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Spatially-Coupled Random Access on Graphs
Gianluigi Liva, Enrico Paolini, Michael Lentmaier and Marco Chiani

Abstract—In this paper we investigate the effect of spatial
coupling applied to the recently-proposed coded slotted ALOHA
(CSA) random access protocol. Thanks to the bridge between
the graphical model describing the iterative interference cance-
lation process of CSA over the random access frame and the
erasure recovery process of low-density parity-check (LDPC)
codes over the binary erasure channel (BEC), we propose an
access protocol which is inspired by the convolutional LDPC code
construction. The proposed protocol exploits the terminations
of its graphical model to achieve the spatial coupling effect,
attaining performance close to the theoretical limits of CSA. As
for the convolutional LDPC code case, large iterative decoding
thresholds are obtained by simply increasing the density of the
graph. We show that the threshold saturation effect takes place
by defining a suitable counterpart of the maximum-a-posteriori
decoding threshold of spatially-coupled LDPC code ensembles.
In the asymptotic setting, the proposed scheme allows sustaining
a traffic close to 1 [packets/slot].

I. INTRODUCTION

Since the introduction of the ALOHA protocol [1], several

random access (RA) schemes have been introduced. Among

them, some feedback-free RA protocols originally proposed

in [2], [3] re-gained attention in the recent past [4], [5]. In

[2], the capacity of the so-called collision channel without

feedback (CCw/oFB) was analyzed, assuming slot-aligned but

completely asynchronous users’ transmissions. Moreover, a

simple approach to achieve error-free transmission (in noise-

free setting) over the CCw/oFB was proposed. In the context

of the CCw/oFB, the capacity is defined as maximum packet

transmission rate per slot, which allows the receiver to recover

the packets with an arbitrarily-small error probability (in noise-

free conditions).

The approach of [2] consists of assigning different peri-

odic protocol (access) sequences to the users. Each sequence

defines in which slots each user is allowed to access the

shared channel. Furthermore, the users encode their packets by

means of erasure correcting codes. The user’s packet can be

recovered whenever a sufficient number of codeword segments

are received collision free. Hence, by selecting proper protocol

sequences, it is possible to ensure that a sufficient number of

segments per user are recovered, even if the beginning of the

different protocol sequences is unsynchronized. In this way, a
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symmetric capacity1 equal to 1/e [packets/slot] is achieved

as N → ∞, where N is the number of users accessing

the RA channel. The same capacity is achieved also in the

unslotted case. Although simple, the approach of [2] poses

some challenges, especially if a large (and varying) number

of users has to be served [3], [4].

Recently, RA schemes profiting from successive interfer-

ence cancelation (SIC) have been introduced and analyzed

[6]–[9]. These schemes share the feature of canceling the

interference caused by collided packets on the slots where they

have been transmitted whenever a clean (uncollided) copy of

them is detected. In [8], [9] it was shown that the SIC process

can be well modeled by means of a bipartite graph. The anal-

ysis proposed in [8], [9] resembles density evolution analysis

of low-density parity-check (LDPC) and doubly-generalized

LDPC (D-GLDPC) codes over erasure channels [10]–[12].

By exploiting design techniques from the LDPC context,

a remarkably-high capacity (e.g. up to 0.8 [packets/slot])
can be achieved in practical implementations. The schemes

considered in [6]–[8] assume a feedback from the receiver to

achieve a zero packet loss rate.

A scheme based on the coded slotted ALOHA (CSA) of [9]

has been analyzed in the context of the CCw/oFB in [13]. An

upper bound on the maximum load G sustainable at a scheme

rate R, has been derived as the unique positive solution to

G = 1− e−G/R (1)

in [0, 1). Still in [13] it was shown how this bound can be

tightly approached by a careful selection of the distribution of

the codes to be used at users for encoding their packets.

In this paper, we propose another means for approaching

the bound defined by (1), which is based on spatial coupling.

Spatial coupling effects were initially devised in the context of

density evolution analysis of convolutional LDPC codes over

the binary erasure channel (BEC) [14]–[17] and the additive

white Gaussian noise (AWGN) channel [18]. Subsequently, its

application to other settings relying on sparse graph represen-

tations has been investigated (see e.g. [19]–[21]). By imposing

some constraints on the CSA access scheme, we show how the

threshold under the iterative (IT) SIC process saturates towards

a suitably-defined equivalent of the maximum-a-posteriori

(MAP) decoding threshold of LDPC ensembles.

II. CODED SLOTTED ALOHA: ERASURE DECODING

MODEL

We recall next the basic model adopted for the description

of CSA. We consider a slotted RA scheme where slots are

grouped in medium access control (MAC) frames, all with

1The symmetric capacity is given by the sum-rate capacity under the
hypothesis that all users adopt the same transmission rate.
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M slots

Na users

(bursts)

RP1 RP2

Fig. 1. MAC frame composed by M = 4 slots with Na = 3 users attempting
a transmission. Repetition rate d = 2.
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Na burst nodes

s1 s2 s3 s4

b1 b2 b3

Fig. 2. Residual graph representation for the MAC frame of Fig. 1.

the same length (in slots). Each user is frame- and slot-

synchronous, and attempts at most one burst (i.e., packet)

transmission per MAC frame. Each burst has a time duration

Tslot, whereas the MAC frame is of time duration Tframe.

Neglecting guard times, the MAC frame is composed of

M = Tframe/Tslot slots. We consider a population of N
users, with N ≫ M . Users are characterized by a sporadic

activity, i.e., at the beginning of a MAC frame each user

generates a burst to be transmitted within the MAC frame with

probability ǫ ≪ 1, where ǫ is called activation probability.

Users attempting the transmission within a MAC frame are

referred to as active users. On the contrary, users that are

idle during a MAC frame are referred to as inactive users.

We denote the population size normalized to the frame size

by α = N/M . The number of active users is modeled by

the random variable Na, which is binomially-distributed with

mean value E[Na] = Nǫ. We say that the average offered

channel traffic (representing the average number of bursts

transmissions per slot) is

G = E[Na]/M = ǫN/M = ǫα.

We consider a CSA scheme based on (d, 1) repetition codes,

which is equivalent to a d-regular contention resolution diver-

sity slotted Aloha (CRDSA) scheme [6]. More specifically, at

the beginning of a MAC frame, each user selects d slots with

a uniform probability out of the M frame slots. If the user is

active, it transmits d copies of its burst in the d selected slots.

We define R = 1/d as the rate of the scheme. In each burst

replica, a pointer to the position of the other copies is included,

e.g., in a dedicated header field. Whenever a clean burst (i.e.,

a burst which did not collide) is successfully decoded, the

pointer is used to determine the slots where its copies have

been transmitted. Supposing that a another replica of this burst

has collided, it is possible to subtract, from the signal received

in the corresponding slot, the interference contribution of the

twin burst. This may allow the decoding of another burst

transmitted in the same slot. The SIC proceeds iteratively, i.e.,

cleaned bursts may allow solving other collisions. An example

of a MAC frame with M = 4 slots and Na = 3 active users

is depicted in Fig. 1, where the repetition rate is d = 2.

Considering a MAC frame composed of M slots and a

population of N = αM users, the frame status can be

described by a bipartite graph, G = (B,S,E), consisting of a

set B of N burst nodes (one for each user), a set S of M sum

nodes (one for each slot in the frame), and a set E of edges. An

edge connects a burst node (BN) bi ∈ B to a sum node (SN)

sj ∈ S if and only if the j-th slot has been selected by the i-th
user at the beginning of the MAC frame. The graph obtained

by expurgating from G the BNs associated with inactive users

and their adjacent edges is called the residual graph and is

denoted by Ga = (Ba, S, Ea). Here, Ba ⊆ B is the subset of

BNs associated with the active users, and Ea ⊆ E is the subset

of the edges associated with the transmitted burst copies. An

example of the residual graph representing the MAC frame of

Fig. 1 is given in Fig. 2.

The SIC process can be represented through a message-

passing along the edges of the graph. As in [6], [8], we make

use of two assumptions which allows simplifying the SIC

process analysis in the graphical model. First, we assume that

perfect SIC is performed. Second, we claim that, whenever a

clean (collision-free) burst is present in a slot, decoding suc-

ceeds with a probability that is essentially 1. It has been shown

in [6], [8] that these assumptions are accurate enough to model

the SIC process down to low signal-to-noise ratios (SNRs)

with moderate-complexity signal processing algorithms.

Thanks to this simplification, the SIC procedure is equiva-

lent to iterative decoding of an LDPC code with N variable

nodes and M check nodes over a BEC with erasure probability

ǫ (coinciding with the activation probability). All variable

nodes have degree d, while the check node degrees follow

a Poisson distribution [8] with average degree dN/M = dα.

The nominal code rate is thus R0 = 1−M/N = 1− 1/α.

For large frames (M → ∞) and for a given normalized

population size α, CSA shows a threshold behavior. For an

activation probability ǫ lower than a threshold value ǫIT
block

2,

vanishing burst error probability can be achieved by iterating

SIC. The threshold ǫIT
block

can be analyzed via density evolution

over the residual graph Ga according to the recursions

qℓ = pd−1
ℓ−1 (2)

pℓ =
∑

h

ρ̃h

(

1− (1− qℓ)
h−1

)

= 1− ρ̃ (1− qℓ) , (3)

2The subscript “block” is here used to emphasize the block-structure of
the MAC frame, in contrast with the spatially-coupled structure introduced in
Section III.



where ρ̃h is the fraction of edges in Ga connected to SNs with

degree h in the residual code graph, and ρ̃(x) =
∑

h ρ̃hx
h−1.

In (2) and (3), qℓ and pℓ denote the probabilities that an edge

in the residual graph carries an erasure outgoing from a BN

and from a SN, respectively, at the ℓ-th iteration. Since the

number of collisions in a slot follows a Poisson distribution,

ρ̃(x) = e−ǫαd(1−x). (4)

Thus, the threshold ǫIT
block

is given by the supremum of the set

of ǫ > 0 such that

q >
(

1− e−qǫαd
)d−1

∀q ∈ (0, 1]. (5)

The threshold can be expressed equivalently in terms of

offered traffic. By recalling that G = ǫα, the threshold GIT

block

is given by the supremum of the set of G > 0 such that

q >
(

1− e−qGd
)d−1

∀q ∈ (0, 1] , (6)

and we have GIT

block
= ǫIT

block
α.

III. SPATIALLY-COUPLED CSA: ACCESS MODEL AND

DENSITY EVOLUTION

In this section, we modify the access rules of CSA to

implement a convolutional-oriented structure that enables the

exploitation of the spatial coupling effect.

A. Access Model

The modified access rules are summarized next (see also

Fig. 3). A super-frame is divided into Mf = l+d−1 frames of

M slots each. The slots belonging to the same frame constitute

a slot type set. A user becoming active at the beginning of a

frame (with probability ǫ) transmits a burst in a slot picked

uniformly at random within that frame. Furthermore, a copy

of the burst is sent in each of the following d − 1 frames in

a slot picked with uniform probability in each frame. The set

of users becoming active at the beginning of the i-th frame is

referred to as the type-i user set. Similarly, the slots belonging

to the j-th frame are referred to as type-j slots. The expected

size of a user set is E[Nu] = ǫN . Thus, as before we can

define the offered traffic G as G = E[Nu]/M = ǫN/M .

After transmission of the l-th frame, transmissions from new

users are forbidden, and the following d− 1 frames are filled

just with the copies of the bursts whose transmissions have

been initiated during the past d− 1 frames. Once all the burst

copies have been transmitted, a new transmission cycle begins,

i.e., a new super-frame is initialized.

A (residual) bipartite graph description of the recovery

process is obtained as follows. We associate a BN to each

user. Similarly, we associate a SN to each slot. The BNs

corresponding to users of type i are clustered in type-i BN

groups, whereas the SNs related to slots of type i are clustered

in type-i SN groups. The number of BN types connected to

a SN type-j group is denoted by δj (degree of the type-j SN

group). Note that δj ∈ {1, . . . , d}. The type-i BN group is said

to be neighbor of a type-j SN group (and viceversa) when

the nodes belonging to the type-i BN group are connected

to some nodes in the type-j SN group. The indexes of the
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Fig. 3. Example of a convolutional super-frame structure with 3 users per
user type and M = 4 slots per frame.

groups that are neighbors of the type-j SN group form the

set N s
j , while the indexes of the groups that are neighbors of

the type-i BN group form the set N b
i . Note that the period in

which new user transmissions are blocked is equivalent to the

termination in the context of convolutional LDPC codes.3 An

example of a super-frame structure is displayed in Fig. 3. The

bursts transmitted into termination frames experience a lower

collision probability than the other bursts, thus boot-strapping

the iterative decoding process through the coupled structure.

B. Density Evolution

Let pj be the probability that an edge incident on the type-j
SN group carries an erasure message towards the BNs, after

SN processing at the generic SIC iteration. Analogously, let

qj be the probability that an edge incident on the type-j SN

group carries an erasure message towards the type-j SNs,

after BN processing at the generic SIC iteration. Moreover,

let qi→j be the probability that an edge emanating from the

type-i BN group carries an erasure message towards the type-

j SN group (with j ∈ N b
i ), after BN processing at the generic

SIC iteration. The physical load (i.e., the load including burst

copies) for the i-th sub-frame is given by G(i) = G · δi.
Next, we define SN degree distributions from an edge

perspective as

ρ(j)(x) =

∞
∑

t=0

ρ
(j)
t xt−1

= exp (−Gδj(1− x))

where ρ
(j)
t is the fraction of the edges emanating from type-

j SNs and incident on type-j SNs with degree t. Density

evolution equations can be now derived as follows, where ℓ is

the iteration index. For the type-j SN group we have

pj,ℓ = 1− ρ(j)(1− qj,ℓ)

where

qj,ℓ =
1

δj

∑

v∈NS
j

qv→j,ℓ .

3A loss in terms of offered traffic, with respect to G = E[Nu]/M , occurs
when the offered traffic is calculated taking into account the frames in which
new arrivals are blocked. Nevertheless, this traffic loss is negligible for large l.
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Moreover, for the type-i BN group, for all i ∈ N b
j we have

qi→j,ℓ =
∏

u∈N b
i
\j

pu,ℓ−1 .

The SIC IT thresholds for both block-based CSA and its

convolutional counterpart are plotted in Fig. 4 versus the bound

(1), as functions of the rate R = 1/d. The thresholds for

the spatially coupled access scheme are denoted by GIT
conv, to

emphasize the analogy with convolutional LDPC ensembles.

The large SIC IT thresholds attained by the convolutional CSA

scheme allow to tightly approach, already for d = 3, the limit

imposed by (1). For d ≥ 4, an impressive offered traffic, very

close to 1 [packet/slot], can be handled by the convolutional

CSA scheme with vanishing packet (i.e., burst) loss probability

(in the asymptotic setting). The bound for higher rates R could

be tightly approached by spatially-coupled CSA based on non-

trivial (d, k) constituent codes with rate k/d > 1/2 [9].

IV. THRESHOLD SATURATION IN CSA

We now introduce an enhanced decoding algorithm for the

conventional (block) CSA case of Section II, which serves to

derive an upper bound on the achievable threshold for CSA

schemes, and to investigate threshold saturation effects for

the convolutional scheme. This algorithm mimics the MAP

decoder of an LDPC code over the BEC, and we refer to it

as genie-aided maximum-a-posteriori (GA-MAP) decoder.

A. Genie-Aided MAP Decoding

From an analysis viewpoint, the relation between the trans-

mitted bursts and the slot observations can be simplified by to

a matrix representation of the graph via an M × Na binary

matrix Q, where qi,j = 1 iff BN bj is connected to SN si in

Ga, and qi,j = 0 otherwise. We denote by u the length-Na

binary vector whose j-th element uj is associated with the

modulated burst of user j. We also denote by y the length-M
binary vector whose i-th element is associated with the i-th
slot. An equation system relating u and y is thus

uQT = y. (7)

In this simplified setting, the elements of u and y are

binary digits which provide abstraction of the actual bursts

transmitted by the users and the signals received in the slots,

respectively. Upon receiving y and assuming that Q is revealed

by a genie, the GA-MAP decoder solves (7) for u via Gauss-

Jordan elimination (GJE). Note that the iterative decoding

process described in Section II succeeds only if the matrix Q

can be posed in triangular form by row/column permutations,

i.e., only if the equation system (7) can be solved iteratively.

Thus, the GA-MAP decoder performance (which is optimum

with respect to (7)) provides a lower bound on the decoding

error probability of the iterative SIC process.

B. CSA Analysis under GA-MAP Decoding

We establish next a bridge towards the MAP decoding

threshold of LDPC codes under MAP decoding in order

to derive the threshold of a d-regular CSA scheme under

GA-MAP decoding, GMAP

block
. We define Cd,M,N to be the

ensemble of all length-N codes given by the null space of an

M×N binary parity-check matrix H, having constant column

weight d and where the d 1s in each column are placed in

random positions, according to a uniform distribution. Recall

that, for the codes in this ensemble, the nominal rate is given

by R0 = 1 − M/N . From a bipartite graph perspective,

the graph of a code in Cd,M,N possesses a constant variable

node degree, dv = d whereas, as N and M = (1 − R0)N
tend to infinity, the check node degree distribution follows

a Poisson distribution with mean value dc = dN/M . The

edge-oriented check node degree distribution is thus given by

ρ(x) = exp(−dc(1− x)) [8].

Recall that the ensemble under consideration can be placed

in analogy to the scheme introduced in Section II where N is

the user population size, M is the number of slots per frame

and d is the repetition rate for the bursts. The IT decoding

threshold ǫIT
block

over the BEC for the ensemble Cd,M,N , N →
∞, is calculated as the maximum value of the channel erasure

probability ǫ (the analogous of the activation probability, in the

CSA context) for which the erasure probabilities qi, pi (where

i is the iteration index) converge to an arbitrarily-low positive

value, for i → ∞, according to

pi = ǫqd−1
i−1 , (8)

qi = 1− ρ(1− pi) = 1− exp(−dcpi). (9)

The average extrinsic erasure probability pe(ǫ) under IT de-

coding is obtained finally as

pITe (ǫ) = lim
i→∞

qdi . (10)

Defining an average extrinsic erasure probability function

pMAP
e (ǫ) also for the MAP decoder, from the area theorem

of [22] the area below pMAP
e (ǫ) equals the ensemble rate. By



TABLE I
THRESHOLDS OF DIFFERENT ACCESS SCHEMES, COMPARED WITH THE

UPPER BOUND G∗ .

d GIT

block
GIT

conv G
MAP

block G∗ η

2 0.5 0.5 0.5 0.7969 0.3726
3 0.8184 0.9179 0.9179 0.9405 0.9760
4 0.7722 0.9767 0.9767 0.9802 0.9964
5 0.7017 0.9924 0.9924 0.9931 0.9993
6 0.6370 0.9973 0.9973 0.9975 0.9998

noting that for any ǫ, pMAP
e (ǫ) ≤ pITe (ǫ), an upper bound [23]

on ǫMAP

block
is given by the value ǭMAP

block
such that

∫ 1

ǭMAP

block

pITe (ǫ)dǫ = R0. (11)

This allows us also to get an upper bound on the decoding

threshold for a d-regular block CSA scheme, under GA-MAP

decoding. Letting α = N/M = 1/(1 − R0), the GA-MAP

threshold of CSA can be upper bounded as

G
MAP

block = αǫMAP

block.

C. Threshold Saturation

Table I illustrates the threshold achievable by conventional

CSA schemes employing a regular distribution at the BNs

based on (d, 1) repetition codes. For the spatially-coupled

scheme, a super-frame composed by Mf = l + d − 1
frames has been considered, with l = 200. Moreover, the

normalized user population size is α = 100, i.e. the number

of users is 100 times larger than the number of slots per

frame. We additionally provide the upper bounds on the

threshold achievable by the conventional CSA scheme under

the GA-MAP recovery process. The derivation of the MAP

thresholds serves to illustrate how, also in this context, the

imposition of a convolutional-like structure to the access

scheme allows achieving the threshold saturation effect as

numerically shown in Table I. The upper bound on the

achievable threshold G∗ according to (1), given by the solution

of G = 1 − exp(−G/R), is provided too. Accordingly, we

evaluated the normalized efficiency of the proposed scheme

as

η = GIT

conv/G
∗ .

As already observed in the LDPC context, larger degrees allow

to approach the bound more tightly.

V. CONCLUSION

In this paper we introduced a spatially-coupled RA

scheme for the CCw/oFB which attains capacities close to

1 [packet/slot] in the asymptotic (i.e., for large frames) set-

ting. A bridge between the graphical model describing the

iterative interference cancelation process of the proposed RA

over the random access frame and the erasure recovery process

of low-density parity-check codes over the binary erasure

channel has been set, which allows computing an upper

bound on the capacity achievable by an enhanced (genie-aided)

decoder. The saturation of the SIC IT capacity of the proposed

scheme towards the threshold under genie-aided decoding has

been numerically demonstrated.
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