
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Modeling and Control of Pharmacological Systems

Wahlquist, Ylva

2025

Document Version:
Publisher's PDF, also known as Version of record

Link to publication

Citation for published version (APA):
Wahlquist, Y. (2025). Modeling and Control of Pharmacological Systems. [Doctoral Thesis (compilation),
Department of Automatic Control]. Lunds universitet, Media-Tryck .

Total number of authors:
1

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://portal.research.lu.se/en/publications/eb7d60f5-cc23-4a2f-ab3e-b199200dde22


Modeling and Control  
of Pharmacological Systems
YLVA WAHLQUIST 

DEPARTMENT OF AUTOMATIC CONTROL | LUND UNIVERSITY





Modeling and Control
of Pharmacological Systems

Ylva Wahlquist

Department of Automatic Control



PhD Thesis TFRT-1148
ISBN 978-91-8104-370-9 (print)
ISBN 978-91-8104-371-6 (web)
ISSN 0280-5316

Department of Automatic Control
Lund University
Box 118
SE-221 00 LUND
Sweden

© 2025 by Ylva Wahlquist. All rights reserved.
Printed in Sweden by Media-Tryck.
Lund 2025



Abstract

Personalized patient care has gained increasing attention in recent years. Precise
drug dosing is critical for patient safety and good clinical outcomes, especially in
intensive care units, where patients often are in critical conditions. Such treatments
can include stabilizing blood pressure and heart rate or maintaining safe anesthesia
levels. However, the inter-patient variability in the drug response makes finding a
dosing regimen that works for all patients challenging. The problem with the most
commonly used methods today is that they do not account (at least not sufficiently)
for this variability, which can lead to under- or overdosing.

This thesis aims to solve these issues by improving modeling and control strate-
gies for individualized drug dosing. These aims are to: 1) stabilize heart donor
hemodynamics to enhance organ quality for transplantation, 2) streamline the iden-
tification of covariate models that capture the inter-patient variability in the drug
response, and 3) develop control strategies resilient to disturbances and poor mea-
surement signal quality. First, we demonstrate that precise blood pressure control
can delay ischemic myocardial contracture in heart donors. However, the controller
performance was limited by the inter-patient variability in drug response, which
motivated further research on drug modeling. Therefore, we developed a method
to automate the covariate modeling process using symbolic regression networks,
which enabled us to find simple and interpretable models that capture this variabil-
ity well. To evaluate the covariate model’s performance, we needed to simulate a
large dataset, which motivated the development of a fast simulator for pharmacoki-
netics. Therefore, we developed an efficient simulator that could simulate a large
dataset in a fraction of the time compared to current available methods. Returning
to the control problem, we proposed combining open- and closed-loop control for
anesthesia using a Kalman filter. This allowed for robust control performance even
when model errors, disturbances, and poor signal quality were present.

In conclusion, these contributions demonstrate how pharmacological modeling
and control can improve drug dosing accuracy and patient safety. Adopting the
methods provided in this thesis can lead to safer and more efficient healthcare.
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1
Introduction

Have you thought about how individuals of different sizes often receive the same
drug dose? For example, when visiting the doctor, you might be given the same
amount of painkillers as someone twice your size. This “one-size-fits-all” is the
standard approach in healthcare. When it comes to painkillers, it might not be a
problem. But what if you are undergoing surgery and need anesthesia? Accurate
dosing is challenging because each individual reacts differently to the same dose.
This variation can depend on age, weight, sex, or underlying diseases [Mould and
Upton, 2012]. This is where personalized medicine comes in. Instead of a “one-
size-fits-all” approach, personalized medicine aims to tailor the drug dose to each
individual. This allows safer treatments and better outcomes for the patient. In per-
sonalized medicine, the way to obtain this is by describing the difference in how
different individuals respond to the same drug dose, which is called inter-patient
variability. This variability is exemplified in Figure 1.1, where four individuals re-
ceive the same drug infusion, but their response varies greatly. This variability can
be described by models that capture the underlying mechanisms and factors that
affect the drug response.
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Woman, 80 years, 50 kg
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Man, 20 years, 100 kg

Figure 1.1 Simulation example of inter-patient variability in drug response. The drug con-
centration in the blood over time is shown for four different individuals, that obtain the same
(constant) drug infusion.
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Figure 1.2 Example of model errors in drug response between the model prediction (solid)
and actual measurements (markers). The difference comes from that the model was developed
to fit a range of individuals, and not for this particular individual.

Individualized drug dosing can be achieved, for example, by using mathematical
models and automatic control systems. A model is a simplified representation of a
system, often described by mathematical equations. The simplification is related to
the intended use of the model, as described by [Mould and Upton, 2012]:

For example, one scale model of an airplane may be made for test-
ing its aerodynamics in a wind tunnel, while another may be made for
visualizing and choosing the exterior colors. Neither of the models is
meant to do the job of the real airplane. Furthermore, neither is a “true”
model, but each may be fit for its intended purpose.

This quote highlights that all models are simplifications of reality, but still are useful
in the right context. This is particularly useful in physiological modeling, where the
complexity of the human body makes it impossible to capture all the details in a
model. However, modeling the relevant functions of the body can help us understand
how it works and interacts with drugs. Therefore, there is a trade-off between model
complexity and interpretability, where a model that is too complex can be difficult
to interpret and understand, while a model that is too simple might not capture the
relevant features of the system.

In pharmacology, models that describe drug absorption, distribution, meta-
bolism, and clinical effect are called pharmacokinetic-pharmacodynamic (PKPD)
models. These models are important for understanding how drugs interact with the
body and for designing optimal dosing strategies. In these models, patient charac-
teristics, such as age, weight, and other factors, referred to as covariates, are used to
improve model predictions [Mould and Upton, 2012; Sahinovic et al., 2018]. The
model predictions tell us something about how the patient will respond to a drug
dose, which can be used to find the right dose for the individual. For example, a
patient with a larger body weight might need a higher dose than a patient with a
lower body weight. Inaccurate models can lead to poor dosing decisions, which

14
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Figure 1.3 Example of closed-loop control of a physiological variable, such as blood pres-
sure or anesthetic depth. The doctor sets the desired level of the variable, and the con-
trol system adjusts the drug dose to maintain the desired level. A monitor continuously
measures the patient’s response and sends this information to the control system. Noise
and disturbances affect the patient’s response and the estimate of the variable. Icons from
https://www.flaticon.com/free-icons/.

can be harmful to the patient. An example of where the model prediction does not
match the patient’s actual response is shown in Figure 1.2, where the model pre-
dicts a different drug response than what is actually measured. In this case, the peak
concentration is underestimated, which can lead to overdosing.

One challenge in the development of PKPD models is that they are often de-
veloped manually in a step-wise manner where covariates are added and removed
based on their statistical and clinical significance [Mould and Upton, 2012]. This
process is often done by hand, which is both time- and work-intensive. Replacing
this manual model development with machine learning methods makes it possible
to automate the modeling process and identify models that can capture variability
better across patients. Machine learning methods are flexible and are particularly
suitable for handling large datasets [Janssen et al., 2022a]. However, these methods
often generate black-box models which can be complex and difficult to interpret.
This is a limitation in clinical practice, where understandable models are required
to guarantee patient safety and to gain clinical acceptance. Again, the trade-off be-
tween model complexity and interpretability is important to consider.

If we can measure the patient’s drug response in real-time, we can further indi-
vidualize the drug dosing. For this, automatic control systems can be used to adjust
the drug dose based on the patient’s response. An example of a closed-loop sys-
tem for controlling a physiological variable, such as heart rate or blood pressure, is
shown in Figure 1.3. The patient’s response is monitored continuously and the dose
is adjusted accordingly by the control system, commonly implemented on a com-
puter. This allows for individualized and robust drug dosing based on the patient’s
needs at that moment. It also allows for rapid adjustments to changes in the patient’s

15
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condition, which can be crucial in critical care settings [Dumont et al., 2009]. Dis-
turbances, such as surgical interventions, can affect the patient’s state and response.
For example, if the patient’s blood pressure drops during surgery, the control system
can rapidly calculate the drug dose needed to stabilize the blood pressure again. This
can be difficult to do manually, especially in intensive care units, where the patient’s
condition can change rapidly.

The control system is sensitive to measurement noise and electric inference from
other devices in the operating room [Chan et al., 2012; Pawlowski et al., 2022]. If
the measurement signal is poor, for example, due to electric inference, the control
system has incorrect information about the patient’s state, which can then lead to
over- or underdosing. Overdosing can cause undesirable side effects such as hy-
potension1 or bradycardia2, while underdosing can lead to insufficient treatment
effects [Bibian et al., 2006]. Therefore, it can be useful to combine PKPD model
predictions with measurement feedback for drug dosing, rather than relying purely
on the measurement.

In anesthesia, individualized drug dosing is crucial to ensure patient safety. The
anesthesiologist continuously adjusts the drug dose to keep the patient unconscious
and pain-free during surgery. The patient’s response to anesthetic drugs can vary
greatly between patients, making it challenging to find the right dose [Bibian et al.,
2006; Sahinovic et al., 2018]. Disturbances, such as surgical interventions, affect
the level of anesthesia, which motivates the need for an automatic control system
that can adjust the drug dose based on the patient’s response.

Heart transplantation is a treatment that is often necessary for survival in pa-
tients with end-stage heart failure. There is a shortage of donor hearts, and many
hearts are discarded because they are not deemed suitable for transplantation. For
instance, in Sweden, two-thirds of potential donor hearts are routinely discarded
and the situation is similar in other countries [MOD, 2024; Domínguez-Gil, 2021].
This shortage of donor hearts has motivated the introduction of donors after circula-
tory death (DCD)3 in several countries4. However, DCD donor hearts are more sus-
ceptible to ischemic5 damage compared to the traditional donors after brain death
(DBD) [Messer et al., 2016]. Therefore, procurement of DCD donor hearts is per-
formed under tight time constraints. Ischemic myocardial contracture (IMC) can
develop when the heart is beating without oxygen, which prevents the heart from
being used for transplantation. Few studies have been performed on how to prevent
or delay IMC for DCD donor hearts. Here, we investigate how precise drug dosing
can stabilize the hemodynamics6 of the heart donor to prevent IMC and improve
the quality of the heart.

1 Hypotension - low blood pressure.
2 Bradycardia - low heart rate.
3 DCD - circulatory death can be determined when the donor has no circulation and no breathing.
4 DCD for heart transplantation is not yet implemented in Sweden.
5 Ischemia - Lack of blood to the blood muscle, resulting in shortage of oxygen.
6 Hemodynamics - what affects the blood flow, such as blood pressure and heart rate.
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1.1 Research Aims

While the applications of individualized drug control in anesthesia and heart
transplantation may seem to differ in scope–from ensuring safe anesthesia in
surgery to optimizing donor heart outcomes–both highlight the importance of preci-
sion dosing and automatic control systems to address variability in patient responses
and optimize therapeutic outcomes. In conclusion, the main challenges in pharma-
cological modeling and control that are addressed in this thesis are:

• Inter- and intra-patient variability, meaning that the patient’s drug re-
sponse can vary between patients and within the same patient over time.

• Model errors. There can be a mismatch between the model’s prediction and
the patient’s response, which can lead to over- or underdosing.

• Unmeasured disturbances, such as surgical interventions, affect the pa-
tient’s state and drug response.

• Noisy or lack of measurements. The drug concentration at the site of in-
terest can usually not be measured directly but is often estimated from other
measurements.

1.1 Research Aims

To address these aforementioned challenges, this thesis aims to improve the mod-
eling and control of pharmacological systems, with a particular focus on precision
dosing with accurate models and feedback systems. The main objectives are to:

• study how precision dosing can be used to stabilize hemodynamics in heart
donors, thereby reducing ischemic damage to the donated heart and enhanc-
ing the quality of the organ for transplantation.

• streamline the model development process for pharmacological models and
apply machine learning techniques to create simple, interpretable models that
capture inter-patient variability well.

• improve automatic control of drug delivery systems by combining model pre-
dictions with measurement feedback to better handle model errors and uncer-
tain measurements.
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Chapter 1. Introduction

1.2 Outline

The outline of the thesis is as follows: Chapter 2 provides the background with an
introduction to pharmacological models and control. It also presents the two appli-
cations that have been studied: heart transplantation and anesthesia. This chapter
serves as a background for the papers included in this thesis. Chapter 3 summarizes
the included papers and presents the main contributions of this thesis. In Chapter 4,
the significance and ethics of the work are discussed, as well as future work. There-
after, the six included papers are attached as Paper I, Paper II, . . . , and Paper VI.
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2
Background

This background chapter provides an overview of the field of pharmacological sys-
tems and control and introduces the motivation behind the problems addressed
in this thesis. Its purpose is to provide the reader with the necessary background
knowledge for the contributed papers that follow in the thesis. The chapter is di-
vided into four sections: Section 2.1 introduces modeling of pharmacological sys-
tems, in particular pharmacokinetic-pharmacodynamic (PKPD) modeling and phar-
macometrics. Section 2.2 presents control of pharmacological systems. Section 2.3
and Section 2.4 present two applications on which this thesis is based, namely heart
transplantation and anesthesia, respectively. These applications are used to illus-
trate how precision dosing and control can be used to improve patient outcomes in
clinical practice.

2.1 Modeling of Pharmacological Systems

The modeling of pharmacological systems is essential in drug development and pre-
cision dosing. Mathematical models describe the relationship between drug dose
and clinical effect, which can be used to derive drug dosing guidelines, both for
manual dosing, in target-controlled infusion (TCI) devices, and in closed-loop con-
trol systems. Accurate drug models are crucial for patient safety, as under- or over-
dosing can lead to severe consequences. In this section, we describe the main con-
cepts of pharmacokinetic (PK) (Section 2.1.1) and pharmacodynamic (PD) model-
ing (Section 2.1.2). This is the foundation of pharmacometrics, which is a method-
ology for modeling the variability in drug response between individuals (Sec-
tion 2.1.3).

2.1.1 Modeling of Pharmacokinetics
Pharmacokinetics (PK) describe the absorption, distribution, and elimination of a
drug in the body. The modeling of pharmacokinetics is mainly used to understand
the effect of the body on the drug, estimate physiological parameters, and deter-
mine accurate drug dosing. The most commonly used models for PK modeling
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Chapter 2. Background

are low-order compartment models, where the body is divided into parts based on
similar properties. For example, organs, tissue, or blood can be grouped as sepa-
rate compartments. Then, drug transfer rates describe drug diffusion between these
compartments.

A one-compartment model is the simplest representation, where a single com-
partment approximates the entire body. The drug is assumed to be uniformly dis-
tributed in the body and is eliminated through a first-order process. For many drugs,
a one-compartment model is sufficient to describe pharmacokinetics [Sahinovic et
al., 2018]. Multi-compartment models include one or several peripheral compart-
ments connected to the central one. They can be connected in different ways, that
is, having different topologies, depending on how the compartments are connected
and where the drug is added and eliminated from the system.

Schematic representations of one-, two- and three-compartment (mammillary)
models are shown in Figure 2.1. In the case of the three-compartment model, the
central compartment typically models blood plasma, and the two peripheral com-
partments model slow-perfused (e.g., fat) and fast-perfused (e.g., muscle) tissue.
The drug is added and eliminated from the central compartment, and non-negative
transfer rates ki j [1/time] describe the diffusion of the drug from compartment i
to j. In the cases covered in this thesis, the central compartment models blood
plasma. In general, the concentrations of the peripheral compartments are not di-
rectly measurable, as they rather are a mathematical construct to capture the drug
dynamics. However, the concentration of the central compartment can be measured
directly from blood samples. These blood samples are typically taken at discrete
time points, so the drug concentration is not continuously measured. This is the
case for the drugs considered in this thesis, where the analysis is done offline based
on blood samples. However, for some applications, such as blood glucose monitor-
ing in diabetes, there are devices for online monitoring, where the blood glucose
concentration is measured in real-time.

The suitable topology and number of compartments can be determined from
data [Sahinovic et al., 2018]. The most common representations are low-order mod-
els, as they typically capture the main properties of the absorption, distribution,
and elimination dynamics of the drug. However, increasing the complexity of the
model by adding more compartments may result in models that are not practically
identifiable from available data. Identifiability is in general a large challenge in PK
modeling, as poor input excitation limits the identifiability of the model parameters
[da Silva et al., 2014]. Increasing input excitation is usually not possible in clinical
practice, as it might risk patient safety which raises ethical concerns.

Another approach to compartmental PK modeling is physiologically-based PK
models (PBPK), where all major tissues, such as muscles, brain, heart, kidneys,
liver, and lungs, are represented as separate parts, as explained, for example, in
[Jones and Rowland-Yeo, 2013]. Then, the parts are directly linked to physiological
meaning, in contrary to compartmental models where the compartments lack phys-
iological meaning. However, PBPK modeling is more complex, requires extensive
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(a) One-compartment model

Compartment 2
V2

Compartment 1
V1

k21

k12

u

k10

(b) Two-compartment model

Compartment 2
V2

Compartment 1
V1

Compartment 3
V3

k21

k12

k13

k31

u

k10
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Figure 2.1 Schematic illustration of one-, two- and three-compartment models. Compart-
mental volumes are denoted by Vi and transfer rates between compartments i and j are de-
noted by ki j . Drug is added and eliminated from the central compartment at rates u and k10,
respectively.

data for model development, and does not necessarily improve prediction accuracy
compared to compartmental models [Masui et al., 2009].

Mathematically, we can describe the drug concentration in the compartments
using ordinary differential equations (ODEs). The relation between drug infu-
sion rate u(t) [mass/time] and drug concentration x(t) [mass/volume] in the one-
compartment model (Figure 2.1a) is given by the first-order linear time-invariant
(LTI) model:

ẋ =−k10x+
1

V1
u, (2.1)

where ẋ denotes the time derivative of x, k10 [1/time] is the elimination-rate con-
stant, and V1 [volume] is the volume of distribution. Note that we have left out the
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Chapter 2. Background

time dependence of the state variable x and input u for readability. Similarly, the
two-compartment model (Figure 2.1b) can be described by:

ẋ1 =−(k10 + k12)x1 + k21x2 +
1

V1
u (2.2a)

ẋ2 = k12x1 − k21x2, (2.2b)

where x1 and x2 denote the drug concentration of the central and peripheral com-
partment, respectively. The transfer rate constant from compartment i to j is denoted
ki j [1/time] and V1 denotes the volume of the central compartment.

A state-space representation of the mammillary three-compartment model (Fig-
ure 2.1c) is given by:

ẋ1 =−(k10 + k12 + k13)x1 + k21x2 + k31x3 +
1

V1
u (2.3a)

ẋ2 = k12x1 − k21x2 (2.3b)
ẋ3 = k13x1 − k31x3, (2.3c)

where x1, x2, and x3 denote the drug concentration of the central, and the two pe-
ripheral compartments respectively.

The PK model can be described either in terms of transfer rates or volumes
and clearances. The conversion between these two representations (in terms of the
three-compartment model) is:

V2 =
k12

k21
V1, (2.4a)

V3 =
k13

k31
V1, (2.4b)

CL = k10V1, (2.4c)
Q2 = k12V2, (2.4d)
Q3 = k13V3, (2.4e)

where V1,V2,V3 and CL,Q2,Q3 are the compartmental volumes and clearances, re-
spectively.

These PK models can be used to simulate the drug concentration in the body
over time. They can be simulated with software tools, such as general solvers for
ordinary differential equations (ODEs), or by fixed-step methods for linear systems.
Some examples of simulators that can be used to simulate PK dynamics are ode45
and lsim in MATLAB [MathWorks, 2023] and DifferentialEquations.jl in
Julia [Bezanson et al., 2017].

A challenge in PK modeling is to capture the variability in drug response be-
tween individuals. A constant PK model where all compartment volumes and trans-
fer rates are constant over a population will not capture the variability. For example,
older people can be more sensitive to the drug, which is not captured by a constant
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2.1 Modeling of Pharmacological Systems

model. Therefore, it is common to model the PK parameters as a function of patient
characteristics such as age and weight, which are referred to as covariates. For ex-
ample, the central compartment volume V1 can be modeled as a function f of age
and weight:

V1 = f (age,weight). (2.5)

Modeling of these types of relationships is included in pharmacometrics and will
be the topic of Section 2.1.3. These models are used to model the drug variability
between patients.

2.1.2 Modeling of Pharmacodynamics
Pharmacodynamics (PD) describes how a drug affects the body, i.e. how the drug
concentration relates to the clinical drug effect. Generally, we are interested in the
effect of the drug on a specific clinical variable, such as blood pressure or heart rate.
A PK model together with the PD model makes up a PKPD model that describes
how the drug dose relates to the clinical effect.

PD relationships are commonly described by linear models or sigmoidal Emax
models. The linear model assumes a linear relationship between drug concentration
Cp [mass/volume] and clinical effect E. The sigmoidal Emax model (also called the
Hill model) assumes a nonlinear relationship in which the drug effect increases with
concentration and reaches a maximum effect (Emax) [Curry and Whelpton, 2017].
If there is a baseline effect E0 when no drug has been administered, the sigmoidal
Emax model is given by

E = E0 +
EmaxCγ

p

Cγ

e50 +Cγ
p
. (2.6)

where Ce50 [mass/volume] is the drug concentration at which the effect is half of the
maximum effect, shifted by E0. For example, if Cp =Ce50, the effect is E0+Emax/2.
The steepness of the dose-response curve is determined by a parameter γ , where a
higher value of γ results in a steeper dose-response curve.

Sometimes, an extra single compartment is used to model the delay from blood
plasma concentration to clinical effect, i.e., the time it takes for the drug to reach
the effect site [Sheiner et al., 1979]. This is called the effect-site compartment and
is modeled by

dCe

dt
= ke0(Cp −Ce), (2.7)

where Ce [mass/volume] is the effect-site concentration and ke0 [1/time] is the
effect-site rate constant.

The PD parameters are sometimes modeled with a covariate dependence, similar
to the PK models. However, this is less common than for PK models. One example
where the PD model parameters depend on covariates is the PD model for propofol
by [Eleveld et al., 2018], where Ce50, ke0, and γ are covariate-dependent. This model
is detailed in Section 2.4.
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Chapter 2. Background

2.1.3 Pharmacometrics
Pharmacometrics is an important tool in drug development and in determining safe
dose recommendations for patients [Mould and Upton, 2012]. It can also be used to
understand the underlying mechanisms of drug interaction with the body. The main
goal of pharmacometrics is to develop models that can estimate the drug concen-
tration in the body and the clinical effect of the drug. This is done by modeling the
variability in drug response in a population, which is called population modeling.
Population modeling covers both the inter-patient and the intra-patient variability,
where the inter-patient variability is the variability between patients and the intra-
patient variability is the variability within a patient between a dose and another.
Covariates, such as age, weight, or other underlying physiological factors can de-
scribe some of the variability, but not all. The remaining variability is described by
stochastic models, which will be explained in the following section.

Population PK modeling was first introduced in 1972 by [Sheiner et al., 1972]
with the aim of computer-aided therapy for individual drug dosing. This topic re-
mains highly relevant today, as demonstrated in this thesis. Later, in the early 1990s,
the methodology was extended to include PD models as well [Stanski and Maitre,
1990]. Modeling requires information about covariates, measurements, and dosing.
It is sensitive to the data quality, which limits the predictability of the model.

Population models consist of three components [Mould and Upton, 2012]:

• Structural models, such as the compartment models described in Sec-
tion 2.1.1. These are commonly described by ODEs.

• Covariate models (or fixed effects) describe the relationship between covari-
ates and the parameters of the structural model.

• Stochastic models (or random effects) describe the remaining variability that
the covariate model does not cover.

First, the structural model is determined based on the data, after which the covariate
model and the stochastic model are added to describe the variability of the data. To-
gether, the covariate model (fixed effects) and the stochastic model (random effects)
make up the nonlinear mixed-effects model (NLME), which is the most common
model used in pharmacometrics [Mould and Upton, 2012]. NLME models are used
to describe the variability in the data and will be explained in more detail below.

The covariate model aims to describe the relationship between the covariates
and the structural model parameters with simple and readable expressions. An ex-
ample of a covariate model is the linear model with one covariate

θi = θi0 +θi1 · covariate, (2.8)

where θi is the ith structural model parameter (such as central compartment volume
V1), θi0 is the baseline value of the parameter, and θi1 is the effect of the covari-
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Covariate model

V1 = f1(AGE,WGT)
V2 = f2(AGE,WGT)
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Figure 2.2 Pharmacokinetic (PK) covariate modeling with two covariates (age and weight)
and a three-compartment model (see Figure 2.1c for details). The six PK parameters
(V1,V2,V3,CL,Q2,Q3) are modeled as functions of the covariates and are simulated to es-
timate plasma concentrations Cp with a given drug administration profile u.

ate on the parameter. The covariate can be, for example, age in years or weight in
kilograms.

A more complex covariate model can include nonlinear terms, for example, the
effect of the two covariates age and weight on the second compartment volume
for propofol, published in [Eleveld et al., 2018] (here presented without random
effects):

V2 = θV2,1 ·WGT · exp(AGE−θV2,2) [L], (2.9)

where θV2,1 and θV2,2 are covariate model parameters and WGT and AGE are the
weight in kilograms and age in years of the patient, respectively.

Figure 2.2 shows an example of how a PK covariate model can be used to simu-
late drug concentration in the body over time. In this example, there are two covari-
ates (age and weight) and a three-compartment structural model. In the PK covariate
model, the six PK parameters are modeled as functions of the covariates. This can
be used to simulate and estimate plasma concentrations Cp for a given drug admin-
istration profile u.

Identifying the covariate model is a manual iterative process in which compo-
nents are sequentially added and removed to find the best model fit to the data. This
is a very time-consuming process. Typically, this process is based on prior knowl-
edge of the physiology and pharmacology of the drug. The model fit is commonly
evaluated using maximum likelihood estimation (MLE), where the best parameters
are found by maximizing the likelihood of the data given the model [Mould and Up-
ton, 2012]. In the identification process, both the structure of the covariate model is
identified and the parameters (commonly called θ ) are estimated.

The stochastic model (random effects) captures the remaining variability that is
not covered by the covariates. This variability is commonly modeled by a stochastic
variable named η which is assumed to be log-normally distributed across the pop-
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ulation. It has zero mean and variance σ2. An example of a covariate model with a
stochastic element is again from [Eleveld et al., 2018], but now with random effects:

V2 = θV2,1 ·WGT · exp(AGE−θV2,2)exp(ηV2) [L], (2.10)

where ηV2 is the stochastic element with ηV2 ∼ N (0,σ2
V2
). The stochastic compo-

nents are commonly modeled as additive or multiplicative. In the case of Equa-
tion (2.10), the stochastic element is multiplicative.

The most popular and widely used software for nonlinear mixed-effects model-
ing is NONMEM [Sheiner and Beal, 1980]. NONMEM is used by pharmaceutical
companies and is approved by regulatory agencies for drug development and dosing
recommendations. Recently, the Julia package Pumas.jl [Rackauckas et al., 2020]
has been developed as an alternative to NONMEM, developed in the efficient Julia
programming language [Bezanson et al., 2017], which allows faster model develop-
ment and parameter estimation. An overview of pharmacometrics for the non-expert
is given in [Mould and Upton, 2012].

Machine learning in pharmacometrics In the last 20 years, there has been in-
creasing interest in using machine learning (ML) for pharmacometrics. The focus
of ML in pharmacometrics has mainly been on drug concentration predictions di-
rectly from data [Brier et al., 1995; Chow et al., 1997; Liu et al., 2015], but also for
covariate selection [Janssen et al., 2022b; Sibieude et al., 2021]. For example, neural
networks [Janssen et al., 2022c; Sibieude et al., 2022] and random forests [Janssen
et al., 2022b] have been used for this. Another example is DeepPumas, which is
an ML software for pharmacometrics implemented in Pumas.jl [Rackauckas et al.,
2020].

The interest in ML in pharmacometrics has mainly increased due to the avail-
ability of large datasets and more powerful computational resources. ML methods
can capture complex relationships in the data that are difficult to identify with tra-
ditional statistical models. However, these models often lack interpretability, which
is a challenge in the regulatory context. Interpretability and explainability are im-
portant in healthcare, where the model predictions can have a direct impact on the
patient. If these problems are addressed, ML models can be a powerful tool in phar-
macometrics. Therefore, using a combination of ML and traditional pharmacomet-
ric modeling may be beneficial. ML can be used to speed up model development and
process large datasets, while traditional pharmacometric modeling methods can be
used to incorporate expert knowledge and to ensure the interpretability of the model.
This is the approach taken in Paper III in this thesis. An overview of the possibilities
and challenges of ML in pharmacometrics is given in [Janssen et al., 2022a].

2.2 Control of Pharmacological Systems

Precise and fast drug delivery is essential to ensure patient safety. Control of phar-
macological systems aims to reach and maintain the desired therapeutic drug effect
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Figure 2.3 Dosing strategies for intravenous drugs: (a) manual control, (b) target-controlled
infusion (TCI), and (c) closed-loop control. The clinician supervises the system by studying
the patient’s response (for example, measurements of physical signs such as blood pressure
and heart rate) and can adjust the drug dose u (or reference r) if necessary.

as accurately and rapidly as possible. There are several ways to administer drugs,
such as orally, intravenously, or by inhalation. Here, we focus on the control of in-
travenous drugs, where there are three main ways of administration: manual control,
target-controlled infusion (TCI), and closed-loop control. These are explained in the
following sections and are schematically illustrated in Figure 2.3.
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2.2.1 Manual Control
Manual control is the standard practice of drug delivery in many clinical settings.
The clinician assesses the patient based on signs such as breathing, sweating, or
pupil size, or on clinical measurements such as blood pressure and heart rate, and
adjusts the drug dose accordingly, as illustrated in Figure 2.3a. For intravenous
drugs, this corresponds to setting an infusion rate or administering a bolus dose.
Initially, the clinician administers a dose to reach the desired effect as quickly as
possible. This dose is based on the patient’s covariates, commonly computed from
PKPD models. If the patient’s response is not as expected due to patient variability,
the clinician must adjust the infusion rate to reach the desired effect. In the presence
of unaccounted disturbances, caused for example by surgical interventions, the clin-
ician must change the infusion rate to counteract these disturbances. The clinician
must be observant and adjust the drug dose continuously to maintain the desired
effect.

The main advantage of manual control is that the clinician uses all available in-
formation to adjust the drug dose. However, manual control is prone to be slow and
imprecise, as it might take time for the clinician to react to changes in the patient’s
state and to determine the correct dose to again reach the desired effect. Automatic
control systems can be used to assist the clinician in this task, as discussed in the
following sections.

2.2.2 Target-Controlled Infusion (TCI)
Target-controlled infusion (TCI) is a method for automatic intravenous drug de-
livery. It has been used routinely in the clinic for more than 30 years and is to-
day a well-established method for the administration of intravenous drugs. A com-
prehensive review of the history of TCI systems can be found in [Struys et al.,
2016]. TCI systems were originally developed for the administration of the anes-
thetic drug propofol and are now also used for other drugs, for example, opioids
such as remifentanil and alfentanil. The most widely used TCI system is the Dipri-
fusor™(AstraZeneca, London, UK).

In TCI, a dose trajectory is calculated by a computer based on an underlying
patient PKPD model and the desired effect-site concentration. The clinician deter-
mines a target concentration in the plasma or at the effect site rather than the specific
infusion rate, which can be more intuitive for the clinician [Servin, 1998; Russell
et al., 1995]. Then, the TCI system computes an optimal infusion rate trajectory
based on an underlying patient model to reach this target concentration as quickly
as possible without overshooting [Shafer and Gregg, 1992; van Poucke et al., 2004].

At the start of the therapy, the TCI system will compute a bolus of suitable size
to reach the desired effect-site concentration as fast as possible, while still staying
within the recommended drug administration limits. Then, a constant infusion will
maintain the desired effect-site concentration during the maintenance phase. An
example of a computed dose trajectory is shown in Figure 2.4 (lower). The predicted
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Figure 2.4 Predicted, actual, and reference effect-site concentration Ce (upper). Propofol
infusion profile computed by the TCI algorithm (lower), computed based on the patient model
corresponding to the blue prediction in the upper plot.

TCI dose trajectory (blue) with the target concentration (dashed, black) is shown in
the upper plot of Figure 2.4.

However, TCI is not based on feedback from measurements, but rather is based
on the underlying patient model. If the incorporated patient model is not accurate,
the TCI system will not optimally deliver drugs, which can result in a static error
in drug concentration [Wahlquist et al., 2024]. An example of this is shown in Fig-
ure 2.4, where there is a discrepancy between the predicted concentration (blue) and
the actual concentration (red), due to model errors (discrepancy between model and
patient response). A model error could result in over- or under-dosing of the patient,
which can potentially have severe consequences. If the patient responds differently
than expected, the clinician can adjust the target concentration to account for this. In
this way, the TCI system can be seen as an open-loop feed-forward control system.
However, it can be difficult for the clinician to know how to adjust the target con-
centration, as direct measurements of the actual blood concentration are commonly
not available.
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Figure 2.5 Simulation of disturbance rejection with a PID controller to maintain effect-site
concentration at a stationary level (upper) with the corresponding dose profile (lower). A
negative step disturbance of size one is introduced at t = 2 min and the controller adjusts the
infusion rate to maintain the desired drug concentration.

2.2.3 Closed-Loop Control
Closed-loop control is an automated method for drug delivery where the drug dose
is computed based on a measurement. A schematic illustration of a closed-loop con-
trol system is shown in Figure 2.3c. The controller aims to maintain a physiological
state, such as blood pressure or drug concentration in the blood. The clinician sets
the reference value r (the desired drug concentration) and the controller calculates
an infusion rate u that will drive the system to the desired concentration. Although
the system may run fully automatic, the clinician must supervise it and interrupt if
necessary, for example, if the system is not performing as expected. Closed-loop
control of drug delivery has been suggested to improve patient safety and reduce
the workload of the clinician [Ghita et al., 2020]. Using measurements allows for
the drug to be computed in real-time, which can lead to faster and more accurate
drug delivery compared to manual control or TCI. Particularly, the rejection of dis-
turbances can be handled effectively by the controller. This can be obtained also
with manual control if the clinician is observant and reacts quickly.

An example of how a control system can reject a disturbance is shown in Fig-
ure 2.5. A negative step disturbance is introduced at t = 2 min and within two min-
utes from the start of the disturbance, the main part of the disturbance is rejected by
the controller, and the drug concentration is maintained at the desired level.
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The measurement could be, for example, blood plasma concentration, blood
pressure, heart rate, or other physiological measurements. In some cases, the con-
centration of interest cannot be measured online and the control system must rely
on another measurement that is directly or indirectly affected by the drug concentra-
tion. An example in which the measurement of interest can be directly observed is
diabetes, in which blood glucose concentration is sampled online. The glucose con-
centration can then be controlled by infusions of insulin. In contrast, in automatic
control of anesthesia, the drug concentration of the anesthetic drug cannot be mea-
sured directly at the effect site (i.e., the brain). Instead, an estimate of the hypnotic
depth based on the patient’s EEG is used as an indirect measurement of the drug
concentration. Closed-loop control of anesthesia is further discussed in Section 2.4.

The most common feedback controller, not only of pharmacological systems,
is the proportional-integral-derivative (PID) controller because of its simplicity and
robustness. In PID control, the infusion rate u is calculated from the control error
e = r− y, where r is the reference signal and y is the measurement. The ideal PID
controller is given by

u(t) = K
(

e(t)+
1
Ti

∫ t

0
e(τ)dτ +Td

de(t)
dt

)
, (2.11)

where K is the controller gain, Ti is the integral time constant, and Td is the derivative
time constant. These are tunable controller parameters that determine the speed,
stability, and robustness of the control system. For the actual implementation of
the PID controller, some modifications such as anti-windup and filtering are needed
[Soltesz et al., 2012].

PID control of pharmacological systems has been successfully implemented in
clinical settings, such as control of blood glucose concentration in diabetes [Brown
Sue A. et al., 2019] and in control of anesthesia [Schiavo et al., 2021]. Other, more
advanced, control strategies have also been successfully tested, such as model pre-
dictive control (MPC) [Hovorka et al., 2004] and fuzzy logic [Schäublin et al.,
1996]. An overview of closed-loop control systems applied to pharmacological sys-
tems is given in [Spataru et al., 2024].

There are several available software for closed-loop control in pharmacology,
such as the Control-IQ™(Tandem Diabetes Care) for diabetes and Intellivent-
ASV™(Hamilton Medical) for ventilation which have been evaluated in clinical
trials [Brown Sue A. et al., 2019; Beijers et al., 2014]. However, closed-loop con-
trol of pharmacological systems is not yet widely adopted in clinical practice, and
several challenges need to be addressed before it can be implemented routinely.

Closed-loop control in pharmacological systems is challenging for multiple rea-
sons. Since the feedback commonly relies on one measurement only, poor signal
quality greatly affects control performance. Surgical devices, such as electrocautery
devices, can introduce noise in the measurement signal, which can lead to poor con-
trol performance [Chan et al., 2012]. Another challenge is the choice of controller
and tuning of controller parameters. Poor tuning of controller parameters can lead
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to unwanted behaviors such as oscillations, instability, or slow response. A complex
control structure is unlikely to be adopted in clinical practice, as it can be difficult to
understand by the clinical personnel. However, automated drug delivery is likely to
be adopted in the future as more and more online measurements are becoming avail-
able in medicine. In Papers V and VI, we investigate how controller performance
can be improved when the signal quality of the measurement is poor, by seamlessly
moving between TCI and closed-loop control.

2.3 Application: Stabilization of Heart Donors for
Transplantation

With the background presented in the previous sections, we now turn our attention
to the application of heart transplantation. In this section, we discuss how accurate
dosing can be used to stabilize hemodynamics in the heart donor. For this, drug
modeling and control systems can be used to maintain normal physiological vari-
ables in the donor, for example, blood pressure and heart rate. This is crucial to pre-
vent ischemic damage to the donor heart and to maintain organ viability. First, we
present an overview of heart transplantation, with a focus on donation after circula-
tory death (DCD) (Section 2.3.1). Then we introduce the phenomenon of ischemic
myocardial contracture (IMC) (Section 2.3.2) and finally we discuss how hemody-
namic stabilization can prevent ischemic damage to the donor heart (Section 2.3.3).

2.3.1 Heart Transplantation
Organ transplantation has saved many lives since the first kidney transplant in 1954.
In terms of long-term survival, transplantation is the only option for end-stage or-
gan failure of the liver, lung, and heart. In 2019, 153863 solid-organ transplants
(kidneys, lungs, hearts, livers, pancreas, and small bowels) were performed world-
wide in 111 countries. However, this only matches 10 % of the global need [EDQM,
2022].

The first step in the donation process is the identification of potential donors.
The clinical personnel determines whether a patient is suitable for donation and the
life-sustaining treatment is continued. When the will to donate has been established
(commonly through a donation register), organ-protective treatment can begin. This
treatment is the first step towards a successful transplantation and can include treat-
ment of hypertension, hypotension, hypothermia, and the detection and correction
of metabolic diseases. This treatment must not contradict what is best for the patient
[EDQM, 2022; MOD, 2024].

This chapter will focus on the two most common scenarios of organ donation
depending on the determination of death: donation after brain death (DBD) and
donation after circulatory death (DCD). In particular, the focus will be on DCD for
heart transplantation and the current status of organ transplantation in Sweden.

32



2.3 Application: Stabilization of Heart Donors for Transplantation

Donation after brain death (DBD) Currently, donation after brain death (DBD)
presents the main source of transplantable organs. In a study of transplanted organs
in the US during 2021 and 2022, DBD made up 97 % of all deceased donors, and
DCD donors represented the other 3 % [Jawitz et al., 2022].

DBD is only performed under certain conditions, where the patient must be in
a hospital, have given consent for donation (commonly through the donation regis-
ter), and be declared brain dead (BD). The definition of brain death, or equivalently
death by neurological criteria, has varied over time. Today, the widespread defi-
nition is the complete and permanent loss of brain functions. This loss of brain
functions is characterized by unresponsive coma with loss of consciousness, loss of
brainstem reflexes, and the inability to breathe independently [Greer et al., 2020].
The key factor for diagnosing BD is the irreversibility of brain function, where the
absence of brain function must be observed for some time before the patient can
be legally declared dead by neurological criteria [Rossetti et al., 2010]. Other tests
for confirming BD include neurologic tests, for example, checking for spontaneous
breathing and brainstem reflexes such as the pupillary light reflex [EDQM, 2022].

Donation after circulatory death (DCD) The shortage of transplantable organs
has led to the (re)introduction of donation after the circulatory determination of
death (DCD). DCD patients can be categorized into one of the four categories de-
pending on the circumstances of the circulatory arrest:

• Category I: Uncontrolled DCD (uDCD). The patient suffers an unexpected
circulatory arrest and no resuscitation is attempted.

• Category II: Uncontrolled DCD (uDCD). The patient suffers an unexpected
circulatory arrest and resuscitation is attempted but failed.

• Category III: Controlled DCD (cDCD). Withdrawal of life-sustaining treat-
ment (WLST) is performed in a planned setting in the hospital, leading to
circulatory arrest.

• Category IV: Circulatory arrest while brain dead. The patient is declared
brain dead and suffers a circulatory arrest.

The most common categories for DCD are categories II and III. Uncontrolled
DCD (category I and II) is subject to the damaging effect of warm ischemia, as
circulatory arrest does not take place in a controlled setting in an ICU but rather
under unclear circumstances. However, with strict selection criteria, these donors
are often healthy before circulatory arrest, usually resulting in good-quality organs.
Controlled DCD (category III) takes place in the form of WLST when it has been
determined that continuous organ support is no longer in the patient’s best interest
[EDQM, 2022]. Most cDCD donors have suffered acute brain damage similar to
DBD donors, with a high risk of developing total brain infarction after WLST. A
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Figure 2.6 Timeline for the DCD process. WLST: Withdrawal of life-sustaining therapies,
BP: blood pressure.

possible DCD donor should not spontaneously breathe and should have the potential
to obtain circulatory arrest within a given time frame [Vävnadsrådet, 2022].

The withdrawal of life-sustaining treatments (WLST) is the first step in the
cDCD process. WLST is performed in a planned setting in the hospital, and the pa-
tient is usually on ventilator support. Following WLST, several time events are ob-
served. Figure 2.6 shows a timeline of the WLST process. These events are [EDQM,
2022]:

1. WLST; withdrawal of life-sustaining therapies. Life support is turned off
(commonly mechanical ventilation and ECMO1).

2. Onset of sustained significant hypoperfusion; low blood pressure (BP) and
low oxygen saturation.

3. Cardio-respiratory (circulatory) arrest; no breathing observed and absence of
pulsatile flow on an arterial line or absence of blood flow through the aor-
tic valve on echocardiography (ECG) (if used). Asystole is not necessary to
determine death [EDQM, 2022].

4. “No-touch” period; the time from circulatory arrest to the final DCD decision,
where interruptions are not allowed. This time varies between 5 and 30 min
in Europe [Lomero et al., 2020].

5. Final DCD decision; Based on the patient’s irreversible state without the pos-
sibility of spontaneous recovery, the final decision to proceed with organ re-
trieval is made. The patient is legally declared dead at this point.

1 Extracorporeal membrane oxygenation (ECMO) is a life support technique that provides cardiac and
respiratory support to patients with severe heart and lung failure.
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2.3 Application: Stabilization of Heart Donors for Transplantation

After the final DCD decision, the main goal is to minimize the warm ischemic2

time. The length of the warm ischemic time affects the outcome of the transplanta-
tion, and acceptable periods for ischemia have been defined [Vävnadsrådet, 2022]:

• Agonal time (sometimes called withdrawal time); the time from WLST to
circulatory arrest. This time varies, in general, from a few minutes to a few
hours.

• Functional warm ischemic time (FWIT); the time from significant hypoper-
fusion to the start of preservation (usually in-situ perfusion).

• Cold ischemic time; the time from preservation to transplantation.

cDCD can only take place if cardio-respiratory arrest follows within 2–4 hours after
WLST. Up to 90 % of the cDCD donors will have circulatory arrest within two hours
after WLST [Leiden et al., 2016]. Acceptable times for FWIT vary from 30 min for
livers and hearts to 90 min for the pancreas and lungs and up to 180 min for kidneys
[Smith et al., 2019; Vävnadsrådet, 2022].

In recent years, DCD has been implemented more and more frequently in Eu-
rope. As of 2021, 12 European countries included cDCD and 14 countries included
uDCD in their transplantation programs, of which eight countries have implemented
both. The fact that countries have focused on different types of DCD relates to
different legislations, ethical concerns, end-of-life practices, and organizational ap-
proaches to the treatment of out-of-hospital circulatory arrest. In countries that have
implemented DCD, these donors have become an important source of organs for
transplantation. For example, in the Netherlands, DCD donors represent 59 % of all
deceased donors [NHS Blood and Transplant, 2019]. DCD is used mainly in kid-
ney, lung, and liver transplantation [EDQM, 2022], all showing results comparable
to those of DBD donation.

In [Jawitz et al., 2022], the authors estimated that DCD heart transplantation
has the potential to increase the donor pool by 30 %. However, the annual number
of DCD heart donors still counts less than 1000 worldwide [EDQM, 2022]. As of
2022, cDCD heart transplantations were successfully carried out in the United King-
dom, Australia, and Belgium [EDQM, 2022]. So far, DCD heart transplantation has
shown results comparable to DBD. The timeline from WLST to organ retrieval is
critical for the outcome of heart transplantation because the heart is more sensitive
to ischemic damage than, for example, the kidneys and lungs.

Current status of organ donation in Sweden There is a strong will to donate in
Sweden. However, only a fraction of the population dies in circumstances that allow
organ donation. In Sweden in 2023, 258 deceased donors were used, of which 190
were DBD donors and 68 were cDCD donors [Scandiatransplant, 2023]. A total of

2 Ischemia occurs when blood flow (and thus oxygen) is reduced to a part of the body
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Hearts transplanted in 2023

68 hearts

On the waiting list for a heart
(Oct 1, 2024)

27 patients

Average waiting time for a heart
(2023)

4 months

Transplanted within a year on
the waiting list

74 %

Figure 2.7 Heart transplantation and waiting list figures for Sweden in 2023/2024. Data
from [Scandiatransplant, 2023].

906 organs were transplanted [Socialstyrelsen, 2023a], and a majority were kidney
transplants.

The first donation of cDCD took place in 2020 [Socialstyrelsen, 2023b]. cDCD
is currently allowed for kidney, liver, lungs, and pancreas. There is no current plan
to introduce uDCD for transplantation in Sweden. Sweden’s current DCD proto-
col is described in [Vävnadsrådet, 2022]. The protocol follows the steps described
previously, with the following additions and specifications:

• At WLST, all treatments should be withdrawn except for the palliative treat-
ment. Palliative treatment includes opioids, sedatives, pain/ anxiety treatment,
and anticholinergics3.

• After WLST, the donor is monitored with invasive arterial pressure and pulse
oximetry. ECG should not be used as it can give a false impression of life for
the attendant next of kin.

• Circulatory arrest is determined when the following is fulfilled: no palpable
pulse, no audible heart sounds at auscultation4, no spontaneous breathing,
and fixed, usually dilated pupils.

• The “no-touch period” for cDCD is 5 minutes.

In 2023, 68 hearts were transplanted in Sweden. In Figure 2.7, we illustrate the
current status of the waiting list for hearts in Sweden. As shown in Figure 2.7, most
patients on the waiting list are transplanted within one year. However, the need
is expected to grow in the future, which is consistent with the rest of the world
[EDQM, 2022]. The potential of DCD for heart transplantation in Sweden is yet to
be investigated. As DCD for heart transplantation becomes more and more common
in the world with promising results, there is potential for future implementation in
Sweden.

3 Anticholinergics blocks acetylcholine and is used for treating example dizziness and hallucinations.
4 Ausculation means listening to the internal sounds of the body, usually using a stethoscope.

36



2.3 Application: Stabilization of Heart Donors for Transplantation

(a) Heart without ischemic myocardial contracture.

5 cm

(b) Heart with ischemic myocardial contracture.

Figure 2.8 Example of a heart with (lower) and without (upper) ischemic myocardial con-
tracture (IMC). Note that the left ventricular lumen is almost invisible in the contracted heart.
Both photos are in the same scale, indicated in (b). From [Wahlquist et al., 2021b].

2.3.2 Ischemic Myocardial Contracture (IMC)
When the myocardium5 performs mechanical work under warm ischemic condi-
tions, the heart muscle becomes stiff and loses its contractility. This is known as is-
chemic myocardial contracture (IMC) or “stone heart” [Cooley et al., 1972b]. IMC
is a severe condition that can occur in DCD hearts and prevents the heart from being
transplanted. Figure 2.8 shows an example of a heart with and without IMC. The
prevention and delay of IMC have been investigated in several works [Cooley et al.,
1972a; Hearse et al., 1977]. For example, cooling, administration of β -blockers and
calcium channel blockers have been suggested to reduce the risk of IMC [Cooley
et al., 1972a; Zumbro et al., 1978]. However, these studies were performed in the
1970s and 1980s to prevent IMC in open-heart surgeries using cardiopulmonary
bypass. The effect of these interventions on DCD hearts is yet to be investigated.

Only a few works have studied IMC in DCD hearts in the last few years, such as
[Li et al., 2023], where the focus has been on understanding the mechanisms behind
IMC rather than prevention.

5 Myocardium – the cardiac muscle
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2.3.3 Stabilization of cDCD Heart Donors
There are many legal, ethical, and logistical challenges associated with cDCD. The
donation process must follow the “dead-donor rule”, which means that organ dona-
tion cannot take place until the patient is legally declared dead. For DCD donors,
this occurs when the patient has suffered a circulatory arrest [EDQM, 2022]. As
DCD hearts are susceptible to ischemic damage, it is crucial to be careful at every
step of the donation process. For example, minimizing the time from circulatory
arrest to the start of preservation is essential to reduce the warm ischemic time and,
therefore, reduce the ischemic damage. However, this is commonly regulated by
law, which gives little or no room for modification.

An option to prevent ischemic damage in DCD hearts is to start organ-
preserving treatment, via for example “ante-mortem” interventions. These are inter-
ventions after WLST that facilitate the cDCD process. Justification of ante-mortem
interventions can be made on ethical and legal grounds if the intervention is in
the patient’s best interest and is not harmful to the patient. The following three
conditions must be met for organ-preserving treatment in Sweden [Socialstyrelsen,
2023a]:

• It cannot be postponed until after death.

• It does not cause more than minor pain or harm.

• It does not prevent efforts for the patient’s own sake.

Organ-preserving treatment is in general the same treatment that most patients re-
ceive for life-saving purposes, but is given to preserve the function of the organs
so that they can be transplanted. Primarily, it is about maintaining the oxygenation
of the organs, but can also include blood pressure support and other medications
[MOD, 2024]. These interventions might prevent or reverse ischemic damage to
improve the quality of donated organs. Ante-mortem interventions are allowed to
a different extent in countries practicing cDCD. For example, the use of heparin is
only allowed in some countries [EDQM, 2022].

Precision dosing can be used to maintain normal physiological variables (such
as blood pressure and heart rate) in the donor while making sure that the interven-
tions are in the patient’s best interest. Both accurate drug models and robust control
systems can be useful in this setting. With accurate models, we can predict the drug
effect and with a control system, we can rapidly change the dose to account for
changes in the patient’s condition, which will change after WLST. Together, they
can be used to prevent ischemic damage and improve the quality of donated or-
gans. The ethical, legal, and logistic challenges of these interventions are further
discussed in Section 4.2. In Paper I, we study how the precise administration of
drugs can prevent IMC in cDCD hearts.
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2.4 Application: Control of Anesthesia

Adequate anesthesia is essential for patient safety during surgery, but reaching and
maintaining the desired level of anesthesia is challenging due to the inter-patient
variability in the drug response. Therefore, accurate drug modeling is crucial for
each patient to find the appropriate dose. Furthermore, automatic control systems,
such as TCI and closed-loop control systems, can assist the anesthesiologist and
compensate for disturbances. This section presents the components of anesthesia
(Section 2.4.1), the most popular PKPD models for propofol (Section 2.4.2), TCI in
anesthesia (Section 2.4.3), and closed-loop control of anesthesia (Section 2.4.4).

2.4.1 Anesthesia
General anesthesia is the induction of a state with temporary memory, conscious-
ness, and sensation loss. Anesthesia can be divided into three components, each
associated with a specific class of drugs. The three components are:

• Hypnosis: The main component of anesthesia, where hypnotic drugs induce
unconsciousness. Some examples of purely hypnotic drugs are propofol, eto-
midate, and midazolam.

• Analgesia: The component that manages pain. Commonly used analgesic
drugs are opioids, such as remifentanil, fentanyl, and morphine.

• Immobilization: The component that induces muscle relaxation. Neuromus-
cular blockers such as rocuronium and atracurium reduce patient movement
and breathing during surgery. Since neuromuscular blocking drugs can cause
breathing difficulties, they are commonly used together with a mechanical
ventilator.

The anesthetic state is a combination of the three states presented above. A
measure of the hypnotic state, the depth of hypnosis (DoH), represents the uncon-
sciousness of the patient and is related to drug concentration in the brain. DoH can
be estimated from the electroencephalogram (EEG), for example using the Bispec-
tral Index (BIS) monitor or the WAVCNS monitor [Vuyk and Mertens, 2003; Bibian
et al., 2011]. Wavelet analysis is performed on the EEG signal to create an estimate
of the DoH, as detailed in [Sigl and Chamoun, 1994]. The BIS and WAVCNS indices
are unitless numbers between 100 and 0, where 100 represents the fully awake state,
and 0 represents an isoelectric EEG (no activity). A reference span for hypnosis dur-
ing surgery is a BIS value of 60−40 [Vuyk and Mertens, 2003]. Figure 2.9 shows
how values of the BIS/WAVCNS indices correspond to the hypnotic level.

The depth of analgesia (DoA), i.e., the pain level, is more difficult to measure.
The difficulty comes from that the perception of pain is subjective and there is no
direct measure of pain. Several clinically available pain monitors claim to measure
analgesia, and an overview of the available monitors is given in [Ledowski, 2019].
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Figure 2.9 The BIS/WAVCNS index and the corresponding hypnotic level.

These monitors are based on different physiological signals, such as heart rate vari-
ability, skin conductance, and pupillary reflexes. However, the precision and relia-
bility of these monitors are debated [Ledowski, 2019]. The most common method
to determine the analgesic drug dose is to set it to a fixed ratio to the hypnotic drug
dose [Schiavo et al., 2021]. There is also a strong synergistic effect between opioids
and hypnotic drugs, which must be taken into account [Miller et al., 2009].

There are several available monitors for estimating neuromuscular blockade
(NMB). A commonly used method is electromyography (EMG), which is used to
estimate the muscle response to nerve stimulation. An extended overview of NMBs
is provided in [Motamed, 2023].

General anesthesia is widely used during surgery, where the patient is in a state
of unconsciousness and analgesia. If needed, muscle relaxation is also induced.
Anesthesia can be divided into three main phases:

1. Induction: The phase in which the patient receives anesthetic drugs to induce
anesthesia. The aim is to reach the desired level of anesthesia as quickly as
possible without overdosing.

2. Maintenance: The phase in which the patient should remain at the desired
level of anesthesia, commonly under continuous infusion of anesthetic drugs.
During this phase, surgery is performed. These interventions can affect the
level of consciousness and pain.

3. Emergence: The phase in which the patient awakens. Typically, this is the
easiest phase to control, as the drug infusion is stopped and the patient will
wake up.

A simulated example to illustrate the three phases of anesthesia is shown in Fig-
ure 2.10, illustrating an example of how the measured BIS signal can look during
the three phases of anesthesia. During the induction phase, the DoH drops rapidly
to the desired range. During the maintenance phase, the DoH is kept between a BIS
value of 60 and 40, while during the emergence phase, the patient is returned to
the awake state. The DoH estimate is commonly affected by noise, and several at-
tempts have been made to identify the noise profile, for example, in [Pawlowski et
al., 2022]. The noise profile of [Pawlowski et al., 2022] was used to create a realistic
BIS signal in Figure 2.10.
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Figure 2.10 Simulated scenario of the BIS signal during the three phases of anesthesia:
induction, maintenance, and emergence. The range for suitable DoH levels during mainte-
nance is marked in orange. A noise profile, identified in [Pawlowski et al., 2022], was used
to create a representative clinical scenario.

The main challenge of anesthesia is the inter-patient variability in the drug re-
sponse. The drug infusion must be titrated (continuously measured and adjusted),
as the patient’s response to the drug is unknown beforehand. Overdosing can cause
adverse effects such as hypotension and bradycardia, while underdosing can cause
awareness during surgery. Nausea and vomiting were reported in 9.8 % of the
anesthesia cases in 2009 [Miller et al., 2009], and vary between different types of
surgery. In rare cases, even death can occur if the patient is overly sedated, but the
risk is very low. Long-term effects of anesthesia are very rare.

This thesis focuses on the control of the hypnotic drug propofol. Propofol is
widely used in surgery due to its rapid and smooth induction of anesthesia with a
low risk of postoperative nausea and vomiting. Adverse effects of propofol are rare,
where the most common are pain at the injection site, bradycardia (low heart rate),
and hypotension (low blood pressure) [Sahinovic et al., 2018]. Propofol is adminis-
tered intravenously and is commonly used for total intravenous anesthesia (TIVA).
Propofol is commonly co-administered with the analgesic drug remifentanil, which
is a fast-acting opioid [Sahinovic et al., 2018]. They have a synergistic effect, which
means that both the dose of propofol and remifentanil can be reduced when they are
administered together.

2.4.2 Pharmacological Models for Propofol
To deal with the inter-patient variability, population PKPD models are used to esti-
mate drug concentration in the patient’s body (see Section 2.1.3). In TCI and closed-
loop control of anesthesia, population PKPD models are used in the underlying
software to estimate drug concentrations and for control design.

For propofol, a three-compartment mammillary model, see Figure 2.1c, cap-
tures the main pharmacokinetic properties, as motivated by [Sahinovic et al., 2018].
The three-compartment PK model is commonly extended with an effect-site com-
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PK
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u Cp Ce DoH

PD

Figure 2.11 PKPD model for propofol from drug dose u to hypnotic depth DoH. The out-
put from the PK model is the plasma concentration Cp, and the output from the effect-site
compartment is the effect-site concentration Ce. The sigmoidal Emax model (Hill model) de-
scribes the relationship between Ce and DoH.

partment, modeling the delay it takes for the drug to travel from the blood plasma
to the effect-site. Most propofol PD models use the sigmoidal Emax model (also
called the Hill model) to characterize the relationship between effect-site concen-
tration and clinical drug effect in the brain. The sigmoidal Emax model is detailed
in Section 2.1.2. The full PKPD model from drug dose u to hypnotic depth DoH is
shown in Figure 2.11.

Reduced-order models have been used for anesthesia control to deal with iden-
tifiability issues of the three- or four-compartment model [da Silva et al., 2014;
Wahlquist et al., 2021a] An example of a reduced-order model is the first-order plus
time delay (FOPTD) model, where the linear PKPD part is approximated by a first-
order system, and the delay accounts for the time it takes for the drug to reach the
effect site [Hahn et al., 2012]. The transfer function of the FOPTD model, from
drug dose u to hypothetical effect-site concentration Ce, is given by

Gu,Ce(s) =
k

s+ k
e−Ls, (2.12)

where k is the model parameter and L is the time delay. In [van Heusden et al., 2013],
it was demonstrated that the performance of the FOPTD model was comparable to
a more complex model for closed-loop anesthesia in a clinical study. In [da Silva
et al., 2010], the authors suggested a fixed-pole model in which the poles of the
linear PKPD model of Equation (2.3) and Equation (2.7) were fixed with a given
ratio, also to deal with identifiability problems. The transfer function of the fixed-
pole model from drug dose u to hypothetical effect-site concentration Ce is given
by

Gu,Ce(s) =
k1k2α3

(s+α)(s+ k1α)(s+ k2α)
, (2.13)

where the three poles are given by α , k1α , and k2α , and where k1 and k2 are fixed
constants. Note that both the FOPTD and the fixed-pole model have a static gain
of one. The system gain is modeled by the parameters of the PD model. The fixed-
pole model showed satisfactory performance in closed-loop control of anesthesia
in simulation. However, the four-compartment linear PKPD model is still the most
widely used compartmental model for propofol in clinical practice.
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There are several published and clinically evaluated adult population PKPD
models for propofol, where the most famous population PK models are the Marsh
and Schnider models [Marsh et al., 1991; Schnider et al., 1998]. Both are used suc-
cessfully and routinely in TCI systems [Masui et al., 2010; Coetzee, 2012]. The
Marsh model has been used in the clinic for more than 30 years and is incorporated
into the Diprifusor TCI system. Both models have also been used in closed-loop
control of anesthesia, which is the topic of the next section Section 2.4.4. The Marsh
and Schnider models for adults are detailed in the boxes below. The units of covari-
ates age, weight, and height are years, kg, and cm, respectively. The Marsh model
has, for easier comparison, been rewritten in terms of volumes and clearances rather
than rate constants, which is how it was presented in the original publication [Marsh
et al., 1991]. The Marsh model is a simple model with only weight (WGT) as a co-
variate, whereas the Schnider model is a more complex model with age (AGE),
weight (WGT), height (HGT), and sex (men/women) as covariates. The Lean Body
Mass (LBM) is calculated from weight and height and is used in the Schnider model.
The LBM is calculated differently for men and women. In the Marsh and Schnider
models, no random effects are included in the original formulation.

Marsh propofol PK model [Marsh et al., 1991]

V1 = 0.228 ·WGT [L]
V2 = 0.464 ·WGT [L]
V3 = 2.895 ·WGT [L]

CL = 0.0271 ·WGT [Lmin−1]

Q2 = 0.0255 ·WGT [Lmin−1]

Q3 = 0.00955 ·WGT [Lmin−1]
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Schnider propofol PK model [Schnider et al., 1998]

V1 = 4.27 [L]
V2 = 18.9−0.391(AGE−53) [L]
V3 = 238 [L]

CL = 1.89+0.0456(WGT−77)−0.0681(LBM−59)+

0.0264(HGT−177) [Lmin−1]

Q2 = 1.29−0.024(AGE−53) [Lmin−1]

Q3 = 0.836 [Lmin−1]

where

LBMmen = 1.1 ·WGT−128 ·
(

WGT
HGT

)2

LBMwomen = 1.07 ·WGT−148 ·
(

WGT
HGT

)2

Deriving PKPD population models for children is challenging, since their size
and body composition vary as they grow, making it difficult to identify an accurate
model [Sahinovic et al., 2018]. Two examples of pediatric (children) population
PK models for propofol that are available for TCI are the Paedfusor model and the
Kataria model [Absalom et al., 2003; Kataria et al., 1994]. Also, modeling obese
and elderly patients is challenging, as obese patients tend to be overdosed if the dose
scales with weight, and elderly patients tend to have long delays in drug response
[van Heusden et al., 2013; Eleveld et al., 2018].

A more recently published population PKPD model is the Eleveld model
[Eleveld et al., 2018]. It is a complete model for children and adults (all ages,
including obese and elderly), developed from a large data set with data from 30
previously published studies. Using a large data set allows for finding hidden rela-
tionships in the data, which is not possible with a smaller data set. The model has
shown promising results in all patient groups. However, the Eleveld model is still
under evaluation and is being compared with the more established models of Marsh
and Schnider; see, for example, [Hosseinirad et al., 2023; Paolino et al., 2023b].
The Eleveld model differs from the traditional models as it is more complex, with
complicated relationships between covariates and PKPD model parameters. It also
includes more covariates than the Marsh and Schnider models, and these are: age,
weight, height, sex, absence/presence of opiates, and site of blood sampling (arterial
or venous). The Eleveld model is detailed in the box below.
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Eleveld propofol PK model [Eleveld et al., 2018]

faging(x) = exp(x(AGE−AGEref))

fsigmoid(x,Ce50,λ ) =
xλ

xλ +Cλ
e50

fcentral(x) = fsigmoid(x,θ12,1)
fCLmat = fsigmoid(PMA,θ8,θ9)

fQ3mat = fsigmoid(AGE+40weeks,θ14,1)

fopi(x) =

{
1, absence of opiates
exp(x ·AGE) , presence of opiates

fAl-Sallami =


(

0.88+ 0.12
1+(AGE/13.4)−12.7

)( 9270·WGT
6680+216·BMI

)
, male(

1.11+ −0.89
1+(AGE/7.1)−1.1

)( 9270·WGT
8780+244·BMI

)
, female

V1,arterial [L] = θ1
fcentral(WGT)

fcentral(WGTref)
· exp(η1)

V1,venous [L] =V1,arterial (1+θ17(1− fcentral(WGT)))

V2 [L] = θ2
WGT

WGTref
fageing(θ10) · exp(η2)

V3 [L] = θ3
fAl-Sallami

fAl-Sallami, ref
fopi(θ13) · exp(η3)

CL [L/min] =

{
θ4, male
θ15, female

}( WGT
WGTref

)0.75 fCLmat

fCLmat, ref
fopi(θ11) · exp(η4)

Q2,arterial [L/min] = θ5 (V2/V2,ref)
0.75 (1+θ16(1− fQ3mat)) · exp(η5)

Q2,venous [L/min] = Q2,arterial ·θ18

Q3 [L/min] = θ6 (V3/V3,ref)
0.75 fQ3mat

fQ3mat, ref
· exp(η6)

For the Eleveld model, the θ -parameters as well as the η-parameters are avail-
able in the original publication [Eleveld et al., 2018] and were left out for readability.

The Marsh model does not incorporate an effect-site compartment in the original
formulation. In the Diprifusor TCI system, the rate of the effect-site compartment
ke0 is set to ke0 = 0.26 min−1, and this value varies between different TCI sys-
tems. The Schnider model uses ke0 = 0.459 min−1. The Eleveld model suggests a
covariate-based PD model with random effects, which is not very common in phar-
macometric models. It should be noted that there were only three individuals older

45



Chapter 2. Background

than 70 years in the PD data set in which the model was developed, which means
that the PD model in [Eleveld et al., 2018] is not extensively validated for elderly
patients. The Eleveld PD population model is detailed in the box below.

Eleveld PD model for propofol [Eleveld et al., 2018]

Ce50 [µgL−1] = θPD1 · faging(θPD7) · exp(ηPD1)

ke0 [min−1] =

{
θPD2, arterial PK
θPD8, venous PK

}
·
(

WGT
WGTref

)−0.25

· exp(ηPD2)

BISbaseline = θPD3

γ =

{
θPD4, for Ce ≤Ce50

θPD9, for Ce >Ce50

BIS = BISbaseline
Cγ

e50

Cγ

e50 +Cγ
e
+θPD5 · ε · exp(ηPD3)

Note: ε denotes the residual observation error.

Common for these population PKPD models is that they tend to underestimate
the plasma concentration of propofol [Sahinovic et al., 2018], leading to overdosing.
They have, however, been shown to work well in practice.

2.4.3 TCI in Anesthesia
Automatic control of anesthesia has been introduced to improve patient safety, re-
duce the risk of over- and underdosing, and reduce the workload of the anesthesiol-
ogist. Using TCI in anesthesia simplifies the drug administration process compared
to manual control and is today widely used for propofol. TCI has been successfully
evaluated in several clinical studies, for example in [Mehta et al., 2008].

The TCI system implements one or several PKPD models, such as the Marsh
model for adults and the Paedfusor model for children [Marsh et al., 1991; Absa-
lom et al., 2003]. The anesthesiologist enters the patient’s covariates, such as age,
weight, and height, into the TCI system. Then, the anesthesiologist sets a refer-
ence effect-site concentration (in some cases a plasma concentration), and the TCI
system calculates the infusion rate needed to reach and maintain the desired con-
centration. Studies have shown that anesthesiologists find it more intuitive to set a
reference effect-site concentration rather than a desired DoH, as this is how inhaled
anesthetics are administered [Struys et al., 2016]. If the anesthesiologist suspects
a change in the patient’s state, for example, due to surgical stimuli, the reference
effect-site concentration can be adjusted to counteract the change. In addition, if the
patient is not sufficiently, or too deeply, sedated, the target effect-site concentration
can be adjusted to reach the desired DoH.
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Figure 2.12 Closed-loop anesthesia. The anesthesiologist sets the desired anesthetic level,
and the control system adjusts the drug dose to maintain the desired level. A monitor continu-
ously measures the patient’s hypnotic depth (DoH) and sends this information to the control
system. Noise and disturbances affect the patient’s response and the DoH estimate. Icons
from https://www.flaticon.com/free-icons/

As mentioned in Section 2.2.2, TCI systems are heavily dependent on the pre-
cision of the underlying PKPD model. If model errors or disturbances are present,
the TCI system cannot accurately predict the drug concentration in the body. This is
illustrated in a simulation of TCI with propofol and the Schnider PK model in Fig-
ure 2.4. This discrepancy can lead to under- or overdosing, which can have severe
consequences for the patient, as demonstrated in [Wahlquist et al., 2024]. Using a
closed-loop control system can deal with these issues, as it can adjust the drug dose
based on the patient’s response, which is measured in real-time. This is discussed
in the next section.

2.4.4 Closed-Loop Anesthesia
Closed-loop control of anesthesia has several advantages over TCI, as it can account
for inter- and intra-patient variability and disturbances. Disturbances may affect the
patient’s hypnotic level. For example, surgical stimuli tend to increase the patient’s
awareness, which must be accounted for rapidly to avoid pain and awareness during
surgery. This has motivated the introduction of closed-loop anesthesia to improve
patient safety. It can also reduce the workload of the anesthesiologist, which can be
heavy during long surgeries. Several studies have shown that closed-loop anesthesia
also reduces the drug usage, see for example [Luginbuhl et al., 2003].

The concept of closed-loop anesthesia was introduced in the 1950s by [Bick-
ford, 1950] and has been researched since. Clinical use of closed-loop anesthesia
is largely limited to clinical trials. An example of an automatic control system for
anesthesia is shown in Figure 2.12. The anesthesiologist sets a desired level of anes-
thesia, typically a DoH value of 50. In the induction phase, the goal is to reach the
target value as quickly as possible without overshooting. During the maintenance
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phase, the goal is to maintain stable hypnosis and to reject disturbances, originating,
for example, from surgical stimuli. The patient’s EEG is continuously measured and
an estimated DoH is computed from the BIS or WAVCNS monitor. This estimate is
then used in the controller to compute a suitable dose to be delivered by the TIVA
system with an infusion pump. The anesthesiologist supervises the control system
and can switch to manual control if necessary.

Several closed-loop control strategies have been evaluated in simulation and
clinical studies. Model-free and model-based control strategies have been proposed,
the most common being PID control and model predictive control (MPC), respec-
tively [van Heusden et al., 2014; Schiavo et al., 2021; Pawlowski et al., 2023;
Paolino et al., 2023a]. Model-based control strategies rely on the PKPD model to
predict drug concentration in the body and are therefore sensitive to model errors.
Model-free control strategies only use the PKPD models for controller design and
are often easier to implement. Therefore, model-free control strategies are more ro-
bust to model errors, which are almost always present in practice. However, model-
based control strategies usually allow for constraint handling in the control design,
which is useful for limiting over- and undershoots. In control design for anesthesia,
the goal is to design a controller that can handle disturbances and model errors and
works for a wide range of patients. Figure 2.13 shows an example of where a PID
controller successfully rejects a disturbance during the maintenance phase. Typi-
cally, a set of performance measures are used to evaluate controller performance.
Some examples of these are: time in the target range, time to reach the target range,
and the overshoot from the reference value [Varvel et al., 1992].

Although closed-loop control has the potential to improve anesthesia care, sev-
eral challenges need to be addressed. Poor electrode placement and electric inter-
ference can affect measurements and introduce measurement noise [Chan et al.,
2012]. Incorporating the inter- and intra-patient variability in the control design is
challenging but necessary for robust performance. This also assumes that the PKPD
model is accurate, which is not always the case. This may lead to conservative con-
trol strategies to ensure patient safety. This would not be optimal, as it would lead
to slow response times and poor performance. Another challenge is that complex
control systems can be difficult for the anesthesiologist to understand, which is im-
portant for clinical acceptance. Therefore, the control system must be intuitive and
easy to use and understand for the anesthesiologist. Although the controller is auto-
matic, the anesthesiologist is responsible for patient safety and must be able to take
over the control if needed. A more detailed overview of trends and challenges in
closed-loop anesthesia control is provided in [Ghita et al., 2020].

In conclusion, automatic control of anesthesia has the potential to improve pa-
tient safety and reduce the workload of the anesthesiologist. Before these systems
can be routinely implemented in clinical practice, the challenges of patient variabil-
ity, disturbances, and measurement noise must be addressed. For successful imple-
mentation, the controller must be robust, easy to understand, and integrated into the
existing clinical workflow.
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Figure 2.13 Example of disturbance rejection with a PID controller in closed-loop anes-
thesia. The disturbance is a positive step change of size 10 in the patient’s DoH level and is
introduced at t = 2 min.
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3
Contribution

This chapter presents the main contribution of the thesis, which consists of six pa-
pers addressing the research questions outlined in Section 1.1. These papers and the
author’s contribution to each paper are summarized in Section 3.1. The key find-
ings of the papers are then summarized in Section 3.2. The CRediT Contributor
Roles Taxonomy is used to describe the author’s contributions (in black in tables in
Section 3.1) and the taxonomy is described in Section 3.3. The author has also con-
tributed to several other peer-reviewed publications, which are listed in Section 3.4.
These were omitted in the thesis to improve the coherence of the thesis and maintain
focus on the main research questions.

3.1 Included Papers

Paper I

Y. Wahlquist, K. Soltesz, Q. Liao, X. Liu, H. Pigot, T. Sjöberg,
and S. Steen (2021b). “Prevention of ischemic myocardial contrac-
ture through hemodynamically controlled DCD”. Cardiovascular En-
gineering and Technology. DOI: 10.1007/s13239-021-00537-8

Scientific Summary In Paper I, we developed an automatic control system to
maintain normal blood pressure and heart rate in controlled donation after circu-
latory death (cDCD) donors. In a preclinical porcine study, the control system was
able to maintain stable hemodynamics after withdrawal of life-sustaining treatment
(WLST). None of the six individuals in the test group developed ischemic myocar-
dial contracture (IMC) within 1 hour after WLST, compared to all six in the control
group. This shows that the onset of IMC can be delayed up to 1 hour and poten-
tially improve donor heart quality for transplantation, allowing more hearts to be
available for transplantation. The study also highlights the potential for automatic
control systems to facilitate controlled DCD in a calm and dignified manner.
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During this work, we realized that the controller performance was limited by the
quality of the drug model on which the controller was tuned. Therefore, for the fol-
lowing works, we decided to further investigate how these models are derived in the
first place and how they can be improved to achieve better controller performance.

Writing - original draft Writing - review & editing Conceptualization
Data curation Formal analysis Investigation
Methodology Resources Software
Supervision Validation Visualization

Paper II

Y. Wahlquist, F. Bagge Carlson, and K. Soltesz (2023a). “Fast simula-
tion of pharmacokinetics”. IFAC Proceedings Volumes (IFAC-Papers-
Online) Presented at 22nd IFAC World Congress 56:2, pp. 2995–3000.
DOI: 10.1016/j.ifacol.2023.10.1425

Scientific Summary In Paper II, we developed a fast simulator for pharmacoki-
netic (PK) compartmental models to handle irregular sampling times for infu-
sion rates and drug concentration measurements. Existing simulators were not fast
enough to be used in the machine learning methods that were developed, in which
the PK model needs to be simulated millions of times. The simulator was success-
fully demonstrated on a three-compartment mammillary model and applied to a
large dataset for propofol of more than 1000 simulated concentration curves. The
simulator is available as an open-source package and can be used for fast simu-
lation of low-order pharmacokinetic models in machine learning applications, see
[Wahlquist, 2022].

Writing - original draft Writing - review & editing Conceptualization
Data curation Formal analysis Investigation
Methodology Resources Software
Supervision Validation Visualization

Paper III

Y. Wahlquist, J. Sundell, and K. Soltesz (2023b). “Learning pharmaco-
metric covariate model structures with symbolic regression networks”.
Journal of Pharmacokinetics and Pharmacodynamics. DOI: 10.1007/
s10928-023-09887-3
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Scientific Summary In Paper III, we proposed a new method for developing co-
variate models that relate covariates, such as age or weight, to PKPD model pa-
rameters using a special neural network, called a symbolic regression network. For
fast simulations of the PK model, we utilized the simulator developed in Paper
II. The proposed methodology is a data-driven approach that can identify readable
and interpretable covariate models, which are both crucial for clinical applicabil-
ity. With this methodology, we can efficiently identify simple covariate relation-
ships while exploring a large model search space and maintaining high predictive
performance. Compared to traditional modeling methods, this method also allows
automatic search for covariate relationships, which can significantly speed up the
modeling process. The method’s feasibility was demonstrated on a large data set of
1031 individuals for the anesthetic drug propofol. The resulting covariate model has
comparable performance and accuracy to the current state-of-the-art model while
being lower in complexity.

Writing - original draft Writing - review & editing Conceptualization
Data curation Formal analysis Investigation
Methodology Resources Software
Supervision Validation Visualization

Paper IV

Y. Wahlquist and K. Soltesz (2024). “Automated covariate modeling
using efficient simulation of pharmacokinetics”. IFAC Journal of Sys-
tems and Control 27, p. 100252. DOI: 10.1016/j.ifacsc.2024.
100252

Scientific Summary In Paper IV, we replaced the symbolic regression network
from Paper III with a regular neural network to investigate if a more flexible func-
tion approximator could improve the predictive performance compared to a sym-
bolic regression network. The results showed only a small improvement, suggest-
ing that symbolic regression networks are able to capture the covariate relationships
efficiently. Furthermore, the study revealed that it might not be the covariate model
structure itself that limits performance, but rather the structure of the compartmental
model and the quality of training data.

Writing - original draft Writing - review & editing Conceptualization
Data curation Formal analysis Investigation
Methodology Resources Software
Supervision Validation Visualization
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Paper V

Y. Wahlquist, N. Paolino, M. Schiavo, A. Visioli, and K. Soltesz (2025).
“Kalman filter soft sensor to handle signal quality loss in closed-
loop controlled anesthesia”. Biomedical Signal Processing and Con-
trol. DOI: 10.1016/j.bspc.2025.107506

Scientific Summary In Paper V, we used a Kalman filter to smoothly transition
between open- and closed-loop control, based on measurement signal quality. If
the signal quality is good, the system runs in closed loop based on the measure-
ment, and if the signal quality is poor, the system runs in open loop. In addition,
combinations of open- and closed-loop control are possible if signal quality is in
between perfect and poor. This enables robust control of closed-loop anesthesia
where, if both measurement and model predictions are poor, a combination of them
provides a more reliable estimate of the patient’s state. This is particularly useful in
situations when disturbances and measurement noise are present. We demonstrated
the method’s effectiveness in a realistic simulated example with a PID controller
on a representative data set of adults. The results showed that the proposed method
significantly improved the controller performance compared to using only measure-
ments (closed-loop) or model predictions (open-loop).

Writing - original draft Writing - review & editing Conceptualization
Data curation Formal analysis Investigation
Methodology Resources Software
Supervision Validation Visualization

Paper VI
Y. Wahlquist and K. Soltesz (2025). “Seamless integration of target-
controlled infusion and closed-loop anesthesia”. Accepted to American
Control Conference 2025

Scientific Summary In Paper VI, we continued the work of combining open- and
closed-loop control for robust anesthesia, focusing on how different types of distur-
bances and noise affect control performance. We introduced a method to seamlessly
move between target-controlled infusion (TCI) and model predictive control (MPC)
based on the measurement signal quality. The results showed that moving between
TCI and MPC can effectively reduce the impact of disturbances and noise, which
is particularly useful in surgery when surgical disturbances and electrical inference
are present.
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3.2 Summary of Key Findings

The research aims of this thesis were presented in the introduction (Section 1.1)
and the overarching aim was: to improve the modeling and control of pharmacolog-
ical systems, with a particular focus on addressing patient variability and precision
dosing. To connect the research to the aims, we summarize the key findings of the
papers in this thesis in the following list:

• Paper I: We used precise drug control to stabilize blood pressure in DCD
heart donors, which significantly delayed the onset of ischemic myocardial
contracture (IMC), thus improving organ quality for transplantation.

• Paper II: We introduced a fast simulator for low-order compartmental phar-
macokinetic models, called “FastPKSim.jl”, to speed up model evaluation,
which is crucial in machine learning applications. The simulator was used in
Papers III and IV.

• Paper III: We introduced a machine learning method to identify simple and
readable covariate models from clinical data, enabling faster and broader
evaluation of model candidates.

• Paper IV: We compared neural networks to simpler covariate models for
drug concentration prediction. The neural networks predicted marginally bet-
ter than the simple, readable covariate model developed in Paper III, indi-
cating that data quality and compartmental model structure probably limit
predictive performance.

• Paper V: We proposed a method to move seamlessly between open- and
closed-loop anesthesia depending on the quality of the measurement signal.
This enabled a more robust control system, improving patient safety during
surgical procedures.

• Paper VI: Building on the control system in Paper V, we further studied
how disturbances and measurement noise affected the control system and how
their effects could be minimized.

To further demonstrate how the papers are related to each other and the topics
of modeling and control, a schematic overview of this is presented in Figure 3.1.
The illustration shows how a method or result from one paper followed to the next,
for example, how the simulator developed in Paper II was used in Papers III and IV.
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Model Control

Paper I

Paper II

Paper III

Paper IV

Paper V

Paper VI

Figure 3.1 Connection of the papers to the topics of modeling and control (dashed) and
to each other (arrows, solid). An arrow from Paper A to Paper B indicates that a method or
result from Paper A was used in Paper B.
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3.3 CRediT Contributor Roles Taxonomy

In Table 3.1, the CRediT Contributor Roles Taxonomy is described, taken from
[NISO, 2024]. The CRediT taxonomy was introduced as a standardized system to
clarify contributor roles in research and academic publications. The author’s con-
tributions to the included papers were categorized according to this taxonomy in
Section 3.1.

Table 3.1 CRediT Contributor Roles Taxonomy

Role Definition

Writing - original
draft

Preparation, creation, and/or presentation of the published-
work, specifically writing the initial draft (including substans-
ive translation).

Writing - review -
& editing

Preparation, creation, and/or presentation of the published
work by those from the original research group, specifically
critical review, commentary, or revision – including pre- or
post-publication stages.

Conceptualization Ideas; formulation or evolution of overarching research goals
and aims.

Data curation Management activities to annotate (produce metadata), scrub
data, and maintain research data (including software code,
where it is necessary for interpreting the data itself) for initial
use and later re-use.

Formal analysis Application of statistical, mathematical, computational, or
other formal techniques to analyze or synthesize study data.

Investigation Conducting a research and investigation process, specifically
performing the experiments, or data/evidence collection.

Methodology Development or design of methodology; creation of models.
Resources Provision of study materials, reagents, materials, patients, labo-

ratory samples, animals, instrumentation, computing resources,
or other analysis tools.

Software Programming, software development; designing computer pro-
grams; implementation of the computer code and supporting
algorithms; testing of existing code components.

Supervision Oversight and leadership responsibility for the research activity
planning and execution, including mentorship external to the
core team.

Validation Verification, whether as a part of the activity or separate, of the
overall replication/reproducibility of results/experiments and
other research outputs.

Visualization Preparation, creation and/ or presentation of the published
work, specifically visualization/data presentation.
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3.4 Additional Publications

The author of this thesis has also co-authored the following peer-reviewed publica-
tions.

J. Sundell, Y. Wahlquist, and K. Soltesz (2024). “Symbolic neural
networks for automated covariate modeling in a mixed-effects frame-
work”. IFAC-PapersOnLine 58:24. 12th IFAC Symposium on Biolog-
ical and Medical Systems (BMS 2024), pp. 472–477. DOI: https:
//doi.org/10.1016/j.ifacol.2024.11.083

Y. Wahlquist, A. Gustafson, and K. Soltesz (2024). “Exploring the in-
fluence of patient variability on propofol target-controlled infusion per-
formance”. In: 2024 European Control Conference (ECC), pp. 3027–
3032. DOI: 10.23919/ECC64448.2024.10590791

A. R. Ynineb, H. Farbakhsh, G. B. Othman, Y. Wahlquist, I. R. Birs,
E. Yumuk, C. I. Muresan, D. K. R., D. Copot, C. M. Ionescu, and
M. Neckebroek (2024). “Comparative analysis of pharmacokinetic-
pharmacodynamic models for propofol and remifentanil using model
predictive control”. In: 2024 European Control Conference (ECC),
pp. 3045–3050. DOI: 10.23919/ECC64448.2024.10590766

H. Pigot, Y. Wahlquist, and K. Soltesz (2023). “Actively controlled car-
diac afterload”. IFAC-PapersOnLine 56:2, pp. 6484–6489. DOI: 10.
1016/j.ifacol.2023.10.863

Y. Wahlquist, M. Morin, and K. Soltesz (2022). “Pharmacometric
covariate modeling using symbolic regression networks”. In: 2022
IEEE Conference on Control Technology and Applications (CCTA),
pp. 1099–1104. DOI: 10.1109/CCTA49430.2022.9966112

Y. Wahlquist, A. Gojak, and K. Soltesz (2021a). “Identifiability of phar-
macological models for online individualization”. IFAC-PapersOnLine
54:15, pp. 25–30. DOI: 10.1016/j.ifacol.2021.10.226

Y. Wahlquist, K. van Heusden, G. A. Dumont, and K. Soltesz (2020).
“Individualized closed-loop anesthesia through patient model partition-
ing”. 42nd Annual International Conference of the IEEE Engineer-
ing in Medicine and Biology Society (EMBC’20). DOI: 10 . 1109 /
EMBC44109.2020.9176452
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4
Discussion

The work presented in this thesis contributes to the ongoing research of modeling
and control of pharmacological systems. Two applications are addressed: optimiz-
ing organ quality in controlled DCD and improving control systems for anesthesia.
With a combination of modeling, control technology, clinical data, and machine
learning, this research advances both methodology and practical aspects of these
fields.

The discussion covers the implications and significance for the field in Sec-
tion 4.1, ethical considerations in Section 4.2 and possible future research direc-
tions are outlined in Section 4.3. Finally, the conclusions of the thesis are presented
in Section 4.4.

4.1 Implications and Relevance to the Field

The work in this thesis has several implications for the field of pharmacological
control systems and personalized medicine. The main focus of this thesis was to
investigate how we can reduce the effects of inter- and intra-patient variability. This
variability is a major challenge from several different points of view, for example,
economically, logistically, and ethically. Giving the same dose to all patients may,
for example, result in under- or overdosing, which can have severe consequences
and, in the long run, lead to increased costs and workload for the healthcare system.
Therefore, finding a way to adapt the treatment to each individual is important. This
thesis has shown that there are several ways to deal with these challenges.

In controlled DCD, we have shown that by stabilizing the donor’s hemodynam-
ics with measurement feedback, the onset of IMC can be delayed. There are several
benefits of this. First, stabilizing the donor’s hemodynamics is beneficial not only
for the heart but also for the donor, as normal blood pressure reduces the stress
on the other organs at the end stage of life. Second, the quality of the heart is im-
proved, which can expand the donor pool. This results in more organs available for
transplantation and shorter waiting times for patients on the waiting list. Third, ex-
tending the time window for transplantation makes the transplantation process less
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time-critical. This allows longer transports of the organ and reduces the logistical
challenge related to heart transplantation. Fourth, using feedback control in con-
trolled DCD allows for drug delivery to be performed in the background of the final
moments of the donor’s life. Sometimes, the family is present during the WLST
process and automatic control running in the background can reduce the need for
repeated manual interventions in front of the family. This allows the family to focus
on saying goodbye rather than worrying about interruptions from medical person-
nel. This can help to provide a more calm and dignified process for all involved.
However, transplantation and hemodynamic stabilization of DCD donors are not
yet implemented in Sweden. Although current legislation does not allow for this, it
is important to investigate the possibilities and implications of this technology for
future use.

For anesthesia (or other drug dosing applications), more accurate dosing (with
or without a controller) is safer for the patient. It reduces the risk of under- or over-
dosing, where the risk of pain or waking up during surgery is reduced and the re-
covery time is shortened. In the long run, this can reduce the costs of the healthcare
system, as less resources are needed for the patient’s recovery, as well as the reduced
risk of complications. This is particularly important for elderly and obese patients,
who can be difficult to sedate due to the longer time from drug infusion to clinical
effect.

Feedback systems can reduce the workload of the anesthesiologist, which can
be beneficial in long surgeries. The drug dose must be continuously adjusted during
surgery, and with a control system, the anesthesiologist can focus on other tasks,
such as monitoring breathing or other changes in the patient’s physical state. How-
ever, the anesthesiologist is still responsible for patient safety and can intervene if
necessary.

Using data-driven methods allows for automatic model development and pro-
cessing of large datasets. This allows for finding better and more precise models and
the possibility of identifying new physiological relationships. Data-driven methods
have a large potential in healthcare and there are rapid developments in this field,
every day new methods are entering the clinic.

4.2 Ethical Considerations

Ethics in pharmacology and control systems is of great importance, as this directly
impacts patient safety. In the works enclosed in this thesis, we have used a combi-
nation of clinical data, animal models, and simulations to try to reach the research
aims posed in the introduction. The clinical data used in the works are anonymized,
and consent is declared in the original publications.

For the animal models used, pigs were chosen because of their similarity to hu-
mans in terms of anatomy and physiology (Paper I). Replacement of animal models
with simulation models is generally not an alternative in the context of heart trans-
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plantation, since there are no realistic simulation models for human hearts available.
Therefore, using animal models is more ethically defensible than using human mod-
els in this context. The 3R methodology (Replace-Reduce-Refine) [Jordbruksverket,
2024] has been taken into consideration. Simulation studies have been used when
possible to replace animal experiments. For example, the developed controllers were
first evaluated in simulation before being tested in animal experiments. The number
of animals used in the animal study was kept to a minimum, and in several cases,
the same animals were also used for other research studies involving other organs.
The animals received the best possible care to minimize discomfort and pain and
received appropriate anesthesia, ensuring their well-being throughout the study. All
personnel were trained in handling laboratory animals. Institutional and national
guidelines were followed for the care and use of laboratory animals. The animals
were treated according to the EU directive [European Parliament, 2010]. The large-
animal study in Paper I was carried out with ethics permission M174-15, issued by
“Malmö/Lunds Djurförsöksetiska Nämnd” (local REB).

In the DCD context, there are several ethical considerations to take into account.
If the goal was to optimize the organ outcome, blood pressure should be lowered
as quickly as possible. However, this is not ethical from the donor’s point of view.
Interventions must be made with the donor’s best interest in mind and must not harm
the donor. In the work of Paper I, we consider hemodynamic stabilization of the
heart donor, which is beneficial for the donor, as well as for the donated heart. This
motivates well-selected “ante-mortem” interventions in the DCD process, which
can improve both the end-stage care of the donor and the quality of the donated
organ, as explained in Section 2.3.3.

For closed-loop control of anesthesia, the anesthesiologist is always responsible
for the patient’s safety. They should be able to intervene if possible and have a
basic understanding of how the control system works. Therefore, the control system
must be transparent and understandable to clinical personnel, and preferably also
intuitive. The control system should be seen as an aid, not a replacement, for the
anesthesiologist. If the control system is adequately designed, it can be safer for
the patient than manual dosing. An automated drug delivery system also reduces
the likelihood of errors as they are more consistent and precise than a human. For
example, in stressful and critical situations, human performance may be affected.

4.3 Future Work

The works presented in this thesis open up several future research directions. This
section outlines future work that can build on the findings of this thesis.

Future research could further investigate how to develop robust control systems
that work for all individuals, including children, the elderly, and obese patients.
The control system should not be too conservative, as a slow control system will
not be able to rapidly counteract changes in the patient’s state. A slow controller
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also has low clinical applicability, as “time is money” in the healthcare system.
However, designing a robust controller is impossible if the patient models are not
accurate. The population models that are used for controller synthesis today are
mainly developed for other purposes, such as for drug development, and might not
be suitable for control. Therefore, patient models that describe the variability in the
population should be developed specifically for control design.

Another important aspect is that the control system should be understandable
and transparent to the clinical personnel, as they are responsible for the patient’s
safety. The clinicians are unlikely to adopt a complex control system. Therefore,
future research should focus on developing interpretable and understandable con-
trollers. Interpretability is also highly relevant for model development with data-
driven methods, which are commonly black-box models such as intricate neural
networks. In Paper III, we demonstrated an example of how machine learning can
be used to develop simple and interpretable models. This methodology should be
further developed and tested on other datasets and models, to investigate its potential
in other applications. In addition, more research should be done on how to include
prior knowledge in model development, such as physiological relationships.

A few clinical trials are ongoing with automated control systems in anesthesia
around the world. However, these systems have been suggested for decades and
have not yet been implemented routinely in the clinic. This is likely due to ethical
and safety concerns and the uncertainty about the reliability of the control system.
Future research should focus on how to overcome these challenges and make this
technology more accessible for clinical use.

In recent years, controlled DCD for heart transplantation has gained attention
globally. Due to the promising results of already practicing countries, more coun-
tries are likely to implement this soon. However, ischemic damage will continue to
be a challenge, and more research is needed to understand how ischemic myocar-
dial contracture arises and how it can be prevented. This would open up more hearts
available for transplantation.

Automatic control of blood pressure and heart rate can improve patient safety
in many different areas, not only in DCD. For example, in the intensive care unit,
where the patient’s state is continuously changing, automatic control of blood pres-
sure and heart rate can be useful. Future research should investigate how feedback
systems can be used to control blood pressure and heart rate in these settings.

To summarize, the research presented in this thesis opens up several future re-
search directions. The presented works demonstrate that patient safety can be im-
proved with individualized and automated drug dosing, as long as certain challenges
are addressed.
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4.4 Conclusions

Every individual reacts differently to a drug, making it challenging to determine the
right dose for each patient. In this thesis, we have explored how accurate models and
robust control strategies can tackle the challenge of patient variability in the drug
response. With a focus on two applications, controlled DCD and anesthesia, we
have demonstrated that individualized and automated drug dosing improves patient
safety through accurate dosing.

Using machine learning methods, we have developed a method to identify sim-
ple and interpretable models from data that capture patient variability well. The
methodology presented here does not only automate and streamline the modeling
process but also allows for exploring a wider range of model candidates. This ap-
proach can be applied to other drugs to find new covariate relationships.

In controlled DCD, we showed that precise drug dosing can delay the onset of
ischemic myocardial contracture and therefore improve the quality of the heart for
transplantation. This can potentially expand the donor pool and reduce the wait-
ing time for patients on the waiting list. For anesthesia, we showed that combining
model predictions with measurement feedback can improve controller performance
in the presence of disturbances and measurement noise. This leads to safer anesthe-
sia and reduces the risk of under- or overdosing.

In conclusion, the works in this thesis contribute to individualized drug dosing
through accurate modeling and robust control systems. Future research should con-
tinue the development of these, ensuring that they are reliable, understandable, and
applicable across a wide population. Specifically, collaboration between clinicians
and engineers is crucial to reach a broader clinical use. The findings in this thesis
are a step towards safer and more efficient healthcare.
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Paper I

Prevention of Ischemic Myocardial
Contracture Through Hemodynamically

Controlled DCD

Ylva Wahlquist Kristian Soltesz Qiuming Liao Xiaofei Liu

Henry Pigot Trygve Sjöberg Stig Steen

Abstract

Purpose– Ischemic myocardial contracture (IMC) or “stone heart” is a condi-
tion with rapid onset following circulatory death. It inhibits transplantability
of hearts donated upon circulatory death (DCD). We investigate the effective-
ness of hemodynamic normalization upon withdrawal of life-sustaining ther-
apy (WLST) in a large-animal controlled DCD model, with the hypothesis that
reduction in cardiac work delays the onset of IMC.

Methods– A large-animal study was conducted comprising of a control
group (n = 6) receiving no therapy upon WLST, and a test group (n = 6)
subjected to a protocol for fully automated computer-controlled hemodynamic
drug administration. Onset of IMC within 1 h following circulatory death de-
fined the primary end-point. Cardiac work estimates based on pressure-volume
loop concepts were developed and used to provide insight into the effectiveness
of the proposed computer-controlled therapy.

Results– No test group individual developed IMC within 1 h, whereas all
control group individuals did (4/6 within 30 min).

Conclusion– Automatic dosing of hemodynamic drugs in the controlled
DCD context has the potential to prevent onset of IMC up to 1 h, enabling
ethical and medically safe organ procurement. This has the potential to increase
the use of DCD heart transplantation, which has been widely recognized as a
means of meeting the growing demand for donor hearts.

Keywords– DCD, Organ preservation, Ischemic damage, Hemodynamic
control, Closed-loop drug administration

Originally published in Cardiovascular Engineering and Technology (2021).
Reprinted with permission under CC BY. The original version is available at
https://doi.org/10.1007/s13239-021-00537-8.

75

https://doi.org/10.1007/s13239-021-00537-8


Paper I. Prevention of Ischemic Myocardial Contracture Through
Hemodynamically Controlled DCD

(a) Heart without ischemic myocardial contracture.

5 cm

(b) Heart with ischemic myocardial contracture.

Figure 1. Transverse sections of two hearts from 35 kg pigs. Heart (a) was procured 1 h
after circulatory death, from one of the test group animals; (b) was procured 30 min after
circulatory death, from one of the control group animals. Notice that the left-ventricular
lumen is almost gone in the contracted heart. Both photos are in the same scale, indicated in
(b).

1. Introduction

1.1 Ischemic Myocardial Contracture
Ischemic myocardial contracture (IMC), commonly referred to as stone heart, de-
velops when the myocardium is exerting mechanical work under warm ischemic
conditions [Cooley et al., 1972; Hearse et al., 1977]. The contracture commences
at the apex of the heart, and subsequently extends throughout the left heart, before
also affecting the right heart. Figure 1 shows cross sections of (a) one heart with-
out, and (b) one with IMC. The contracture prevents the affected myocardium from
performing mechanical work.

During the early era of open-heart surgery using cardiopulmonary bypass, IMC
was identified as a rare, but fatal condition [Cooley et al., 1972]. Since it is associ-
ated with a loss of perfusion of the affected myocardium, the condition can typically
not be reversed, as it prevents transport of required pharmacological substances to
the affected site. Several works [Zumbro et al., 1978; Garcia-Dorado et al., 1997]

76



1 Introduction

have investigated preventive measures. Administration of β -blockers, calcium an-
tagonists and regional hypothermia, have all been shown to significantly reduce the
risk of IMC [Cooley et al., 1972; Hearse et al., 1977].

The advent of modern cardioplegia and general methodology development
within cardiopulmonary bypass surgery have resulted in fewer instances of IMC.
Consequently, the research interest in prevention of ischemic myocardial contrac-
ture has also decreased over the last three decades.

1.2 Controlled Donation Upon Circulatory Death (DCD)
The inability to meet the demand of transplantable solid organs through donation
upon brain death (DBD) from heart-beating brain-dead donors, has led to the rein-
troduction of donation upon circulatory death (DCD) in several legislations [Manara
et al., 2012; Morrissey and Monaco, 2013]. Ischemic damage, resulting in graft fail-
ure, is the main medical concern associated with DCD transplantation [Messer et al.,
2016; Dhital et al., 2020]. Procurement of DCD hearts is therefore performed under
tight temporal constraints, and with maximal effort spent to prevent ischemic my-
ocardial damage [Dhital et al., 2020; MacDonald and Dhital, 2019]. This has limited
its clinical application to Maastricht category III donors [Koostra et al., 1995]. This
category constitutes in-hospital patients, where a decision to end life-sustaining ven-
tilator support is based on the best interest of the patient.

As opposed to the determination of brain death, there exist no universally ac-
cepted criteria for the determination of circulatory death. Instead, its definition relies
on the concepts of cessation and irreversibility of cardiopulmonary function [Euro-
pean Parliament, 2010]. This has resulted in substantial DCD protocol variations
between centra [Manara et al., 2012].

The course of events following withdrawal of life-sustaining therapy (WLST),
that all clinical protocols have to relate to, is illustrated in Figure 2. The time be-
tween WLST and death is referred to as the agonal phase. The possibility of (short-
term) survival [Suntharalingam et al., 2009], illustrated by the right cycle in Figure 2
imposes legal and ethical restrictions on admissible treatments during, and leading
up to, the agonal phase. Particularly, ante-mortem interventions should be moti-
vated by the best interest of the patient and must not interfere with the possibility of
(short-term) survival.

Measures for organ optimization mainly translate into reducing warm ischemic
time. For heart organs, a distinction is made between warm ischemia in asystole and
functional warm ischemia [Manara et al., 2012], where the greater metabolic needs
of the latter make it more problematic in the DCD context.
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WLST

Agonal breathing

Apnea

Circulatory death

Mechanic asystole

Electric asystole

Spontaneous breathing

Neurological death

Figure 2. The course of events following withdrawal of life-sustaining therapy (WLST).
Contemporary protocols prevent DCD donation where prolonged episodes (hours to days)
are spent in the right cycle. However, such cases are rare, with circulatory death occurring
within 2 h in over 70 % of cases [Suntharalingam et al., 2009]

1.3 Hemodynamic Control in DCD
The onset of the agonal phase is typically associated with a cathecolamine “storm”,
resulting in increased systemic resistance, and leading up to relative hypertension,
possible tachycardia, and thus an increase in myocardial metabolism [Novitzky et
al., 2006]. Control of hemodynamic parameters is a potentially viable means of
postponing the onset of IMC, and warm ischemic damage in general. Hemodynamic
parameters available for pharmacological control include:

• vascular resistance (through arterial and venous tone);

• heart rate;

• myocardial contractility.

Cardiac output and tissue perfusion are directly dependent on the above three
parameters. In this study we control these parameters with the goal of facili-
tating cardiac output after WLST, while limiting the associated cardiac work to
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avoid episodes of relative hypertension, tachycardia, and ischemia-induced ventric-
ular fibrillation (VF). In this nominal work, we investigate whether the proposed
methodology can serve to postpone the onset of ischemic myocardial contracture in
a DCD large animal model.

Treatment associated with WLST needs to be delivered with dignity. To meet
this need and the critical timing requirements imposed by the scenario, we have
developed and demonstrated a fully automated feedback control system, in which a
computer administers the delivery of intravenous drugs. The system adjusts the in-
dividual dosage of drugs in real-time based on the patient’s hemodynamic response,
thus avoiding over- or under-dosing.

2. Methods

2.1 Cardiac Work Estimation
The hypothesis underlying the study is that the time between WLST and incidence
of IMC is correlated with the ischemic work of the heart following WLST. To in-
vestigate this hypothesis, one under-estimating approximation

W
¯

∝

∫ T

0
Psys(t)HR(t)dt (1)

and one over-estimating approximation

W̄ ∝

∫ T

0
P2

sys(t)HR(t)dt (2)

of cardiac work were used where t = 0 and t = T denote the instances of WLST,
and asystole or VF instance, respectively. Psys is the instantaneous systolic aortic
pressure and HR is the instantaneous heart rate, defined at the instances of systolic
peaks as 1/∆t, where ∆t is the time passed since the preceding systolic peak. See
Supplementary Section A for further details.

2.2 Hemodynamic Control
We have developed and evaluated a feedback control system based on a computer-
controlled infusion pump array; real-time invasive arterial pressure acquisition sys-
tem; and a PC running software for measurement, control, actuation, logging, and
associated graphical user interface. The base hardware has been described in previ-
ous works [Soltesz et al., 2018; Soltesz et al., 2017b].

The overall objective of the control system was to normalize vascular resistance
between the instance of WLST and the incidence of circulatory collapse, defined
in Section 2.3, in order to facilitate cardiac output while limiting the amount of
associated cardiac work. Individualized administration of the drugs is necessary to
safely account for the variation in hemodynamic response between individuals after

79



Paper I. Prevention of Ischemic Myocardial Contracture Through
Hemodynamically Controlled DCD

WLST. This motivates computer-controlled real-time adjustment of the timing and
number of doses administered according to systolic aortic pressure measurements as
opposed to using a fixed bolus protocol. From prior research [Soltesz et al., 2018],
we have established the feasibility of normalizing systolic pressure using closed-
loop computer control of noradrenaline and nitroglycerine. Nitroglycerine dosing
was used as the control signal to decrease vascular resistance. Both bolus and con-
tinuous infusion dosing were considered in pilot experiments. It was concluded that
bolus dosing was necessary to achieve sufficiently fast responses in Psys. Based on
pilot experiments described in Supplementary Section E, the bolus size was set to
1.5 mg.

Pilot experiments indicated tachycardia and tolerance effects when exceeding
three nitroglycerine boluses following WLST. If these were not sufficient to es-
tablish normotension, subsequent boluses of a synergistic calcium antagonist (ni-
modipine) and β -blocker (esmolol) mixture, comprising of nimodipine and es-
molol, were administered. While counteracting both hypertension and tachycardia,
the response time is slower, and the peak effect lower, compared to the nitroglycer-
ine boluses.

Ventricular fibrillation was identified as the main contributor to IMC in our pi-
lot experiments. To prevent this, a lidocaine bolus was given at the time of circu-
latory death, defined in Section 2.3. A bolus dose of the calcium antagonist and
β -blocker mixture were administered together with the lidocaine to prevent a pro-
longed episode of low-intensity myocardical work following circulatory death. The
timing and doses of all drugs used in hemodynamic control are given in Supple-
mentary Table C.1 and Table C.3.

A noradrenaline “safety” feedback controller was implemented for automatic
drug infusion to counteract potential overdosing of nitroglycerine, otherwise re-
sulting in hypotension. Systolic aortic pressure responses to constant noradrenaline
infusions were recorded in three pilot experiments, and are shown in Supplemen-
tary Figure E.4.

Time-delayed first-order linear differential equation models were identified
from the noradrenaline infusion responses shown in Supplementary Figure E.4, by
minimizing the output error L2 norm. A proportional-integral-derivative (PID) con-
troller was optimized for robust performance across these models. The optimiza-
tion objective was to minimize the time from hypotension due to overdosing of
nitroglycerine until acceptable systolic aortic blood pressure values were reached.
A step disturbance was used to model the effect of nitroglycerine on the systolic
aortic pressure. In the controller optimization, constraints were imposed to enforce
robustness over the model set. More details of the controller design can be found in
Supplementary Section E.

To attenuate high-frequency measurement noise, a second-order low-pass filter
was connected in series with the controller, resulting in the Laplace domain repre-
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sentation
K =CF

C(s) = kp + ki
1
s
+ kds

F(s) =
1(

sTf +1
)2

(3)

where C is the PID controller, F is the low-pass filter and s is the Laplace
variable. The PID parameters were kp = 9.63 × 10−4 mg/h/mmHg, ki = 2.96 ×
10−5 mg/h/mmHg/s, kd = 8.14×10−3 mg/h/mmHg s and Tf = 2 s. The controller
was implemented with clamping anti-windup on the PC used in data acquisition and
drug delivery actuation.

The set-point of this noradrenaline “safety” controller was set to 70 mmHg for
Psys, and the for during the first 3 min following WLST, whereafter the controller
was automatically deactivated.

2.3 Experimental Study
The primary end-point was to study IMC occurrence 60 min after circulatory death.
The secondary end-point was the time between circulatory death and observed IMC.

Equal control and test group sizes of n = 6 each were determined, based on
70 % anticipated 60 min IMC incidence in the control group, and 0 % in the test
group, at a false positive rate α = 0.05, and false negative rate β = 0.2 (i.e., 80 %
power). Inclusion criteria for both groups were defined to facilitate comparability
of outcomes: stable hemodynamics at the time of WLST, with Psys ≤ 110 mmHg
and HR ≤ 110 min; absence of agonal breathing following WLST; adherence to
drug dosing protocol of the study; absence of anomalies at dissection. Details about
animals excluded from the study and conducted pilot cases can be found in Supple-
mentary Section B.

Anesthesia was induced through intravenous injection of atropine, xylazin, and
ketamine. Subsequently, midazolam and rocuronium were intravenously adminis-
tered before placement of an endotracheal tube through tracheostomy. The animals
were then mechanically ventilated using volume-controlled and pressure-regulated
ventilation.

Upon introduction of intravenous propofol anesthesia, and intubation, the ani-
mals were instrumented with transducers to measure arterial and venous blood pres-
sure and a 5-lead ECG. Arterial blood gas samples were collected and analyzed at
baseline, and 1,2, ...,5 min following WLST. The animals were given heparin to
prevent coagulation. Doses and further details on the drugs are provided in Supple-
mentary Section C.

A neuromuscular blockade was established to prevent agonal breathing, where-
upon WLST was performed. If the heart rate exceeded 110 bpm between WLST
and circulatory collapse, a bolus of esmolol and nimodipine was given. Circulatory
collapse was defined to occur at the first incidence of Psys < 40 mmHg. Circula-
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tory death (cessation and irreversibility of cardiopulmonary function [Tibballs and
Bhatia, 2015]) was defined as persistent circulatory collapse combined with arterial
saturation remaining below saO2 = 30 %. Previous studies [Cooley et al., 1972; Iyer
et al., 2016] have associated a systolic pressure fall beneath 50 mmHg with severe
ischemia, motivating the choice of the lower systolic pressure limit. By this time, the
animals was hypoxic with an arterial oxygen saturation well below 30 % [Iyer et al.,
2016]. Following a hands-off time of 30 min, sternotomy was performed, and the
heart was inspected and palpated for IMC every 5 min until 60 min had passed since
circulatory death. If there were palpable and visible signs of contracture in the left
ventricular wall, IMC was confirmed. When IMC was verified or when 60 min had
passed since circulatory death, the heart was excised and transversely cut into slices
as shown in Figure 1. The heart was then dissected to inspect for anomalies that
could have affected the outcome. To complement the qualitative diagnostic assess-
ment with a quantitatively comparable measure, the left ventricular wall thickness
was measured as the average thickness within a transverse plane halfway between
the atrial-ventricular plane and the apex.

The test and control group protocols were identical with the exception of the
test group being subjected to the hemodynamic control protocol described in Sec-
tion 2.2. The test group protocol is illustrated through the flowchart in Figure 3.
Drugs used in the test group protocol were nitroglycerine, noradrenaline, lidocaine,
esmolol and nimodipine, see Figure 3 and Supplementary Table C.1 and Table C.3
for details about bolus dosing and timing. Noradrenaline was administered by the
aforementioned “safety” feedback control system using an Alaris TIVA infusion
pump. Bolus doses of the other drugs were manually administered, due to a lack of
remote-controlled bolus capability of the Alaris TIVA pumps. This was later imple-
mented, and two additional fully automated cases, one illustrated in Figure 4, were
successfully completed.

3. Results

The investigated method for normalization of hemodynamics upon WLST with the
aim to facilitate DCD procurement of hearts resulted in none of the six test group
individuals developing IMC within 60 min of warm ischemia following circulatory
death. All six control group individuals developed IMC within 60 min, with four
having developed IMC by the time of sternotomy, 30 min following circulatory
death.

Figure 1 shows representative cross sections of two hearts from the study: (a)
was procured from a test group animal 60 min following circulatory death; (b) from
a control group animal 30 min following circulatory death. The heart in (a) shows no
signs of IMC, while IMC is fully developed in (b), as seen by the severely restricted
left-ventricular lumen. The average left ventricular wall thickness, measured half-
way between the atrial-ventricular plane and the apex at the time of dissection, was
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WLST
t = 0

PBHB< 40 mmHg?

Time since last
bolus < 30 s?

0 < t < 1 min and
PBHB> 80 mmHg?

t < 2 min and
PBHB> 90 mmHg?

t < 3 min and
PBHB> 80 mmHg?

t > 3 min and
PBHB> 70 mmHg?

Boluses:
Esmolol 40 mg

Nimodipine 0.04 mg
Lidocaine 200 mg

End

< 3 nitroglycerine
boluses?

Bolus:
Nitroglycerine 1.5 mg

Boluses:
Esmolol 20 mg

Nimodipine 0.02 mg

No

No

No

No

No

No

Yes

Yes

Yes

Yes

Yes

No

Yes

Yes

Figure 3. Flow chart illustrating the test group protocol. Time t = 0 starts at the instance
of WLST. The noradrenaline “safety” controller is activated during the first 3 min following
WLST, in order to avoid hypotension in case of low nitroglycerine tolerance. If the heart rate
exceeded 110 bpm between WLST and circulatory collapse, an additional bolus of esmolol
and nimodipine was given.

10 mm (range 8−16) within the test group and 20 mm (range 16−22) within the
control group.

Figure 5 shows the hemodynamic responses for all test and control subjects, fol-
lowing withdrawal of life-sustaining therapy at t = 0 min. The markers in Figure 5a
show oxygen saturation (saO2) of arterial blood gas samples. The dotted horizontal
line corresponds to saO2 = 30 %. All individuals reached an arterial saturation be-
low 30 % within 3 min following WLST. The mean ± standard deviation durations
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Figure 4. Representative test group experiment with fully automated drug dosing according
to the protocol illustrated in Figure 3. Systolic pressure, Psys is shown solid and heart rate,
HR, in dashed. Markers indicate events according to the figure legend. The dotted black line
indicates the systolic pressure associated with circulatory collapse.

between WLST and occurrence of saO2 = 30 %, linearly interpolated between sam-
ples, were 133± 38 s in the test group and 143± 27 s in the control group. Mean
± standard deviation desaturation rates were −29± 4 %min−1 in the test group
and −33± 12 %min−1 in the control group. This indicates similar metabolic rates
between the groups. Systolic aortic pressures (Psys) are shown in Figure 5b. The
dotted horizontal line corresponds to Psys = 40 mmHg, indicating the systolic pres-
sure associated with circulatory collapse. Heart rates (HR), computed from ECG
RR-intervals until loss of QRS-complex, or onset of VF, are shown in Figure 5c.
Per-individual events are shown in the top part of Figure 6, in which time zero cor-
responds to circulatory death. The bottom part visualizes the temporal distribution
of events.

There was no notable overdosing of nitroglycerine in any of the cases. Con-
sequently, the noradrenaline controller administered only very small drug doses in
two cases: 1.1 µg, beginning 149 s in T4 after WLST; 6.5 µg in T6, beginning 113 s
after WLST.

Work indices W
¯

and W̄ for all individuals are shown in Figure 7. The distri-
butions of their final values are shown to the right in the same figure. The median
decrease in work indices between control and test group was 59 % for W

¯
and 68 %

for W̄ .
The single-sided Mann-Whitney test reveals a significant (p < 0.002) difference

in IMC incidence 60 min after withdrawal of life-sustaining therapy between the
groups.
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Figure 5. Test (solid red, squares) and control (dashed blue, circles) group hemodynamic
responses following withdrawal of life-sustaining therapy (WLST) at time 0 min. The dotted
horizontal line in (a) indicates oxygen saturation saO2 = 30 %. The dotted horizontal line
in (b) indicates the systolic aortic pressure, Psys = 40 mmHg, associated with circulatory
collapse. Circulatory death was defined to occur when both saO2 < 30 % and Psys < 40 mmHg
were fulfilled.

4. Discussion

This study demonstrated that it is feasible to postpone ischemic myocardial con-
traction up to 1 h following circulatory death, through automatic control of hemo-
dynamic drug delivery.

However, further investigation needs to be undertaken to see if the asystolic
non-contracted heart may be reconditioned to partial or full function after 30 min
or 60 min of circulatory arrest in situ at normothermia. Histological comparison, ex
vivo functional evaluation, and ultimately transplantation are markers suggested for
further evaluation to determine feasibility for transplantation. A method to recon-
dition and preserve porcine hearts has been developed in-house [Qin et al., 2020;
Steen et al., 2016]. Safe orthotopic transplantation was done with hearts extracted
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Ischemic contracture∗∗
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Figure 6. Distribution of events. The top part shows events for test (T) and control (C)
group individuals. QRS complex loss markers have been omitted for individuals where QRS
complex loss coincided with ventricular fibrillation or electric asystole. IMC incidence has
been reported as 30 min if IMC was observed at the instance of sternotomy, which was
performed 30 min after circulatory death. The bottom part shows the distribution of events
within the study groups. Filled red boxes are used for the test group; empty blue ones for
the control group. In absence of incidence, IMC and ventricular fibrillation statistics are not
presented for the test group. Note that the distributions of arterial saturation saO2 < 30 %,
and systolic pressure Psys < 40 mmHg, are reported with the withdrawal of life-sustaining
therapy (WLST) time instance as zero reference, while all other events are reported with the
time instance of circulatory death as zero reference.

24 h after brain death and kept vital by non-ischemic-heart-perfusion (NIHP) for
24 h [Steen et al., 2016]. To validate non-contracted hearts up to 1 h after circulatory
death, we plan to do NIHP, followed by orthotopic transplantation. If the function
of such hearts is good, this method may support broader clinical implementation
of heart transplantation following withdrawal of life-sustaining therapy (controlled
DCD).

While it is possible to implement the protocol manually in a controlled lab en-
vironment with well-rehersed personnel, its clinical feasibility is low, taking into
account the narrow timing requirements and the requirement of calm and dignity
in the presence of next of kin. The use of a feedback control system solves both
these problems. Clinical implementation relies only on standard ICU monitoring
and intravenous access, both of which can be expected in the considered patient
category.

The controlled DCD model used in this work is similar to the clinical scenario
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Figure 7. Normalized work indices between withdrawal of life-sustaining therapy (WLST)
at time 0 min and the incidence of either asystole or ventricular fibrillation are shown to the
left. Test group estimates are shown in solid red; control group estimates in dashed blue. The
two lowermost curves in the control group correspond to individuals C2 and C6 in Figure 6,
which showed circulatory collapse less than five minutes after WLST. Data computed using
Equation (1) is shown in (a) and using Equation (2) is shown in (b). The normalized work
index final value distributions of the control group (C, empty blue boxes) and test group (T,
filled red boxes) are shown to the right.

[Wind et al., 2012]. However, unlike the clinical scenario, the animals had not suf-
fered neurological damage. Measures were therefore taken to establish a standard-
ization of the agonal phase, further explained in Supplementary Section C, mani-
fested in the small variability in desaturation profiles shown in Figure 5a. While the
test group protocol was designed to include only drugs broadly accepted in the con-
sidered context, local protocols can affect admissibility of certain drugs. We have
found no reason to believe that the test group results could not have been obtained
by means of another set of drugs with similar hemodynamic effects, as long as tim-
ing and dosing are appropriately chosen.

There is no internationally recognized definition of circulatory death. It is
therefore debatable whether the definition used in this work (saO2 ≤ 30 % and
Psys < 40 mmHg) would gain broad acceptance. However, the conclusion of the
study would be the same with slightly differing definition of circulatory death (based
on the same parameters), as can be verified by studying the profiles of Figure 5.

As seen in Figure 5, and reported in other preclinical studies [Iyer et al., 2016;
Niederberger et al., 2019], the time between WLST and circulatory collapse is gen-
erally shorter than in clinic, where it is usually around 15− 20 min, in absence of
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agonal breathing [Messer et al., 2016]. Furthermore, the circulatory collapse pro-
cess progressed somewhat more rapidly in the test group. This was observed during
the study, once the test and control group protocols had been fixed. In subsequent
experiments we made the automated drug delivery less aggressive, and increased
the systolic pressure setpoint for the noradrenaline “safety” controller during the
initial phase following WLST. With these changes to the test group protocol, we
were able to postpone IMC beyond h with hemodynamic trajectories like those of
the study controls.

The final values of the work indices in Figure 7 and corresponding IMC onset
times in Figure 6 indicate that the work indices constitute useful predictors of IMC
onset. Circulatory collapse occurred after less than five minutes in two of the control
group individuals: C2 and C6 in Figure 6. This resulted in work indices similar to
those representative for the test group and a later occurrence of stone heart (37 min
and 44 min). Relatedly, the distinct difference in final work indices between the
control and test group shown in Figure 7 indicates that the investigated protocol
for pharmacological normalization of hemodynamics is effective in postponing the
onset of IMC following WLST in the considered large animal model.

5. Conclusion

A pharmacological method, intended to postpone the onset of ischemic myocardial
contracture (IMC), with the aim to facilitate controlled DCD procurement of hearts,
was developed and evaluated. None of the six test group animals developed IMC
within 60 min of warm ischemia, following circulatory death caused by withdrawal
of life-sustaining therapy. All six control group animals developed ischemic my-
ocardial contracture within 60 min following circulatory death, with four having
developed IMC by the time of sternotomy, 30 min following circulatory death. This
demonstrates pre-clinical feasibility of the proposed method, and motivates further
research aimed at adapting it for the clinical setting. Further studies are needed to
investigate whether the function of the heart can be fully restored.
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Figure A.1. Systolic pressure-volume (PV) path (dotted) between end-diastole, (ED, mi-
tral valve closure), and end-systole, (ES, aortic valve closure), was recorded in a 30 kg pig
during one pilot experiment, represented Figure A.2. The left-ventricular diastolic PV path,
from ES to ED, of the cardiac cycle (dashed) is only qualitatively illustrated, and not used
when considering the entire heart, rather than the isolated left ventricle. The net work per-
formed by the left-ventricle during the cardiac cycle is the area between the dotted and dashed
lines; corresponding net work performed by the heart is quantified by the grey area. The area
enclosed by the solid line is the proposed cardiac cycle work estimate, Ŵc, defined through
Equation (7).

Left ventricular pressure-volume (PV) loops are frequently used in clinical and
research cardiology. The PV loop shows ventricular pressure plotted against ven-
tricular volume over one or several cardiac cycles, providing a contour similar to
the one enclosing the grey area of Figure A.1. Integrating pressure over volume in
the PV loop over one cardiac cycle yields the work exerted on the system. The work
exerted by the system is hence

W (V1,V2) =−
∫ V2

V1

P(V ) dV, (4)

when transitioning from a volume V1 to another volume V2 along the PV contour.
To be accurate, Equation (4) provides an upper bound for this work, and that bound
is tight for lossless systems. This assumption is tacitly made in cardiac PV loop
analysis, where the area enclosed by the PV contour is defined to be the stroke work.
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It is, however, not valid during ventricular fibrillation (VF), in which considerable
energy is consumed without resulting in net blood transport, and hence no work is
done according to Equation (4).

Letting t1 be the time at which the volume is V1, i.e., V (t1) = V1, and similarly
defining t2 through V (t2) =V2, the work of Equation (4) can be expressed as

W (t1, t2) =−
∫ t2

t1
P(t)

dV
dt

dt =−
∫ t2

t1
ϕ(t)P(t) dt, (5)

where ϕ(t) = V̇ (t) is the volumetric flow rate entering the left ventricle. When
W > 0, the left ventricle exerts work on the blood; when W < 0, the blood exerts
work on the left ventricle. Since P > 0 throughout the cardiac cycle, W > 0 holds
whenever left ventricular volume decreases (V̇ (t) < 0, characterized by the dotted
line in Figure A.1), and work is exerted by the blood whenever left ventricular
volume increases: V̇ (t) > 0, characterized by the dashed line in Figure A.1. The
relatively small fraction of work exerted by the blood, quantified by the area under
the dashed line in Figure A.1, can be viewed as a free contribution when the left
ventricle is considered as an isolated system, which is commonly the case in PV
loop analysis. However, when considering the entire heart, this contribution is not
free: it is the combined contribution of the atria and the right ventricle.

Under the valid assumption that central venous pressure is low compared to
aortic pressure, the work Wc, exerted by the heart during one cardiac cycle can thus
be expressed

Wc =
∫ tES

tED

P(t) CO(t) dt, (6)

where P is the (instantaneous) aortic pressure, tED the end-diastolic time instance,
tES the end-systolic time instance, and CO(t) =−ϕ the (instantaneous) cardiac out-
put.

A fair approximation of Wc, Ŵc, is obtained by replacing the contour segment
between VED and VES with the systolic isobar in Figure A.1, Psys. Then Equation (6)
is approximated by

Ŵc = Psys SV, (7)

where SV = VES −VED is the stroke volume. The estimate Ŵc corresponds to the
area enclosed by the solid line in Figure A.1. The total energy consumption between
WLST and the incidence of either asystole or VF is the sum of the individual Wc
contributions.

A reasonable assumption is that SV is positively correlated with Psys. This will
be expressed as SV (Psys), where SV : R+ 7→ R+ is some bounded monotonously
non-decreasing function. The resulting relative difference in estimated work Equa-
tion (7) between cardiac cycles with systolic pressures Pa and Pb < Pa is

PaSV (Pa)−PbSV (Pb)

PaSV (Pa)
= 1− Pb

Pa

SV (Pb)

SV (Pa)
. (8)
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The properties of SV (Psys), combined with Pb < Pa, yield SV (Pb) ≤ SV (Pa), with
equality when SV (Psys) ∝ 1, i.e., when SV is not increasing with Psys.
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Figure A.2. Relationship between systolic aortic pressure, Psys, and stroke volume, SV ,
measured in 30 kg animals during two pilot experiments: one illustrated by red circles; the
other by blue triangles.

To justify this assumption, the nature of SV (Psys) was investigated through two
pilot experiments, where a transit-time flow meter, connected to the LabChart sys-
tem detailed in Section C, was secured across the aorta upon sternotomy, and oth-
erwise adhering to the control group protocol. This enabled computing SV as the
time integral of flow over each cardiac cycle. The outcome is shown in Figure A.2,
confirming that the monotonicity assumption on SV (Psys) is sound. Furthermore, it
suggests that while the conservative estimate W

¯
is accurate for the saturated region

(almost horizontal segment of blue triangles), the non-saturated region (the remain-
der of plotted data) is better approximated by SV (Psys) ∝ Psys.

A lower bound of the estimate is therefore obtained by assuming that SV is
independent of Psys, resulting in the total work estimate

W
¯

∝

∫ T

0
Psys(t) HR(t) dt, (9)

where t = 0 and t = T denote the instances of WLST, and asystole or VF instance,
respectively. HR is the instantaneous heart rate, defined at the instances of systolic
peaks as 1/∆t, where ∆t is the time passed since the preceding systolic peak.

The pilot experiments also suggest an upper bound on the total work estimate

W̄ ∝

∫ T

0
P2

sys(t) HR(t) dt, (10)

based on SV being proportional to Psys.
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Since W
¯

and W̄ are defined only up to proportionally, they will be denoted work
indices rather than estimates, and their utility is limited to comparison between in-
dividuals or groups, within which cardiovascular physiology is similar. The central
hypothesis, investigated in the study, is that the time integrals of these indices fol-
lowing WLST provides useful predictions of IMC incidence, and thus suggest how
pharmacological normalization of hemodynamics can serve to prevent IMC.

Evaluation of the estimation of the work over one cardiac cycle Equation (7) of
the main manuscript relies on SV , or equivalently CO, being measured. However,
pilot experiments revealed that manipulation of the ischemic heart easily triggers
the onset of IMC. Placement of a PV loop catheter was consequently ruled out as
an option for the controlled study. Similarly, the pleural access required to place
an ultra-sonic flow probe over the aorta was found to result in (partial) collapse of
the lungs, suspected to affect the desaturation process. Consequently, WLST was
performed with intact thorax during the study.

B. Excluded animals and pilot cases

Three animals were excluded, all from the test group, for the following reasons:
insufficient curarization resulting in agonal breathing; systolic pressure rise prior to
WLST (the experiment was concluded and IMC was absent 60 min after circulatory
death); nitroglycerine administration exceeding protocol limit.

In addition to the 12 included plus 3 excluded study cases, 11 pilot cases were
conducted: 6 to obtain modeling data for controller design, 3 to determine ade-
quate doses of the drugs that were not computer-controlled, and 2 to investigate the
SV (Psys) relationship explained in Supplementary Section A. Pilot experiment and
excluded animals fell within the same weight range as those included in the study.

C. Study details

The animals were mechanically ventilated using volume-controlled (4 L minute vol-
ume at 18 breaths/min) and pressure-regulated ventilation (5 cm2O PEEP). Inspired
oxygen fraction was 21 %, and end tidal CO2 was kept between 4.5 kPa and 5.5 kPa.
Details of drugs and equipment used in the experiments can be found in Table C.1
and Table C.2.

Three venous catheters were secured into the superior vena cava with their tips
at the level of the right atrium. These catheters were used for anesthesia main-
tenance, continuous venous pressure monitoring and manual drug administration.
Two catheters of the same type were secured into the ascending aorta for online ar-
terial pressure monitoring and blood gas sampling. Arterial blood gas samples were
collected and analyzed at baseline, and 1,2, . . . ,5 min following WLST.

Blood pressure transducers were connected to the arterial and venous catheters,
and intermittently flushed with saline solution. Separate transducer pairs were used
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for the feedback control system and visualization. Both systems logged to file, re-
sults presented herein are from the LabChart logs. A 5-lead ECG was also connected
to LabChart, running on a Windows 7 PC.

Rocoronium was infused at 60 mg/h, with an additional 50 mg bolus just before
WLST, to prevent agonal breathing. Without complete neuromuscular blockade,
one would expect a much larger spread between desaturation profiles, prompting
increased study group sizes in order to draw valid comparative conclusions. Rocuro-
nium was therefore administered to establish a neuromuscular blockade, and the en-
dotracheal tube was clamped at the instance of WLST. Both these measures should
be viewed as parts of the large-animal model, and not the proposed DCD protocol.
They guarantee a total absence of gas exchange.

Bolus dose timing for the test group individuals are shown in Table C.3.

D. Nitroglycerine bolus dose

Aortic systolic pressure responses to nitroglycerine, collected during two pilot ex-
periments, are shown in Figure D.3. The experiments indicated that a bolus dose
of 1−2 mg results in a sufficient response, and that there is an apparent saturation
in the vasodilative effect beyond this dose. Dose size was therefore fixed to 1.5 mg
throughout the main study.
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Figure D.3. Systolic pressure deviations, ∆Psys = Psys −P0, resulting from a nitroglycerine
bolus at time zero, where P0 denotes the baseline value of the systolic pressure Psys. The
responses were obtained through two pilot experiments on one 30 kg pig (dashed) and one
35 kg pig (solid).
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Table C.2. Instrumentation for measurement and drug delivery

Equipment Name Manufacturer

Flow meter Flowmeter CM4000 CardioMed, Lindsay, Canada
Ventilator Servo Ventilator 300 Siemens AB, Solna, Sweden
Venous catheter Secalon-T Merit Medical, Singapore
Blood gas analyzer ABL 700 Radiometer, Copenhagen, Denmark
Blood pressure transducer Meritrans DTXPlus Merit Medical, Singapore
DAQ PowerLab 16/35 AD Instruments, Colorado Springs, CO
Infusion pump Alaris TIVA BD, Franklin Lakes, NJ
LabChart 8 AD Instruments Colorado Springs, CO

Table C.3. Bolus dose timing for test group individuals T1-T6, in seconds measured from
WLST.

Nitroglycerine Esmolol and Nimodipine Lidocaine, Esmolol and Nimodipine
(Psys = 40 mmHg)

#1 #2 #3 #1 #2 #3 #1

T1 5 83 212 233 292
T2 3 81 194 216 260 292 296
T3 6 347 409
T4 177 207 350
T5 11 73 165
T6 12 126 169 192 233

E. Noradrenaline controller

A noradrenaline “safety” controller was implemented for automatic drug infusion
to counteract potential overdosing of nitroglycerine, otherwise resulting in hypoten-
sion. Systolic aortic pressure responses to constant noradrenaline infusions were
recorded in three pilot experiments, and are shown in Figure E.4. These step re-
sponses for noradrenaline were used for identification of low-order models for the
dynamics. A first-order model with time delay

P(s) =
b

s+a
e−sL (11)

is sufficient to describe the drug response dynamics. The model parameters a,b,L
were identified by minimizing the output error L2 norm, with the error being the
difference signal between measured response and corresponding model output. The
resulting model parameters can be found in Table E.4. A discrete time version (zero-
order hold with 1 s sampling period) of the filtered PID controller was then syn-
thesized based on a modification of the methodology in [Soltesz et al., 2017a]. A
second-order filter F was chosen to guarantee high frequency roll-off, and the filter
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Figure E.4. Systolic pressure deviations, ∆Psys = Psys −P0, resulting from a noradrenaline
infusion at time zero, where P0 denotes the baseline value of the systolic pressure Psys. The
responses were obtained through pilot experiments using three pigs, two weighing 30 kg
(solid and dashed) and one weighing 35 kg (dot-dashed).

time constant was fixed to Tf = 2 s, upon inspection of measurement noise charac-
teristics in the systolic pressure signal.

The PID parameters kp,ki,kd of Equation (3) were optimized by minimizing set-
tling time following a step output disturbance, modeling a sudden change in systolic
pressure. The minimization was performed such that the maximum closed-loop 2 %
settling time across the identified models was minimized. The minimization was
subject to a constraint, limiting the response overshoot to 50 % of the amplitude
of the disturbance step amplitude, across all identified models. This constraint was
introduced to limit hypertension peaks and introduce additional robustness to the
closed-loop system. The resulting optimized PID parameters were kp = 9.63 ·10−4

mg/h/mmHg, ki = 2.96 ·10−5 mg/h/mmHg/s, and kd = 8.14 ·10−3 mg/h/mmHg·s.
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Table E.4. First order model parameters with time delay Equation (11), identified from
noradrenaline infusion responses in Figure E.4

a b L

0.013 1.49 22.00
0.014 1.92 42.25
0.023 1.94 33.11
0.020 4.28 26.99
0.015 3.04 26.60
0.061 12.47 34.87
0.014 2.48 54.68
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Fast Simulation of Pharmacokinetics
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Abstract

Fast simulation of linear time-invariant (LTI) pharmacokinetic (PK) models is
crucial to mixed-effect modeling techniques, used extensively in pharmacolog-
ical research and development. The by far most common LTI PK models are
particularly structured compartmental systems with one, two or three compart-
ments. Here we develop and demonstrate very efficient, and down to machine
precision exact, simulators for those structures. Our proposed method is bench-
marked against state-of-the art software for simulation of linear systems, using
a clinically relevant data set.

Keywords: Pharmacokinetics and drug delivery, physiological modeling,
biomedical system simulation
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1. Introduction

Simulation of linear pharmacological (PK) models lies at the core of modern phar-
macometric methods, widely used in pharmacological research and response predic-
tion. In particular, pharmacometric mixed-effect modeling relies on a large number
(thousands or more) of such simulations, to approximate integrals through sam-
pling from patient-individual parameter distributions. These simulations are nor-
mally conducted within custom software.

In concurrent work, we are developing neural-network-based symbolic regres-
sion for modeling the relation between known patient covariates such as age or
gender, and parameters of the PK model, as outlined in [Wahlquist et al., 2022].
Training these networks requires a several-fold increase in PK model simulations.
Even with modern computing power at hand, the large number of simulations con-
stitutes a bottle neck.

The most widely known tool/software that provides simulation of such systems
is NONMEM introduced by [Sheiner and Beal, 1980] in the 1980s. Lately, the soft-
ware Pumas AI has received attention as a faster alternative to NONMEM, as de-
scribed in [Rackauckas et al., 2020]. Much of the speedup is attributed to Pumas
AI being implemented in the the Julia language, with native support for differential
programming, see [Bezanson et al., 2017].

There are also numerous softwares that can simulate linear PK models through
numeric integration of ODEs. Such methods are accessible through for example
the lsim function in Matlab and DifferentialEquations.jl ( [Rackauckas and Nie,
2017]) in Julia. Such numeric ODE integration methods approximate the solution
using either fixed or adaptive time step lengths. They do not exploit the fact that
the dynamics are LTI, and they do not exploit the fact that the considered input is
a sequence of steady infusion levels (steps) and boluses (impulses), administered at
known, but typically unevenly spaced, time instances.

Since the dynamics are LTI, a faster alternative is to compute the exact solu-
tion of the ODE only at the dose change instances, and observation instances (that
may differ from them). Doing so naively involved the evaluation of an exponential
matrix.

We tailor a method for exactly solving the ODE at instances of interest. By
exploiting the structure of one, two, and three compartment LTI PK models, we
avoid the need of evaluating exponential matrices, without introducing the need
of solving a linear equation system in each time step, otherwise associated with
diagonalizing the system matrix.

The efficiency of the proposed method is demonstrated through benchmarking
it against commonly used solvers, using a large model set for the anesthetic drug
propofol.
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Figure 1. Mammillary three-compartment PK model. The drug is administered to the cen-
tral compartment at infusion rate u, from where the drug is also eliminated with elimination
rate k10. Two peripheral compartments are connected to the central compartment where trans-
fer rates constants ki j governs the drug transfer from compartment i to j. The compartmental
volumes are V1, V2 and V3, respectively.

2. Pharmacokinetic modeling

Pharmacokinetics describe the absorption and distribution of a drug within the body.
To be able to simulate pharmacokinetics and predict physiological parameters, such
as the compartment volumes, it is common to use a compartment model. The idea of
the compartment model is to collect organs or tissue of similar properties together
in compartments and model the drug transfer between them.

Commonly used compartment models are structures of one, two, and three com-
partments. A one-compartment model approximates the body as a single compart-
ment where the drug concentration is assumed to be uniformly distributed and
eliminated through a first-order process. Extending this model results in the two-
and three-compartment models, where the different compartments relate to differ-
ent types of tissue.

The compartment models can have different topologies, due to how the com-
partments are arranged, and where sources and sinks enters and exits the system.
For example, a mammillary model consists of a central compartment with periph-
eral compartments connected to it, with no interconnections among other compart-
ments. In the context of intravenously administered drugs, the central compartment
models the blood plasma.

Figure 1 provides a schematic illustration of the three-compartment mammil-
lary model, used, for example, to model the PK of the anesthetic drug propofol,
as explained in [Sahinovic et al., 2018]. We can also note from the figure that as
long as addition and elimination are associated with the central compartment, as is
the case for most intravenously administered drugs, the two models of two or one
compartment are special cases of the three compartment model.

Diffusion processes transferring drug between communicating compartments
are governed by non-negative transfer rate constants ki j, as shown in Figure 1.

A state-space representation of the one-compartment model relating drug infu-
sion rate u(t) to drug concentration x(t) is given by the first-order LTI model

ẋ =−k10x+
1

V1
u, (1)
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where k10 is the elimination-rate constant (1/time), and V1 is the volume of distribu-
tion of the single compartment. We have left out the time dependence on the state
variables x(t) and input u(t) for readability.

Similarly, the second-order compartment model is given by

ẋ1 =−(k10 + k12)x1 + k21x2 +
1

V1
u, (2a)

ẋ2 = k12x1 − k21x2, (2b)

where x1 denotes drug concentration within the central compartment, while x2 is
the peripheral compartment concentration.

The third-order mammillary compartment model, shown in Figure 1, corre-
sponds to

ẋ1 =−(k10 + k12 + k13)x1 + k21x2 + k31x3 +
1

V1
u, (3a)

ẋ2 = k12x1 − k21x2 (3b)
ẋ3 = k13x1 − k31x3, (3c)

where xk ∀k ∈ {1,2,3}, is the drug concentration within compartment k.

3. Simulation of LTI systems

For a pharmacological relevant scenario, the input u changes only at discrete time
instances during a treatment. At these instances, there is either a step change in the
infusion rate, a drug bolus (modeled by an impulse), or both.

The peripheral compartment concentrations are most commonly not directly
measurable, as the peripheral compartments are modeling constructs, rather than
actual tissues. However, the central compartment concentration can be measured by
drawing blood samples at discrete time instances.

Motivated by the circumstances detailed above, we consider methods for sim-
ulation of LTI systems when the input is a linear combination of time-shifted im-
pulses and steps. This means that we are dealing with events from the list below,
occurring in a sequence of known time instances:

• An impulse of fixed magnitude added to the central compartment;

• Addition of drug mass at a constant rate to the central compartment;

• Observation of the central compartment concentration.
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3.1 General solution of LTI systems
Let x be a state vector where xk represents the drug concentration of compartment
k = 1, ...,n. The state dynamics of a scalar-input LTI system can be written as

ẋ(t) = Ax(t)+Bu(t) (4)

where A is an n×n matrix, B is an n×1 column vector and u is the input. For the PK
models introduced in Section 2, A and B are uniquely determined by transfer-rate
constants and the central compartment volume V1.

The exact solution of Equation (4), derived in for example [Åström and Witten-
mark, 2011], is

x(t) = eAtx(0)+
∫ t

0
eA(t−τ)Bu(τ)dτ, (5)

We assign t = 0 to the instance where drug is first administered, corresponding
to an initial drug concentration x(0) = 000. If that is not the case, the zero time can be
shifted so that x(0) = 0 holds.

The solution Equation (5) can be evaluated through numerical approximation
of the integral, and there exist numerous numerical integration methods to this end.
Examples include ode45 and other related methods accessible from the lsim wrapper
in Matlab or DifferentialEquations.jl in Julia.

If the input changes only at discrete time instances tk, a more efficient alternative
to fixed (or adaptively variable) step-length numeric integration is to perform a exact
zero-order-hold (ZOH) discretization of Equation (5):

x(tk+1) = eA(tk+1−tk)x(tk)+
∫ tk+1

tk
eA(tk+1−τ)dτBu(tk), (6)

which can be rewritten on the compact form

xk+1 = Φkxk +Γkuk, (7a)

so that
Φk = eAhk ,

Γk =
∫ hk

0
eAτ dτB,

(7b)

where the sampling period is

hk = tk+1 − tk, (7c)

and subscript k denotes time dependence so that for example xk = x(tk).
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3.2 Simulation with impulses and piece-wise constant inputs
If we consider the input being an impulse (bolus) of magnitude vk, administered at
time tk, we have

uk = δkvk, (8)

where δk = δ (tk) is the Dirac distribution (unit impulse) centered at t = tk. For this
case the state update of Equation (7a) becomes

xk+1 = eAhk xk +
∫ hk

0
eAτ Bvkδ0(τ)dτ

= eAhk xk + eAhk Bvk = Φk(xk +Bvk).

(9)

If we instead consider a piece-wise constant input uk = wk, then Equation (5)
takes on the form

xk+1 = eAhk xk +
∫ hk

0
eAτ dτBwk

= Φkxk +Γkwk.

(10)

Combining Equation (9) and Equation (10), we get the updated state vector
under both an impulse and a piece-wise constant input

xk+1 = Φk (xk +Bvk)+Γkwk. (11)

As a consequence of the identity

[
Φk Γk
0 I

]
︸ ︷︷ ︸

M

= exp

[A B
0 0

]
︸ ︷︷ ︸

E

hk

 , (12)

which can be easily verified through dM/dhk = ME, it is possible to evaluate Φk
and ΓK in Equation (7b) by computing an exponential matrix of dimension n+ 1.
This makes the approach less computationally expensive than numeric integration
schemes for small tolerances.

4. Fast simulation of PK models

Computing the matrix exponential needed to evaluate Ad at each dosing instance is
the most time-consuming task associated with simulating the system using the exact
solution for piece-wise constant inputs. We next show how we can get rid of this
step.

Using the Laplace transform, the state dynamics Equation (4) can be written

X(s) = (sI −A)−1 BU(s). (13)
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For the considered PK models, this is equivalent to

X(s)
U(s)

=
adj(sI −A)B
det(sI −A)

=
1

V1

adj(sI −A)e1

det(sI −A)
, (14)

where the last equivalence comes from the fact that B = (1/V1)e1, where e1 is the
first unit vector in Euclidean Rn. The numerator adj(sI −A) is completely deter-
mined by the rate constants. For the ith state in the state vector X(s), with i= 1, . . . ,n,
we can evaluate Equation (14) so that for each state Xi(s)

Xi(s)
U(s)

=
1

V1

∑
n
j=1 p jisn− j

(s−λ1)...(s−λn)
, (15)

where pi j are the numerator polynomial coefficients and λk is the kth eigenvalue
of the A-matrix. For the considered models, all eigenvalues are unique, real and
strictly negative. Each of these eigenvalues can be explicitly expressed as a function
of the rate constants of the system. We used a computer algebra system to solve the
eigenvalue problem A−λ I = 0 for the three compartment case, to obtain the form

λ =

−c1 − c7
−c9 − c10
c9 − c10

 (16a)

where
b1 = k10 + k12 + k13 + k21 + k31

b2 = k21(k10 + k13 + k31)+ k31(k10 + k12)

b3 = k10k21k31

c1 = b1/3

c2 = c3
1

c3 = b2/3

c4 = c3 − c2
1

c5 = (b1c3 −b3)/2

c6 = 2
(

c5 +
√

c3
4 +(c2 − c5)2 − c2

)1/3

c7 =−Re(c6)

c8 = Im(c6)

c9 = c8
√

3/2
c10 = c1 − c7/2.

(16b)

was obtained by manual substitutions within the corresponding expression tree.
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Performing a partial-fraction decomposition of Equation (15), we obtain

Xi(s)
U(s)

=
1

V1

n

∑
j=1

r ji

s−λ j
. (17)

In the case of the three-compartment model and for state x1—corresponding to
the measurable central compartment concentration—the partial fraction decompo-
sition is given by

p11s2 + p21s+ p31

(s−λ1)(s−λ2)(s−λ3)
=

r11

s−λ1
+

r21

s−λ2
+

r31

s−λ3
. (18)

By multiplying both sides to get a common denominator, we obtain

p11s2 + p21s+ p31 = r31(s−λ2)(s−λ3)+

r21(s−λ1)(s−λ3)+ r31(s−λ1)(s−λ2). (19)

Matching powers of s results in the linear system 1 1 1
−(λ2 +λ3) −(λ1 +λ3) −(λ1 +λ2)

λ2λ3 λ1λ3 λ1λ2


︸ ︷︷ ︸

Q

r11
r21
r31


︸ ︷︷ ︸

r1

=

p11
p21
p31


︸ ︷︷ ︸

p1

, (20)

where the elements of P are completely determined by the transfer-rate constants.
Performing partial-fraction expansions of Equation (15) also for k = 1 and k = 3,

we have that
QR = P, (21a)

where

P =
[
p1 p2 p3

]
=

 1 0 0
k21 + k31 k12 k13

k21k31 k12k31 k13k21

 , (21b)

R =
[
r1 r2 r3

]
=

r11 r12 r13
r21 r22 r23
r31 r32 r33

 , (21c)

where P is expressed in terms of the rate constants of the mammillary three com-
partment model Equation (3). (Note that despite the variable naming, Q and R are
in general not the QR factors of P.)

Solving Equation (20) for r1, or more generally Equation (21a) for R, can be
done by first explicitly computing the inverse of Q, since R = Q−1P. For the three-
compartment case, the inverse of Q can be expressed in terms of the eigenvalues as

Q−1 =

λ 2
1 /d1 λ1/d1 1/d1

λ 2
2 /d2 λ2/d2 1/d2

λ 2
3 /d3 λ3/d3 1/d3

 , (22a)

110



4 Fast simulation of PK models

where
d1 = (λ1 −λ3)(λ1 −λ2),

d2 = (λ2 −λ3)(λ2 −λ1),

d3 = (λ3 −λ2)(λ3 −λ1).

(22b)

The two-compartment model is a special case, obtained by removing the third
row and column of the involved matrices, and equating any entry coefficient with
subscript 3 to zero.

For a one-compartment model, there will be no need for a partial-fraction de-
composition as the model is already of first order, resulting in Q = 1. Therefore, the
one-compartment model can be simulated directly as explained below, with R = 1.

The same methodology can be used also for models of n > 3 compartments.
However, for such models, the matrices P and Q do generally not have closed-
form entries. However, they can still be numerically pre-computed. Doing so, and
performing a LU factorization, enables replacement of the exponential matrix asso-
ciated with each time step with one forward and one backward substitution needed
to obtain R from P and the factors of Q.

Having computed R, we have access to the right-hand side of Equation (17). For
each eigenvalue j = 1, . . . ,n, and state i = 1, . . . ,n, the right-hand side comprises of
a parallel interconnection of n first-order systems, as a result of the partial-fraction
expansion Equation (17). Each of these are on the form

ri j

V1

1
s−λ j

. (23)

A possible state-space realization of Equation (23) is

ż j = λ jz j +u,

x j =
ri j

V1
z j.

(24)

Zero-order-hold sampling of Equation (24) with sampling period hk results in

zk+1 = ϕ jzk + γ juk,

xk =
ri j

V1
zk,

(25a)

where
ϕ j = eλ jhk ,

γ j =
1
λ j

(ϕ j −1) .
(25b)

We will now return to study the full system. For all eigenvalues j = 1, . . . ,n,
we put the corresponding ϕ j, γ j and z j from Equation (25) into arrays of length j.
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This allows us to perform parallel computations of each subsystem and therefore
speeding up the simulation of the full system. The resulting updating scheme is

zk+1 = ϕϕϕk ⊙ zk ⊕ γγγkuk, (26a)

xk =
1

V1
R⊤zk, (26b)

where

z =
[
z1 . . . zn

]⊤
, (27a)

ϕϕϕ =
[
ϕ1 . . . ϕn

]⊤
, (27b)

γγγ =
[
γ1 . . . γn

]⊤
, (27c)

and ⊙ denotes the element-wise product (sometimes also called the Hadamard or
Schur product) and ⊕ denotes the vector addition so that .⊕u = .+111u.

We have now demonstrated how an n-compartment model can be simulated
as a system of n first-order systems, which increases the computational efficiency
compared to traditional methods. Specifically, for the case of n ≤ 3 compartment
models with unique eigenvalues, the approximation-free simulation of the state evo-
lution between consecutive (bolus or infusion change) dosing events comes down to
computing R of Equation (17). The inverse Q−1 is pre-computed using the closed-
form expression Equation (22), relying on the also pre-computed eigenvalues of the
system matrix A. Due to the structure of the system, the eigenvalues can be evalu-
ated using the algorithm presented in Equation (16), that is computationally much
cheaper than solving a general eigenvalue problem of dimension n = 3. Finally, the
simulation only results in the computation of three scalar exponentials and simple
arithmetic operations.

4.1 Simulation algorithm
Instead of simulating the system with x as a state, we can simulate the system
in Equation (26) with z as a state and convert back to x once we are interested
in the physiological state. The simulation can now be divided into two parts, pre-
processing and simulation between events. The pre-processing part includes a com-
putation of R and the n eigenvalues of A. Once this has been done, cheap simulation
between events can be performed in parallel.

If we use the state update for impulses and piece-wise constant inputs in Sec-
tion 3 and Equation (11) together with the state update in Equation (27), we get

zk+1 = ϕϕϕk ⊙ (zk ⊕ vk)⊕ γγγkwk, (28)

where z0 is some initial state.
The simulation between events now only has two vector-vector additions and

two element-wise product evaluations, each involving n elements.
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Figure 2. Simulation of one patient in the model set published in [Eleveld et al., 2018].
The upper figure shows the simulation output, the blood plasma concentration of the central
compartment. Red circles shows times for observation. The lower figure shows the infusion
rate, administered to the central compartment.

At those time instances when we are interested in the physiological state xi,
the output can be computed from Equation (26b), with the state update given in
Equation (28).

5. Simulation example

In this paper, we consider simulation of a model set for the anesthetic drug propofol.
It has been published in full in in a supplement to [Eleveld et al., 2018] and is a data
collection from 30 previously published studies. The model set includes identified
individual model parameters of the three-compartment model, input infusion data
and blood plasma concentrations of 1033 patients as well as observation times.

One simulated example is shown in Figure 2 where the upper figure shows the
simulated blood plasma concentration in black, and where the observation instances
are marked in red. Note that we are typically only interested in the state at these
instances. The lower part of Figure 2 illustrates the infusion rate.

The simulations algorithms compared in this paper are implemented in either
Matlab or Julia. In Matlab, lsim has been used for simulation. Due to the fact that
the time between events is not constant, lsim has to be called at each time instance.
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Table 1. Wall-clock time for simulation of the model set (1033 patients) published in
[Eleveld et al., 2018]. The simulations has been performed in Matlab and Julia, using the
simulation methods described in Section 5. Memory allocation count is not accessible for the
Matlab simulation.

Software Method Time (ms) Allocations

Matlab lsim 64585 -
Julia xk+1 = Φkxk +Γkuk 548 2.03 ·106

Julia DifferentialEquations.jl 230 2.79 ·107

Julia FastPKSim.jl 1.58 0

In Julia, the proposed simulation algorithm in Section 4.1, available through the
package FastPKsim.jl [Wahlquist, 2022b] is compared to direct computation of the
exact solution in Equation (11) and simulation using DifferentialEquations.jl with
callbacks. For the direct method in Equation (11), computation of the exponential
matrix is performed using Padé approximation.

6. Results

Table 1 shows the wall-clock time for simulation of the full model set (1033 pa-
tients) published in [Eleveld et al., 2018], with the simulations in Matlab and Julia,
as explained in Section 5. Even though all simulations in Table 1 are on the millisec-
ond scale, faster simulations are of outmost importance if thousands (or more) simu-
lations needs to be performed. All simulations were performed single-threaded. For
each simulation method, we performed 10 simulations and in the table, we present
the median simulation time of these simulations. Simulations in Julia also includes
the total memory allocation, which is not available for the Matlab simulation.

The proposed simulator can be found in the Julia package FastPKSim.jl, see
[Wahlquist, 2022b]. Code and data used to generate the results in Table 1 are avail-
able in a GitHub repo, see [Wahlquist, 2022a]. All computations were performed on
a standard Linux PC (Intel i5-8265U, 8-core processor) in Julia 1.8.2 and Matlab
2022b.

7. Discussion

In this paper, we have demonstrated a fast simulator for LTI PK compartment mod-
els of n = 1, 2 or 3 compartments. Instead of simulating an n-compartment model,
we simulate n first-order models, resulting in a significant speedup compared to tra-
ditional methods. By exploiting model structure, we circumvent the need to solve a
linear equation system at each time step to obtain a diagonalizing transform needed
to achieve this. For models with n > 3 compartments (being far less common in
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pharmacological applications), we would additionally rely on one forward and one
backward substitution using pre-computed LU factors of Q to solve the equation
system associated with diagonalization. Taking care to avoid dynamic memory allo-
cation further contributes to high efficiency of our implementation in FastPKSim.jl.
In comparison to existing ODE-solvers where the solution is approximate to some
degree, the proposed simulator is exact down to the precision of the scalar exponen-
tial function evaluation.

When using the simulator as part of an inference engine or to train a symbolic re-
gression network as in [Wahlquist et al., 2022], differentiation through the simulator
(with respect to model parameters) is necessary. Since Julia has native support for
automatic differentiation, this can be performed very cheaply with O(1) complex-
ity, and with exactness limited only by machine precision. In contrast, ODE solvers
called through the lsim wrapper in Matlab would need to rely on finite-difference
approximations to compute gradients.

In near-future work, we aim to setup FastPKSim.jl to run fully parallelized on
a cloud architecture, and use automatic differentiation to train symbolic regression
networks, to demonstrate viability of the methodology introduced in [Wahlquist et
al., 2022] in realistic data-driven modeling scenarios—something that would re-
quire far too long computational times using conventional ODE solvers.
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Paper III

Learning Pharmacometric Covariate Model
Structures with Symbolic Regression

Networks

Ylva Wahlquist Jesper Sundell Kristian Soltesz

Abstract

Efficiently finding covariate model structures that minimize the need for ran-
dom effects to describe pharmacological data is challenging. The standard ap-
proach focuses on identification of relevant covariates, and present method-
ology lacks tools for automatic identification of covariate model structures.
Although neural networks could potentially be used to approximate covariate-
parameter relationships, such approximations are not human-readable and
come at the risk of poor generalizability due to high model complexity.

In the present study, a novel methodology for the simultaneous selection of
covariate model structure and optimization of its parameters is proposed. It is
based on symbolic regression, posed as an optimization problem with a smooth
loss function. This enables training of the model through back-propagation us-
ing efficient gradient computations.

Feasibility and effectiveness are demonstrated by application to a clinical
pharmacokinetic data set for propofol, containing infusion and blood sample
time series from 1031 individuals. The resulting model is compared to a pub-
lished state-of-the-art model for the same data set. Our methodology finds a
covariate model structure and corresponding parameter values with a slightly
better fit, while relying on notably fewer covariates than the state-of-the-art
model. Unlike contemporary practice, finding the covariate model structure is
achieved without an iterative procedure involving manual interactions.

Keywords: Pharmacometrics, Covariate modeling, Pharmacokinetics,
Symbolic regression, Neural networks

Originally published in Journal of Pharmacokinetics and Pharmacodynamics
(2023). Reprinted with permission under CC BY. The original version is available
at https://doi.org/10.1007/s10928-023-09887-3.
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1. Introduction

Pharmacokinetics (PK) are the dynamics governing drug uptake, distribution and
elimination from the body. For many drugs, it is common to assert a low-order
linear and time-invariant (LTI) compartment model for PK modeling. Such low-
order models typically capture the uptake, distribution, and elimination dynamics
adequately. Increasing model complexity through, for example, additional compart-
ments results in models where the parameters are not practically identifiable from
data collected during clinical trials or clinical practice.

While suitable PK model structures (e.g. number of compartments and topol-
ogy) for common drugs can be established from data, a notable challenge exists in
that the parameter values that explain the PK for one individual, are often not suit-
able for another. Such inter-individual variability is partly explainable by individual-
specific features that are referred to as covariates, and partly attributed to random
effects.

The purpose of pharmacometric covariate modeling is to identify covariates
(i.e., fixed effects) responsible for inter-individual variability, thus minimizing ran-
dom effects. The gold standard is to approach this problem in a Bayesian setting
using mixed-effect modeling, for which there exists both mature [Sheiner and Beal,
1980] and novel [Rackauckas et al., 2020] tools. However, to apply mixed-effect
modeling, one needs to decide which of possibly many covariates (e.g. age, body
mass, gender, or genetic factors) to include. One also needs to decide on a paramet-
ric function that maps included covariates to parameters of the PK model. There is
a tradition of using functions that are of sufficiently low complexity to be human-
readable, and some function classes are more popular than others [Marsh et al.,
1991; Eleveld et al., 2018]. However, for data sets including numerous covariates,
selection of covariates and functions to consider is a combinatorial problem, where
the search space may become limiting. Furthermore, due to step-wise approaches
typically used for covariate identification, functions including multiple covariates
are typically only considered if supported by prior knowledge [Jonsson and Karls-
son, 1998].

Recently, the interest in combining machine learning (ML) and pharmacomet-
rics [McComb et al., 2022] has increased. For example, ML has shown promising
results in concentration predictions [Bräm et al., 2022], identification of influential
covariates [Janssen et al., 2022; Sibieude et al., 2021], as well as parameter regres-
sion and model selection with the use of genetic algorithms and neural networks
(NNs) [Sibieude et al., 2022]. The ML methods have been able to match, and even
beat, classic NLME modeling at a much higher computational speed. However, us-
ing ML to select influential covariates and identify the structural model simultane-
ously has, to our knowledge, not yet been studied.

In the present paper, we provide an automatic method for simultaneous covari-
ate selection and identification of covariate functions using an adaptation of ML.
Similarly to the current standard approach, we maintain simple human-readable ex-
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Figure 1. Mammillary three-compartment model example illustrating our novel method.
The objective is to automatically learn the covariate model f that maps a known covariate
vector ϕϕϕ (comprising e.g., age, gender, or genetic factors) to the parameter vector θθθ (e.g. rate
constant k·· and volumes V·) of a fixed-structure pharmacometric (PK) model. The method
is data-driven in that it uses drug administration profiles (time series data) u, and model-
based in that it assumes a PK model of known structure. In this example, f is learned to
minimize some error measure between observed (i.e. measured from samples) blood plasma
concentrations and corresponding predictions Cpred by the model. Dots in the graphs show
instances of dose changes and blood samples, respectively.

pressions. The method is based on symbolic regression [Davidson et al., 2003], that
approximates the underlying combinatorial problem with a smooth continuous one,
thus enabling the use of efficient gradient-based optimization methods.

To illustrate utility, we apply our methodology to a large data set for the drug
propofol and compare the resulting covariate model with the current state-of-the-art
model [Eleveld et al., 2018]. Our method produces a model with increased predic-
tive performance, using fewer covariates. Furthermore, the covariate model is opti-
mized autonomously in contrast to the prevalent iterative and manual procedure.

2. Methods

The method described in this paper aims to automatically learn closed-form phar-
macometric parameter–covariate relationships from data. We will consider learning
expressions for PK model parameters from drug administration and resulting blood
plasma concentration data, both of which are time series, but not necessarily syn-
chronous or equidistant samples. The overarching setup for this is shown in Figure 1
and we will focus on a concrete example based on a large multi-study data set pub-
lished in [Eleveld et al., 2018] for the anesthetic drug propofol, commonly modeled
with a mammillary three-compartment model [Schnider et al., 1998].
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Table 1. Covariate candidates considered in the PK model of [Eleveld et al., 2018] as well
as in our modeling. Individuals of the data set fall within the reported ranges.

Covariate Interpretation Unit Range

ϕ1 Age Years 0–88
ϕ2 Weight kg 0.68–160
ϕ3 BMI kgm−2 6.2–52.8
ϕ4 Gender Male/female 670 M/ 361 F
ϕ5 Blood sampling site Arterial/venous 727 A/ 306 V

2.1 Data set
We demonstrate our method on a data set composed of propofol plasma concen-
tration observations from 1,031 individuals1 from 30 clinical studies aggregated by
Eleveld et al. [Eleveld et al., 2018], from here on referred to as the data set. Ethical
approvals of the underlying studies are declared in the original publications, refer-
enced by [Eleveld et al., 2018]. The data set contains 15,433 observations, of which
11,530 were arterial and 3903 venous. Of the 1031 individuals, there were 670
males and 361 females with ages ranging from 27 weeks to 88 years, and weights
ranging from 0.68 to 160 kg, see Table 1.

The main reason for choosing this data set as a demonstrator is that propofol is
a drug with well-studied pharmacokinetics. Evidence of this, which also constitutes
a benchmark for our demonstrator, is the model presented in [Eleveld et al., 2018].
Furthermore, the data set is that it has been openly disclosed by Eleveld et al.,
enabling transparent third-party analysis of our work.

In our model development, we consider age, weight, BMI, gender, and blood
sampling site (arterial or venous) as potential covariates of our PK model. These
are the same candidates as considered in [Eleveld et al., 2018], where individual
demographics were disclosed as part of the data set.

The data was pre-processed the same way as in [Eleveld et al., 2018]: data points
corresponding to subsequent infusion changes spaced closer than 1 s apart in the
time dimension, or 0.5 µgs−1 in the dose dimension were merged.

1 The original data set in [Eleveld et al., 2018] comprises of 1033 individuals but two of them were
excluded due to lack of observation data.
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2.2 Pharmacokinetic model
We consider a three-compartment mammillary model to describe the pharmacoki-
netics of propofol. The drug concentration xi [µgL−1] in compartment i ∈ {1,2,3}
is

ẋ1 =−(k10 + k12 + k13)x1 + k21x2 + k31x3 +
1

V1
u, (1a)

ẋ2 = k12x1 − k21x2, (1b)
ẋ3 = k13x1 − k31x3, (1c)

where ki j describes the drug transfer rate [1/s] from compartment j to i. The drug
is administered at rate u [µgs−1] to the central compartment (i = 1), which is also
where the propofol plasma concentration is measured. The volume of the central
compartment is V1 [L].

In the literature, the equivalent parameterization of volumes (V1,V2,V3) and
clearances (CL,Q2,Q3) constitutes a common alternative to Equation (1). The con-
version between these parameterizations is

CL = k10V1, [Ls−1] (2a)

Q2 = k12V1, [Ls−1] (2b)

Q3 = k13V1, [Ls−1] (2c)

V2 =
k12

k21
V1, [L] (2d)

V3 =
k13

k31
V1. [L] (2e)

We have chosen to implement our method using the parameterization Equation (1)
due to numeric benefits. These are further explained in [Wahlquist et al., 2023],
where we developed a fast and natively differentiable simulator for the three-order
mammillary model.

2.3 Covariate model
The covariate model, shown in Figure 1, is expressed as a function f that maps the
covariate vector ϕϕϕ = [ϕ1, . . . ,ϕnϕ

]⊤ to the vector θθθ = [θ1, . . . ,θnθ
]⊤ of PK model

parameters. Thus f has components f1, . . . , fnθ
, each mapping the covariate vector

ϕϕϕ to one of the nθ PK model parameters.
In our example with the three-compartment model for propofol, there are nϕ =

5 covariates and nθ = 6 PK model parameters according to Table 1.To not favor
covariates based on their scale, all input covariates were normalized during model
development. Continuous inputs (age, weight and BMI) were scaled from 0 to 1,
and categorical inputs (gender and blood sampling site) were scaled to ±0.5.
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2.4 Predictive performance
To assess the quality of a particular covariate model candidate f , we need a perfor-
mance measure that captures how well f reflects the training data. Most optimization
methods, including the ones used in this paper, relies on this measure being scalar.

For comparability, we employ the same scalar performance measures as those
used in [Eleveld et al., 2018]: We train our model to minimize an ensemble average
of absolute logarithmic error (ALE). Subsequently, we evaluate predictive perfor-
mance in terms of ALE, and three additional error measures: logarithmic error (LE),
prediction error (PE), and absolute prediction error (APE).

For each individual in the data set, there is a vector of observation–prediction
errors, where each entry corresponds to the difference between a blood sample ob-
servation and the value predicted by the model. Observation-prediction errors could
thus be computed for each sample, over a time series for one individual, or the en-
tire data set. This prompts a consistent notation and we index by i j the error over a
sample j for individual i, whereas a total error over a time series for an individual
is indexed by i.

The per-sample (absolute) logarithmic error (A)LE [Masui et al., 2010] is thus

LEi j = ln(Cobsi j/Cpredi j), (3a)

ALEi j = |LEi j|, (3b)

where Cobsi j are observed (measured) plasma concentrations and Cpredi j are corre-
sponding predictions produced by the model.

Similarly, the per-sample (absolute) prediction error (A)PE [Varvel et al., 1992]
is

PEi j =

(
Cobsi j −Cpredi j

Cpredi j

)
·100% (4a)

APEi j = |PEi j|. (4b)

To avoid divisions by zero if Cpredi j = 0, a special casing is needed where the error
is set to zero for such samples.

Using Equation (3) and Equation (4), corresponding per-individual errors were
computed by taking the median, resulting in the median absolute logarithmic error
(MdALE):

MdALEi = median(ALEi j) , j = 1, . . . ,ni, (5)

where ni is the number of entries of the time series from individual i.
To train the model of [Eleveld et al., 2018] and the ones considered here, a

single scalar loss function representing model fit is required. This is obtained by
averaging across the individuals. Training the covariate model to minimize ALE
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Figure 2. Symbolic regression network with three layers, each marked by a gray box. The
output of node zli at layer l is the ith component of zl = Wlxl + bl , where xl , Wl and bl are
the input vector, weight matrix, and bias vector of that layer. The base expressions gli acting
on zli take on the role of activation functions used in ordinary ANNs. For example is the
output of the first layer (and therefore input to the second layer) x2 = g1(W1x1 + b1). Input
and output of the network is the covariate vector ϕϕϕ = x1 and the PK parameter θk = x4,
respectively.

thus translates into minimizing

JALE =
1
n

n

∑
i=1

MdALEi, (6)

where n is the number of individuals in the data set.
Similarly to the analysis performed in [Eleveld et al., 2018], ALE and APE were

used as indicators of model accuracy and LE and PE were used as indicators of bias.
Values closer to zero for ALE and APE reflect better accuracy and values closer to
zero for LE and PE indicate less bias.

Clinically acceptable ranges for MdPEi and MdAPEi are 10− 20% and 20−
40%, respectively [Schüttler et al., 1988; Eleveld et al., 2018; Varvel et al., 1992].
This translates to acceptable clinical ranges for bias measure MdLEi < 0.18 and
accuracy measure MdALEi < 0.34.

Of note, the choice of loss function will affect how outliers are penalized, where
using an average loss across individuals would for example penalize outliers more
than a median loss over individuals.

2.5 Symbolic regression networks
At the core of our methodology lies a small artificial neural network (ANN) with
a specific structure, that of a symbolic regression network [Martius and Lampert,
2017], representing a simple closed-form expression. In our case, the purpose is to
learn human-readable closed-form expressions describing the covariate model f . A
schematic illustration of such network is shown in Figure 2.
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In general, ANNs can be viewed as flexible function approximators that can be
trained to represent input-output mappings that fit available data. An ANN consists
of nl layers, where the output vector xl+1 of layer l is obtained by applying a vector
of nonlinear activation functions gl to an affine transformation zl to the layer input
xl :

zl =Wlxl +bl , (7a)
xl+1 = gl(zl). (7b)

The linear weight matrices Wl and bias vectors bl constitute the free parameters
used to train the network. In the conventional case, the components of the activation
functions gl are monotonously increasing functions, such as sigmoids [Dubey et al.,
2022]. In contrast, a symbolic regression network can be understood as an ANN
with the additional constraint that the resulting approximator f should be a human-
readable closed-form expression of a mathematical function [Orzechowski et al.,
2018; Martius and Lampert, 2017; Sahoo et al., 2018; Kim et al., 2021]. Training
of symbolic regression networks is therefore often referred to as equation learning
[Martius and Lampert, 2017]. The methodology has gained broad attention for its
ability to produce impressive results in discovering (known) physical laws from data
[Udrescu et al., 2020].

The activation functions g of a symbolic regression network represent math-
ematical functions that we refer to as base expressions. In standard symbolic
regression, a sequence of topologies with different base expressions and scalar
parameters–of which the weight matrices and bias vectors in Equation (7) would
constitute a special case–are evaluated in search of one that fits the available data
well [Koza, 1992]. Conventional equation learning is thus a combinatorial problem,
with poor (exponential) time complexity, and therefore often approached using ge-
netic algorithms [Koza, 1992].

Instead of relying on random perturbations as in genetic algorithms, we use
gradient-based optimization methods common to conventional ANN training. To
ensure human-readability, we enforce sparsity of the ANN by alternating training
epochs with pruning epochs, in which the least important parameters are removed
from the network. We next rely on a concrete example based on the Eleveld data
set, to describe and illustrate this approach.

We set out with a nominal (unpruned) network of Figure 2. It constitutes our
nominal representation of fk, where the inputs are the covariates according to Ta-
ble 1. Thus, the output of the network represents one of the PK parameters θk, such
as k10 or V1 of Equation (1). For a model with nθ PK parameters, we use a parallel
interconnection of nθ symbolic regression networks, each modeling one component
fk of f , mapping the covariate vector ϕϕϕ to each PK parameter θk, k = 1, . . . ,nθ .

In our example, the base expressions of each layer l ∈ {1,2,3}, with input vector
zzzl =

[
zl1, zl2, . . .

]⊤, were chosen to cover previously published PK models for
propofol, such as [Eleveld et al., 2018] and [Schnider et al., 1998]:

124



2 Methods

ggg1(zzz1) =

 z11
z12 · z13

|z14|z15 ,


ggg2(zzz2) =

 z21
z22 · z23

z24
z25+1 ,


g3(z3) = |z3|,

where the g3 assures positive output of the final layer. The division in ggg2 has the term
one in the denominator to assure that the output does not blow if z25 ≥ 0 approaches
zero.

Training Minimizing the loss function Equation (6) across trainable parameters
of the covariate model f is referred to as training. In our case, these parameters
are stacked into a vector γγγ , made up by the elements of all weight matrices and
bias vectors. Since the data set is static, we can view training as minimization of
the scalar-valued function JALE(γγγ). In order to do so, we need to evaluate JALE(γγγ).
Doing so requires simulation of one PK model for each data set individual, to obtain
the predicted plasma concentration at each observation time instance. This can be
efficiently done using the method introduced in [Wahlquist et al., 2023].

In addition to the supporting fast simulation, the method of [Wahlquist et al.,
2023] enables exact and efficient evaluation of derivatives of individual prediction
errors with respect to the trainable model parameters. This allows us to train the
covariate model f using conventional ANN back-propagation, using the stochastic
gradient-based optimization algorithm ADAM [Kingma and Ba, 2017]. As with ar-
tificial neural networks in general, establishing formal convergence guarantees is
challenging. However, in practice both standard deep learning networks and our
symbolic regression do converge to models that fit data adequately well. Similarly
to the deep learning case, convergence rate will also vary with data, choice of activa-
tion functions, learning rate, and initialization of the training. Our implementation,
using the neural network package Flux [Innes, 2018b], relies on the differential
programming capabilities of the Julia language [Bezanson et al., 2017]. A full dis-
closure of our implementation is found in the GitHub repository [Wahlquist, 2023].

Pruning To obtain simple human-readable expressions from an initially dense
symbolic regression network, such as the one in Figure 2, we alternate between
parameter training of the fixed network structure and pruning of the network.
The goal of this pruning is to obtain a sparse network structure, which translates into
a readable expression of the corresponding covariate model. In the pruning process,
we remove covariates and network parameters that have relatively little influence
on the network output. This process is visually exemplified in in Figure 3.
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(a) Nominal (dense) symbolic regression network
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(b) Symbolic regression network after covariate pruning
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(c) Final symbolic regression network after covariate and parameter prun-
ing

Figure 3. Pruning sequence of a symbolic regression network with output pharmacokinetic
parameter θ2 = k12. Input covariates are age, weight, gender, and arterial or venous sampling
(AV). The nominal network has three dense layers, each followed by base expressions such
as 1 (feedforward), multiplication, power function, division and absolute value. A black line
represents a connection between two nodes, and a gray line represents a pruned (removed)
connection. The final network represents the covariate expression of Equation (10b)

It is desirable to only include as many covariates as needed to explain the data
[Jonsson and Karlsson, 1998]. Therefore, we start by identifying and removing the
least important covariates from the symbolic regression network to obtain expres-
sions with fewer covariates. Next, we prune network parameters γγγ (linear weights
and biases) to obtain simple covariate expressions. Pruning a network parameter is
achieved by fixing its value to zero and removing it from the vector γγγ of trainable
parameters.

Before each pruning iteration, we train the network until convergence. This
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translates into finding a local minimum of the loss function in Equation (6). At
such minima, the partial derivatives of the loss function with respect to the train-
able parameters are zero. Therefore, the second derivatives define the first non-zero
terms of the Taylor series expansion that describe local parameter sensitivities, as
further explained in Supplementary Section A. The second-order derivatives make
up the elements of the Hessian matrix. Specifically its diagonal elements represent
sensitivities in the corresponding individual parameters.

In the Taylor series expansion, the second-order terms take on the form

S(γk) = γ
2
k Hk, (8)

where Hk is the kth Hessian diagonal element of the loss function with respect to
the network parameter γk. S(γk) denotes salience of a parameter γk [LeCun et al.,
1989].

For pruning of the network parameters γγγ , Equation (8) may be used directly.
However, computing the salience for a covariate is not as straightforward since the
Hessian elements would differ between individuals. A solution to this is to sum the
salience contribution of each individual,

S(ϕk) =
n

∑
i=1

ϕ
2
ik(Hi)k, (9)

where (Hi)k is the kth diagonal element of the Hessian, Hi, determining the sensitiv-
ity of the covariate ϕik for individual i, and n is the number of individuals.

We use the Zygote package [Innes, 2018a] in Julia to compute the Hessian di-
agonal elements. In Supplementary Section A, we give a more detailed descrip-
tion of the Hessian-based pruning method, providing mathematical insight into this
methodology.

Recipe: Symbolic regression A compact summary of our training and pruning
scheme is provided below. Initially, we start with a nominal symbolic regression
network, like the one shown in Figure 3a. It is sequentially trained and pruned un-
til we obtain a final expression of sufficient complexity and fit. Our training and
pruning sequence of a symbolic regression network is as follows:

1. Choose a nominal symbolic regression network architecture, and correspond-
ing base expressions.

2. Train the network until convergence.

3. Compute the salience of each (remaining) covariate, S(ϕk) of Equation (9).

4. Sort the covariates by saliency and remove the covariate with the smallest
salience.

5. If the desired final number of covariates is reached, continue to step 6, other-
wise return to step 2.
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6. Train the reduced network until convergence.

7. Compute the salience of each (remaining) trainable network parameter, S(γk)
of Equation (8).

8. Sort the network parameters by saliency and remove N parameters with the
smallest salience.

9. If the desired final number of network parameters is reached, continue to step
10, otherwise return to step 6.

10. Train the reduced network until convergence.

11. Convert the resulting network to a readable functional expression.

The number of covariates and network parameters to keep in the final symbolic
regression network is a trade-off between fit to data and complexity of the final ex-
pression. In our example, illustrated in Figure 3, we remove one covariate at each
pruning iteration, until only two covariates are left. Next, we remove the N = 10
least sensitive parameters in the first parameter pruning iteration, and then one pa-
rameter per subsequent pruning iteration until only twelve network parameters are
left. More details of the pruning and training can be found in [Wahlquist, 2023]. In
[Wahlquist et al., 2022], we demonstrate that our methodology can identify func-
tions of known shapes correctly.

Initialization of the parameter values associated with step 1 of the recipe affects
the fit of the resulting final model. To mitigate the risk of poor model fit due to
an unfortunate initialization, the recipe could be run several times, where the best
fitting model is kept. In our example, we have executed the recipe eight times.

2.6 Limits of performance
Structural mismatch between the asserted PK model structure Equation (1) and the
data, in combination with measurement errors, induce upper and lower limits on
prediction errors of the trained covariate model. Here we explain how these limits
can be characterized by training two additional models.

Even with a very complex covariate model, one cannot expect perfect fit to
data (zero loss). This is because the fixed (three-compartment) PK model structure
is only an approximation of the actual pharmacokinetics, combined with (blood
sample) measurement errors. Part of the loss remaining after applying our covariate
modeling scheme can thus be attributed to this mismatch. To indicate how much,
we optimize one set of (three-compartment) PK parameters for each individual in
the data set. This results in a completely covariate-free model. While it will fit data
better than any covariate model, it does not generalize. This makes it practically
useless for purposes other than providing an upper limit for performance.
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Another natural question to ask is how much we gain (in terms of loss) by con-
sidering covariate dependencies. To do this, we optimize a constant, i.e. covariate-
free, model — one where all individuals share the same (three-compartment) PK
parameter values. This model does constitute a lower bound of the achievable pre-
dictive performance that any covariate-based model should beat.

For these two additional models, PK parameter optimization was done with the
optimization package Optim.jl [Mogensen and Riseth, 2018], to minimize the same
loss as for our covariate model based on symbolic regression. Implementation de-
tails can be found in [Wahlquist, 2023].

3. Results

Applying the proposed methodology to the Eleveld data set [Eleveld et al., 2018],
resulted in the following covariate model, mapping covariates to rate constants and
central compartment volume of the PK model Equation (1):

k10 = 0.00441
WGT

WGTmax
+0.00342 [s−1] (10a)

k12 =

∣∣∣∣∣0.158 AGE
AGEmax

−0.00431 BMI
BMImax

−0.188

0.64 AGE
AGEmax

−0.0174 BMI
BMImax

−0.743

∣∣∣∣∣ [s−1] (10b)

k13,male =
0.0058

(
AGE

AGEmax

)2
+0.00208 AGE

AGEmax
+0.0026

2.75
(

AGE
AGEmax

)2
+0.985 AGE

AGEmax
+0.601

[s−1] (10c)

k13,female =
0.0058

(
AGE

AGEmax

)2
−0.00208 AGE

AGEmax
+0.0026

2.75
(

AGE
AGEmax

)2
−0.985 AGE

AGEmax
+0.601

[s−1] (10d)

k21 =

∣∣∣∣∣0.00408
(

BMI
BMImax

)2

−8.16 ·10−4 BMI
BMImax

−0.0057
BMI

BMImax

WGT
WGTmax

+0.00218

∣∣∣∣∣
[s−1] (10e)

k31,male = 4.52 ·10−5 +1.92 ·10−5 AGE
AGEmax

[s−1] (10f)

k31,female = 4.52 ·10−5 −1.92 ·10−5 AGE
AGEmax

[s−1] (10g)

V1 = 0.0596
AGE

AGEmax
+18.7

WGT
WGTmax

−13.7
(

WGT
WGTmax

)2

−3.5
AGE

AGEmax

WGT
WGTmax

−0.0557.

[L] (10h)

AGE, WGT, BMI represent age [years], weight [kg] and body mass index
[kgm−2]. The subscript max represent the input normalization where AGEmax = 88
years, WGTmax = 160 kg and BMImax = 52.8 kgm−2.

The subscript male or female indicates different PK parameter expressions de-
pending on gender. The blood sampling site (arterial or venous) was available as a
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Figure 4. Predicted versus observed propofol concentrations of our covariate model (Sym-
reg, red) compared to the Eleveld covariate model in [Eleveld et al., 2018] (Eleveld, blue) in
logarithmic scale. The identity function, representing a perfect model fit, is shown in black.

modeling covariate, but was automatically pruned by the symbolic regression algo-
rithm.

The obtained model of Equation (10) is less complex than the Eleveld model
in [Eleveld et al., 2018], provided in Supplementary Section B for reference, and
comparable to simpler covariate models for propofol, such as [Marsh et al., 1991;
Schüttler et al., 1988].

The predicted concentrations of the final covariate model on the Eleveld data set
are shown in Figure 4 together with the corresponding Eleveld model predictions.
The distribution of errors between predicted and observed predictions is shown in
the boxplot in Figure 5, indicating comparable predictive capability of the models,
despite our model being less complex, and involving fewer of the available covari-
ates. For ease of comparison, we present the corresponding average prediction er-
rors in Table 2. We compare our model to the Eleveld model, to a covariate-free PK
model where all individuals share the same parameters values, and to a covariate-
free individual models with unique parameter sets. As expected, adding covariates
explains some, but not all, variability between patients. This can be seen by com-
paring our model to the constant PK model and the individual models. As seen in
Table 2, all of the prediction errors: MdLE, MdALE, MdPE, and MdAPE fall within
clinically acceptable ranges, as presented further above.
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Figure 5. Comparison of prediction error MdALE Equation (5) between predicted and ob-
served propofol concentrations for pharmacokinetic models. Our covariate model is denoted
Symreg and the Eleveld covariate model is described in [Eleveld et al., 2018]. The constant
model represents one parameter set over the population and individual represents individual
set of model parameters. The lower whisker for the individual models goes to zero.

Table 2. Comparison of prediction errors for the propofol data set in [Eleveld et al., 2018]
(1,031 individuals) for several pharmacokinetic models, all trained with MdALE Equation (5)
as loss. Individual and constant PK model(s) are shown for comparison, representing best and
worst case limits, respectively.

Method
Mean
MdALE

Mean
MdLE

Mean
MdAPE

Mean
MdPE

Constant model 0.501 0.140 211 181
Eleveld model 0.325 0.0791 34.8 14.4
Symbolic regression 0.279 -0.0489 27.4 -0.266
Individual models 0.0623 1.65 ·10−4 6.21 0.0178

4. Discussion

We have introduced a novel symbolic regression methodology for simultaneously
automating the search for a suitable covariate model structure and optimization of
its parameters. Similar to contemporary methodologies, it relies on a user-specified
set of base expressions from which the covariant model can be composed. However,
and in important contrast to contemporary methods, the need for a combinatorial
search across combinations of these expressions is voided.

Throughout the paper, a propofol PK modeling example has been used as a
demonstrator. Within this example, the proposed methodology manages to accom-
plish slightly better data fit than the result of state-of-the-art modeling [Eleveld et
al., 2018] (see Figures 4 and 5, Table 2), while relying on fewer covariates, see
Equation (10). The obtained values of individual volumes and clearances were com-
parable to those in [Eleveld et al., 2018].
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The introduced methodology is broadly applicable to PK modeling from time
series data, and likewise to pharmacodynamic (PD) modeling, and combined phar-
macokinetic and pharmacodynamic (PK/PD) modeling. It’s main benefit lies in that
it poses the search for a suitable PK model as symbolic regression with a smooth
loss function. This, in combination with efficient methods for simulation and gra-
dient computations [Wahlquist et al., 2023] enables efficient model learning using
back-propagation.

Another advantage is that the method can find covariate functions that are both
simple and explain available data, while having a structure that would generally
not be considered in a manual model structure search, unless explicitly supported
by prior knowledge. However, the obtained covariate model is deterministic in the
sense that we do not obtain a distribution over individual PK parameter values. It
would be possible to integrate this methodology into the traditional mixed-effect
modeling framework. Yet, this would be computationally much more demanding,
which is why we propose first applying symbolic regression in a deterministic set-
ting to arrive at a covariate model structure, and then (if desired) apply mixed-effect
modeling to maximize parameter likelihood (with respect to some parameter priors
and subject to the considered data) within the found structure.

In this paper, we have focused on models that are of sufficiently low complexity
to be human-readable, which is achieved by enforcing sparsity of the neural network
that constitutes the expression tree of the covariate model. If human readability is
not necessary, an ordinary deep ANN could be employed instead. However, there
is also a trade-off between fit to training data (expressiveness) and generalization to
yet unseen data due to possible over-fitting. Enforcing human-readability naturally
limits flexibility of the model, thus decreasing this risk of over-fitting. The ability to
manually specify base expression also provides a means to integrate expert knowl-
edge into the model. For example, a suspicion that a compartment volume should
correlate to the square of patient age would motivate multiplication as a base ex-
pression.This enables incorporating expert knowledge into the model, for example
a clearance to the power of 0.75 as in [West et al., 1997], or compartmental allom-
etry as in [Anderson and Holford, 2008].

We assessed the model’s out-of-sample prediction performance using a five-
fold cross-validation. The data set was divided into five equal parts, and a covariate
model was trained on four of the partitions, excluding one each time. The excluded
partition, referred to as the validation set, was used to evaluate the model. This pro-
cess was repeated for all five partitions to obtain an average predictive performance.
The resulting mean (range) MdALE from cross-validation on the test sets was 0.303
(0.152–0.423), similar to the mean MdALE of 0.279 in Table 2. There was thus
only a modest 10 % difference in mean error between the training and validation
sets, which suggests no over-fitting issue. If such a problem had occurred, reducing
the number of covariates and parameters (harder pruning) could have balanced the
prediction errors on both sets.

The way we have employed the methodology here differs from how covari-
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ate models are usually trained using mixed-effect modeling. Rather than asserting
parameter priors and selecting the most likely parameters from the posterior dis-
tribution that the data infers, we have chosen to train a scalar loss function, result-
ing in a deterministic covariate model. It would in theory be possible to embed
our methodology within an inference engine, but at the cost of high computational
cost. If a Bayesian interpretation is desired, a likely better alternative is to first run
our methodology to arrive at a covariate model structure–as we have done in our
example–and then assert parameter priors to the parameters of the resulting model,
to finally apply mixed-effect modeling to compute the corresponding posteriors.

5. Conclusion

We have presented a novel methodology for automatic and simultaneous covari-
ate model structure discovery and parameter optimization. This model was demon-
strated using an example on which it outperforms state-of-the-art modeling, in that
it finds expressions that match data slightly better, while relying on notably fewer
covariates. We conclude that the potential of automated model structure discovery
is substantial; it could greatly optimize the process of pharmacometric covariate
modeling. Additionally, it’s likely to provide an improved balance between model
complexity and data fit. This improved balance is something that could be challeng-
ing to achieve when simply assessing a series of pre-set model structure candidates
in sequence.
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A Hessian-based pruning

Supplementary Information

A. Hessian-based pruning

In this appendix we provide a mathematical interpretation of the roles played by the
Hessian and parameter saliences in our pruning approach.

The effect of perturbing the parameter vector can be analyzed by approximating
the loss function J(γγγ) by a Taylor series. A perturbation ∂γγγ of the parameter vector
γγγ will change the loss function by

∂J(γγγ) = ∇J(γγγ)∂γγγ +
1
2 ∑

i
Hii∂γi

2 +
1
2 ∑

i ̸= j
Hi j∂γi∂γ j +O(||∂γγγ||3),

where ∂γi are the components of ∂γγγ , ∇J(γγγ) is the gradient of the loss function and
Hi j are the elements of the Hessian matrix H of J with respect to γγγ so that

∇J(γγγ) =
∂J(γγγ)

∂γγγ
Hi j =

∂ 2J(γγγ)
∂γi∂γ j

.

The goal is to prune the parameters that are least sensitive, i.e. those that af-
fect the loss J the least when perturbed. Even for our size of network, repeatedly
computing the full Hessian H would notably slow down training of the symbolic
regression model. Instead, we make a diagonal approximation of the Hessian, ne-
glecting cross terms Hi j with i ̸= j.

Allowing training to converge before each pruning iteration, ensures that
∇J(γγγ) = 0 (or in practice negligible), thus enabling approximation of ∂J(γγγ) by

∂J(γγγ)≈ 1
2 ∑

i
Hii∂γ

2
i .

This approximation is then used to form an importance measure (salience) of
our network parameters, according to [LeCun et al., 1989], where the salience of
parameter γi becomes

S(γi) = Hiiγ
2
i .
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B. The Eleveld model

The Eleveld PK covariate model in [Eleveld et al., 2018] is defined by

fageing(x) = exp(x(AGE−AGEref))

fsigmoid(x,E50,λ ) =
xλ

xλ +E50λ

fcentral(x) = fsigmoid(x,θ12,1)
fCLmaturation = fsigmoid(PMA,θ8,θ9)

fQ3maturation = fsigmoid(AGE+40weeks,θ14,1)

fopioids(x) =

{
1, absence of opiates
exp(x ·AGE) , presence of opiates

fAl-Sallami =


(

0.88+ 0.12
1+(AGE/13.4)−12.7

)( 9270·WGT
6680+216BMI

)
, males(

1.11+ −0.89
1+(AGE/7.1)−1.1

)( 9270·WGT
8780+244BMI

)
, females

V1,arterial(L) = θ1
fcentral(WGT)

fcentral(WGTref)

V1,venous(L) =V1,arterial (1+θ17(1− fcentral(WGT)))

V2(L) = θ2
WGT

WGTref
fageing(θ10)

V3(L) = θ3
fAl-Sallami

fAl-Sallami, ref
fopioids(θ13)

CL(L/min) =

{
θ4, male
θ14, female

}(
WGT

WGTref

)0.75 fCLmaturation

fCLmaturation, ref
fopioids(θ11)

Q2,arterial(L/min) = θ5 (V2/V2,ref)
0.75 (1+θ16(1− fQ3maturation))

Q2,venous(L/min) = Q2,arterial ·θ18

Q3(L/min) = θ6 (V3/V3,ref)
0.75 fQ3maturation

fQ3maturation, ref

where the reference patient is male, 35 years old, 70 kg and 1.7 metres tall. All
parameters values θ can be found in the original publication of [Eleveld et al., 2018].
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Automated Covariate Modeling using
Efficient Simulation of Pharmacokinetics

Ylva Wahlquist Kristian Soltesz

Abstract

Pharmacometric modeling plays an important role in drug development and
personalized medicine. Pharmacometric covariate models can be used to de-
scribe the relationships between patient characteristics (such as age and weight)
and pharmacokinetic (PK) parameters. Traditionally, the functional structure
of these relationships are obtained manually. This is a time-consuming task,
and consequently limits the search space of covariate relationships. The use
of data-driven machine learning (ML) in pharmacometrics has the potential
to automate the search for adequate model structures, which can speed up the
modeling process and enable the evaluation of a wider range of model candi-
dates. Even with moderately sized data sets, ML approaches require millions
of simulations of pharmacokinetic (PK) models, which dictates the need for
an efficient simulator. In this paper, we demonstrate how to automate covariate
modeling using neural networks (NNs), that are trained using efficient PK sim-
ulation techniques. We apply the methodology to a propofol data set with 1031
individuals and compare the results to previously published covariate models
for propofol. We use the NN as a function approximator that relates covariates
to the parameters of a three-compartment PK model, and train it on dose and
plasma concentration time series. Our study demonstrates that NN-based co-
variate modeling allows for automation of the otherwise time-consuming task
of identifying which of available covariates to include in the model, and what
functional mappings from these covariates to PK model parameters to consider
in the model search. Additional to this saving in modeler effort, the NN-based
model obtained in our clinical data set example has PK parameters within a
clinically reasonable range, and slightly enhanced predictive precision than a
previously published state-of-the-art covariate models for propofol model.

Keywords: Pharmacokinetics and drug delivery; Physiological modeling;
Biomedical system simulation; Machine learning; Neural networks
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1 Introduction

1. Introduction

1.1 Background and motivation
Pharmacokinetics (PK) is the study of how a drug affects the body and is commonly
modeled by linear time-invariant (LTI) compartmental models. These models de-
scribe the uptake, distribution, and elimination dynamics of the drug and are used
to predict drug concentrations and physiological parameters. A suitable PK model
structure, such as the number of compartments and topology, can be readily de-
termined from data [Sahinovic et al., 2018]. However, PK parameters, such as the
volume of distribution, vary between individuals and affects the drug response. This
inter-individual variability can be partly explained by introducing covariates, such
as age and weight, to the PK modeling.

Pharmacometric covariate modeling relies on determining the relationship be-
tween covariates and PK parameters. In covariate modeling, the goal is to iden-
tify covariates that explains the inter-individual variability. For example, letting a
volume of distribution depend on patient weight can result in a PK model that
better fits dose-response data. The inclusion of covariates explains some of the
inter-individual variability, but not all. The remaining variability is commonly mod-
eled by statistical components, so-called random effects. An example of a covariate
model is shown in Figure 1.

Traditionally, covariate models are derived with non-linear mixed-effect mod-
eling (NLME), where the most widely used software is NONMEM [Sheiner and
Beal, 1980], and a more modern alternative is Pumas AI [Rackauckas et al., 2020].
Commonly, NLME modeling includes one or several manual steps, where the mod-
eler successively adds covariates and covariate relationships. This is done partially
based on physiological knowledge and partially on how the inclusion of a covariate
relationship improves the fit to dose-response data. These manual steps constitute a
time-consuming task. For an expert they can take all from hours to weeks, in effect
limiting the admissible search space for covariate relationships.

In this paper, we study covariate modeling of the pharmacokinetics of the anes-
thetic drug propofol. There exist several covariate models for propofol derived with
NONMEM [Eleveld et al., 2018; Schüttler and Ihmsen, 2000] where the structural
covariate model was derived manually.

In [Wahlquist et al., 2023b], we demonstrated how to obtain readable and inter-
pretable covariate models with symbolic regression networks, further explained in
Section 1.2. Then, it is natural to ask how much better fit we can get with a more
complex function approximator, an neural network (NN) with regular activation
functions, such as the ReLU or a sigmoid. In this paper, we study this problem by
training an NN that relates covariates to PK parameters of the compartment model.
Naturally, a more complex function approximating the covariate model will be able
to fit the data better. In this paper, we study how much better this fit is and if it is
worth the trade-off of readability.
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We demonstrate the method on a data set for propofol and compare the final
covariate model to the covariate models in [Eleveld et al., 2018] and [Wahlquist et
al., 2023b]. The drug administration data is a mix of boluses and infusions, which
makes it a suitable data set for demonstrating the use of the simulator FastPKSim.jl
in this setting [Wahlquist et al., 2023a]. More details of the data set can be found in
Section 3.

1.2 Machine learning in pharmacometrics
Machine learning (ML) is a potential tool for automating pharmacometric mod-
eling tasks [Janssen et al., 2022c; Sibieude et al., 2022; Wahlquist et al., 2023b].
More specifically, NNs are general function approximators that enable the capture
of intricate relationships. ML also allows for automation and speed-up of modeling
tasks that are normally done manually. For example, ML can automate the pro-
cess of evaluating many covariate relationships of the structural covariate model.
An overview of the current use and possibilities of ML in pharmacometrics can be
found in [Janssen et al., 2022a].

In several papers, it was suggested to use NNs to predict drug concentrations
directly from dosing data [Brier et al., 1995; Chow et al., 1997; Liu et al., 2015].
As pointed out in [Janssen et al., 2022c], these models tend to lack the ability to ex-
trapolate outside of these predicted time points and instead suggest that ML should
be used to predict latent parameters of another function, such as the model param-
eters of a compartment model. An example of this is shown in Figure 1 and is the
approach in this paper, where we use NNs to predict the model parameters of a PK
compartment model.

A few examples of where NNs have been used to estimate PK parameters
are given in [Janssen et al., 2022c] and [Sibieude et al., 2021]. In [Janssen et al.,
2022c], the authors demonstrate how to use an NN to learn PK parameters of a two-
compartment model for a standard half-life FVIII concentrate to treat hemophilia
A for a given set of covariates. One single IV dose was simulated with a few ob-
servations for each patient in the training data set. The method was implemented in
Julia with the differential equations solver in DifferentialEquations.jl [Rackauckas
and Nie, 2017].

In [Wahlquist et al., 2023b], we present an automatic covariate modeling method
that uses symbolic regression networks to derive a covariate model. The symbolic
regression network was used to obtain a readable and interpretable covariate model.
It is a type of neural network that can discover mathematical expressions by us-
ing sparse neural networks with a different set of activation functions compared to
regular NNs. The symbolic regression network was trained on drug administration
profiles (time series) and covariates in the Eleveld et al. data set [Eleveld et al.,
2018]. The obtained covariate model showed a comparable and slightly better fit
than the covariate model derived with NONMEM in [Eleveld et al., 2018].
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Figure 1. Covariate modeling with a neural network (NN) and simulator of pharmacoki-
netics (PK). The NN takes five covariates as input (age, weight, BMI, gender and blood
sampling site, arterial or venous) and outputs six PK parameters of the three-compartment
model in Equation (1). The predicted PK parameters are input to the FastPKSim.jl simulator
to compute the predicted plasma concentrations Cpred with given drug administration profiles
u (time series data). A training loss is computed from predicted plasma concentrations and
observed (measured) concentrations, and the NN parameters are updated with backpropaga-
tion.

Another example of where ML has been used for pharmacometrics is the prob-
lem of covariate selection [Janssen et al., 2022b; Ogami et al., 2021]. In [Janssen et
al., 2022b] and [Ogami et al., 2021] the authors use SHapley Additive exPlanations
(SHAP) to study the relationship between covariates and PK parameters estimated
from ML models. SHAP can be used as an importance measure of each covariate
so that less important covariates can be eliminated in the model building.

However, ML models have the disadvantage of lacking interpretability. Also,
ML does not guarantee extrapolation and interpolation between training points.
Still, ML has the potential to be a powerful tool in pharmacometrics if these limita-
tions are addressed. Even if ML has the potential to speed up modeling tasks, it is
still limited by the computational cost of the simulation, which has to be carried out
thousands of times in network training. Therefore, a fast simulator of pharmacoki-
netics (or pharmacodynamics) has to be used together with the NN to handle large
data sets efficiently.
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V1V2 V3

k12

k21

k31

k13

u

k10

Figure 2. Mammillary three-compartment PK model. The mass rate flow u(t) is adminis-
tered into the central compartment of volume V1 via infusion, and eliminated from it at a rate
k10x1. Two peripheral compartments of volumes V2 and V3 are connected to the central one,
and the drug transfer between these and the central compartment are described by the rate
constants ki j , from compartment i to j.

2. Methods

2.1 Pharmacokinetic modeling
Pharmacokinetics are commonly modeled by low-order compartmental models due
to the ease of interpretation and estimation of the model parameters. The most com-
mon compartment models are one-, two- and three-compartment models. The one-
compartment model is the simplest representation and is often used to model the
central compartment of the body. The two-compartment model is used to model the
central and peripheral compartments of the body. The three-compartment model
is used to model the central, peripheral, and deep peripheral compartments of the
body.

An example of a compartment model for an intravenously administered drug is
a mammillary three-compartment model, illustrated in Figure 2. The central com-
partment models the blood plasma, and the two peripheral compartment models
slow-perfused (such as fat) and fast-perfused (such as muscle) tissue. The addition
and elimination of the drug is associated with the central compartment, and drug
diffuses between the central and peripheral compartments. The diffusion from com-
partment i to j is modeled through a non-negative transfer rate constant ki j.

If drug elimination is assumed to follow a first-order process, the mammillary
three-compartment model is a linear time-invariant (LTI) system. It can be described
by the following state-space representation:

ẋ1 =−(k10 + k12 + k13)x1 + k21x2 + k31x3 +
1

V1
u, (1a)

ẋ2 = k12x1 − k21x2, (1b)
ẋ3 = k13x1 − k31x3, (1c)

relating drug infusion rate u(t) [µgs−1] to drug concentration xi(t) [µgL−1] of com-
partment i, where k10 is the elimination-rate constant [s−1], and V1 [L] is the volume
of distribution of the central compartment.
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2.2 Simulation of pharmacokinetics
Simulation of a PK model is the process of computing the drug concentrations xi(t)
of the compartments i= 1, . . . ,n at time t given the drug input u(t) and the PK model
parameters Vi and ki j in Equation (1). Simulation of PK models is a crucial part of
pharmacometric covariate modeling where it is used to evaluate possible covariate
model structures [Schnider et al., 1998].

There exist several methods for simulating PK models (or more general differ-
ential equations), such as the DifferentialEquations.jl [Rackauckas and Nie, 2017]
package in Julia and the lsim function in Matlab. However, these methods do not use
the fact that the dynamics of compartmental systems are LTI. Taking this into ac-
count can reduce computational demands notably when the input u(t) is a sequence
of step changes and impulses. Instead, these softwares sample the dynamics at a
sufficiently high rate to resolve both the dynamics Equation (1) and input events
(changes in u(t)).

In [Wahlquist, 2022], we introduced FastPKSim.jl, a fast and exact (down to
numeric precision) simulator for compartmental LTI systems. It is tailored for the
simulation of one- two- and three-compartment models with boluses and constant
infusion changes issued at possibly irregular time instances. The simulator is imple-
mented in Julia and is available as an open-source package [Wahlquist, 2022]. The
efficiency of the simulator was demonstrated in [Wahlquist et al., 2023a] by bench-
marking it against commonly used solvers. The benchmark showed a speed-up of
approximately 40000 times compared to the standard simulator in MATLAB, lsim,
and around 150 times compared to DifferentialEquations.jl, being the most widely
used ODE solver in Julia.

The concentrations of the peripheral compartments are in general not measur-
able, whereas the the central compartment concentration can be measured at dis-
crete time points by sampling the blood plasma. Data sets for modeling purposes
therefore comprises time series that consist of the following discrete-time events:

• Drug infusion at a constant rate (step input) to the central compartment;

• Drug bolus (impulse) to the central compartment;

• Observation (measurement) of the central compartment concentration.

In the following section, we will describe the simulation algorithm in FastPKSim.jl
[Wahlquist, 2022; Wahlquist et al., 2023a], which is tailored for simulation of the
above events.
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2.3 Fast simulation of pharmacokinetics - FastPKSim.jl
In this paper, we use the efficient simulator FastPKSim.jl [Wahlquist, 2022] to sim-
ulate PK compartment models. FastPKSim.jl is a Julia package for fast and exact
simulation of compartmental systems with boluses and infusion inputs at irregular
time instances. The simulator is available as an open-source package [Wahlquist,
2022]. Below, we will describe the simulator, and refer to [Wahlquist et al., 2023a]
for further details.

The dynamics of any LTI system with scalar input u(t) can be written

ẋ(t) = Ax(t)+Bu(t), (2)

where xxx is the state vector and xi(t) is the drug concentration in compartment i =
1, . . . ,n. A and B are the system and input matrices, and for a system with scalar
input B is a column vector. The exact solution of Equation (2), as derived in for
example [Åström and Wittenmark, 2011], is

x(t) = eAtx(0)+
∫ t

0
eA(t−τ)Bu(τ)dτ. (3)

We assume the initial concentration at t = 0 to be zero so that xxx(0) = 000. This corre-
sponds to the therapy being initiated at a point in time where no drug has previously
been administered, making it a reasonable assumption.

In contrast to common ODE solvers like ode45 in Matlab, which use numeric in-
tegration to approximate Equation (3) directly, we use the fact that the input changes
only at discrete points in time to perform an exact zero-order-hold (ZOH) discretiza-
tion of Equation (3). If these events are indexed by k, the discrete state update of
Equation (3) becomes

xk+1 = Φkxk +Γkuk, (4a)

so that
Φk = eAhk ,

Γk =
∫ hk

0
eAτ dτB,

(4b)

and the sampling period
hk = tk+1 − tk, (4c)

is the time between event k and k+1, so that xk = x(tk) and uk = u(tk).
Now, we consider the input to be either a piece-wise constant infusion uk =

wk or an impulse (bolus) u j = δkvk, administered at time tk, where δk denotes the
Dirac distribution (unit impulse) centered at tk. For our inputs of piece-wise constant
infusions and impulses, we can rewrite Equation (4a) to

xk+1 = Φk (xk +Bvk)+Γkwk, (5)

where vk is the magnitude of the impulse at time tk, and wk is the magnitude of the
constant infusion at time tk.
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The matrices Φk and Γk can be computed using matrix exponentials. Computing
these can be computationally expensive since they have to be evaluated at each
dosing instance tk. Instead of computing Φk and Γk at each dosing instance, we can
use the fact that our PK compartment models are of low order to get a simpler form
for the state update Equation (5).

The state dynamics Equation (2) can be written in the Laplace domain as

X(s) = (sI −A)−1 BU(s) =
adj(sI −A)B
det(sI −A)

U(s), (6)

where X(s) and U(s) are the Laplace transforms of x(t) and u(t), respectively. For
the considered PK models, we have B = V−1e1, where e1 is the first unit vector in
Euclidean Rn, while A is uniquely determined by the rate constants.

From now on, we will only consider the three-compartment model of Figure 2,
which is the compartmental structure used in this paper. For the ith state Xi(s), with
i = 1,2,3, we can evaluate Equation (3), so that

Xi(s)
U(s)

=
p1is2 + p2is+ p3i

(s−λ1)(s−λ2)(s−λ3)
, (7)

where p ji are the polynomial coefficients of adj(sI −A)e1. The eigenvalues of the
A-matrix are denoted λi, i = 1,2,3 and are all unique real and strictly negative for
the considered PK models. The eigenvalues can be determined in closed form from
the rate constants, and are given by Equation (20) in Supplementary Section A.

The idea is now to use the partial fraction expansion of Equation (7) to get a
state update equation for each state Xi(s) at each dosing instance tk. Then, all states
can be computed in parallel and we can combine the results to compute the state
update Equation (5).

A partial fraction decomposition of Equation (7) results in

Xi(s)
U(s)

=
p1is2 + p2is+ p3i

(s−λ1)(s−λ2)(s−λ3)
=

r1i

s−λ1
+

r2i

s−λ2
+

r3i

s−λ3
. (8)

By matching powers of s in Equation (8), we get the relationship between the
coefficients p ji and r ji, expressed in terms of the eigenvalues. This can be expressed
as a linear equation system

QR = P, (9a)
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where

Q =

 1 1 1
−(λ2 +λ3) −(λ1 +λ3) −(λ1 +λ2)

λ2λ3 λ1λ3 λ1λ2

 , (9b)

P =

 1 0 0
k21 + k31 k12 k13

k21k31 k12k31 k13k21

 , (9c)

R =

r11 r12 r13
r21 r22 r23
r31 r32 r33

 . (9d)

P is expressed in terms of the rate constants of the three-compartment model and
Q is determined by the eigenvalues of the system matrix A.

Solving Equation (9) for R can be done by explicitly computing the inverse of
Q, since R = Q−1P, where the inverse of Q is given by

Q−1 =

λ 2
1 /d1 λ1/d1 1/d1

λ 2
2 /d2 λ2/d2 1/d2

λ 2
3 /d3 λ3/d3 1/d3

 , (10a)

and
d1 = (λ1 −λ3)(λ1 −λ2),

d2 = (λ2 −λ3)(λ2 −λ1),

d3 = (λ3 −λ2)(λ3 −λ1).

(10b)

Both Q−1 and R can be precomputed using the closed-form expressions Equa-
tion (10) and Equation (9), respectively, relying on the pre-computed eigenvalues of
the system matrix A. Computing Q, Q−1 and P for the one- and two-compartment
model can be done similarly, with each constituting a special case of the three-
compartment model.

Now, all parts of the partial fraction expansion of Equation (8) are known, and
our system can be seen as a parallel interconnection of three first-order systems.
Each part of the partial fraction decomposition is given by

r ji

V1

1
s−λ j

, (11)

where λ j is the jth eigenvalue of the system matrix A and i denotes the ith state.
To simulate Equation (11), we discretize a state-space realization of Equa-

tion (11) with zero-order-hold (ZOH) sampling and sampling time hk to get

zk+1 = ϕ jzk + γ juk,

xk =
ri j

V1
zk,

(12a)

148



2 Methods

where
ϕ j = eλ jhk ,

γ j =
1
λ j

(ϕ j −1) ,
(12b)

and z is the state variable of the subsystem.
We can now perform parallel simulations of the three subsystems Equation (11)

to speed up the simulation of the full system Equation (2), where each subsystem
corresponds to one of the three states xi.

For all of the eigenvalues j = 1, . . .3, we create the corresponding column vec-
tors for ϕ j, γ j and z j, so that

z =
[
z1 z2 z3

]⊤
, (13a)

ϕϕϕ =
[
ϕ1 ϕ2 ϕ3

]⊤
, (13b)

γγγ =
[
γ1 γ2 γ3

]⊤
. (13c)

For our system inputs uk of piece-wise constants infusions of magnitude wk and
impulses of magnitude vk, we can use the state update in Equation (5) together with
the state update of each first-order system to get the final state update

zk+1 = ϕϕϕk ⊙ (zk ⊕ vk)⊕ γγγkwk, (14a)

xk =
1

V1
R⊤zk, (14b)

where ⊙ denotes the element-wise product and ⊕ denotes the vector addition so
that .⊕u = .+111u. The initial state is assumed to be zero, so that z0 = 000.

We can now simulate our three-compartment model as a system of first-order
models, which allows for parallel computations and a significant simulation speed-
up compared to traditional simulators, as demonstrated in [Wahlquist et al., 2023a].
By precomputing R, only being based on eigenvalues and rate constants, we only
need to compute ϕϕϕ at every dosing instance tk. This makes the simulator suitable
for the simulation of boluses and infusions at irregularly spaced time instances as
there is no need to compute expensive matrix exponentials at each dosing instance.
Also, at the time instances when we are only interested in changing the dose and
not observing the central compartment concentration x1, we only need to compute
z with Equation (14a).

To tightly integrate this simulator with the training of neural networks, we
also need fast computation of gradients of the simulation output with respect to
trainable parameters. In [Wahlquist et al., 2023a], we demonstrated the ability of
FastPKSim.jl to differentiate through the simulator and thus obtain the desired gra-
dients. However, we have not put in an extensive effort to optimize the associated
numeric computations, as has been done in for example the development of Differ-
entialEquations.jl.
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3. Automated covariate modeling with neural networks

The covariates are input to our NN, which acts as a function approximator of the co-
variate model. The NN outputs the parameters of the three-compartment PK model
that are the rate constants and the central compartment volume. To be able to find a
suitable covariate model structure, we need to perform thousands of simulations of
the PK compartment model. Therefore, we use the FastPKSim.jl simulator to com-
pute the plasma concentrations at each observation time instance for a given set of
PK parameters.

Then, the plasma concentrations are compared to the observed concentrations,
and the NN parameters are updated using backpropagation with gradient-based op-
timization. An overview of how the inputs and outputs of the NN and simulator are
connected is shown in Figure 1.

3.1 Data set
We demonstrate our method on the multi-study data set for the anesthetic drug
propofol collected by Eleveld et al. [Eleveld et al., 2018]. The data set originates
from 30 studies of 8− 120 individuals each, taking place between 1987 and 2018.
The data set will from now on be referred to as the “Eleveld data set”. Ethical ap-
provals for the studies behind this data set are found in the original publications.

The data set includes observational data from 1031 individuals, of which 670
are male and 361 are female, with ages ranging from 27 weeks to 88 years, and
weights ranging from 0.68 to 160 kg. For these individuals, there are 15433 blood
plasma concentration observations, of which 11530 are arterial and 3903 are venous
measurements. Data pre-processing was done in the same manner as performed in
[Eleveld et al., 2018; Wahlquist et al., 2023b], where subsequent infusion changes
smaller than 0.5 µgs−1 in the dose dimension and less than 1 s in the time dimen-
sion, were merged. This resulted in 61940 drug infusions, constant infusions and
boluses, administered to the individuals. The considered covariates for the PK mod-
eling are age, weight, BMI, gender, and blood sampling site (arterial or venous).
During model development, the continuous covariates (age, weight and BMI) were
normalized between 0 and 1, and the categorical covariates (gender and blood sam-
pling site) were set to ±0.5.

3.2 Predictive performance
To assess the accuracy of the covariate model, we need a set of metrics. Some com-
mon metrics are given in [Varvel et al., 1992], which all have their advantages and
disadvantages [Soltesz et al., 2013]. In this paper, we use the absolute logarithmic
error (ALE) as our main metric during model development, since this metric was
used to evaluate the model proposed in the original publication of the Eleveld co-
variate model [Eleveld et al., 2018].
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For sample j of an individual i, the (absolute) logarithmic error (A)LE is defined
as

LEi j = ln

(
Cobsi j

Cpredi j

)
, (15a)

ALEi j =
∣∣LEi j

∣∣ , (15b)

where Cobsi j are observed (measured) plasma concentrations and Cpredi j are the pre-
dictions.

Similarly, we can define the prediction errors

PEi j =

(
Cobsi j −Cpredi j

Cpredi j

)
·100%, (16a)

APEi j =
∣∣PEi j

∣∣ . (16b)

To avoid division by zero when Cpredi j = 0, we set the error to zero for those samples.
We compute a median prediction error over all samples and define this as

our per-individual prediction error. Then, the median absolute logarithmic error
(MdALE) becomes

MdALEi = median(ALEi j) . (17)

Similar measures can be computed for the median logarithmic error (MdLE), me-
dian absolute prediction error (MdAPE), and median prediction error (MdPE).

To get a measure of a model’s performance over the entire population (N indi-
viduals), we compute the mean of the per-individual prediction errors, so that

mean(MdALE) =
1
N

N

∑
i=1

MdALEi. (18)

During model development, we use the measure mean(MdALE) Equation (18)
as our measure of model fit, similarly to [Eleveld et al., 2018; Wahlquist et al.,
2023b]. After training the NN, we compare the final model fit with the Eleveld
model and the symbolic regression model from [Wahlquist et al., 2023b] using
the per-population prediction errors mean(MdALE), mean(MdLE), mean(MdAPE),
and mean(MdPE).

The prediction errors ALE and APE are used as indicators of model accuracy,
while LE and PE are used as indicators of bias. Clinically acceptable values for the
per-individual prediction errors are 10−20 % for MdPEi, 20−40 % for MdAPEi,
< 0.18 for MdLEi, and < 0.34 for MdALEi [Schüttler et al., 1988; Varvel et al.,
1992; Eleveld et al., 2018; Wahlquist et al., 2023b].
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Figure 3. Neural network (NN) architecture with five covariates as inputs (age, weight,
BMI, gender and blood sampling site, arterial or venous) and six pharmacokinetic (PK) pa-
rameters of the three-compartment model in Equation (1) as outputs. The NN has two hidden
layers with 64 neurons each, with ReLU activation functions. The output layer has a sigmoid
activation function to ensure positive outputs.

3.3 Neural network training and architecture
We represent our covariate model by an NN that maps covariates to PK parameters.
The inputs to the NN are the five covariates: age, weight, BMI, gender, and sam-
pling site (arterial or venous). The outputs are the six PK parameters of the three-
compartment model: rate constants k10, k12, k21, k13, k31, and central compartment
volume V1.

The NN architecture is similar to the one in [Janssen et al., 2022c], with two hid-
den layers, each with 64 neurons and ReLU activation functions. Nonlinear activa-
tion functions enable capturing more complex relationships of the covariate model.
A sigmoid activation function is applied to the output layer to ensure positive PK
parameters. The NN architecture used for covariate modeling is shown in Figure 3,
We implement the neural network in the Julia programming language with the ML
package Flux.jl [Innes, 2018].

The training of the NN was performed with the loss function J, which is
mean(MdALE) Equation (17) and L2-regularization that reduces the risk of overfit-
ting, so that

J(θ) = mean(MdALE)+
λ

2N

nθ

∑
i=1

θ
2
i , (19)

where θ are the trainable parameters of the NN, nθ is the number of trainable pa-
rameters, and λ is the regularization parameter. We set λ = 0.1. N is the number

152



4 Results

0.001 0.01 0.1 1 10

0.001

0.01

0.1

1

10

Predicted concentration [µg/ml]

O
bs

er
ve

d
co

nc
en

tr
at

io
n

[µ
g/

m
l]

Eleveld

0.001 0.01 0.1 1 10

Predicted concentration [µg/ml]

Symreg

0.001 0.01 0.1 1 10

Predicted concentration [µg/ml]

Neural network

Figure 4. Predicted versus observed propofol concentrations in log-log scale of three co-
variate models for the Eleveld data set [Eleveld et al., 2018]. The Eleveld model [Eleveld et
al., 2018] predictions are shown to the left, the symbolic regression model [Wahlquist et al.,
2023b] predictions are shown in the middle, and the neural-network based covariate model
derived in this is shown to the right. The identity function, representing a perfect model fit,
is shown in black.
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Figure 5. Box plots showing the distribution of prediction errors MdALE Equation (17) for
the three covariate models: the Eleveld model [Eleveld et al., 2018], the symbolic regression
model [Wahlquist et al., 2023b], and the neural network model derived in this paper.

of individuals in the data set. To further reduce the impact of overfitting, we use
five-fold cross-validation in the hyper parameter tuning process. We use backpropa-
gation with stochastic gradient-based optimization with the ADAM optimizer with
a learning rate of 5 · 10−4 to update the trainable parameters of the NN (weights
and biases). The NN was trained for 5000 epochs. We refer the interested reader to
the code repository [Wahlquist, 2024] for further implementation details, including
hyper parameter values (see Figure 3).

4. Results

Figure 4 shows the final covariate model predictions together with the predictions
of the Eleveld model in [Eleveld et al., 2018] and the symbolic regression model in
[Wahlquist et al., 2023b]. The difference between the predictions from the compared
models is small, but the covariate model derived in this paper has a slightly better fit
than the other models. To illustrate the prediction error distribution of the compared
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Table 1. Average of per-individual prediction errors for three covariate models: the Eleveld
model [Eleveld et al., 2018], the symbolic regression model [Wahlquist et al., 2023b], and
the neural network model derived in this paper.

Method
Mean
MdALE

Mean
MdLE

Mean
MdAPE

Mean
MdPE

Eleveld model 0.325 0.0791 34.8 14.4
Symbolic regression 0.279 -0.0489 27.4 -0.266
Neural network 0.263 -0.102 24.8 -6.34

0 1,000 2,000 3,000 4,000 5,000
0.25

0.3

0.35

0.4

0.45

Epoch

Tr
ai

ni
ng

lo
ss

,J

Figure 6. Training loss J Equation (19) of the neural network training process on the
Eleveld data set [Eleveld et al., 2018]. Mean(MdALE) loss Equation (18) of the Eleveld
model [Eleveld et al., 2018] is shown in the upper gray line, and the corresponding loss for
the symbolic regression model [Wahlquist et al., 2023b] is shown in the lower gray line for
comparison.

models between observed and predicted concentrations, Figure 5 shows a box plot
of the per-individual prediction errors MdALE in Equation (17). In particular, we
notice fewer outliers for the covariate model derived in this paper.

The model performance over the population is computed as the mean of the
per-individual prediction errors, as explained in Section 3.2, and these are shown
in Table 1. There, we notice that the metrics that indicate precision, mean(MdALE)
and mean(MdAPE), are lower for the NN covariate model in this paper compared
to the two other models. However, the metrics indicating bias, mean(MdLE) and
mean(MdPE), are higher for the NN covariate compared to the symbolic regression
network model. All prediction errors are within clinically accepted limits, which
was introduced in Section 3.2.

The PK parameters predicted by the NN covariate model are shown in Fig-
ure 7. The predicted PK parameters are within the same range as those predicted
by the Eleveld model in [Eleveld et al., 2018] and the symbolic regression model in
[Wahlquist et al., 2023b], which illustrates that the NN generates sound predictions.

The training loss in Equation (18) of each training epoch is shown in Figure 6,
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Figure 7. Distribution of predicted PK parameters of the three-compartment model Equa-
tion (1) from our covariate model on the propofol data set [Eleveld et al., 2018].

confirming that the NN has been trained until sufficient convergence.
For our training process of 5000 epochs on the Eleveld data set with 1031 in-

dividuals, we have to perform more than five million individual simulations, cor-
responding to more than 300 million dosing events. This illustrates the need for a
fast simulator. In total, the training process took 14400 seconds (four hours) on a
computer with an Intel Core i5-8265U CPU and 16 GB RAM, which means that the
average training time per individual and epoch was 2.8ms.

To minimize the risk of overfitting, we used regularization and five-fold cross-
validation in the training and hyper parameter tuning process. Over five folds, the
ratio between the average loss J in Equation (19) in the validation and training sets
was 1.16, which indicates that the model is slightly overfitted (see Table 1).

5. Discussion

In this paper, we demonstrate how to automatically learn covariate relationships for
pharmacometric covariate modeling. The covariate model is represented by an NN,
that is trained using an efficient simulator of pharmacokinetics, FastPKSim.jl.

We show that the predicted plasma concentrations from the NN covariate model
are slightly better than predictions from the Eleveld model in [Eleveld et al., 2018]
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and comparable to those from the symbolic regression model in [Wahlquist et al.,
2023b]. As shown in Figure 7, the NN covariate model produces predictions of the
PK model parameters within the same range as the compared models [Eleveld et
al., 2018; Wahlquist et al., 2023b], reinforcing the model’s validity and soundness.
These ranges of the final PK parameters are commonly recognized as a sign of
model validity. For example, in [Eleveld et al., 2018], PK parameter values were
tightly constrained during model development, to ensure that the final parameters
were within a specified range.

As shown in Table 1, our final covariate model shows better precision but worse
bias than the symbolic regression model in [Wahlquist et al., 2023b]. However, the
differences are small, and all prediction errors are within clinically accepted limits.
The choice of NN structure and hyper parameters affects the final model fit. In
this paper, we have used a simple NN structure similar to the one in [Janssen et
al., 2022c] without further exploration of activation functions and neurons in each
layer. The hyper parameters for network training were heuristically based on the
ones used in [Janssen et al., 2022c] and [Wahlquist et al., 2023b]. A grid search for
determining hyper parameters could result in more accurate predictions.

We use the mean of the per-individual prediction errors mean (MdALE) Equa-
tion (18) as our measure of model fit, similarly to what were done in [Eleveld et al.,
2018] and [Wahlquist et al., 2023b]. However, this measure is good for optimizing
median performance, but not for the average or the worst cases. Using this mea-
sure may result in predictions being far off for some individuals. To improve the
model fit, we could use a different loss function, for example, the mean squared
error (MSE), which penalizes outliers more, ensuring safety for more individuals.

The covariate model derived in this paper is a black-box model, which means
that the relationship between covariates and PK parameters can be difficult to inter-
pret. This is a general problem with NNs. There are several methods to improve
the explainability of NNs, where one example is symbolic regression networks
[Wahlquist et al., 2023b]. However, in several cases, for example [DermaSensor
2024] and [AI-Rad Companion Chest X-ray, Siemens Healthineers 2024], regula-
tory agencies have deemed that clinical usefulness outweighs lacking explainability.
When using diagnostic tools as the two cited examples, it is typically hard to inde-
pendently validate their output. In contrast, our methodology generates a PK model
that can undergo standard model validity tests, such as cross-validation on data that
was not used in the training of the model.

To avoid overfitting, we use regularization and five-fold cross-validation in the
training and hyper parameter tuning process. Even after taking these measures, the
final model is slightly overfitted. This means that the NN might not inter- and ex-
trapolate so well on unseen data, so the model might not be valid for predictions
outside the range of the training data. However, the Eleveld data set is a rather large
data set, covering a wide range of covariates, which means that the covariate model
should perform well on unseen data. To further ensure good inter- and extrapolation,
the NN covariate model should be validated on a different data set. Other options to
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reduce overfitting could be to use a different regularization, or dropout (more suit-
able for large networks) [Srivastava et al., 2014]. Also, developing a readable and
interpretable covariate model, like the one in [Eleveld et al., 2018; Schnider et al.,
1998; Wahlquist et al., 2023b], could be an option to reduce overfitting.

We demonstrate how to use an efficient simulator of pharmacokinetics to speed
up the pharmacometric model development process. By further optimizing auto-
matic differentiation through the simulator, we could speed up the training process
even more. Another way to further speed up the training process could be to use
starting values for the predicted PK parameters for the NN as was done in [Janssen
et al., 2022c].

ML has the potential to improve pharmacometric modeling by automating the
model-building process. This allows for a faster model development where more
covariate relationships are explored, better explaining the inter-patient variability in
the drug response.

There is more work to be done within ML for pharmacometric modeling. Some
examples of problems to tackle are: how to identify relevant covariates and how to
add known knowledge to the model-building process. In this work, we address the
identification of relevant covariates implicitly during training, since unimportant co-
variates will have small impact on the prediction. It would be possible to use a more
refined method for covariate selection, such as a Hessian-based sensitivity analy-
sis, as was done in [Wahlquist et al., 2023b]. Incorporating further expert knowl-
edge could be accomplished for example by using symbolic regression networks
[Wahlquist et al., 2023b], where an expert can influence the type of functional ex-
pressions to be considered. Here, we have decided to not impose any constraints on
the model search, but rather allow the NN to adapt freely. While this comes at a cost
of explainability, it increases the chances of approximating the best possible fit to
the available data. As such, the models yielded by our methodology can serve as an
approximation of what predictive capability one can expect for a given data set. In
this context, it is assuring that the model we obtain in this study does not outperform
the one obtained by state-of-the-art methodology by much. This indicates that the
predictive performance of the traditionally obtained model is limited by its training
data. While predictive performance are comparable, the main advantage we offer is
thus to cut away manually labor-intense and tedious modeling task associated with
the traditional approach of manual covariate model structure selection.

6. Conclusion

We have presented a methodology for automating covariate modeling where covari-
ate relationships are learned from data using neural networks. To be able to simulate
dose-response data efficiently during model development, we use an efficient sim-
ulator of pharmacokinetics, FastPKSim.jl. This methodology was demonstrated on
a propofol data set, where the final covariate model predictions were compared to
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previously published models. We conclude that the potential of automatic covariate
modeling is significant, as it allows for a faster model development process where a
wider search space of covariate relationships is explored.
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A Eigenvalues of the three-compartment model

Supplementary Information

A. Eigenvalues of the three-compartment model

In the following section, we show the eigenvalues of the three-compartment model
in Equation (1). We used a computer algebra system to solve the eigenvalue problem
A−λ I = 0 for the three compartment model, to obtain the form

λ =

−c1 − c7
−c9 − c10
c9 − c10

 (20a)

where
b1 = k10 + k12 + k13 + k21 + k31

b2 = k21(k10 + k13 + k31)+ k31(k10 + k12)

b3 = k10k21k31

c1 = b1/3

c2 = c3
1

c3 = b2/3

c4 = c3 − c2
1

c5 = (b1c3 −b3)/2

c6 = 2
(

c5 +
√

c3
4 +(c2 − c5)2 − c2

)1/3

c7 =−Re(c6)

c8 = Im(c6)

c9 = c8
√

3/2
c10 = c1 − c7/2.

(20b)

was obtained by manual substitutions within the corresponding expression tree.
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Kalman Filter Soft Sensor to Handle Signal
Quality Loss in Closed-Loop Controlled

Anesthesia

Ylva Wahlquist Nicola Paolino Michele Schiavo
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Abstract

Background and objective: This study aims to enhance the performance of a
closed-loop anesthetic depth control system by fusing noise-corrupted clinical
measurements with a non-perfect pharmacological model.

Methods: We implement a Kalman filter to constitute a trade-off between
model prediction and measurement signal dependence for depth of hypnosis
(DoH) control using a previously evaluated PID controller. This trade-off is
adjusted online, based on signal quality index (SQI) feedback, provided by the
clinical DoH monitor, in this case assumed to be the bispectral index (BIS)
monitor.

Results: Our simulations show that the proposed solution leads to funda-
mental performance improvements over the traditional monitor feedback case,
which fails to provide the required clinical performance when the SQI drops
due to signal inference. In particular, the soft sensor approach increases the
time of DoH within the recommended clinical range of 40–60 BIS from 71%
to 99%, compared to simple feedback of the noisy monitor output.

Conclusion: Our Kalman filter soft-sensor approach succeeds in impor-
tantly increasing system robustness to measurement signal disturbances by
combining sensor measurements and model predictions.

Keywords: Closed-loop anesthesia, Kalman filter, PID control

Originally published in Biomedical Signal Processing and Control (2025).
Reprinted with permission under CC BY 4.0. The original version is available at
https://doi.org/10.1016/j.bspc.2025.107506.
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1. Introduction

A key challenge in general anesthesia is to adequately control the depth of hypnosis
(DoH) in the patient [Blayney, 2012]. In this paper, we consider DoH control using
the intravenously infused drug propofol. The control is challenging, since DoH can-
not be measured directly, but is only observed indirectly through correlated signals
and patient signs. In addition to manual titration, two computer-controlled dosing
regimens have gained ground.

Of these, target-controlled infusion (TCI) [Absalom et al., 2016] has received
the broadest clinical acceptance to date. TCI is a model-based feed-forward strategy,
that optimizes an infusion trajectory offline, based on a user-provided reference. As
such, it is vulnerable both to model errors and external disturbances, since the infu-
sion is not based on actual measurements of the patient state. However, if the anes-
thesiologist suspects model errors or disturbances based on patient observations,
they can update the setpoint concentration.

The other computer-controlled dosing strategy that has to date been employed
in several research studies is closed-loop control. It relies on feedback from a DoH
estimate, provided by a non-invasive processed electroencephalogram (pEEG) mon-
itor [Rampil, 1998]. Such monitors report DoH on the bispectral index (BIS) scale,
where 100 is the maximum achievable cortical activity (being awake corresponds
to a value near 100), and 0 represents an iso-electric EEG (corresponding to the
maximally achievable DoH) [Vuyk and Mertens, 2003].

Closed-loop systems are well known to outperform open-loop ones when suit-
ably designed and tuned. That is why several research efforts have been made to
design closed-loop architectures, as demonstrated by [Ghita et al., 2020; Hossein-
zadeh et al., 2020; Agarwal et al., 2009]. The closed-loop control algorithm could
be a simple proportional-integrative-derivative (PID) [Visioli, 2006] controller as in
[Dumont et al., 2009; Gonzalez-Cava et al., 2021; Padula et al., 2017; Puri et al.,
2007; Soltesz et al., 2013], or some more advanced one as in e.g., [Merigo et al.,
2017; Merigo et al., 2020; Pawlowski et al., 2022a; Copot et al., 2017; Paolino et
al., 2023; Mendez et al., 2016; Mendez et al., 2018]. We have previously shown that
the control performance of these systems is mainly limited by the modeling uncer-
tainties such as those coming from inter- and intra-patient variability, rather than by
the choice of control algorithm [Gonzalez-Cava et al., 2021; Soltesz et al., 2019].
Hence, we base our example on a PID-controlled system, although the methodol-
ogy we introduce is equally applicable to other types of controllers. While closed-
loop systems provide some means to attenuate external disturbances and cope with
model errors, they are vulnerable to corruption of the measurement that constitutes
the feedback signal.

Alongside a DoH estimate, clinical DoH monitors provide a signal quality index
(SQI) ranging from 0–100 (low–high signal quality). This index, which is updated
and displayed on the monitor, provides the anesthesiologist with an estimate of the
current BIS measurement reliability. In clinical practice, a DoH measure associ-
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ated with an SQI ≤ 50 is considered unreliable [BIS™ Complete Monitoring System
2013]. Signal quality loss directly affects the anesthesiologist’s working procedure
since they cannot rely on the DoH monitor while adjusting the drug infusion rate.
Low SQI values are common during general surgery [Dahaba, 2005; Chan et al.,
2012]. This can, for example, be due to forehead motion, improper sensor place-
ment, or electrical inference from the use of an electro-scalpel [Gjika et al., 2016].

We consider a scenario where the monitor DoH estimate is corrupted by infer-
ence. By introducing a novel soft-sensor approach to closed-loop controlled anes-
thesia, we can maintain patient safety despite loss of signal quality. This is achieved
by a Kalman filter, a classic methodology that has been only recently exploited in
biomedical and biomechanical engineering [Oikonomou et al., 2009; Misgeld et al.,
2017]. In particular, the usage of a Kalman filter in the anesthesia field has been
proposed in, for example, [Aubouin-Pairault et al., 2024] to estimate both the state
and parameters of the system to predict the future trajectory. Here, a linear Kalman
filter is used to shift the balance from measurement to model reliance (i.e., from
ordinary closed-loop towards TCI), when SQI is decreased. When signal quality is
good (SQI closer to 100), feedback will essentially be based on the monitor out-
put, as in conventional closed-loop controlled anesthesia. In contrast, when signal
quality is poor (SQI closer to 0), the feedback will be based mainly on the model
prediction, and effectively behave like TCI.

In this work, we introduce a novel Kalman-filter-based soft-sensor concept for
anesthesia control. To demonstrate this methodology, we use a patient simulator that
explicitly models both patient variability (model uncertainty), measurement distur-
bances that our model-based soft-sensor is purposed to attenuate, and measurement
noise.

The novelty of our approach thus lies in using the Kalman filter as a tuning knob
to shift between model and measurement reliance, rather than as the minimum-
variance estimator where its tuning parameters are optimized to minimize estima-
tion error, assuming some Gaussian state and measurement noise processes.

2. System architecture

Our proposed closed-loop control architecture is shown in Figure 1. It consists of
four main components: the patient dynamics (Section 2.1), the Kalman-filter-based
soft sensor (Section 2.2), the clinical DoH monitor (Section 2.3), and the drug-
dosing closed-loop controller (Section 2.4).
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2.1 Patient
Kalman filtering is a model-based approach, and in our case, patient dynamics
are modeled by a conventional four-compartment linear pharmacological model
[Soltesz et al., 2019; Schnider et al., 1998; Åström and Murray, 2008]. These lin-
ear models are the gold standard to represent propofol pharmacokinetics and they
have been employed in commercial devices, such as in TCI [Struys et al., 2000].
Precisely, the model is defined as

ẋxx(t) = Axxx(t)+Bu(t), (1a)
Ce(t) =Cxxx(t), (1b)

where

A =


−(k10 + k12 + k13) k21 k31 0

k12 −k21 0 0
k13 0 −k31 0
ke0

V1
0 0 −ke0

 , (2a)

B =
[
1 0 0 0

]⊤
, (2b)

C =
[
0 0 0 1

]
. (2c)

The system in Equation (1) represents a linear system since the right-hand sides of
Equation (1a) and Equation (1b) are both linear functions of the state x and input u.

Propofol infusion is modeled by the input signal u [mgs−1]. The first state com-
ponent, x1 [mg], represents the mass of propofol in the blood plasma, while the last,
x4 =Ce [mgL−1], models the effect-site concentration, being the drug concentration
in the cortex of the brain. The other state components, x2 [mg] and x3 [mg], model
the mass distribution in fast and slow tissue, respectively. The parameters k10, k12,
k13, k21, k31, and ke0, in units of s−1, are rate constants, and V1 [L] models the blood
plasma volume. Note that the effect-site concentration, or any of the other states, is
not directly measurable.

Saturation effects at low and high effect-site drug concentrations are modeled
using a Hill sigmoid output nonlinearity [Goutelle et al., 2008]

DoH(t) = h(Ce(t);γ,Ce50,E0,Emax) = E0 −Emax
Ce(t)γ

Ce(t)γ +Cγ

e50
. (3)

The DoH level in the absence of a drug is E0 ⪅ 100 BIS, and the maximum deviation
from this level is Emax ⪅ 100 BIS. The effect-site concentration Ce50 [mgL−1] is
the concentration at which the hypnotic depth is halfway between the limits defined
through E0 and Emax, DoH = E0 −Emax/2. The third parameter of Equation (3), γ ,
is a unitless shape parameter that defines the steepness of the sigmoid, such that the
limit γ → ∞ defines a DoH step between E0 and E0 −Emax at Ce =Ce50. Together,
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Equations (2) and (3) constitutes a so-called pharmacokinetic–pharmacodynamic
(PKPD) model, as thoroughly introduced and explained in [Soltesz et al., 2019].

Since we will use our model in a closed-loop interconnection with a periodi-
cally sampled controller, we will use the approximation-error-free zero-order-hold
discretization of Equation (2). Denoting the sampling period Ts = 1 s, we index the
samples so that if xxx(t) = xxxk, then xxx(t +Ts) = xxxk+1. This results in the discrete state
space representation

xxxk+1 = Fxxxk +Guk, (4a)
(Ce)k = Hxxxk, (4b)

with constant matrices F = exp(ATs), G =
∫ Ts

0 exp(As) ds B, and H =C, as derived
and explained in [Åström and Wittenmark, 1984]. The input at sample k is denoted
uk.

The drug response dynamics vary between patients and are commonly modeled
with fixed and random effects. The fixed effects model the variability that can be
explained by covariates such as age, height, and weight. The random effects model
the remaining variability that is not explained by covariates [Soltesz et al., 2019].
This is a well-established methodology for modeling dynamic uncertainty in the
drug response.

For a particular model parameter θ with fixed effect (nominal) value θ0, the
parameter is assumed to be drawn from the log-normal distribution

θ = θ0 exp(ηp), (5)

where the random effect ηp is a normal stochastic variable with zero mean and
variance σ2

p [Vanluchene et al., 2004].
To reflect this, we use the Schnider population model [Schnider et al., 1998],

which expresses the model parameters mentioned in the individual patient covari-
ates age, height, weight, and gender. The Schnider model incorporates intra-patient
variability (i.e., random effects) through coefficients of variation (CV). The vari-
ances σ2

θ
of the PK parameter θ relates to the corresponding CVθ through [Canchola

et al., 2017]

σ
2
θ = log

((
CVθ

100

)2

+1

)
. (6)

Surgical stimulation typically increases the level of awareness in the patient,
thus affecting DoH. It is customary [Melia et al., 2017; Soltesz et al., 2019] to
model the effect of such stimulation as an additive disturbance d, acting on DoH,
as shown in Figure 1.

2.2 Soft sensor
The Kalman filter is an optimal state estimator, in the sense that it provides the state
estimate that minimizes error variance, given that the system dynamics are linear
and the noise is Gaussian [Welch and Bishop, 1995].
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While the Hill function Equation (3) is non-linear, it is invertible. Particularly,
if we equate the right-hand-side of Equation (3) its inverse is

Ce(t) = h−1(DoH(t);γ,Ce50,E0,Emax) =Ce50

(
Emax

E0 −DoH(t)
−1
)−1/γ

. (7)

Since the parameters are not known with certainty, we will use estimates γ̂ , Ĉe50, Ê0,
Êmax, as explained further in Section 3.2. The blocks ĥ and ĥ−1 in Figure 1 are thus
obtained analogs of Equation (3) and Equation (7). In particular, ĥ−1 constitutes a
linearizing transform, providing a purely measurement-based plasma concentration
estimate C̃e, used to drive the Kalman filter.

The Kalman filter utilizes the model Equation (2) together with a sequence of
sampled input–output data u,C̃e to provide an online estimate x̂ of the system state
x.

Internally, the filter stores its estimate, alongside an error covariance matrix es-
timate P, which it updates dynamically and uses to compute a gain vector L that is
used to drive the estimated state towards the actual one based on model input–output
data.

In the following, we present the equations defining the standard Kalman filter.
We use x̂k,k−1 to denote the estimate of xk, based on data up to and including k−1;
x̂k,k is the updated estimate incorporating the data sample k. The same double-index
notation is used for the covariance estimate P. The update equations for the gain L,
covariance P and state estimate x̂ are given by

Lk = Pk,k−1H⊤(HPk,k−1H⊤+Rk)
−1, (8a)

Pk,k = (I −LkH)Pk,k−1(I −LkH)⊤+LkRkL⊤
k , (8b)

x̂xxk,k = x̂xxk,k−1 +Lk((C̃e)k −Hx̂xxk,k−1), (8c)

(Ĉe)k = Hx̂xxk,k, (8d)

while the prediction step is defined by

x̂xxk+1,k = Fx̂xxk,k +Guk, (9a)

Pk+1,k = FPk,kF⊤+Qk, (9b)

where F,G,H define the model dynamics according to Equation (4). The measure-
ment equation is given by Equation (8d). The matrices Q and R are the assumed
covariances of the additive Gaussian noise, which corrupts the true state x and the
output Ce, respectively. Since we only have one measurement signal, R is scalar in
our case. Further details, including a derivation of Equations (8) to (9) being optimal
in the minimum-variance sense, can be found in [Becker, 2023].

In essence, the Kalman filter combines its prior state estimate with the current
measurement to reduce the uncertainty associated with its current state estimate.
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When the measurement covariance R is large, the Kalman gain is low. Then, the
Kalman filter therefore relies more on the model than the measurement for its state
estimate update.

The main novelty of our approach is to relate the measurement covariance R to
the SQI, to establish a trade-off between measurement and model reliance. We do
this by asserting the simple affine relationship

R(SQI) = Rmin +(Rmax −Rmin)

(
1− SQI

100

)
, (10)

where the tuning parameters Rmin and Rmax define the values of R attained at SQI =
100 and SQI = 0, respectively. This means that if SQI = 100 and the signal quality
is perfect, a small value of R, Rmin, is used. Adversely, if the signal quality is poor
with SQI = 0, R becomes Rmax. As the algorithms used to calculate the SQI are
proprietary, it is not straightforward to tailor the mapping model from SQI to R. As
a first approach, we have opted for a simple linear model to constitute the mapping
between SQI and R.

Since our setting lacks process noise as modeled by Kalman covariance Q, we
use Q as a constant parameter. For simplicity, we assert a diagonal structure of Q,
corresponding to the independent noise added to individual states being mutually
independent Gaussians. We therefore consider the four diagonal elements of Q, to-
gether with Rmin and Rmax to be parameters of our filter, where R varies with SQI
according to Equation (10).

In our application, we do not have support for the assumption that the process
noise is Gaussian. Instead, we consider R and Q as free design parameters of the
filter, that are tuned using a population-based approach (that is, using the same val-
ues for all the patients) to enable shifting between model and measurement reliance.
Therefore, the Kalman filter will not be optimal even though the performance may
still be satisfactory. If the noise characteristics at some point will be known to be
better described by some other (spectral) noise model, this can be incorporated into
the observer design.

The parameters values were optimized offline to minimize the mean square error
(MSE) between the simulated patient DoH and the corresponding Kalman filter
estimate D̂oH, which is the norm L2 of D̂oH −DoH. MSE values for each patient
were summed, which means that they all contributed equally. The choice of patient
population and simulation scenario used in this optimization are those described
below in Section 3.2 and Section 3.1, respectively. In summary, our design choices
are to:

• Optimize Rmin, Rmax and diagonal fixed (time-independent) Q offline to min-
imize estimation error across a set of simulations (see Section 4);

• Update R online, based on the current SQI, according to Equation (10).
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2 System architecture

2.3 Monitor
The DoH estimate y, emerging from a clinical monitor, is noisy, even when SQI =
100. To reflect this, we use an additive noise model n, as shown in Figure 1. We
will consider both an idealized noise-free case, n = 0, and a clinically realistic case,
where n is a random cycled noise sequence, recorded by a BIS monitor under stable
anesthetic conditions, as explained in [Pawlowski et al., 2022b].

As schematically illustrated in Figure 1, the (not directly measurable) electro-
scalpel inference signal m enters the monitor, where its effect (through an unchar-
acterized function f ) is mapped to SQI. Here, we model this inference with a delay
τ that is computed starting from the SQI as

τ = τmax

(
1− SQI

100

)
. (11)

That is, the inference m affects the SQI and results in the monitor output be-
ing delayed from y(t) to y(t − τ), whenever SQI < 100. The delay ranges linearly
between τ = 0 s and τ = τmax = 120 s, based on SQI. This delay model is con-
sistent with observations of our clinical collaborators and is supported by behavior
observed in previous studies, e.g., [Chan et al., 2012].

In this formulation, the delay of the BIS monitor is not taken into account. We
have focused on providing a delay model that describes the degradation of the SQI.
Modeling the monitor delay poses a challenge, as the manufacturer has not disclosed
the exact response and filtering dynamics of the BIS monitor. Neglecting modeling
of the BIS delay has been shown to work in practice, as several clinical studies have
been successfully carried out without considering the BIS delay [Liu et al., 2006;
Struys et al., 2001].

A simulated example of the monitor model is shown in Figure 2, to illustrate
how inference by the electro-scalpel is assumed to affect the monitor and the true
DoH, respectively. The blue and red curves in Figure 2 show the actual DoH, and
monitor output y, respectively. The discrepancy is due to the delay model Equa-
tion (11) and constitutes the measurement corruption that our soft-sensor approach
aims to mitigate the effect. For visual clarity, Figure 2 shows a scenario with n = 0,
i.e., in the absence of measurement noise.

2.4 Controller
We use a filtered PID controller [Visioli, 2006], which has previously been evaluated
in [Schiavo et al., 2021a]. Its underlying continuous-time transfer function from
error e to unsaturated infusion rate ũ is

Ũ(s)
E(s)

= Kp

(
1+

1
sTi

+
sTd

1+ sTd/N

)
, (12)

with proportional gain Kp = 0.2 mg/BIS/s, integral time Ti = 386 s, derivative
time Td = 13.8 s, and filtering factor N = 5. The PID controller values have been
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Figure 2. DoH (top, blue) and monitor output y (top, red). An SQI (bottom, black) drop
from 100 to 50 is introduced at t = 2 min, and after that, an additive step disturbance d =
10 BIS (top, black) occurs. The signal degradation remains during 2 min (shaded area). The
associated inference-induced corruption of the monitor output (top, discrepancy between blue
and red) is defined in Section 2.3. The dashed black line indicates the DoH reference, and
the dotted lines delimit the range between DoH = 40 BIS and DoH = 60 BIS.

obtained by minimizing the integral absolute error (IAE) over a simulation example
with additive disturbances, see [Schiavo et al., 2021a] for details.

The actual infusion rate u is then saturated to within the range 0–1200 mLh−1,
representative of several clinical infusion pumps. For the concentration of stan-
dard propofol solutions of 20 mgmL−1, this corresponds to u within the range 0–
6.67 mgs−1.

3. Comparative simulation study

This section defines the details of our comparative study.

3.1 Surgical scenario
The performance of the proposed control structure was evaluated by repeated simu-
lation of a maintenance phase of fifty minutes of anesthesia. We compare a nominal
case, “monitor feedback”, with our novel architecture, “soft-sensor feedback”. In
the monitor feedback case, the soft-sensor block of Figure 1 was replaced with the
moving average filter that was clinically evaluated in connection with the controller
of Section 2.4, as described in [Schiavo et al., 2021c]. This filter averages the eight
most recent samples and was used to smooth out the signal.
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3 Comparative simulation study

We study a disturbance scenario to evaluate and compare performance: electro-
scalpel activity causes a drop in SQI from 100 to 50, immediately followed by a
step disturbance d = 10 BIS to reflect a lowered hypnotic depth in the patient re-
sulting from the stimulation. After 2 min, surgical stimulation stops and SQI returns
to 100. However, the disturbance d = 10 BIS remains, reflecting a lasting nocicep-
tive response. As the actual SQI dynamics are unknown, we have modeled the SQI
drop with a double-step since it represents the “worst-case" nature in being abrupt.
Moreover, steps are arguably the most common disturbance models considered in
the context of closed-loop control systems.

Both the 2 min duration of electro-scalpel stimulation and the associated drop to
SQI = 50 were derived from data collected during several surgeries. To also inves-
tigate the effect of a negative output disturbance step, a second inference episode is
initiated with the return from d = 10 BIS to d = 0 BIS.

The Kalman filter was initialized in the state that corresponds to a DoH of 50 in
stationarity, i.e., x0 = −F−1Buref, where uref is the control signal corresponding to
a DoH of 50 in stationarity.

The transients that arise during the initial convergence of the moving average
and the Kalman filter, respectively, were truncated from the comparative evaluation.
This is realistic, as in clinical use, the filter would typically be activated and allowed
to converge before the system is switched from manual to closed-loop drug delivery.

3.2 Patient model population
We have taken both inter- and intra-patient variability into account. This has been
achieved by simulating the procedure, detailed in Section 3.1, for 13 distinct indi-
viduals with covariates (age, height, weight, sex) and parameter values (E0, Emax,
Ce50, γ) disclosed in [Padula et al., 2017], who have already proven to be represen-
tative of a broad population. The covariate values were used to obtain a nominal
patient model Equation (2) using the Schnider model [Schnider et al., 1998].

For each nominal model, 10 perturbations were obtained by drawing from the
associated random effect distributions Equation (5) to reflect model uncertainty
caused by variability. Here, it can be noted that different draws were used in the
optimization of the Kalman filter, as described in Section 2.2, and the subsequent
evaluation simulations.

The Kalman filter incorporates the fixed-effects model only, which introduces a
model error between the true patient and the Kalman filter model. The soft-sensor
design was also performed without knowledge of E0, Emax, Ce50, and γ for each pa-
tient in the data set of [Padula et al., 2017]. Instead, the ĥ−1 and ĥ blocks of the soft
sensor (see Figure 1) were designed on previously published assumed typical values
E0 = 95.9 BIS, Emax = 87.5 BIS, Ce50 = 4.92 mgL−1, and γ = 2.69 according to
[Vanluchene et al., 2004].
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3.3 Performance evaluation
To evaluate the performance of the proposed control structure, we compared the
DoH resulting from a closed loop between the soft-sensor and monitor feedback
cases, with and without measurement noise. This comparison was conducted across
a population of simulated patients, detailed in Section 3.2.

To evaluate disturbance rejection from the proposed control structure, we used
two performance indices, introduced in [Ionescu et al., 2008]:

• NADIR: the lowest or highest DoH reached after a positive or negative step
disturbance, respectively (indicated by NADIR pos and NADIR neg).

• Time-to-target (TT): the time from step disturbance to first entering the range
of 45–55 BIS.

From a clinical point of view, it is interesting to see how well the controller
manages to maintain DoH within the 40–60 BIS range, as mentioned, e.g., [Soltész,
2013], which was also investigated.

4. Results

Figure 3 shows DoH resulting from simulating the scenario of Section 3.1 for each
of the 130 perturbed patient models according to Section 3.2. The figure corre-
sponds to the noise-free case n = 0. Figure 3(a) shows the results using the con-
ventional monitor feedback approach; Figure 3(b) shows the results resulting from
our novel soft-sensor architecture. The median patient, in terms of DoH reference
deviation MSE, is highlighted in red. The Kalman filter parameters used for the
simulations in Figure 3(b) from the optimization described in Section 2.2 are

Rmin = 5.07 ·10−6, (13a)
Rmax = 0.250, (13b)

Q = diag
(
4.79 ·10−3,0,1.52 ·10−1,2.77 ·10−4) . (13c)

Results shown in Figure 4 are related to simulations performed with the intro-
duction of measurement noise n according to Section 2.3. The Kalman filter pa-
rameters, obtained with noise present during the offline optimization phase, were

Rmin = 0.771, (14a)
Rmax = 1.79, (14b)

Q = diag
(
5.79 ·10−2,1.83 ·10−2,2.70 ·10−2,2.12 ·10−4) . (14c)
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Figure 3. Blue solid lines represent DoH (upper) and propofol infusion rates (lower) for 10
perturbations of each of 13 nominal patient PKPD model, as explained in Section 3.2. The red
solid line represents the mean response obtained for the entire set. According to Section 3.1,
a positive step disturbance enters at t = 10 min, followed by a negative one at t = 30 min.
The SQI drops to 50 immediately following each disturbance, before it returns to 100 after
2 min, as indicated by the shaded areas. The dashed black line indicates the DoH reference
r = 50 BIS, and the dotted lines illustrate the limits of the clinically recommended range
between DoH = 40 BIS and DoH = 60 BIS. Figure 3(a) corresponds to the nominal case,
where feedback is established directly from the monitor measurement; Figure 3(b) employs
feedback from the proposed soft sensor. A representative patient simulation is shown in red
for each case.

Figure 5 shows histograms of the DoH values in Figure 3 and Figure 4. The
percentage of DoH values within the clinically desired 40–60 BIS range in Figure 5
is 76% for monitor feedback and 100% for soft-sensor feedback without noise.
The corresponding values are 71% and 99%, respectively, for the case with noise.
Performance measures introduced in Section 3.3 are reported in Table 1.

To evaluate the proposed soft sensor on a wider range of individuals and to show
that the tuning of the parameters is effective in general, we study the same simula-
tion scenario as in Figure 3 over a larger data set of 500 individuals, introduced in
[Schiavo et al., 2021b]. This is shown in Figure 6.
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Figure 4. Simulated DoH (upper) and propofol infusion rate (lower) for 130 perturbed
patient PKPD models, in the presence of measurement noise. Figure and color content cor-
respond to that of Figure 3.
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Table 1. Spread of performance measures presented as min–max (median) for the simula-
tions in Figures 3 to 4.

Feedback Noise
NADIR pos

[BIS]
NADIR neg

[BIS]
TT pos
[s]

TT neg
[s]

Monitor No 0–35 (23) 57–64 (60) 9–15 (12) 50–106 (65)
Soft sensor No 43–50 (48) 54–63 (55) 10–21 (14) 49–104 (66)

Monitor Yes 0–45 (34) 57–81 (65) 0–269 (15) 0–350 (55)
Soft sensor Yes 44–52 (48) 50–62 (53) 0–264 (70) 0–313 (59)
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Figure 6. Simulated DoH (upper) and propofol infusion rate (lower) for 500 patient PKPD
models to evaluate how the soft sensor handles inter-patient variability on a larger data set
from [Schiavo et al., 2021b]. Figure and color content correspond to that of Figure 3.

5. Discussion

We have conducted a comparison between closed-loop DoH control using conven-
tional low-pass filtered monitor output as a feedback signal and a novel soft-sensor
architecture that integrates the patient model and the knowledge of signal quality.

The performance improvement of our novel architecture over that of the con-
ventional one is perhaps best visualized in the histograms of Figure 5. They show
that the distribution of DoH values is more closely centered around the DoH main-
tenance reference r = 50 BIS. This is also reflected in the performance indices re-
ported of Table 1. While the difference in time-to-target (TT) between the compared
architectures is marginal, the under- and overshoots associated with reaching the
target, as well as DoH oscillations, differ substantially, as seen in Figures 3 to 6.
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An in-depth effort has been made to ensure realistic simulation circumstances.
Instead of assuming perfect model knowledge, which is common in simulation
works studying closed-loop control anesthesia, we have adopted a stochastic un-
certainty in model parameters, grounded in clinical data [Schnider et al., 1998].
Specifically, we have repeatedly sampled (10 perturbations) from this uncertainty
for each of 13 nominal patients defined through population covariate values from
a published dataset [Padula et al., 2017], with the pharmacodynamic parameters of
Equation (3). The design of the soft sensor is based solely on assumed knowledge
of the nominal model, as described in Section 3.2. Along the same lines, we have
used previously published models of surgical disturbance d [Soltesz et al., 2019],
and measurement noise n [Pawlowski et al., 2022b].

For relating electro-scalpel inference m to SQI, as well as corruption of monitor
measurement y, we have formulated our own model Equation (11), as introduced in
Section 2.3. This has been done based on communication with our senior anesthe-
siologist collaborator, who has observed a delay in monitoring reporting following
such inference. We believe that the fidelity of this simple model could be improved
upon. However, its sole purpose in the current context is to provide a substantial
corruption of the monitor output y, which is reflected in SQI. The fact that the infer-
ence signal m in our simple model is directly mapped to SQI = m is just a matter of
convenience for notation. Neither this nor the knowledge about how SQI therefore
relates to the delay τ through Equation (11) has been exploited in the soft-sensor
design. Instead, the soft sensor assumes only that the measurement uncertainty—
in terms of variance R of an additive Gaussian measurement noise—is an affine
function of SQI, according to Equation (10), mapping the 100–0 SQI range to an
Rmin–Rmax range. Thus, the soft sensor is agnostic of the monitor dynamics map-
ping inference m to corruption on y, which is later reported by the SQI. Although
the monitor dynamics are not taken into account in the proposed architecture, the
performance is satisfactory. Doing so would be unrealistic, even if the performance
could be slightly improved.

Another implication is that our methodology can be expected to work satisfac-
torily not only with the BIS monitor but also other clinical monitors, such as the
WAVCNS [Hahn et al., 2012] or CONOX [Jensen et al., 2014], that output both a
DoH estimate y and associated SQI.

On a similar note, our Kalman filter assumes signal corruption by Gaussian
noise added to the signal C̃e in Figure 1. At least for the noise contribution of n to
this signal, a more accurate model could be incorporated. Also, here, satisfactory
performance in the absence of such a model is positive, since it demonstrates that a
low-fidelity noise model is sufficient for our architecture to outperform the nominal
one with simple monitor feedback. While more advanced sensor fusion methods like
the extended or unscented Kalman filters could be considered in scenarios where
the model is not linear like in Equation (1), the simple linear Kalman filter already
provides significant performance improvements. Its simplicity and interpretability
make it an attractive choice for real-world implementation unless there is a strong
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motivation for more complex alternatives.
Some of the residual error arising from model mismatch is accounted for by the

process noise model Q. Like with R, the underlying assumed noise structure does
not match exactly that of the considered system. However, optimizing R and (an
assumed diagonal) Q according to Section 2.2 yields satisfactory performance. To
implement this soft-sensor in practice, Rmin, Rmax and Q would be optimized offline,
with R then adjusted online based on Equation (10).

6. Conclusions

A realistic closed-loop controlled anesthesia scenario is considered, in which model
uncertainties and external disturbances are present. In this setting, our compara-
tive simulation study clearly illustrates robust performance benefits from merging a
model-based and data-driven approach through a Kalman filter soft sensor. In par-
ticular, it enables online balance between model and measurement reliance, based
on an estimation of measurement quality.

Based on the results presented, we are confident to take the next steps toward
the clinical evaluation of the proposed soft-sensor architecture within an existing
clinical closed-loop anesthesia research platform, which to date has seen extensive
clinical use [Schiavo et al., 2021c; Schiavo et al., 2022].
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Paper VI

Seamless Integration of Target-Controlled
Infusion and Closed-Loop Anesthesia

Ylva Wahlquist Kristian Soltesz

Abstract

The anesthetic drug propofol is commonly used to control hypnotic depth (sup-
pression of awareness) in patients undergoing surgery or intensive care. In addi-
tion to manual titration, a model-based open-loop feed-forward strategy called
target-controlled infusion (TCI) has attained some clinical popularity. Research
on closed-loop control, with awareness estimates derived from an electroen-
cephalogram (EEG), has proven feasible through several extensive clinical
studies over the past decades. While TCI is vulnerable to model imperfec-
tions, closed-loop control is susceptible to corrupt measurements. By combin-
ing Kalman-filter-based state estimation with model predictive control (MPC),
we introduce a novel anesthetic dosing regimen that can transition seamlessly
between TCI and closed-loop control, thus constituting an adequate trade-off
between model and measurement reliance. We introduce this regimen and pro-
vide a realistic simulation example that highlights its strengths compared to
pure TCI or closed-loop control of propofol infusion.

Keywords: Biomedical systems, Model Predictive Control, Kalman filter-
ing
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1. Introduction

Hypnosis is the pharmacologically induced anesthetic component utilized to tem-
porarily repeal awareness, as mandated by certain surgical procedures. Intravenous
drugs, such as propofol, are becoming increasingly popular and are commonly ad-
ministered manually and titrated by an anesthesiologist based on monitor readings,
patient signs, and experience.

Target-controlled infusion (TCI) is a model-based augmentation to manual titra-
tion. When TCI is used, the anesthesiologist enters a desired set point (reference)
drug concentration in the blood plasma [Absalom and Mason, 2017]. Based on this
reference and an underlying patient model of the assumed pharmacokinetics, the
TCI system computes an optimized infusion trajectory that is then applied [Ab-
salom and Mason, 2017]. The patient model is adapted to covariates such as age,
weight, and sex. Several such pharmacokinetic covariate models have been used as
the basis for TCI systems, e.g., [Absalom et al., 2003; Schnider et al., 1998]. TCI
is a feed-forward open-loop control strategy, which means that it cannot account
for model errors or disturbances that divert the true plasma concentration from that
assumed by the TCI system model. However, the anesthesiologist can update the
plasma concentration setpoint if observations make it plausible that the patient is
subjected to inadequate anesthetic depth, possibly caused by external disturbances.

When TCI relies solely on a dynamic patient model, closed-loop controlled
anesthesia constitutes a dosing regimen where the infusion rate is updated based
on an online measurement [van Heusden et al., 2019; Schiavo et al., 2021]. This
measurement is typically an estimate of the depth of hypnosis (DoH), calculated
from a non-invasive electroencephalogram (EEG) signal. The anesthesiologist sets
a desired reference anesthetic depth, usually given on the BIS scale, where a value
close to the maximum of 100 BIS indicates that the patient is fully aware, and the
range 40–60 BIS is adequate for many clinical use cases [Vuyk and Mertens, 2003].
Too deep anesthesia may result in adverse effects, such as post-operative nausea,
while insufficient anesthesia can lead to awareness during surgery.

While the lack of clinical feedback in TCI makes it vulnerable to model error,
the presence of clinical feedback makes closed-loop anesthesia vulnerable to mea-
surement disturbances and sensor noise. This motivates a unified framework that
combines TCI and closed-loop control to obtain a tunable trade-off between the
two. This paper presents such a framework, based on a combination of Kalman fil-
tering state estimation and model predictive control (MPC). We provide illustrative
and motivating examples and conclude with a realistic simulated use case.
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ĥ−1 MPC

÷PKPD

x̂

TCI Patient

PKPD +

rDoH r u

d1

DoH

+

d2

y

Figure 1. Schematic illustration of open-loop control with TCI. The DoH reference rDoH
is transformed by ĥ−1 into a plasma concentration which is inverted through Equation (5)
to create the reference r for the MPC, which computes a control signal u based on the state
estimate x̂ from the underlying PKPD model. This transform is in gray, as it is typically
conducted implicitly by the monitoring anesthesiologist, who sets r directly, in the case of
TCI control. The disturbances d1 and d2 act on the DoH and its measurement y, respectively.

ĥ−1 MPC

Kalman
filter

x̂

MPC Patient

PKPD +

ĥ−1

rDoH r u

d1

DoH

+

d2‹Ce

y

Figure 2. Schematic illustration of closed-loop control with MPC. The reference for DoH,
rDoH , is inverted through ĥ−1 in Equation (5) to create the reference for the MPC, which
computes a control signal u based on the state estimates from the Kalman filter. The distur-
bances d1 and d2 act on the DoH and the measurement y, respectively.

2. Modeling and control

Ordinary TCI is schematically illustrated in Figure 1, and our novel hybrid approach
is illustrated in Figure 2. The patient is represented by a PKPD model, defined in
Section 2.1. The measurement y and disturbances d1, d2 are explained in Section 2.2
and the Kalman filter state estimator in Section 2.3. Finally, the MPC that governs
dosing in both the TCI and the closed-loop case is presented in Section 2.4.
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2.1 Patient model
At the core of our approach lies a pharmacokinetic-pharmacodynamic (PKPD)
model. The structure of this model is well established in the context of closed-loop
controlled anesthesia [Sahinovic et al., 2018; Soltesz et al., 2020]. The PK part of
the model is a mammillary three-compartment system, relating drug infusion rate u
[mgs−1] to the blood plasma drug concentration x3 =Cp [mgL−1] [Sahinovic et al.,
2018]. The PD model, connected in series to the output of the PK model, consists
of a linear and a non-linear part. The linear part is a first-order lag filter relating the
blood plasma concentration x3 = Cp to the effect-site (brain cortex) concentration
x4 = Ce. A zero-order-hold discretization, in our examples with sampling period
Ts = 10 s (sufficient to resolve the dynamics) can thus be expressed

xk+1 = Axk +Buk, (1a)
(Ce)k =Cxk = (x4)k, (1b)

where
xk =

[
(x1)k,(x2)k,(x3)k,(x4)k

]⊤
, (2)

as detailed in for example [Wahlquist et al., 2021].
The non-linear part of the PD model relates effect-site concentration Ce = x4 to

DoH via the Hill sigmoid

DoH = h(Ce;E0,Ce50,γ) = E0

(
1− Cγ

e

Cγ
e +Cγ

e50

)
, (3)

Ce50 corresponds to a DoH = 50 BIS, and γ determines the steepness of the sigmoid.
The variability in the DoH response between individuals is accounted for using

a pharmacometric covariate model. In this work, we use the Schnider population
model [Schnider et al., 1998], which expresses the parameters of the continuous-
time counterpart of Equation (1) as a function of the covariates age, weight, and
sex. The remaining variability, not explained by these covariates, is modeled using
a log-normal distribution, so that

θ = θ0 exp(ηθ ), (4)

where θ0 is the covariate-adjusted parameter value, and the random effect ηθ is a
normal stochastic variable with zero mean and variance σ2

θ
. These random effects

thus capture intra-individual variability and the part of the inter-individual variabil-
ity not explained by the covariates.
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2.2 Measurements and disturbances
Disturbances pose a central challenge for both TCI and closed-loop control. Surgi-
cal stimulation is commonly [Soltesz et al., 2020] modeled by an additive distur-
bance d1, affecting the actual DoH, as shown in Figure 1.

It is not possible to measure the full patient state or the true DoH directly. In-
stead, the only available measurement is y = DoH+d2, where d2 corrupts measure-
ment noise, as shown in Figure 1. That is, d1 affects the actual DoH and conse-
quently also the measurement y, while d2 affects the measurement y, without influ-
encing the true DoH in the case of TCI shown in Figure 1. However, in the case of
closed-loop feedback shown in Figure 2, d2 will influence the true DoH through the
controller.

This work considers disturbances in double-steps of magnitude 20 BIS. Step
disturbances are commonly used [Soltész, 2013], as they can be considered to be
the worst case in the anesthesia control context.

2.3 Patient state estimation
Since the full state of Equation (1) is not directly measurable, we use the Kalman
filter to obtain state estimates. It utilizes the system input u, together with the effect-
site concentration estimate

Ĉe = ĥ−1(DoH;E0,Ce50,γ) =Ce50

(
E0 −DoH

DoH

)1/γ

. (5)

to produce a state estimate x̂.
To begin with, we will, somewhat optimistically, assume perfect knowledge of

the PD dynamics, ĥ = h, resulting in ĥ−1 constituting a perfectly linearizing trans-
form. However, in our concluding realistic simulation scenario of Section 4, we
use a previously published population average for the parameters in Equation (5)
to obtain a corresponding, but non-perfectly linearizing ĥ−1. This was also done in
[Wahlquist et al., 2025], where the same population average resulted in satisfactory
results.

The Kalman filter equations are presented below, with the following notation:
x̂k,k−1 denotes the estimate of the state vector xk, based on data up to and including
sample k−1, and x̂k,k is the updated estimate at sample k. The same notation is used
for the covariance estimate P. The state update is governed by

Lk = Pk,k−1C⊤
(

CPk,k−1C⊤+Rk

)−1
, (6a)

Pk,k = (I −LkC)Pk,k−1(I −LkC)⊤+LkRkL⊤
k , (6b)

x̂k,k = x̂k,k−1 +Lk
(
(C̃e)k −Cx̂k,k−1

)
, (6c)
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and the prediction is given by

xk,k+1 = Axk,k +Buk, (7a)

Pk+1,k = APk,kA⊤+Qk, (7b)

where A,B,C are the system matrices of Equation (1). Kalman filtering is a well-
understood and documented technique, and we refer to [Welch and Bishop, 1995]
for further details and insights.

The scalar Rk and the matrix Qk quantify measurement and state uncertainty in
the sample k. While they can be viewed to represent covariances of Gaussian dis-
turbances within the Kalman filtering framework, we instead consider them as free
tuning parameters that enable a trade-off between measurement and model reliance.

The Kalman filter state estimate is a weighted sum of its most recent measure-
ment and the previous state estimate, where the Kalman gain L is the proportionality
constant. When the measurement uncertainty R is large, the Kalman gain L will de-
crease, shifting trust from measurement to model, and vice versa.

2.4 MPC formulation
The objective of our MPC– which is to be used both for TCI and closed-loop con-
trolled infusion– is to produce an optimal drug infusion trajectory to follow an
effect-site concentration reference. Its roles in each of these use cases are shown
in Figure 1 and Figure 2, respectively.

In TCI, the MPC relies solely on a PKPD patient model, without utilizing the
DoH measurement y. In closed-loop mode, the MPC instead utilizes Kalman-filter
state estimates based on y, as explained in Section 2.3.

We denote the effect-site concentration profile across a horizon of N samples
by x4 so that x4 =

[
(x4)1 . . .(x4)N

]⊤, and the reference trajectory r =
[
r1 . . .rN

]⊤.

The objective of our MPC is to find the infusion trajectory u =
[
u1 . . .uN

]⊤ that
minimizes the quadratic cost function

J′e(x4) =
N

∑
k=1

((x4)k − rk)
2 . (8)

To enable minimization over u, we rewrite Equation (8) in terms of u. With the
initial state x0 and the use of Equation (1), we get

Je(u) =
1
2

u⊤F⊤Fu+(x⊤0 E⊤F − r⊤F)u, (9)

where

E =

A1
4
...

AN
4

 , F =


A0

4B4
A1

4B4 A0
4B4

...
...

. . .
AN−1

4 B4 AN−2
4 B4 . . . A0

4B4

 , (10)
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and where A4 is the fourth row of A, and B4 the fourth element of B. A complete
derivation can be found in [Wahlquist et al., 2024].

Preventing ringing in u Figure 3 shows the solution that minimizes Equation (9),
following a negative step disturbance d1 =−20 BIS. It results in undesired ringing
in the infusion rate u (red). To avoid this, we add a cost term that penalizes sample-
to-sample differences in u:

J′∆u(u) = α

N

∑
k=2

(uk −uk−1)
2 (11)

where α is a tuning parameter for this penalty.
Rewriting Equation (11) as a quadratic form, and using that Equation (11) is

scalar, results in
J∆u(u) =

α

2
u⊤G⊤Gu, (12)

where

G =


−1 1

−1 1
. . . . . .

−1 1

 . (13)

The blue lines in Figure 3 show the effect of introducing this penalty with α =
0.1. As can be seen, the red (α = 0) and blue (α = 0.1) DoH are not distinguishable,
while there is no ringing in the blue control signal.

Constraints We introduced constraints to keep the infusion rate nonnegative, uk ≥
0 for k = 1, . . . ,N. That is, element-wise larger than zero, u ≽ 000N×1, where 000N×1 is
a zero vector of size N ×1. Similarly, the infusion rate is bounded by the maximum
possible infusion rate of the pump, umax = 1200 mLh−1, representative of several
clinical infusion pumps. This corresponds to umax = 6.67 mgs−1 with a propofol
concentration of 20 mgmL−1. The corresponding constraint can be written as u ≼
umax111N×1. The combined infusion rate constraints are thus[

−IN×N
IN×N

]
u ≼

[
000N×1

umax111N×1

]
. (14)

MPC as a quadratic program The MPC cost, combining Equation (9) and Equa-
tion (12), is

J(u) = Je(u)+ J∆u(u) (15)

=
1
2

u⊤(F⊤F +αG⊤G)u+(x⊤0 E⊤F − r⊤F)u.

Minimizing Equation (15) subject to Equation (14) corresponds to solving a
quadratic program (QP), for which there exist solvers such as quadprog in MAT-
LAB [MathWorks, 2024] that were used in our examples.
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Figure 3. DoH and infusion rate u with (red, α = 0) and without (blue, α = 0.1) ringing
following a negative step disturbance d1 = −20 BIS in Figure 5. The red and blue DoH
curves are not visually distinguishable.

In the closed-loop MPC case, one such QP is solved at each sample as a new
measurement and the corresponding Kalman-filter state estimate arrive. In the TCI
case, the optimization problem will only be solved once over a horizon, unless the
anesthesiologist changes the reference and a new trajectory is computed. In this
work, we use a practically sufficient prediction horizon of 10 min, corresponding to
N = 60.

3. Disturbance rejection comparison

We evaluated the performance of TCI and closed-loop MPC subject to disturbances
d1 and d2, as introduced in Section 2.2, and initially under the assumption of a
perfect model, P̂KPD = PKPD and ĥ−1 = h−1 in Figure 1 and Figure 2.

The patient state is initialized to DoH = 50 BIS, i.e., x0 = −A−1Buref, where
uref is the corresponding stationary control signal. At t = 5 min, a double step in d1
or d2 is introduced, with a duration of five minutes. The rejection of disturbances
by TCI and closed-loop MPC is shown in Figure 4 and Figure 5, respectively.

Since we assume perfect model knowledge and no additional noise, the Kalman
filter is tuned to behave like there is (almost) no state or measurement noise, i.e., R
and Q are chosen to be (almost) zero (but not exactly zero for numerical reasons).
The chosen values were R = 10−6 mg2/s2 and Q = 10−6I4 mg2/s2, where I4 is the
identity matrix of size 4×4.
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Figure 4. Disturbance rejection by TCI for two types of disturbances; d1 affecting the DoH
directly (a, in yellow) and d2 affecting the measurement (b, in red), as introduced in Sec-
tion 2.2. The reference is shown in dashed.

To compare disturbance rejection for open- and closed-loop control (TCI and
closed-loop MPC), we calculate the mean square error (MSE) from the actual DoH
and its reference rDoH = 50 BIS. These are shown in Table 1 for the simulations
in Figure 4 and Figure 5. The TCI is expected to perform well under measurement
disturbances (d2) but worse under disturbances that affect the DoH as it does not
feedback on the measurement signal y. In contrast, the MPC was able to reduce the
impact of disturbances acting on DoH, but overdoses when there is a measurement
error, unable to differentiate between the two disturbances.

4. Simulation scenario

While the examples of Section 3 illustrate two extremes, we also include a more
realistic scenario, where we study induction and maintenance for a representative
example patient. The demographic data for this patient are the first patient in the
data set presented in [Ionescu et al., 2008].
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Figure 5. Disturbance rejection by MPC for two types of disturbances; d1 affecting the
DoH directly (a, in yellow) and d2 affecting the measurement (b, in red), as introduced in
Section 2.2. The reference is shown in dashed.

Table 1. Mean squared errors (MSE) between actual DoH and the reference value of
rDoH = 50 BIS for each of the disturbance scenarios in Figure 4 and Figure 5, respectively.
The disturbances d1 and d2 are detailed in Section 2.2.

Method d1 d2

TCI 39.7 0
MPC 28.2 75.9

In this scenario, we assume non-perfect model knowledge of the PKPD model
and corresponding Hill function. The MPC model P̂KPD and the Kalman filter as-
sume nominal parameter values (the same as in Section 3), while the PKPD model
that constitutes the true dynamics of the patient (see the patient block in Figure 2)
is now different. The true patient model is created by drawing from the log-normal
distribution for volumes and clearances that make up the A matrix, as explained
in Section 2.1 and shown in Equation (4). For the Hill function, ĥ, we use popu-
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Figure 6. Induction phase DoH and corresponding infusion rate u with (blue) and without
(red) integral action. The reference rDoH = 50 BIS is shown in dashed.

lation averages Ê0 = 95.9 BIS, Ĉe50 = 4.92 mgL−1, and γ̂ = 2.69, as provided in
[Vanluchene et al., 2004].

The imperfect model would lead to a stationary error that can be eliminated
in the closed-loop case by introducing integral action. This is done by adding a
correction term to the control signal computed by the MPC, uMPC, so that

uk = (uMPC)k +β (ui)k, (16)

where the correction term is the sum of the integral error

(ui)k =
k−1

∑
i=1

((Ce)i − rCe)i, (17)

and β is a tunable parameter determining the amount of integral action. For this
simulation scenario, we use β = 0.2, which was found to be a suitable value to
eliminate the stationary error. Figure 6 illustrates the need for integral action with
model errors during the induction phase, where a stationary error is obtained and is
not corrected by the MPC without integral action.

To further increase realism, we superimpose a noise sequence presented in
[Pawlowski et al., 2022] onto the measurement y used to drive the Kalman filter
in the closed-loop case. As in [van Heusden et al., 2013] second-order filter with
time constant 8 s, being the zero-order-hold discretization of

F(s) =
1

(8s+1)2 (18)

is employed to attenuate this noise.
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During the induction phase, the patient goes from fully awake (DoH ≈ 100 BIS)
to a reference rDoH = 50 BIS. We study a scenario where two disturbances affect
the patient during maintenance. These are introduced at t = 20 min and t = 40 min
and affect DoH and y, respectively, as specified in Section 3.

In this scenario, we assume that we have information about signal quality in
terms of a signal quality index of 0-100 SQI. This index is provided in conjunction
with the measurement by the most commonly used clinical monitors DoH, includ-
ing the BIS monitor.

When the second disturbance d2 affects the measurement, it is reflected as a drop
in SQI from 100 (perfect measurement) to 50 (poor measurement). Then, the signal
quality is poor until the disturbance disappears after five minutes. This simulates a
scenario of using electrocautery devices, where electrical inference affects the BIS
monitor and introduces measurement errors [Chan et al., 2012]. Details of how SQI
is assumed to affect the measurement signal can be found in [Wahlquist et al., 2025].

In [Wahlquist et al., 2025], we developed a method to adjust R depending on the
signal quality of the BIS signal, SQI, to seamlessly move between trusting the mea-
surement or the model. Then, R was varied through an affine relationship between
a minimum value Rmin and a maximum value Rmax, so that

R(SQI) = Rmin +(1−SQI/100)(Rmax −Rmin). (19)

When SQI = 100, the signal quality is perfect, resulting in a small covariance Rmin.
In contrast, a poor signal quality of SQI = 0 results in a large covariance Rmax.

The tuning of the Kalman filter (Rmin, Rmax, and Q) was performed by mini-
mizing the mean square error (MSE) between the Kalman prediction of the DoH
ŷ = h(Ĉe) and the true DoH over the simulation scenario with induction and the
two disturbances. We assume that Rmin and Rmax are scalar and that Q is a diago-
nal matrix where the diagonal was identified in optimization. The MATLAB func-
tion fmincon with the interior-point algorithm was used for the optimization. The
Kalman filter was initialized in P0,0 = I4.

5. Results

Figure 7 shows the full simulation scenario of the induction and maintenance phase
affected by disturbances as outlined in Section 4 The DoH, the measurement y, the
infusion rate u, and SQI are presented. The signal quality is perfect (SQI = 100)
throughout the time except at the time of the second disturbance d2, which affects
the measurement. The obtained values of Rmin, Rmax, and Q from optimization were
Rmin = 274,Rmax = 19706, and Q = diag(0.85,0.83,2.5 ·104,1.4 ·103).

As seen in Figure 7, the MPC can control DoH closely to the reference except
when disturbances occur but is immediately able to regulate back. When SQI drops
from 100 to 50 at t = 40 min, the MPC can instead run on the underlying (incorrect)
PKPD model in the meantime to prevent overdosing.

196



6 Discussion
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Figure 7. Simulation example with induction and maintenance phase, subjected to noise
and two disturbances (yellow, affecting the DoH, and blue affecting the measurement). These
correspond to d1 and d2 in Figure 2 and are detailed in Section 2.2. At the same time as the
second disturbance takes place, the SQI drops from 100 to 50 (lower plot). A Kalman filter
has been optimized and is detailed in Section 4. The reference rDoH = 50 BIS is shown in
dashed.

6. Discussion

TCI performs well when there are measurement errors, but struggles when errors
directly impact the patient’s DoH. This issue arises particularly in scenarios that
involve disturbances and model-error mismatches. However, the opposite is true for
MPC, which can manage measured changes in hypnotic depth through feedback,
even when these changes are not accounted for in the model. This capability is
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beneficial in situations where disturbances, noise, or patient-model mismatches are
present. In summary, both regimens have strengths and weaknesses and are often
complementary. In [Wahlquist et al., 2025], it was shown that the suggested method
was robust to model uncertainties regarding inter- and intra-patient variability.

In this work we have introduced a control structure that seamlessly integrates
TCI and closed-loop control, allowing for a continuous re-positioning between the
two based on operating circumstances. This framework utilizes a measurement-
driven state observer in the form of a Kalman filter, that is re-tuned to rely more
or less on model and measurement respectively, thus moving seamlessly between
TCI and closed-loop MPC behavior.
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Läkemedelsdosering anpassad
för dina behov
Ylva Wahlquist
Institutionen för Reglerteknik

Populärvetenskaplig sammanfattning av doktorsavhandlingen Modeling and
Control of Pharmacological Systems, mars 2025.

Har du någonsin funderat över varför personer med olika kroppsvikt och kön ofta får
samma läkemedelsdos? Om du går till läkaren kan du få samma dos smärtstillande
som en person som väger betydligt mer än dig. Detta beror på att läkemedelsdoser
oftast väljs för att passa de flesta, vilket inte alltid är optimalt. För smärtstillande
kanske det inte är ett stort problem, men om du genomgår en operation och behöver
bli sövd?

Narkosläkaren ansvarar för att du är tillräckligt sövd och justerar dosen kon-
tinuerligt efter dina behov eftersom fel dosering kan få allvarliga konsekvenser.
Underdosering kan leda till att du känner av smärta under operationen, eller i värsta
fall vaknar upp, och överdosering kan leda till andningsuppehåll eller illamående
vid uppvaket. Att hitta rätt dos kan vara en utmaning eftersom alla personer rea-
gerar olika på läkemedel. Denna variation beror på underliggande sjukdomar och
på faktorer som ålder, vikt och kön, och det är där vår forskning kommer in.

Läkemedeldosering, inte så
enkelt som man kan tro.

Vi har utvecklat matematiska modeller som be-
skriver hur läkemedelseffekten varierar mellan olika
individer beroende på ålder, vikt och kön. Med hjälp
av dessa modeller kan vi förutsäga hur en patient kom-
mer att reagera på en viss dos. Genom att kombinera
modellerna med mätningar av till exempel blodtryck
och puls kan vi automatiskt dosera läkemedel på ett
säkert sätt. Detta är särskilt viktigt inom intensivvår-
den, där det är avgörande att ge rätt dos vid rätt tid-
punkt. I vår forskning har vi studerat två tillämpningar,
nämligen hjärttransplantation och narkos.

Genom att noggrant dosera läkemedel för att hålla blodtryck och puls på stabila
nivåer kan vi förbättra kvaliteten på donatorhjärtan och därmed öka antalet tillgäng-
liga hjärtdonatorer. Inom narkos har vi visat hur vi kan beräkna en individanpassad
dos av narkosmedel och sedan automatiskt justera doseringen, även under opera-
tioner där patientens tillstånd påverkas av exempelvis kirurgiska ingrepp. På lång
sikt ser vi att individanpassad läkemedelsdosering blir en självklar del av sjukvår-
den, vilket kan öka både patientsäkerheten och effektiviteten i behandlingarna.
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