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Abstract

This thesis covers the estimation of the fracture behaviour of the European wood
species Norway spruce and birch. The fracture behavior of wood can be quantified
through three material parameters: the stiffness, the strength, and the specific fracture
energy. In the present work, these parameters are characterized through two methods.

The first method is purely experimental and only estimates one parameter, by use
of the so-called work-of-fracture method. In this procedure, a single-edge-notched
beam is loaded in three-point-bending under stable crack propagation until complete
failure. The specific fracture energy, i.e. the energy dissipated during the creation
of a unit crack surface, can then be evaluated as the work carried out to complete
fracture, divided by the fractured area. This method has previously been used in
a large number of studies to establish the specific fracture energy of various wood
species. In the present work, this experimental procedure is used to test 80 specimens,
divided into four different series.

The second method employed is based on the same experimental tests, but in combin-
ation with numerical models. The difference between the numerically and experiment-
ally obtained force-displacement responses is quantified in a so-called cost function,
which further is minimized through a finite element model updating (FEMU) proced-
ure using a Bayesian optimization framework, to establish the optimal set of material
parameters. In addition, two commonly employed cost functions employed in FEMU
are reformulated in the context of likelihood-based inference to estimate the uncer-
tainty in the optimal set of parameters.

It is shown that neither of the two commonly employed cost functions can recover the
variance in the experimental load-displacement curves. However, the mean behaviour
is captured fairly well for both cost functions.

Keywords: fracture mechanics, finite element modeling, wood, cohesive zone model-
ing, finite element model updating, likelihood inference, optimization
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1 Introduction

1.1 Background

The use of timber in structural applications has grown exponentially in recent dec-
ades, mainly due to the environmental benefits associated with the use of timber in
construction. Timber is both renewable and acts as a carbon dioxide sink during the
entire life cycle of a timber structure. These are clearly desirable properties in times
when reducing emission of greenhouse gases is necessary.

Wood species can be divided into two groups based on anatomical differences: conifer-
ous and deciduous species, often referred to as softwoods and hardwoods, respectively.
In Sweden, most of the forest stock, around 80%, consists of the softwood species
Scots pine and Norway spruce. Birch, which is the most abundant hardwood species
in Sweden, makes up 13% of the stock (Sveriges Lantbruksuniversitet, 2022). Natur-
ally, coniferous species have been utilized the most for structural purposes due to their
abundance. In contrast, birch is currently mostly used for pulpwood, and to some ex-
tent for flooring and furniture. This, despite that increased stiffness and strength can
be identified in birch, compared to pine and spruce. High strength and stiffness are in
general appealing properties for construction materials, and thus birch could poten-
tially contribute to structures with improved load-bearing capacity, material efficiency
and a diverse selection of construction materials. Due to these reasons, the interest
in using birch in structural applications has increased in recent years. However, using
wood can still be detrimental to the environment, since the acquisition of timber is
directly dependent on forestry. In other words, sustainable timber construction cannot
be achieved without sustainable forestry.

A key component in sustainable forestry is biodiversity. The more biodiverse an eco-
system is the more resilient the ecosystem becomes against environmental fluctuations
(Hong et al., 2022) induced by for example climate change. To promote the biod-
iversity of Swedish forests, growing forests with a broad mix of wood species might
be a viable option; more than 900 living species (of which some are threatened) are
in some way benefiting from both living and dead birch trees (Fahlvik et al., 2021).
Consequently, deciduous species, such as birch, seem to play a crucial role in promot-
ing a biodiverse forestry, and can thus by extension also promote biodiverse timber
construction.

Various studies have examined the effect of hardwood species in structural applications
in recent years. For example, the effect of using birch in glued laminated timber (GLT)
and cross laminated timber (CLT) has been examined by Obernosterer et al. (2023),
and the effect seems promising with respect to stiffness and strength. In addition, the
mechanical behaviour of birch plywood has been investigated by Wang et al. (2022a,
2022b). The dynamic response of CLT slabs constructed entirely with birch was eval-
uated by Jonasson et al. (2024b), and the results indicated that the dynamic response,
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in terms of vibrations and frequency response, was reduced markedly compared to
conventional CLT slabs made of Norway spruce.

Increased strength and stiffness are in general desirable properties in structural applic-
ations. However, this usually comes at the expense of increased brittleness, i.e. risk
of abrupt, and possibly catastrophic failure, which clearly is undesirable. One typ-
ical cause of brittle failure in timber applications is tensile stresses perpendicular to
grain. For example, stresses perpendicular to grain arise in beams with notches or
holes (Thelandersson & Larsen, 2003, Chap 4). In such applications, sharp edges give
rise to stress concentrations, which in turn may result in crack propagation along the
grain. In addition, mechanical and adhesive joints also give rise to stresses perpendic-
ular to grain. Beams with holes and notches, and mechanical joints are often essential
for aesthetic or practical purposes. Consequently, despite the potential increase of
strength and stiffness in birch, the failure behaviour of birch needs to be properly
understood to ensure that load-bearing capacities can be properly assessed.

The failure behaviour of materials in terms of the ultimate load-carrying capacity is a
problem of instability (Gustafsson, 1985). For example, slender columns may fail in a
sudden manner due to large displacements. In steel, plastic hinges may form which are
a consequence of another instability phenomena, large strains. However, as Gustafsson
(1985) argues, the most common failure mechanism is likely fracture. Fracture is the
separation of a solid into more than one part and is a field that has been subject to
large efforts of research in the last 100 years.

The fracture behaviour of wood is mainly governed by three material parameters:
the elasticity, E, the ultimate strength, f , and the energy that is dissipated during
fracture, Gf (often called the specific fracture energy). These three parameters also
characterize a materials’ brittleness, which can be quantified by a parameter called the
characteristic length. For perfectly brittle materials, the characteristic length is close to
zero. For perfectly plastic material, the characteristic length is infinite. Material which
are between these two extremes are generally referred to as quasi-brittle. Wood is often
considered to be a quasi-brittle material. To fully understand the fracture behaviour
of a given material, and how it impacts load-bearing applications, the parameters E, f
and Gf needs to be established and well-understood. Another key component which is
crucial to establish in quasi-brittle materials is the strain-softening behaviour, which
is a function describing the diminishing stress carrying capacity of the material during
increased crack opening deformation.

A commonly applied experimental method to evaluate the tensile strength and the
stiffness is the so-called direct tension test. This method has been utilized in numerous
studies to evaluate the stiffness and strength of various wood species. For example,
Forsman et al. (2020) determined the stiffness and strength perpendicular to grain of
unmodified and acetylated Scots pine with this method. Direct tension tests can also
be utilized to determine the strain-softening behaviour of wood, which was shown by
Boström in his doctoral thesis (Boström, 1992).

A commonly employed method to evaluate the specific fracture energy is a single edge
notched beam (SENB) loaded in three-point-bending. The method was originally
developed for steel and concrete, and later adapted for wood by Gustafsson (1988).
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Several studies have used this method to evaluate the specific fracture energy of various
wood species (Dourado et al., 2015, 2008; Forsman et al., 2021). In addition, the
use of this method has been extended in a few studies, to not only estimate the
fracture energy, but also the stiffness, strength and the strain-softening behaviour (De
Moura et al., 2008; Dourado et al., 2008; Kunecký et al., 2024). In these previous
studies, an optimisation problem has been formulated, where the difference between
some experimental and numerical quantity is minimised. This methodology is usually
referred to as finite element model updating (FEMU) (Chen et al., 2024). Estimating
several parameters through the SENB method instead of only one is of great value since
more knowledge about a given material can be acquired from a single test. However,
the methods to estimate the parameters that have been proposed thus far for wood (De
Moura et al., 2008; Kunecký et al., 2024) provide only deterministic estimates of the
established parameters. Wood exhibits a large variability in mechanical behaviour, and
a deterministic set of parameters is not sufficient to accurately predict and understand
the failure behaviour in load-bearing applications. As such, further development of
current methods to allow for capturing the variance of the fracture parameters would
be greatly beneficial. This is the focus of the present work.

1.2 Aim and objectives

As mentioned in the previous section, using birch in load-bearing applications might
be beneficial for several reasons. It could enhance load-bearing capabilities while
simultaneously improving the biodiversity of Swedish forests and the sustainability of
the timber construction industry. However, for birch to be used in such applications its
fracture behaviour needs to be well understood. The aim of this thesis is to establish
the fracture behaviour of birch in terms of the three previously introduced fracture
parameters. In contrast to previous work, the aim of this thesis is to estimate a non-
deterministic set of the fracture parameters in wood. To successfully achieve this,
current experimental methods may need to be modified or improved. Therefore, the
objectives of this work are as follows:

• Assess if the conventionally used SENB specimens are suitable for evaluating the
specific fracture energy of birch. If birch exhibits a more brittle behaviour than
spruce, modifications to the current experimental set-up might be needed.

• Develop a FEMU procedure based on the theory of statistical inference in order
to assess the possibility to accurately capture the inherent variability in the
constitutive parameters in wood.

• With the SENB specimens, estimate the specific fracture energy for both Norway
spruce (Picea abies) and birch (Betula pendula) with the conventional work-of-
fracture method.

• With the developed FEMU method, estimate strength and the stiffness of both
Norway spruce and birch, in addition to the specific fracture energy.

3



1.3 Research approach and limitations

Wood is a material which may be characterized at many different levels (Dinwoodie,
2000, Chap 1). In the present work, the fracture behaviour of wood is studied solely at
the clear wood level. At this level, the material is seen as homogeneous and continuous.
In addition, imperfections like knots and fiber deviations are not considered. The aim
is however to enable the propagation of the herein determined fracture behaviour to a
semi-structural or structural system level.

In the present work, the fracture behaviour has been determined through two different
methodologies, see Figure 1.1. Out of the two methods, the SENB method is likely the
most used method, and this method has been employed in Paper I. With this method
it is only the specific fracture energy that is estimated. As such, the SENB method
is used to evaluate the specific fracture energy in mode I of both Norway spruce and
birch, in the TL crack propagation system. Four different series of specimens are
constructed, with two different geometries. In total, the specific fracture energy is
estimated for 80 specimens.

The second method estimates two additional parameters through FEMU, in addition
to the specific fracture energy. With this method, a numerical model is sequentially
updated based on the minimisation of the difference between experimentally and nu-
merically obtained load-displacement curves. The difference is quantified through a
so-called cost function. With this approach, all three relevant fracture parameters can
be estimated, as long as the cost function is sensitive to the estimated parameters. The
formulation of the cost function is usually carried out in a straightforward manner,
for example, through the least squares error between the measured experimental and
numerical quantities.

In the present work, two commonly used cost functions in FEMU are reformulated in
the context of likelihood-based inference. By assuming a statistical model of the differ-
ence between the experimental and numerical load-displacement curves, it is possible
to determine an approximate statistical distribution of the parameters that are sub-
jected to optimisation.

The determination of these approximate statistical distributions enables the analysis
of load-bearing structures made from birch and the uncertainties stemming from the

Experimental 
P-u curves

Numerical
P-u curves

Experimental 
P-u curves

Paper I

Paper II Model updating E, f, Gf

Gf

Figure 1.1: Flow-chart of the two different parameter estimation methods employed in
the present work.
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material variability. By propagating the estimated distributions of the parameters to
the semi-structural or structural scale, studies at these scales can be carried out with
realistic combinations of fracture parameters.
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2 Wood for structural purposes

Given the numerous benefits of using wood in construction, it is no surprise that its
use in structural applications dates back nearly 500 000 years (Barham et al., 2023).
Wood is renewable, has a high strength-to-stiffness ratio, and is found aesthetically
pleasing by many. In addition, the benefits of wood from an environmental perspective
are convincing.

Structural wood is usually referred to as timber. In Sweden, the oldest preserved
timber structure is from the 13th century (Gullbrandsson, 2010), and timber has for
long been the dominating construction material in single-family dwellings and smaller
multi-family dwellings. Buildings higher than two stories were not permitted in urban
areas from 1874 up until 1994 by national building regulations. In the latter part of
the 20th century, knowledge of timber increased, especially with respect to fire safety,
which is crucial in timber structures, since timber is combustible. Conveniently, timber
burns at a predictable rate, and it is thus possible to predict somewhat accurately when
the structural integrity is compromised.

In addition to the problems with fire safety, wood suffers from several other drawbacks.
For example, it is a lightweight material, making it prone to comfort issues due to
vibrations and sound emissions. The mechanical behaviour is largely dependent on
the moisture content, which might become problematic since wood can absorb large
amounts of moisture. Absorption of moisture may also decrease durability and increase
the risk for mold growth. It is also difficult to accommodate larger spans with timber
structures, in comparison to steel and concrete. In addition, as mentioned in Chapter 1,
timber is in general weak when stressed perpendicular to grain.

2.1 The micro- and ultrastructure of wood

The microstructure of all wood species is made up out of tube-like, hollow cells (Bodig
& Jayne, 1982). The tube-like, hollow cells approximately run in the length direction
of the tree trunk. The individual cells in softwoods are called tracheids. The tracheids
have two tasks in the living tree: to transport water and to ensure the structural
integrity of the tree. In hardwoods, the tasks related to structural integrity and
moisture transport are carried out by two different cell types. The structural integrity
is ensured by so-called fibers, whereas the water transport is carried out by vessels.
In addition to tracheids, fibers and vessels, a cell called parenchyma is found both in
softwoods and hardwoods. Its main task is to store nutrients.

The formation of the tracheids is different depending on what time of the year the
cell growth takes place. During the early parts of the growing seasons, the wood cells
grow relatively fast since the availability of water is usually high. In turn, this yields
larger, more thin-walled tracheids. In contrast, the growth slows down during summer
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and the wood cells the grow during this time are denser and more thick-walled. The
lighter, thin-walled part is called earlywood, whereas the denser part is called latewood.
The denser latewood usually has a dominating effect on the mechanical behaviour of
wood. This alternating, reoccurring growth, is what creates growth rings in wood.

In temperate climates, such as Europe, one growth ring per year is most often found,
and the growth rings can thus be used to estimate the age of a tree. The identification
of growth rings is in general easier in softwoods, since the tracheids in softwoods gen-
erally are organized in a regular and well-structured matrix-like pattern. In contrast,
the organization of vessels, fibers and tracheids in hardwoods is less structured.

A single softwood tracheid consists of five different layers, illustrated in Figure 2.1c.
The two outer layers, the primary wall (P) and the middle lamella (M) are generally
lumped into one layer called the compound middle lamella (Bodig & Jayne, 1982, Chap
1). The three remaining layers, denoted S1, S2 and S3, are part of the secondary wall.
The S2 layer has the largest influence on the macroscopic mechanical behaviour, since
the so-called microfibrils are mainly oriented in the length direction of the tracheid in
that layer. The thread-like microfibrils consist of molecular cellulose chains, which are
embedded in a matrix of lignin and hemi-cellulose (Persson, 2000).

2.2 The macroscopic wood scale

Even though the microstructure of wood is crucial for understanding the mechanical
behaviour, it is usually not the scale that is modeled or experimentally tested in civil
engineering applications. Instead, the macroscopic scale is often of interest. The mac-
roscopic scale can be divided further into two sub-scales. The first one, called the clear
wood scale, includes wood at the growth ring level, but free from defects such as grain
deviations and knots. The second one, the structural scale, is usually not considered
free from defects. Growth rings are usually not explicitly modeled at either level and
the material is thus considered to be homogeneous and continuous. In addition, wood
is often considered to be defined by a rectilinear or a cylindrical coordinate system.
Both coordinate systems are defined by the three principal directions of wood: the
longitudinal direction, L, the radial direction, R, and the tangential direction, T. For
a piece of wood (timber) that is cut far away from the pith, the assumption of a
rectilinear coordinate system can be considered as quite accurate.
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Earlywood

Latewood

Latewood

S1

S2

S3

P

M

a)

b)

c)

T L

R

T

L

R

Figure 2.1: Illustration of (a) the growth rings on the macroscopic level, (b), the growth
rings at the microstructural level and, (c), a single softwood tracheid cell,
i.e. the ultrastructural level.
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2.3 Constitutive modelling of wood

Consider a three-dimensional infinitesimal element cube with material orientations
according to the three principal directions of wood: the longitudinal directions (or the
fiber direction), denoted L, the radial direction, R, and the tangential direction, T,
see Figure 2.2. For such a cube, three normal stresses and three shear stresses may
be identified and subsequently collected in the so-called stress tensor, σij, with the
following components:

[σij] =



σLL τLR τLT
τRL σRR τRT
τTL τTR σTT


 (2.1)

By moment equilibrium, it can be identified that σij = σji. The corresponding strains
may be collected in the (small) strain tensor:

[εij] =



εLL εLR εLT
εRL εRR εRT
εTL εTR εTT


 (2.2)

Similarly to the stress tensor, the strain tensor is also symmetric, such that εij = εji.
Assuming linear elastic conditions, the relation between the stress and the strain tensor
is linear according to Hooke’s law:

εij = Cijklσij, ∀i, j = {L,R,T} (2.3)

where Cijkl is the fourth order compliance tensor, which contains 21 unknowns. For
orthotropic materials the number of unknowns is reduced to nine (Ristinmaa & Ot-
tosen, 2005, Chap 4). By introducing Voigt notation, the tensors may be written as
vectors, such that

σLL
σLT

σLR

σTL

σTT

σTR

σRL
σRT

σRR

T

R

L

Figure 2.2: An infinitesimal wooden element cube.
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


εLL

εRR

εTT

γLR

γLT

γRT




=




1
EL

−νRL

ER

−νTL

ET
0 0 0

−νLR

EL

1
ER

−νTR

ET
0 0 0

−νLT
EL

−νRT

ER

1
ET

0 0 0

0 0 0 1
GLR

0 0

0 0 0 0 1
GLT

0

0 0 0 0 0 1
GRT







σLL

σRR

σTT

τLR

τLT

τRT




(2.4)

where the engineering sheer strains have been introduced according to

γLR = εLR + εRL = 2εLR (2.5a)

γLT = εLT + εTL = 2εLT (2.5b)

γRT = εRT + εTR = 2εRT (2.5c)

Hooke’s law can then be written in matrix form as:

ε = Cσ (2.6)

where the inverse relation also holds

σ = Dε (2.7)

where D = C−1, is the stiffness matrix.
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3 Fracture mechanics

The birth of fracture mechanics is usually attributed to Alan Arnold Griffith’s work
published in 1921 (Griffith, 1921). Griffith observed that the experimental failure
strength of glass was several orders of magnitude lower than the theoretically calculated
inter-atomic bonding strength. By testing glass fibers with varying diameters, he
noticed that when the diameter approached the limit of zero, the theoretical inter-
atomic yield strength was also approached. He thus concluded that the failure strength
must be governed by a size-effect, and classical failure theory, based on the ultimate
tensile strength of the material, was not a sufficient failure criterion.

Based on his observations, Griffith formulated an energetic criterion to predict crack
growth in ideally brittle bodies with a pre-existing sharp crack. He postulated that
when the rate of reduction in potential energy with respect to a virtual crack increase
is larger than the surface energy created by a new set of traction-free crack surfaces,
the pre-existing crack will propagate. The reduction in potential energy when a crack
is propagating a virtual distance s is called the energy release rate and is given by

G = −∂Π

∂s
(3.1)

where Π is the total potential energy of a solid body. When G reaches a critical
value called the critical energy release rate, Gc, the crack propagates. In the coming
decades, the field of linear elastic fracture mechanics (LEFM) was developed based
on Griffith’s postulate. In LEFM, three main modes of crack propagation can be
identified, see Figure 3.1. Mode I is a pure opening mode, and generally the most
common failure mode. Both mode II and III are shearing modes, with mode II being
in-plane shear, and mode III being out-of-plane shear.

3.1 Linear elastic fracture mechanics

In LEFM, the body that is subjected to crack propagation is assumed to be ideal
elastic. In addition, no upper limit on the stresses or strains are enforced. This causes
stress and strain singularities to occur around the crack tip in the body, as illustrated
in Figure 3.1 (right). This is clearly not physically reasonable, and means that single
point stresses and strains can not be used to evaluate crack propagation. Instead,
other quantities have to be used, for example the energy as in the previously described
approach, which often is called the energetic approach. In addition, LEFM assumes
that a crack is already existing in the body a priori, and can thus not be used to
predict crack initiation, only crack propagation.

Another quantity often used to predict crack propagation in LEFM is stress intensity
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Figure 3.1: The three modes of fracture and an illustration of the stress singularity
around the crack tip in LEFM.

factors, which were introduced by Irwin (1957). The stress intensity factors are usually
expressed as a power series of several terms. Close to the crack tip, the first term of
the power series dominates. The first term can be written by using a scaling factor,
referred to as the stress intensity factor. One such factor for each mode of fracture
can be defined and denoted by KI, KII and KIII:

KI = lim
r→0

σI(r)
√
2πr (3.2)

KII = lim
r→0

σII(r)
√
2πr (3.3)

KIII = lim
r→0

σIII(r)
√
2πr (3.4)

Here, r, is the distance away from the crack tip, see Figure 3.1 (right). At the crack
tip, there is a stress singularity of type 1/

√
2πr. Irwin (1957) tried to remedy the

stress singularity, by limiting the stress ahead of the crack tip to the yield stress of
the material. The extension of the plastic zone ahead of the crack tip could then be
determined by equilibrium. However, the equilibrium considered only included the
first term of the power series mentioned above. This assumption can only be valid
close to the crack-tip, where this term approaches infinity, and thereby dominates the
power series. Consequently, Irwin’s approach limited the infinite stresses to the yield
strength of the material, but the approach is only valid for cases when the plastic
zone ahead of the crack tip is highly localized. This phenomenon of a highly localized
plasticity zone ahead of the crack tip is referred to as small-scale yielding and is only
valid for ideally brittle materials.

For wood, which is quasi-brittle, an assumption of small-scale yielding is in general
not accurate, since the fracture process zone (FPZ) can be quite large in relation to
characteristic dimensions of the structure. The fracture process zone here refers to
the region around the crack-tip where the dissipation due to fracture takes place. For
ideally brittle materials, i.e. in LEFM, it is assumed that all the dissipation essentially
occurs in a single point, i.e. small-scale yielding discussed above. To remedy this, the
concept of cohesive forces was first introduced by Barenblatt (1962). He assumed that
there was a cohesive force some distance ahead of the crack tip. In contrast to Irwin
(1957), who assumed that the stress ahead of the crack-tip was constant, Barenblatt
modelled the stress ahead of the crack tip as varying with the width of the crack
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Figure 3.2: A bar loaded in uni-axial tension. Initially, the bar deforms elastically (right),
but after the tensile strength has been reached, a fracture process zone
localizes (left).

opening. However, Barenblatt never realized that this type of model could be used
not only to predict crack propagation, but also crack initiation. To this end, Hillerborg
et al. (1976) implemented the so-called fictitious crack model in combination with finite
element models.

3.2 Non-linear fracture mechanics

The fictitious crack model introduced by Hillerborg et al. (1976) uses two constitutive
relations for a body that undergoes fracture. A stress-strain (σ-ε) relation governs
the response of the bulk material, whereas the response of the fracture process zone is
governed by a stress-deformation (σ-w) relationship. The model is often conceptualized
through studying a one-dimensional bar loaded in uni-axial tension, see Figure 3.2.
The bar is assumed to have a uniform stress and strain distribution over its entire
cross-section. As the bar is loaded, the elongation, ∆l, is equal to:

∆l = εl + w (3.5)

where l is the initial length of the bar, ε is the elastic strain, and w is the deformation in
the FPZ. Before the tensile strength has been reached, w = 0, and the total elongation
of the bar is thus equal to the elastic elongation. When the tensile strength is reached,
a fracture process zone localizes across the entire cross-section simultaneously, due to
the assumption of a uniform stress- and strain distribution. The deformation of the
localized FPZ is now governed by a stress-deformation relationship. As the bar un-
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Figure 3.3: Load-displacement curve of the uni-axial bar in Figure 3.2. In the left part,
global force-displacement response is shown. In the middle and right picture,
the decomposition of the global force-displacement curve into the linear
elastic bulk material and the FPZ is shown.

dergoes increasing deformation after peak-load, the deformation of the FPZ increases
while the stress in the FPZ decreases. It should be noted that the material in the FPZ
is not unloading, since w is increasing. Instead, the material in the FPZ is softening.
In the elastic bulk material, both stresses and strains are elastically unloaded.

The area under the σ-w-curve is equal to the separation work per fractured unit area,
often called the specific fracture energy. In the remainder of this work, the specific
fracture energy may sometimes be referred to as just the fracture energy, and denoted
Gf. The unit of the specific fracture energy is [J/m2]. The σ-w relationship is often
called the strain-softening behaviour of the material and is assumed to be a material
parameter. To properly understand how quasi-brittle materials behave during fracture,
proper understanding of the strain-softening behaviour is crucial.

The shape of the strain-softening curve may be approximated in many ways, but
the most common is arguably to assume a linear softening. The linear softening is
uniquely defined by two parameters in theory, but three in practice. In theory, the
two parameters are the specific fracture energy, Gf, and the ultimate strength, ft.
However, due to issues with convergence in numerical applications, a finite initial
stiffness, here denoted kinit, must be introduced in the σ-w relation, instead of the
theoretical infinite stiffness (see Figure 3.3 (right)). Other types of common strain-
softening behaviours include bi-linear softening, piece-wise multi-linear softening and
various forms of exponential softening, however, the present work is constrained to
simply linear softening. In recent times, the fictitious crack model is often referred to
as a cohesive zone model (CZM).

3.3 Experimental fracture mechanics

The orthotropic nature of wood means that the fracture behaviour is different in
different directions, both due to the mode of loading, but also due to the orientation
of the material. Six different crack propagation systems may be identified in wood, see
Figure 3.4. They are denoted LR, RL, TL, LT, RT and TR. The first letter denotes
the direction perpendicular to the crack plane, whereas the second letter denotes the
direction of crack propagation. In addition, each propagation system may be loaded in
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Figure 3.4: The six different crack propagation systems in wood.

different modes of loading, or combinations of different modes of loading. Generally,
wood is weak when stressed perpendicular to grain, and thus it is the TL and RL crack
propagation systems that have been the main focus of the wood fracture mechanics
community.

Different experimental methods have been developed to determine the fracture be-
haviour of wood in various propagation systems. Originally, most methods were de-
veloped for steel and concrete, but later adapted for wood. For example, numerous
studies have been carried out with the double cantilever beam (DCB), see Figure 3.5a)
(De Moura et al., 2008; Todorović et al., 2023; Yoshihara & Kawamura, 2006) and
the modified version of the same beam, the tapered double cantilever beam (TDCB)
(De Moura & Dourado, 2018).

Another popular method is the wedge splitting test which has been employed in a
number of studies. Various specimen geometries can be used to determine the fracture
behaviour through a wedge splitting test, but a common choice is illustrated in Figure
3.5, which is a modification of a compact tension (CT) specimen. For example, Stanzl-
Tschegg et al. (1995) studied the fracture behaviour of spruce in the TL- and RL-
propagation systems by means of a wedge splitting test. They characterized the critical
energy release rate, the specific fracture energy, and cohesive laws for both propagation
systems. In addition, they studied the difference between using LEFM and non-linear
fracture mechanics, showing the infeasibility of the former for small wood specimens
which in general cannot be characterized as ideally brittle. The mean values of the
fracture energy were determined to 240 and 150 J/m2, for the RL and TL-propagation
systems, respectively. They also determined the tensile strengths in the radial and
tangential directions. In the radial direction, the mean value of the tensile strength
was found to be 2.8 MPa, and in the tangential direction 1.7 MPa.

The fracture behaviour of spruce, alder, oak and ash (the three latter are hardwoods)
were studied by Reiterer et al. (2002), in the TL and RL-propagation systems, using
a wedge splitting test. Unstable crack propagation was identified for all hardwood
species, whereas the crack propagation for the spruce specimens was stable. For the
spruce specimens, the fracture energy was found to be 337 J/m2 in the RL-system and
213 J/m2 in the TL-system.

Reiterer (2001) also determined the fracture energy of spruce at different temperatures
in the RL-crack propagation system. For a temperature equal to 20 ◦C, the fracture
energy in mode I was evaluated to 180 J/m2. By acoustic emission techniques, Reiterer
et al. (2000) also determined the mode I fracture energy in the RL-propagation system
for spruce. In that study, the specific fracture energy was evaluated to 260 J/m2.
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(a) (b)

(c)

Figure 3.5: (a) Double cantilever beam, (b) single-edge-notched bream loaded in
three-point-bending, and (c) wedge splitting test.

The fracture energy of different wood species has also been studied by using single-
edge-notched beam (SENB) specimens, which have been modified and adopted to wood
in the Nordtest standard (Nordtest, 1993). The method is arguably very convenient to
use when evaluating the specific fracture energy, since no monitoring of crack-extension
nor of crack-opening is needed. Instead, the force and the displacement at the load
introduction point are the only needed quantities. The specific fracture energy can
then be evaluated as the area under the load-displacement (P -u) curve, divided by the
area of the fracture surface, Ac:

Gf =
1

Ac

∫
P (u) du (3.6)

To accurately evaluate the fracture energy, the recorded load-displacement curves need
be stable. That is, no sudden large jumps in the force can be present. If this objective
is not achieved, the results might be misleading (Boström, 1992).

SENB specimens were used by Riberholt et al. (1992) to evaluate the fracture energy
of spruce to 298 J/m2, in the TL-crack propagation system. Similarly, it was evaluated
to 293 J/m2 by Stefansson (2001), in the same propagation system. Another study
was carried out by Dourado et al. (2015), which determine the specific fracture energy
in the TL-crack propagation system to 150 J/m2.

SENB specimens were also used to evaluate the fracture energy in several hardwood
species, for example by Forsman et al. (2021). In that study, the fracture energy of
Scots pine and birch at different moisture levels was studied under mode I loading in
the TL-crack propagation system. At a relative humidity of 70% (corresponding to
a moisture content of 13.6%) the fracture energy was evaluated to 460 J/m2 for the
birch specimens.
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4 Parameter estimation

4.1 Finite element model updating

In engineering sciences, solving for the response of a model for which the initial condi-
tions are known constitutes a forward problem. The opposite problem, i.e. to calculate
the initial conditions given the response of the model, may be denoted an inverse
problem. If the initial conditions are relatively few, the procedure may be referred as
parameter estimation (Aster et al., 2013). In addition, if the model is a finite element
model, the name finite element model updating (FEMU) is often used (Chen et al.,
2024). In mathematical notation, the output of the model may be denoted yM and
formulated as:

yM =M(x) (4.1)

where the model, M(x), is a function of a set of input parameters collected in a
feature vector, denoted x. The input parameters, or features, may for example be
geometrical parameters or material parameters. Based on this notation, the forward
problem constitutes solving for the response yM given a certain set of mechanical
and/or geometrical parameters, x. In contrast, the inverse problem constitutes finding
the set of parameters x, given the model response yM.

Parameter estimation in finite element (FE) modelling usually consists of calibrating a
model after experimentally measured quantities, for example the global force response
or local strain fields. The difference between the physical and numerical quantity is
quantified in a cost function, often also called an objective function, or a loss function.
In the present work, such a function will from now on be referred to as a cost function.
The cost function, denoted f(x), may further be minimised to find the optimal set of
parameters, such that

x̂ = argmin f(yM(x)− yE) (4.2)

where x̂ denotes the optimal set of parameters and yE denotes the experimental quant-
ity of interest. Cost functions in FEMU may be divided into two major groups: global
and local cost functions. Global cost functions are constructed based on measured
global physical quantities, such as the global force-response. Local cost functions are
based on local quantities, such as strain fields, that are usually captured with digital
image correlation (DIC) software. In addition, global and local cost functions may be
combined to account for both local and global phenomena.

One of the most common force-based cost functions is the least squares error between
the numerical model and the experiments:
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f(x) =
N∑

j=1

(Pnum,j(x)− Pexp,j)
2 (4.3)

Here, Pnum,j, refers to the numerically obtained force at a given displacement, and
Pexp,j, refers to the experimentally obtained force given at the same displacement.
This cost function may also be modified by some normalisation factor, Pnorm,j, such
that:

f(x) =
N∑

j=1

(
Pnum,j(x)− Pexp,j

Pnorm,j

)2

(4.4)

The normalisation factor may for example be the point-wise standard deviation cap-
tured in the experiments.

The minimisation problem described in Equation 4.2 may be solved with various optim-
isation methods, for example gradient-based methods. During certain conditions, such
as convexity and compactness, such methods converge relatively quickly. In addition,
implementations of many gradient-based optimisation methods are readily available
in popular programming languages, such as Matlab (MATLAB, 2022) and Python
(Van Rossum & Drake Jr, 1995). A clear drawback with such methods is that they
rely on the evaluation of first- and second-order derivatives of the cost function, which
may be computationally expensive if the cost function is not analytically tractable.

To reduce the dependency on gradient and Hessian evaluations, different derivative-
free optimisation methods have been developed. For example, genetic algorithms,
the Nelder-mead (simplex) algorithm and Bayesian optimisation exist, all which are
methods that have been used in FEMU and inverse parameter estimation in recent
years.

Regardless of whether a gradient-based or derivative-free optimisation method is used,
evaluation of the cost function in FEMU is generally computationally expensive. In
addition, the number of simulations available may be limited, both with respect to
time and computational power. Indeed, when carrying out inverse procedures such as
FEMU, it is often of interest to reduce the number of simulations as much as possible.
To this end, Bayesian optimisation (BO) is a well-established technique (Brochu et al.,
2010; Garnett, 2023; Regis & Shoemaker, 2005; Shahriari et al., 2016).

4.2 Bayesian optimisation

BO can be seen as an optimisation algorithm which sequentially samples the cost func-
tion, f(x), at the most optimal location to solve the optimisation problem in Equation
4.2. The most optimal location is chosen based on combining the knowledge from all
previous iterations through an acquisition function. The acquisition function is usually
constructed based on a Gaussian process (GP), denoted g(x), which approximates the
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cost function. The GP and the acquisition function are thus sequentially updated at
each iteration, based on all observations of the cost functions thus far. The data-set,
which may initially be empty, is at iteration i denoted Di. The sequential procedure is
carried out until termination, which usually is determined by max number of function
evaluations in BO. A pseudo-algorithm of the BO procedure is shown in Algorithm 1.

Algorithm 1 Pseudo-algorithm for Bayesian optimisation.

Input: f(x), Di, α(x), nmax, npre

Sample npre points xi, i = 1, . . . , npre

Create D =
⋃npre

i=1 {xi, f(xi)}
i← npre

while i < Nmax do
Use D to create GP approximation, g(x), and acquisition function α(x).
xi+1 ← argminα(x)
yi+1 ← f(xi+1)
D ← D ∪ {xi+1, yi+1}
i← i+ 1

end while

Gaussian process regression

A Gaussian process, g, is a stochastic process which is completely defined by its mean
function and its covariance function, such that

g ∼ GP(m(x), k(x,x′)) (4.5)

where m(x) is the mean function and k(x,x′) is the covariance function. Here, x and
x′ denotes two (potentially different) feature vectors, where each feature vector has
ndim elements. The covariance function will be specified in detail in the next section.

The Gaussian process, g, may be distorted by some additive noise, which often is
independent and identically distributed. Assuming the noise is Gaussian distributed
with a zero mean, the i:th observation yi may be denoted as:

yi = g(xi) + ϵ, ϵ ∼ N (0, σ2
n) (4.6)

Here xi is the feature vector of the i:th observation. In the case of exact observations,
σn = 0, and the observation is equal to the process, such that

yi = g(xi) (4.7)

Now, assume that a number of observations, denoted n, have been made of the process.
For each observation, there exists a feature vector xi. To each feature vector, there
exists a corresponding observed function value, yi. All function values may be collected
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in a column vector f , called training values, and all feature vectors (called training
points) may be collected in a matrix X, such that:

f =
[
y1 y2 . . . yn

]T
(4.8a)

X =
[
x1 x2 . . . xn

]T
(4.8b)

Thus, f is a vector of dimension n× 1, and X is a matrix of dimension n× ndim. Here
•T denotes the transpose of a matrix or a vector. Further, by using the knowledge in
X and f , it is of interest to make predictions for a new set of feature vectors, called
test points, which are collected in a matrix X∗. For now, it is assumed that predictions
are carried out for a single test point, such that X∗ = x∗. In this point, we wish to
learn about the unknown function value. We call this unknown function value our test
value and denote it g(x∗). g(x∗) is an approximation of the cost function in the test
point, such that g(x∗) ≈ f(x∗). The joint Gaussian distribution between all training
points and the test point may now be defined as:

[
y
g∗

]
∼ N

(
0,

[
Ky k(X,x∗)

k(X,x∗)
T k(x∗,x∗)

])
, Ky = k(X,X) + σ2

nI (4.9)

where a zero mean prior has been assumed. Based on the joint Gaussian distribution,
the posterior distribution for the test point is:

g∗|X,y,x∗ ∼ N (µ(x∗), σ
2(x∗)) (4.10)

where

E[g∗|X,y,x∗] = µ(x∗) = k(X∗,X)K−1
y y (4.11a)

V[g∗|X,y,x∗] = σ2(x∗) = k(x∗,x∗)− k(x∗,X)K−1
y k(X,x∗) (4.11b)

µ(x∗) is thus the approximation of the cost function, f(x), in the test point x∗, and
σ2(x∗) is the standard deviation (i.e. the uncertainty) of the approximation of the cost
function in the same test point.

Covariance functions

The covariance function was previously introduced in Equation 4.5, as a function that
takes two feature vectors as inputs. However, in the most general case, the arguments
to the covariance function may be two (potentially different) sets of feature vectors.
For now, we will assume that the two sets are the same. The set may for example
be the set previously denoted as X of dimension n × ndim. For two such (potentially
different) sets, the covariance function evaluates the covariance for all combinations of
rows in X. This results in a covariance matrix of dimension n× n, where the element
at location i, j is the covariance between the i:th and j:th feature vectors:
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k(X,X) = Σ (4.12)

k(xi, xj) = Σij (4.13)

A covariance function is called stationary if it is a function of a measure of distance,
r:

r =
√
(x− x′)TA(x− x′) (4.14)

Here, A, is a positive definite matrix which allows for scaling the distance in specific
directions. If A = diag(l−2)I, the kernel is an axis-aligned anisotropic kernel. If
A = l−2I, an isotropic kernel is acquired, where the length-scale factor is the same
in every direction. One of the most common covariance functions is the squared
exponential (SE) covariance function, which may also be called the Gaussian covariance
function, and is given by the following expression:

k(r) = σ2
v exp

(
−1

2

r2

ρ2

)
(4.15)

Here σ2
v is the signal variance and ρ is a general length-scale parameter which in the

following is set to one since length-scale factors are already included in A. The SE
covariance function suffers from the drawback of being infinitely differentiable and thus
results in a smooth process. Despite this, the SE covariance function is most likely
the most used covariance function in applications of GPs. An alternative to the SE
covariance function is the Matérn covariance function (Matérn, 1986) which is given
by

k(r) = σ2
v

21−ν

Γ(ν)

(√
2νr
)ν

Kν

(√
2νr
)

(4.16)

where Kν is a modified Bessel function of the second kind, and Γ(ν) is the Gamma
function. Here, ν, is a strictly positive, non-zero, smoothness parameter, which enables
the possibility to model different levels of smoothness. In practical applications, this
parameter is often taken as a half integer, such that ν = k+ 1

2
for k ∈ Z. The covariance

function then reduces to a convenient polynomial form, and is solely a function of the
distance, r. Two values of ν often adopted in the machine learning community are
ν = 3

2
and ν = 5

2
, for which the Matérn covariance function takes the following two

forms:

kν=3/2(r) = σ2
v(1 +

√
3r) exp(−

√
3r) (4.17a)

kν=5/2(r) = σ2
v(1 +

√
5r +

5

3
r2) exp(−

√
5r) (4.17b)
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Acquisition function

As mentioned previously, the task of the acquisition function is to determine where
to sample the cost function next. This choice is often carried out by combining the
knowledge of the posterior mean, Equation 4.11a, and the uncertainty around the
posterior mean, i.e. the posterior variance, Equation 4.11b. An acquisition function
is thus minimized in order to estimate the next sample point. A common acquisition
function is the lower confidence bound (LCB) acquisition function:

αLCB(x∗) = µ(x∗)−
√
βσ2(x∗)) (4.18)

Here, β is a factor which weighs the mean against the uncertainty. If β = 0, no
uncertainty is considered when determining the next sample point. If β > 0, regions
with uncertainty are given more weight, in turn favouring exploration of the cost
function, i.e. sampling in regions where previous samples are scarce.

Likelihood-based inference

It is clear that a material which has formed naturally displays a rather large variation
in constitutive behaviour. In wood, this variability is apparent on all system levels,
and it is often of interest to quantify this variation to fully understand the material.
In statistical modelling, it is common that some experiment is carried out, and ob-
servations of a (often stochastic) variable is made. Based on the observations, it is
desirable to make predictions that are more general, and as stated by Pawitan (2013):

We say we wish to ’infer’ something from the data.

This inference can be carried out with likelihood-based inference. In likelihood-based
inference, the likelihood, a concept coined by Fisher (1922), plays a central role. The
likelihood is defined as follows (Pawitan, 2013):

Definition of Likelihood. Assuming a statistical model parameterized by a fixed and
unknown x, the likelihood L(x) is the probability of the observed data considered as a
function of x.

In other words, the likelihood is a function that describes how likely a certain parameter
set is to have generated the observed data. Given a formulated likelihood, denoted
L(x), the optimal parameter, x̂, may then be determined by maximum likelihood es-
timation (MLE). In practice, the MLE is carried out for the log-likelihood, which is
denoted l(x) = logL(x). If certain regularity conditions are fulfilled, the second deriv-
ative at the MLE can be used to reason about the uncertainty of x̂ (Pawitan, 2013).
To this end, a score function is defined as the first derivative of the log-likelihood, such
that

S(x) =
∂l(x)

∂x
(4.19)
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The MLE of x is then given by setting the score function to 0. Further, the curvature,
I(x), is defined as the negative second derivative of the log-likelihood, evaluated at
the MLE, such that:

I(x̂) = −∂2l(x)

∂x2

∣∣∣∣
x=x̂

(4.20)

which is the observed Fisher information (FI). The variance of x̂ may then be defined
as the inverse of the observed FI:

V(x̂) = I(x̂)−1 (4.21)

These concepts directly generalize to higher dimensions by replacing the first- and
second derivatives with their higher-dimensional counterparts, i.e. the gradient and
the Hessian. It should also be noted that this section has been using the term max-
imum likelihood estimation, meaning the log-likelihood is maximised. To maintain
a minimisation problem, it is the negative log-likelihood that is minimised in the re-
mainder of this work.

In the context of FEMU, the consequence of the score function and the Fisher in-
formation is the following. If the error (i.e. the cost function) that is minimised in
FEMU is formulated as a proper statistical model, it is possible to, through MLE, both
reason about the optimal set of parameters, and the uncertainty in the optimal set of
parameters. Consequently, through the combination of FEMU and likelihood-based
inference, it is possible to determine not only a deterministic set of optimal material
parameters, but also their variance and covariance.

25





5 Overview, summary and outlook

The aim of the following chapter is to provide an overview of the scientific contributions
of the present work. The contributions will for clarity be split up into three subsections.
The first section will mainly cover the experimental campaign reported in Paper I
(Jonasson et al., 2024a). The second section will focus on the estimation of the fracture
behaviour in terms of the stiffness, strength and the fracture energy, covered in Paper
II. The third section will provide a summary and an outlook for future work.

5.1 Experimental campaign

The experimental campaign reported in Paper I has been carried out with SENB
specimens loaded in three-point-bending according to the Nordtest method (Nordtest,
1993), see Figure 5.1. With this method, the only two quantities that are needed in
order to estimate the fracture energy are the load, P , and the displacement, u, at the
load introduction point. The specific fracture energy can then be evaluated as the
mechanical work carried out to completely fracture the specimen, divided by the area
of the fracture surface. Depending on how the middle piece of the SENB specimen is
oriented, the specific fracture energy may be evaluated for various crack propagation
systems. In the present work, the aim has only been to characterize the fracture
behaviour in the TL-crack propagation system (the reader is referred to Chapter 3 for
an illustration of the different crack propagation systems in wood).

SENB specimens are most commonly manufactured with a rectangular fracture sur-
face. This is also what is prescribed in the Nordtest standard. However, when the
tested material exhibits high brittleness, this notch geometry might yield unstable
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Figure 5.1: (a) Experimental set-up of the SENB specimen and (b) the two different
notch geometries.
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crack propagation. This has been shown by Lai and Plönning (2019), where birch
specimens with a rectangular fracture surface resulted in unstable crack propagation.
To mitigate this, a triangular fracture surface has successfully been used by Forsman
et al. (2021, 2020). The triangular fracture surface is often called a chevron notch, and
is often employed for ceramics (Anderson, 1995), which generally exhibit very brittle
fracture behaviour. An illustration of the two fracture surfaces is shown in Figure 5.1b.
Theoretically, the shape of the fracture surface should not influence the evaluation of
the specific fracture energy. However, this effect has not been studied exhaustively
for wood. Thus, one of the main objectives of the experimental campaign has been to
compare the evaluated specific fracture energy for the two different geometries of the
fracture surface.

The second main objective of the experimental campaign was to characterize the spe-
cific fracture energy of birch and compare it to the specific fracture energy of Norway
spruce. Although some studies have previously characterized the specific fracture en-
ergy of birch (Forsman et al., 2021) and spruce (Reiterer, 2001; Reiterer et al., 2002)
separately, comparative studies are still scarce. In the present work, a rather extensive
comparison of the fracture energy between the two different wood species is provided.
In total, 80 specimens were tested, of which 41 specimens were spruce specimens and
39 specimens were birch specimens. For each species, the two different geometries of
the fracture surfaces described above were adopted. As such, four series were tested
in total.

The evaluated specific fracture energy for the four series is shown in Table 5.1. The
mean specific fracture energy for all spruce specimens was evaluated to 222 J/m2.
This is a reasonable value compared to previous studies, which in general reports
values ranging between 150 and 300 J/m2, see Chapter 3. The evaluated mean specific
fracture energy for all birch specimens was higher compared to what has been found
in previous studies. However, it should be noted that comparable studies are very few.
Nonetheless, Forsman et al. (2021) evaluated the specific fracture energy to 460 J/m2.
In the present work, the mean fracture energy for all birch specimens was determined
to 657 J/m2. Although this discrepancy is rather large, it can not be deemed to
be outside the natural variation of the mechanical behaviour of wood, especially when
considering that the comparison is made with only a single study. Further experimental
investigations are recommended.

Table 5.1: Evaluated fracture energies for the our different test series. The fracture energy
is expressed in J/m22. The coefficient of variation is shown in the paranthesis.

Rectangular Triangular All

Spruce 188 (11%) 257 (14%) 222 (20%)

Birch 700 (17%) 611 (19%) 657 (19%)
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Remarks on the effect of geometry of fracture surface

As mentioned previously, the type of fracture surface should not impact the evaluated
specific fracture energy in theory, given an assumption of negligible plastic dissipation
in the bulk material of the specimens. However, as seen in Table 5.1, a difference was
observed in the present work. In addition, the difference was not consistent between the
two different species. For the spruce specimens, using the triangular fracture surface
resulted in a higher specific fracture energy compared to using the rectangular fracture
surface. For the birch specimens, the inverse relation was found: the specimens with a
triangular fracture surface yielded a lower specific fracture energy than the specimens
with a rectangular fracture surface.

It is difficult to unambiguously determine the source of this discrepancy in evaluated
fracture energy between the different geometries of the fracture surface. However,
one reason that is discussed in Paper I is the manufacturing process. Overall, the
manufacturing process of the specimens with a triangular fracture surface was deemed
more difficult, which could induce inconsistent errors. Because of the manufactur-
ing difficulties in combination with all specimens exhibiting more or less stable crack
propagation, it was concluded that for estimating the specific fracture energy of birch
(or spruce) in mode I loading, specimens with a triangular fracture surface are not
necessary for the TL-crack propagation system. However, further studies with respect
to how the notch geometry affects the evaluated specific fracture energy are recom-
mended.

5.2 Estimation of fracture parameters

The aim of the work carried out in Paper II was manifold. The first objective was
to reformulate two commonly used cost functions in FEMU based on the theory of
likelihood-based inference. This reformulation is necessary if it is of interest to estimate
the uncertainty in the parameters, and not only establish deterministic values. By
using the FEMU procedure, the second objective was to establish the three relevant
fracture parameter for both Norway spruce and birch: the tangential elastic stiffness,
ET, the tensile strength, ft, and the specific fracture energy Gf, and assess if it is
possible to accurately recover the variance from the experimental load-displacement
curves.

Likelihood-based inference in finite element model updating

As described in Chapter 4, the cost function is of central importance in a FEMU
procedure. In order to properly understand the cost functions adopted in the present
work, this section starts by defining all relevant experimentally and numerically ob-
tained quantities in a (hopefully) mathematical precise manner.

First, consider a single experimental series, for which several SENB specimens have
been tested and hence several load-displacement curves have been acquired. The num-
ber of experimental load-displacement curves in a specific series is denoted nk. Each
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load-displacement curve thus consists of a number of displacement values, and cor-
responding force values. The displacement values of different raw load-displacement
curves do, in general, not align. This is a problem, since when comparing the nu-
merically and experimentally obtained force, they need to be compared at the same
displacement value. Thus, the raw, measured data is resampled (interpolated) so that
the displacement values of all curves fall on the same grid. Each displacement point
on the interpolated grid is referred to as a discretisation point, and denoted si. The
total number of discretisation points of the uniform grid are denoted ni. With this in
mind, we introduce the term yik, which denotes the force in discretisation point si for
the k:th experimental load-displacement curve.

In addition to the experimentally obtained force, the numerical model yields a nu-
merical load-displacement curve which is dependent on the set of material parameters
subjected to optimisation. These parameters are collected in a vector, and denoted x.
The numerical load-displacement curve is discretised in the same discretisation points
as the interpolated experimental load-displacement curves. Thus, the force of the nu-
merical model, based on the (known) set of material parameters x, in discretisation
point si, is denoted p(si;x).

Now, it is assumed that an observation is made of the difference between the force
obtained from the numerical model, and the force for any given experimental curve, in
any given discretisation point, si. This difference is the observation error and denoted
as εik:

εik = p(si;x)− yik (5.1)

It is now possible to assume that the error εik is distributed according to some stat-
istical model. In the present work, two different statistical models are assumed, which
yields two different cost functions. The first statistical model assumes that the obser-
vation error is normally distributed with a zero mean, and constant variance across all
discretisation points. εik is then normally distributed according to:

εik ∼ N (0, σ2) (5.2)

The optimal set of parameters, denoted x̂, can then be acquired through maximum
likelihood estimation (MLE) of the following log-likelihood (refer to Paper II for the
mathematical derivations):

l1(x) = −
nkni

2
log

(∑

ik

(yik − p(si;x))
2

)
(5.3)

As can be seen, this likelihood function corresponds to the least squares error, and is
the same as the so-called FEMU-F cost function (Chen et al., 2024), except for the
term nkni

2
and the natural logarithm.
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The second model for the observation error again assumes a zero mean, but with a
variance which may be different in each discretisation point si, such that

εik ∼ N (0, σ2
i ) (5.4)

Once again, the log-likelihood may be derived through MLE (see paper II for math-
ematical derivations):

l2(x) = −
∑

i

nk

2
log

(∑

k

(yik − p(si;x))
2

)
(5.5)

As can be seen, both Equations 5.3 and 5.5 are dependent on the discretisation in
terms of ni in l1 and the summation over the index i in l2. In addition, the underlying
assumption of the statistical models for l1 and l2 is that the observation errors are inde-
pendently distributed. As discussed in Paper II, it is unlikely that this is a reasonable
assumption. If a certain point, say si, has a positive observation error, it is highly
likely that the surrounding points, say si+1, and si−1, also have positive observation
errors. The observation errors are thus in all likelihood correlated, which means that
neither cost function l1 nor l2 should be able to accurately recover the variance in the
experimental load-displacement curves. This is shown in the next section.

Estimated fracture parameters and uncertainty quantification

The optimal set of parameters acquired with the two different cost functions are presen-
ted in Table 5.2, and as discussed in Paper II, these show relatively good agreement
with previous studies. With respect to the fracture energy, which is the only quantity
that has been experimentally evaluated in the present work, the fracture energy eval-
uated with FEMU for the spruce specimens shows relatively good agreement with the
specific fracture energy as evaluated with the conventional work-of-fracture method.
The difference in evaluated specific fracture energy is less than 10% for both spruce
series, regardless of cost function used.

For the birch specimens, this discrepancy is larger. The fracture energy estimated
with cost function l2 for the birch specimens with a triangular fracture surface is
20% higher than the fracture energy evaluated with the work-of-fracture method in
Paper I. For cost function l2, the difference is 15%. For the birch specimens with
a rectangular fracture surface, the difference is smaller. For these specimens, the
fracture energy estimated with cost function l1 is 13% compared to the work-of-fracture
method, whereas for cost function l2 the estimated fracture energy is 7% higher than
with the work-of-fracture method.

For most series, the fracture energy evaluated with the FEMU procedure is higher than
the fracture energy estimated with the work-of-fracture method. This is true for all
series, and all cost functions, except for the spruce specimens when using cost function
l2. As discussed in Paper II, a potential cause for this could be that the birch specimens
have not been loaded with large enough displacement. In total, a displacement of 7
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Table 5.2: Estimated fracture parameters based on the FEMU method with two different
cost functions, and the conventional work-of-fracture method.

l1(x) l2(x) Work-of-fracture

Gf ft ET Gf ft ET Gf

[J/m2] [MPa] [MPa] [J/m2] [MPa] [MPa] [J/m2]

Spruce rect 172 3.06 238 198 2.21 241 188

Spruce tri 256 3.22 233 269 2.38 244 257

Birch rect 747 8.37 761 789 6.56 735 700

Birch tri 700 7.39 551 735 4.49 656 611

mm was applied for the birch specimens. On average, the residual force at this point
was around 1 N for all specimens. Given the large number of specimens tested in this
study, it was considered impractical from a time perspective.

In addition to mean values, it has also been of interest to quantify the inherent ma-
terial variability in the specimens. With the method described in Chapter 4, the
uncertainty of the optimised parameters could be established through the Fisher in-
formation evaluated at the MLE estimate of the parameters, i.e. x̂. With this method,
an approximate normal distribution of the parameters could thus be acquired for each
experimental series, such that

log x ∼ N (x̂,Σx̂) (5.6)

Here, it is the log of the parameters that is normally distributed, which in turn means
that the actual parameters are log-normally distributed. This is a consequence of the
minimisation being carried out in the log-scale to ensure positive material parameters.
One approximate statistical distribution was acquired for each cost function, and for
each series. For each approximate statistical distributions, 1000 samples were drawn
of the parameters. Based on these samples, the corresponding stress-deformation re-
lations with linear softening could be established. These are shown in the left column
in Figure 5.2 for cost function l1 and in the left column in Figure 5.3 for cost function
l2. Furthermore, from the 1000 samples, the global load-displacement curves was cal-
culated for ten randomly selected stress-deformation relations. The ten corresponding
load-displacement curves are shown in comparison to the experimental data in the
right columns of Figures 5.2 and 5.3, for cost functions l1 and l2, respectively. As can
be seen, some variability is recovered in certain series, but overall, the variance is never
recovered accurately.

32



0.00 0.02 0.04 0.06 0.08 0.10 0.12
w [mm]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

 [M
Pa

]

Rectangular
Mean, l1(x)

(a)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
u [mm]

0

5

10

15

20

25

30

35

40

P 
[N

]

Rectangular
Experimental mean
Experimental ±
Full experimental range
l1(x)

(b)

0.00 0.02 0.04 0.06 0.08 0.10 0.12
w [mm]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

 [M
Pa

]

Triangular
Mean, l1(x)

(c)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
u [mm]

0

5

10

15

20

25

30

35

40

P 
[N

]

Triangular
Experimental mean
Experimental ±
Full experimental range
l1(x)

(d)

0.00 0.02 0.04 0.06 0.08 0.10 0.12
w [mm]

0

2

4

6

8

10

 [M
Pa

]

Rectangular
Mean, l1(x)

(e)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
u [mm]

0

20

40

60

80

100

P 
[N

]

Rectangular
Experimental mean
Experimental ±
Full experimental range
l1(x)

(f)

0.00 0.02 0.04 0.06 0.08 0.10 0.12
w [mm]

0

2

4

6

8

10

 [M
Pa

]

Triangular
Mean, l1(x)

(g)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
u [mm]

0

20

40

60

80

100

P 
[N

]

Triangular
Experimental mean
Experimental ±
Full experimental range
l1(x)

(h)

Figure 5.2: Stress-deformation relation for all experimental series (left column) based on
estimated parameters with cost function l1, and the corresponding global
load-displacement curves in comparison to the experimental
load-displacement curves (right column). Note that the scales are different.
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Figure 5.3: Stress-deformation relation for all experimental series (left column) based on
estimated parameters with cost function l2, and the corresponding global
load-displacement curves in comparison to the experimental
load-displacement curves (right column). Note that the scales are different.
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Derivation of a new cost function in conjunction with FEMU

The theory of the cost functions has been developed in the context of Paper II, and as
such all authors of Paper II have contributed two the development, with Johan Lind-
ström providing the most important ideas. As can be seen from the results presented
in previous sections, neither cost function l1 nor cost function l2 were able to accurately
recover the variance. To remedy this, a third cost function is introduced. This cost
function assumes that the observation error is distributed as a multivariable normal
distribution with a zero mean, 0, and a covariance matrix across all discretisation
points, Σ:

εik ∼ N (0,Σ) (5.7)

For a multivariate normal distribution, the log-likelihood assumes the following form
(Casella & Berger, 2002, Chap 7):

logL3 = −
nink

2
log(2π)− nk

2
log |Σ| − 1

2

∑

k

(yk − p(x))TΣ−1(yk − p(x)) (5.8)

Here, yk and p(x) are the column vectors of the ni discretisation points, such that

yk =
[
y1k y2k . . . yik

]T
(5.9a)

p(x) =
[
p1 p2 . . . pi

]T
(5.9b)

The MLE estimate of the variance of a multivariate normal distribution is given by
(Casella & Berger, 2002, Chap 7):

Σ∗ =

∑
k(yk − p(x))(yk − p(x))T

nk

(5.10)

which yields the following expression for the log-likelihood in Equation 5.8, given that
additive constants are ignored:

logL3 = −
nk

2
log

∣∣∣∣∣
∑

k

(yk − p(x))(yk − p(x))T

∣∣∣∣∣ (5.11)

The expression inside the determinant may be reformulated from a sum, into a broad-
casted matrix expression, such that

∑

k

(yk − p(x))(yk − p(x))T = (Y − p(x)1T)(Y − p(x)1T)T (5.12)

Here, p(x)1T is a matrix of dimensions ni×nk with identical columns andY is a ni×nk

matrix with all observed load-displacement curves. Using a singular value decompos-
ition (SVD) (Bisgard, 2021) of the right hand side, the determinant in Equation 5.11
may be simplified to
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∣∣∣∣∣(Y − p(x)1T)(Y − p(x)1T)T

∣∣∣∣∣ = |USVT(USVT)T| = |US2UT| =
∏

i

s2i (5.13)

Here, U and VT are the right and left unitary matrices of the following SVD:

(Y − p(x)1T) = USVT (5.14)

where S is the diagonal matrix containing the k non-zero singular values si. The
log-likelihood, Equation 5.11, may then be rewritten as:

logL3 = −
nk

2
log
∏

i

s2i = −nk

∑
log si (5.15)

This cost function is, as can be seen in Equation 5.15 independent of the number of
discretisation points ni. In addition, this cost functions is based on the assumption
that the observation error is correlated between discretisation points. At the time of
writing this thesis, this cost function has not been fully implemented yet, and thus,
no results are shown here.

5.3 Summary and outlook

The aim of the present work has been to characterize the fracture behaviour of wood
in mode I loading and in the TL-crack propagation system. The wood species Norway
spruce and birch have been studied. In Paper I, the fracture behaviour was character-
ized in terms of the specific fracture energy, whereas in Paper II, the fracture behaviour
was characterized in terms of all three relevant fracture parameters for mode I fracture
in the TL-crack propagation system: the tangential stiffness, ET, the tensile strength,
ft, and the specific fracture energy, Gf. In addition, stress-deformation relations with
linear softening behaviour were established in paper II for both wood species, based on
the estimated tensile strength and fracture energy. The main scientific contributions
of the present work are the following:

• The fracture behaviour of birch and spruce has been established in terms of
the following material parameters: the specific fracture energy, Gf, the tensile
strength, ft, and the tangential elastic stiffness, ET.

• The specific fracture energy seems to be markedly higher for birch compared to
spruce. In addition, birch was not found to be more brittle than spruce in the
present work. Thus, the higher fracture energy in birch could have a positive
impact on load-bearing applications with birch, potentially increasing the load-
capacity without increasing the risk of brittle failure.

• Two common cost functions used in FEMU have been reformulated in the con-
text of likelihood-based inference. It has been shown that neither of these two
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cost functions can accurately capture the variance of the experimental load-
displacement curves in the present work.

• To accurately capture the variance in the parameters, a third cost-function has
been proposed, also based on likelihood-based inference. However, at the cur-
rent point in time, this cost function has not been fully implemented, but the
theoretical framework is in place.

The above contributions enable the possibility to further understand how using birch
affects the fracture behaviour in load-bearing applications in mode I fracture. However,
pure mode I fracture is rare at the structural scale. Instead, mixed-mode fracture is
almost always the case. As such, a natural extension of the present work is to establish
the fracture behaviour of birch in shear as well, i.e. mode II and III fracture.

A natural extension of the present work is to fully implement the third cost function,
in order to properly assess if it possible to capture the variance of the experimental
load-displacement curves accurately with it.

In the present work, the stress-deformation relation describing the strain-softening
behaviour of the material has only been modelled with a linear softening behaviour.
It would be beneficial to extend the work to other types of softening, such as bi-
linear or exponential softening, to see if it is possible to recover the experimental
load-displacement curves better with such relations.

Another natural extension of the present work is to propagate the estimated fracture
behaviour to a semi-structural or structural level, when the variance of the experi-
mental load-displacement curves has been captured accurately. By doing this, it is
possible to perform large-scale computations of how wooden structures behave during
crack propagation in load-bearing structures. This could potentially aid in the creation
of robust and accurate design methods for other wood species than spruce.

The continuation of this PhD-project will focus on both experimental and numerical
procedures. The experimental part will put more emphasis on the semi-structural or
structural scale, in addition to the clear wood level that has been studied thus far. The
emphasis in the numerical modelling will be on the development of numerical models
for predicting both pure mode I fracture, but also mixed-mode fracture, in addition
to potentially accounting for plasticity and other dissipative phenomena in wood.
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Abstract
The present work has experimentally determined the specific fracture energy of the 
hardwood species silver birch (Betula pendula), which in recent times has caught 
increased attention for utilization in structural applications. The single-edge-notched 
beam loaded in three-point-bending was utilized for evaluating the fracture energy 
with the work-of-fracture method. In addition to birch, Norway spruce (Picea abies) 
was utilized as a reference material. The effect of two different geometries of the 
fracture area for each species was evaluated—one triangular and one rectangular 
fracture area. It should be noted that the geometry of the fracture area did influence 
the evaluated fracture energy, and this influence was not consistent between species. 
This was likely in part due to manufacturing difficulties with the triangular frac-
ture area. In addition to the experimental testing, a numerical 2d-model including 
linear strain-softening behavior was used for comparative simulations. The numeri-
cal 2d-models showed reasonable agreement with the experimental results regarding 
the global load vs. displacement response, despite their relative simple nature. The 
specific fracture energy for the spruce specimens was evaluated to 221 J/m2 and for 
the birch specimens to 656 J/m2 . Consequently, the present work implies a marked 
increase in specific fracture energy for birch, compared to spruce. This increase in 
specific fracture energy could potentially have a large influence on the failure behav-
ior of birch when used in structural applications which is something that needs to be 
considered in future work.

 * Johannes Jonasson 
 johannes.jonasson@construction.lth.se

 Henrik Danielsson 
 henrik.danielsson@construction.lth.se

 Erik Serrano 
 erik.serrano@construction.lth.se

1 Division of Structural Mechanics, Department of Construction Sciences, Lund University, P.O. 
Box 118, 221 00 Lund, Sweden



 Wood Science and Technology

Introduction

For structural applications in Europe, and more specifically the Nordic countries, 
Norway spruce (Picea abies) is the dominant wood species utilized. However, 
in Europe, there exists a significant amount of hardwood. For example, in Swe-
den and Finland, birch (Betula pendula) makes up 13% of the forest stock (SLU 
2022), whereas in central Europe, beech represents a substantial amount of the 
forest stock. Currently, birch is primarily used in the pulpwood industry and for 
manufacturing furniture, but in recent years, the interest of extending the fields of 
application to also include structural use has increased. Due to global warming 
and the altered growth climate that follows, only relying on a single wood species 
in the construction industry might not be feasible long-term. However, to enable 
a potential diversification in the construction industry by utilizing birch, a better 
understanding of the mechanical behavior and the fracture properties of birch is 
required.

Elastic behavior of wood

A significant portion of research dealing with structural applications reports on 
the elastic mechanical behavior of softwoods in general, and Norway spruce 
in particular. The literature is however scarse when it comes to hardwoods for 
structural applications, including silver birch. Large and extensive research on 
the mechanical behavior of wood and wood-based materials has been carried out 
by e.g., Kollman et al. (1968, 1975) and Niemz et al. (2023). Some parts of the 
literature that are oriented towards hardwoods focus on North American wood 
species. For example, Bodig and Jayne (1982), present various mechanical prop-
erties of both hardwoods and softwoods, however, all are species native to North 
America. Some mechanical properties for both silver birch and Norway spruce 
can be found in the work of Hearmon (1961) in addition to other hardwood and 
softwood species. The elastic parameters of different wood species were studied 
by Dahl (2009), where a complete set of elastic parameters for Norway spruce is 
presented, based on the findings from different sources. Heräjärvi (2004) stud-
ied the static bending properties of Finnish birch wood, which were examined 
together with their dependency on the density. In addition, the possibilities of 
utilizing birch in engineered wood products, such as glued- and cross laminated 
timber, have been evaluated by e.g., Jeitler et  al. (2016) and Obernosterer and 
Jeitler (2020), and the results were found promising. Determination of mechani-
cal parameters for birch plywood has been carried out by Wang et  al. (2022a, 
2022b). In addition, an extensive experimental study on bending strength and 
stiffness of birch timber boards has been carried out by Lemke et al. (2023).

Collins and Fink (2022) studied the tensile strength parallel to grain of birch 
on small-scale specimens. Sixty planks were initially sawn from 30 different 
trees, from which 70 smaller timber boards were acquired. Defect-free parts 
could then be identified from the 70 timber boards. These defect-free parts were 
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then used for manufacturing small-scale specimens, which were designed as dog 
bone shaped specimens for determining the ultimate tensile strength.

Fracture behavior of wood

In addition to the elastic behavior of wood-based structures, the behavior at failure, 
often characterized by fracture in wood, is of particular importance to ensure struc-
tural safety. When considering the fracture characteristics of materials, these are 
often evaluated in terms of the specific fracture energy Gf , i.e., the energy required 
to create a unit area of traction-free surface. Although the specific fracture energy is 
very influential on the fracture behavior of solids, it is not the only governing factor. 
When speaking of fracture, the material brittleness is a commonly used term. The 
material brittleness is not only governed by the specific fracture energy, Gf , but also 
by the stiffness, E, and the ultimate strength, f, of the material. The material brittle-
ness is often characterized with the so called characteristic length. The characteristic 
length, denoted lch , is determined according to lch =

EGf

f 2
.

Evaluating the fracture energy is not a new endeavour, and different experimental 
methods have been developed for this very purpose. Such methods were originally 
developed and utilized for determining the fracture energy of steel and concrete 
but have with time been adopted and modified for testing wood. Some examples of 
such methods are the double cantilever beam (DCB), the tapered double cantilever 
beam (TDCB), compact tension (CT) specimens and the single-edge-notched beam 
(SENB) loaded in three-point-bending. All methods have their respective strengths 
and weaknesses, but in general, the SENB is simple and convenient to use, since it 
does not require any monitoring of the crack-opening width (de Moura and Dourado 
2018).

Wood is often considered a quasi-brittle material, in contrast to perfectly brittle 
materials, such as glass (Smith et al. 2003). Usually, the peak load for quasi-brittle 
materials is preceded by a non-linear behavior. However, unlike brittle materials, 
which usually experience sudden catastrophic failure, quasi-brittle materials experi-
ence toughening mechanisms in the fracture process zone (FPZ), e.g., micro-crack-
ing and fiber-bridging in wood. As a consequence, quasi-brittle materials usually 
experience strain-softening behavior. As such, to accurately evaluate the fracture 
energy of wood using non-linear fracture mechanics, it is important that stable crack 
propagation is achieved during experimental testing. Here, stable crack propagation 
refers to the ability to accurately capture the strain-softening response of the speci-
mens used in the previously mentioned experimental methods (DCB, TDCB, CT 
and SENB specimens), without experiencing sudden large load-drops. A method 
suitable for this is described in the standard NT BUILD 422 (Nordtest 1993). The 
standard, which specifies a method for determining the specific fracture energy in 
wood in tension perpendicular to grain, is named the Nordtest method, and was orig-
inally proposed by Gustafsson (1988). It is a powerful method in the sense that only 
the applied force and displacement of a SENB specimen have to be recorded. In 
addition, the Nordtest method works well for sufficiently small wooden specimens, 
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since this ensures that the only source of energy dissipation is the creation of a 
crack. For smaller specimens, the fracture process zone can be quite large in com-
parisons to the absolute specimen size. Under such conditions, methods based on 
linear elastic fracture mechanics, such as the R-curve concept, break down, and are 
not feasible for evaluation of the specific fracture energy.

Wood, which usually is considered an orthotropic material, is often character-
ized by its three principal directions; L , the longitudinal direction of the fibers, R , 
the radial direction and T , the tangential direction, with respect to the growth rings. 
Consequently, six different crack propagation systems can be identified. These sys-
tems are denoted LR, RL, TL, LT, RT and TR, where the first letter denotes the 
direction normal to the crack plane and the second letter denotes the crack propaga-
tion direction, see Fig. 1. A crack in any of the first four systems is generally gov-
erned by cell fracture, whereas the latter two are governed by cell separation (Con-
rad et al. 2003).

In practice, wooden structural elements often have to be modified with respect 
to their geometry, by for example introducing holes or notches. Such geometrical 
modifications typically introduce stresses that act perpendicular to the fiber direc-
tion (Thelandersson and Larsen 2003), creating a risk of fracture occurring along 
the grain, i.e., fracture in the TL or RL-propagation system. To better understand the 
effect of utilizing birch in such applications, it is important to characterize the frac-
ture behavior in these crack propagation systems. Previous research indicates that 
the TL-direction generally seems to have a lower fracture energy for several wood 
species (Reiterer et al. 2002), and as such, the TL-direction is the focus of the pre-
sent work.

The fracture behavior of Norway spruce has previously been evaluated by Ostap-
ska and Malo (2020) and Reiterer et al. (2002). In both works, the fracture behavior 
was evaluated by means of a wedge splitting test, from which the fracture energy 
and the stress intensity factor were determined. The fracture energy in the TL-direc-
tion was determined by Reiterer et al. (2002), Reiterer and Stanzl-Tschegg (2002) 
and Dourado et al. (2015), using SENB specimens. In addition, the fracture behavior 
of both Norway spruce and birch was evaluated by Tukiainen and Hughes (2013, 
2016). Forsman et al. (2021) evaluated the fracture energy of birch and spruce in the 
TL-direction by means of the Nordtest method. In the Nordtest method, a rectangu-
lar fracture area is prescribed, but Forsman et al. (2021) used a triangular fracture 
area to achieve sufficient stability of the load–displacement curve during experimen-
tal testing. Numerous studies have been conducted with regards to how a triangular 
fracture area affects the fracture toughness in testing of materials such as metals, 

Fig. 1  Different crack propagation systems in wood. The first letter denotes the direction normal to the 
crack plane, and the second the direction of crack propagation
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composites and ceramics (Dlouhý and Boccacini 2001; Sheikh et al. 2015). How-
ever, to the author’s best knowledge, comparisons between a rectangular and trian-
gular fracture area have not been carried out for the materials in the present work; 
spruce and birch.

In Eurocode 5 (EN 2004), a few design criteria are based on concepts from frac-
ture mechanics, although this is not explicitly stated in the code. One example is 
the design criterion with respect to splitting for beams with connections loaded per-
pendicular to grain. The design criterion employs a single material characteristic 
value regardless of strength class and wood species. Consequently, if birch would be 
used to a greater extent for structural applications, its fracture behavior and fracture 
energy should be considered, and different standardized values should potentially be 
adopted to ensure a material-efficient design practice.

Establishing mechanical parameters, such as the fracture energy, is also impor-
tant in the field of numerical simulations. It is well-known that accurate material 
characteristics are crucial to be able to achieve accurate numerical models which 
can produce reliable results. Determining mechanical parameters on the clearwood 
or small-scale specimen level, and then using said parameters for simulations at 
the structural level is a common approach in engineering science. As such, if the 
fracture behavior could be established on the clearwood level, for birch, this behav-
ior could then be utilized at a structural level in numerical models of load-bearing 
applications, to evaluate the effect of using birch. Such numerical models often, in 
turn, serve as a base for development of design criteria, and it is thus of great impor-
tance to establish representative input parameters to said models.

Aim and objective

Accelerating the use of hardwoods, particularly birch, in the construction industry 
can provide both structural and environmental benefits, such as enhanced biodiver-
sity in forestry. However, to increase the use of birch in structural applications, its 
mechanical properties must be well understood.

The primary aim of the present paper is to further develop the understanding of 
the fracture behavior of birch, using the Nordtest method to evaluate the specific 
fracture energy. A secondary aim is to assess the difference in evaluated fracture 
energy when using different geometries for the fracture surfaces—herein a rectangu-
lar and a triangular fracture area. With previous work indicating increased material 
brittleness in birch, compared to spruce, modifications to the experimental method 
might be needed to achieve a stable post-peak behavior of the load–displacement 
response, which is crucial for reliable evaluation of test results. In turn, the present 
work could lead to a better understanding of the fracture behavior of birch, which 
could aid in optimizing design processes where birch is utilized.

The remainder of the paper is structured as follows. Section  “Materials and 
methods” introduces the experimental method used for evaluating the fracture 
energy, the tested materials, a description of the post-processing of the experi-
mental data, and lastly a brief description of the numerical modeling approach 
applied. Section  “Results and discussion” presents the results, together with a 
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discussion. Lastly, in Section  “Conclusions and outlook”, conclusions and sug-
gestions for further studies are presented.

Materials and methods

Evaluation of specific fracture energy

In the Nordtest method, a wood beam is loaded in three-point-bending until fail-
ure, see Figs. 2 and 3. The beam is assembled from three parts; two identical lat-
eral pieces and one middle piece. In the middle piece, a notch is sawn just before 
testing, to ensure stability and crack-initiation at the mid-section of the beam. The 
lateral pieces are oriented with their fiber direction in the beam’s longitudinal 
direction, and the middle piece is oriented to achieve the desired crack propaga-
tion system. In the present work, this corresponds to the TL-propagation system, 
see Fig. 1. The beam is loaded in a displacement controlled setting and the load, 
P, and the corresponding displacement, u, are recorded. The aim is to capture the 
complete load versus displacement response, including the descending part after 
the peak load has been reached, until zero load at complete failure of the speci-
men. The specific fracture energy of the specimen can then be calculated as fol-
lows (Nordtest 1993):

Fig. 2  Schematic two-dimensional illustration of the Nordtest set-up. The beam depth is equal to d and h
c
 

denotes the ligament length

Fig. 3  Exploded view of the SENB specimen. Dimensions according to Fig. 2
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where

and mtot is the mass of the test specimen and mprism is the mass of the steel prism on 
top of the beam, see Fig. 3. W equals the total work done to fracture the specimen, 
i.e., the area under the load–displacement curve. Ac is the fracture area of the speci-
men, which is different for the rectangular and triangular fracture surfaces, respec-
tively, see Fig. 4. u0 is the load-point displacement at complete failure, and g is the 
gravitational acceleration.

Experimental testing

SENB specimens

Two wood species, spruce and birch, and two different geometries of the fracture 
area were used in the four test series of this study, see Tables 1 and 2. The different 
geometries of the fracture surfaces are illustrated in Fig. 4. The triangular fracture 
area has a ligament length, hc , of 10 mm, whereas the rectangular fracture area has a 
ligament length of 8 mm. In the Nordtest standard, the beam height, d, is prescribed 
to 60 mm. However, in the present work a beam height of d = 20 mm was adopted 
for two reasons: (i) the raw material used for creating the birch specimen did not 

(1)Gf =
W + mgu0

Ac

(2)m = 5∕6 ⋅ mtot + 2 ⋅ mprism

Fig. 4  The two different fracture surfaces used in the present work

Table 1  Spruce test series Spruce S43 TS43

No. of specimens 20 19

Table 2  No. of birch specimens from each birch timber piece

Birch B02 B03 B04 B05 B06 TB08 TB09 TB10 TB11

No. of specimens 5 5 5 2 4 4 7 5 4
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allow for larger dimensions and (ii) to improve post-peak stability and thus ensuring 
proper evaluation of the fracture energy. A smaller specimen entails a larger rela-
tive size of the FPZ in comparison to the specimen size, in turn leading to a more 
ductile behavior during testing. In addition, it has previously been shown by Persson 
et al. (1993) that, for larger specimen sizes, the effect of plastic dissipation affects 
the evaluated fracture energy. However, for a sufficiently small specimen size, the 
plastic dissipation becomes negligible.

The specimens made of Norway spruce were manufactured from structural tim-
ber of strength class C24. Timber boards of nominal size 45 × 90 mm2 were initially 
planed and sawn length-wise into sticks with a cross-sectional area of 20 × 20 mm2 . 
The sticks with the growth-ring orientations most appropriate for evaluating the 
fracture energy in the TL-direction were further used for creating the middle pieces 
for the SENB specimens, whereas the remaining sticks were utilized to create the 
lateral pieces. Lateral pieces of spruce were used for the spruce series as well as for 
the birch series. The lateral pieces were sawn to nominal lengths of 60 mm and the 
middle pieces were sawn into cubes, with nominal dimensions of 20 × 20 × 20 mm3.

In Table 1, S and TS denote spruce specimens with a rectangular and triangular 
fracture area, respectively. Initially, four different spruce timber boards were planed 
and split into nine sticks in total. The four boards were identified by the numbers 
1–4, and the sticks within each board by the numbers 1–3. As such, all spruce speci-
mens were extracted from the same stick, from the same timber board—in this case 
the third stick from the fourth timber board (thus the names S43 and TS43).

The material used for the birch specimens originated from Finland, where its ten-
sile strength in the direction of the grain previously had been experimentally tested 
using dog bone specimens (Collins and Fink 2022). The broken specimens were 
acquired from Aalto University where the pieces in the best condition after testing 
were chosen. The pieces with the most optimal fiber orientation for testing in a TL-
orientation, see Fig. 1, were selected for the Nordtest specimens in the present work. 
It should be noted that the specimens were extracted from the outer parts of the 
dog bone specimens, see Fig. 5. These outer parts have been clamped, but free from 
large stresses in comparison to the middle-section of the dog bone specimens.

Due to dimensional limitations, 20 specimens could not be acquired from a single 
dog bone specimen. Instead, between two and seven middle pieces for the SENB 
specimens according to Fig.  3 could be extracted from each dog bone specimen. 

Fig. 5  Schematic illustration of the dog bone specimens and where the material tested in the pre-
sent work was extracted from. After sawing/planing, birch specimens were only created from the areas 
marked by dashed red squares (color figure online)
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Consequently, one series of birch specimens included birch wood from four to five 
different dog bone specimens. The number of specimens acquired from each dog 
bone specimen is shown in Table 2. In this table, TB denotes a triangular fracture 
area and B a rectangular. Due to manufacturing problems, specimens B01 and B07 
were unfit for further processing, and they were excluded from the study. In addi-
tion, one middle piece was excluded from each of the test series TS43 and TB10 due 
to erroneous notch preparation. In total, 82 specimens were created and testing was 
carried out on 80 specimens. In all other aspects, the approach for manufacturing the 
birch middle pieces was the same as for spruce; the pieces were planed into sticks 
with a nominal cross-sectional dimension of 20 × 20 mm2 and then sawn into cubes 
with nominal dimensions of 20 × 20 × 20 mm3 , cf. Figure 3.

All pieces, spruce and birch, were conditioned in a climate chamber with a rela-
tive humidity of 60% and a temperature of 20 ± 0.2 degrees Celsius until the change 
in weight was less than 0.1 g over 24 h. The parts were glued together with a com-
mercial PVAc wood adhesive, and again conditioned in the same climate chamber. 
The dimensions and the weight of each birch specimen were determined to the 
nearest 0.1 mm and 0.1 g, respectively, and again conditioned until less than 0.1 g 
change in weight was observed over 24 h. Before testing, the positions for the sup-
ports were marked on all specimens to ensure repeatability of the test set-up to the 
greatest extent possible. When the specimens had been marked, they were placed in 
a ziplock bag in the climate room and taken to a small band-saw, where the notches 
were sawn. The band-saw had a blade with a measured thickness of 0.54  mm. 
Directly after sawing the notch, each specimen was placed back inside the ziplock 
bag.

To ensure the nominal notch geometries, special jigs were used. For the triangu-
lar notch, a jig which enabled the correct orientation of the specimen during cutting 
was used. As such, the first cut was made in this jig, followed by a 90-degree rota-
tion of the specimen, followed by a second cut, creating the triangular notch geom-
etry. In addition, an attached wood piece behind the saw blade was used, ensuring 
the intended nominal saw cut depth into the specimens.

Density and moisture content

The density was evaluated by measuring the dimensions and the weight of all speci-
mens. All birch pieces were weighed before, during and after conditioning in the cli-
mate chamber, whereas the complete set of spruce pieces was weighed only before 
conditioning. A smaller set of the spruce pieces was then weighed during and after 
conditioning, to ensure moisture content equilibrium.

The moisture content (MC) was determined on specimens cut from the mid-
dle pieces, after testing. The oven drying method was used, with a temperature of 
105 ◦C . The mean moisture content for each series is shown in Table 3.
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Testing procedure

The experimental testing of the 80 specimens was carried out in batches of five to 
ten specimens. The specimens were loaded in a displacement controlled manner in a 
MTS-machine, see Fig. 6.

During the testing of the specimens, a load cell with a capacity of 500 N was uti-
lized. A total displacement of 5 mm was applied to the spruce specimens, whereas 
7 mm was applied to the birch specimens. The rate of loading was set to a constant 
0.75 mm/min, which resulted in the peak load being reached after roughly 90 s, and 
a total test duration of 400–600 s.

Due to the horizontal displacement of the beam at the roller support, which 
increases with the vertical displacement, some specimens experienced downfall 
from the test set-up before reaching the full prescribed displacement. To ensure that 
they were still comparable with respect to their fracture energy, the difference in 
fracture energy between the downfall specimens and the fully displaced specimens 
was examined; the difference was found to be negligible.

Table 3  Mean measured density and moisture content of the four test series

Coefficient of variation in parenthesis

S43 TS43 B TB

� (kg∕m3) 397.4 (0.033) 392.2 (0.015) 690.7 (0.019) 630.4 (0.074)
MC (%) 14.2 (0.019) 14.5 (0.013) 11.4 (0.034) 12.5 (0.012)

Fig. 6  Experimental test set-up
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Post‑processing of experimental data

Load–displacement curves were recorded with a sampling frequency of 128 Hz. Due 
to the high sampling rate, a sensitivity study on the influence of sampling frequency 
on the estimated fracture energy was carried out. This included the use of sampling 
frequencies from 0.25 to 128 Hz in the evaluation of fracture energy. It was found 
that a sampling frequency of 1 Hz was sufficient, and thus this frequency of included 
data points was used for the further post-processing of the recorded data.

Determination of fracture surface area

From Eq. 1, it is obvious that the area of the fracture surface is decisive in calculat-
ing the fracture energy. As such, it is of interest to determine the fracture area of 
each specimen with a sufficiently accurate approach. The area of the fracture surface 
was measured after the tests. With respect to the specimens that experienced down-
fall, explained in the previous section, these specimens had cracks that had propa-
gated enough for the specimens to still be considered completely fractured, having 
a negligible ligament length left, and a low remaining load left (1–2% of the peak 
load). In the present work, the fracture area was measured with the program GNU 
Image Processing Program (GIMP) (The GIMP Development Team 2019). Initially, 
photos were captured of all fracture surfaces together with a ruler, for scale. The pic-
tures were then imported into GIMP, and with the histogram function, the number 
of pixels in a certain selected area could be determined. By scaling the number of 
pixels to the ruler, the specimen fracture area could be determined. In Table 4, the 
nominal and mean measured areas are shown for all four series. As can be seen, the 
average area is fairly close to the nominal area for the two spruce series, however, 
the deviation is larger for the two birch series. Due to this, all analyses were carried 
out with respect to the measured area, Areal , to allow for proper evaluation of the 
fracture energy.

Evaluation of stability

Currently, there is no method in the Nordtest standard for evaluating the stability. 
In this paper, the method proposed by Forsman et al. (2021) has been utilized. The 
method defined a load drop parameter, LC , based on the magnitude of the largest 
load drop in relation to the maximum load:

Table 4  Nominal and mean 
measured fracture area 
(measured with GIMP) for the 
different test series

Coefficient of variation in parenthesis

A
nom

(mm
2) A

real
(mm

2)

Spruce-rectangular 160 (−) 162.3 (0.036)
Spruce-triangular 100 (−) 100.1 (0.035)
Birch-rectangular 160 (−) 174.3 (0.075)
Birch-triangular 100 (−) 115.7 (0.069)
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In Eq. 3, Pi and Pi+1 denote two subsequently recorded load data points, and Pmax 
denotes the maximum load recorded. An arbitrary limit level of load-drop, LC, can 
be decided (e.g., 5, 10, 15, 20%) defining all curves exceeding this limit as being 
unstable. It is important to note that this method does not necessarily eliminate the 
arbitrariness regarding the definition of stability, however, to some extent it makes 
it quantifiable. Table 5 presents an overview of the distribution of load-drops found.

Load–displacement curves

An example of a recorded load–displacement curve is shown in Fig.  7. From the 
unprocessed load–displacement curves, two problems are evident. Firstly, the curve 
does not start with an initial load and displacement equal to zero, due to the fact 
that the recording of data is initiated before the beam actually is in contact with the 
loading equipment that applies the force. Secondly, it is apparent that some non-
linearities occur at the onset of loading when the beam is establishing contact with 
the prism and the supports. To simplify the comparison between different tests, and 
between tests and numerical simulations, the initial non-linear part was removed and 
all curves were modified such that both the initial load and displacement were equal 
to 0.

For each curve, the non-linearity was dealt with by conducting successive linear 
regressions between two points. The distance between the two points was set to 10% 
of the maximum load, for each curve. For each such 10% interval, the coefficient of 

(3)LC = |Pi − Pi+1|∕Pmax × 100

Table 5  No. of specimens experiencing differently sized load-drops

The analysis was carried out based on a sample frequency of 1 Hz

LC ≤ 5% 5% < LC ≤ 10% 10% < LC ≤ 15% LC > 15% Total

S 7 11 2 0 21
TS 5 12 1 1 20
B 17 3 0 0 20
TB 17 4 0 0 19

Fig. 7  Schematic example of 
a recorded load–displacement 
curve with illustration of how 
the displacement increases with 
zero load until contact is initi-
ated (1) and nonlinearities that 
occur after initial contact (2)
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determination, R2 , was determined. The interval with the maximum R2-value was 
chosen to represent the actual elastic stiffness of the specimen. Any point on the 
curve prior to this interval was replaced with a point coinciding with this stiffness. 
The value of the displacement at the intersection of this straight line and the x-axis 
could then be determined and subtracted from all recorded displacement values. 
With this methodology, the initial non-linear part of the curves becomes linear and 
all curves originate at (0,0). The effect on the evaluated fracture energy by using this 
approach to modify the curves was in most cases less than 1%, compared to evaluat-
ing the fracture energy, Gf , with the unprocessed data.

Numerical modeling

The calculation model used for the numerical simulations of the experimental Nord-
test set-up is schematically shown in Fig. 8. Two-dimensional plane stress conditions 
were assumed and symmetry was utilized in the beams’ middle-section, i.e., at the 
pre-defined crack path. The pre-defined crack path was modeled as a cohesive zone 
with non-linear springs, where the non-linear springs were modelled with a strain-
softening behavior. The non-linear springs had an initial length of zero and were 
in their left-most degree of freedom (dof) connected to the beam, with the other 
node connected to the ground, using ’SPRING1’ in the commercial FE-software 
ABAQUS (Dassault 2019). The springs could only transfer force in the horizontal 
direction. Two-dimensional, linear, plane stress elements (CPS3) were used, with an 
element size of 0.25 mm for the middle piece, and 1 mm for the lateral piece.

Mechanical parameters

The elastic parameters of spruce and birch have not been tested experimentally in 
the present work, and instead values were collected from the literature. The elastic 
parameters collected for birch were acquired from the works of Dinwoodie (2002) 

Fig. 8  Schematic illustration of the calculation model of the symmetric half of the SENB specimen (left) 
and close-up of the non-linear springs (right), with an initial length of zero
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and are presented in Table  6 together with the corresponding values for spruce. 
The values used for spruce are from Dahl (2009), where mechanical parameters for 
Norway spruce were compiled from a number of sources. For the tensile strength 
perpendicular to the grain, ft , a value of 7 MPa was used for birch, acquired from 
Kollman et al. (1968), and a value of 3 MPa for spruce (Danielsson 2013). These 
values were used as a starting point for the numerical simulations, but modified as 
needed to fit the elastic part of the load displacement curve, see Section “Results 
and discussion”.

A generic linear strain-softening behavior is shown in Fig. 9. It should be noted 
that the displacement value �

1
 should theoretically equal 0, i.e., no deformation in 

the FPZ occurs until the tensile strength, ft , has been reached. However, this is com-
plicated in practice due to issues with convergence, and instead, a high initial stiff-
ness, kinit , resulting in negligible elastic deformation at maximum stress is chosen. 
For a sufficiently high initial stiffness, the global load–displacement behavior is not 
affected. Here, a stiffness of 5 ⋅ 1011 Pa/m was chosen after carrying out a sensitiv-
ity study with respect to the initial stiffness, see Section “Effect of initial stiffness 
and element size”. The springs were modelled as ten times stiffer in compression 
compared to tension. The fracture energy for both wood species was acquired from 
the present work. Based on these parameters, linear strain-softening relations could 
be established for spruce and birch. The parameter �1 , was determined according to

and the parameter �2 according to

(4)�1 =
ft

kinit

Table 6  Elastic parameters and 
tensile strength perpendicular 
to grain for spruce and birch, 
respectively

Moduli and tensile strength in MPa, dimensionless Poisson’s ratios

E
L

E
T

�
LT

G
LT

f
t

Spruce 10,991 435 0.48 682 3
Birch 16,300 620 0.51 910 7

Fig. 9  Schematic illustration of 
a cohesive linear softening law 
used for simulating quasi-brittle 
fracture. Note that the figure is 
not drawn to scale
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The strain-softening behavior of spruce has been determined before to some 
extent (Dourado et  al. 2015, 2008; Stanzl-Tschegg et  al. 1995). However, to the 
authors best knowledge, the literature does not contain any work that has determined 
the strain-softening behavior of birch. Consequently, the same shape of the strain-
softening behavior of spruce has been utilized, but instead scaled with the tensile 
strength and fracture energy of birch.

The strain-softening behavior is usually expressed as a stress-displacement rela-
tion, see Fig. 9. As such, since the springs of the FE-model carry a force, and not a 
stress, the stress-displacement relation has to be converted to a force-displacement 
relation. Conveniently, this can be carried out by the relation

where � is the tensile stress perpendicular to the grain, Fspring is the force in the 
spring, and Aspring its tributary area. For the model with a rectangular fracture area, 
all springs had the same tributary area, except the top- and bottom-springs, which 
had half the tributary area of the other springs. For the specimens with a triangular 
fracture area, the tributary area was different for each spring, due to the geometry 
of the notch, resulting in a linear variation of tributary area along the height of the 
fracture plane. The initial stiffness, kinit , was not modified to account for the varying 
width of the triangular fracture surface. This is motivated since kinit anyhow should 
be regarded as infinitely stiff.

(5)�2 =
2Gf

ft

(6)Fspring = �Aspring

Fig. 10  Relative error between input fracture energy and output fracture energy evaluated from external 
work in the FE-model for a different element sizes in the middle piece, and, b different values of the ini-
tial stiffness k

init
 for the medium element size
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Effect of initial stiffness and element size

To evaluate proper initial stiffness, kinit and element size, a convergence study was 
carried out with regard to these parameters. The element sizes were 0.5 mm (large), 
0.25 mm (medium) and 0.125 mm (small). The initial stiffness was tested for val-
ues of 5 × 1011 Pa/m, 5 × 1012 Pa/m, and 5 × 1013 Pa/m. The convergence study was 
carried out using the mechanical parameters for spruce presented in Table 6. The 
effect of the element size is shown in Fig. 10a, where the relative difference between 
the input fracture energy and the output fracture energy evaluated from the external 
work was determined for three different levels of mesh refinement and kinit . As is 
shown, the error reduces drastically from the large to medium element size, but next 
to nothing between the medium and small element size. As such, the medium mesh 
was deemed sufficient. As can be seen in Fig. 10b, the different values of initial stiff-
ness, with the medium element size, did not markedly affect the same relative differ-
ence between input fracture energy and external work. Consequently, a stiffness of 
5 ⋅ 1011 Pa/m was deemed sufficient for subsequent analyses.

Results and discussion

Experimental results

In the present work, the Nordtest method was modified by introducing a triangular 
fracture area, in addition to the normally employed rectangular fracture area. The 
reason for this was due to previous work implying increased material brittleness in 
birch (Forsman et al. 2021), in turn resulting in reduced stability of the post-peak 
behavior. The load–displacement curves acquired from the experimental testing 
are shown in Fig. 11, together with a load–displacement curve from the numerical 
simulations. It is evident that the birch specimens showed a more stable post-peak 
behavior than the spruce specimens, see Table 5. Out of the 39 spruce specimens, 
27 specimens had a maximum load-drop larger than 5%, whereas for the birch speci-
mens the same number was only seven. No birch specimens, and only four spruce 
specimens, had a maximum load-drop larger than 10%. In addition, no apparent dif-
ference in stability could be identified between the rectangular and triangular frac-
ture area, for either species. However, this might be a direct consequence of the size 
of the specimen, see e.g., Karihaloo (1995), since for sufficiently small specimens, 
post-peak instability should not be an issue.

The fracture energy of the spruce specimens in the present work was evaluated 
to 188 J/m2 for the S43-series and 257 J/m2 for the TS43-series, see Table 7. The 
individual results for each specimen are shown in Online Resource 1. The results 
are in accordance with previous findings in the literature. For example, the fracture 
energy of spruce, conditioned to a moisture content of 11–13%, was evaluated by 
means of linear elastic fracture mechanics to 150  J/m2 by Dourado et  al. (2015). 
Similiary, it was evaluated to 150 J/m2 , at a moisture content of 12–13%, by Stanzl-
Tschegg et al. (1995), by means of a wedge splitting method. In another study (Rei-
terer et al. 2002), the fracture energy for spruce was evaluated to a slightly higher 
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value; 213  J/m2 with a moisture content of around 12%. Slightly higher values of 
the fracture energy for spruce has been established by e.g., Riberholt et al. (1992) 
and Stefansson (2001), where a fracture energy of 298 and 283 J/m2 was acquired, 
respectively.

A clear outlier can be identified for the S43 series. This outlier corresponds to 
specimen S4320, (see Online Resource 1), and did have a slight deviation in fiber 
orientation compared to the other specimens. It is however difficult to assess the 

Fig. 11  Numerical load–displacement curves plotted in conjunction to experimental load–displacement 
curves. Legend valid for all plots

Table 7  Evaluated fracture 
energies for the different test 
series

All fracture energies are evaluated with the measured fracture area, 
as described in Section  “Experimental testing”. Fracture energy in 
J/m2 . Coefficient of variation in parenthesis

Rectangular Triangular All

Spruce 188 (11%) 257 (14%) 222 (20%)
Birch 700 (17%) 611 (19%) 657 (19%)
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exact reason for this deviation, but one explanation could be that there was a nearby 
knot in the timber board, in turn causing deviation in the fibers.

The fracture energies for the birch series, B and TB, were evaluated to 700 and 
611 J/m2 , respectively, see Table 7. Forsman et al. (2021) determined the fracture 
energy of birch for five different series, each conditioned in different relative humid-
ity. Four out of five series were either very wet or very dry, and as such not compara-
ble to the present work. However, one series had a moisture content of 13.6%, which 
is close to the MC in the present work. For this moisture content, the fracture energy 
was evaluated to 460 J/m2 . Compared to this, the values acquired in the present work 
are markedly higher. It should however be noted, a larger quantity of specimens has 
been evaluated in the present work. In addition, the discrepancy between these val-
ues could in part be explained by the natural variation of mechanical properties in 
wood.

Effect of density and moisture content

The density in relation to the fracture energy for all specimens, both spruce and 
birch, is shown in Fig.  12. The density of the spruce specimens showed a small 
variation, see Table  3. The coefficient of variation in specific fracture energy for 
the S43- and TS43-series was 3.3% and 1.5%, respectively. This can most likely 
be explained by the fact that all spruce specimens originated from the same timber 

Fig. 12  Fracture energy in relation to density for all specimens
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board. As such, all spruce specimens were extracted in a perfectly sequential order 
from the same timber piece, with the exception of the exclusion of specimens con-
taining knots and/or other imperfections. For the two spruce series, the only large 
deviation in density was from the previously mentioned outlier, S4320, which did 
have a quite high density compared to the other specimens (see Fig. 12).

The birch specimens were, in contrast to the spruce specimens, created from nine 
different timber pieces. The B-series was created from four timber pieces, and the 
TB-series from five timber pieces. However, the B-series still does display a very 
low CoV in density, only 1.9%. In comparison, the TB-series displays the largest 
CoV in density of all series, at 8.9%. This makes it difficult to draw any conclusions 
with regards to how the density and the fracture energy are correlated, since only 
one series had a larger variation in density. As a comparison, the work by Forsman 
et al. (2021) evaluated the fracture energy with the same method as in the present 
work. In comparison, the mean density of birch was evaluated to 647 kg/m3 , which 
is similar to the density for all specimens in the present work (660 kg/m3).

In addition to density, the moisture content (MC) was evaluated for all specimens, 
since previous work (Reiterer et  al. 2002; Tukiainen and Hughes 2016; Forsman 
et al. 2021) indicates that there is a dependency between the MC and the fracture 
energy. The relation between MC and fracture energy from the specimens in the pre-
sent work is shown in Fig. 13. The mean values of MC of the S43 and TS43-series 
were 14.2% and 14.5%, respectively. The previously mentioned outlier with regard 

Fig. 13  Fracture energy in relation to the moisture content for all specimens
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to density, S4320, was also a slight outlier with regard to moisture content. It did 
have the lowest moisture content of all specimens in the series S43. Both the S43 
and TS43-series showed a low variation in moisture content, as shown in Table 3. 
The B-series had a mean moisture content of 11.4% and the TB-series a mean mois-
ture content of 12.5%. The coefficient of variation for the B-series was almost as low 
as for the spruce series—3.4%, whereas for the TB-series it was lower than both of 
the two spruce series: 1.2%.

The dependency between moisture content and fracture energy seems in gen-
eral to be more pronounced for larger differences in moisture content. For a mois-
ture content in common structural applications, i.e., 8–16%, the change in fracture 
energy seems to be relatively small, based on previous research (Tukiainen and 
Hughes 2016; Forsman et al. 2021; Reiterer and Stanzl-Tschegg 2002). Hence, the 
small difference in moisture content between species should not affect the compari-
son in fracture energy between species.

Effect of notch geometry and fracture area

As is evident from Fig. 14 and Table 7, the effect of the notch geometry on the eval-
uated fracture energy is not systematic between spruce and birch specimens. For the 
spruce specimens, the triangular fracture area yields an increase in the mean value 
of the evaluated fracture energy, whereas for the birch specimens, the triangular 

Fig. 14  Evaluated fracture energy for the different test series
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fracture area instead yields a reduction. A factor that could influence this is poten-
tially the annual ring orientation.

The annual ring orientations for the two spruce series were not perfect. For the 
spruce specimens with a rectangular fracture area, an orientation very similar to a 
perfect TL-system was acquired. However, for the spruce specimens with a triangu-
lar fracture area, the deviation from a pure TL-system was roughly 17–18◦ . For the 
birch specimens, the deviation from a pure TL-system seemed to be smaller than for 
the spruce specimens, and no consistent effect on the fracture energy could be iden-
tified. However, identifying the annual ring orientation was somewhat more difficult 
for the birch specimens.

The fracture energy in the present work was not evaluated with the nominal area, 
but instead with the measured fracture area, Areal , as measured with GIMP, cf. Sec-
tion 2. As seen in Table 4, Areal , for the spruce specimens was fairly close to the 
nominal area. However, for the birch specimens, the deviation in mean of Areal , com-
pared to the nominal area, was much larger. In addition, the variation in Areal was 
higher for the birch specimens compared to the spruce specimens. This is likely an 
artefact from the manufacturing process. In addition, it should be noted, that the 
variation in Areal for the triangular fracture area (see Table 4), is higher for both the 
spruce and birch specimens, compared to the specimens with a rectangular fracture 
area, which might imply additional uncertainties when manufacturing the specimens 
with the triangular fracture area.

When manufacturing specimens with the triangular fracture area, the sawing 
of the triangular notch is the most crucial moment. Since two cuts are needed to 
create the triangular notch, several difficulties are introduced. After the first cut is 
made, the specimen is rotated 90◦ around its longitudinal axis, and cut a second 
time. If alignment, orientation and rotation is not executed with high precision, the 
second cut might not enter the specimen in the same plane as the first cut. As a 
consequence, multiple cracks could propagate instead of the intended single crack, 
possibly resulting in a greater value of the evaluated fracture energy. However, this 
does not seem to be a systematic error occurring in the present work; if it was, a sys-
tematic increase in evaluated fracture energy would likely have been acquired for the 
specimens with a triangular fracture area.

For both the spruce and birch specimens, a t-test showed a significant difference 
between the means of the fracture energy between the series with a triangular vs. 
rectangular fracture area. The p-value for the t-test between the two spruce series 
was 1.06 ⋅ 10−8 , implying a significant difference between the two series. For the 
birch-series the p-value was 0.02, still implying a difference in mean between the 
two series.

Experimental versus numerical load displacement curves

In addition to the experimental testing, a small set of simplified numerical simula-
tions was carried out in the present work, where the Young’s modulus in the tangen-
tial direction ( ET ) of the middle piece was manually fitted to ensure that the elastic 
region of the numerical load–displacement curves matched the experimental elastic 
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region well. ET was manually fitted to 1000, 620, 350 and 200  MPa, for the B-, 
TB, S-, and TS-series, respectively. The numerical load–displacement curves cor-
responding to these values of ET combined with the other mechanical parameters 
in Table 6 and the fracture energy in Table 7 are shown in Fig. 11. As can be seen, 
the numerical model is in reasonable agreement with the experimental load–dis-
placement curves, capturing also the influence of the shape of the fracture area. To 
achieve a well fitting elastic region for the specimens with a triangular fracture area, 
the tangential Young’s modulus has to be markedly lower compared to the speci-
mens with a rectangular fracture area. This is explained by the fact that the numeri-
cal model for the specimens with a triangular fracture area is based on the same 
2d-geometry as the specimens with a rectangular fracture area. Consequently, with-
out lowering the value of ET , the stiffness of the model with triangular fracture area 
is too high, especially close to the lower edge of the fracture area. As such, it is 
important to note that the simulations carried out in the present work, need further 
work, potentially by creating three dimensional models, or by modifying the two-
dimensional models in such a way that the stiffness of the specimens with a triangu-
lar fracture area is properly accounted for.

In addition, the peak load is slightly too low for all series except for the spruce 
specimens with a rectangular fracture area. This implies that the tensile strength val-
ues that have been adopted from the literature might be too conservative in compari-
son to the tensile strengths of the tested material, both for spruce and birch.

Conclusion and outlook

In the present work, the specific fracture energy for birch and spruce was evaluated 
by means of the Nordtest method. In addition, the effect of different notch geom-
etries on the evaluation of the specific fracture energy was studied. Following the 
previous discussion, the main conclusions of the work are:

• The specific fracture energy was evaluated to 221 J/m2 for the spruce specimens, 
and to 656 J/m2 for the birch specimens, averaged over all specimens of the 
respective species.

• When evaluating the stability of the tests in terms of the suggested load drop cri-
terion, the spruce specimens seem to be markedly more unstable compared to the 
birch specimens.

• An influence on evaluated fracture energy of the shape of the fracture area was 
found.

• With a low variation in density for three out of four test series, it is difficult to 
draw any conclusions with regards to how the density and fracture energy are 
correlated.

• For the specimen size adopted in the present work, the triangular fracture area 
was not necessary, sufficient stability could be achieved with a rectangular frac-
ture area.

• With what seems to be a marked increase in fracture energy for birch, compared 
to spruce, current design codes might need revision and rework to account for 
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this. In addition, the increase in fracture energy can potentially indicate higher 
load-carrying capacity in e.g., connections, or beams with notches or holes.

Since determining the specific fracture energy of birch still is a novel area, it would 
be beneficial to evaluate the fracture energy of birch grown in different geographical 
locations, but also in different parts of a single tree, to properly assess how much the 
fracture energy varies. In addition, studying the effect on the fracture energy from 
e.g., distance to pith and annual ring orientation would be interesting.

Future numerical work could also use the results of the experimental tests to 
determine the softening behavior of birch, with an optimization method. This could 
extend the use of the SENB method to not only determine the specific fracture 
energy, but also to determine the softening behavior. Since the softening behavior 
is partly governed by the tensile strength, a calibration of such models would also 
yield an estimation of the tensile strength of birch in tension perpendicular to grain.

In Section “Materials and methods”, it was mentioned that the effect of plastic 
dissipation on the evaluation of fracture energy is negligible for sufficiently small 
specimens. However, this effect has previously only been evaluated for specimens 
with a rectangular fracture area. It would be of interest to quantify this effect in the 
specimens with a triangular fracture area as well, since the plastic effects might be 
different due to the different specimen geometry.
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Abstract

Despite a recent increased interest in utilizing the hardwood birch in structural applications, knowledge

with respect to failure and fracture behaviour is still scarce. Failure and fracture behaviour need to be

well understood, in order to ensure a safe and material-efficient design practice. The fracture behaviour

is mainly governed by three material parameters: stiffness, strength and specific fracture energy. The

strength and the fracture energy also govern the softening behaviour, which describes how a material

absorbs energy as cracks propagate. In the present work, we characterize all three relevant fracture

parameters through a single experimental test by minimising different cost functions. Two popular

cost functions often used in finite element model updating (FEMU) are reformulated in the context of

maximum likelihood theory. It is shown that neither cost function can recover the variability found in

the experiments. However, the mean behaviour is recovered fairly well for both cost functions. This

study contributes with new knowledge with respect to the fracture behaviour of birch, which enables

further simulations of the behaviour of load-bearing structures at a larger, semi-structural, or structural

scale.
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1 Introduction

1.1 Fracture in wood

In recent years, the interest in utilizing birch in structural applications has been growing (Jonasson et al.,

2024b; Obernosterer et al., 2023; Wang et al., 2022a, 2022b). This is in part due to higher stiffness and

strength, compared to conventionally used wood species, such as Norway spruce. However, increased

stiffness and strength might be followed by increased material brittleness, which might markedly affect

the failure behaviour of load-bearing structures. Thus, if birch is to be utilised to a greater extent in

structural applications, the failure behaviour and the brittleness need to be well understood to ensure a

safe and material-efficient design practice.

Wood is a material which exhibits large variations in constitutive behaviour in different orienta-

tions, and as a consequence, the fracture behaviour can be rather complex. In general, the constitutive

behaviour of wood is described in terms of three principal directions: the fibre direction, denoted L,

the tangential direction, denoted T, and the radial direction, denoted R. Based on these directions, six

different crack propagation systems can be identified in wood: LR, RL, TL, LT, RT and TR. In these

systems, the first letter denotes the direction normal to the crack plane, whereas the second letter denotes

the direction of crack propagation. Cracks propagating in the TL- and RL-systems might occur when

tensile stresses arise perpendicular to the grain, which are common in beams with holes or notches, or

in wooden joints (Thelandersson & Larsen, 2003, Chap 7). To properly understand how such structural

solutions behave when utilizing birch instead of Norway spruce, the fracture behaviour needs to be well

understood.

The fracture behaviour of birch has not been exhaustively studied, but efforts have been made to

characterize it. For example, Tukiainen and Hughes (2013, 2016) carried out studies of the fracture

behaviour of birch in the RT and TR crack propagation systems. In addition, both Jonasson et al.

(2024a) and Forsman et al. (2021) used single-edge-notched beam (SENB) specimens to evaluate the

specific fracture energy of birch with the Nordtest method (Nordtest, 1993) for mode I loading in the

TL crack propagation system. In general, the conclusion seems to be that birch has a substantially

higher fracture energy compared to spruce. However, the fracture energy is not the only important

material parameter to consider; the stiffness and strength are also important in the context of fracture.

LR RL TL LT RT TR

LR

T

Figure 1: The six different crack propagation systems in wood.
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The characteristic length is a quantity that characterizes the ductility, i.e. the inverse of the brittleness,

according to:

lch =
EGf

f2
t

(1)

where E is the modulus of elasticity, Gf is specific the fracture energy and ft is the tensile strength. Here,

Equation 1 relates to the behaviour of the material in pure tension (mode I). To determine the stiffness

and tensile strength experimentally, a direct tension test can be carried out. To determine the fracture

energy, SENB specimens loaded in three-point-bending is a well-established experimental method. The

SENB method has been adapted for wood specifically in the so-called Nordtest method (Nordtest, 1993).

The Nordtest method is very convenient to use, mainly due to two factors: firstly, it only requires record-

ing of the displacement and the force, and secondly, it can be used for small specimens, without affecting

the evaluated fracture energy. Using smaller specimens is important to ensure stable crack propagation,

meaning that no snap-back behaviour or sudden load-drops occur in the force-displacement curves. Com-

paratively, the R-curve concept and similar methods based on linear elastic fracture mechanics (LEFM)

break down when the fracture process zone (FPZ) is large in comparison to the characteristic size of the

specimen, which violates the fundamental assumptions of LEFM. As such, methods based on LEFM are

not suitable for smaller quasi-brittle specimens which exhibit a large FPZ in relation to the specimen

size. This has previously been shown by e.g. Dourado et al. (2008). In addition, if larger specimens

would be used, enabling the use of LEFM theory, the evaluation of the fracture energy may be incorrect

due to plastic dissipation in the bulk material outside of the FPZ (Persson et al., 1993).

1.2 Finite element model updating

Finite element (FE) models play a crucial part in engineering sciences when it comes to understanding,

developing, calibrating, and validating material models. Calibration of numerical models after experi-

ments is an inverse problem (Aster et al., 2013, Chap 1), and when FE models are used the procedure is

commonly called ”finite element model updating” (FEMU) in the literature (Chen et al., 2024). FEMU

is most commonly based upon minimising some difference between the experimental and numerical re-

sponses, such as load-displacement curves or strain fields. The minimisation is often carried out with

mathematical optimisation procedures, such as the simplex method (Bondsman & Peplow, 2024; Ku-

necký et al., 2024), gradient-based methods, genetic algorithms (Dourado et al., 2008), particle swarms

(Mthembu et al., 2011) or Bayesian optimisation (BO) strategies (Do & Ohsaki, 2022). The latter is a

well-established method for optimizing expensive-to-evaluate cost functions, which generally is the case

for FEMU, where the FE model has to be continuously evaluated during the optimisation process. In

addition, several studies (Raviolo et al., 2023, 2024) have indicated that BO is a powerful optimisation
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procedure in the context of FEMU, requiring a relatively small amount of FE evaluations compared to

e.g. genetic algorithms.

Efforts to estimate constitutive and cohesive parameters in wood by inverse parameter estimation or

FEMU have been carried out for several decades, even though these names have not explicitly been used.

For example, Boström (1992) estimated the strain-softening behaviour in wood using methods of non-

linear fracture mechanics. He showed that the softening behaviour of Scots pine could be determined

directly from experimental tests, such as direct tension or direct shear tests, without the use of FE

models. Howver, this typically requires small specimen and a stiff testing machine.

More recent work on parameter estimation has been carried out by De Moura et al. (2008) and

Dourado et al. (2008, 2015), where an inverse problem was formulated to determine the cohesive law for

various wood species. By adopting an optimisation approach which minimises the difference between

the numerical and the experimental load-displacement curves through a genetic optimisation algorithm,

the optimal softening behaviour could be established. However, the obtained softening behaviour was

deterministic. For a material like wood, which exhibits large variability with respect to the constitutive

parameters, it would be beneficial if such variability could be captured by the optimisation procedure.

A similar approach was considered by Kunecký et al. (2024), where a multi-start simplex method

was used to minimise the integral of the absolute difference between the experimental and numerical

load-displacement curves to determine the softening parameters of spruce. A rather distinct drawback

with this method is the amount of FE calculations it required: more than 100 000. In cases where the

FE model is expensive to evaluate, it follows that the cost function is also expensive to evaluate. In

such circumstances, performing tens of thousands of function evaluations might prove unfeasible due to

computational demands.

1.3 Aim and objectives

It is clear that the increased stiffness and strength in birch might contribute to improvements in load-

bearing structures. However, to properly assess if such structures can be improved, it is quintessential

to properly understand the fracture behaviour. In the present work, we use FEMU in conjunction with

likelihood-based inference to estimate a non-deterministic set of fracture parameters for two European

wood species: Norway spruce and birch. Two commonly adopted force-based cost functions in FEMU

are reformulated based on the theory of likelihood inference. It is shown that neither of these two cost

functions can accurately recover the variance of the experimental load-displacement curves.
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2 Theoretical background

2.1 Bayesian optimisation

As outlined in the Introduction, Bayesian optimisation is a well-established method for optimizing cost

functions that are expensive to evaluate (Garnett, 2023), and has been utilised in a number of works to

establish constitutive behaviours in various settings. For example, Kuhn et al. (2022) determined material

parameters in small strain crystal plasticity using a Bayesian optimisation procedure. Karandikar et al.

(2022) estimated constitutive parameters in the Johnson-Cook flow stress model by using a modified

Bayesian optimisation procedure, and Do and Ohsaki (2022) used Bayesian optimisation to establish

constitutive parameters in cyclic elasto-plastic loading.

Bayesian optimisation can be viewed as a sequential optimisation algorithm, where an initial (po-

tentially empty) data-set, Di, is sequentially updated at each iteration. At each iteration i, the cost

function, denoted f(x), is sampled at a new point, xi, and the corresponding function value, yi, is

evaluated. The choice of which point to sample is made by combining the knowledge from all previous

iterations through a so-called acquisition function, α(x). The acquisition function is often constructed

based on a Gaussian process (GP), denoted g(x), which approximates the cost function. The sequential

procedure is continued until termination which in BO often is a max budget with respect to the total

number of iterations, denoted nmax. In Algorithm 1, the Bayesian optimisation procedure is conceptually

illustrated through a pseudo-code algorithm.

Algorithm 1 Pseudo-algorithm for Bayesian optimisation.

Input: f(x), Di, α(x), nmax, npre

Sample npre points xi, i = 1, . . . , npre

Create D =
⋃npre

i=1 {xi, f(xi)}
i← npre

while i < Nmax do
Use D to create GP approximation, g(x), and acquisition function α(x).
xi+1 ← argminα(x) ▷ Choose next point to sample based on acquisition function.
yi+1 ← f(xi+1) ▷ Evaluate cost function at next sample point.
D ← D ∪ {xi+1, yi+1} ▷ Update data-set.
i← i+ 1

end while

2.2 Gaussian process regression

A Gaussian process, g, is a stochastic process which is completely defined by its mean function and its

covariance function, according to

g ∼ GP(m(x), k(x,x′)) (2)
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where m(x) is the mean function and k(x,x′) is the covariance function. Here, x and x′ denote two

(potentially different) feature vectors in the feature space with ndim elements. In the general case, the

arguments to the covariance function may be a number of feature vectors collected in a matrix, X, such

that

X =

[
x1 x2 . . . xn

]T
(3)

HereX is a n×ndim matrix with one of the n feature vectors on each row. As such, the covariance function

k(X,X) evaluates the covariance for all combinations of rows in X resulting in an n×n covariance matrix

Σ where the element at location i, j is the covariance between feature vectors i and j or

k(X,X) = Σ (4)

k(xi,xj) = Σij (5)

Different types of covariance functions will be described later in this section.

A single observation of the process, denoted yi, may be distorted by independent and identically

distributed Gaussian noise, denoted ε:

yi = g(xi) + ϵ, ϵ ∼ N (0, σ2
n) (6)

An observation set, Di, thus consists of the set of an observed feature vector and the corresponding

observed function value, such that Di = {xi, yi}. All observed feature vectors may then be collected in

a matrix, denoted X, see Equation 3. The corresponding function values may be collected in a column

vector, denoted y:

y =

[
y1 y2 . . . yn

]T
(7)

The collection of feature vectors in X is called training points, and y is called training values. Further,

we assume that we have a set of feature vectors for which we wish to use the observations to infer their

corresponding function values. These feature vectors are collected in a matrix X∗, and denoted test

points. The unknown function values are collected in a column matrix, g∗, and denoted test values. The

test values are approximations of the true cost function, such that g∗ ≈ f(x∗). For simplicity, we will

assume that we only have a single test point, such that X∗ = x∗ is a single point, and g∗ = g(x∗) is

the corresponding function value. Assuming a prior mean of zero, the joint distribution of the Gaussian

process for both the training points and the single test point is:
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

y

g∗


 ∼ N


0,




Ky k(X,x∗)

k(X,x∗)T k(x∗,x∗)





 , Ky = k(X,X) + σ2

nI (8)

Here •T denotes the transpose of a matrix or vector. Ky is thus of dimension n×n, k(X,x∗) of dimension

n×1, and k(x∗,x∗) of dimension 1×1, i.e. scalar. Based on the joint Gaussian distribution, the posterior

Gaussian distribution for g∗ is:

g∗|X,y,x∗ ∼ N (µ(x∗), σ
2(x∗)) (9)

where

E[g∗|X,y,x∗] = µ(x∗) = k(X∗,X)K−1
y y (10a)

V[g∗|X,y,x∗] = σ2(x∗) = k(x∗,x∗)− k(x∗,X)K−1
y k(X,x∗) (10b)

The above expressions are valid for making predictions at a single point, but are also valid for multiple

points when x∗ is replaced with a matrix of feature vectors instead of a single feature vector.

The covariance function is commonly called the kernel. All stationary kernels may be expressed as a

function of some measure of distance between points and may be isotropic or anisotropic. For anisotropic

kernels, the measure of distance can be expressed as

r =
√
(x− x′)TA(x− x′) (11)

where A is a positive semi-definite matrix. If A is diagonal, the kernel is so-called axis-aligned, and the

distance is scaled by a length-scale in the direction of each axis, such that A = diag(l)−2. For isotropic

kernels, the length-scale is the same in every direction, such that A = l−2I.

Perhaps the most commonly used kernel is the squared-exponential (SE) or Gaussian kernel, which

may be expressed as a function of the distance r:

k(r) = σ2
v exp

(
−1

2

r2

ρ2

)
(12)

where σ2
v is the signal variance and ρ is a general length-scale parameter. In the following ρ has been

set to one since the length-scale already is included in A. The SE kernel is infinitely differentiable,

and thus results in an infinitely smooth process, and as such it might not be suitable to model physical

behaviour (Rasmussen & Williams, 2006, Chap 4). In addition, it can yield problems with singularities

when two observed points are very close to each other (Goulet, 2020, Chap 8). Singularities are however

not a problem in most cases, as long as the previously introduced Gaussian noise, ϵ, is employed in the
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construction of the posterior distribution.

Another popular choice of kernel is the Matérn family of kernels (Matérn, 1986), which can be modeled

with different levels of smoothness. The most general definition of a Matérn kernel is:

k(r) = σ2
v

21−ν

Γ(ν)

(√
2νr
)ν

Kν

(√
2νr
)

(13)

where ν is the so called smoothness parameter, Γ(ν) is the Gamma function and Kν is a modified

Bessel function of the second kind. The smoothness parameter describes how many times the kernel

is differentiable, and when ν → ∞, the previously described SE kernel is recovered. One of the most

common choices for the smoothness parameter is half integers, such that ν = k + 1
2 with k ∈ Z. By

choosing the smoothness parameter as a half integer, the Matérn kernel assumes a convenient polynomial

form, which in turn avoids the costly Bessel function. Rasmussen and Williams (2006, Chap 4) state

that two values of ν are of extra interest in practical applications, namely ν = 3
2 and ν = 5

2 , which yield

the following two forms of the Matérn kernel:

kν=3/2(r) = σ2
v(1 +

√
3r) exp(−

√
3r) (14a)

kν=5/2(r) = σ2
v(1 +

√
5r +

5

3
r2) exp(−

√
5r) (14b)

It is common to denote the noise parameters, σv and σn together with the length-scale parameters in

A as hyper-parameters and they are usually collected in a vector λ = [σv σn Akk]. The hyper-parameters

are determined by minimising the negative log likelihood of the Gaussian process, defined as

log p(y|X,λ) = −1

2
yTK−1

y y − 1

2
log |Ky| −

n

2
log 2π (15)

2.2.1 Acquisition function

As previously mentioned, Bayesian optimisation may be viewed as a sequential optimisation procedure,

which uses the current state of knowledge of the cost function to decide where to sample it next. The

choice of the next sampling point is in Bayesian optimisation often used interchangeably with the term

acquisition function. The most important role of the acquisition function is arguably to approximate the

true cost function and its uncertainty. In the present work we adopt the lower confidence bound (LCB)

acquisition function, which is formulated as

α(x∗) = µ(x∗)−
√

βσ(x∗) (16)

where µ(x∗) and σ(x∗) are the posterior mean and standard deviation of the GP approximation of the

cost function, see Equations 10a and 10b. In addition, β is a scale factor scaling the importance of the
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Figure 2: Schematic illustration of the SENB specimen (a) and the two different geometries of the
fracture surface (b). In the present work, d = 20 mm.

uncertainty (the variance) of the Gaussian process. Thus, it is possible to weigh exploration of high

uncertainty regions higher by increasing β.

2.2.2 Termination criteria

The most common termination criterion in Bayesian optimisation is a limited budget of simulations,

which is natural when the simulations are very cost-expensive. Another alternative is to stop iterating

when the projected best value is no longer likely to improve the best function value by a certain threshold.

This may be quantified through the following residual:

r = |y
∗ − µ(x̂∗)
y∗ + εtol

| ≤ εtol (17)

where y∗ is the smallest function value observed thus far, and µ(x̂∗) is the smallest function value as

projected by the acquisition function at the current iteration. In the present work, we employ the above

termination criterion, in combination with a max number of allowable iterations.

2.3 Experimental approach and finite element modelling

The experimental results used in the present work were reported in Jonasson et al. (2024a), where the

specific fracture energies of Norway spruce and birch were evaluated according to the Nordtest method,

see Figure 2. In the Nordtest method (Nordtest, 1993), a single-edge-notched beam with a pre-sawn

notch is loaded in three point bending. A rectangular fracture surface is most commonly adopted in

the procedure, however, to ensure post-peak stability during testing, a triangular fracture surface is

sometimes employed (Forsman et al., 2021) for brittle materials. The size of the beam, characterised

by the measurement d, is in the standard prescribed to 60 mm, but in the present work a dimension of
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Figure 3: Schematic illustration (quarter symmetry) of the fracture surfaces for the two notch geometries.
b is the FE size, d is the width of the cross-section, and hc is the ligament length.

d = 20 mm was adopted. This smaller size was used due to dimensional limitations of the raw birch

material, which did not allow for larger dimensions. As previously discussed, this should not affect

the evaluated fracture energy when employing non-linear fracture mechanics theory. The two different

fracture surfaces are shown in Figure 2b and Figure 3. Based on the tests, the fracture energy could

be evaluated using the work-of-fracture method based on the recorded load-displacement (P -u) curves.

For a more detailed description of the experimental procedure, the reader is referred to Jonasson et al.

(2024a).

The FE modelling was carried out with three-dimensional models, where first-order tetrahedrons

were used (C3D4). A cohesive zone modelling approach was implemented by using non-linear springs

(SPRING1) to model the strain-softening behaviour in the FPZ. The non-linear springs were located

along the pre-defined crack path, see Figure 3. In general, the strain-softening behaviour is modeled by

a function which is monotonically decreasing, e.g. linear or bi-linear softening. In the present work, only

linear softening has been considered. A stress-deformation σ-w relation with a linear softening can be

uniquely determined by three parameters: the tensile strength, ft, the specific fracture energy, Gf and

the initial stiffness, kinit, see Figure 4. The displacement values w1 and w2 may be determined through

the following expressions:

w1 =
ft
kinit

(18a)

w2 =
2Gf

ft
(18b)

The initial stiffness should in theory be infinite, since no crack separation should occur until the tensile

strength is reached. However, in practice this is rarely feasible due to problems with convergence. As

such, kinit was instead chosen to be sufficiently large, such that the global load-displacement behaviour

10



Table 1: Elastic moduli [MPa] for birch and spruce.

EL ER ET GLR GLT GRT

Birch Dinwoodie (2000) 16 300 1 110 620 1 180 910 190
Spruce Dinwoodie (2000) 10 700 710 430 500 620 23

Table 2: Poisson’s ratio [-] for spruce and birch.

νLR νLT νRL νRT νTL νTR

Birch Dinwoodie (2000) 0.49 0.43 0.034 0.78 0.018 0.38
Spruce Dinwoodie (2000) 0.38 0.51 0.03 0.51 0.025 0.31

was not affected.

In addition to the fracture behaviour, certain mechanical parameters also affect the global load-

displacement response of the specimens. To determine which parameters had a large effect on the global

response of the specimens, a sensitivity study was carried out and the only parameter that did display a

large effect was ET. All other elastic parameters had a negligible effect when varied within a reasonable

range. The remaining stiffness moduli and Poisson’s ratios were chosen based on the findings of the

works of Dinwoodie (2000), and are presented in Tables 1 and 2. With this in mind, three parameters

were subject to optimisation for the linear softening: the specific fracture energy, Gf, the tensile strength,

ft, and the elastic stiffness in the tangential direction, ET.

2.4 Formulation of minimisation problem

For the linear softening introduced in Section 2.3, the optimisation problem can be formulated as





x̂ = argmin f(x)

s.t. w2 > w1

(19)

where x = {Gf, ft, ET} and the constraint will automatically be enforced due to the aforementioned

formulation.

The choice of the cost function, f(x), is often non-trivial in mathematical optimisation. In the

ft

w1 w
w

2

Gfkinit

σ

Figure 4: Stress-deformation relation with linear softening parametrised by ft, Gf, and kinit.
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present work, and in much of the previous work on inverse parameter estimation and FEMU (Bondsman

& Peplow, 2024; De Moura et al., 2008; Do & Ohsaki, 2022; Dourado et al., 2008; Karandikar et al.,

2022; Kuhn et al., 2022; Kunecký et al., 2024), some difference between the physical process and the FE

model is minimised. A rather straight-forward choice, which often is used in FEMU, is the least square

error between some experimental and numerical physical quantity. When the optimisation is carried out

with respect to the global force-response, it is in the FEMU community often referred to as FEMU-F

(Chen et al., 2024). Such a cost function may be formulated as follows:

f(x) =

N∑

i=1

(Pnum,i(x)− Pexp,i)
2 (20)

where N is the number of discretisation points of the load-displacement response and Pnum,i and Pexp,i

are numerical and experimental force, recorded at discretisation point i. It is also common to introduce

a modified version of the same cost function, such that

f(x) =
N∑

i=1

(
Pnum,i(x)− Pexp,i

Pnorm,i

)2

(21)

where Pnorm,i is some normalisation factor. The normalisation factor can for example be considered to be

the point-wise standard deviation for the different discretisation points, or simply the measured force at

the given discretisation points. For the former case, Pnorm,i = σexp,i, and for the latter, Pnorm,i = Pexp,i.

2.5 Reformulation of cost functions based on maximum likelihood theory

In statistical modelling, likelihood-based inference is a common approach to make predictions based on

a certain set of observations that has been carried out. In such inference, the likelihood, is of central

importance. The likelihood, denoted L(x), is a function of the parameters, x, of the statistical model, and

conveys how likely different parameter values are to have generated the observed data. Computations

are often performed using the log-likelihood, l(x) = logL(x). If a statistical likelihood is defined, a point

estimate of the parameters that yields the maximum value of the log-likelihood can be acquired through

maximum likelihood estimation (MLE). This point estimate is denoted x̂. In addition, it is possible to

assess the uncertainty in the optimal parameters through the so-called observed Fisher information, given

that certain regularity conditions are fulfilled (Pawitan, 2013, Chap 2). The observed Fisher information

is equal to the inverse of second derivative of the negative log-likelihood, evaluated at the MLE (Pawitan,

2013, Chap 8). The variance of the optimal set of parameters may now be formulated as

V(x̂) = I(x̂)−1 (22)

where I is the observed Fisher information matrix:
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I(x̂) = −∂2l(x)

∂x2

∣∣∣∣
x=x̂

(23)

That is, given a reasonable assumption about the statistical model, it is also possible to reason about

the uncertainty in the optimal set of parameters, through the Fisher information. To this end, we

assume two different statistical models in order to model the observation error between the numerical

and experimental load-displacement curves. The first model assumes the following observation error:

ϵik ∼ N (0, σ2) (24)

Here, ϵik is the observation error in the i:th discretisation point, and describes the difference between

the force from the FE-model and the force in the k:th experimental load-displacement curve, in the same

discretisation point. Furthermore, the output from the FE-model in a specific discretisation point, si, is

denoted p(si;x), and is thus a function of the discretisation points for a given set of parameters x. As

such, it is assumed that the observation error is normally distributed with a zero mean, and constant

standard deviation across all discretisation points. The log-likelihood of this observation model can thus

be determined to:

l1(x) = −
nkni

2
log(2π)− nkni

2
log σ2 − 1

2σ2

∑

i

(yik − p(si;x)) (25)

Here, ni is the number of discretisation points and nk is the number of experimental load-displacement

curves. Furthermore, the ML-estimate for the variance, σ2, is (Casella & Berger, 2002, Chap 7):

(σ2)∗ =

∑
ik(yik − p(si;x))

nink
(26)

which yields the following expression for the log-likelihood if additive terms in Equation 25 are ignored:

l1(x) = −
nkni

2
log

(∑

ik

(yik − p(si;x))
2

)
(27)

The derivation of the second cost function is based on the following statistical model of the observation

error:

ϵik ∼ N (0, σ2
i ) (28)

The log-likelihood for this distribution is given by
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l2(x) = −
nkni

2
log(2π)−

∑

i

nk

2
log σ2

i −
∑

i

1

2σ2
i

∑

k

(yik − p(si;x)) (29)

with the following ML-estimate of the variance, σ2:

(σ2
i )

∗ =

∑
k(yik − p(si;x))

nk
(30)

This in turn yields the following expression for the log-likelihood if the additive terms are ignored:

l2(x) = −
∑

i

nk

2
log

(∑

k

(yik − p(si;x))
2

)
(31)

Here, ni is the number of discretisation points of the load-displacement curves and nk is the number of

load-displacement curves. To maintain a minimisation problem we minimise the negative log-likelihood

−l(x), instead of maximizing the log-likelihood, l(x). The negative log-likelihood is thus the cost function,

previously defined as f(x). For the rest of this paper, when we refer to the cost functions, we will refer

to them as cost function l1 and l2.

As can be seen, neither of these log-likelihoods correspond directly to the most popular force-based

cost functions in FEMU, see Equations 20 and 21. Consequently, the cost functions in Equations 20

and 21 are not proper likelihoods, and can thus not be assumed to properly recover the variance in

experimental tests through the observed Fisher information. In contrast, given that the assumptions

about the observation error in Equations 24 and 28 are accurate, they should yield a proper estimate of

the variance. However, the assumptions that these cost functions are based on are most likely incorrect.

Equations 24 and 28 assume that the observed error is independently distributed. This is highly

unlikely, since two different discretisation points located next to each other are likely to have a similar

observed error. As such, Equation 24 is inaccurate due to the assumption of an independent and identical

observation error regardless of discretisation point, and Equation 28 is inaccurate due to the assumption

of independent observation errors. In addition, both cost functions are dependent on the degree of

discretisation, through the summation over the discretisation index i. Despite these shortcomings, in

the present work we adopt these common (but reformulated) FEMU cost functions, to evaluate the

possibility to accurately capture the variance with them.

2.6 Bayesian optimisation in combination with FE-analyses

The optimisation procedure which minimises the cost functions has been implemented as a Python

program to be used in conjunction with Abaqus (Dassault, 2019). A flow-chart of the entire optimisation

procedure is shown in Figure 5. This flowchart is equivalent to the Algorithm presented in Algorithm 1.

Initially, the following inputs have to be defined:
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Table 3: Lower and upper bounds of the parameter domain for the optimisation procedure.

ft [MPa] Gf [J/m
2
] ET [MPa]

Lower Upper Lower Upper Lower Upper

Spruce 1.0 5.0 100.0 500.0 100.0 500.0

Birch 2.0 14.0 200.0 1400.0 200.0 1400.0

• The number of function evaluations to be carried out during pre-sampling, before starting the BO

procedure, denoted npre. In the present work, we have used npre = 5.

• The total number of maximum allowable iterations for the BO procedure, denoted nmax. In the

present work, we have used nmax = 100.

• The allowable tolerance, εtol, according to Equation 17. In the present work, we have used εtol =

1 · 10−6.

• The acquisition function, α(x). In the present work, we have used the LCB function according to

Equation 16, with β = 3.

• The lower bound, xmin, and the upper bound, xmax, i.e. the domain of interest. The lower and

upper bounds used are shown in Table 3.

Following the inputs, the pre-sampling phase starts. In this phase, random combinations of the

material parameters, within the allowable bounds, are sampled through latin hypercube sampling. For

each sample, the cost function, and therefore also the finite element model, is evaluated. After the

pre-sampling phase has finished, the BO procedure starts. The procedure starts by fitting a Gaussian

process to the function evaluations observed thus far. This is carried out through the optimisation of the

hyper-parameters of the GP through the log-likelihood described in Equation 15. Next, the posterior

distribution, i.e. the mean and the variance in Equation 10a, of the GP is calculated. From the posterior

mean and variance of the GP, the acquisition function, Equation 16, can be constructed. The next

point to sample is then determined by minimising the acquisition function, which is carried out with

the function minimise in SciPy. The cost function can then be evaluated in this point and subsequently

added to the observations D. The iteration count is increased and the procedure repeats either until

convergence is acquired through Equation 17, or until the max number of iterations has been reached.

2.7 Estimation of posterior predictive distributions

After convergence has been reached, the following procedure is adopted to estimate the posterior predic-

tive distributions for the parameters. First, the optimal set of parameters established in the optimisation

procedure corresponds to the mean value of a normal distribution. Secondly, the variance of the param-

eters is computed with the observed Fisher information, Equation 23:
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V(x̂) = −
(
∂l2(x)

∂x2

∣∣∣∣
x=x̂

)−1

(32)

The estimation of the second derivative around the MLE, i.e. the Hessian matrix, was carried out by

fitting a quadric surface to the points located around the minimum. Initially, 10 points were included

in the fitting of the quadric surface. Points were then iteratively added to the fitting process until the

covariance matrix became positive definite. Now, it should be noted that V(x̂) is the uncertainty for the

parameters based on all observed curves. The predictive uncertainty for a single curve is thus nkV(x̂).

With this approach, the logarithm of the optimal set of parameters could for each series be assumed to

be approximately normally distributed, such that

logx ∼ N (log x̂,Σlog x̂), Σlog x̂ = nkV(x̂) (33)

where x̂ are the optimal parameters for each series shown in Table 4, V(x̂) is the covariance matrix

evaluated around the optimal set of parameters (Equation 32), and nk is the number of experimentally

obtained curves.
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Figure 5: Flowchart of the parameter estimation procedure.
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3 Results and Discussion

3.1 Effect of mesh discretisation

To ensure results independent of the finite element discretisation in the form of increment size and

element size, a convergence study was carried out for the SENB specimens shown in Figure 2. For

a convergence study of the 2d-models, the reader is referred to Jonasson et al. (2024a). For different

increment sizes and element sizes, the error between the input specific fracture energy and the external

specific work was determined as

ϵGf
=

Gf,out −Gf,inp

Gf,inp
(34)

where

Gf,out =
W

Ac
=

∫
P (u) du

Ac
(35)

where W is the external work from the finite element model, Ac is the fracture surface, and Gf,inp is the

specific fracture energy input to the model. Consequently, Gf,out and Gf,inp should be close to equal,

given a sufficiently small element size. It should however be noted, that since the entire beam is loaded

in bending, the beams’ cross-section will be subject to both tensile and compressive forces, and as a

consequence, some springs will be in tension and some in compression. This means that at least the

very top row of springs will always be in compression for equilibrium to hold in bending. The springs in

11 21 41 81 161
No. of springs along the depth of the fracture plane

10
2

10
1

G
f

Analytical rectangular error
Analytical triangular error
FE rectangular error
FE triangular error

Figure 6: Convergence study of the mesh dependent error.
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the top row will thus never dissipate any energy, since by definition, the springs are only dissipative in

tension. The error from this model artefact was calculated analytically, and is shown in Figure 6 for the

specimens with a rectangular fracture surface and a triangular fracture surface, respectively.

The numerical convergence study was carried out using five different element sizes, previously denoted

b, in the fracture plane, see Figure 3: 2 mm, 1 mm, 0.5 mm, 0.25 mm and 0.125 mm. It is apparent that

the error from the discretisation of the fracture surface follows the analytically calculated error well. In

addition, the convergence appears to be quadratic in the number of springs along the fracture path, see

Figure 6. The error is also larger for the specimens with a triangular fracture surface, which is a direct

consequence of the different geometries. For the specimens with a triangular fracture surface, the springs

that are never in tension makes up a larger relative part of the entire fracture surface, compared to the

specimens with rectangular fracture surface.

3.2 Estimated fracture parameters

For both cost functions, l1 and l2, the optimisation was rather straight-forward and the optimal set

of parameters was established in less than 100 iterations. The estimated parameters (Gf, ft, ET) are

presented in Table 4, for the two different cost functions. The specific fracture energy as acquired with

the work-of-fracture method is also shown, for comparison.

In addition to the mean values, the uncertainty in the optimised parameters was assessed with the

method described in Section 2.6. With this approach, approximate normal distributions were acquired for

each cost function, and for each experimental series. From the two acquired distributions, 1000 samples

were generated. Based on ft and Gf from these samples, the corresponding stress-deformation (σ-w)

relations could be calculated, together with the corresponding uncertainty. These relations are shown in

the left column of Figures 7 and 8, for cost functions l1 and l2, respectively. For ten randomly selected (out

of the 1000) relations, the corresponding global load-displacement (P -u) response was calculated. These

ten global load-displacement curves are shown in comparison to the experimental load-displacement

curves and envelopes in the right columns of Figures 7 and 8. As can be seen, some variance is captured

in certain series: mainly for the spruce specimens with a rectangular fracture surface. However, for this

series, the variability recovered is mostly centered around the peak load. The variability in the initial

elastic part and the part where the load decreases are not matching the experimental variance well. For

all other series, the variability is not recovered accurately.

As seen in Table 4, the tangential stiffness, ET, of the spruce specimens ranges between 233 and 244

MPa, showing reasonable agreement regardless of cost function and regardless of notch geometry. Com-

pared to previous studies, which report values between 420 and 430 MPa (Dahl, 2009; Dinwoodie, 2000;

Ehrhart et al., 2015; Vasic, 2000), the values acquired in the present work are somewhat lower. However,

this discrepancy is still within a reasonable range when considering the inherent, large variability in the
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constitutive behaviour of wood.

For the birch specimens, the values of ET are slightly more scattered, both between series, and between

cost functions. However, all values are relatively close to values reported by previous studies (Bartolucci

et al., 2020; Dinwoodie, 2000; Engelhardt et al., 2024; Hörig, 1935), where the values range between 620

and 640 MPa. The difference in estimated ET between the birch specimens with a rectangular fracture

surface and a triangular fracture surface can in part likely be explained by the fact that only four to

five birch specimens were extracted from the same original timber board, as reported in Jonasson et al.

(2024a). In contrast, all spruce specimens were extracted from the same timber board. It is therefore

reasonable that the scatter between series is larger for the birch specimens.

The estimated tensile strength, ft, is quite similar between the two spruce series, ranging from

2.21 MPa up to 3.22 MPa. This is in relatively good agreement with previous studies that report values

of 2.7 MPa (Forsman et al., 2020) and 2.8 MPa (Dahl, 2009). However, there is a large discrepancy

in estimated tensile strength between the two cost functions. This is likely explained by the fact that

the second cost function, l2, assigns less weight to regions with high variance. The region around the

peak-load is largely governed by the tensile strength. As seen in the global force-displacement responses

in the right columns in Figures 7 & 8, the peak behaviour is always captured more accurately by the first

cost function, l1. This is also true for the birch series. This argument is also strengthened by the fact

that the part close to zero load in the end of the global load-displacement curves are generally captured

more accurately with cost function l2, compared to cost function l1. When the load approaches zero, the

variance also decreases, and as such, this region is assigned more weight in cost function l2.

The estimated fracture energy for the spruce specimens with a rectangular fracture surface is quite

similar to the fracture energy acquired with the work-of-fracture method (Jonasson et al., 2024a). For

cost function l1, the fracture energy was estimated to be 8.5% less than when evaluated with the work-

of-fracture method. For cost function l2, the fracture energy was evaluated to 5.3% higher than with

the work-of-fracture method. For the spruce specimens with a triangular fracture surface, the fracture

energy was evaluated to 0.4% less with cost function l1, and 4.7% higher with cost function l2 compared

to the estimated fracture energy with the work-of-fracture method. All values acquired for the fracture

Table 4: Estimated fracture parameters based on the FEMU method with two different cost functions,
and the conventional work-of-fracture method.

l1(x) l2(x) Work-of-fracture

Gf [J/m
2
] ft [MPa] ET [MPa] Gf [J/m

2
] ft [MPa] ET [MPa] Gf [J/m

2
]

Spruce rect 172 3.06 238 198 2.21 241 188

Spruce tri 256 3.22 233 269 2.38 244 257

Birch rect 747 8.37 761 789 6.56 735 700

Birch tri 700 7.39 551 735 4.49 656 611
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energy for the spruce specimens are well in line with previous studies, which generally report values

between 150 and 300 J/m
2
(Dourado et al., 2015; Forsman et al., 2020; Jonasson et al., 2024a; Reiterer,

2001; Reiterer et al., 2002; Stefansson, 2001).

For the birch specimens with a rectangular fracture surface, the fracture energy estimated with cost

function l1 is 6.7% higher than the fracture energy estimated with the work-of-fracture method. With

cost function l2, the fracture energy is estimated to be 12.7% higher than with the work-of-fracture

method. For the birch specimens with a triangular fracture surface, the estimate is 20.3% higher with

cost function l1 in contrast to the work-of-fracture method, and with cost function l2 it is estimated

to be 14.6% higher than with the work-of-fracture method. This discrepancy, which is larger for the

birch specimens, in contrast to the spruce specimens, might be a consequence of not loading the birch

specimens to a sufficiently large displacement. The birch specimens were loaded with a total displacement

of 7 mm, and at this point, the average birch series had a residual load of 1 N. It would however been

unfeasible from a time perspective to load the specimens until a load of 0 N had been reached.

4 Conclusions

In this work, the fracture behaviour of Norway spruce and birch has been characterised using a FEMU

framework in conjunction with Bayesian optimisation and experimentally obtained load-displacement

curves from SENB specimens. Two commonly adopted cost functions in FEMU have been reformulated

in the context of likelihood-based inference. Based on this reformulation, the possibility to recover the

variance from the experimental load-displacement curves has been assessed. It is shown that neither cost

function can accurately recover the variance due to the underlying assumptions in the statistical model

being inaccurate. The main contributions of the present work are the following:

• Neither of the two commonly adopted cost functions in the context of FEMU, here denoted l1 and

l2, can recover the variance in the experimental load-displacement curves.

• It is more difficult to recover the peak pehavior of the experimental load-displacement curves

accurately with cost function l2 compared to cost function l1. This is a consequence of cost

function l2 assigning more weight to regions with low uncertainty.

• The fracture behaviour of Norway spruce and birch has been established through the characteri-

sation of three important fracture parameters: ET, Gf and ft.

• As a consequence of establishing ft and Gf for spruce and birch, the corresponding linear softening

behaviour has also been established for both wood species.

Despite these contributions, there is still a lot of further work that has to be carried out in order

to fully understand the fracture behaviour of birch. For example, it is only the specific fracture energy
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Figure 7: Linear softening behaviours for all experimental series (left column) based on estimated pa-
rameters with cost function l1, and the corresponding global load-displacement curves in comparison to
the experimental load-displacement curves (right column). Note that the scales of the axes are different.
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Figure 8: Linear softening behaviours for all experimental series (left column) based on estimated pa-
rameters with cost function l2, and the corresponding global load-displacement curves in comparison to
the experimental load-displacement curves (right column). Note that the scales of the axes are different.
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which has been experimentally validated in the present work. It would be greatly beneficial to further

validate the procedure by experimentally validating all three parameters.

In the present work, only one crack propagation system (TL) and one mode of loading (mode I)

has been considered. It would be of great benefit to establish the behaviour in more crack propagation

systems, and other modes of loading.

It is also clear that neither cost function implemented in the present work can accurately recover

the experimental variance. As such, formulating a cost function based on more accurate assumptions of

the statistical model is necessary, in order to accurately assess the variance. If this is done, the approx-

imate multivariate normal distributions acquired can be propagated to a structural or semi-structural

level, where the fracture behaviour of load-bearing structures using birch can be properly assessed, and

accounting for the natural variability inherent in wood.
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