quasi-cyclic structure allows the generator matrix to
be reconstructed from a single matrix row, the key-size is
significantly smaller than other schemes.

As a concrete parameter proposal for 80-bit security, the
inventors of the QC-MDPC scheme used a rate 1/2 binary
code of length 9602, consisting of two cyclic matrices with
row (or column) weight 45 each. In the encryption step an
error of weight 84 is added. With a public generator matrix in
systematic form, the key-size is 4801 bits.

Related to our work is also the NTRU cryptosystem [5].
NTRU is a public key encryption scheme in lattice-based
cryptography. Similarities between QC-MDPC and NTRU
have been mentioned previously, but one of several differences
is that NTRU does not use iterative decoding techniques.

B. Contribution

In this paper we extend the QC-MDPC scheme from the
binary field to a larger p-ary field. In the new scheme, the
errors are drawn from a discrete Gaussian distribution or
something similar and the decryption step involves a new type
of iterative decoding with a non-binary alphabet. The resulting
scheme improves upon the binary QC-MDPC in that the size
of the pubic key can be even smaller, but still the complexity
of the iterative decoding step is kept small.

The remaining parts of the paper are organized as follows.
We give some preliminaries on coding theory in Section II,
and then state general and specific proposals of the new p-ary
MDPC McEliece scheme in Section III and IV, respectively.
Section V presents the new iterative decoder. This is followed
by a security assessment part in Section VI and a discussion
part in Section VII. We finally conclude the paper in Sec-
tion VIII.

II. PRELIMINARIES

We present some basic concepts in coding theory. Let Fp

denote a finite field of a prime size p.
Definition 1 (Linear Codes): An [n, n − r] linear code C

over a field Fp is an (n − r)-dimensional vector subspace of
Fn
p . Its co-dimension is r, characterizing the redundancy of

the code.



A generator matrix G of the linear code C is defined as an
(n− r)× n matrix in F(n−r)×n

p whose rows form a basis of
the code. Equivalently, the codes can be defined by a matrix
H in Fr×n

p whose kernel is the code C, called a parity-check
matrix of C. We note that in most cases, both the generator
and parity-check matrices are not unique, but the linear code
C has a unique counterpart, a dual code C⊥ spanned by the
rows of one of its parity-check matrices.

Definition 2 (Quasi-cyclic Codes): Suppose n = n0r. An
[n, r]-linear code C over Fp is quasi-cyclic if every cyclic shift
of a codeword by n0 places remains a codeword.

We can conveniently represent both the generator and parity-
check matrices by a series of r × r circulant blocks. Thus,
each block is determined by its first row. The advantage of
this representation comes from the isomorphism between the
algebra of these matrices and that of polynomials modulo
xr − 1 over the field Fp, which provides both computational
efficiency and security guarantee for several carefully-chosen
parameters of r.

Definition 3 (LDPC/MDPC Codes): A low density parity-
check code (LDPC) is a linear code admitting a sparse parity-
check matrix, while an MDPC code is a linear code with a
denser but still sparse parity-check matrix.

In the previous works on binary LDPC/MDPC, or p-ary
LDPC, the Hamming weight of the row vector, i.e., the number
of its non-zero component, is usually employed to characterize
its sparsity: LDPC codes are with small constant row weights;
MDPC codes with row weights scale in O(

√
n log n). In this

work, we will use the Euclidean metric, and specify a sparse
parity-check matrix to be one with certain structures.

III. THE NEW SCHEME—A GENERAL DESCRIPTION

In this section, we describe the general scheme and the un-
derlying code constructions. Note that since the new proposal
is an extension, its main structure is similar to that of the
binary (QC)-MDPC scheme [3]. We will state the distinctions
in Section VII-A.

A. A p-ary MDPC Code Construction

• Generate r vectors (hi ∈ Fn
p )0≤i<r, each with wsig

significant entries, w1 entries chosen from {−1, 1}, w2

entries from {−2, 2}, and the remaining set to 0.
• The parity-check matrix H ∈ Fr×n

p of the ith row hi

defines its corresponding p-ary MDPC Code.

B. A p-ary quasi-cyclic MDPC Code Construction

Let n = n0r.

• Generate a vector h ∈ Fn
p , each with wsig significant

entries, w1 entries chosen from {−1, 1}, w2 entries from
{−2, 2}, and the remaining set to 0.

• The parity-check matrix H ∈ Fr×n
p with the first row

h defines its corresponding p-ary QC-MDPC Code—the
other r − 1 rows are just the r − 1 quasi-cyclic shifts of
h.

Because of the quasi-cyclic feature, we construct a parity-
check matrix H = [H0|H1| . . . |Hn0−1] ∈ Fr×n

p , where each
of its blocks is isomorphic to a polynomial

hi(x) ∈ R = Fp[x]/〈xr − 1〉.

Using classic methods (e.g., [6]) on coding theory, we generate
a dense generator matrix determined by polynomials in the
same residue ring. The number of significant positions in each
block is denoted by wsig,i, and is called its sig-weight. Thus,
wsig =

∑n0−1
i=0 wsig,i.

We recommend to set r to be a prime number1, just as some
proposals in NTRU [5]. This security guarantee is intuitive,
and we leave a rigorous reduction to one of the well-studied
hard lattice problems (e.g., SVP) as a future work.

C. The Scheme

• KeyGen():
– Generate a parity-check matrix H with the required

special properties.
– Derive its corresponding generator matrix G in row

reduced echelon form. Here G should be a dense
matrix; otherwise, the parity-check matrix H should
be regenerated.

– The public key: G.
The private key: H.

• EncG(m):
– Generate a random vector e. It is usually generated

according to a discrete Gaussian distribution, but as
we can see later, sometimes other easy-implemented
distributions will also be employed.

– The ciphertext is c = mG+ e.
• DecH(c):

– Compute the syndrome vector s = cHT = eHT, and
then use an iterative decoder to extract the noise e.

– Recover the plaintext m from the first (n−r) entries
of mG.

Notice that similar to the descriptions in [3], we exclude the
scrambling matrix S and permutation matrix P because of the
assumption that the generator matrix G is a dense matrix.
Moreover, making use of the CCA-2 security-conversion,
e.g. [9], we can represent the generator matrix G in a
systematic form, thereby reducing the public-key size of the
proposed p-ary QC-MDPC scheme to (n− r) log2 p.

IV. A SPECIFIC PROPOSAL

In this section, we detail a specific p-ary QC-MDPC
McEliece proposal by making several simplifying assump-
tions.
• First, we generate the noise vector e according to an

alternative distribution, i.e., the uniform distribution in

1We can also use p-ary quasi-negacyclic codes, and set r to be 2u, where
u is a natural number. In this case, we work on a ring Fp[x]/〈xr+1〉, which
is a safer ring as recommended in RING-LWE-based cryptography [7][8].
However, there are fewer parameter choices as r is set to be an integer 2u.



{0,−1, 1}∗, and take this setting throughout the remain-
ing paper.

• Second, for ease of controlling the short cycles of the
corresponding Tanner Graph, we assume that the signifi-
cant positions are distributed evenly in each block of the
sparse p-ary QC-MDPC parity-check matrix. That is, the
row sig-weights wsig,i’s differ by at most 1.

• Third, for ease of decoding, we assume that the most
significant entry hi1 is uniformly chosen from [p2−δ1,

p
2+

δ1], . . ., and the wth
sig significant entry hisig uniformly

chosen from [ p
2
wsig − δwsig ,

p
2
wsig + δwsig ]. Here (δi)1≤i≤wsig

are algorithmic parameters chosen by concrete settings.
NOTE: Using this setting, we can limit each entry of eHT to

lie in the interval2 (− 3p
2 ,

3p
2 ), when the operations are viewed

over R. The combinations of the significant coefficients are
several integer points far away from each other. If the noise
variance is well-controlled, then we can always reach the cor-
rect combination and at least decode some values correspond
to the combination — this is an intuitive description why our
decoder works.

V. DECODER

In this section, we present a new iterative hard-decision
decoder for the proposed p-ary QC-MDPC code. This de-
coder consists of several rounds of passing soft-information
twice and can be modified to succeed with probability close
to 1 using some heuristic assumptions, which is vital for
a cryptosystem. Another interesting observation is that the
proposed decoder outperforms its soft-decision counterpart in
simulation.

A. The Corresponding Tanner Graph

Similar to that in the iterative decoding of binary
LDPC/MDPC codes, we need to first build the bipartite
Tanner graph corresponding to the parity-check matrix H. This
extension is not straight-forward for the new p-ary codes in the
Euclidean metric, since the corresponding Tanner graph will
be quite dense if it is build in a normal (Hamming) manner,
which is a major obstacle for an efficient decoding.

The novel solution is to form a sparse Tanner graph by
keeping the edges with a significant coefficient and adding
in each check node a new edge connecting to an error
node representing the contribution of the edges with a small
coefficient. The apriori probability of the value in each error
node can be pre-computed and stored in a table, allowing an
efficient hard-decision version in the later subsection. We can
also employ this sparse graph to perform the classic sum-
product algorithm via fully updating the distribution of the
value in the imaginary error node.

Moreover, when designing the system, the user should avoid
choosing from the key space a secret parity-check matrix that
will introduce short cycles in its corresponding Tanner graph.

2A more general setting is making sure that each entry lies in (− p
2
−

|a|p, p
2
+|a|p), where a is an integer with a small absolute value. The deduced

decoder is also applicable.

We can ensure that its Tanner graph is cycle-free for the
proposed parameter setting in Section VI-A.

B. A Hard Decoding Strategy

We give a brief description of the proposed hard-decision
decoder here due to the page limit and refer the interested
readers to the full version [10] for details.
• Start with the initial parity-check matrix H(0) = H, and

the initial syndrome s(0) = s.
• For the tth iteration:

– Set the distribution of each undetermined message
node to be uniform over {−1, 0, 1} and the distri-
bution of the imaginary error node corresponds to
the check node vj to be the apriori distribution D(t)

j ,
which is pre-computed and stored in a table.

– Perform two rounds of the classic sum-product al-
gorithm. Note that since the degree of the imagi-
nary error node is 1, its corresponding distribution
is unchanged during the two-pass message-passing
process.

– In the message node Xj , if its entropy is rather small,
i.e., with a probability3 larger than 1−ε, the variable
Xj is equal to a certain value xj ∈ {−1, 0, 1}, we set
Xj to be xj . We then update H(t) by removing the
columns in the current parity-check matrix H(t−1)

whose corresponding message value is determined,
and also re-compute the syndrome s(t) by substitut-
ing the determined values xj’s.

• Terminate if reaching the limit on the maximum number
of iterations. If the number of undetermined message
nodes is less than a pre-set threshold, perform Gaussian
Elimination to recover these message values; report fail-
ure otherwise.

• Check all the parity-check equations, and report failure
if one is unsatisfied.

C. Treating the Decoding Error Probability

We have implemented both the above hard-decision decoder
and its soft-decision counterpart and obtain satisfying perfor-
mance. For example, if we use the parameter setting proposed
for 80-bit security in Section VI-A, the word error probability
after 4 iterations is only 3×10−6. Moreover, the hard-decision
one can handle a much noisier distribution in the imaginary
error nodes compared with its soft-decision counterpart.

Another key issue is to treat its non-zero decoding error
probability, which can be solved via simply making use of the
similar methods as in [3]. For this new hard-decision decoder,
we introduce a heuristic variant to make the error probability
small by additionally calling the decoder a constant number
of times.

The procedure works as follows. When a decoding failure
is reported, we re-perform the first iteration of the hard-
decoding process; we then randomly choose a fraction of

3Here ε is extremely small; for example, we set it to be 10−9 in our
implementation.



the determined values, update the parity-check matrix and the
syndrome vector according to these selected values, and call
the decoder again; we repeat this choosing-updating-decoding
procedure until the decoding succeeds or reaching the limit on
the number of iterations.

Using this approach, we can make the decoding failure
undetectable in several million decoding tests and show that
under some heuristic assumptions the decoding error probabil-
ity can be reduced to less than 2−80 (or even much smaller)
for the given parameter setting (See [10]).

D. The Complexity Analysis

Since the code length is smaller and the corresponding Tan-
ner graph is sparser compared with the binary-MDPC scheme,
the decoding complexity of the new scheme is competitive
even if some soft information is used during the message-
passing process. To be specific, the proposed instantiation in
Section VI-A for 80-bit security will require far less operations
(less than 20%) than its binary-MDPC counterpart.

VI. POSSIBLE ATTACKS

While the best technique for solving the binary McEliece
schemes generally is still information set decoding
(ISD) [11][12], it works poorly for the newly proposed
p-ary MDPC scheme with Euclidean noise. Therefore, it is
promising to assess the security levels, by using techniques
designed for attacking lattice-based cryptography that employs
the Euclidean metric. We estimate its security against both
message-recovery attacks and key-recovery attacks.

For a message-recovery attack, we are facing an exact
(RING-) LWE [13][7] (or (RING-) LWE with small errors)
problem with dimension (n − r) and a uniform noise distri-
bution in {−1, 0, 1}, whose hardness with a limited sample
number has been ascertained in [14] by a reduction to some
hard lattice problems. Note that for distinct instances, the most
competitive attacks (e.g, combinatorial attacks like BKW [15]
or Meet-In-the-Middle (MITM), lattice attacks like SIS sieving
or Bounded Distance Decoding, the hybrid attack [16] for
NTRU, and other algebraic attacks like Arora-Ge [17] and
Gröbner based attacks [18]) are distinct4. Thus, every known
attack should be tested to ensure that the concrete complexity
of the instance is larger than its designed security level.

For a key-recovery attack, the problem equals that of finding
a vector h with special structures, i.e., several entries are
significant and the remaining part is short, such that

GhT = 0,

where G is the public key, a dense generator matrix. This is
exactly the content of finding a special codeword in the dual
code C⊥, but in the Euclidean metric sense. In the literature of
lattice-based cryptography, it has another name—Short Integer
Solution (SIS), and can be solved using methods similar to
those for LWE.

4As the sample number is limited, the algebraic-type attacks cannot succeed
in polynomial time and the BKW-type attacks need to generate new samples
from these given ones.

In the p-ary QC-MDPC case, more security aspects should
be considered due to its additional algebraic structures. In
particular, we should choose the parameters to resist a general
attack that reduces the instance to another with a much
smaller dimension and still controllable uncertainty, therefore
breaking some instantiations of NTRU [19], RING-LPN [20]
or McEliece cryptosystems [21][22]. As recommended in
Section III-B, we choose r to be a prime integer.

A. An Instance for the 80-bit Security

In this part, we propose a simple instantiation of the new p-
ary quasi-cyclic-MDPC McEliece crypto-system for achieving
the 80-bit security. The parameters are as follows,

n = 614, p a prime ≈ 210, r = 307, wsig = 4, w1 = 80, w2 = 6.

Thus, the chosen parity-check matrix H has two blocks,
and the proposed system is close to NTRU. We also set all
(δi)i∈{1,...,4} to be 3 to further increase the key space.

The above instantiation corresponds to a Tanner graph with
a quite simple structure, and also provides an extremely large
key space. In addition, in each block, if the interval length
between two significant entries in a row is co-prime to p, then
the corresponding Tanner graph is cycle-free. Thus, we remove
all the unwanted parity-check matrices that form Tanner graphs
with cycles, to ensure good decoding performance.

To the best of our knowledge, this instance thwarts all
known attacks with computational power limited to 280 bit-
operations. On one side, we need to solve an LWE instance
with dimension 307, field size about 210, a uniform noise
distribution in {−1, 0, 1}, and a limited sample size, to form
a message-recovery attack. The recent best combinatorial
(BKW-type) solvers [23][24] or pure lattice-reduction-based
solvers will cost more bit-operations compared with the hybrid
attack, which is also the most promising attack on NTRU and
requires more than 280 bit-operations according to the recent
analysis in [25].

On the other side, we argue that a successful key-recovery
attack is an even more challenging task. First, the four signifi-
cant entries will ruin all the known attacks searching for short
vectors in the space of the dual code C⊥, as they make the
length of the secret vector really large; even if their influence
could be removed costlessly, then the remaining problem is
still hard in the corresponding security level, because the
dimension is not highly reduced. Note that for a key-recovery
attack, the hybrid attack is inefficient owing to the several
entries from {2,−2} introduced in the private matrix H.

We see that its key-size is approximately 3070 bits, less than
two-thirds compared with the cryptosystem based on binary
MDPC codes [3]. We will add more instantiations for different
security levels in the full version of the paper.

VII. DISCUSSION

This new p-ary QC-MDPC McEliece scheme shares some
similarities with its binary counterpart QC-MDPC and also
with the NTRU scheme. This is just an incipient attempt to
combine both the iterative decoding technique and the use of



more compact way for representing information. This scheme
is very attractive as a mixture of topics in both lattice-based
cryptography and code-based cryptography. In this section, we
pay more attentions to the variations.

A. The Comparison with Binary QC-MDPC

The direct differences to binary QC-MDPC are that the new
scheme is p-ary and uses the Euclidean metric, which force us
to redesign the decoder. These new features allow us to resist
the ISD attack easily and change the major threat to other
attacks.

The main advantage of the new p-ary QC-MDPC McEliece
scheme is its extremely compact keys. This makes it a stimu-
lating research topic, as it further improves the major drawback
of the well-known McEliece cryptosystem significantly, along
the path of binary QC-MDPC.

B. The Comparison with NTRU

NTRU is a commercialized cryptosystem, and has been
analyzed for more than 15 years. Compared with NTRU,
therefore, the new scheme still has a long way to go. The
following concludes their main differences.
• First, in NTRU, the message is a sparse polynomial, while

the new scheme may offer a larger message space.
• In addition, the new scheme will choose a longer secret

vector, offering more security for the attacks against
NTRU that search for a short vector. Moreover, several
entries chosen from {2,−2} in the private matrix are used
to protect against the hybrid attacks.

• Last but not least, the new scheme exploits the iterative
decoding technique to provide some favorable features.
For example, in NTRU, folding is prohibited, since the
decryption algorithm will fail if the coefficients of a
polynomial generated during decryption do not lie in an
interval with width p; using iterative decoding, we can
handle a larger interval. Thus, it is sufficient to choose a
smaller prime p as the underlying field size, thereby both
reducing the key-size and improving the invulnerability
against lattice attacks.

VIII. CONCLUSIONS AND FUTURE WORKS

In this paper, we have presented a new p-ary MDPC
McEliece cryptosystem, which extends the recent binary
MDPC scheme [3] and employs the Euclidean metric to
bound noise. Besides, using a quasi-cyclic structure, the key
is extremely compact—for 80-bit security, the key-size of one
instantiation is less than two-thirds compared with its binary
counterpart. Taking all these modifications into consideration,
we have also presented a hard-decision iterative decoder well
controlling the decoding complexity.

There are a few obvious improvements, one being to de-
sign a new decoding strategy to further improve the trade-
off between decoding complexity and performance, another
being to find a more efficient implementation (e.g., to borrow
ideas [26] from lattice-based cryptography). For the proposed
instantiation, its security is mainly assessed by recent results

on cryptanalysis, so another interesting direction is to find a
tight reduction to some hard ideal lattice problems.
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