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Popular science summary

Quantum mechanics, the branch of physics governing the smallest scales of nature, reveals
a world where particles can exist in multiple states simultaneously and interact in ways that
defy classical intuition. These principles are the foundation of cutting-edge technologies
such as quantum computing and quantum communication. This doctoral research delves
into this fascinating domain, investigating a hybrid system of double quantum dots coupled
to superconductingmicrowave resonators— an innovative platform for exploring quantum
phenomena and advancing practical applications.

A quantum dot (QD) is a nanoscale structure that confines electrons in all three spatial di-
mensions, effectively creating an ”artificial atom.”The confinement leads to discrete energy
levels, much like those in real atoms, and enables the precise manipulation of electrons us-
ing external fields. When two such quantum dots are coupled, they form a double quantum
dot (DQD), or an ”artificial molecule,” where electrons can tunnel between the dots. This
tunneling behavior, a quintessential quantum phenomenon, depends on the relative energy
levels of the two dots and the strength of their coupling.

DQDs are remarkable because they allow researchers to create and study a tunable two-
level system, a key element in quantum information processing. By adjusting external
parameters like electric or magnetic fields, the energy difference between the two dots can
be precisely controlled. This tunability makes DQDs ideal for applications in quantum
computing, where they can function as qubits, and in quantum sensing, where their sens-
itivity to electromagnetic fields can be leveraged.

To further probe and utilize the quantum properties of DQDs, they are coupled to su-
perconducting microwave resonators (MRs). These resonators, made of superconducting
materials, can confine electromagnetic waves in the microwave frequency range. This con-
finement creates standing waves, analogous to sound vibrations in a musical instrument,
but at much smaller scales and higher frequencies. MRs are central to circuit quantum
electrodynamics (cQED), a field that studies the interaction between light (photons) and
matter (like QDs or superconducting qubits).

MRs are particularly advantageous because they operate in the quantum regime, where
photons can be individually counted and manipulated. They also integrate seamlessly into
electronic circuits, making them suitable for scalable quantum technologies. The coupling
of a DQD to a MR enables the controlled exchange of energy between the electrons in the
DQD and the photons in the resonator, opening new avenues for investigating quantum
interactions.

The research presented in this thesis explores the rich interplay between electrons in DQDs
and photons in MRs, shedding light on how this hybrid system can be harnessed for novel

vii



applications.

The coupling of DQDs with MRs exemplifies the power of hybrid quantum systems in
bridging the gap between fundamental physics and practical applications. By investigat-
ing photo-assisted transport and energy-conversion mechanisms, this research contributes
to our understanding of quantum transport, light-matter interaction, and open quantum
systems. These findings have implications for quantum computing, where precise control
of qubits is essential, and for quantum communication, where detecting and manipulating
individual photons is critical.

Moreover, the work on microwave power harvesting highlights the potential for sustainable
and efficient energy technologies based on quantum principles. As the quantum revolution
continues to unfold, hybrid systems like the DQD-MR platform stand at the forefront of
innovation, combining theoretical expertise with technological advancement.

In essence, this research demonstrates how the strange and beautiful rules of the quantum
world can be harnessed to build the technologies of tomorrow, paving the way for a future
where quantum mechanics transforms communication, computation, and energy.
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Chapter 1

Introduction

The ability to fabricate systems at a scale of several hundreds to tens of nanometers has in
recent decades lead to a greater understanding of how the constituents of matter behave
when confined to a size comparable to or even smaller than their de Broglie wavelength.
Under this strong spatial confinement, the physics of the systems cannot accurately be de-
scribed by classical means, and one has to rely on quantum mechanics. Quantum effects
such as the quantization of energy levels and quantum tunneling are used in many areas of
research from both an application-oriented point of view but also to gain a greater under-
standing on the fundamentals of quantum physics.
A field that relies on such effects is quantum transport [1]. This field is concerned with the
study of transport of single or multiple particles across nanostructures. One of the most
well-studied transport scenarios is electrons moving through semiconductor quantum dots
(QDs) [2]. By controlling the quantized energy levels within the QD, the flow of electrons
can either be enhanced or prohibited, creating what is known as a single electron transistor
(SET) [3]. Coupling several QDs in series allows for an even greater control of the elec-
tronic transport, including the ability to manipulate the directivity of the flow or to select
the spin of the transported electron[4].
Through said control of the energy levels, an electron can also be trapped within a QD and
manipulated through the application of electromagnetic fields [5]. The QD offers thus a
great platform for several qubit architectures, such as charge [6] or spin qubits [7], and also
to study the interaction between electrons and the applied fields [8]. This type of interac-
tion lies at the heart of quantum electrodynamics (QED) [9].
QED describes the interaction between light and matter at the quantum level. This typ-
ically involves scenarios where electrically charged particles interact via the exchange of a
photon. QED was the first theory that saw an agreement between quantum mechanics
and special relativity. It was able to very accurately predict many physical phenomena,
such as the Lamb shift in hydrogen. The exchange of photons with the charged particle
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typically involves transitions of the particle between different energy levels. In order to
address and manipulate specific transitions, one has to hit the particle with a photon of
a frequency close to the energy splitting of the levels. An efficient method for generating
and confining photons at a specific frequency is to utilize an optical cavity composed of
two highly reflective mirrors. The cavity is a type of resonator whose resonant frequency
can be tuned by changing the distance between the mirrors. The study of light-matter in-
teractions in optical cavities is called cavity QED [10]. In cavity QED systems, coherent
interactions between photons and electronic systems allow for widely used applications like
single-photon sources [11] or quantum sensors [12].
The circuit analogue of cavity QED, called circuit QED (cQED) [13], uses resonators made
out of superconducting circuits, which trap photons in the microwave regime. The advant-
age of this is that the cQED system can be directly integrated into a circuit. Some of the
state-of-the-art qubit architectures rely on these circuits, like IBM’s quantum computer
[14]. Important features for quantum technology applications such as strong light-matter
coupling [15] and long coherence times [16] have been achieved in cQED experiments, both
for superconducting qubits [17] as well as QDs [18, 19] that are coupled to the photons in
the resonator.
It has also been theoretically predicted that a double quantum dot (DQD) coupled to a
microwave resonator (MR) could act as a platform for efficient and continuous detection
of single microwave photons [20]. The detection of microwave photons is an important
but elusive task. It is important because it finds applications in many areas ranging from
quantum information [21, 22] to astronomy [23], but it is elusive because of the low energy
of microwave photons. In the optical regime, single photon detectors typically rely on the
excitation of an electron across the bandgap of a semiconductor [24]. In the microwave
regime this approach does not work because there are no semiconductors with such small
bandgaps. A different approach is thus needed, and this is where the DQD-MR system
comes in. Within a DQD, the energy splitting of the two energy levels can be tuned such
that it matches the frequency of the photons in the MR.The detection scheme relies on the
photon-assisted transport of an electron across the DQD. Experiments so far have shown
that this approach is indeed promising. High photon-detection efficiencies [25] and single-
photon sensitivities have been reported [26].

In this thesis, we investigate several questions regarding the photo-assisted transport of
electrons through a DQD that is coupled to a MR. The thesis is a compilation of four re-
search papers, all of them dealing with a different aspect of said transport scenario. Paper I
deals with the full counting statistics (FCS) of the photo-assisted current, or photocurrent,
through the DQDwhen the system is driven by a monochromatic, coherent drive. Paper II
investigates a drive that consists of a single microwave pulse and presents aWigner-function
formalism for the detection of the pulse. Paper III presents a realization of a microwave-
power to electrical-power converter, which is achieved by applying a finite bias across the
DQD. Paper IV studies the role of charge transport on the coherence of light-matter coup-
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ling.
The main text in the first part of the thesis contains several chapters which give an intro-
duction to DQDs, MRs, cQED systems, quantum transport and dynamics, FCS, Wigner
functions and power harvesting. Within those chapters we also summarize the main find-
ings of the research papers. In the second part the four research papers are attached. We
also give an introduction to input-output theory in the appendix.
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Chapter 2

Double Quantum Dots

A quantum dot (QD), sometimes referred to as “artificial atom”, is a man-made nanostruc-
ture that exhibits unique electronic and optical properties due to its small size. QDs are
typically created out of semiconducting materials, and one distinguishes mainly between
three different types: colloidal [27], self-assembled [28] and electrostatic (or gated) QDs
[29]. The strong spatial confinement in all three dimensions leads to the quantization of
energy levels in the QD.This confinement is typically highly tunable in the lab, which leads
to a strong control over the aforementioned properties of the QD.
QDs have thus found applications in a variety of research areas. A QD can be used as a
qubit inside a quantum computer [6, 7, 30], or as an LED inside your television [31]. QDs
even find applications in medical imaging and diagnostics [32, 33].
A natural continuation to the field of QD research is to couple two QDs, which then forms
a double quantum dot (DQD), also labeled “artificial molecule”. The two QDs comprising
the DQD are usually spaced close to each other, such that quantum tunneling of electrons
between the two QDs can occur. This tunnel coupling lends the DQD several additional
and interesting properties [34]. In a strong-coupling regime, the particle picture for an
electron in the DQD does not suffice to accurately describe its physical behavior. Rather,
the electron exhibits properties of a coherent wave, which is delocalized over the two QDs.
Coherence in the DQD is a purely quantum-mechanical phenomenon, which can function
as a resource for several quantum technology applications [35, 36]. This is because it enables
the maintenance of superposition and entanglement, a key prerequisite for quantum error
correction and communication protocols [37].
A different important property of the DQD is the ability to control two separate discrete
energy levels within the same system, creating a so-called two-level system (TLS) with a
tunable energy gap. This TLS can serve as a qubit architecture [38, 39], the creation of
single photonic states [40, 41] or, as we will discuss in detail later, the detection of single
photons [20].
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We see that the DQD offers a platform to investigate many interesting directions of re-
search, and it is for this reason that the DQD is one of the main building blocks for the
scientific results presented in this thesis.

In this chapter, we present a theoretical description of the DQD. In Sec. 2.1, we derive a
Hamiltonian description for a single QD and introduce the notion of second quantization.
In Sec. 2.2, we derive the Hamiltonian for a DQD.

Note that, for the results presented below, we set ℏ = 1 throughout.

2.1 QD Hamiltonian

As mentioned above, the QD is also called an artificial atom. And similarly to an atom,
where the electrons are confined by the attractive potential of the nucleus, the electrons in
the QD are typically bound by a quantum-well type potential, usually created through a
combination of semiconducting materials with different bandgaps, see Fig. 2.1, or the use of
electrostatic gates. It should be noted that seminconductor QDs usually consist of a large

Figure 2.1: Energy level diagram of a QDmade out of a semiconductor heterostructure, which is produced by layering
twomaterials with different band gapsEg . The bandgap offset creates a strong confinement in the center
semiconductor, which leads to a discretization of energy levels within the valence and conduction bands
of the material. We will in this thesis only be interested in studying electrons, and thus we will focus solely
on the conduction band.

(103 − 109) number of atoms. Most of the atoms’ electrons are bound to the nuclei, such
that there are only a small (0 − 103) number of free electrons. The Schrödinger equation
for these free electrons is given by

Ĥψ = Eψ, (2.1)

where ψ = ψ(r1, ..., rNe) is the wave function of Ne electrons at positions ri, Ĥ is the
total Hamilton operator or Hamiltonian and E is the total energy eigenvalue.
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The total Hamiltonian is given by

Ĥ =

Ne∑
i=1

Ĥ0(ri) +
1

2

∑
i ̸=j

e2

|ri − rj |
, (2.2)

where e denotes the electron charge. The total Hamiltonian is thus a sum of the single-
particleHamiltonian Ĥ0(ri) and aCoulomb interaction term. The single-particleHamilto-
nian is given by

Ĥ0(ri) =
p̂2
i

2m∗ + V (ri), (2.3)

wherem∗ denotes the effective electron mass, p̂i gives the canonical momentum operator
andV (ri) is the single-particle confinement potential, which can typically be well described
by an infinite square well potential

V (ri) =

 0, −L/2 < |ri| < L/2

∞, else
, (2.4)

where L denotes the total length of the well.
We will from now on only be interested in the simplified case where only a single free
electron resides on the QD. The reason for that will become clear later. In this case, the
total Hamiltonian is given by

Ĥ =
p̂2

2m∗ . (2.5)

2.1.1 Second quantization

A focal theme in this thesis is the transport of electrons through a DQD. Such transport
scenarios are best described using the formalism of second quantization, also known as
occupation number representation [42]. As the name suggests, the formalism offers a con-
venient way to describe the occupation of a given quantum state and introduces the notion
of creation and annihilation operators to move between states which are occupied by dif-
ferent number of particles.
For fermions, the creation operator ĉ† and annihilation operator ĉ obey the following anti-
commutation relations

{ĉ, ĉ†} = 1, {ĉ, ĉ} = {ĉ†, ĉ†} = 0. (2.6)

Due to the latter relation, we find that (ĉ†)2 = (ĉ)2 = 0, implying that only a single
fermion can occupy a given state, which is the famous Pauli exclusion principle. We further
have the following relations

ĉ |0⟩ = 0, ĉ† |1⟩ = 0, ĉ†ĉ |n⟩ = n̂ |n⟩ = n |n⟩ , (2.7)
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where n = 0, 1. The operator n̂ is called number operator and it gives the occupation of a
given state |n⟩.
We can now describe the basis state in Eq. (2.1) |ψ⟩ in second quantized form

Ψ†(r) ≡ ⟨r|ψ⟩∗ ĉ† = ψ∗(r)ĉ†, Ψ(r) ≡ ⟨r|ψ⟩ ĉ = ψ(r)ĉ. (2.8)

From Eq. (2.6) we can deduce that

{Ψ(r1),Ψ
†(r2)} = δ(r1 − r2). (2.9)

The single-particle Hamiltonian in second quantization is then given by

ĤQD =

∫
drΨ†(r)Ĥ(r)Ψ(r) = ϵ0n̂, (2.10)

where
ϵ0 =

∫
drψ∗(r)Ĥ(r)ψ(r), (2.11)

denotes the single-particle energy.

2.2 DQD Hamiltonian

We now have all the tools we need to present the Hamiltonian of a DQD in second quant-
ized form. The single-particle Hamiltonians for the separate QDs will be equivalent to the
one in Eq. (2.10). To distinguish both QDs, we are going to attach a subscript L (R) to the
quantities describing the left (right) QD

ĤL = ϵLn̂L, ĤR = ϵRn̂R. (2.12)

Writing the creation operator for the left (right) QD as ĉ†L(R) = |L⟩⟨0| (|R⟩⟨0|), where |L⟩
(|R⟩) denotes the state of the left (right) QD, we get

ĤL = ϵL |L⟩⟨L| , ĤR = ϵR |R⟩⟨R| . (2.13)

Setting ϵL = −ϵR and defining ϵ = ϵL− ϵR, we write the the sum of the two terms in Eq.
(2.13) as

ĤL + ĤR =
ϵ

2
(|L⟩⟨L| − |R⟩⟨R|). (2.14)

As mentioned above, an electron inside a DQD can tunnel coherently between the two
QDs. This process also needs to be accounted for in the total Hamiltonian of the DQD.
We denote with tc the real tunneling amplitude between |L⟩ ↔ |R⟩ and introduce the
tunneling Hamiltonian as

ĤT = tc(|L⟩⟨R|+ |R⟩⟨L|). (2.15)
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The total DQD Hamiltonian is then given by ĤDQD = ĤL + ĤR + ĤT.
It is more convenient for further analysis to work in the eigenstate basis of the DQD, which
is found by diagonalizing ĤDQD. The eigenstate basis is spanned by the ground state |g⟩
and excited state |e⟩, which are defined by(

|g⟩
|e⟩

)
=

(
cos θ/2 − sin θ/2
sin θ/2 cos θ/2

)(
|L⟩
|R⟩

)
, (2.16)

where cos θ = −ϵ/Ω, with Ω =
√

4t2c + ϵ2 being the DQD energy level splitting. We
now write the Hamiltonian of the DQD in this basis as

ĤDQD =
Ω

2
σ̂z, (2.17)

where σ̂z = |e⟩⟨e| − |g⟩⟨g|.
From Eq. (2.16) it is clear that the ground and excited states are coherent superpositions of
the left and right charge states of the DQD. For a finite tunnel coupling, the two QDs thus
hybridize and the wave function of the left (right) QD has a finite spread over the right
(left) QD, see Fig. 2.2.

Figure 2.2: Energy level diagram of a DQD. Due to the finite tunnel coupling tc between the QDs, the state of the
left QD |L⟩ and that of the right QD |R⟩ hybridize to form the DQD ground |g⟩ and excited state |e⟩. The
wave functions of the QDs thus leak into the neighbouring QD. The level splitting between |L⟩ and |R⟩
is given by ϵ and the splitting between |g⟩ and |e⟩ is given by Ω.
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Chapter 3

Microwave Resonators

The term resonator typically describes a system that oscillates more strongly at certain fre-
quencies compared to others. These frequencies are called resonant frequencies. A special
type of resonator is the cavity resonator [43], which is able to confine waves which oscillate
at the resonant frequencies of the cavity. A microwave resonator cavity, or short microwave
resonator (MR) [44], is therefore a system that traps standing electromagnetic waves at fre-
quencies in the microwave regime. There exist different kinds of MRs, but the one relevant
for this thesis is the superconducting transmission line resonator (STLR) [45]. This type of
resonators are typically produced by choosing a transmission line, such as a coaxial cable,
which is then short-circuited at two ends, such that an electromagnetic standing wave may
be trapped between both ends, see Fig. 3.1. The frequency of the wave is then dependent
on the geometry of the system. The reason for choosing superconducting materials will
become clear in the following section.
STLRs are widely used in various areas of research, ranging frommore fundamental studies
of light interacting with matter at the quantum level [46, 47], to more application-oriented
investigations on how one can use the light inside the STLR to manipulate and couple
qubits [48]. One of the main advantages of STLRs are their high quality factor [49] which,
together with the fact that they are operated at ultra-low temperatures, leads to large co-
herence times of the trapped light. They can also be integrated into existing circuit archi-
tectures, something we will explore in depth in the following chapter.
We can see that STLRs offer a plethora of interesting avenues of research, which is why
they are the second main building block of this thesis.

In this chapter, we present a theoretical description of the STLR. In Sec. 3.1, we introduce
a theoretical model for the LC-circuit and explain why the STLR is equivalent to a series of
LC-circuits. In Sec. 3.2, we quantize the LC-circuit and show that this quantized version
is similar to a very well-known system in quantum mechanics. To that end, we also intro-
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duce the second quantization formalism for bosons. In Sec. 3.3, we derive the quantum
Hamiltonian for the STLR.

Figure 3.1: Schematic of a transmission line resonator. The resonator sketched is a λ/2 type resonator, meaning that
it traps half the wavelength of an electromagnetic wave, which is also depicted. The top and bottom parts
are called ground planes, and the middle part is called center conductor.

3.1 The LC-circuit

A transmission line can be described as a series of distributed inductance (L), capacitance
(C) and resistance (R) elements [50]. Shortening the ends of the series of RLC elements
restricts the propagation of electromagnetic waves and thus gives a transmission line reson-
ator. If we want to have a lossless transmission line resonator, we need to somehow get rid
of the resistance elements. And this is where the superconductor is needed. The electrical
resistance of a superconductor drops to zero below its critical temperature. Thus, the STLR
can be modeled as a shortened series of LC-circuits, see Fig. 3.2 for the circuit diagram. Our

Figure 3.2: Circuit diagram for the STLR, consisting of a shortened series of LC-circuits, which is composed of paral-
lel grounded capacitors with a capacitance of C0 per unit length ∆x, and a series of inductors with an
inductance of L0 per unit length ∆x. The symbol ϕn denotes the flux threading the inductor at node n
and is defined in the main text.

goal later will be to quantize the series of LC-circuits [51]. To that end, we start classically
and introduce the Lagrangian L for a single LC-circuit

L(ϕ, ϕ̇) = 1

2
Cϕ̇2 − 1

2L
ϕ2, (3.1)
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where ϕ describes the generalized coordinate of the system, C is the capacitance and L
is the inductance. The generalized coordinate for an electrical circuit is given by the flux
threading the inductor

ϕ =

∫ t

−∞
dt V (t), (3.2)

where V (t) is the voltage. We now proceed by deriving the classical Hamiltonian of the
circuit, which is a function of the flux and its conjugate momentum

q =
∂L
∂ϕ̇

= Cϕ̇, (3.3)

which generally corresponds to the charge on the capacitor

q =

∫ t

−∞
dt I(t), (3.4)

where I(t) gives the current.
The Hamiltonian is then found through a Legendre transformation of the Lagrangian and
gives

H(ϕ, q) =
q2

2C
+
ϕ2

2L
. (3.5)

It will be useful for the quantization below to to introduce the resonant frequency of an
LC-circuit

ϕ2

2L
→ 1

2
Cω2

rϕ
2, ωr =

1√
LC

. (3.6)

3.2 Quantization of an LC-circuit

The quantization of the Hamiltonian in Eq. (3.5) follows the standard procedure. The vari-
ables describing the charge and the flux are changed to operators obeying the commutation
relation (note again that ℏ = 1)

[ϕ̂, q̂] = i. (3.7)

Using this operator notation, the quantum Hamiltonian is given by

ĤLC =
q̂2

2C
+

1

2
Cω2

r ϕ̂
2. (3.8)

We see that this Hamiltonian resembles that of a quantum harmonic oscillator with fre-
quency ωr and “mass” C. Analogous to the harmonic oscillator, we define ladder operators
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to simplify the equations. For bosons, the creation operator â† and annihilation operator
â obey the following commutation relations

[â, â†] = 1, [â, â] = [â†, â†] = 0. (3.9)

We further have the following relations

â |0⟩ = 0, |n⟩ = (â†)n√
n!

|0⟩ , (3.10)

where |0⟩ denotes the state with no bosons, also called vacuum state, and |n⟩ denotes the
state with n bosons and is usually called Fock state. Using these definitions, we find

â |n⟩ =
√
n |n− 1⟩ , â† |n⟩ =

√
n+ 1 |n+ 1⟩ , â†â |n⟩ = n |n⟩ . (3.11)

Applying the ladder-operator notation, we rewrite the charge and flux operators as

ϕ̂ =

√
Z

2
(â† + â) q̂ = i

√
1

2Z
(â† − â), (3.12)

where Z =
√
L/C is the characteristic impedance of the circuit. Using these relations, we

rewrite the Hamiltonian in Eq. (3.8) as

ĤLC = ωr

(
â†â+

1

2

)
. (3.13)

For the remainder of the thesis, we adhere to the convention of omitting the 1/2 factor
related to zero-point energy.

3.3 STLR Hamiltonian

We model a transmission line by coupling many LC-circuits in series. The Lagrangian for
this system is given by

LTL =
∑
n

[
1

2
∆xC0ϕ̇

2
n − (ϕn − ϕn−1)

2

2∆xL0

]
, (3.14)

whereC0 (L0) denotes the capacitance (inductance) per unit length∆x. In the continuum
limit ∆x→ 0, the Lagrangian becomes

LTL =

∫
dx

[
C0

2

(
∂ϕ(x, t)

∂t

)2

+
1

2L0

(
∂ϕ(x, t)

∂x

)2
]
. (3.15)
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The classical Hamiltonian for the transmission line is then given by

HTL =

∫
dx

[
1

2C0
q2(x, t) +

1

2L0

(
∂ϕ(x, t)

∂x

)2
]
, (3.16)

where q(x, t) is the charge density field and ϕ(x, t) is the flux field. Now we quantize
the Hamiltonian (3.16). We again start by promoting the charge density and flux fields to
operators, which now obey the following commutation relations

[ϕ̂(x, t), ϕ̂(x′, t)] = [q̂(x, t), q̂(x′, t)] = 0,

[ϕ̂(x, t), q̂(x′, t)] = iδ(x− x′).
(3.17)

Moving to momentum space, we define by â†k (âk) the operator that creates (annihilates) a
boson in the mode with wave vector k. These operators obey the following commutation
relations

[âk, âk′ ] = [â†k, â
†
k′ ] = 0, [âk, â

†
k′ ] = δ(k − k′). (3.18)

The flux and charge density field operators are then given by, respectively

ϕ̂(x, t) =

√
1

4πC0

∫
dk

1
√
ωk

[â†−k(t) + âk(t)]e
ikx,

q̂(x, t) =

√
C0

4π

∫
dk i

√
ωk[â

†
−k(t)− âk(t)]e

ikx,

(3.19)

where ωk = ck, with c = 1/
√
L0C0 denoting the velocity of the field in the transmission

line. The quantum Hamiltonian of the transmission line can now be written as

ĤTL =

∫
dk ωk

(
â†kâk +

1

2
[âk, â

†
k]

)
, (3.20)

where the commutator 1
2 [âk, â

†
k] =

1
2δ(0) gives the zero-point energies ℏωk/2 of all the

modes.
If we now consider a transmission line resonator [c.f. Fig. 3.2], the length of the system is
finite. In this case, the field at the ends of the system is zero and thus, only modes that
fulfill ωn = nπc/d are allowed, where d denotes the length of the system and n ∈ Z. This
restriction on the modes gives the following Hamiltonian for the resonator

ĤR =
∑
n

ωnâ
†(ωn)â(ωn). (3.21)

Typically, only a single mode is of interest, such that the Hamiltonian simplifies to

ĤR = ωrâ
†â. (3.22)
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Chapter 4

Connecting the Dots (to the
Resonator)

The first theory where a full agreement between quantum physics and special relativity
was derived is called quantum electrodynamics (QED) [9], which describes interactions
between light and matter on the quantum level. One of the simplest such interactions
between light and matter is a TLS interacting with a single photon, like an electron sur-
rounding the nucleus of an atom transitioning between two energy levels. The electron in
that case can either emit or absorb a photon while it undergoes the transitions.
In the field of cavity QED, the TLS, usually an atom, is placed inside an optical cavity res-
onator [52], where the TLS and the photonic mode inside the cavity may coherently swap
excitations. These coherent interaction lead to a variety of interesting physical phenomena.
Starting from an excited TLS, excitations can be swapped between the TLS and the vacuum
state of the cavity, leading to so-called vacuum Rabi oscillations [53], which are a purely
quantum-mechanical effect. In the same configuration, the hybrid TLS-cavity system can
also be used as a source of single photons [11]. One may also entangle the states of the two
subsystems [54], which can then act as a platform for quantum computation and quantum
communication [55]. Research on cavity QED systems have also led to the advent of the
laser [56].
The mesoscopic analogue of cavity QED is called circuit QED (cQED) [13], where res-
onators made out of superconducting circuits (STLRs) are employed and are coupled to
solid-state systems such as QDs [18, 19] or Josephson junctions [57, 58]. In cQED systems,
the regime of strong light-matter coupling has been reached [59, 60] and has paved the
way for astonishing progress in the field, from research on quantum state transfer between
qubits [61] or multiqubit entanglement [62] to more quantum optics related experiments
demonstrating single photon generation [63, 64].
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We have introduced the two subsystems relevant for the scope of this thesis and have seen
that coupling the two opens up a whole new field where one may explore a great diversity
of interesting directions of research.

In this chapter, we present a theoretical description of the coupling between the DQD and
the MR. In Sec. 4.1, we present a general framework for light-matter interactions in cavity
and cQED systems. In Sec. 4.2, we derive the Jaynes-Cummings Hamiltonian, which is
one of the most widely used models to describe the kind of light-matter hybrid systems
introduced above.

Figure 4.1: Schematic of a cavity QED system. The cavity consist of two highly-reflective, concave mirrors that trap
a standing wave of the electromagnetic field. The field interacts with a TLS with ground state |g⟩ and
excited state |e⟩. The TLS swaps excitations with the cavity by absorbing and emitting photons.

4.1 Light-matter interactions in cQED systems

Quite generally, the interaction between quantized modes of the electromagnetic field and
an electric TLS can be described by the dipole interaction Hamiltonian [65]

Ĥint = −d̂ · Ê(r), (4.1)

where d̂ = −er̂ gives the dipolemoment operator and Ê(r) gives the electric field operator,
where r denotes the position of the TLS. Working in the subspace spanned by the ground
and excited states of the TLS {|g⟩ , |e⟩}, we know due to parity that [66]

⟨g|d̂|g⟩ = ⟨e|d̂|e⟩ = 0, (4.2)

and thus, we can write the dipole moment operator as

d̂ = d |g⟩⟨e|+ d∗ |e⟩⟨g| = d(σ̂+ + σ̂−), (4.3)

where we have assumed that the matrix element d = ⟨g|d̂|e⟩ ∈ R and have introduced
the ladder operators σ̂+ = |e⟩⟨g| and σ̂− = |g⟩⟨e|, which describe the excitation and
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de-excitation of the TLS, respectively. The electric field operator is given by [67]

Ê(r) =
∑
k

ϵk

√
ωk

2ε0V

(
â†eikr + âe−ikr

)
, (4.4)

where ϵk denotes the polarization vector, ε0 gives the permittivity of vacuum, ωk is the
frequency of the mode and V denotes the volume in which the electromagnetic field is
trapped.
We plug Eqs. (4.3) and (4.4) into Eq. (4.1) and get

Ĥint =
∑
k

gk

(
â†eikr + âe−ikr

)
(σ̂+ + σ̂−), (4.5)

where
gk =

√
ωk

2ε0V
ϵk · d, (4.6)

denotes the light-matter coupling constant.

4.2 The Jaynes-Cummings model

Thefirst step in deriving the Jaynes-Cummings (JC)Hamiltonian [68] consists of restricting
our analysis to only a single mode of the electromagnetic field, meaning that we can drop
the sum in Eq. (4.5). Then, we move to the interaction picture defined by

Ĥint(t) = eiĤ0tĤinte
−iĤ0t, (4.7)

where Ĥ0 denotes the Hamiltonian of the uncoupled TLS and electromagnetic field mode

Ĥ0 =
Ω

2
σ̂z + ωrâ

†â. (4.8)

The interaction Hamiltonian in the interaction picture is given by

Ĥint(t) = g
(
â†σ̂+e

i(Ω+ωr)t + âσ̂−e
−i(Ω+ωr)t + â†σ̂−e

−i(Ω−ωr)t + âσ̂+e
i(Ω−ωr)t

)
.

(4.9)
We now assume that the frequency of the fieldmode is close to resonance with the transition
frequency of the TLS, i.e. Ω ≈ ωr. In that case, the terms oscillating at a frequency of
2ωr in Eq. (4.9) average out to zero over the relevant time scales of the system. We can
thus drop those fast-oscillating terms, which is known as the rotating-wave approximation
(RWA).
After performing the RWA, we arrive at the JC interaction Hamiltonian [68]

ĤJC = g(â†σ̂− + âσ̂+). (4.10)
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The JCHamiltonian in Eq. (4.10) commutes with the free Hamiltonian in Eq. (4.8), which
means that we can write the eigenstates if the full Hamiltonian Ĥ0+ ĤJC in the lab frame
as a linear combination of the degenerate eigenstates of Ĥ0. These degenerate eigenstates
consist of a tensor product between the Fock states of the quantized electromagnetic field
|n⟩ and the eigenstates of the TLS |g⟩ and |e⟩. We denote by |n, e⟩ the state where n
photons are in the resonator and the TLS is in its excited state and by |n+ 1, g⟩ the state
where n+1 photons are in the resonator and the TLS is in its ground state. In the subspace
spanned by {|n, e⟩ , |n+ 1, g⟩}, the full Hamiltonian can be written as a 2× 2 matrix of
the form

Ĥ =

(
ωr(n+ 1/2)

√
n+ 1g√

n+ 1g ωr(n+ 1/2)

)
. (4.11)

Diagonalizing the matrix in Eq. (4.11) gives the following eigenspectrum

E±(n) = ωr

(
n+

1

2

)
± 1

2
Ωr
n,

|n,±⟩ ≡ 1√
2
(|n, e⟩ ± |n+ 1, g⟩),

(4.12)

where we have introduced the Rabi frequency [67] Ωr
n = 2g

√
n+ 1, which gives the

frequency at which the TLS oscillates between its eigenstates by emitting and absorbing a
photon. The eigenstates in Eq. (4.12) are called dressed states [67]. We can see that the
interaction of the TLS with the field mode lifts the degeneracy between the |n, e⟩ and
|n+ 1, g⟩ states by an amount of Ωr

n, which is sometimes referred to as an a.c. Stark shift.
This particular and non-linear energy scaling between the quantized energy levels is known
as the JC ladder [67], see Fig. 4.2.
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Figure 4.2: Sketch of the JC ladder. The bare, uncoupled states of the cavity and TLS are degenrate. The coupling lifts
the degeneracy by an amount ofΩr

n (see main text) and hybridizes the eigenstates of the two constituent
systems. These hybridized states are also called dressed states. The splitting 2g for the n = 0 state is called
vacuum Rabi splitting, as it arises from coupling of the TLS to vacuum fluctuations of the electromagnetic
field inside the cavity.
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Chapter 5

Transport and Dynamics

So far, we have presented the Hamiltonian descriptions for the DQD, the MR and the
coupling between the two. Such Hamiltonian descriptions are able to describe systems
that are completely isolated from the outside world. We call such systems also closed. The
dynamics of closed systems are then captured by the Schrödinger equation.
In reality, quantum systems are not closed, but usually coupled to some form of environ-
ment. These systems are known as open quantum systems [69, 70]. The coupling to the
environment is typically not favoured, as it leads to the loss of coherence in the system.
Typical examples of such unwanted decoherence are the coupling of solid-state qubits to
the electromagnetic environment inside the architecture in which they are embedded [71],
or a photon losing the information encoded in its phase while it travels from source to
recipient [72].
The coupling to the environment can, however, also be specifically employed for certain
tasks. Opening an isolated QD to an environment consisting of fermionic reservoirs allows
for the exchange of electrons between the reservoirs and the QD, which can be used to build
a single-electron transistor (SET) [3], which we will describe below. Similarly, opening an
isolated cavity to the outside world allows photons to leak in, which could then be detected
by interacting with a TLS inside the cavity [20], something we will also discuss in detail in
this chapter.
As mentioned above, the dynamics of closed systems are described by the Schrödinger equa-
tion, where the quantum states are represented by wavefunctions. For open systems, one
has to rely on different means to capture the dynamics. A standard tool for this task is the
master equation [69, 70, 73], which gives the time evolution of the probability of a sys-
tem to occupy one of its discrete states and the switching probability between the different
states is usually described by a rate matrix. Transport scenarios such as those within the
above-mentioned SET can be nicely captured by such master equations. For quantum sys-
tems, where coherences are present, one typically has to describe the system using a density
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matrix formalism and one has to rely on quantummaster equations to correctly analyze the
dynamics.
Having developed a formalism for the closed DQD-MR system, we will now open the sys-
tem to the environment and investigate the photon-assisted transport of electrons through
the DQD.

In this chapter, we present a quantummaster equation formalism for theDQD-MR system.
We also explain how, by opening the system to the environment, it can be used as a detector
for microwave photons. In Sec. 5.1, we introduce the classical master equation and use it to
study the transport of electrons trough a single QD. In Sec. 5.2, we introduce the quantum
master equation and the density matrix formalism. We also derive the general Lindblad
master equation, one of the most common tools in the field of open quantum systems,
and use it to study the transport of electrons through the DQD-MR system. We then
give an explanation of how the DQD-MR system can be used as a single-photon detecor.
In Sec. 5.3, we present the equations of motion for the transport through the DQD-MR
system.

5.1 Classical master equation

As mentioned above, the classical master equation describes the evolution of a system’s
occupation probabilities in time. It is thus a set of differential equations of the form [73]

dp(t)

dt
= M(t)p(t), (5.1)

where, for a system consisting of N states, p(t) is a N -dimensional vector and M(t) is a
N × N matrix containing the transition rates between the different states. We will focus
on the specific case where the rates are time-independent, such thatM(t) → M.
As the probabilities in p(t) add up to one, we can derive the following property for the
columns of M

d

dt

∑
k

pk(t) = 0 =
∑
l,k

Mlkpk(t) ⇒
∑
l

Mlk = 0, (5.2)

meaning that the entries of each column in M have to add up to zero.
When studying these transport processes involving transitions between different states, it
often occurs that after a given time, the system reaches the so-called steady state, in which
the occupation probabilities do not change with time. This steady state corresponds to
setting the left-hand side of Eq. (5.1) to zero.

We will now employ the master equation to study one of the most simple transport systems,
the SET.
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5.1.1 Master equation for a SET

A SET consists of a QD coupled to two fermionic reservoirs [70], see Fig. 5.1. The fermi-

Figure 5.1: The single-electron transistor (SET). A QD with energy level ϵ is coupled to two femrionic leads called
source (S) and drain (D), both having a respective chemical potential µS,D and temperature TS,D. The
electronic level is tuned by a gate voltage Vg and there is also an applied bias eVb across S and D. If ϵ lies
within the bias window, electrons from S can tunnel into the QD with rate ΓL and out of the QD to D with
rate ΓR, leading to an electrical current through the SET.

onic reservoirs are typically called source and drain and are described by the Fermi-Dirac
distributions

fS(ϵ) =
1

e(ϵ−µS)/(kBTS) + 1
, fD(ϵ) =

1

e(ϵ−µD−eVb)/(kBTD) + 1
, (5.3)

respectively, where ϵ denotes the energy of the electron state, µS,D is the chemical potential
of the reservoirs and TS,D gives their temperature, and kB is the Boltzmann constant. We
further apply a voltage bias between source and drain, which is given by eVb. A voltage Vg
can be applied to the QD, such that the energy level can be tuned. If the level is within
the bias window, an electron from the source can tunnel into the QD with a rate ΓL. It
can then leave the QD with a rate ΓR. This leads to an electrical current through the SET.
Depending on the amount of bias and gate voltage applied, there are regions where electrons
flow and regions where the flow is energetically forbidden due to Coulomb blockade. These
regions without any current form so-called Coulomb diamonds in Vg-Vb space.
We now want to set up the master equation for the transport of electrons through the SET.
We work in the limit of large applied bias eVb ≫ kBTS,D,ΓL,R and zero temperature
TS,D → 0. The QD can be either empty or full. We denote the probabilities to be in
these two states by p0(t) for the empty state and p1(t) for the full state. The state of the
system undergoes the following transitions with the respective rates 0 ΓL−→ 1

ΓR−−→ 0. Since
the columns of the rate matrix have to add up to zero, we find

d

dt

(
p0(t)
p1(t)

)
=

(
−ΓL ΓR

ΓL −ΓR

)(
p0(t)
p1(t)

)
. (5.4)
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The particle current through the dot can be found by taking into account all electrons
tunneling out from the QD to the drain. It can thus be defined as

I(t)/e = ΓRp1(t). (5.5)

We can find the steady-state current by setting the left-hand side of Eq. (5.4) to zero and
solving for p1(t). We find

I/e =
ΓLΓR

ΓL + ΓR
. (5.6)

5.2 Quantum master equation

In quantum systems, we have to take into account statistical mixtures thatmay arise between
the different possible eigenstates when describing the time evolution of the system’s occu-
pation probabilities. These statistical mixtures are not captured by the wavefunction form-
alism of quantummechanics, which is why we have to employ the density matrix formalism
[74].

5.2.1 Density matrix formalism

The density matrix of a pure state is defined as the outer product of the system’s wavefunc-
tion, typically represented by a state vector |ψ(t)⟩, with its conjugate

ρ̂(t) = |ψ(t)⟩⟨ψ(t)| . (5.7)

Expanding the state vector in terms of the system’s eigenstates |n⟩

|ψ(t)⟩ =
∑
n

cn(t) |n⟩ , (5.8)

we can write the density matrix as

ρ̂(t) =
∑
n,m

cn(t)c
∗
m(t) |n⟩⟨m| =

∑
n,m

ρnm(t) |n⟩⟨m| . (5.9)

The diagonal density matrix elements ρnn(t) = cnc
∗
n = pn describe the probabilities

to occupy a given state |n⟩ and the off-diagonal elements ρnm = cnc
∗
me

−iωnmt describe
coherent superpositions in the system and are therefore also termed coherences.
If the coherences are zero, we can describe the system with the regular wavefunction. For
non-zero coherences, we need the density matrix description. In such a system there is
inherent uncertainty or incomplete knowledge regarding the exact state of the system. This
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uncertainty is prevalent in the case when the quantum system is coupled to an external
environment, which we will focus on in more detail below.
Before continuing, it is important to note that the density matrix can be used to compute
the expectation value of an observable x̂ through the following relations

⟨x̂⟩ =
∑
n

pn ⟨n|x̂|n⟩ =
∑
n

pnTr{|n⟩⟨n| x̂} = Tr{ρ̂x̂}. (5.10)

5.2.2 The Lindblad master equation

In a classical scenario like the SET described above, where we deal with a system with no
quantum coherences, we saw that the classical master equation was sufficient to describe
the dynamics of the occupation probabilities. In a more complicated quantum system, said
coherences may be present, and we thus need to employ a quantum master equation. The
quantum analogue to the probability vector p(t) in Eq. (5.1) is the density matrix ρ̂(t). A
quantum master equation thus gives the time evolution of the density matrix.
For a closed system, the time evolution of the density matrix is captured by the von Neu-
mann equation [69], which is the density matrix analogue to the Schrödinger equation

∂tρ̂(t) = −i[Ĥ, ρ̂(t)]. (5.11)

Our goal now is to derive the famous Lindblad quantum master equation [75] for an open
quantum system.
In Fig. 5.2, a sketch of a general open quantum system scenario is depicted. As seen in

Figure 5.2: Schematic of an open quantum system. A quantum system, described by its Hamiltonian ĤS and density
matrix ρ̂S, is coupled to an environment, which is described by ĤE and ρ̂E. The system interacts with
the environment through an interaction Hamiltonian Ĥint(t). The combined state of the system and
environment is described by ĤSE and ρ̂SE.

the figure, the quantum system is described by the Hamiltonian ĤS and the environment
is described by ĤE. The system and the environment interact through the interaction
Hamiltonian Ĥint(t). The total system and environment Hamiltonian is a sum of those
three individual Hamiltonians and is denoted by ĤSE(t). The von Neumann equation
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(5.11) for the total density matrix ρ̂SE is given by (note that we are working in the interaction
picture)

∂tρ̂SE(t) = −i[Ĥint(t), ρ̂SE(t)]. (5.12)

Integrating Eq. (5.12), we get

ρ̂SE(t) = ρ̂SE(0)−
∫ t

0
ds [Ĥint(s), ρ̂SE(s)]. (5.13)

Plugging Eq. (5.13) into (5.12), we get

∂tρ̂SE(t) = −i[Ĥint(t), ρ̂SE(0)]−
∫ t

0
ds [Ĥint(t), [Ĥint(s), ρ̂SE(s)]]. (5.14)

We assume that the system and the environment have not interacted with each other at
time t = 0, which means that there are no correlations between the two subsystems, and
thus, we can write the total density matrix at that time as a product state ρ̂SE(0) = ρ̂S(0)⊗
ρ̂E(0). Also, since we are mostly interested in the dynamics of the system ρ̂S(t), we can
perform a partial trace on the total density matrix, tracing out the degrees of freedom of
the environment ρ̂E(t). A partial trace is defined by

TrE{ρ̂SE} =
∑
n

(1̂S ⊗ ⟨n|E)ρ̂SE(1̂S ⊗ |n⟩E) = ρ̂S, (5.15)

where {|n⟩E} is any orthonormal basis for the environment. We arrive at

∂tρ̂S(t) = TrE{∂tρ̂SE(t)}

= TrE{[Ĥint(t), ρ̂S(0)⊗ ρ̂E(0)]} −
∫ t

0
dsTrE{[Ĥint(t), [Ĥint(s), ρ̂SE(s)]]}.

(5.16)
The interaction Hamiltonian is, without loss of generality, assumed to be of the form

Ĥint(t) =
∑
i

Ŝi(t)⊗ Êi(t), (5.17)

where Ŝi(t) (Êi(t)) is an operator that acts solely on the system’s (environment’s) degrees
of freedom. Using this form of the interaction Hamiltonian, we can write the first term on
the right-hand side of Eq. (5.16) as

TrE{[Ĥint(t), ρ̂S(0)⊗ ρ̂E(0)]} =
∑
i

Ŝi(t)ρ̂S(0)TrE{Êi(t)ρ̂E(0)}

−
∑
i

ρ̂S(0)Ŝi(t)TrE{ρ̂E(0)Êi(t)}.
(5.18)
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Without loss of generality, we can assume that this term is zero. If it is not zero, we can
always rewrite the Hamiltonian as

ĤSE = ĤS + Ĥ ′ + ĤE + Ĥint − Ĥ ′, Ĥ ′ =
∑
i

Ŝi⟨Êi⟩, (5.19)

where ⟨Êi⟩ = Tr{Êiρ̂E} and note also that we have dropped the time variable for ease of
notation. We see that the system Hamiltonian is changed by a shift in energy which does
not change the dynamics.
We are left with the second term on the right-hand side of Eq. (5.16)

∂tρ̂S(t) = −
∫ t

0
dsTrE{[Ĥint(t), [Ĥint(s), ρ̂SE(s)]]}. (5.20)

This equation still includes the state of the full system ρ̂SE(t). To simplify the equation, we
assume that the environment is large and only weakly coupled to the system, such that the
time scales of the environment and of the correlations between system and environment
are much shorter than the typical times scales over which the system varies significantly.
We can thus decouple both subsystems at all times and write the total density matrix as
ρ̂SE(t) = ρ̂S(t)⊗ ρ̂E(0). This is known as the Born approximation [69]. Eq. (5.20) thus
becomes

∂tρ̂S(t) = −
∫ t

0
dsTrE{[Ĥint(t), [Ĥint(s), ρ̂S(s)⊗ ρ̂E(0)]]}. (5.21)

This equation is difficult to solve since the dynamics at time t depends on the state of the
system at all previous times. A further approximation we take is theMarkov approximation.
To that end, we bring Eq. (5.21) to a form that is local in time by replacing ρ̂S(s)with ρ̂S(t).
We also substitute the time variable in the integral s by t− s and extend the upper bound
of the integral to infinity and obtain a Markovian master equation [69]

∂tρ̂S(t) = −
∫ ∞

0
dsTrE{[Ĥint(t), [Ĥint(t− s), ρ̂S(t)⊗ ρ̂E(0)]]}. (5.22)

Eq. (5.22) is known as the Redfield master equation [76] and it does not guarantee complete
positivity of the density matrix. To guarantee complete positivity, we need to take one
final approximation, the secular approximation [69]. We start by assuming that we know
the eigenvalues λ of the system Hamiltonian ĤS and its projectors onto the eigenstates
Π̂(λ). We can then project the system operators Ŝ (note that we start by working in the
Schrödinger picture here) on subspaces with fixed energy difference ω

Ŝ(ω) =
∑

λ′−λ=ω

Π̂(λ)ŜΠ̂(λ′). (5.23)
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In the interaction picture, the system operators in Eq. (5.23) are changed to Ŝ(ω) →
e−iωtŜ(ω) and Ŝ†(ω) → eiωtŜ†(ω). Plugging this into the interaction Hamiltonian,
we get

Ĥ ′
int(t) =

∑
j,ω

e−iωtŜj(ω)⊗ Êj(t) =
∑
j,ω

eiωtŜ†
j (ω)⊗ Ê†

j (t). (5.24)

Inserting Eq. (5.24) into the Redfield equation (5.22) gives

∂tρ̂S(t) =
∑

ω,ω′,j,k

ei(ω
′−ω)tΛkj(ω)[Ŝj(ω)ρ̂S(t), Ŝ

†
k(ω

′)]

+
∑

ω,ω′,j,k

ei(ω−ω′)tΛ∗
jk(ω

′)[Ŝj(ω), ρ̂S(t)Ŝ
†
k(ω

′)],
(5.25)

where we have introduced the one-sided Fourier transform of the environment correlation
functions

Λkj(ω) =

∫ ∞

0
ds eiωsTrE{Ê†

j (t)Êk(t− s)ρ̂E(0)}

=

∫ ∞

0
ds eiωsTrE{Ê†

j (s)Êk(0)ρ̂E(0)},
(5.26)

where we have assumed that the environment correlation functions are homogeneous in
time. The secular approximation constitutes dropping all terms where ω ̸= ω′. We thus
assume that all those terms oscillate at a frequency that is much faster than the timescale of
the system. We obtain

∂tρ̂S(t) =
∑
ω,j,k

(
Λkj(ω)[Ŝj(ω)ρ̂S(t), Ŝ

†
k(ω)] + Λ∗

jk(ω)[Ŝj(ω), ρ̂S(t)Ŝ
†
k(ω)]

)
. (5.27)

To cast the master equation (5.27) into Lindblad form, we split the the coefficients Γkj(ω)
in Eq. (5.26) into their real and imaginary parts

Λkj(ω) =
1

2
αkj(ω) + βkj(ω), (5.28)

where

αkj(ω) = Λkj(ω) + Λ∗
kj(ω) =

∫
ds eiωsTrE{Ê†

k(s)Êj(0)ρ̂E(0)},

βkj(ω) =
−i
2
(Λkj(ω)− Λ∗

kj(ω)).

(5.29)

The master equation (5.27) can now be divided into Hermitian and non-Hermitian parts

∂tρ̂S(t) =− i[ĤLS, ρ̂S(t)]

+
∑
ω,k,j

αkj(ω)

(
Ŝj(ω)ρ̂S(t)Ŝ

†
k(ω)−

1

2
{Ŝ†

k(ω)Ŝj(ω), ρ̂S(t)}
)
,

(5.30)
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where we have introduced the so-called Lamb shift Hamiltonian
ĤLS =

∑
ω,k,j βkj(ω)Ŝ

†
k(ω)Ŝj(ω), which leads to a renormalization of the system’s en-

ergy levels due to the interaction with the environment and is typically dropped. We can
easily verify that the matrix formed by αkj(ω) is positive and it can thus be diagonalized.
After diagonalizing Eq. (5.30) and moving back to the Schrödinger picture, we arrive at the
Lindblad [75] (or Lindblad-Gorini-Kossakowski-Sudarshan [77]) master equation

∂tρ̂S(t) = −i[ĤS, ρ̂S(t)] +
∑
j

(
L̂j ρ̂S(t)L̂

†
j −

1

2

{
L̂†
jL̂j , ρ̂S(t)

})
= Lρ̂S(t), (5.31)

where the operators L̂j are usually called jump operators and L is referred to as Liouvillian.

5.2.3 Lindblad master equation for the DQD-MR system

Having derived the general form of the Lindblad master equation (5.31), we want to apply
it to the DQD-MR system. The system Hamiltonians for the DQD and the MR are given
in Secs. 2 and 3, respectively.
We start by giving the coupling between the field inside the MR and the dipole between
the two charge states of the DQD [78]

ĤMD = g0(â
† + â)τ̂z, (5.32)

where g0 denotes the bare coupling between the field and the dipole and τ̂z = |L⟩⟨L| −
|R⟩⟨R|. Moving to the eigenstate basis of the DQD defined in Eq. (2.16), we find

ĤMD = g0(â
† + â)(σ̂x sin(θ)− σ̂z cos(θ)). (5.33)

Performing the RWA, we remove the term proportional to σz and also the terms rotating
at higher frequencies and obtain the JC Hamiltonian

ĤJC = g(â†σ̂− + âσ̂+), (5.34)

where g = g0 sin(θ).
There is one more component to the systemHamiltonian we have not yet touched upon. In
order for photons to be present in the MR, we need a microwave drive that feeds them into
the MR. We model this drive as a coherent, monochromatic source of microwave radiation
with the Hamiltonian [79]

ĤDR =

√
κinṄ(â†eiωdt + âe−iωdt), (5.35)

where κin denotes the coupling between the drive and the MR, Ṅ gives the rate of photons
impinging on the MR and ωd is the frequency of the drive. We derive the drive Hamilto-
nian in Eq. (5.35) using input-output theory, see App. A.
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The total system Hamiltonian is given by ĤS = ĤDQD + ĤMR + ĤJC + ĤDR. Further
calculations are simplified by moving to the frame rotating at the frequency ωd of the drive.
This is done by a unitary operator Û = exp

(
iωdt(â

†â+ σ̂z/2)
)

ĤS = Û†ĤSÛ + i∂tÛ Û†

=
∆d

2
σ̂z +∆râ

†â+ g(â†σ̂− + âσ̂+) +

√
κinṄ(â† + â),

(5.36)

where ∆d = Ω − ωd (∆r = ωr − ωd) gives the detuning between the DQD (MR) and
the drive.
We will now shift our focus on the environment Hamiltonian ĤE. Similarly to the SET, we
couple the DQD to a source and a drain. The Hamiltonian for those fermionic reservoirs
is given by [80]

ĤF =
∑
k,α

ϵk,αĉ
†
k,αĉk,α, (5.37)

where ϵk,α denotes the energy of an electron in the k-th mode of lead α, where α ∈ {L,R},
and ĉ†k,α (ĉk,α) is the fermionic operator creating (destroying) an electronic excitation in
the k-th mode of lead α. Note that we have used the notation for left (L) and right (R), as
the source only couples to the left QD and the drain only couples to the right QD. This
will simplify the overall notation later on. Furthermore, the coupling of the DQD to the
environment introduces the state |0⟩, where no electron is present on the DQD, to the total
electronic Hilbert space. Without loss of generality, we set the energy of the empty state to
zero. For the MR, the environment is modeled as a bosonic bath and the Hamiltonian is
given by [81]

ĤB =
∑
q

ωq b̂
†
q b̂q, (5.38)

where ωq denotes the frequency of the q-th mode and b̂†q (b̂q) creates (destroys) a photon
in the q-th mode. The total environment Hamiltonian is given by ĤE = ĤF + ĤB.
The next component we need is the interaction Hamiltonian Ĥ ′

int, which we will introduce
in the Schrödinger picture. The coupling between the fermionic leads and the DQD is
described by [80]

ĤFD =
∑
k,α

(µk,αŝ
†
αĉk,α + h.c.), (5.39)

where µk,α denotes the coupling between the leads and theQDs. The operator ŝ†α = |α⟩⟨0|
creates and electronic excitation in |α⟩. The coupling between the bosonic bath and the
MR is described by [81]

ĤBR =
∑
q

(νqâ
†b̂q + h.c.), (5.40)

where νq denotes the coupling between the photons in the MR and the photons in the q-th
mode in the bath. The total interaction Hamiltonian is given by Ĥint = ĤFD + ĤBR.
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Moving to the interaction picture, the system and environment operators become

ŝL(t) = cos(θ/2)ŝge
−iEgt + sin(θ/2)ŝee

−iEet,

ŝR(t) = − sin(θ/2)ŝge
−iEgt + cos(θ/2)ŝee

−iEet,

â(t) = e−iωrtâ,

ĉk,α(t) = e−iϵk,αtĉk,α,

b̂q(t) = e−iωqtb̂q,

(5.41)

where we have defined ŝg = |0⟩⟨g| (ŝe = |0⟩⟨e|) as the operator creating (destroying) and
excitation in the DQD ground (excited) state and Eg = −Ω/2 (Ee = Ω/2) is the energy
of the ground (excited) state. We further employ the following relations [69]

TrE{ĉ†k,αĉk,αρ̂E(0)} = fα(ϵk,α),

TrE{ĉk,αĉ†k,αρ̂E(0)} = 1− fα(ϵk,α),

TrE{(b̂†q b̂qρ̂E(0)} = nB(ωq),

TrE{b̂q b̂†qρ̂E(0)} = 1 + nB(ωq),

Γα(ω) = 2π
∑
k,α

|µk,α|2δ(ω − ϵk,α),

κ(ω) = 2π
∑
q

|νq|2δ(ω − ωq),

(5.42)

where nB(ωq) = 1/(eωq/kBT − 1) is the Bose-Einstein distribution and fα(ϵk,α) is the
Fermi-Dirac distribution, c.f. Eq. (5.3). We will also make use of the following integral
relation

lim
t→∞

∫ t

0
dt′eixt

′
= πδ(x) + iP

(
1

x

)
, (5.43)
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where P denotes Cauchy’s principle value of integration. Plugging Eqs. (5.41), (5.42) and
(5.43) into Eq. (5.30), we obtain

∂tρ̂S(t) =− i[ĤLS, ρ̂S(t)]

+ (ΓgL(Eg) + ΓgR(Eg))

(
ŝ†gρ̂S(t)ŝg −

1

2
{ŝg ŝ†g, ρ̂S(t)}

)
+ (ΓLg(Eg) + ΓRg(Eg))

(
ŝgρ̂S(t)ŝ

†
g −

1

2
{ŝ†g ŝg, ρ̂S(t)}

)
+ (ΓLe(Ee) + ΓRe(Ee))

(
ŝeρ̂S(t)ŝ

†
e −

1

2
{ŝ†eŝe, ρ̂S(t)}

)
+ (ΓeL(Ee) + ΓeR(Ee))

(
ŝ†eρ̂S(t)ŝe −

1

2
{ŝeŝ†e, ρ̂S(t)}

)
+ κ(ωr)(1 + nB(ωr))

(
âρ̂S(t)â

† − 1

2
{â†â, ρ̂S(t)}

)
,

+ κ(ωr)nB(ωr)

(
â†ρ̂S(t)â−

1

2
{ââ†, ρ̂S(t)}

)

(5.44)

where we have defined the effective rates

ΓgL(Eg) = ΓL(Eg)fL(Eg) cos
2(θ/2),

ΓgR(Eg) = ΓR(Eg)fR(Eg) sin
2(θ/2),

ΓLg(Eg) = ΓL(Eg)(1− fL(Eg)) cos
2(θ/2),

ΓRg(Eg) = ΓR(Eg)(1− fR(Eg)) sin
2(θ/2),

ΓeL(Ee) = ΓL(Ee)fL(Ee) sin
2(θ/2),

ΓeR(Ee) = ΓR(Ee)fR(Ee) cos
2(θ/2),

ΓLe(Ee) = ΓL(Ee)(1− fL(Ee)) sin
2(θ/2),

ΓRe(Ee) = ΓR(Ee)(1− fR(Ee)) cos
2(θ/2).

(5.45)

The rates in Eq. (5.45) are the tunneling rates of electrons into and out of the DQD ground
and excited state, respectively. The subscript has to be read from right to left. For example,
ΓgL(Eg) denotes the rate of an electron tunneling from the source to the ground state. The
rate κ(ωr) is the rate of photons leaving the MR. Under the Born-Markov approximation,
the bare ratesΓα(Eg,e) are supposed to be small, such that their spectral profile is essentially
flat and we drop their dependence on the energies Eg,e. In the main part of the thesis, we
will focus on the scenario where the chemical potentials of the leads are set to the energy
of the empty DQD state. We will also assume that the temperature of the environment is
much smaller than the splitting level splitting of the DQD, i.e. kbT ≪ ℏΩ. With these
assumptions, we can set fL,R(Eg) → 1, fL,R(Ee) → 0 and nB(ωr) → 0. For ease of
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notation, we also introduce the Lindblad dissipator

D[Â]ρ̂ = Âρ̂Â† − 1

2
{Â†Â, ρ̂}. (5.46)

With these assumptions, we get the following Lindblad master equation for the DQD-MR
system in the Schrödinger picture and omitting the Lamb-shift Hamiltonian ĤLS

∂tρ̂S(t) = −i[ĤS, ρ̂S(t)] + Γg0D[ŝ†g]ρ̂S(t) + Γ0eD[ŝe]ρ̂S(t) + κD[â]ρ̂S(t), (5.47)

where we have defined

Γg0 = ΓgL + ΓgR, Γ0e = ΓLe + ΓRe. (5.48)

We see that, under our assumptions, electrons from the leads can only enter the DQD
ground state and leave from the excited state.

Decoherence

An important factor influencing the transport in the DQD-MR system is decoherence.
We will focus here on two decoherence mechanisms that affect the state of the DQD. The
first one is dephasing, which arises due to fluctuations in the electromagnetic environment
[82]. The second one is relaxation and thermal excitation of an electron, which arises due
to coupling of the DQD to phonons in the solid-state environment [83].
Pure dephasing describes the decay of the phase-coherence between the overlap of theDQD
eigenstates. As mentioned above, this dephasing arises due to fluctuations in the environ-
ment, which we will model by a stochastic, time-dependent process δ(t) [84]. It is added
to the DQD Hamiltonian in the following way

ĤDQD =
1

2
(Ω + δ(t))σ̂z, (5.49)

The time evolution of the density matrix can then be described by the following operator

Û(t) = exp

(
− i

2
(Ωt+ ϕ(t))σ̂z

)
, (5.50)

where ϕ(t) =
∫ t
0 δ(s)ds. Acting with this unitary on the density matrix will lead to

ρ̂S(t) = Û(t)ρ̂S(0)Û
†(t) =

(
ρgg e−iΩte−iϕ(t)ρge

eiΩteiϕ(t)ρeg ρee

)
, (5.51)

where ρij = ⟨i|ρ̂S|j⟩. We can see that indeed only the off-diagonal elements are effected by
the fluctuations in the environment. In order to get a reasonable estimate of the dephasing
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time scales, it is useful to average over all the possible realizations of the stochastic process.
We will denote this classical expectation value by ⟨...⟩ϕ

⟨ρ̂S(t)⟩ϕ =

(
ρ00 ζ(t)ρ01

ζ∗(t)ρ10 ρ11

)
, (5.52)

where ζ(t) =
〈
e−iϕ(t)

〉
ϕ
is the so-called decoherence function. For a Markovian process,

it is usually modeled as ζ(t) = e−t/T2 , where T2 is the dephasing time.
Evaluating the ensemble-averaged density matrix explicitly gives us

⟨ρ̂S(t)⟩ϕ =

∫
dϕ q(ϕ)Û(t)ρ̂S(0)Û

†(t) = (1− p)ρ̂S(0) + pσ̂zρ̂S(0)σ̂z, (5.53)

where p =
∫
dϕ q(ϕ) sin2(ϕ/2) with q(ϕ) being the distribution of all the possible realiz-

ations of ϕ(t). By comparison with the previous result we find that p = 1−ζ
2 . We can now

describe the effect of dephasing in the form of a Lindblad dissipator which we can then add
to our master equation.
For small times, we can write ζ(δt) = e−δt/T2 ≈ 1− δt/T2. Thus, we find

⟨ρ̂S(δt)⟩ϕ = ρ̂S −
γϕδt

2
ρ̂S +

γϕδt

2
σ̂zρ̂Sσ̂z, (5.54)

where γϕ = 1/T2 is the dephasing rate. The differential equation for the density matrix
can then be written as (using ⟨ρ̂S(t)⟩ϕ = ρ̂S(t))

∂tρ̂S(t) = lim
δt→0

ρ̂S(δt)− ρ̂S(0)

δt
=
γϕ
2
D[σ̂z]ρ̂S(t). (5.55)

As mentioned above, the coupling to a phononic environment will cause the DQD states
to dissipate or gain energy through relaxation or thermal excitation by the emission or
absorption of a phonon, respectively. The Hamiltonians for the phononic bath and the
interaction between the DQD and the phonons can be written as

ĤPH =
∑
j

ωj d̂
†
j d̂j ,

ĤDP =
∑
j

ξj(σ̂+d̂j + σ̂−d̂
†
j),

(5.56)

respectively, where d̂j (d̂
†
j) denoted the phononic annihilation (creation) operator and ξj

is the coupling constant between the DQD and the phonons.
Following the same steps as in Sec. 5.2.3, we can derive the Lindblad dissipator for the
process describing relaxation of an electron from the excited to the ground state of the
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DQD.Wewill neglect thermal excitations due to the small temperature of the environment.
The dissipator is given by

γ−D[σ̂−]ρ̂S(t), γ−(ω) = 2π
∑
j

|βj |2δ(ω − ωj), (5.57)

where γ− denotes the relaxation rate.
We add the decoherence dissipators to our master equation (5.47) and get

∂tρ̂S(t) =− i[Ĥ, ρ̂S(t)] + Γg0D[ŝ†g]ρ̂S(t) + Γ0eD[ŝe]ρ̂S(t)

+
γϕ
2
D[σ̂z]ρ̂S(t) + γ−D[σ̂−]ρ̂S(t) + κD[â]ρ̂S(t).

(5.58)

5.2.4 The single-photon detector

In our system and under our specific assumptions, we have seen that an electronmay tunnel
from the leads only into the ground state of the DQD. If the level splitting Ω matches the
energy of the photons ωr in the MR, the electron in the ground state may absorb a photon
and move to the excited state. It can then tunnel out of the excited state into the leads.
This process leads to a photo-assisted current, or photocurrent. The DQD-MR system can
thus be used as a detector of microwave photons. This detection mechanism is an analogue
of the optical photodiodes, where an electron is excited across the semiconductor bandgap.
In Fig. 5.3, we sketch and describe the microwave photodetection scheme. We see that the

Figure 5.3: Scheme for the detection of microwave photons using a DQD-MR system. A coherent, monochromatic
drive feeds in photons to the MR with rate Ṅ and frequency ωd. The DQD starts in its empty state |0⟩. An
electron from the source (S) then tunnels into the ground state |g⟩ with rate ΓgL. If the level splitting of
the DQD Ω matches the frequency of the photons in the MR ωr, the electron may absorb a photon and
move to the excited state |e⟩. The coupling between the DQD and the MR is given by g. The electron
in |e⟩ can then tunnel out into the drain (D) with rate ΓRe, bringing the DQD back to |0⟩. This process
produces a source-drain photocurrent ISD(t) through the DQD.

photocurrent ISD(t) is a key quantity in the detection of microwave photons, as it informs
whenever a photon has been absorbed by the DQD. Note that we can also have the reverse
process, where an electron is brought from drain to source through the absorption of a
photon. We will, at least for now, only focus on the source-drain current.
We define the photocurrent as

ISD(t)/e = ΓRepe(t)− ΓeRp0(t), (5.59)
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where pe(t) = ⟨e|ρ̂S(t)|e⟩ (p0(t) = ⟨0|ρ̂S(t)|0⟩) is the occupation probability of the
excited (empty) state and e denotes the electron charge.

Ideal photodetection

A photodetector is ideal when every photon impinging on the resonator excites an electron
across the DQD, leading to a unit quantum efficiency, which, for a monochromatic drive,
is defined as

η =
ISD/e

Ṅ
, (5.60)

where ISD is the average, or steady-state, photocurrent through the DQD. In Ref. [20],
several conditions were derived in order to reach unit efficiency. We summarize them here
for completeness.
First, the resonator bandwidth is dominated by the input-port coupling, i.e., κ = κin .
Second, the drive, resonator, and DQD are in resonance, such that∆d = ∆r = 0. Third,
the decoherence rates are negligible, i.e. ΓL,R ≫ γ−, γϕ. Fourth, the tunnel coupling
between the QDs is small compared to the level splitting, i.e. tc ≪ Ω. Fifth, the rate at
which photons get absorbed by the DQD, which is given by 4g2/Γ̃, where Γ̃ = Γ0e +
γ−+2γϕ denotes the total decoherence rate, should match the photonic loss rate κ. Lastly,
the photocurrent is in the linear response regime, i.e. ISD/e ∝ Ṅ .

5.3 Equations of motion

We see from Eq. (5.59) that we need to obtain the probabilities pe(t) and p0(t) in order to
compute the photocurrent. We do this using the master equation (5.58) and the relation in
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Eq. (5.10). This leads to the following set of equations for the probabilities

∂tp0(t)=− Γg0p0(t) + Γ0epe(t), (5.61)

∂tpe(t)=− (Γ0e + γ−)pe(t) + 2gIm ⟨âσ̂+⟩ (t), (5.62)

∂tIm ⟨âσ̂+⟩ (t)=− 1

2
(Γ̃ + κ)Im ⟨âσ̂+⟩ (t)− gpe(t)

− f

2
(⟨σ̂+⟩ (t) + ⟨σ̂−⟩ (t))− g⟨â†âσ̂z⟩(t),

(5.63)

∂t ⟨σ̂−⟩ (t)=−

(
Γ̃

2
+ i∆d

)
⟨σ̂−⟩ (t) + ig ⟨âσ̂z⟩ (t), (5.64)

∂t ⟨â⟩ (t)=−
(κ
2
+ i∆r

)
⟨â⟩ (t)− if − ig ⟨σ̂−⟩ (t), (5.65)

∂t⟨â†â⟩(t)=− κ⟨â†â⟩(t)− 2gIm ⟨âσ̂+⟩ (t) + if(⟨â⟩ (t)− ⟨â†⟩(t)), (5.66)

where we have defined f =
√
κinṄ . This set of equations is not closed due to the terms

⟨â†âσ̂z⟩(t) and ⟨âσ̂z⟩ (t). We thus need tomake further approximations in order to obtain
an analytical solution for the photocurrent. Throughout the main part of the thesis, we
employ three different approximations: the low-drive, the large-drive, and the mean-field
approximation.
In the low-drive limit, we expand Eqs. (5.61)-(5.66) to lowest order in the drive and obtain
the following, closed set of equations

∂tp0(t)=− Γg0p0(t) + Γ0epe(t), (5.67)

∂tpe(t)=− (Γ0e + γ−)pe(t) + 2gIm ⟨âσ̂+⟩ (t), (5.68)

∂tIm ⟨âσ̂+⟩ (t)=− 1

2
(Γ̃ + κ)Im ⟨âσ̂+⟩ (t)− gpe(t)

− f

2
(⟨σ̂+⟩ (t) + ⟨σ̂−⟩ (t)) + g⟨â†â⟩(t),

(5.69)

∂t ⟨σ̂−⟩ (t)=−

(
Γ̃

2
+ i∆d

)
⟨σ̂−⟩ (t)− ig ⟨â⟩ (t), (5.70)

∂t ⟨â⟩ (t)=−
(κ
2
+ i∆r

)
⟨â⟩ (t)− if − ig ⟨σ̂−⟩ (t), (5.71)

∂t⟨â†â⟩(t)=− κ⟨â†â⟩(t)− 2gIm ⟨âσ̂+⟩ (t) + if(⟨â⟩ (t)− ⟨â†⟩(t)). (5.72)
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In the large-drive limit, where many photons are present in the resonator, the back-action
of the DQD on the resonator state can be neglected and the photonic operators â and â†

can be taken to be equal to their average values. Applying these conditions to Eq. (5.65) we
find, in the steady state

0 = −
(κ
2
+ i∆r

)
â− if ⇒ â = − 2if

κ+ 2i∆r
. (5.73)

Plugging Eq. (5.73) into Eqs. (5.61)-(5.66), we find

∂tp0(t) = −Γg0p0(t) + Γ0epe(t), (5.74)
∂tpe(t) = −(Γ0e + γ−)pe(t)− igâ ⟨σ̂+ + σ̂−⟩ (t), (5.75)

∂t ⟨σ̂−⟩ (t) = −

(
Γ̃

2
+ i∆d

)
⟨σ̂−⟩ (t) + igâ(pe(t)− pg(t)), (5.76)

∂tpg(t) = Γg0p0(t) + γ−pe(t) + igâ ⟨σ̂+ + σ̂−⟩ (t). (5.77)

The set of equations in the low- and large-drive limit can be solved in the steady state. For
the analytical solutions, we refer the reader to Papers I and III.
Beyond the low- and large-drive limit, we employ a mean-field approximation [85, 86]. It
relies on the assumption that, at all times, correlations between the DQD and the res-
onator can be neglected, such that we can approximate the system’s density matrix as
ρ̂S(t) = ρ̂DQD(t) ⊗ ρ̂r(t). This means that we can factorize the expectation value of
products between DQD and resonator operators, e.g. ⟨âσ̂+⟩ = ⟨â⟩ ⟨σ̂+⟩. Plugging this
into Eqs. (5.61)-(5.66) we get the closed, but non-linear, set of equations

∂tp0(t) = −Γg0p0(t) + Γ0epe(t), (5.78)

∂tpe(t) = −(Γ0e + γ−)pe(t)− ig(⟨â⟩ (t) ⟨σ̂+⟩ (t)− ⟨â†⟩(t) ⟨σ̂−⟩ (t)), (5.79)

∂t ⟨σ̂−⟩ (t) = −

(
Γ̃

2
+ i∆d

)
⟨σ̂−⟩ (t) + ig ⟨â⟩ (t)(pe(t)− pg(t)), (5.80)

∂t ⟨â⟩ (t) = −
(κ
2
+ i∆r

)
⟨â⟩ (t)− if − ig ⟨σ̂−⟩ (t), (5.81)

∂tpg(t) = Γg0p0(t) + γ−pe(t) + ig(⟨â⟩ (t) ⟨σ̂+⟩ (t)− ⟨â†⟩(t) ⟨σ̂−⟩ (t)). (5.82)

This set of equations can also be solved in the steady-state regime, see Paper I.
In Fig. 5.4, we plot the steady-state photocurrent ISD/e as a function of the drive amplitude
f within the approximations introduced above.

We can see that the mean-field solution matches the low- and large-drive results for the
respective drive strengths.
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Figure 5.4: Steady-state photocurrent ISD/(eΓ) as a function of the drive f/Γ in the low-drive (dashed line), larg-
drive (dotted line), and meand-field (full line) regime, where we have set Γ = ΓL = ΓR. The parameters
chosen are θ = 0.5, g/Γ = 0.8, γ−/Γ = 0.8, γϕ/Γ = 1, and κ/Γ = 0.1.

41





Chapter 6

Full Counting Statistics

The quantum-statistical nature of photon-absorption and electron-tunneling events in the
DQD-MR system introduces fluctuations to the photocurrent. These fluctuations cannot
be obtained through an analysis of the average photocurrent alone. They are, however, key
to understanding important properties of the particle transport. For example, the noise of
the current can give us insight if the separate electron-tunneling events are correlated with
each other or if they follow a completely random distribution [87].
One powerful tool for the computation of the fluctuations is the so-called full counting
statistics (FCS) [88–91]. In Fig. 6.1, we sketch a typical scenario to obtain the FCS. If
we are able to count every single electron passing to the drain separately, we can plot a
histogram of the number of electrons n counted in a time span t. From this histogram we
can infer the probability distribution p(n, t). Computing the moments of this distribution
constitutes full knowledge about the statistics of the photocurrent.

Figure 6.1: Typical FCS scenario. Counting individual particle-tunneling events gives a time trace that indicates
whenever there is a particle on the system (denoted by 1 in the sketch) and when there is not (denoted
by 0). Obtaining several such time traces, one can plot a histogram with the number of particles n that
have been registered over a certain time span t. On this histogram one can fit the probability distribution
p(n, t), which gives full knowledge about the statistics of the particle current.

Experimentally, obtaining the FCS is a formidable task, specifically for electronic transport.
The electron jumps typically occur on a very fast time scale, such that it is hard to resolve
them accurately. A detector that is sensitive to charge fluctuations is needed, which usually
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comes in the form of a quantum point contact or a SET [92].

In this chapter, we derive the FCS for the photocurrent through the DQD-MR system.
In Sec. 6.1, we show how the FCS is generally obtained from a quantum master equation.
We then show how the zero-frequency FCS and the finite-frequency noise is calculated. In
Sec. 6.2, we apply the knowledge gained from the previous section to our specific system.

6.1 FCS for quantum master equations

Variousmethods are employed to obtain the FCS in quantum transport scenarios. Themost
widely used approaches are based on scattering theory [93], Keldysh Green’s functions [94],
and master equation techniques [95]. Given that we use a master equation to describe the
system’s dynamics, we will also apply this framework to calculate the FCS.

6.1.1 Number-resolved master equation

The relevant quantity within the FCS framework is the probability distribution p(n, t) of
the transfer of n particles in a time span t. It would therefore be useful to resolve the master
equation with respect to n and write the density matrix as

ρ̂S(t) =
∑
n

ρ̂S(n, t). (6.1)

To that end, we solve the master equation (5.31) in Laplace space by introducing

ρ̂S(z) =

∫ ∞

0
dt ρ̂S(t)e

−zt. (6.2)

Plugging this into the master equation, we find

zρ̂S(z)− ρ̂S(0) = Lρ̂S(z) ⇒ ρ̂S(z) = (z − L)−1ρ̂S(0). (6.3)

We define the propagatorΩ(z) = (z−L)−1 and partition the Liouvillian asL = L0+J ,
where L0 describes the free evolution of the system and J describes the tunneling events,
or jumps, that we would like to monitor. We can then write the propagator as

Ω(z) =
∞∑
n=0

(Ω0(z)J )nΩ0(z),

= Ω0(z)︸ ︷︷ ︸
no jumps

+Ω0(z)JΩ0(z)︸ ︷︷ ︸
1 jump

+Ω0(z)JΩ0(z)JΩ0(z)︸ ︷︷ ︸
2 jumps

+...
(6.4)
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where Ω0(z) = (z − L0)
−1. The corresponding n-resolved density matrix is then given

by
ρ̂S(n, z) = Ω0(z)(JΩ0(z))

nρ̂S(0). (6.5)

Using Eq. (6.5) and Eq. (6.3), we find the equations of motion for the n-resolved density
matrix

∂tρ̂S(n, t) = L0ρ̂S(n, t) + J ρ̂S(n− 1, t). (6.6)

6.1.2 The counting field

We solve the equation of motion (6.6) by introducing the so-called counting field χ, which
we define as the variable that is conjugate to n and define the discrete Fourier transform of
the n-resolved density matrix as

ρ̂S(χ, t) =

∞∑
n=0

ρ̂S(n, t)e
inχ. (6.7)

We find the equation of motion for theχ-dependent density matrix after plugging Eq. (6.7)
into Eq. (6.6)

∂tρ̂S(χ, t) = (L0 + eiχJ )ρ̂S(χ, t) = L(χ)ρ̂S(χ, t). (6.8)

The formal solution of Eq. (6.8) is given by

ρ̂S(χ, t) = eL(χ)tρ̂S(0). (6.9)

We define the moment-generating function (MGF) of the quantum jump distribution as

M(χ, t) = Tr{eL(χ)tρ̂S(0)}. (6.10)

We also define the cumulant-generating function (CGF) as C(χ, t) = log(M(χ, t)). The
different cumulants of the distribution are then found by differentiating the CGF with
respect to the counting field

⟨⟨nk⟩⟩ = ∂k
∂(iχ)k

C(χ, t)|χ=0, (6.11)

where ⟨⟨nk⟩⟩ gives the k-th cumulant of the distribution. The probability distribution
p(n, t) can the be found through the CGF by inverse Fourier transform

p(n, t) =

∫ π

−π

dχ

2π
eC(χ,t)−inχ. (6.12)

45



6.1.3 Zero-frequency FCS

We have previously seen that the steady-state regime is of great interest because of its ana-
lytical tractability. It is obtained by moving to the long-time, or zero-frequency, limit. To
do so, we first introduce the eigendecomposition of the Liouvillian L(χ)

L(χ) =
∑
k

λk(χ) |ψk(χ)⟩⟩⟨⟨ψk(χ)| , (6.13)

whereλk(χ) are the eigenvectors and |ψk(χ)⟩⟩ are the eigenvectors of the Liouvillian. Note
that we have employed a special Dirac notation for the eigenvectors. Since the Liouvillian
is a superoperator, its eigenvectors are operators, hence the special notation to differentiate
them from state vectors. Note that also, in general, |ψk(χ)⟩⟩† ̸= ⟨⟨ψk(χ)|. The MGF can
then be written as

M(χ, t) =
∑
k

eλk(χ)t⟨⟨ψ0|ψk(χ)⟩⟩⟨⟨ψk(χ)|ψ0⟩⟩, (6.14)

where we have set |ψ0⟩⟩ = ρ̂S(0). In the long-time limit, only the eigenvalue with the
largest real part will survive, as all other terms yield exponentially damped contributions to
the cumulants. We can thus, to exponential accuracy, write the MGF and the CGF as

M(χ, t) ∼ eλ0(χ)t ⇒ C(χ, t) ∼ λ0(χ)t, (6.15)

where λ0(χ) = max
k

{λk(χ)}. We see that all zero-frequency cumulants are linear in time.

6.1.4 Finite-frequency noise

The zero-frequency cumulants provide valuable insight into various statistical properties of
particle transport. However, to fully capture the relevant correlations and associated time
scales, it is necessary to analyze the system over the entire frequency spectrum [96]. To this
end, we will focus on the finite-frequency noise (FFN), which can be determined using
MacDonald’s formula [97]

S(ω) = ω

∫ ∞

0
dt sin(ωt)

d

dt
⟨⟨n2⟩⟩(t). (6.16)

It is useful to rewrite the MacDonald’s formula in Laplace space as [98]

S(ω) =
ω

2i

∫ ∞

0
dt (eiωt − e−iωt)

d

dt
⟨⟨n2⟩⟩(t)

=
ω

2i
[−iω⟨⟨n2⟩⟩(z = −iω)− ⟨⟨n2⟩⟩(0)− iω⟨⟨n2⟩⟩(z = iω)) + ⟨⟨n2⟩⟩(0)]

= −ω2Re{⟨⟨n2⟩⟩(z = −iω)}.
(6.17)
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To find ⟨⟨n2⟩⟩(z), we solve the master equation (6.8) in Laplace space. Using the trans-
formation in Eq. (6.2), we get

ρ̂S(χ, z) = Ω(χ, z)ρ̂S(χ, 0), (6.18)

where theχ-dependent propagator is defined asΩ(χ, z) =
∑∞

n=0(Ω0(z)(e
iχ−1)J )nΩ0(z).

The second cumulant is found by expanding Eq. (6.18) to second order in χ

⟨⟨n2⟩⟩(z) = ∂2iχTr{ρ̂S(χ, z)}|χ→0

= Tr{(Ω0(z)JΩ0(z) + 2Ω0(z)JΩ0(z)JΩ0(z)}.
(6.19)

6.2 FCS of the photocurrent

In Sec. 5.3 we have derived the equations of motion for the DQD-MR system that describe
the dynamics in the low-drive, large-drive, and mean-field regime and showed how they
can be used to derive the average, or steady-state, photocurrent, which corresponds to the
first cumulant of the distribution. The goal now is to go beyond the average photocurrent
and derive the FCS. To that end, we will also use the equations of motion.
In the long-time limit, we can write the χ-dependent density matrix in Eq. (6.8) using the
eigendecomposition in Eq. (6.13) as

lim
t→∞

ρ̂S(χ, t) = eλ0(χ)t |ψ0(χ)⟩⟩⟨⟨ψ0(χ)| ρ̂S(χ, 0). (6.20)

The expectation value of any operator Â with respect to the density matrix in Eq. (6.20)
can then be written as

⟨Â⟩ = Tr{Âeλ0(χ)tµ0(χ)} ⇔ e−λ0(χ)t⟨Â⟩ = Tr{Âµ0(χ)}, (6.21)

where we have abbreviated µ0(χ) = |ψ0(χ)⟩⟩⟨⟨ψ0(χ)| ρ̂S(χ, 0). We see that the term
e−λ0(χ)t⟨Â⟩ is time independent. Taking its time derivative therefore yields

∂t⟨Â⟩ = λ0(χ)⟨Â⟩. (6.22)

We can make use of this equality to compute the eigenvalue λ0(χ), and thus the CGF, of
the photocurrent distribution. We compute the expectation values of our system operators
using the χ−dependent master equation, which is given by

∂tρ̂S =− [Ĥ, ρ̂S] + ΓgLD[ŝ†g]ρ̂S + ΓLeD[ŝe]ρ̂S

+ ΓgR(e
−iχŝ†gρ̂Sŝg − 1

2{ŝg ŝ
†
g, ρ̂S}) + ΓRe(e

iχŝeρ̂Sŝ
†
e − 1

2{ŝ
†
eŝe, ρ̂S})

+
γϕ
2
D[σ̂z]ρ̂S + γ−D[σ̂−]ρ̂S + κD[â]ρ̂S = L(χ)ρ̂S.

(6.23)
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Note that we have omitted the χ and t dependence of the density matrix for ease of nota-
tion. The χ-dependent Liouvillian is given by L(χ) = L0 + eiχJ+ + e−iχJ−. We see
that we have two jump operators with different signs in the counting field. This is due to
electrons not only being able to flow from the DQD to the drain but also back. The master
equation (6.23) can be used together with Eq. (6.22) to derive the χ-dependent equations
of motion similar to the ones in Sec. 5.3. The analytical expressions can be found in Paper
I.
Within the low-drive limit, we find that the CGF describes a bi-directional Poisson process,
one for electrons flowing to the drain and the other for the reverse process. Assuming the
ideal-photodetector regime introduced in Sec. 5.2, the electron flow becomes Poissonian
and the corresponding probability distribution is given by

p(n, t) = e−Ṅt (Ṅt)
n

n!
. (6.24)

The statistics of the electrons arriving to the drain in the regime of ideal photodetection
is thus equivalent to the statistics of photons from a coherent light source [67]. The ideal
photodetector does therefore not only detect each single photon but also preserves their
long-time statistics.
In the large-drive limit, only the electron in- and out-tunneling rates ΓL,R impact the
photocurrent statistics. The resonator primarily acts as a mediator for transitions between
the ground and excited states of the DQD, with these transitions occurring so rapidly that
their associated rates no longer appear in the FCS.
The mean-field approach gives an analytical result for the zero-frequency cumulants which
again interpolates nicely between the low- and large-drive results. This can be seen in
Fig. 6.2(a), where we present a plot for the first two cumulants. In addition, we look at the
non-Gaussian properties of the probability distribution by plotting the third cumulant, see
Fig. 6.2(b). The third cumulant is nonzero and increases monotonically with the microwave
drive, indicating that the distribution exhibits non-Gaussian behavior. In the inset, we plot
the logarithm of the probability distribution using the saddle-point approximation for both
the low- and high-drive limits, comparing these to the logarithm of a Gaussian distribution.
For the selected parameters, we observe that the probability distributions in both the low-
and high-drive regimes are skewed, showing a clear deviation from Gaussian behavior.

For the FFN, we see from Eq. (6.19) that we need to obtain the propagator Ω0(z) and the
jump operator J . Also here, we refer the reader tho Paper I for the analytical expression of
the FFN in the different regimes.
In the low-drive regime, we reduce the Hilbert space of the resonator by assuming that we
have at most 2 photons at a time present in the resonator. The basis in this case is spanned
by the dressed states of the hybridized DQD-MR system. We find that the frequency de-
pendence is determined by the rate Γg0, which can be explained as follows: in the low-drive
limit, the system mostly remains in its ground state, and the likelihood of an electron being
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excited is low. When such an excitation does occur, another electron will tunnel back into
the ground state with rate Γg0. Consequently, tunneling events occur in correlated pairs
and the events within each pair are separated by a time scale 1/Γg0. This time scale acts as
the effective ”dead-time” of the photodetector. Pairs of tunneling events are uncorrelated
from each other, as they are separated by a much longer timescale 1/f2.
In the ideal-photodetection limit, the FFN simplifies to S(ω) = Ṅ , corresponding to the
noise profile of photons emitted by a coherent light source.
In the large-drive regime, the resonator decouples from the DQD and the Liouvillian is a
5×5matrix in the basis of the DQD ρ̂DQD = (ρ0, ρg, ρe, ρge, ρeg)

T , where ρi = ⟨i|ρ̂S|i⟩
and ρij = ⟨i|ρ̂S|j⟩. The frequency dependence in this regime is by both the in- and out-
tunneling rate from the DQD and is given by 1/(Γ0e + 2Γg0). In direct analogy to the
low-drive case we interpret this timescale as the dead-time of the photodetector.
In the mean-field regime, similarly to the large-drive regime, the resonator decouples from
the DQD and we get a 5 × 5 matrix for the Liouvillian. It allows for an analytical com-
putation of the FFN across the entire frequency regime. In Fig. 6.2(c), we plot the FFN in
the different regimes.

Figure 6.2: Figure taken from Paper I. a) The first two zero-frequency cumulants within the mean-field approximation
(full lines) normalizedwithΓt and plotted as a function of the normalized drive amplitude f/Γ, whereΓ =
ΓL = ΓR. The cumulants are compared to the analytical results in the low- and large-drive limits (dotted
lines). b) The third cumulant within the mean-field approximation (full line) normalized with Γt and
plotted as a function of f/Γ. The third cumulant is also compared to the low- and large-drive limits (dotted
lines). Inset: Probability distribution in the saddle-point approximation for the low-drive (red-dashed line)
and the large-drive limit (blue dotted line) as a function of (n − ⟨⟨n1⟩⟩)/⟨⟨n2⟩⟩. A Gaussian is shown for
comparison (gray full line). The distributions are normalized by their second cumulant ⟨⟨n2⟩⟩. c) The FFN
within the mean-field approximation (full lines) normalized with its value at zero frequency S(0) and
plotted as a function of the normalized frequency ω/Γ for different values of f/Γ. The FFN is compared
to the analytical results in low- and large-drive limit (dotted lines). The chosen system parameters are
g/Γ = 0.457, κin/Γ = 0.094, κ/Γ = 0.337, ϵ/Γ = −17.57, tc/Γ = 6.78, γ−/Γ = 0.5, γϕ/Γ = 3.92,
and ∆d = ∆r = 0.
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Chapter 7

Wigner-Function Formalism

The Wigner function is a quasiprobability distribution which was introduced by Eugene
Wigner to describe the state of a quantum system in phase space [99]. The phase space
spans all possible states the system can be in as a function of typically two conjugate vari-
ables, such as position and momentum or time and frequency [100]. Taking position and
momentum as an example, the state of a classical system can usually be represented by a
point in phase space, and the probability to find the system at this point is described by a
classical probability distribution. The position and momentum for a quantum state can-
not be determined simultaneously due to Heisenberg’s uncertainty principle, and thus, the
phase space representation typically shows a circle or ellipse and the Wigner function is
used as the analogue to the probability distribution. One important feature of the Wigner
function is that it can take on negative values, hence the name quasiprobability, and it can
therefore indicate quantum-mechanical interference [101].
The Wigner function finds applications in different research areas. In quantum optics, it
is used to represent different states of light, such as coherent states, Fock states or squeezed
states [102, 103]. In quantum information and computing, it is useful for phase-space based
approaches to quantum error correction [104]. It is also used in the electronic analogue to
quantum optics, called electron quantum optics, where one uses the tools from quantum
optics to describe single-electron excitations interacting with each other in electronic in-
terferometer setups [105]. A further area where Wigner functions are employed is signal
processing and more specifically the time-frequency analysis of signals [106–108]. It is from
this field that we will borrow a few notions and tools for the time and frequency analysis
of photodetection in the DQD-MR hybrid.
In experiments, the photons we would like to detect often arrive as a wave packet. This
wave packet in our case is a microwave pulse which has a finite spread in both time and
frequency. We are therefore interested to analyze the detection of single microwave pulses.
Connecting to signal processing, the photodetection in the case of a single pulse drive can
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be seen as a filter converting the incoming signal (the pulse) to an outgoing one (the photo-
current). The conversion of microwave pulses to electrons is also interesting since the exact
number of photons in a pulse is not well defined, and this conversion could help gaining
knowledge about said number.

In this chapter, we derive a Wigner-function formalism for the detection of single mi-
crowave pulses. In Sec. 7.1, we introduce the Wigner function and show how it is used in
signal processing and electron quantum optics. In Sec. 7.2, we employ several notions from
the previous section to describe the detection of single microwave pulses using a DQD-MR
system.

7.1 The Wigner function

7.1.1 Wigner function in quantum mechanics

The position and momentum representations of a quantum system are usually encountered
first in the study of quantum mechanics [109]. The wave function formalism enables the
analysis of the probability density in either representation individually, but not simultan-
eously. A mathematical object capable of providing joint information in both representa-
tions is thus desirable. The Wigner function closes this gap. The Wigner function was first
introduced to study the influence of quantum mechanics to problems in classical statistical
mechanics, where the Boltzmann factors include energies which themselves are functions
of both position and momentum [99].
The Wigner function for a pure state ψ(x) is defined as [104]

W (x, p) =
1

2π

∫
dy e−ipyψ

(
x+

y

2

)
ψ∗
(
x− y

2

)
. (7.1)

The position and momentum probability distributions are given by the marginals of the
Wigner function

⟨x|ρ̂|x⟩ =
∫
dpW (x, p),

⟨p|ρ̂|p⟩ =
∫
dxW (x, p),

(7.2)

where ρ̂ is the density matrix of the quantum system.

7.1.2 Wigner-Ville distribution for time-frequency analysis

Two other important conjugate variables one encounters in quantum mechanics are time
and frequency. The time- and frequency-dependent Wigner function is often referred to
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as Wigner-Ville distribution and it finds applications in the time-frequency analysis in the
processing of signals [110].
Given a time-dependent signal s(t), the Wigner-Ville distribution is defined as

W (t, ω) =
1

2π

∫
dτ e−iωτs

(
t+

τ

2

)
s∗
(
t− τ

2

)
. (7.3)

We can look at two examples of a signal that is monochromatic and one that is localized in
time, respectively. For a monochromatic signal s(t) = eiωlt we find

Wmc(t, ω) =
1

2π

∫
dτ e−i(ω−ωl)τ = δ(ω − ωl). (7.4)

For a signal localized at time t0, i.e. s(t) = δ(t− t0), we find

Wδ(t, ω) =
1

2π

∫
dτ e−iωτδ

(
t− t0 +

τ

2

)
δ∗
(
t− t0 −

τ

2

)
= δ(t− t0). (7.5)

7.1.3 The Volterra series

In signal processing, one is typically interested to study properties of an incoming signal
that are not directly observable. To that end, the signal is usually put through a filter and
produces an outgoing signal, which can be more easily analyzed as the filtering typically
removes noise from the input [111]. One example is a low-pass filter, which removes un-
wanted high-frequency components of an incoming signal.
This filtering process can in general be described by the following

y(t) = Tx(t), (7.6)

where x(t) is the input signal, y(t) is the output and T is an operator that maps between
the two functions. If T is a linear operator, the response in Eq. (7.6) can be described by a
convolution of x(t) with a linear kernel denoted by h(1)

y(t) =

∫
dτ h(1)(τ)x(t− τ). (7.7)

The Volterra series [112, 113] extends this linear system response to nonlinear systems

y(t) =h(0) +

∫
dτ1 h

(1)(τ1)x(t− τ1)+∫
dτ1dτ2 h

(2)(τ1, τ2)x(t− τ1)x(t− τ2) + ...

(7.8)

The integral kernels h(n) as referred to as the Volterra kernels and they must fulfill causality

h(n)(τ1, ..., τn) = 0, for τj < 0, j = 1, 2, ..., n. (7.9)
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The Volterra series can be seen as a Taylor series with memory effects. The Taylor series
only describes systems where the output is mapped to the input instantaneously, whereas
the Volterra series describes systems for which the output also depends on past inputs.

In the next section we will see how we can combine the Volterra series and theWigner-Ville
distribution to study the time and frequency dependence of a detector of microwave pulses.

7.1.4 Wigner function in electron quantum optics

The field of electron quantum optics can be seen as the electronic analogue to quantum op-
tics [114]. It borrows concepts such as Mach-Zehnder interferometry and tries to translate
them to electrons. The single photons in quantum optics are replaced by single-electron
excitations, such as Levitons [115], and the optical mirrors where the photons interact are
replaced by quantum point contacts. One can also employ first- and second-order correla-
tion functions to study the coherence properties of the single electron excitations, similarly
to the g(1) and g(2) functions in quantum optics.
The first-order electron coherence function is given by [105]

G(x, t; y, t′) = Tr{ψ(x, t)ρ̂ψ†(y, t′)}, (7.10)

where ρ̂ is the density matrix of the electrons and ψ(x, t) is an annihilation operator. The
coherence function in Eq. (7.10) gives information about coherence and dephasing times. A
frequency representation is obtained through a Fourier transform, and it gives information
about the nature of the single-electron excitation. Also here, a joint time and frequency
representation is very useful. It is again obtained by employing theWigner function, which
in this case is defined as [105]

W (t, ω) =
1

2π

∫
dτ vFe

iωτG
(
t+

τ

2
, t− τ

2

)
, (7.11)

where vF denotes the Fermi velocity of the electron excitations.

We are not going to employ this formalism to our problem. However, it might be use-
ful to develop a Wigner-function formalism for the electrons tunneling out of the DQD,
something which would be of interest for future investigations.

7.2 Wigner-function formalism of photodetection

Driving the DQD-MR system with a single microwave pulse changes the drive Hamilto-
nian in Eq. (5.35) to (see App. A for details)

ĤDR =
√
κin(f

∗(t)â+ f(t)â†), (7.12)
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where f(t) is the time-dependent amplitude and we are working again in the frame rotating
at the center frequency of the pulse ωl.

7.2.1 Photodetector as non-linear filter

Using the drive Hamiltonian in Eq. (7.12), we derive again a set of equations of motion in
the low-drive regime, similar to the one introduced in Sec. 5.3. The reader can find the set
of equations in Paper II. The time dependence of the drive Hamiltonian complicates the
calculations of the different operator expectation values. By moving to Fourier space, we
transform the differential equations to a set of algebraic ones. The frequency-dependent
photocurrent is then found to be of the following form

Ĩ(ω)/e = ΓRep̃e(ω) + ΓgRp̃0(ω)

=
1√
2π

∫
dω′

2π
h̃(ω − ω′, ω′)f̃(ω − ω′)f̃∗(ω′),

(7.13)

where h̃(ω, ω′) is a function which depends on the detector properties and f̃(ω) is the
Fourier transform of f(t). Taking the Fourier transform of Eq. (7.13) and replacing ω →
ω + ω′, we get

I(t)/e =
1

(2π)2

∫
dωdω′ e−i(ω+ω′)th̃(ω, ω′)f̃(ω)f̃∗(ω′)

=
1

2π

∫ ∞

0
dτdτ ′h(τ, τ ′)f(t− τ)f∗(t− τ ′),

(7.14)

where h(τ, τ ′) is the Fourier transform of h̃(ω, ω′).We note that h(τ, τ ′) = h(τ ′, τ) and
that h(τ, τ ′) = 0 for τ, τ ′ < 0. We see that the detection of a microwave pulse in the
low-drive regime can be described by a second-order Volterra series introduced in Eq. (7.8),
with h(τ, τ ′) being the Volterra kernel. The detector thus acts as a non-linear filter for the
input signal.

7.2.2 Wigner functions for the drive and the detector

We have now all the tools needed to introduce the Wigner functions for the drive and the
detector, respectively.
We define the drive Wigner function similarly to the Wigner-Ville distribution in Eq. (7.3)

Wf(t, ω) =
1

2π

∫
dy e−iyωf(t+ y/2)f∗(t− y/2). (7.15)
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The time and frequency marginals are given by

Wf(t) =

∫
dωWf(t, ω) = |f(t)|2,

Wf(ω) =

∫
dtWf(t, ω) = |f̃(ω)|2.

(7.16)

Throughout Paper II, we study two commonly known and analytically tractable types of
pulses, Gaussian and Lorentzian. The time-dependent amplitudes for the two pulse types
are given by, respectively

fG(t) =

√
N̄

σπ1/2
e−

t2

2σ2 , fL(t) =

√
N̄σ√

π(t− iσ)
, (7.17)

where σ denotes the width of the pulse and N̄ gives the average number of photons in the
pulse. Plugging the expressions in Eq. (7.17) into Eq. (7.15) gives the Wigner function for
the two pulse types. We omit the analytical expressions here and only show the plots of the
Wigner functions in Fig. 7.1 with their respective time and frequency marginals.

Figure 7.1: Normalized Wigner functions and their respective time and frequency marginals for (a), a Gaussian pulse
and (b), a Lorentzian pulse. Note that the normalization is given by N̄ .

The detector Wigner function is defined in terms of the kernel h(τ, τ ′) as

Wd(t, ω) =
1

2π

∫
dye−iyωh(t+ y/2, t− y/2). (7.18)

It is important to note that, in general, h(τ, τ ′) ≠ h1(τ)h
∗
1(τ

′). Therefore, the kernel
cannot be expressed in a similar way as the drive Wigner function defined in Eq. (7.15).
This distinction makes the detector Wigner function formally analogous to the Wigner
function of a mixed quantum state, whereas the drive Wigner function corresponds to that
of a pure state. Additionally, the symmetry property ensures that Wd(t, ω) is real, and
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detector causality requiresWd(t, ω) = 0 for t < 0. The frequency and time marginals of
Wd(t, ω) are directly associated with the photocurrents obtained under a monochromatic
and a delta-function pulse drive, respectively

Wd(ωl) =
Imc(ωl)/e

Ṅ
= ηmc(ωl),

Wd(t) =
Iδ(t+ t0)/e

Nν
,

(7.19)

where Nν denotes the number of photons per unit bandwidth.
We find analytical expressions for the detector Wigner function in the limit of ideal photo-
detection introduced in Sec. 5.2 with the small difference that we relax the fifth condition,
i.e. κ ̸= 4g2/Γ̃. We again omit the expressions here and show a plot of the detector
Wigner function in Fig. 7.2 together with its respective marginals.

Figure 7.2: Normalized Wigner function of the detector with its respective time and frequency marginals for ΓR/κ =

1 and 4g2/(κΓR) = 10. The frequency is normalized by α =
√

−(ΓR − κ)2 + 16g2. Note that the
normalization of the Wigner function is given by W̄d (see main text).

We have noted before that the Wigner function is used in time-frequency analysis. In the
context of the photodetector, being able to have accurate knowledge about the frequency
of the photon and its arrival time would constitute a perfect detector. This is, however,
prohibited by the Heisenberg-Gabor limit [116], which reads

∆t ∆ω ≥ 1

2
, (7.20)

where ∆ω =
√
⟨ω2⟩ − ⟨ω⟩2, ∆t =

√
⟨t2⟩ − ⟨t⟩2 and ⟨x⟩ =

∫
dtdω xWd(t, ω)/W̄d,

where W̄d =
∫
dωdtWd(t, ω). A detailed derivation of Eq. (7.20) is given in Paper II.
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7.2.3 Photocurrent

TheWigner function formalism introduced above can be used to compute the photocurrent
through

I(t)/e =

∫
dτdωWd(τ, ω)Wf(t− τ, ω). (7.21)

We have seen previously, in the case of monochromatic drives, that the photodetection effi-
ciency is an important figure of merit to characterize the performance of the photodetector.
For pulse drives, the time delay between in- and outgoing pulse and the overlap between
them are important features as well. We thus analyze those three performance quantifi-
ers by comparing the incoming drive pulse to the outgoing photocurrent pulse. The three
quantifiers are defined as

1. The photodetection efficiency, which in the case of a pulse input is given by

ηp =
Q/e

N̄
, (7.22)

where Q =
∫
dt I(t) is the average transferred charge in the electrical photocurrent

pulse.

2. The average delay in time between the input and output signal, which is defined as

τd =

∫
dt t

[
I(t)/e

Q
− |f(t)|2

N̄

]
. (7.23)

3. The fidelity of the temporal shape transfer, or overlap, given by

O =

∫
dt

√
|f(t− τd)|2

N̄
· I(t)/e

Q
. (7.24)

In the ideal-detector limit, we find that the bandwidth of the detector can be approximated
by ΓR + κ. The ratio between the width of the pulse σ and the bandwidth of the detector
is the key parameter quantifying the performance of the detector. We see in Fig. 7.3 that
for a broadband photodetector, or similarly a very narrow pulse drive, the photodetection
is almost ideal according to our figures of merit.
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Figure 7.3: Normalized photocurrent in the ideal-detector limit and drive pulses for a Gaussian (a) and Lorentzian (b)
drive for N̄ = 0.1, ΓR/κ = 1 and σ(ΓR + κ)/2 = 10. The efficiency is denoted by ηp, the time delay by
τd and the overlap by O. Note that the normalization is given by |f(t = 0)|2.
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Chapter 8

Harvesting Power

Power – or energy – harvesting is the process of capturing and converting ambient en-
ergy from the environment into usable electrical power [117]. This technology leverages
various sources, including solar and thermal energy, to power small electronic devices or
sensors, particularly in embedded applications where traditional power sources are imprac-
tical. One of the most prominent fields within power harvesting is photovoltaics [118],
where one uses solar cells consisting of semiconducting material to capture and transform
the energy contained in the photons coming from the sun. But also thermoelectric devices,
where a temperature gradient can be used to drive an electrical current, are gaining more in-
terest, especially due to the rapidly growing field of quantum thermodynamics [119]. Power
harvesting is also of great interest in other areas of quantum technology, such as quantum
information processing or cQED [120]. Within these areas, the QD has offered an efficient
platform to control the flow of energy and information.
We have also seen that QDs offer a promising platform to investigate the interaction of mi-
crowave photons and electrons. More specifically, we have seen that photons can be used
to produce an electrical current through a DQD. Within the zero-bias configuration, this
process produces no power that can be harvested. Applying a finite bias between source and
drain changes that. If we can transport an electron from a lead of lower chemical poten-
tial to one of higher chemical potential through the assistance of a photon, we effectively
produce a finite amount of power. The DQD-MR system can in this case thus convert
the power from the incoming microwave drive to electrical power. This process is an ana-
logue to the optical solar cell, where an electron is excited from the valence band to the
conduction band of a reverse-biased photodiode through the absorption of a photon.

In this chapter, we demonstrate a microwave power-to-electrical energy conversion in a
DQD-MR system. The general principle is depicted in Fig. 8.1. In Sec. 8.1, we present the
experimental setup and device architecture. In Sec. 8.2, we fit zero-bias measurements to
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Figure 8.1: Schematic of the power-harvestingmechanism using a DQD-MR system. A finite (here negative) bias eVb is
applied between source (S) and drain (D). Power harvesting occurs when an electron is transported against
the applied bias from S to D with the assistance of a photon from the MR. This process is depicted by the
red arrows. There are also processes which counteract the harvesting, like electrons flowing with the bias
from D to S and electrons relaxing from the excited to the ground state of the DQD. These processes are
depicted by the blue arrows. There are two resonance points ±δr where the DQD is on resonance with
the MR. Depicted in the figure is +δr, where the energy level of the left QD lies below that of the right
QD. Note that, in this work, we use δ instead of ϵ to denote the detuning between left and right QD, and
that the S is on the right and the D is on the left side. From the parameter extraction, we find that the
rate ΓR is around two orders of magnitude larger than ΓL. This is depicted by the different widths of the
barriers.

the theory to extract the system parameters. In Sec. 8.3, we present the power-harvesting
analysis. In Sec. 8.4, we investigate some discrepancies between the experiment and theory,
mainly focusing on a a regime that lies beyond the RWA in the Jaynes-Cummings model.

8.1 Setup and device

The device is shown in Fig 8.2. It consists of a semiconductor DQD dipole-coupled to
a one-port waveguide MR. The DQD is created by three wurtzite barrier segments that
confine electrons within two zinc-blende islands in an InAs nanowire. The electrochemical
potentials of the left and right QD are controlled by plunger gate voltages VL and VR,
respectively. The drain lead of the DQD is directly connected to the resonator, which has
a fundamental resonance frequency of f = 6.715 GHz. The photocurrent ISD across
the DQD is measured at the resonator’s voltage node. Measurements occur in a dilution
refrigerator at an electronic temperature of Te ≈ 60 mK.

8.2 Zero-bias condition: Parameter extraction

We extract the relevant system parameters by fitting the photocurrent and reflectance at
zero bias, see Fig. 8.3. The reflectance is the ratio between the reflected radiation and the
incoming drive. Sweeping the frequency of the drive, the reflectance shows a dip at the
resonance frequency of theMR.The reflectance is plotted in the Coulomb blockade regime,
where the DQD and the MR are detuned, and at the two resonance points, where the
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Figure 8.2: Figure taken from Paper III. (a) Optical micrograph of the device. The insets show the coupler of the
resonator to the input port, inductive filtering on the dc lines, and the central part of the device showing
the connections to the DQD. (c) False-colored scanning electron micrograph showing the nanowire with
the schematic layout of the RF and transport measurement scheme. Bias is applied on the blue leads across
the DQD (indicated by yellow circles) and the photocurrent ISD is measured via the middle point of the
resonator that directly connects the DQD (yellow lead).

level splitting of the DQD matches the frequency of the MR photons. The reflectance is
derived using input-output theory, see App. A. The photocurrent is also plotted at the two
resonance points and is fitted to the low- and large-drive expressions, respectively.

Figure 8.3: (a) Reflectance as a function of drive frequency measured in the Coulomb blockade regime, where the
detuning between left and right QD δ is much larger than the resonance detuning δr, and at the two
resonance points ±δr with Pin = hfṄ = 1 fW. (b) Photocurrent ISD as a function of drive power Pin

at the two resonance points. Solid (dashed-dotted) lines show the theoretically fitted curves at the low-
(large-)drive regime.

The theory matches the experimental results well. From the fitting presented above, we ex-
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tract the following parameters: ΓL/(2π) = 27MHz, ΓR/(2π) = 5400MHz, γ−/(2π) =
36 MHz, γϕ/(2π) = 1500 MHz, tc/(2π) = 614 MHz, g/(2π) = 27 MHz, κ/(2π) =
5.1 MHz and κin/(2π) = 3.8 MHz.
An interesting feature to note in Fig 8.3(b) is the crossing of the two photocurrents as the
input power is increased. This can be understood in the following way: For low drives, at
+δr, the tunnel rate out of the excited state is much larger than at −δr due to ΓR ≫ ΓL.
This results in a larger decoherence rate Γ̃ at +δr, which reduces the effective rate at which
photons get absorbed by the DQD in analogy to the Zeno effect. Thus, the current at+δr
is smaller compared to the one at −δr. For large drives, the ground and excited states be-
come equally populated, and thus the dynamics within the DQD can be neglected. Here,
the saturation photocurrent only depends on the in- and out-tunneling rates and is given
by I∗SD/e = pf/(1/Γg0 + 2/Γ0e), with pf = (ΓgLΓRe − ΓgRΓLe)/(Γ0eΓg0), where the
factor of 2 arises from the fact that the DQD spends only half of the time in the excited
state. In the limit of large asymmetry ΓL ≪ ΓR, the smallest rate among Γg0 and Γ0e

determines the saturation current. Since that rate is smaller at −δr compared to +δr, the
photocurrent is also smaller.

8.3 Finite-bias condition: Power harvesting

By applying a bias, the chemical potential of the leads move closer to the energy levels of
the QDs as in Fig. 8.1. The temperature of the leads thus becomes important and we have
to include it into the theoretical model. To that end, we work with the full master equation
(5.44), with the small addition that we still take the zero-temperature limit for the bosonic
bath. The applied bias enters into the Fermi-Dirac distributions according to Eq. (5.3). We
start by varying the bias and computing the maximal photocurrent in the two detuning
conditions ±δ numerically using QuTip [121], see Fig. 8.4(a)-(b). We do so for two values
of the applied microwave drive, 1 fW and 100 fW, which represent the low- and large-
drive regimes, respectively, with linear and non-linear response to the photon flux, see the
black arrows in Fig. 8.3(b). By multiplying the photocurrent with the applied bias, we get
the electrical power out Pout = ISDVb, which is plotted in Fig. 8.4(c)-(d). The shaded
region indicates the harvesting regime, where the photocurrent flows against the applied
bias. The relevant figure of merit for this work is the power-harvesting efficiency, plotted in
Fig. 8.4(e)-(f ), which is defined by the electrical power out divided by the microwave drive
power in

ηE =
Pout

Pin
=
ISDVb

hfṄ
. (8.1)

We see that the efficiency increases first linearly with the applied bias. In the low-drive
regime, the efficiency starts decreasing after the bias hits half the resonance detuning δr,
which is around 13 µeV, meaning that only single-photon absorption events contribute
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Figure 8.4: Figure taken from Paper III. Photocurrent measured across an applied bias Vb for (a) 1 fW and (b) 100
fW input drive power. The solid lines depict the numerically calculated results for the two detuning con-
figurations. Panels (c)-(d) show the corresponding output power, where the shaded regions indicate the
harvesting regimes, and panels (e)-(f) show the corresponding power-harvesting efficiency ηE for the two
input powers. The maximum efficiency of 2 % is marked with (A) in figure (e). The stopping bias voltage
V s
b denotes the bias at which the efficiency drops to zero and the maximum bias voltage V m

b denotes
the bias at which the efficiency is maximal. The dashed lines in panels (e)-(f) show the power-harvesting
efficiency for zero bias, where ηPD denotes the photodetection efficiency.

to the power harvesting. It is also in the low-drive regime that we reach the maximum
efficiency of 2 %. In the large-drive regime, we see that power harvesting occurs even at
an applied bias that is on the order of twice the photon energy. We attribute this effect to
multi-photon absorption events, something that our current model does not capture and
will be discussed in the next section.

8.4 Beyond the RWA

In order to capture the multi-photon absorptions, we need to omit the RWA in our model
and work with the light-matter interaction Hamiltonian in Eq. (5.33). Moving to the frame
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rotating at the drive frequency ωl, we find

ĤMD = gzσ̂z(â
†eiωlt+ âe−iωlt)+gx(â

†σ̂−+ âσ̂++ â†σ̂+e
2iωlt+ âσ̂−e

−2iωlt), (8.2)

where we have defined gx = g0 sin(θ) and gz = g0 cos(θ). To see that this Hamilto-
nian indeed accounts for multi-photon processes, we plot the photocurrent numerically
as a function of the normalized detuning δ/δr for zero bias in Fig. 8.5. We observe finite

Figure 8.5: Photocurrent as a function of the normalized detuning using the beyond RWA theory. The rates chosen
for this plot are: ΓL/(2π) = ΓR/(2π) = Γ/(2π) = 26 MHz, Pin = 100 fW, γϕ/(2π) = γ−/(2π) = 0
MHz. The rest of the rates are the same as in the experiment.

current peaks at integer multiples of the resonance detuning. To clearly display these peaks,
we have used electron-tunneling rates significantly lower than those measured experiment-
ally. The large rate ΓR found from the experimental data leads to a broadening of those
resonance peaks. This broadening also accounts for the finite current seen at bias voltages
exceeding δr using the standard Jaynes-Cummings model with the RWA, c.f. Fig. 8.4(b).
In Fig. 8.6, we plot the photocurrent as a function of detuning using the Jaynes-Cummings
model and the experimental rates. We clearly see the broadening of the peaks, which ex-
tends beyond a detuning that is twice as large as δr.
We also try to fit the full, beyond RWA theory to the experimental data using the para-
meters found in the previous section. Fig. 8.7 presents the numerically calculated power-
harvesting efficiency for negative bias voltages using theHamiltonian in Eq. (8.2). Although
this model includes multi-photon processes, the fit shows increased deviation from exper-
imental data. Specifically, the theoretical prediction extends much further as a function
of bias voltage than observed experimentally. This suggests that additional mechanisms in
the experiment, not captured by our current model, may reduce the maximum achievable
power-harvesting efficiency. One possible such mechanism is the shifting of the chem-
ical potential of the drain due to the high input power, something which has been found
experimentally [122]. Another possibility is cotunneling events of electrons through the
DQD [123]. Including those additional mechanisms was beyond the scope of this work,
but would be of great interest for future investigations.
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Figure 8.6: Photocurrent as a function of the normalized detuning using the standard Jaynes-Cumming model. The
rates chosen are the experimental ones together with Pin = 100 fW.

Figure 8.7: Power-harvesting efficiency as a function of bias voltage for an input power of Pin = 100 fW using the
experimental parameters. The experimental data (points) is compared to the theoretical result (full line),
which was computed numerically and used the beyond RWA theory.
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Chapter 9

Outlook

The results of this thesis pose several interesting open questions. We will summarize some
of those we find most relevant here.
In Papers I and II, we theoretically investigated the photocurrent for two different types
of coherent drives, a monochromatic continuous wave and a single pulse. It would be of
great interest to investigate different types of drives, specifically non-classical ones such as
squeezed or Fock states. The results from Paper I also assume that every single electron
tunneling out of the DQD can be measured. This is of course a very idealized assumption.
In real experiments, measuring single electron tunneling events is very difficult, as those
events typically occur on a fast time scale, which is difficult to resolve. Also, in actual
experiments there typically is some kind of feedback induced on the system through the
measurement device. Both the investigation of an extended device which also includes
the detector for the electrons and describes the measurement and feedback would be of
interest. One possible setup that is currently being tested experimentally is to have a SET
connected to the DQD and infer the charge state of the DQD through the current in the
SET. In Paper II, we assume that the time-dependent photocurrent pulse can be accessed.
This, too, is experimentally challenging. Also here it would be interesting to study a system
where the time-dependent photodetector is part of the whole setup.
As mentioned previously, in the case of single pulse detection, the study would be more
complete with a Wigner-function formalism for the photocurrent. This might include
some form of input-output theory, where the tricky part is the input is bosonic and the
output fermionic in nature.
We have also in several parts of our work used a mean-field approximation, which to our
surprise worked very well. It is not clear why this is the case, and it would be beneficial
to also investigate when the approximation works well and when it doesn’t and why that
would be the case.
In Paper III, we saw that though the non-RWA Hamiltonian accounted for multi-photon
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processes, it did not reproduce the experimental data accurately. As mentioned, the shift in
the chemical potential due to the high input drive could be a cause. Introducing this shift in
the theoretical model might solve the issue we had there. We also found electron-tunneling
rates between the leads that where on the order of the DQD energy gap. Typically, this
means that standard Markovian Lindblad equation does not hold anymore. Effects of non-
Markovianity would therefore also be interesting.
We have also in our collaborations with the experimentalists seen signs of cotunneling
events, which could be one more possible extension to the model.

We see that there are many different paths that could be followed which build up on the
results presented in this thesis.
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