
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Ligand-Binding Affinity Estimates Supported by Quantum-Mechanical Methods

Ryde, Ulf; Söderhjelm, Pär

Published in:
Chemical Reviews

DOI:
10.1021/acs.chemrev.5b00630

2016

Document Version:
Publisher's PDF, also known as Version of record

Link to publication

Citation for published version (APA):
Ryde, U., & Söderhjelm, P. (2016). Ligand-Binding Affinity Estimates Supported by Quantum-Mechanical
Methods. Chemical Reviews, 116(9), 5520-5566. https://doi.org/10.1021/acs.chemrev.5b00630

Total number of authors:
2

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

Download date: 26. Apr. 2024

https://doi.org/10.1021/acs.chemrev.5b00630
https://portal.research.lu.se/en/publications/d10ee0e5-f397-449e-ab11-e06e32cd9a5a
https://doi.org/10.1021/acs.chemrev.5b00630


Ligand-Binding Affinity Estimates Supported by Quantum-
Mechanical Methods
Ulf Ryde*,† and Par̈ Söderhjelm‡

†Department of Theoretical Chemistry and ‡Department of Biophysical Chemistry, Lund University, Chemical Centre, P.O. Box 124,
SE-221 00 Lund, Sweden

ABSTRACT: One of the largest challenges of computational chemistry is calculation of
accurate free energies for the binding of a small molecule to a biological macromolecule,
which has immense implications in drug development. It is well-known that standard
molecular-mechanics force fields used in most such calculations have a limited accuracy.
Therefore, there has been a great interest in improving the estimates using quantum-
mechanical (QM) methods. We review here approaches involving explicit QM energies
to calculate binding affinities, with an emphasis on the methods, rather than on specific
applications. Many different QM methods have been employed, ranging from
semiempirical QM calculations, via density-functional theory, to strict coupled-cluster
calculations. Dispersion and other empirical corrections are mandatory for the
approximate methods, as well as large basis sets for the stricter methods. QM has
been used for the ligand, for a few crucial groups around the ligand, for all the closest atoms (200−1000 atoms), or for the full
receptor−ligand complex, but it is likely that with a proper embedding it might be enough to include all groups within ∼6 Å of
the ligand. Approaches involving minimized structures, simulations of the end states of the binding reaction, or full free-energy
simulations have been tested.
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1. INTRODUCTION

One of the most important types of chemical reactions that are
governed by noncovalent interactions is the binding of a small
molecule to a biological macromolecule, e.g., a protein or a
nucleic acid, i.e., the reaction

+ →R L RL (1)

where R is the macromolecule (the receptor), L is the small
molecule (the ligand), and RL is their complex. The free energy
of this reaction, ΔGbind, is the binding affinity, and it is related to
the binding constant Kbind by

= −ΔK e G RT
bind

/bind (2)

where R is the gas constant and T is the absolute temperature.
(Strictly speaking, the binding free energy should have a
standard-state symbol. In practice, few papers discuss or specify
the standard state, although binding affinities calculated with 1
bar or 1 M standard states differ by 8 kJ/mol at ambient
temperature, arising from the volume term in the translational
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entropy; to avoid possible confusion, we have dropped the
standard-state symbol throughout this paper.)
Binding reactions are ubiquitous in biology. For example, any

substrate needs to bind to its enzyme to be converted to the
product, and it can be argued that the activation energy is the
difference in binding energy of the substrate and the rate-limiting
transition state. However, the arguably most important type of
binding reaction is the association of a drug candidate to its target
receptor. It is the prime aim of drug development to find a small
molecule that binds strongly to a certain biomacromolecule.
Moreover, it is also important that the drug candidate does not
bind to other, often similar, macromolecules, so that it does not
interfere with other key functions in the body, and that it has
proper transport, metabolism, and excretion properties, which
often are governed by the binding to other biomacromolecules,
e.g., transporters and metabolic enzymes. Therefore, the study of
binding affinities is of immense interest in pharmaceutical
chemistry, and the development of a new drug typically involves
the synthesis and test of the binding of thousands of drug
candidates. Naturally, it would be of great gain if binding affinities
could be estimated fast and accurately by computational
methods.
Consequently, numerous methods have been developed with

this aim.1 Most computational methods are based on some sort
of energy function. It can be developed either by a statistical
analysis of experimentally characterized ligand−receptor com-
plexes or from a physical description of the interactions.
Statistical energy functions can come from an analysis of
atom−atom distances, converted to an empirical potential of
mean force (knowledge-based scoring functions), or from a
regression analysis of binding affinities and a collection of terms
that are believed to be important for the binding affinity, e.g.,
hydrogen bonds, ionic interactions, metal bonding, desolvation,
hydrophobic effects, stacking, etc. (empirical scoring functions).
Physics-based energy functions are typically in the form of a
molecular-mechanics (MM) force field that contains terms for
the stretching of bonds, bending of angles, rotation of torsion
angles, Coulombic interaction between atomic partial charges,
and van der Waals attraction (dispersion) and exchange
repulsion.
Likewise, many approaches have been used to predict the

structure of the ligand−receptor complex and estimate the
binding affinity using these energy functions. The most
commonly used one is to change the structure until a minimum
energy is obtained, i.e., a geometry optimization. This is a
formidable task for a biomacromolecule, because the potential-
energy surface is extremely complicated with essentially an
infinite number of local minima. This is often solved by keeping
the macromolecule fixed, excluding the solvent molecules,
running many calculations from different starting points, or
employing special algorithms (e.g., genetic algorithms) that try to
find the global minimum. In their simplest form, such docking
calculations can estimate the binding affinity within seconds,
often using knowledge-based or empirical scoring functions.
They can often predict structures close to the experimentally
determined geometry of the complex, but they have problems
distinguishing them from other poses and predicting accurate
binding affinities for a diverse set of targets.2,3

Alternatively, binding affinities can be estimated as averages of
interaction energies over molecular dynamics (MD) or Monte
Carlo (MC) simulations. Such calculations reduce the local-
minimum problem, but they are also much more time-
consuming. Many variants have been suggested, but the two

most used are the linear interaction energy (LIE) and the MM/
PBSA or MM/GBSA (MM combined with Poisson−Boltzmann
or generalized Born and surface area) approaches.4,5

However, a more strict statistical mechanical way to obtain
binding free energies is by free-energy simulation (FES)
techniques.6,7 These also involve MD or MC sampling, but
also the conversion of the ligand to either another ligand (giving
the difference in ΔGbind between the two ligands) or a
noninteracting ligand (giving the absolute ΔGbind). Such
conversions need to be performed in many small steps to give
a proper convergence, so the FES approaches are computation-
ally expensive.
A problem with these calculations is that the estimated binding

affinities need to be very accurate. Equation 2 shows that a
difference in binding constants of 1 order of magnitude translates
to a difference of only 6 kJ/mol inΔGbind. Thus, the accuracy of a
computational method needs to be better than this to be useful in
drug development. Unfortunately, very few computational
methods have such an accuracy, especially not MM methods,
with their lacking description of polarization, charge transfer,
many-body effects, etc. Therefore, there has lately been quite
some interest in improving ligand-binding estimates by using
quantum-mechanical (QM) methods. They can in principle
include all contributions to the receptor−ligand interaction
energy and therefore provide an ideal energy function. However,
in practice, QM calculations are also approximate, and depending
on the level of theory used, sometimes the approximations may
deteriorate the results below the level obtained by MMmethods,
e.g., because you cannot afford a proper sampling of the phase
space. Moreover, often only a part of the receptor−ligand
complex is used in the QM calculation. Therefore, it is not certain
that QM calculations will automatically improve calculated
binding affinities.
In this paper, we review the use of QM methods for the

calculation of ligand-binding affinities. Several reviews have been
published on related subjects.8−26 It is not trivial to delimit the
subject, because essentially all MM force fields are partly based
on QM parameters and nearly all computational studies of ligand
binding involve some QM calculations, e.g., to obtain the atomic
charges of the ligand. Therefore, we have restricted the review to
studies that present estimates of ΔGbind involving explicit QM
components, i.e., excluding papers only devoted to the structure
of the RL complex27 or involving QM only to obtain parameters
in the MM force field (e.g., quantum-polarized ligand docking28

and other methods to obtain system-specific QM
charges17,29−35). We also omit ligand-based (3D) quantitative
structure−activity relationship (QSAR) methods,36−40 QM
studies of drug metabolism,41 or approaches to study enzyme
mechanisms and reaction energies.9,42−45 Moreover, the review
is focused on method developments, i.e., papers with at least a
partial focus on the methods. Pure applications that employ QM
methods are sometimes mentioned, but are not exhaustively
reviewed, and we do not discuss the implications of the calculated
affinities on specific biological systems.
We have chosen to organize the review according to how the

free energies are estimated. Thus, methods based on single
structures, onMD sampling of only the end points (complex and
possibly free ligand and free receptor), or on FES are discussed in
separate sections. There are several other equally reasonable
ways to structure the material, e.g., by the QM method used or
the part of the system treated by QM. To help the less
experienced reader, we give in the first section a short review of
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different QMmethods and different methods to estimate binding
affinities. The review ends with some concluding remarks.

2. METHODS
In this section, we will give a brief introduction to most of the
QM methods used when calculating binding affinities. For a
more detailed account of the methods, the interested reader is
referred to textbooks in computational chemistry.46,47

2.1. Energy Functions

QM methods are based on the solution of the Schrödinger
equation

ψ ψ̂ =H E (3)

where E is the total energy and Ĥ is theHamilton operator, which
defines the system (the particles involved, i.e., electrons and
nuclei, and their interactions). From the wave function, ψ, all
measurable properties of the system can be calculated.
Unfortunately, the Schrödinger equation can be solved analyti-
cally only for the simplest one-electron systems; for all other
systems, only approximate solutions can be found. Therefore,
numerous approximate QM methods have been developed.
In the Hartree−Fock (HF) method,48,49 it is assumed that

each electron interacts with the average field of all the other
electrons. This is a quite crude approximation, because the
correlated movement of electrons is omitted. The simplest way
to correct this shortcoming is by many-body perturbation theory
to the second order (MP2).50 This is also the simplest theoretical
method that explicitly treats dispersion interactions. More
accurate results are obtained with an exponential ansatz, the
coupled-cluster approach. Currently, the gold-standard QM
method is such an approach, including single, double, and
(perturbatively treated) triple excitations, CCSD(T),51 which
typically gives an accuracy of about 4 kJ/mol.
On the other hand, HF calculations can be sped up (by a factor

of ∼1000) by ignoring some terms and replacing others by
empirical parameters, the semiempirical QM (SEQM) meth-
ods.52 Many such methods have been suggested, including
AM1,53 RM1,54 PM3,55 PDDG/PM3,56 PM6,57 and OM2.58

SEQM methods typically give quite poor energies for large
structures, owing to the missing dispersion interactions, but also
to a poor description of hydrogen and halogen bonds, all of
which are fundamental to obtain proper binding energies.
Therefore, several groups have developed corrections to the
SEQM energies and gradients, e.g., the DH,59 D2H,60 DH2X,61

and D3H462 corrections.
Density-functional theory (DFT) is not based on the

Schrödinger equation.63,64 Instead, it concentrates on the
electron density, which is a function of three Cartesian
coordinates (the wave function is a much more complicated
function of the three coordinates for each electron in the system).
Still there is a one-to-one relationship between the wave function
and the electron density, but it is not known exactly what
equation to solve to find the electron density for a system.
Therefore, a great number of DFTmethods have been suggested,
e.g., BP86,65,66 PBE,67 TPSS,68 M06-L,69 and mPWLYP.70 Some
of them include a fraction of HF exchange, called hybrid
functionals, e.g., B3LYP,71,72 BH&HLYP,73 PW6B95,74 and
M06-2X.69 In general, DFT methods are both faster and more
accurate than the MP2 method. Lately, it has been pointed out
that the results of HF and DFT methods can be improved by
including a simple empirical correction for the missing dispersion
interaction.75,76 The most applied corrections are the DFT-D2

and DFT-D3 approaches by Grimme and co-workers,77−79 but
other approaches give similar results.80−82 A semiempirical
variant of DFT is the density-functional-based tight binding
method, for which there are several variants, e.g., DFTB,83 SCC-
DFTB84 (self-consistent charges), and SCC-DFTB3.85 Dis-
persion corrections have been developed also for these
methods.86,87

Nearly all QM methods solve the Schrödinger equation by
expanding the wave function in a series of known functions, the
basis set. Naturally, the quality of the solution improves as the
basis set is enhanced. Typically, reasonable geometries can be
obtained with two basis functions for each valence electron, one
for the core electrons, and an extra set of functions with one
degree of angular momentum higher than the valence electrons,
called an SVP basis set, e.g., 6-31G*, def2-SV(P), or cc-
pVDZ.88−90 However, energies are far from converged at that
level; instead, three or four functions are needed for the valence
electrons, TZP, e.g., 6-311G(2df,2p), def2-TZVP, and cc-pVTZ,
or QZP, e.g., def2-QZVP or cc-pVQZ.89−91 For anionic systems
and for an accurate account of dispersion, diffuse functions are
also needed, e.g., 6-31+G*, def2-TZVPD, or aug-cc-pVTZ.90,92

In a few studies, minimal basis sets with only one basis function
for each valence electron have been used (SZ and SZP without
and with polarizing functions, respectively). For the SEQM
methods, the (minimal) basis set is defined by the method and
therefore not explicitly specified.
One of the prime problems with too small basis sets is that an

atom may employ basis functions from nearby atoms. This is a
major problem when calculating interaction energies, because
these basis functions exist only in the complex and therefore will
overestimate the binding energy. This is called the basis-set
superposition error (BSSE), and it is typically cured by
performing calculations for the separated moieties with the
basis set (but not the nuclei) from the complex, the counterpoise
(CP) correction.93 However, there are indications that this
overcompensates for the BSSE and that it may be favorable to use
only half of the CP correction.80,94−99

The curse of theQMmethods is that the time consumption for
solving the Schrödinger equation increases steeply with the size
of the system. For example, DFT, HF,MP2, and CCSD(T) show
an exponential dependence on the number of basis functions
with exponents of 3, 4, 5, and 7, although this can be somewhat
reduced by prescreening methods. In practice, single-point
energy calculations can today be performed by SEQM, DFT, and
CCSD(T)methods for systems with around 10000, 2000, and 30
atoms. Further reduction in the time consumption can be
obtained by localizing the wave function, so-called local methods,
e.g., LCCSD(T0).100,101 With the latest domain-based local-pair
natural-orbital methods, DLPNO-CCSD(T) calculations with
up to 200 atoms are possible.102

Another way to speed up QM calculations is to replace a large
QM calculation with several smaller ones, by dividing the
molecule into several fragments. Energies are typically calculated
by the series expansion

∑ ∑ ∑= + Δ + Δ +
< < <

E E E E ...
i

n

i
i j

n

ij
i j k

n

ijk
(4)

where Ei are the energies of each fragment (monomer), ΔEij are
the interaction energies of all possible pairs of fragments
(dimers), ΔEijk are the interaction energies of all possible triplets
of fragments (trimers), and so on. In all practical applications, the
expansion is truncated at the dimer level. Two types of methods
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have been used for binding-energy calculations. Methods of the
first type use the full expansion in eq 4 and aim at producing a
total energy for the full system, corresponding to the energy one
would obtain in a normal QM calculation of the full system. Then
any relative energies can be computed by simple subtraction. On
the other hand, they involve the calculation of numerous
monomer and dimer energies that have very little influence on
the binding energy. The second class only aims at calculating
interaction energies. Then it is enough to include dimers that
involve the ligand and one fragment of the receptor, i.e., much
fewer calculations.
Among the methods of the first class, the fragment molecular

orbital (FMO) method103,104 is the most widely used. In this
method, the wave function of each monomer is computed
iteratively in the exact or approximate electrostatic potential
generated by the other fragments. Next, the energy of each pair of
fragments (dimer) is computed, using the final electrostatic
potential from the other fragments as external potential. FMO
formulations for many QM methods have been developed,
including HF, MP2−MP4, and CCSD(T).103 Recently, the
FMO method has been interfaced with two implicit solvent
models, the polarized continuum model (PCM)105 and
Poisson−Boltzmann (PB) solvation,106 and with the accurate
EFP (effective fragment potential) force field.107 FMO has been
extensively used to calculate ligand-binding energies, especially at
the MP2 level, but two theoretical problems hamper such
applications: Due to the neglect of Pauli effects in the external
potential, the method does not work well with large and diffuse
basis sets,108 which are needed for a quantitative account of
dispersion. Moreover, no rigorous correction for the BSSE has
been presented.
The simplest fragmentation methods of the other class are

based on the approximate pairwise additivity (PA) of interaction
energies. They could involve simple attempts to estimate residue
components of binding affinities by pairwise QM calculations of
the ligand and each interacting group, without addressing that
the groups may be overlapping or that the groups are connected
in the biomacromolecule. However, it is more common to use
the molecular fractionation with conjugate caps (MFCC)
method, in which the interaction energy is computed as a sum
of interactions between the ligand and capped fragments,
correcting for the caps by subtracting the interaction energies
involving conjugate caps,109 i.e., joined neighboring caps (Figure
1).
Such pairwise approaches neglect many-body interactions

between the ligand and several fragments. This has been
addressed in several ways. The simplest approach is to include a
point-charge model of the other fragments in each calculation,
the electrostatically embedded pairwise additive (EE-PA)
model110 or the electrostatically embedded generalized MFCC
(EE-GMFCC) approach.111 Appreciably more sophisticated is
the polarizable multipole interaction with supermolecular pairs
(PMISP) method,112 which combines QM calculations of
individual fragment−ligand interactions with a polarizable
multipole description of the many-body effects (the same idea
was later used in the EFMO method113). The relations between
the various fragmentation methods are schematically illustrated
in Figure 2.
Linear-scaling methods also take advantage of the locality of

QMbut attempt to explicitly calculate the electron density for the
full system.114 They have been developed especially for SEQM
and DFT methods, allowing for calculations on entire proteins.

Some of these methods, e.g., the divide-and-conquer approaches,
also use fragmentation as part of their solution.115

If SEQM or fragmentation methods still are too expensive, the
next level of approximation is the use of molecular-mechanics
(MM) methods. These methods do not try to solve the
Schrödinger equation, and electrons are ignored. Instead, a
molecule is considered as a collection of balls connected by
springs. The interaction between the atoms is determined by an
empirical energy function, a force field, i.e., a mathematical
function of the coordinates of all atoms that gives the total energy
of the system (in the same way as the Schrödinger equation).
Numerous different force fields have been suggested at various
levels of approximation. However, for biomacromolecules, the
most commonly used force fields contain harmonic terms for the
bonds and angles, a trigonometric term for dihedrals, a
Coulombic energy term for the electrostatic interaction, and a
Lennard-Jones term for the van der Waals interactions:

∑ ∑

∑ ∑

∑

φ δ

πε

= − + −

+ + +

+ + +

=

=

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

E k b b k a a

k n

q q

r

A

r

B

r

( ) ( )

(cos( ) 1)

4

b a

n

n

n n

i j

ij

ij

ij

ij

ij

bonds
0

2

angles
0

2

dihedrals 1

6

atom pairs 0
6 12

(5)

where b, a, φ, and rij are the bond lengths, angles, dihedral angles,
and atom distances, kb, ka, and kn are force constants, a0 and b0 are
ideal bond distances and angles, δn is a phase factor, qi and qj are
partial charges on the atoms, and Aij and Bij are pairwise Lennard-
Jones constants. Such an energy function can rapidly be
calculated for essentially any biomolecule. However, it omits
several important interactions, in particular electronic polar-
ization, but also charge transfer, charge penetration, and the
coupling between the various terms. More advanced force fields
exist that include some of these terms, e.g., SIBFA (sum of
interactions between fragments ab initio computed), EFP, and
NEMO,116−119 but they are rather expensive and tedious to
parametrize. QM calculations, on the other hand, automatically
include all such effects.

Figure 1. MFCC partitioning of a protein backbone, exemplified by a
tetrapeptide segment, which is divided into four capped amino acids and
four conjugate caps (joined caps), which are subtracted.
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2.2. QM-Cluster, QM/MM, and Continuum-Solvation
Methods

There are two approaches to calculate QM energies of proteins.
In the QM-cluster approach, a small model (20−200 atoms) of
the most important residues is cut from the active site and is
studied isolated in vacuum or in a continuum solvent by QM
methods (Figure 3a).42,43 The advantages of this approach are
that you can easily control the conformations of all groups (i.e.,
that they belong to the same local minima) and that there are
well-defined methods to estimate the zero-point energy,
enthalpy, and entropy by an ideal-gas rigid-rotor harmonic-
oscillator approximation, based on vibrational frequencies (i.e.,
normal-mode analysis, NMA).46,47 To avoid the fact that
residues move during the geometry optimization in a way that
is not possible in the full receptor, some atoms are often fixed, but
then no entropies can be estimated.42 The main disadvantages
are that important residues may have beenmissed in the selection
of the QM system and that the effect of the surroundings may be

modeled in an inaccurate way.120,121 It has also been suggested
that the use of fixed atoms during the geometry optimization is
problematic.122,123

The second approach is QM/MM calculations, in which the
ligand and sometimes a small, but important part of the receptor
is treated by QM, whereas the remainder of it and typically also a
number of explicit solvent molecules are treated byMMmethods
(Figure 3b).44,45 The size of the QM system can be only the
ligand, the ligand and a few nearby residues, or the ligand and all
residues within a certain distance, typically 3−6 Å (Figure 4a−c).
In principle, the QM and MM energies can simply be added,
ensuring that no term is double counted. Still, there are many
variants on how this is performed in practice. One common
scheme is used in the ONIOM approach, which also allows for an
arbitrary number of layers, treated either by QM or byMM.124 In
particular, the treatment of the electrostatic interactions between
the QM and MM systems is crucial. It can be performed at the
MM level, using QM-derived charges for the QM system. In this
mechanical embedding (ME) approach, the QM and MM

Figure 2. Schematic view of various fragmentation approaches. The ligand is the green oval, whereas the surroundings are shown as the three polygons.
In the exact QM calculations, all four fragments are present at the same time. In PA, only the ligand and one fragment are present in each calculation and
the other two fragments are ignored (for this and for the other four fragmentation methods, only one of these three dimer calculations is illustrated).
MFCC uses the same approach as in PA, but with a more systematic way of obtaining fragments for a covalently bound receptor. In EE-PA, the other
fragments are included by a point-charge model. In FMO, the other fragments are modeled by the exact or approximate electrostatic potential. In
PMISP, the QM calculations are performed as in PA, but in addition, a polarized multipole MM calculation is performed of the full system to account for
the interactions between all the fragments.

Figure 3.QM-cluster (a) and QM/MM (b) calculations, exemplified by biotin binding to avidin. In the first case, only six important hydrogen-bonding
residues are included.198 In the QM/MM calculation, the QM residues are shown as balls and sticks, the protein as ribbons, and the solvent as
wireframes.
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systems are not polarized by each other. Alternatively, the MM
system may be represented by the MM point charges in the QM
calculation, leading to a polarization of the QM system. This is
called electrostatic embedding (EE), and it is the most
commonly used approach. However, it may lead to over-
polarization of the QM system, and it involves an inconsistent
treatment of the QM and MM systems.125 The ideal way is the
use of polarized embedding (PE), in which both the QM and
MM systems polarize each other self-consistently within the QM
calculation.126,127 However, this requires special QM software
and a polarizable MM force field. QM/MM calculations may also
differ in the treatment of bonds between the QM and MM
systems, although the great majority of ligand-binding studies
have simply truncated the QM system by hydrogen atoms.44 The
main disadvantage of QM/MM is that it is strongly affected by
the local-minimum problem, which can be partly solved by
performing several calculations starting from different MD
snapshots or by estimating free energies.44,128,129 The selection
of the QM system may also strongly affect the results,125 and it
has lately been suggested that single-point calculations with very
large QM systems (600−1000 atoms) should be employed to
obtain stable energies.130,131

A third alternative is the inclusion of the whole receptor−
ligand complex in the QM calculations (Figure 4d). It avoids all
the technical problems of QM/MM and the potentially biased
choice of the QM system. However, the large size of the QM
system introduces limitations in the QM method and basis set
that can be employed, which may affect the results; it must be
remembered that the binding-affinity calculations require an
extremely high accuracy in the results (∼6 kJ/mol) and the
binding typically involves significant London dispersive inter-
actions, which require correlated methods and large basis sets to
be accurately estimated.
All biochemical reactions take place in water solution, and it is

well-known that this environment can strongly affect the reaction
energies. Therefore, it is important to model such effects. In MD
and MC simulations, the solvent is typically modeled by explicit
water molecules. However, a cheaper alternative is to treat the
surroundings as a featureless dielectric continuum, characterized
by a dielectric constant. There are many variants of such
continuum-solvation methods.132 For QM methods, the polar-
izable continuum model (PCM)132−134 and the related
conductor-like solvent model (COSMO)135 are normally used.
For MM methods, it is more common to use the generalized
Born (GB) method136,137 or to solve the Poisson−Boltzmann

Figure 4. Four sizes of QM systems used in different calculations, involving (a) only the ligand, (b) the ligand and a few selected interacting groups, (c)
the ligand and all residues within 6 Å, and (d) the whole protein−ligand complex. In all cases, the same avidin−biotin system is shown, with biotin in a
ball-and-stick model.
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(PB) equation.138,139 Common to all these methods is that they
depend on an atomic radius for each atom, which is a fitted
parameter. Moreover, they give only the polar solvation free
energy (the average electrostatic interactions of the solute with
the solvent). To obtain a total solvation free energy, which can be
compared to experiment, a nonpolar part needs to be added,
estimating the cost of forming a cavity in the solvent, as well as
the dispersion and repulsion interactions between the solute and
solvent. For PB and GB methods, it is typically obtained as a
linear relation to the solvent-accessible surface area (SASA). For
PCM, separate terms for the cavitation, dispersion, and repulsion
energies133,140,141 or the parametrized SMD model142 is
employed, whereas the COSMO-RS (real solvent) approach is
used for COSMO.143,144

2.3. Calibration Studies

Many groups have studied how various QMmethods perform for
small model complexes of noncovalent interactions, typically
based on CCSD(T)/CBS (i.e., extrapolations to a complete basis
set) reference calculations.145−147 Here we mention a few
applications with direct relation to ligand binding. Merz et al.
have investigated the accuracy of variousQMmethods for ligand-
binding interaction energies by dividing the complex between
indinavir and HIV protease into 21 small fragments (20−30
atoms), consisting of one part of the ligand and one or two
residue models of the protein.148 For each fragment, CCSD(T)/
CBS reference energies were calculated and compared to
energies calculated with more approximate MM and QM
methods. They obtained the best results with MP2/aug-cc-
pVQZ calculations, although B97-D/TZVP and M06-L/aug-cc-
pVQZ also gave good results. The long-term aim was to identify
systematic errors in the approximate methods for certain types of
interactions, which can then be subtracted as corrections.
Grimme et al. used the same complexes to test the DFT-D3

method.98 The calculations showed that most DFT-D3 methods
could reproduce the reference calculations with mean absolute
deviations (MADs) of 2−18 kJ/mol with the def2-TZVP basis
set and slightly better ones for the def2-QZVP basis set. The
SEQMmethods PM6-DH2 and DFTB gave MADs of 21 and 15
kJ/mol. Even at the TZVP level, the BSSE is sizable, 11−64 kJ/
mol. A similar study was also performed on typical pairwise
interactions in a folded protein, giving further statistics.149

Yilmazer and Korth have made an interesting comparison of
MM, SEQM, and DFT methods, with and without solvation, to
calculate protein−ligand interaction energies, using increasingly
larger models (including all protein atoms within a radius of 3, 5,
7, or 10 Å from the ligand).150 With the lack of experimental or
accurate QM data, they simply studied the correlation and
differences of ranking between the various methods. They
showed that there are only small differences between various
DFT methods or basis sets, but a clear difference between MM,
SEQM, and DFT. These three types of methods also give
significantly different solvation effects. In terms of MAD, all
differences are large, e.g., 13 kJ/mol between PBE and BP86 and
59 kJ/mol between PM6-DH+ and BP86-D2/TZVP. They also
used the 10 smallest models of the 3 Å set to perform a
benchmark study of various theoretical methods, employing
LPNO-pCCSD/def2-TZVPP-corrected MP2-F12/aug-cc-
pVDZ calculations with CP corrections.151 They recommend
SCS-MP2 and B2PLYP-D3 as referencemethods, TPSS-D3/def-
TZVPP as themost accurate DFTmethod, and PM6-DH+ as the
best SEQM method.

Grimme has developed a series of methods, based on HF or
DFT, that can be used with small basis sets, but still give accurate
results.87,152−155 They are intended as alternatives to SEQM
methods for large molecules, to perform extensive conforma-
tional searches, or to calculate vibrational frequencies. For
example, the HF-3c method gave an MAD of 26 kJ/mol for 12
supramolecular binding free energies.154

2.4. Importance of Sampling

The advantage of using an accurate QM method has to be
balanced against the computational cost of each energy
evaluation, which in practice limits the amount of conformational
sampling that can be afforded. In this section, we will outline the
statistical-mechanical basis for this balance and discuss the
general aspects of combining expensive and cheap energy
evaluations (e.g., QM and MM). In the following sections, we
will discuss particular statistical-mechanical methods and how
they can be used together with QM calculations.
In general, a closed atomistic system in thermal equilibrium

can be represented by an ensemble of structures that satisfy some
external constraints (e.g., constant temperature and volume).
According to statistical mechanics, the potential energy of the
structures follows a Boltzmann distribution; i.e., the probability
of the system being in a certain microstate i is given by

= −p i
Q

( )
1

e E i RT( )/pot

(6)

where Epot is the potential energy of the microstate and Q is a
normalization constant, usually called the partition function. The
microstates can be grouped into conformations, corresponding
to well-defined energy basins in the potential-energy landscape.
According to the Boltzmann distribution, only conformations
with low energy (within a few RT from the global minimum)
have significant probability and thus contribute to observed
quantities such as the binding free energy.
Simple systems have only one or a few dominant

conformations. On the other hand, solvated systems tend to
have many equally contributing conformations, because the
water molecules can adopt a multitude of positions and
orientations. Biological macromolecules and druglike molecules
typically have many internal conformations, as well as many
possible orientations (binding poses), all adding to the
complexity of the ensemble for a solvated protein−ligand
system. This distinction between simple and complex systems
has important consequences for the optimal balance between
sampling and energy evaluation and thus for the choice of QM
method. There have been many successful computations of gas-
phase interaction free energies using a single dimer structure, but
the same does not hold for binding free energies. In fact, it has
long been recognized that a rigorous calculation of the binding
free energy requires an extensive sampling of conformations and
often millions of energy evaluations.6,7 This holds regardless of
the type of energy function, and thus, QM calculations of binding
free energies may become prohibitively expensive.
When using QM calculations, one always has to think in terms

of multiple energy functions. In fact, most QM ligand-binding
methods also involve calculations at the MM level (e.g., for the
crystallographic refinement or for sampling). To understand the
consequences of this duality, we assume that the energy
landscape determining the binding free energy can be described
by (anharmonic) vibrations around a set of dominant
conformations. Figure 5 illustrates the principal ways in which
two different potential-energy functions may differ under this
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assumption (of course, all effects can be combined): (i) They can
have different sets of dominant conformations. (ii) For a given
conformation, the central (energy-minimized) structure can be
different. (iii) For a given conformation, the depth of the energy
well can be different. (iv) For a given conformation, the shape of
the energy well can be different.
The choice of how to combine the QM and MM calculations

depends on how large an importance one ascribes to the various
effects. In particular, methods that use single-point QM
calculations on snapshots from an MD simulation typically
assume that only the third effect is important, and will give wrong
results if the position or shape of the energy well differs
significantly, primarily because the selected ensemble of
snapshots is not Boltzmann-weighted with respect to the QM
energy; i.e., the snapshots do not necessarily correspond to
geometries with low potential energy. In addition, the entropic
effect estimated from the MM calculations can be inaccurate
when the shape of the potential-energy surface differs. On the
other hand, methods that employ energy minimization at the
QM level are less sensitive to the second and fourth effects, but
typically assume a harmonic shape of the energy well and neglect
the contributions from other conformations. Both approaches,
and most other methods, assume that the first effect is
insignificant, so that a set of relevant conformations can be
obtained from MD sampling or from crystallographic refine-
ment, but some methods employ a conformational search at the
QM level.156,157

2.5. MM/PBSA, LIE, and FES Methods

Three methods have been much used to estimate binding
affinities with computational methods, MM/PBSA, LIE, and
FES. They will be shortly introduced in this section, because
several attempts have been made to extend these approaches
with QM methods.
In 1994, Åqvist et al. suggested the linear interaction-energy

(LIE) method.4,158 It is based on twoMD simulations, one of the
receptor−ligand complex (RL) and one of the free ligand in
water (L). The binding free energy is estimated from the

difference in the average electrostatic and van der Waals
interaction energies between the ligand and the surroundings
(Eel

L−S and EvdW
L−S) in the two simulations:

α

β

Δ = ⟨ ⟩ − ⟨ ⟩

+ ⟨ ⟩ − ⟨ ⟩

− −

− −

G E E

E E

( )

( )
bind vdW

L S
RL vdW

L S
L

el
L S

RL el
L S

L (7)

The two terms are scaled by empirical constants, α and β. β
should be 0.5 according to the linear-response approximation,
but it often is assigned values of 0.3−0.5 depending on the
chemical nature of the ligand.159,160 The other parameter is truly
empirical. The Åqvist group has claimed that a value of 0.18 can
be used for most systems,161 although most other research
groups treat it as a fitting parameter.162 Sometimes additional
terms are added, e.g., a term depending on the change in the
SASA and a constant term,163,164 and with many terms, it
approaches the QSAR methods. A variant with minimized
structures and continuum-solvation methods has also been
suggested.165 When comparing the results of LIE with those of
other methods, it should be remembered that fitting of a number
of parameters always improves the performance of the method,
but reduces its predictive ability (unless the parameters are
transferable).
In 1998, Kollman and co-workers suggested the MM/PBSA

approach (MM combined with PB and SASA continuum
solvation).5,166,167 It suggests that the free energy of a molecule
can be estimated from the sum of six terms:

= + + + + −G E E E G G TSint el vdW pol np (8)

The first three terms are the internal (bonds, angles, and dihedral
energies), electrostatic, and van der Waals terms from a standard
MM force field of the molecule in vacuum. The fourth term is the
polar (electrostatic) solvation energy, which is obtained with the
PB or GB (giving an MM/GBSA method) continuum-solvation
methods. The fifth term is the nonpolar continuum-solvation
energy, estimated by a linear relation to the SASA. The last term
is the entropy, which is estimated from an NMA of vibrational
frequencies calculated at the MM level. For ligand-binding
affinities, typically the receptor−ligand complex is simulated by
MD, sampling∼1000 snapshots, fromwhich average energies are
calculated after the water molecules are stripped off. The binding
affinity is then obtained as

Δ = ⟨ − − ⟩G G G Gbind RL R L RL (9)

in which the structures of the receptor and the free ligand are
obtained from the RL structures by simply removing the ligand
or the receptor. Of course, this is an approximation that ignores
the deformation of the receptor and the ligand in the complex,
but it strongly improves the convergence of the energies and
leads to an exact cancellation of the Eint term.

167

Both MM/PBSA and LIE are approximate methods, based on
sampling of the receptor−ligand complex, and possibly also the
free ligand and the receptor, i.e., the end states of the reaction in
eq 1. The strict way to obtain binding free energies is by free-
energy simulations (FESs), typically using the thermodynamic
cycle in Figure 6. The free-energy difference between two states,
A and B, can be calculated by

Δ = −
− −

→
⎛
⎝⎜

⎞
⎠⎟G RT

E E
RT

ln exp
( )

A B
B A

A (10)

where EA and EB are the energies of the two states, respectively,
and the angular brackets represent an ensemble average over the

Figure 5. Four principle ways in which two potential-energy functions
(solid and dashed lines, e.g., corresponding to QM andMM)may differ,
as discussed in the context of how well a computational method
combining QM and MM might be expected to perform. The x axis
represents some collective coordinate, such as the protein−ligand
distance, whereas the y axis represents the potential energy.
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A state. This approach is called exponential averaging (EA) or
free-energy perturbation.168 This exponential average converges
only if the difference between the two states is small, and in most
cases, the calculations need to be done for many (alchemical)
intermediate states, e.g., obtained by a mixed energy function of
the type

λ λ= − +λE E E(1 ) A B (11)

where λ is a coupling parameter that transfers the system from A
(λ = 0) to B (λ = 1). At theMM level, such a mixed energy can be
obtained at a low cost, but at the QM level, it requires two QM
calculations, one of each state.
There are many alternatives to eq 10 for the calculation of the

free energies, e.g., thermodynamic integration (TI),169 the
Bennett acceptance ratio (BAR),170,171 or the multistate BAR
(MBAR) methods.172 Modern simulation packages typically
provide the energies needed to calculate free energies with all
these methods. Test calculations indicate that BAR and MBAR
give free energies with the best statistical properties.171

If the two states A and B are two (similar) ligand molecules, eq
10 will give the relative free energy of binding. However, the
calculations have to be done both for the ligands bonded to the
receptor and for the free ligands in water solution, according to
the thermodynamic cycle in Figure 6, illustrating that differences
in hydration energies are as important as interactions with the
receptor for the net binding affinity. Alternatively, state B may be
a noninteracting ligand, in which all electrostatics and Lennard-
Jones interactions with the surroundings have been turned off.
Then absolute binding energies will be obtained, but this requires
the use of restraints to keep the molecule in the binding site and
to allow the definition of a proper standard state.173,174 The
convergence is typically slower, because the change is larger and
it may take a long time for water molecules to diffuse into the
binding site, replacing the ligand.
2.6. Quality Measures

In the paper, we often use R2 to give an impression of the
performance of the various methods (especially in the tables).
This measure was selected not because we consider it as the best
measure, but because it is most often reported in papers and it
can also easily be calculated from reported affinities. However, it
should be kept in mind that it is a very forgiving measure, which
may give good results even if the calculated affinities are grossly
overestimated (as they often are with computational methods,
especially if solvation or entropy is omitted). In our view, it
should always be combined with a measure of how close the
calculated and experimental affinities are in energy terms, e.g., the

mean absolute deviation (MAD) or the root-mean-squared
deviation (RMSD), possibly after removal of the mean signed
deviation (MSD, i.e., the systematic error), giving MADtr.
Additional quality measures can be added to give a more nuanced
picture of the performance, e.g., the predictive index (PI)175 or
Kendall’s rank correlation, based on all data (τ) or only on
statistically significant pairs (τ90).

176

3. SINGLE-STRUCTURE APPROACHES

The simplest, but also most approximate, approach to include
QM calculations in binding-affinity calculations is the employ-
ment of single structures, e.g., obtained from a crystal structure,
from docking, or by an energy minimization. The advantage of
such an approach is of course the speed; no expensive
conformational sampling is performed. On the other hand,
such an approach will be strongly affected by the local-minimum
problem: An energy minimization will end up in one of an almost
infinite number of possible local minima of the receptor−ligand
complex, and it is far from certain that this structure is the most
important for the binding. As we will discuss below, it is often
observed that individual binding affinities estimated by snapshots
from MD simulations differ by ∼80 kJ/mol even after
minimization.29,177,178 On the other hand, MM studies by Gilson
and co-workers on host−guest systems have shown that only a
few low-lying conformers contribute to the binding free
energy,179,180 but it is not clear whether this applies to the
muchmore complicated biomacromolecules. Moreover, energies
estimated from minimized structures are enthalpies, not the free
energies that govern the binding. This is a more serious problem
for binding-affinity calculations than, e.g., for enzyme reactions,
because the former always involve major entropy terms, owing to
the loss of translational and rotational freedom of the ligand,
which at least in the gas phase amount to∼60 kJ/mol at ambient
temperature.181 In fact, it is often observed that similar
molecules, e.g., enantiomers, have significantly different binding
entropies, and there is often a strong inverse correlation between
binding enthalpies and entropies of analogous ligands, the much
discussed enthalpy−entropy compensation.182−185
A natural approach would be to perform of single-point QM

energy calculations directly on crystallographic structures, but it
is well-known that systematic errors in both the crystallography
and the QM calculations would make such energies almost
useless, with errors of hundreds of kilojoules per mole.186 The
use of docked structures is usually better, because the docking
involves a conformational search for the ligand inside the protein.
However, it is still restricted to a single or a few structures, and no
valid Boltzmann averaging of the structures is made.
In the following, we will discuss QM binding-affinity

calculations with QM-cluster, QM/MM, and whole-system
calculations with either fragmentation or linear-scaling ap-
proaches in separate subsections. A subsection is also devoted
to calculations on host−guest systems.
3.1. QM-Cluster Calculations

QM-cluster calculations (cf. section 2.2) of binding affinities are
rather uncommon. There are several reasons for this. First,
binding-affinity calculations with MM methods have never used
such an approach, so there is no natural extension from such
methods. Second, if all groups close to a typical drug candidate
should be included in the calculations, this gives a quite large QM
system (200−1000 atoms), which has been problematic to treat
with accurate QM methods until recently. Third, it is hard to
include all important free-energy terms in such calculations, and

Figure 6. Thermodynamic cycle for the calculation of relative binding
free energies by FES calculations. It is hard to directly estimate ΔGL1

bind

and ΔGL2

bind because they involve a very large change (deleting the full

receptor). Therefore, the relative free energy of binding is instead
estimated byΔGL1→L2

bind =ΔGL2

bind−ΔGL1

bind =ΔGL1→L2
R −ΔGL1→L2

wat , because

it involves only the smaller change of transforming L1 to L2.
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therefore, such an approach has probably been considered less
realistic. A summary of QM-cluster calculations of binding
affinities is given in Table 1.
In 1994, Perak̈yla ̈ and Pakkanen used QM methods to study

the binding of three monosaccharides to the L-arabinose-binding
protein.187 They calculated the QM interaction energy of the
ligand with nine minimal models of protein side chains at the
HF/6-31G* level of theory, including some CP corrections for
the BSSE. To this was added a continuum desolvation energy of
the ligand, calculated with AM1-SM2 and using structures
optimized both in vacuum and in the solvent. Finally, the
electrostatic interaction energy between the ligand and the
protein was calculated at the MM level using a distance-
dependent dielectric constant. Clearly, this was an impressive
attempt to estimate ligand-binding affinities with QM methods,
including the most important terms in a reasonable manner,
considering the available computational resources. They
obtained some correlation to the experimental data (R2 =
0.37), but the estimated binding energies were almost 10 times
larger than the measured binding affinities. The following year,
they used a similar method to study the binding of seven ligands
to p-hydroxybenzoate hydroxylase.188 They included the ligand
and six amino acid models in the QM calculations, which this
time were performed at the HF/3-21G level, without any BSSE
correction. Still, they obtained a better correlation to the
measured affinities, R2 = 0.70.
Ten years later, Sulimov and co-workers used PM3 to estimate

ligand-binding affinities.189 They included all protein residues
with at least one atom within 5 Å of the ligand, giving a total of
293−455 atoms. The structures were optimized, keeping the

backbone atoms fixed. Only binding enthalpies were considered.
Two approaches to treat water molecules were tested. In the first,
only crystal water molecules were included, but this gave rather
poor results, with an MAD of 24 kJ/mol and R2 = 0.3 for eight
protein−ligand complexes. However, when they added two
water molecules to the free protein and ligand for each hydrogen
bond present in the complex (i.e., giving some restricted explicit
solvation), the results improved strongly to an MAD of 7 kJ/mol
and an impressive R2 = 0.96.
In a later study, they included a mixed explicit and implicit

solvation model.190 In the trimmed protein models, as well as in
the free protein and ligand, water molecules were added to all
potential hydrogen-bonding sites. The number of added water
molecules was successively increased until the interaction energy
converged to within ∼4 kJ/mol, but the selection seems to have
been guided also by the experimental data. All structures were
optimized by PM3, keeping the heavy atoms of the backbone
fixed. They studied 12 complexes with different ligands of
trypsin, thrombin, and ribonuclease. The calculated and
experimental binding enthalpies showed an excellent correlation
with an RMSD of only 4 kJ/mol. PDDG/PM3 calculations gave
similar results. For one complex, the dependence on the included
residues was also studied. Models with only 1−3 residues gave
totally unrealistic results, but with 7 residues, the difference was
less than 8 kJ/mol. However, convergence to within 4 kJ/mol
was not obtained until 19 residues were included.
Villar and co-workers used a similar approach.191 They first

compared the performance of the AM1 and PM3methods to that
of MP2/6-31G* and B3LYP/6-311+G(2d,p) for the interaction
energies of small models of typical protein−ligand interactions,

Table 1. Summary of QM-Cluster Studiesa

group ref year method QM syst opt solvation CP ΔS comments receptor no. R2

Pakkanen 187 1994 HF/6-31G*//AM1 L + 9 aa SM2
(AM1)

yes electrostatics
with MM,
ε = 4r

L-arabinose-binding
protein

3 0.37

Pakkanen 188 1995 HF/3-21G L + 6 aa SM2
(AM1)

electrostatics
with MM,
ε = 4r

p-hydroxybenzoate
hydroxylase

7 0.70

Sulimov 189 2004 PM3 L + 5 Å some expl only ΔH six proteins 8 0.96
Villar 191 2005 AM1 L + 5 Å L five proteins 5
Hannongbua 196 2005 MP2/6-31G*/B3LYP/

6-31G**/PM3
L + 4 Å yes HIV reverse

transcriptase
2

Sulimov 190 2006 PM3 L + 5 Å expl +
COSMO

trypsin, thrombin,
ribonuclease

12

Houk 198 2007 MP2/6-31+G**//
B3LYP/6-31+G**

L + 6 aa avidin, streptavidin 2

Gould 192 2008 B3LYP/6-31G**//
HF/6-31G**

L + 1 lip yes eight
conformations

lipids 12 0.55

Wang 193 2010 DFT/SZ(P) L + 24 aa L PBSA
(MM)

CDK2 5 0.87

Re 194 2010 B3LYP/LACV3P*/
aug-cc-pVTZ(-f)//
LACVP+/6-31+G*

L + 1 aa all PB yes cathepsin B 5

Ryde 195 2011 TPSS/def2-SV(P) L + 1 aa all COSMO yes cathepsin B 6 0.86
Hannongbua 197 2013 (SCS-)MP2/6-31G*//

HF/3-21G
L + 19 aa all HIV reverse

transcriptase
2

Kongsted 199 2014 B3LYP orMP2/6-31G* L + 2 M C-PCM HIV-1 RNase H 7 0.93
Svensson 201 2014 B3LYP/6-31+G**//6-

31G**
L + 5 aa PB β-secretase 36 0.86

aThe table lists the research group, the reference, the publication year, the QM method used (if two methods are given, the first is for energies and
the second, after //, was used for geometries), the size of the QM system (L = ligand, aa = amino acids, lip = lipid, M = metal, and Å gives the
maximum distance to the ligand), atoms that were optimized, the solvation method used (expl = explicit water molecules), whether CP corrections
or an entropy term was included (if yes, the latter was obtained from the QM frequencies), possible comments, the receptor used, the number of
systems studied, and the obtained correlation coefficient. A missing entry means this contribution was not included (or not specified in the original
paper).
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showing that AM1 gave much better results than PM3. Then,
they calculated binding affinities for real ligands with all protein
residues within 5 Å of the ligand with AM1. They started from
crystal structures, optimizing the ligand in the rigid protein
model. This gave reasonable structures, but no comparison with
experimental energies was performed, and some binding energies
were overwhelmingly negative (up to −1116 kJ/mol).
Several studies have instead used DFT methods. Gould et al.

interpreted the nonspecific binding of ligands to lipid
molecules.192 They employed a restricted conformational search,
optimizing at least eight possible conformations of each complex
at the HF/3-21G* level. The one with the strongest binding was
reoptimized at the HF/6-31G** level, followed by CP-corrected
B3LYP/6-31G** single-point energy calculations. A decent
correlation to experimental nonspecific binding was observed, R2

= 0.55.
Wang and co-workers also used DFT and a minimal SZ basis

set for the protein and SZP for the ligand.193 They included the
ligand and the closest 24 amino acid residues (5.5 Å). Only the
ligand and added H atoms were optimized in a fixed surrounding.
To the QM energies were added PB + SASA continuum-
solvation energies, calculated at the MM level with Mulliken
charges for the ligand. They studied five inhibitors binding to
CDK2 and obtained a good correlation to the experimental
results with both the pure QM interaction energy and the full
QM + PBSA energy (R2 = 0.90 and 0.87). However, the variation
in the calculated energies was almost 100 times larger than what
was observed experimentally. They tested the convergence of the
energies, by also including 50 amino acids. This changed the
interaction energies by up to 25 kJ/mol, but the correlation was
still 0.89.
Re and co-workers studied the binding of five metal complexes

to cathepsin B.194 They correlated the binding of the metal to a
Cys model, using B3LYP calculations with a PB solvent and
NMA entropy corrections. We also studied the six best Ru
complexes with QM-cluster methods.195 The ligands were
optimized in vacuum, including a Cys model from the protein,
and binding energies were calculated in a COSMO continuum
solvent with a dielectric constant (ε) of 4 or 80, employing the
TPSS/def2-SV(P) method. The vacuum energies gave the best
correlation to the experimental affinities (R2 = 0.57), but they
were slightly deteriorated by including thermal and entropy
corrections. On the other hand, the results were strongly
improved if a conformational search of the flexible ligand was
performed before the optimization. Then the best correlation
was obtained with COSMO (ε = 4), but the difference was not
large (R2 = 0.81−0.86). However, entropy corrections still
deteriorated the results.
Four studies have instead usedMP2 calculations. Hannongbua

et al. used the two- and three-layered QM/QM ONIOM
approach to study the binding of the 8-Cl TIBO ligand to the
wild-type and a mutant HIV reverse transcriptase.196 They
included the ligand and 20 residues within 4 Å of the ligand at the
PM3 level and various combinations of MP2/6-31G* and
B3LYP or HF/6-31G** calculations for the ligand and two
residues (sometimes only parts of them). All models correctly
showed that the mutant reduced the binding energy, but the
results at the various levels of theories differed by 16 kJ/mol in
the estimated relative binding energy. In a later study of the same
enzyme, they employed a divide-and-conquer MP2 and SCS-
MP2 approach with the 6-31G* basis set to study the binding of a
ligand to a 19 amino acid model of the enzyme.197

DeChancie and Houk used QM cluster calculations to study
the unusually strong interaction between biotin and avidin or
streptavidin.198 They employed MP2/6-31+G** calculations on
B3LYP or MPWB1K/6-31+G** structures. They used biotin
and six amino acid models (Figure 3a) to show that the five
hydrogen bonds to the ligand in the active site are strongly
cooperative.
Kongsted and co-workers studied the binding of seven ligands

to HIV-1 RNase, including only the ligand and the two active-site
Mg2+ ions in the QM calculations.199 The QM system was
solvated with a PCM solvent. Calculations with both the B3LYP
and MP2/6-31G* methods gave a good correlation to
experimental data (R2 = 0.93 and 0.90, respectively), much
better than docking and scoring with the Glide200 software (R2 =
0.07) and even FMO calculations (R2 = 0.86). However, the
range of the calculated affinities was 50 times larger than in the
experiment. This simple approach was then employed as a final
filter in a virtual-screening approach.
Recently, Svensson and co-workers published an interesting

QM-cluster study of the relation between the measured and
predicted affinities of 36 amidine and guanidine β-secretase
inhibitors.201 The calculations employed mainly the B3LYP
method. Complexes were optimized with the 6-31G** basis set,
and energies were evaluated with the 6-31+G** basis set in a PB
or SM8 continuum solvent. A conformational search was first
performed at theMM level. Two protein models were employed,
one small one with only two acetate groups and the other with
five amino acid side chain models and the backbone of three
residues. The calculated affinities using the larger model and PB
solvation correlated with experimental potencies with R2 = 0.73
and 0.86 for bi- and monocyclic ligands, respectively, having
correlation lines shifted by ∼16 kJ/mol. For the SM8 solvation,
both types of ligands gave a common correlation line with R2 =
0.65. The maximum error in the predicted affinity was 6 kJ/mol.
The correlation was appreciably better than what was obtained
from docking or MM/GBSA calculations (R2 = 0.10−0.17).
Results with B3LYP-D3 or M06-2X were very similar. The
smaller model gave somewhat worse results, but the calculations
could be performed within 30 min on four CPUs. A slight
problem of this study is that the calculations were not compared
directly to experimental measurements, but to “core potencies”
estimated via a structure−activity model obtained frommeasure-
ments of a database of more complex molecules. The authors
emphasize that such a study is possible only if the key interactions
are well-defined, conserved, and dominated by electrostatics, and
the binding pose is similar in all complexes.
In conclusion, QM-cluster calculations of binding affinities

have been performed with methods ranging from SEQM, via HF
and DFT, toMP2. However, with one exception, only small basis
sets have been used (up to 6-31+G**), mostly without BSSE or
dispersion corrections. The SEQM calculations typically
included all residues within 4−5 Å of the ligand (a few hundred
atoms), whereas the other studies mostly included only a few key
residues. Most studies included a solvent correction, but only two
have considered the entropy term. We doubt that QM-cluster
approaches will give any predictive results, unless the binding free
energy is dominated by a few well-defined, rigid, electrostatic
interactions. So far, no really serious attempt has been made to
combine an accurate QM method (large basis set with CP and
dispersion corrections) with solvation and entropy estimates
within a QM-cluster approach.
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3.2. Host−Guest Systems

Host−guest systems are macrocyclic organic molecules that can
bind small (or medium-sized) molecules. Owing to their
restricted size, 100−300 atoms, and typically a restricted
flexibility, they are ideal model systems for computational
studies, as the physical effects involved in the binding (e.g.,
hydrogen bonds, dispersion, hydrophobic effects, (de)solvation,
and entropy) are expected to be the same as for biological
macromolecules. Consequently, extensive MM and QM
investigations have been performed on such systems.202,203

Although these are somewhat outside the scope of the present
review, we will mention a few illustrative and important studies
(summarized in Table 2), but refer to a recent review for a more
complete account.202

Early studies employed methods that do not include explicit
dispersion, using too small basis sets204 or excluded solvation or
entropy effects.205−207 Therefore, they gave quite poor results or
were not compared to experiments. However, in 2012,
Jacquemin et al. studied two molecular tweezer complexes with
the B97-D3 method.99 Structures were optimized and
frequencies were obtained with the 6-31G* basis set, whereas
single-point energies were calculated with larger basis sets, up to
def2-QZVP. The BSSE was corrected by the CP approach. PCM
was used to estimate solvation effects, but only the electrostatic
term was included, which according to the authors was to avoid
double counting. However, DFT-D3 estimates the dispersion
interactions between the atoms in the explicitly studiedmolecule,
whereas the nonpolar PCM dispersion term calculates the
dispersion between the explicit molecule and the continuum
solvent. There is no overlap between these two effects, and both
of them should be included to cover all energy terms and obtain
valid solvation energies.208,209 They showed that the geometries
are insensitive to the theoretical method and solvation effects.
However, the energies were sensitive to the basis set, changing by
∼35 kJ/mol between 6-31G* and def2-QZVP. For the small
basis sets, the CP correction was very large, 53−72 kJ/mol, but it
strongly overestimated the BSSE. With the def2-QZVP basis set,
the CP correction was only 4 kJ/mol. Calculations with the
largest CP-corrected basis set reproduce the experimentalΔGbind
within 4−14 kJ/mol.
The same year, Grimme suggested an approach to calculate

binding free energies of supramolecular complexes.210 The
structures were optimized at the TPSS-D3/def2-TZVP level,
using some restricted conformer scanning at the SEQM level.
Energies were calculated with the TPSS and PW6B95 methods
with the large def2-QZVP′ basis set (omitting f- and g-type
functions on H and non-H atoms, respectively), but without any
correction for the BSSE. Dispersion corrections were estimated
with the DFT-D3method, including three-body terms. Solvation
effects were estimated with the COSMO-RS method, based on
BP86/TZVP calculations. Entropy and thermal corrections were
obtained from frequencies calculated at the dispersion- and
hydrogen-bond-corrected SEQM SCC-DFTB and PM6 levels,
treating low-lying vibrational modes with a rigid-rotor harmonic-
oscillator approximation (i.e., scaling down entropies from
modes with frequencies below 100 cm−1; a similar approach was
also used by Truhlar et al.207). The method was applied to 13
complexes with 24−158 atoms, and experimental binding free
energies were reproduced with an MAD of 9 kJ/mol and a
maximum error of 20 kJ/mol. For the larger complexes, the
three-body dispersion terms were significant, up to 19 kJ/mol.
He estimated that the DFT-D3 energies, the solvation energies,
and the vibrational entropies contribute roughly the same

uncertainty to the final results for the neutral systems, but the
solvation term dominates the uncertainty for charged systems.
The same host−guest systems were also later used to compare
various methods to take into account the dispersion.80 This study
also showed an impressive performance of some SEQM
methods, e.g., OM2-D3, with an MAD of 16 kJ/mol.
The same systems have recently also been studied with the

other dispersion-corrected DFT methods,82 symmetry-adapted
perturbation theory with DFT,211 random-phase approximation
DFT, and quantumMonte Carlo calculations,212 but considering
only the gas-phase energies. All these approaches gave results
that agree within 4−13 kJ/mol on average, but identifying some
systematic differences. The authors pointed out that the
complexes are dominated by dispersive interactions, which are
well described by dispersion-corrected pure functionals, whereas
for complexes with hydrogen bonds and significant charge
transfer, hybrid DFT methods are probably needed. The
importance of many-body dispersion (beyond the three-body
term) was also emphasized.
Recently, this set was extended to 30 host−guest systems with

net charges from −1 to +4 and up to 200 atoms in a comparison
of several QM methods.213 The study indicated that PW6B95-
D3/def2-QZVP′ gave the most accurate results, in combination
with HF-3c thermodynamic corrections and COSMO-RS
solvation free energies (MAD = 10 kJ/mol). The results could
be somewhat improved by using counterions for the charged
complexes, and then theωB97X-D3method gave the best results
(MAD = 9 kJ/mol). For 13 pairs of ligands binding to the same
host, significant cancellation of systematic errors was obtained,
and the difference in binding energy between the two ligands
could be reproduced with anMADof only 5 kJ/mol and a correct
sign for all except two of the pairs (τ = 0.69). PM6-D3H2 gave
the best results among SEQMmethods (MAD = 16 kJ/mol with
counterions), but HF-3c gave structures that weremost similar to
those obtained at the TPSS/def2-TZVP level (RMSD = 0.17 Å)
and also the best thermostatistical correction. The authors
showed that COSMO-RS gave better solvation free energies than
SMD and that five parametrizations gave similar results. They
suggested that the solvation contribution is the least accurate
component of the calculated binding free energies. Grimme et al.
have recently reviewed this approach for host−guest systems,
claiming an average accuracy of 8 kJ/mol (after removal of two
outliers).202

The same approach was applied also to two host−guest
systems in the SAMPL4 blind-test competition.214 The HF-3c
approach was used both to calculate frequencies and to
preoptimize the complexes and perform some manual conforma-
tional search. All complexes were first optimized without
counterions, which were added afterward by hand and
reoptimized in a COSMO continuum solvent. For the binding
of 14 small amine ligands with a single or double positive charge
to the neutral and rigid cucurbit[7]uril host, they obtained an
MAD of 8 kJ/mol, R2 = 0.90, and τ = 0.74, which all were among
the 3 best among the 21 submitted predictions in the
competition (nearly all of the others were performed at the
MM level), although the criteria used in the SAMPL4 overview
paper215 placed the method somewhat worse in the ranking. The
second test case was the binding of nine carboxylate ligands to
the octa-acid host. This was somewhat more demanding, owing
to the −8 charge of the host and the fact that the host is quite
flexible. Grimme and co-workers solved this problem by scanning
28 possible conformations of the ligand (at the HF-3c level) and
starting the optimization of the free host from the geometry of
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the complex. The host was fully protonated (neutralized) inmost
of the calculations, but this gave a systematic underbinding,
making the calculated binding free energies among the 4 worst of
the 13 submitted results. Compensating for the neutralization by
extra calculations with 9 added counterions and 24 explicit water
molecules improved the results strongly, giving an MAD of 10
kJ/mol and R2 = 0.4. However, the results were still far worse
than those obtained by the best MMmethods in the competition
(MAD = 4 kJ/mol and R2 = 0.84216), most likely because this test
case was ideal for FES studies (small differences and a conserved
charge among the guest molecules).
Interestingly, we also studied the octa-acid system with similar

methods:216 We optimized geometries with the TPSS-D3/def2-
SV(P) method and obtained energies at the TPSS-D3/def2-
TZVP level. Solvation energies were calculated with the
COSMO-RS approach, and entropies were obtained from
frequencies calculated at the MM level. In variance with Grimme
et al., both the host and guest molecules were fully charged (−8
and −1, respectively), and starting structures were taken from
MD simulations at the MM level. To avoid the problem caused
by the flexibility of the host molecule, we calculated rigid
interaction energies (i.e., we used the geometry of the complex
also for the monomer energies), but added a correction for the
deformation of the ligand. Three different structures were tested,
viz., optimized in vacuum, or in a COSMO continuum solvent
without or with four explicit water molecules coordinating to the
guest carboxylate group. There were systematic differences
among the structures obtained with the three approaches, but all
gave similar estimated binding affinities, with MAD = 5−9 kJ/
mol (after removal of a systematic error of 3−14 kJ/mol) and R2

= 0.6−0.8, i.e., slightly better than the results obtained by
Grimme et al.
Grimme and co-workers have also employed DLPNO-

CCSD(T) calculations, extrapolated to a complete basis set to
study the interaction between two borane−phosphine frustrated
Lewis-pair complexes.217 They used CP-corrected calculations
with aug-cc-pVDZ and aug-cc-pVTZ basis sets to extrapolate to
the CBS limit. They added solvation free-energy and entropy
corrections calculated with COSMO-RS (BP86/TZVP) andHF-
3c, respectively. Calculations were also performed with the
dispersion-corrected (DFT-D3) B3LYP, M06, PW6B95,
B2PLYP, and MP2 methods with the def2-QZVP basis set. All
calculations gave results in reasonable accordance with the
experimental measurement.
These studies of host−guest systems show how QM-

minimization methods can be used to calculate ligand-binding
affinities with an accuracy of ∼8 kJ/mol in absolute binding free
energies and ∼5 kJ/mol for relative energies of different ligands
binding to the same host, provided that accurate QM methods
are used, typically DFT methods with very large basis sets and
dispersion corrections including three-body terms with accurate
estimates of both entropy and solvation (both polar and
nonpolar terms). However, this good performance might be
limited to complexes dominated by dispersion interactions and
systems with a low flexibility. The next step would be to employ
such methods also for biomacromolecules.

3.3. QM/MM Calculations

The second approach to study proteins is with QM/MM
calculations. Such methods are available in several software
products, and they have been much used to study ligand binding
(especially the ONIOM approach), as can be seen in Table 3.
However, most of the studies have employed only QM/MM

total energies and mainly discuss structural aspects and are
therefore not explicitly reviewed. Already in 1997, Alex and Finn
reported binding affinities calculated at the QM/MM level.218

They studied 12 thermolysin inhibitors with an SEQM method.
Very few details were given, but they presented a correlation line
with two fitted parameters, giving R2 = 0.87.
Gao and co-workers performed a detailed QM/MM study of

electrostatic interactions between HIV-1 protease and three
inhibitors, employing the AM1 method for the inhibitors.219

They averaged the electrostatic interaction energies over
snapshots from a 10 ps QM/MM MD simulation. The results
showed that the polarization may contribute as much as one-
third of the total electrostatic interaction energy. They also
calculated contributions from the various residues in the protein,
but did not compare them to experimental binding energies.
Likewise, Yang et al. used AM1 calculations for 50 different
peptides binding to HLA-A*0201, including interacting protein
residues in the QM systems.220 With a parametrized SASA term
for hydrophobic interactions, they obtained a decent correlation
to measured pIC50 values (R

2 = 0.56).
However, most QM/MM studies have been performed with

DFT calculations for the ligand and a few residues around it. For
example, Hillier and co-workers included the inhibitor, two
amino acid models, and one water molecule in the QM
system.221 The QM system was optimized by HF/3-21G
calculations, but energies were calculated at the B3LYP/6-
31G* level. They studied the binding of five inhibitors to
adenosine deaminase and showed that the inhibitor reacts with a
Zn-activated water molecule and that the QM/MM energies
gave a much better correlation to experimental IC50 values than
the vacuumQMenergies or the binding energies of the inhibitors
before the reaction, calculated at the MM level (R2 = 0.87, 0.09,
and 0.00, respectively). In a later investigation, they studied the
binding of 10 fluorinated inhibitors of carbonic anhydrase II.222

They used ME-QM/MM calculations with the ligand and five
amino acid fragments treated by BLYP-D2/TZV(2d,2p).
Interaction energies were also calculated for only the QM
system with BH&HLYP/6-31+G* and CP-corrected MP2/aug-
cc-pVDZ calculations. The obtained geometries were similar to
crystallographic structures, but the interaction energies were not
compared to experiments.
Likewise, we have applied QM/MM calculations to study the

binding of six Ru complexes to cathepsin B.195 The QM
calculations involved the TPSS/def2-SV(P) method, and the
QM system consisted of the Ru complex and the side chain of a
Cys residue coordinating to the metal. EE-QM/MM optimiza-
tions were performed with either a fixed protein or by relaxing all
atoms within 6 Å of the QM system. The latter approach gave the
best geometries, whereas, with the fixed protein, typically some of
the ligands dissociated from the metal. However, quite
unexpectedly, the calculations with the fixed protein gave the
best correlation to the experimental data, whereas those with an
optimized protein gave no correlation (R2 = 0.58 and 0.08,
respectively). In both cases, the correlation was improved by
considering only the QM energy (R2 = 0.80 and 0.19), showing
that the problem comes from varying conformations of the
surrounding protein.
Kovalenko and co-workers have studied the binding of biotin

to streptavidin.223 They optimized geometries withHF/STO-3G
for a 274-atom model involving the ligand and all residues within
3 Å. They calculated interaction energies with 16 different QM
methods and 11 different basis sets, using the same QM system.
Solvation effects were calculated for the isolated QM system with
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PCM, and entropy and thermal effects were estimated from the
harmonic frequencies at the HF/STO-3G level of theory. In
most calculations, both the QM andMM systems were artificially
neutralized. B3LYP/6-31G* was found to reproduce the
experimental binding affinity best. Several other scientists have
used similar methods to study ligand binding, e.g., to
CDK2224,225 and MMP9,226 or to estimate the effect of fluorine
substitution227 with varying success.
Hannongbua and co-workers used a more advanced approach

in a study of the binding of saquinavir to the wild-type and a
mutant HIV-1 protease.228 They used the three-layer ONIOM
approach, using B3LYP/6-31G* for the ligand and the two
active-site Asp groups, PM6 for 36 residues within 5 Å of the
ligand, and the universal force field (UFF) for the remainder of
the enzyme. They studied the protonation state of the two Asp
residues, but failed to observe any significant difference in the
ligand interaction energy between the wild-type and mutant
enzymes. The studies were later extended to a doublemutant and
larger QM systems.229 Four extra residues were added to the
DFT system in the three-layer ONIOM calculations, and all
calculations were performed on averaged MD structures. The
QM/MM calculations incorrectly indicated that the binding was
stronger for the singly mutated enzyme. However, all calculations
correctly indicated the double mutant has a much lower affinity,
although the effect was grossly overestimated (e.g., 108 vs 15 kJ/
mol).
An important use of QM/MM methods has been rescoring

docked structures. Clark et al. described the first such approach in
2003.230 They performed QM/MM optimizations using AM1
only for the ligand. TheQM−MMelectrostatic interactions were
scaled down by a dielectric constant of 4. The method worked
well and allowed for some induced-fit effects in the otherwise
rigid protein. They could also dock a ligand into two ligand-free
crystal structures. However, no binding free energies were
calculated.
Röhrig and co-workers also used a SEQM/MM approach for

docking of Zn proteins.231 They used SCC-DFTB for the ligand
and the Zn ion and its first-sphere ligands. A total of 250 docking
poses were optimized by 1000 iterations, keeping the MM
system fixed. To the total QM/MM energy was added a polar
solvation energy, based on the Mulliken charges of the QM
system. The method was applied to 226 ligands bound directly to
Zn in proteins, and it increased the successful docking from 62%
to 77% (defined as an RMSD of less than 2 Å).
Other approaches have employed DFT methods. Yang et al.

used B3LYP/6-31G* calculations for the ligand to rescore 20
docked poses of NS5B polymerase.232 They used an ME-QM/
MM scheme and scaled down the electrostatic interactions with a
distance-dependent dielectric constant (ε = 4r) to model
solvation effects. They emphasized the importance of the
internal energy of the ligand.
Burger et al. also used B3LYP/6-31G* only for the ligand.233

They first ran a short MD simulation on the five best docked
poses, followed by a restricted QM/MM minimization
(maximum of 20 iterations). Finally, the total QM/MM energy
was supplemented by the desolvation energy of the ligand
(calculated with B3LYP/6-31G* PCM). They damped the
electrostatic interactions by a distance-dependent dielectric
constant (ε = r); i.e., the QM energy was calculated for a
polarized wave function, but the electrostatic interactions were
calculated byMM, using an ESP-charge model of the QM system
(i.e., charges fitted to the QM electrostatic potential). The
method was developed on a trypsin inhibitor and then applied forT
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17 decoys and 43 binders to cytochrome c peroxidase. It was
shown that the approach performed significantly better than
standard docking, giving an R2 = 0.50 to the experimental data for
the binding ligands.
Still other studies used DFT for the ligand and a few nearby

residues: Gleeson and Gleeson used the B3LYP/6-31G**
method for the ligand and the backbone of three amino acid
residues when they rescored nine cross-docked protein−ligand
complexes.234 They showed that they could identify the correct
pose from a set of plausible decoys 77% of the time, which was
appreciably better than for standard docking with the GOLD235

software (44%). HF/3-21G* and PM3 calculations gave
somewhat worse results. Likewise, Cho and co-workers used
B3LYP/6-31G** for the ligand and possibly a few protein
residues.236 The 10 top-scoring docked poses were evaluated by
QM/MM, and only the ligand was optimized by at most five
steps. The pose with the lowest QM/MM energy was selected.
The method performed better than standard docking for 44
tested systems, especially for those involving hydrophobic
interactions. However, no attempt was made to compare the
results with measured binding affinities.
Several groups have added PB + SASA continuum-solvation

energy terms to the QM/MM energy, similarly to the MM/
PBSA approach, but without the use of MD snapshots. Yang and
co-workers studied the binding of 28 tripeptides to the OppA
protein.237 They used ME-ONIOM with AM1 for the peptide
and six selected protein residues interacting with the tripeptide.
Single-point QM/MM energy calculations were performed on
MM-minimized crystal structures. To the QM/MM interaction
energy, they added a PB + SASA solvation energy. They obtained
some correlation to the experimental data, R2 = 0.42. In a
subsequent study, they added an entropy term, estimated from
the rotamers of the peptide side chains, compared to a library for
the free peptides.238 They studied 30 penta- to heptapeptides
binding to the PDZ3 domain. The peptides and four selected
protein residues were treated by AM1. They obtained a weak
correlation to the experimental binding affinities (R2 = 0.30),
which could be improved to 0.43 when a multiple linear fit to the
QM/MM, PBSA, and entropy terms was performed.
Liu and co-workers have applied a similar approach to study

the binding of 10 substrates to enzymes.239 They used AM1 for
the substrate and all residues with a heavy atom within 4 Å, using
the ONIOM QM/MM approach. To the total QM/MM
interaction energy, they added a PB + SASA solvation energy.
Only single QM/MM-optimized structures were employed. Still,
they obtained a decent correlation to experimental binding free
energies, R2 = 0.59, but the RMS error was large, 19 kJ/mol. They
emphasized the role of the strain energy in both the protein and
the ligand. The latter was calculated at the B3LYP/6-31G**/
PCM level of theory, after a conformational search. They also
used a similar approach to study the binding of 20 drugs to a
varied set of proteins.240 They compared the results of using four
different QMmethods, AM1, PM3, B3LYP/6-31G**, andMP2/
6-31G**, as well as two different MM force fields, Amber or
UFF. All methods gave some correlation to experimental data, R2

= 0.43−0.68 (MP2 was best), but the RMS error was high, 24−
41 kJ/mol (B3LYP was best). However, the error was quite
systematic, so in the end they recommended the simpler and
cheaper AM1/UFF approach.
However, most studies have been performed with DFT for the

ligand and a few surrounding residues: Wang and Wong studied
the binding of balanol and four derivatives to protein kinase A.241

The PB solvation energy was solved self-consistently using the

QM density and the MM charges, rather than using the normal
point-charge model of the QM system. They employed a single
structure, in which only the ligand was optimized. The results
were quite poor, and the best and worst binding ligands could be
distinguished only if the protein dielectric constant was set to 1.5.
Lu et al. have employed a QM/MM method to study the

binding of 6 EGFR inhibitors to 71 mutant enzymes.242 They
used the ONIOM approach on MM-minimized structures in a
GB solvent, employing the mPWLYP/6-31+G* method for the
ligand and the mutated residue. To this was added a PB + SASA
solvation energy, obtained with restrained ESP (RESP) charges
for the QM system. The QM and solvation methods were
selected after a comparison with AM1, HF, and B3LYP
calculations with the same basis set on a set of 20 known
interaction energies. The selected method gave a correlation of
R2 = 0.48.
Tan et al. studied the binding of nine inhibitors to two virus

thymidine kinases.243 They employed structures minimized by
QM/MM with AM1 used for the ligand and all residues within 4
Å. Binding energies were calculated with B3LYP/6-31G**
calculations for the ligand and a few key residues. To this were
added PB and SASA energies, but no entropy term. This gave an
appreciably better correlation to the experimental data than the
pure QM/MM energies or MM/PBSA calculations (R2 = 0.44,
compared to 0.09 and 0.03). Zhang and co-workers used similar
methods in a study of MMP-9.244 They performed docking,
QM/MMminimization, MD simulations, MM/PBSA, and QM/
MM-PBSA on the average structure from the MD simulations.
They obtained a nearly perfect correlation to experimental EC50
data, R2 = 0.96, but much overestimated differences between the
various ligands.
In 2010,Merz and co-workers suggested aQM/MMvariant245

of their linear-scaling SEQM approach (QMScore).246 They
studied 23 Zn proteins and included the ligand and all residues
within 5 Å of the Zn ion in the QM system (150−311 atoms).
The complexes were fully minimized in vacuum before the
energy calculation. The SEQM calculations were performed at
the AM1 level, and the solvation free energy was calculated in the
SEQM/MM calculations with the PB method, also including an
SASA term. The entropy was calculated by NMA of the QM
system. They obtained an R2 of 0.56 and a root mean square error
of 9 kJ/mol. This could be slightly improved by using only the
QM energy and not the full QM/MM energy (R2 = 0.64).
Omitting the minimization and calculating entropies instead
from the number of fixed rotable bonds (as in QMScore) gave
results of a similar quality if only the QM energy was used, but
much worse if the full QM/MM energy was used. In fact, this
alternative entropy estimate also improved the correlation with
minimization. Calculating the vibrational entropy only for the
ligand gave the same results as if it was calculated for the whole
QM system. The best result was only slightly worse than that
obtained with SEQM calculations of the full protein (R2 = 0.69)
for the same systems.246

In 2013, Hobza and co-workers suggested another approach to
calculate binding affinities,247 again as an extension of their
approach involving all-protein linear-scaling SEQM methods.248

They used a three-layer ME-QM/SEQM/MM approach. For the
residues within 4 Å of the ligand (∼400 atoms), they employed a
DFT-D3 method, BLYP-D3 for geometries and TPSS-D3/
TZVP for energies. For residues within 8 Å of the ligand (∼1000
atoms), they used the PM6-D3H4X method. For the remainder
of the protein, MM was used together with a GB continuum
solvent. Structures were optimized by QM/SEQM/MM
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calculations with the MM system fixed. To the QM/MM
interaction energy and MM GB solvation energy was added a
more accurate ligand solvation energy (calculated with SMD at
the HF/6-31G* level), as well as deformation energies of the
protein and the ligand (calculated at the QM/QM/MMandHF/
6-31G* levels, respectively) and an entropy estimate from the
number of rotable bonds in the ligand that are restricted in the
protein. With this approach they studied 31 inhibitors of CDK2.
If the calculations were performed on amanually modified crystal
structure (of one of the inhibitors), a good correlation with
experimental results was obtained (R2 = 0.64). However, if
docked structures were used instead, the results were poor. This
was attributed to a high sensitivity of the SEQM and DFT-D
calculations to the structural details. A similar approach was also
used to study the importance of a halogen bond for the binding of
eight inhibitors of aldose reductase.249,250

In conclusion, a great variety of QM/MM methods have been
used to study ligand binding. In general, quite small QM systems
have been used, and most have been studied by SEQM or DFT
methods. The basis sets have in general been small, and only a
few studies have employed CP corrections or entropies. The
recent approaches by Merz245 and Hobza247 stand out as the
most serious attempt to obtain accurate energies, involving all
important components, but no method has found any general
use. The prime use of QM/MM calculations has instead been to
describe the binding of the ligands and to pinpoint important
interactions with the receptor.

3.4. Fragmentation Calculations

Many groups have employed different QM fragmentation
approaches to estimate binding affinities and to point out
important interactions in the binding. The studies are
summarized in Table 4, and a schematic view of various
fragmentation approaches is shown in Figure 2. In the simplest
variant, pairwise interactions between the ligand and various
groups of the receptor are calculated without any strict aim of
getting correct total binding energies or avoiding double
counting, and they will be called pairwise-additive (PA)
approaches. More common is the use of the strict MFCC and
FMO approaches, which try to approximate total binding
energies and total energies, respectively.
3.4.1. PA and Similar Approaches. In 2001, Maseras and

co-workers used a simple fragmentation approach to study the
binding of three molecules to the acetylcholine receptor.251 After
some testing on a small model system, they selected B3LYP/6-
31+G as their theoretical method. Each ligand was divided into
two fragments, and their pairwise interaction energies with 5 + 3
minimal amino acid models were calculated. Structures were
taken from the end of MD simulations at theMM level. The total
interaction energies (sum of all pairwise terms) gave a correct
ordering of the three ligands, but they were much too large,
owing to the missing solvation energy and entropy. For one of
the ligands, a full geometry optimization of each pair was also
tested, but the residue models then ended up in overlapping
positions.
Hannongbua and co-workers also used B3LYP/6-31(+)G**

with up to eight residues in the QM system when they compared
the binding of saquinavir to the wild-type and two mutant HIV-1
proteases.229 The various QM models gave varying (by 28 kJ/
mol) and inconclusive results for the single mutant. However, all
calculations correctly indicated that the double mutant had the
lowest affinity. Likewise, Vivas-Reyes et al. studied the binding of
14 ligands to BACE using fragmentation methods.252 They

included 24 residues within 5 Å of the center of the ligand at the
PM6 level to study the protonation state of the active site. Then
binding energies were calculated by PA fragment calculations at
the M06-2X/6-311G** level of theory. No comparison with
experimental data was attempted.
Nowosielski and co-workers have developed an automatic tool

to study protein−ligand complexes.253 It involves docking, MD
simulations (at theMM level), averaging andminimization of the
MD snapshots, and PA QM calculations for all ligand−amino
acid pairs within a specified distance (possibly mediated by water
molecules). As an application, they studied the binding of three
sulfonamide ligands to pantothenate synthetase. Using M06-2X/
6-31G* calculations for all residues within 5.5 Å of the ligand,
they obtained a good correlation with experimental data (R2 =
0.91). However, the interaction energies were 10 times larger
than the experimental binding free energies. In another study of
the binding of terbinafine to squalene epoxidase, they instead
used MP2/6-31G* calculations with CP correction for all
residues within 5 Å of the ligand.254

Caflisch and Zhou suggested an interesting QM approach to
high-throughput virtual screening.255 They described the binding
site by a few probes, represented by very small molecular
fragments (2−10 atoms): They represented the polar group in
the protein by minimal models of amino acid side chains, but
water and HF were used for the amide CO and NH groups,
respectively. The ligands were first docked into the protein and
thenminimized byMM. Finally, interaction energies with each of
the QM probes were calculated, first without minimization and
then by optimizing a few atoms in some of the functional groups.
They used the PM6 method and added the MM van der Waals
interaction energy between the molecule and six residues in the
binding site. They screened 2.7 million ligands for the binding to
a tyrosine kinase, employing 50 docked poses per ligand on
average, and using five probes, representing one side chain and
four backbone groups. Moreover, a shape Tanimoto score was
calculated after minimization of the free ligand with RM1.
Twenty-three ligands were selected from the screening, and three
of them were found to bind with an IC50 of 5−18 μM.
Xu and co-workers have developed a QM scoring function

based on QM fragmentation calculations.256 The protein was
neutralized and divided into high- and low-level regions with
300−380 and 1000−1100 atoms, on the basis of the distance to
the ligand. The high-level region was optimized by the extended
ONIOM QM/QM fragmentation approach,257 using ωB97X-
D/6-31G* and PM6 calculations for the two regions. Single-
point energies were then calculated after water molecules were
stripped off with ωB97X-D or XYG3 using the 6-311+G** basis
set. To these interaction energies were added solvation energies
calculated with SMD at the B3LYP/6-31G* level, as well an
entropic penalty consisting of 50% of the entropy of the free
ligand, calculated from ωB97X-D/6-31G* frequencies. The
method was tested on the binding of 80 inhibitors of CDK2 and
20 organometallic PAK1 inhibitors. For both systems, they
obtained good correlation to experimental data, R2 = 0.76−0.88.
Merz and co-workers have examined the accuracy and

convergence of a PA fragmentation approach for the calculation
of the interaction energy between indinavir and HIV protease.258

With a ∼300-atom model of the binding site, they compared full
and fragmentation energies obtained with the ligand and 18
fragments (minimal models of amino acid side chains or
backbones, in a few cases joined to avoid overlapping atoms).
The fragmentation calculations were performed with dimers,
trimers, tetramers, and pentamers and at three levels of theory,
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HF/6-31G*, M06-L/6-31G*, and PM6-DH2. Unfortunately,
the results depended strongly on the level of theory.With dimers,
the error was 1−14 kJ/mol. The three-body terms were 8−19 kJ/
mol, and for HF and PM6, the error was decreased to 3−4 kJ/
mol. However, for M06-L, the error instead increased to 18 kJ/
mol. Four- and five-body terms were calculated only with PM6-
DH2 (for which the three-body term was smallest) and
amounted to 3.2 and 0.3 kJ/mol.
3.4.2. MFCC and Similar Approaches. The MFCC

method was developed in 2003 by Zhang and co-workers with
the aim of calculating ligand-binding affinities.109,111 In variance
with the calculations in the previous section, it includes the whole
protein in the calculations, systematically dividing it into
overlapping fragments and correcting for double counting by
subtracting the energy of the joined capping fragments (Figure
1). In the first application, they studied the binding of biotin to
streptavidin.259 They employed the HF/3-21G method and
included one capped amino acid in each fragment. They studied
the crystal structure and an MM-optimized structure. The
MFCC energies were found to be ∼125 kJ/mol larger than the
MM binding energies, probably an effect of the small basis set,
partly counteracted by the missing dispersion interactions.
Similar results were obtained for the binding of benzamidine to
trypsin, but in that study, they also showed that the total binding
energy can be decomposed into residue contributions.260 In the
next application, they performed a rigid geometry optimization
of the protein−ligand complex for two proteins, still at the HF/3-
21G level of theory.261 In a later study of HIV-1 protease at the
same level of theory, the ligand was also divided into five
fragments, providing an even more detailed partitioning of the
binding energy.262 For the interaction of efavirenz with HIV-1
reverse transcriptase, they first calculated all residue interaction
energies with HF/3-21G and then recalculated the larger terms
with B3LYP/6-31G* and MP2/6-31G*.263 Similar methods
were used to study several other systems,111 but no attempt was
made to quantitatively compare the results to experimental
binding affinities (and such a comparison would give quite poor
results owing to the small basis sets used, as well as the missing
dispersion, solvation, and entropy effects).
Bettens and Lee used a similar approach to calculate the

interaction energy for the binding of an inhibitor to
neuraminidase.264 The calculations were performed at the
MP2/6-311+G(2d,p) level of theory, thereby representing the
first attempt to calculate binding energies at a level of theory for
which there starts to be a hope to cover all important interactions
in a nearly converged manner (the previous studies are
substantially affected by BSSE and missing dispersion
interaction). They showed that the vast majority of the QM
pair calculations could be avoided by a prescreening of the
electrostatic, induction, and dispersion interactions at the MM
level. The year after, Zhang and co-workers employed MP2/cc-
pVDZ calculations with middle-bond functions (and also some
MP2/cc-pVTZ calculations) to study the interaction between
p53 and the oncoprotein MDM2.265 They employed three
snapshots from MD simulations (those with the strongest
interaction energy). On the basis of MM interaction energies,
they selected only the strongest interactions, which were
recalculated by MFCC.
In a series of papers, Caetano and co-workers used the MFCC

approach to calculate binding affinities and residue contributions
for a number of different systems.266−271 They used crystal
structures and standard MFCC calculations with one amino acid
per fragment, although they sometimes tried two-residue

fragments. They employed a variety of DFT methods, often
with dispersion corrections, and a numerical DNP basis set. In
variance with other MFCC calculations, they only included parts
of the protein in the calculations, determined by the distance
from the ligand, 8−12 Å depending on the protein. The first
studies were performed in vacuum, whereas later studies
included some explicit water molecules and the latest a
COSMO continuum solvent with a dielectric constant of 40.
The latter strongly stabilized the convergence of the energies
with respect to the cutoff radius. For example, the change
between 11 and 12 Å was 8 kJ/mol in the COSMO solvent, but
∼160 kJ/mol in vacuum.271 They mainly discussed which amino
acids interact strongly with the ligand, but they did not compare
estimated absolute binding affinities to experimental data, which
would be hard because entropy estimates are missing.
In 2012, Antony and Grimme used MFCC to estimate the

binding affinity for three protein−ligand complexes with 1060−
3680 atoms.272 They used the B97-D3/def2-TZVPP method.
The calculations were performed on crystal structures with
added hydrogen atoms optimized by SEQM. They did not
include any explicit water molecules. Two sets of calculations
were performed, one with all amino acids neutralized and one
with the standard protonation state of amino acids. They studied
how the energies varied with the size of the fragments, including
1−17 residues in each. With neutralized side chains, the net
MFCC binding energy varied by 10−13 kJ/mol depending on
the number of residues in each fragment. A total of 3−11 residues
per fragment gave the fastest calculations, depending on the
protein, and they recommended 5 or 6 in routine applications.
The three-body term, which normally is not estimated byMFCC,
amounted to 21−23 kJ/mol. Calculations on different subunits
of one of the proteins gave energies that differed by 70−77 kJ/
mol, illustrating the large problem of single-structure approaches.
The CP correction amounted to 23 kJ/mol, and increasing the
basis set to def2-QZVP changed the interaction energy by 17 kJ/
mol.
With charged residues, the MFCC results depended much

more on the number of residues per fragment, viz., by 73−127
kJ/mol. Moreover, severe convergence problems in the QM
energy calculations are observed. Fortunately, these problems
could be reduced by running the calculations in a COSMO
continuum solvent with a dielectric constant of 4, giving a
variation of only 8−14 kJ/mol and no convergence problems.
For the smallest protein with neutral residues, they estimated

the accuracy of the MFCC calculation by comparing B97-D3/
def2-SVP interaction energies obtained with and without MFCC
fragmentation. The error of the MFCC calculations decreased
from 22 kJ/mol with 1-residue fragments to less than 1 kJ/mol
for fragments with 29 residues (i.e., only two fragments).
However, it was still 14 kJ/mol with 15-residue fragments. The
three-bodyMFCC energies converged faster, with errors of 14, 4,
and 0 kJ/mol for fragments of 2, 8, and 15 residues, respectively.
This investigation nicely sets the frame of future DFT-D
calculations of binding affinities, showing the severe challenges
posed by the use of single structures, fragmentation approaches,
and the BSSE.
We have developed the PMISP approach to calculate accurate

binding affinities at a high level of QM theory.112 It involved
MFCC calculations for the ligand and all chemical groups within
4 Å. In addition, many-body effects were estimated by MM
calculations with an unusually detailed force field, including
anisotropic polarizabilities and multipoles up to quadrupoles for
all atoms and bond centers. These polarizabilities and multipoles
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were obtained fromQM calculations of capped amino acids in an
MFCC manner. Thus, the approach can also be considered as a
very accurate MM force field, in which the closest interactions
between the ligand and the protein are treated by QM fragment
calculations (to accurately model exchange repulsion, charge
transfer, charge penetration, and other short-range effects).
The approach was first calibrated on a 247-atom model of the

avidin binding site with seven different biotin analogues, for
which the full HF and MP2/6-31G* energies can be calculated.
The model consisted of 14 protein fragments, 1 of which
contained the backbone of six residues. Test calculations showed
that dividing the latter fragment into five changed the energy by
less than 1 kJ/mol, illustrating the accuracy of the MFCC
approach. Likewise, the total PMISP energy reproduced the true
QM energy within 2 kJ/mol for neutral ligands at the HF level.
However, for ligands with a net negative charge, the error was
larger, 10 ± 3 kJ/mol (using different geometries). The results
were similar at the MP2 level, 5 and 9 ± 3 kJ/mol, respectively.
This means that if you can afford to calculate the full HF energy,
the PMISP MP2 energy could be corrected for the error at the
HF level, giving accuracies of 4 and 1± 1 kJ/mol. Another way to
reduce the error (to 6 and 2 ± 3 kJ/mol) was to embed all QM
calculations in the surrounding polarized multipoles. Compar-
ison with other fragmentation methods showed that PMISP
performed better than the PA, EE-PA, and even FMO2
approaches, even if the latter is theoretically more stringent.
The error comes almost entirely from three-body terms; both
FMO3 and PMISP3 gave errors of less than 1 kJ/mol. It comes
from the coupling of polarization and exchange repulsion, and it
shows that any polarizable MMmethods can be expected to give
errors of∼10 kJ/mol owing to the omission of three-body effects.
In a subsequent paper, the PMISP model of the binding site

was supplemented by the same polarizable multipole model for
the whole protein, as well as a standard MM Lennard-Jones
model, in a QM/MM manner.273 It was shown that octupoles
had a small effect on the binding energies, whereas quadrupoles
and polarizabilities were important. On the other hand, the
multipoles and polarizabilities could be calculated with DFT,
rather than MP2, calculations, without any loss in accuracy. The
distance dependence of the various terms was also estimated.
PMISPmodels of different sizes (up to 7 Å from the ligand) were
tested, and it was shown that the binding energy changed by only
0.1 kJ/mol between 6 and 7 Å for neutral ligands, but by 2 kJ/mol
for the charged ligand. At the end, interaction energies for biotin
and one analogue were calculated at theMP2/aug-cc-pVTZ level
of theory.
We have also used the PMISP approach to study the binding of

nine carboxylate ligands to the octa-acid host at the LCCSD(T0)
level (198−207 atoms).216,274 The complicated macrocyclic host
molecule was divided into 24 fragments, but test calculations
showed that we still could keep the error from the fragmentation
below 10 kJ/mol, after an improvement in the treatment of
intramolecular polarization. The LCCSD(T0) calculations were
performed with the cc-pVTZ basis set, and the energies were
extrapolated to a complete basis set employing canonical MP2
calculations with the aug-cc-pVTZ and aug-cc-pVQZ basis sets.
These energies were supplemented by COSMO-RS solvation
energies (LMP2/cc-pVDZ), the zero-point energy, and entropic
and thermal corrections from MM calculations. Unfortunately,
the final binding free energies reproduced the experimental data
quite poorly, with R2 = 0.2 and an MAD of 12 kJ/mol, even after
the removal of the systematic overbinding by 31 kJ/mol. This
problem was assigned to the use of single optimized structures.

3.4.3. FMO. Numerous applications of the FMO fragmenta-
tion approach to study the binding of small ligands to
biomacromolecules have been published.103,104 However, most
of them are based on similar methods and discuss mainly the
geometry of RL complex and specific interactions between the
ligand and the receptor. Therefore, we restrict the discussion to
some typical cases. In the first FMO study of binding affinities,
Kitaura and co-workers considered the binding of 11 steroid
ligands to the estrogen receptor.275 They used the HF/STO-3G
approach on a 50-residue model of the binding site. For four
ligands, the whole ligand-binding domain (241 residues) was also
tested, giving no significant difference in the binding affinities. In
spite of the low level of theory and the missing dispersion,
solvation, and entropy effects, good correlation with exper-
imental data was obtained, R2 = 0.70. They observed significant
charge transfer between the protein and the ligand. Chuman et al.
used the same method, but also developed a method to visualize
ligand−residue interactions for different ligands and cluster the
results.276

However, the great majority of the FMO studies have been
performed with MP2 and the 6-31G basis set with or without
polarization functions, e.g., for the estrogen receptor,277 vitamin
D receptor,278 PPAGγ,279 retinoid X receptor,280 and even a
DNA fragment binding to the cAMP receptor protein.281 In the
latter, the interactions differed significantly between FMO and
MM, owing to charge transfer from the DNA to the receptor and
polarization effects, modifying the relative strengths of the base
pairing and stacking within the DNA before and after the
binding. In a later study, Tanaka and co-workers employed even
MP3/6-31G to study the binding of hemagglutinin to an
antibody.282 In another investigation, they studied the variation
of the energies over 10 snapshots from a 10 ns MD simulation,
showing fluctuations of over 200 kJ/mol in the total energy.283

Another study showed 220 kJ/mol differences between
calculations involving only the binding domain of hemagglutinin
and the entire protein.284

In a study of the binding of four ligands to the FK506 binding
protein, Kitaura et al. used appreciably improved methods:285

The geometry of the ligand was optimized by HF/3-21G for a
model involving protein residues within 5.5 Å. Then the energy
was calculated at the MP2/6-31G* level of theory, including two
residues in each fragment. Moreover, solvent effects were
calculated by the PB method at the MM level, and an SASA
term was also included. However, a negative correlation with
experimental values was found. Quite large differences were
found between calculations involving one- or two-residue
fragments, up to 20 kJ/mol in the total interaction energies.
They also showed that the correlation energy dominated the
binding energy. In a subsequent study, they used instead a PCM
model for the implicit solvation (including both polar and
nonpolar terms) and an entropy term, calculated at the MM
level.286 With this approach, they could rationalize the binding of
human and avian influenza A virus hemagglutinin to α-sialosides.
Likewise, Kongsted and co-workers obtained a good correlation
with experiment (R2 = 0.86) for seven ligands binding to HIV-1
RNase using a C-PCM solvent model and QM/MM
structures.199 However, the differences in binding energies
were grossly overestimated (39−53 times larger than the
experimental range).
Mazanetz et al. studied the binding of 28 inhibitors to CDK2

and showed that the pure FMO energy gave mediocre
correlation to the experimental data (R2 = 0.68).287 However,
when enhanced with PB + SASA solvation (calculated at theMM
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level) and an entropy term from the number of rotable bonds in
the ligand, the fitted scoring function gave a much better
correlation (R2 = 0.94). Likewise, Kosenkov and co-workers
obtained an excellent correlation with experiment (R2 = 0.94)
when employing a PCM solvation model and ligand entropies
from M06-2X/6-31G* frequency calculations.288

Several other FMO studies have instead considered explicit
water. For example, Kurita and co-workers have studied the
binding of four inhibitory dipeptides to thermolysin.289 They
used the MP2/6-31G method for the ligand, the catalytic Zn ion,
and all protein residues and water molecules within 5 Å, whereas
the remainder of the enzyme, as well as a 2 Å solvation shell, was
treated at the HF/6-31G level of theory. Calculations were
performed on structures from an MD simulation after clustering,
minimization, and selection of the lowest energy structure. Thus,
the complex was explicitly solvated, but not the free ligand. They
added an entropy estimate, obtained from MM frequencies.
They obtained a good correlation to the experimental data (R2 =
0.94), but the absolute affinities were ∼20 times larger than the
experimental ones. In a later study of six inhibitors binding to the
same enzyme, they obtained a somewhat poorer correlation (R2

= 0.72, without entropy correction),290 and the correlation was
even worse for the binding of four ligands to butylcholinesterase
(still without any entropy correction), R2 = 0.54.291 Explicit water
molecules have also been included in studies of the plasminogen
activator292 and the 2G12 antibody.293 They often gave
unrealistically large absolute binding energies, because fixed
water molecules underestimate the electrostatic screening.
Another way to include solvation is to use the EFP force field

(which is polarizable and contains many nonstandard terms).294

This was tested for the binding of a carbohydrate to griffithsin,
analyzing contributions to the interaction energy from individual
fragments and their corresponding solvation effects. Unfortu-
nately, the errors in the total energy (compared to full FMO
calculations) were quite extensive, from 16 kJ/mol for MP2/6-
31G* to 72 kJ/mol for B3LYP-D/6-31G*.
Total FMO energies have been used to decide the best

structure of ligands bound to amyloid-β peptides, obtained from
a cluster analysis of MD snapshots, i.e., as a simple docking
approach.295 The calculations employed the MP2/6-31G
method with explicit water molecules. The energies showed
very large variations (by up to 3000 kJ/mol), indicating that they
will depend more on the inconsistency between the MM and
QMpotential surface than on the actual interactions between the
receptor and the ligand.
Merz and co-workers have developed the overlapping-

multicenter ONIOM/FMO method to calculate accurate
interaction energies.296 The high-level layer consisted of several
overlapping QM calculations at the CCSD(T) or MP2 level,
extrapolated to a complete basis set, whereas FMO calculations
were employed for the low-level layer to estimate many-body
effects. The approach was used to calculate the vacuum
interaction energy of the insulin dimer with 4′-hydroxyacet-
anilide at the MP2/CBS level.
In conclusion, fragmentationmethods have beenmuch used to

rationalize observed binding affinities. By their construction, they
directly give contributions from each amino acid residue to the
binding energy. Interestingly, FMO calculations have mainly
employed the MP2 method, in variance to the great majority of
the other approaches reviewed in this article, which have used
SEQM, HF, or DFT. On the other hand, all FMO calculations
and most MFCC calculations use much too small basis sets to
give any reliable absolute affinities. It is a serious drawback of

FMO that it cannot use large and diffuse basis sets. Therefore,
methods based on MFCC, but designed to include many-body
effects, such as PMISP, seem to be more promising approaches
for ligand binding, especially when combined with proper
solvation, entropy estimates, and possibly sampling (see below).
On the other hand, it is not certain whether fragmentation
approaches really are needed except perhaps for CCSD(T)
calculations, considering that DFT-D approaches give accurate
results and can be employed for quite large systems.

3.5. Linear-Scaling Calculations

At the next level of theory, the whole receptor−ligand complex is
included in the calculation, using various linear-scaling
approaches. As can be seen in Table 5, all such calculations
have been performed at the SEQM level with one single
exception. In 2004, Vasilyev and Bliznyuk published an SEQM
study of six ligands binding to a 33-residue RNA aptamer and six
ligands binding to trypsin, involving QM systems of 1118 and
3720 atoms.297 They employed the AM1method with the linear-
scaling MOZYME approach. The structures were partly
optimized (120−180 atoms) in the gas phase, before binding
energies were calculated with a COSMO continuum-solvation
model. For the aptamer, with neutral ligands, the COSMO
calculations gave poor results, whereas the gas-phase calculations
gave a reasonable correlation (R2 = 0.56). However, for trypsin
(with ligands of varying charges), only COSMO gave any
correlation (R2 = 0.38). For all complexes, the COSMO binding
energies were positive. No attempt was made to predict the
entropies, but the results were compared to binding free energies.
Similar studies with MOZYME and COSMO solvation have

been performed by several other groups at the AM1, PM3, PM5,
and PM6 levels of theory.298−301 Two of them added a nonpolar
SASA term,299,300 two an entropy correction obtained at theMM
level,299,301 and the latest study also a DH2 dispersion
correction.301 They typically gave too strong interactions and
overestimated the difference between different ligands.
In 2008, Caflisch and co-workers developed a LIE-like

approach.302 It was based on their continuum-solvation LIE
approach with minimized structures (i.e., without sampling).165

The approach was tested for three proteins, 44, 24, and 73
inhibitors of West Nile virus BS3 protease, HIV-1 protease, and
CDK2, respectively. The structures were first minimized with
MM in vacuum. Then single-point SEQMenergies with the RM1
method were calculated for the entire protein−ligand complex.
To this energy were added an MM van der Waals interaction
energy and a continuum-electrostatic PB solvation energy, both
calculated at the MM level. For all proteins, the QM term gave
similar or slightly improved results compared to an MM
electrostatic term, e.g., decreasing the RMSD from 4 to 3 kJ/
mol for the BS3 protease. However, different terms were fitted
for each of the three proteins, and the fitted parameters were not
transferable between the various proteins.
Anikin et al. have suggested a method to rescore many docked

structures, speeding up the calculations by taking advantage of
the fact that many ligands are docked to the same rigid part of the
protein.303 They employed the AM1 and PM3 methods and
showed that the method works well, but did not compare the
results to experimental data. With this approach the binding
energy of each protein−ligand complex could be obtained in 5
min. Further developments of the approach reduced the time to
15 s per ligand for a rigid docking and 153 s for flexible
docking.304
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Likewise, Thiriot and Monard have developed a combination
of a genetic algorithm and linear-scaling SEQM calculations to
perform a full SEQM docking procedure.305 The method was
tested for the docking of twomolecules into a 700-atommodel of
urate oxidase, closely reproducing the corresponding crystal
structures using the PM3 method. This approach was later
improved and integrated with MOPAC.306

However, the most serious approaches to calculated binding
affinities with linear-scaling SEQM methods have been
developed by the Merz and Hobza groups. Already in 2004,
Raha and Merz developed a linear-scaling all-protein SEQM
method to score inhibitors binding to a protein.246 They studied
18 + 5 inhibitors binding to the zinc ion in carbonic anhydrase or
carboxypeptidase. The calculations were based on crystal
structures, which were minimized by MM. The binding affinity
was estimated by the AM1 method for the entire protein−ligand
complex in a PB continuum solvent. Dispersive interactions were
taken from the attractive Lennard-Jones part of the Amber FF96
calculation, and the entropy was estimated from the buried
surface area and the number of degrees of freedom lost from the
ligand and the protein side chains upon ligand binding. They
obtained a correlation of R2 = 0.69 compared to the experimental
data. They also showed that the SEQM energy could be
decomposed, allowing for a discussion of the importance of
specific protein residues or parts of the ligand for the observed
affinity.307

This approach was later applied in a large-scale test of scoring
functions.308 Both the AM1 and PM3 methods were employed,
and the method was tested on 165 complexes, giving an R2 of
0.48. It could be increased to 0.55 by fitting a coefficient before
each term in the binding energy (SEQM, solvation, dispersion,
SASA, entropy), giving the QMScore. The results were not
significantly improved if the complexes were fully optimized with
MMbefore the calculations. Themethod has also been used for a
set of protein kinase inhibitors, identifying the most important
residues for binding by a pairwise decomposition scheme.309

This approach was used to estimate the binding free energy of
34 fragment-like ligands of trypsin (17 binders and 17
nonbinders) in the SAMPL3 blind-test competition.310 Energies
were calculated with the PM6-DH2 method on docked
structures, but were corrected for systematic errors from error
distributions obtained from calibration calculations, divided into
polar and van der Waals interactions.148,149 The entropy was
obtained from a normal-mode analysis at the MM level.
Unfortunately, the calculations gave a poor correlation to
experiments, R2 = 0.06, and rather large MADs, 8 kJ/mol, even
after the energy terms were scaled using a training set of similar
ligands. The effect of the systematic-error corrections was small.
In 2010, Hobza and co-workers suggested a method to rescore

docked ligand poses.248 They employed the PM6-DH2 method
with dispersion and hydrogen-bond corrections and started from
the two best docked structures, which were fully optimized in a
COSMO continuum solvent (without nonpolar terms). For the
ligand, more accurate desolvation energies were calculated with
the SMD model, based on IEFPCM calculations at the HF/6-
31G* level, using structures either from the optimized complex
or from a short MD simulation, followed by a minimization, both
at the PM6-DH2/COSMO level. This also gave a ligand
deformation energy, which was calculated at the PM6-DH2 level.
The deformation energy of the protein was calculated at the
PM6-DH2 level from optimized structures. Normal-mode
entropies were estimated fromMM frequencies after reoptimiza-
tion in a GB solvent, and a zero-point vibrational energy termwas

also included. The method was tested on 22 diverse ligands of
HIV-1 protease, 11 known binders and 11 false binders. They
could discriminate binders from nonbinders (which also was
possible with docking and MM methods) and obtained a good
correlation to the experimental data for the binders (R2 = 0.62,
appreciably better than that of the DOCK or MM results, R2 =
0.10−0.15). However, even better results were obtained if the
deformation energy of the protein was ignored (R2 = 0.71).
Unfortunately, most binding affinities were strongly positive, and
the range of the calculated binding affinities was almost 10 times
larger than the experimental range. The calculations took 3−4
days on a single processor, dominated by the geometry
optimization.
The method was also applied on 15 diverse ligands binding to

CDK2.311 The calculations differed in some aspects from the
previous ones: They were started from crystal structures, the
protein deformation energy was omitted, and the free ligand was
only minimized (i.e., no MD was performed). The full method
gave a decent correlation of R2 = 0.52, but the PM6-DH2
interaction term alone gave an appreciably better correlation, R2

= 0.87. The other terms deteriorated the results, especially the
entropy term. The results were much better than what was
obtained with the Amber 99 or 03 force fields (R2 = 0.06 and
0.00).
A similar approach was also applied to the binding of two sets

of halogenated inhibitors of casein kinase 2.312 As the complexes
involve halogen bonds, the authors employed the PM6-DH2X
method, involving halogen-bond corrections. The structures
were optimized with the PM6-D2X/COSMO approach (i.e.,
without hydrogen-bond corrections), followed by single-point
PM6-DH2X/COSMO energy calculations. Otherwise, the
calculations were similar to those in the CDK2, except that the
ligand desolvation energy was calculated with C-PCM using the
B3LYP/6-31G* method. The full scoring function gave a poor
correlation to experimental data, R2 = 0.24 and 0.19 for the two
sets of ligands. Again, the entropy term was problematic; without
it, the correlation wasmuch better, R2 = 0.81 and 0.71. A standard
MM calculation failed to reproduce the halogen bonds and gave
poor correlations (R2 = 0.04 and 0.08). This may explain why the
entropy term was so poor for this system (it was calculated at the
MM level).
The same group has also suggested a variant of the method for

covalently bound inhibitors.313 BLYP-D2/SVP was used for
optimization and TPSS-D3/TZVPP for single-point energy
calculations of the ligand and three protein residues, whereas
PM6-D3H4Xwas used for the rest of the protein (truncated after
10 Å and fixed outside 8 Å in the geometry optimizations). The
approach was employed for 20 inhibitors of cathepsin B1. With
the standard score, they obtained a modest correlation of R2 =
0.47, but taking only the covalent energy term, a much better
correlation was obtained, R2 = 0.81. However, in both cases, a few
complexes were excluded as outliers.
Hobza and co-workers have also examined how the result

depends on the structure used for the ligand.178 They considered
the same nine inhibitors of HIV-1 protease as in their first
study.248 They compared the energy of the ligand optimized
from the structure in the protein and the probability density
obtained from an MD simulation at the MM level with 10
different sets of RESP charges. All MD structures were optimized
with PM6-DH2 in a COSMO solvent. Finally, vacuum energies
were calculated with PM6-DH2 and SMD solvation energies at
the HF/6-31G* level of theory. A total of 50 snapshots from a 50
ps PM6-DH2/COSMOMD simulation were also included. The
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results show a variation of∼80 kJ/mol in energies obtained from
the various snapshots (although all were optimized with the same
method). The single optimized structure differed from the MD
average by an MAD of 13 kJ/mol for the nine ligands with no
systematic bias. However, the averages obtained from the MD
simulations with MM and SEQM showed a systematic bias of 25
kJ/mol and anMADtr of 9 kJ/mol. These results clearly illustrate
the risks of using a single structure for binding-affinity estimates
as well as of using a method for sampling different from that used
for the energy calculations. Moreover, these errors apply for the
isolated ligand; even larger problems can be expected from the
protein−ligand complex.
An important component in ligand binding is the strain

energy, i.e., the difference in the internal energy of the ligand in
the binding site and in solution.314 One common way to estimate
it is by comparison of the energy of the ligand at a certain level of
theory calculated in a crystal structure and in continuum
solvation after some conformational search.315,316 However, this
will include possible errors in the crystal structure, as well as the
disagreement between the energy method used to measure the
strain and that used to obtain the crystal structure. A more
satisfying approach is to re-refine the crystal structure with a
QM/MM approach186 and use the same method also in solvent.
Merz and co-workers have shown that such an approach
decreases the estimated strain energy by 80% for a charged
ligand.317

In 2013, the first study of ligand binding, using linear-scaling
DFT calculations, was published.318 Miyazaki and co-workers
used PBE/DZP calculations to calculate the binding energy of
three ligands to the FK506 binding protein. Although they did
not include any solvation, dispersion, or entropy effects, they
obtained a perfect correlation to experiments, R2 = 0.99. They
also obtained an only slightly overestimated range for the binding
affinities of the three ligands, 20 compared to 14 kJ/mol.
In conclusion, a number of groups have used linear-scaling

SEQMmethods to calculate binding affinities. Most of them have
used the freely available MOZYME approach in the Mopac
package, and they then also include the COSMO continuum-
solvation model. However, it is only the Merz and Hobza groups
that have systematically included SASA, dispersion, and entropy
corrections, and these are also the only groups that have
employed the approach in several studies. Hobza also included a
more accurate ligand-solvation energy and a deformation energy
of the ligand. In one study, Hobza has supplemented the
approach with DFT-D calculations for the most important
residues around the ligand. Recently, the first study entirely at the
DFT level was presented, but it did not consider any solvation,
dispersion, or entropy contributions. Still, such approaches may
be promising in the future.

4. END-POINT APPROACHES

In the end-point approaches, a conformational sampling is
performed, but only of the actual states in eq 1, i.e., of the
receptor−ligand complex, and possibly also of the free receptor
and the free ligand. This is expected to improve the ΔGbind
estimates, but it still does not provide true free energies. These
calculations often follow the MM/PBSA or LIE approaches,
replacing the MM energies by QM, and they will be discussed in
separate subsections.

4.1. MM/PBSA Approaches

Several approaches have been presented to introduce QM
calculations in MM/PB(GB)SA (i.e., MM/PBSA or MM/

GBSA) calculations. The studies are summarized in Table 6. In
most studies, QM/MM methods have been used, giving QM/
MM-PBSA approaches: In 2005, Fischer and co-workers
suggested the first such approach.319 They used AM1 for the
ligand and the CHARMM force field for the protein. Starting
structures were obtained by a conformational search (giving up
to seven conformations per ligand). All structures were
optimized by QM/MM and then clustered, but only a single
structure was used for the free ligands and proteins. During the
geometry optimization, the point charges were scaled down to
reproduce electrostatic interactions observed in a PB calculation
at the MM level. The solvation energy was calculated by PB with
an ionic strength of 0.1 M. A dielectric constant of 4 was used for
the electrostatic interactions and the solvation energy. The
nonpolar solvation energy was taken to be proportional to the
SASA. An NMA entropy correction was calculated at the MM
level. As the structures were not taken fromMD simulations, the
various structures were instead Boltzmann weighted according to
their estimated free energy. For 47 benzamidine derivatives
bound to trypsin, the calculated and experimental affinities
agreed well with an RMSD of 5 kJ/mol (after a scaling constant
for the protein−ligand van der Waals interactions was fitted)
without any bias and with a similar range. However, the
correlation was poor, R2 = 0.04, owing to the relatively small
range of the experimental affinities, 15 kJ/mol. Similar results
were also obtained for three small ligands of the FK506 binding
protein, refitting the parameter, with RMSDs of 3 and 6 kJ/mol
for a flexible and rigid protein, respectively.
Jamet and co-workers also treated the ligand by AM1, but

employed a more typical QM/MM-PBSA approach, in which
they replaced the first three terms in eq 8 by the QM energy.320 A
total of 51 snapshots were obtained from a 1 + 0.5 ns QM/MM
MD simulation. The entropy term was omitted, and PB was used
for the polar solvation energy. The binding free energy was
decomposed by calculating the QM/MM energies with point
charges from only a single residue. They studied the binding of
five bromobenzimidazole inhibitors to the kinase CK2. The raw
QM/MM energies gave a poor correlation with experimental
affinities, R2 = 0.14, but this was improved to 0.69 for the full
QM/MM-PBSA energy, owing to the compensation of the
electrostatic QM/MM interactions with the PB solvation energy.
Ibrahim also used a similar approach (but with GB solvation)

to study eight halogen-containing inhibitors of CDK2.321 He
obtained poor results, with a negative correlation, owing to
missing halogen-bond corrections. Ojha and co-workers used
SEQM for the ligand only, but tested five different methods,
PM3, MNDO, PDDG−PM3, PDDG-MNDO, and SCC-DFTB
(also for MD).322 They claimed that the best results were
obtained with SCC-DFTB, but this is questionable considering
that all methods gave identical results within the large reported
standard error (14−36 kJ/mol).
On the other hand, Wang and Chen also included eight active-

site residues in theQM system (treated by SCC-DFTB).323 They
studied the binding of four inhibitors of neuraminidase and
obtained a good correlation of R2 = 0.78 to the experimental
binding affinities. Barbault and Maurel used AM1 for the ligand
and all residues within 6 Å.324 They studied five inhibitors of the
urokinase plasminogen activator. With a single structure (the one
closest to the MD average), they obtained a poor correlation to
experimental data (R2 = 0.16). This could be improved by using
18 snapshots from the MD simulation (at the MM level), R2 =
0.68, especially after removal of 1−3 outliers. Even better results
were obtained after SEQM minimization of the structures (R2 =
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0.96). Similar results were obtained with the PM3 method (R2 =
0.91). Unfortunately, uncertainties of the estimated affinities
were not reported, so it is not possible to judge the statistical
significance of the reported results, because MM/PBSA typically
gives a poor precision when based on averages over only 18
snapshots.29,167

The MMPBSA.py script in the AMBER software allows
running QM/MM-PB(GB)SA with SEQM methods in an
automatic manner, in the same way as standard MM-PB(GB)SA
postprocessing of MD snapshots.325 This means that the three
first terms in eq 8 are replaced by the QM/MM energy in
AMBER,326 whereas the three last terms are kept. Sippl et al.
applied this implementation for the rescoring of potential
inhibitors of Myt1 kinase.327 The QM system included the ligand
and residues within 5 Å, and it was treated by the AM1 and RM1
methods. The entropy was estimated from the number of rotable
bonds in each ligand. They showed that QM/MM-GBSA
successfully could discriminate 5 active inhibitors from 11
nonbinders, in contrast to docking with the GOLD software235

and MM/PB(GB)SA calculations. RM1 gave the best results,
whereas AM1 gave one incorrect prediction. Calculations based
on minimized structures or MD snapshots gave similar results.
Then they used QM/MM-GBSA with RM1 to predict the
binding of 23 known kinase inhibitors. Five of these were
predicted to bind, and they were subsequently tested for binding,
showing three of them actually inhibited the enzyme. However,
the correlation between the predicted and measured binding
strengths was poor (R2 = 0.12).
Many studies have instead used DFT calculations for the

ligand and a few nearby groups. We developed the first such
approach by replacing the first three terms in eq 8 with a QM/
MM energy.328 The method was primarily directed toward
metalloproteins, for which it is hard to obtain accurate MM force
fields. Therefore, the entropy was calculated only for the QM
system, whereas the entropy of the MM system was omitted (as
is often done also in standard MM/PBSA167). The solvation
energy was calculated with either the PB or GBmethod, and both
EE and ME approaches were used for the QM/MM calculations.
Moreover, we tested basing the calculations on QM/MM-
minimized structures or ensembles from MD simulations, in
which the QM system was kept fixed. Finally, we tested whether
crystal water molecules should be treated as a part of the protein
or as a part of the solvent. All these approaches gave comparable
results and reproduced strict QM/MM-FES results for reaction
energies in two enzymes appreciably better than standard QM/
MM energies (MADs of 4−22 kJ/mol, compared to 29−32 kJ/
mol). The only exception was when separate MD simulations of
the reactant and product states were used, which gave a useless
precision.
This method was then used to study the binding of six Ru-

containing ligands to cathepsin B.195 The TPSS/def2-SV(P)
method was used for the ligand and the side chain of the Cys
residue that coordinated to the Ru ion. Only the ME-QM/MM
variant and PB solvation were used, but we tested to calculate the
point charges of the QM system either from a vacuum wave
function or from a wave function polarized by point charges of
the MM surroundings. The QM/MM-PBSA energies gave a
decent correlation to the experimental affinities if the protein was
kept fixed in the optimizations (R2 = 0.59), whereas no
correlation was found if the protein was relaxed, owing to the
local-minimum problem.329 The results with the fixed protein
were strongly improved by performing QM/MM-PBSA on
snapshots from MD simulations with a fixed QM system (R2 =T
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0.91). In this case, the full energy function also gave a better
correlation than the QM energy alone (R2 = 0.76). However, the
estimated free energies showed a much larger range than the
experimental ones (176 kJ/mol, compared to 12 kJ/mol),
indicating that the energies are overestimated and that the good
correlation comes mainly from the correct identification of the
best and worst binders.
Zhan and co-workers have used a similar approach for

metalloenzymes.330−332 They combined pseudobond QM/MM
energies with PBSA solvation, using RESP charges from the
QM/MM calculation, and an entropy term from a simple count
of the number of rotable bonds lost during the binding and the
number of water molecules displaced by the ligand. They used
the B3LYP density functional with either the 6-31G* or 6-31+G*
basis set for the ligand and the metal ion(s), together with their
first-sphere ligands, as well as a few nearby residues. In the first
studies, a single QM/MM-optimized structure was used, but in
the later study, 10 structures were optimized, starting from
snapshots from an MD simulation. The method was employed
for two phosphodiesterases and cytochrome P450 2A6 with
good results after the fitting of one parameter (the entropy of
each rotable bond), e.g., R2 = 0.87 for the binding of four
inhibitors to CYP 2A6 (but the standard errors in the calculated
estimates are not reported).
Leonidas and co-workers have also used a similar approach in a

series of studies of phosphorylase b.333−335 They employed a
single docked structure (sometimes relaxed by a QM/MM
optimization) and used DFT (B3LYP or M06-2X) with the 6-
31+G* basis set for the ligand only or for the ligand and two
nearby residues. The PB solvation energy was calculated from the
QM charge density. They used a standard MMNMA entropy. In
several cases, they showed that QM/MM-PBSA, but not the
docking score, could explain experimental ranking of small sets of
ligands, owing to important desolvation, π-stacking, and σ-hole
binding.
In one case, instead a QM-cluster approach has been used:

Wang and co-workers used a DFT method with a SZP basis set
for the ligand but a minimal SZ basis for the closest 24 amino acid
residues (5.5 Å) in a study of five inhibitors binding to CDK2.193

They performed a 1 ps QM MD simulation of the complex. For
800 snapshots, they added PBSA continuum-solvation energies,
calculated at the MM level with Mulliken charges for the ligand.
Unfortunately, this is shorter than the typical correlation time of
binding interaction energies,177 so in practice this means that
they have sampled the same energy 800 times. Still, they obtained
good correlation to experimental data, R2 = 0.87.
The PMISP method has been used in an MM/PBSA-like

approach to compute binding free energies for seven ligands to
avidin at the MP2/cc-pVTZ level.336 The calculations were
performed on 10 snapshots per ligand from an MD simulation at
the MM level. Entropies were taken directly from the
corresponding MM/PBSA calculation. Solvation energies were
calculated for the full protein with the polarizable multipole
model (obtained at the B3LYP/6-31G* level). However, if both
the polar and nonpolar PCM terms were included, poor results
were obtained (positive binding affinities and R2 = 0.27).
Appreciably better results were obtained if instead the standard
SASA nonpolar solvation energy was employed (R2 = 0.52 and
MADtr = 19 kJ/mol). However, the results were still worse than
the MM/PBSA results (R2 = 0.96 and MADtr = 14 kJ/mol).
Later, we showed that the problem of the nonpolar energy was
caused by the fact that continuum-solvation models fill the

binding cavity with solvent.337,338 If this was avoided, PCM gave
the more accurate results.
A few FMO calculations have also been performed on MD

snapshots. Kuwata et al. have studied a trisaccharide binding in
two modes to lysozyme at the MP2/cc-pVDZ level.339 The
calculations were based on 40 snapshots from a 50 ps MD
simulation, and the calculations explicitly included all water
molecules within 8 Å from the ligand. No additional implicit
solvation or entropy effects were considered. Unfortunately, the
uncertainty in such explicitly solvated calculations was very large
(in that case 13 kJ/mol for the difference of the two binding
modes). They observed transfer of∼3 electrons from the solvent
to the protein.
On the other hand, Shigemitsu developed a true FMO/PBSA

approach.340 He studied the binding of three ligands to the DJ-1
protein. For four snapshots from an MD simulation, he
calculated the FMO energy at the HF and MP2/6-31G* levels
(the former both with and without an empirical dispersion
correction). These energies replaced the Eint + Eel + EvdW energies
of standard MM/PBSA and MM/GBSA calculations (with 100
snapshots). Unfortunately, both the MM/PB(GB)SA and
FMO/PB(GB)SA methods gave strongly positive binding
energies (but a correct ranking of the two ligands with
experimental affinities). Docking calculations gave reasonable
absolute affinities but an incorrect ranking. Moreover, the MM/
PB(GB)SA had an uncertainty of∼10 kJ/mol, indicating that the
FMO results (based on only four snapshots) would have a 5-fold
larger standard error (not reported).
Several studies have instead used linear-scaling SEQM

methods: Already in 2005, Merz and co-workers developed an
all-protein linear-scaling SEQM variant of MM/PBSA, QM-
PBSA.341 They used the same approach as for their single-point
calculations on crystal structures:246,308 SEQM energies were
calculated for the whole protein−ligand complex, including a PB
continuum-solvation model. To this was added an MM
dispersion term, together with an SASA term for the nonpolar
solvation free energy. However, the conformational entropy was
calculated by an MM NMA, as in standard MM/PBSA. The
calculations were performed on 50 snapshots from an MD
simulation at the MM level, but each snapshot was minimized by
QM/MM using AM1 or PM3 for the ligand, six protein side
chains, and a water molecule. The method was employed to
calculate the affinity of benzylpenicillin and cephalosporin to the
TEM-1 β-lactamase, showing that the former binds strongest,
although the difference was not statistically significant, owing to
the poor precision of the method (standard errors of 20−36 kJ/
mol). The results of the AM1 and PM3methods agreed mutually
within 4 kJ/mol.
In 2011, Anisimov and Cavasotto suggested the MM/QM-

COSMO method.342 In this method, the energy of the full
protein was calculated with the PM3method, including COSMO
continuum solvation and an SASA term. The SEQM calculations
were performed on 1000 snapshots from an MD simulation of
the complex at the MM level, followed by 100 steps of energy
minimization at the PM3 level. To this was added an MM NMA
entropy correction, but also terms for the change in the
translational and rotational energies obtained from configura-
tional integrals based on the movement of the ligand in the MD
simulations. After optimization of the COSMO atomic radii for
PM3, they obtained a good agreement between experimental and
MM/QM-COSMO binding energies with an MAD of 3 kJ/mol
and R2 = 0.68 for the binding of five tetrapeptides to the Lck SH2
domain. This was much better than standard MM/PB(GB)SA

Chemical Reviews Review

DOI: 10.1021/acs.chemrev.5b00630
Chem. Rev. 2016, 116, 5520−5566

5548

http://dx.doi.org/10.1021/acs.chemrev.5b00630


T
ab
le
7.
Su
m
m
ar
y
of

LI
E
-T
yp
e
A
pp

ro
ac
he
sa

gr
ou
p

re
f

ye
ar

va
ria
nt

m
et
ho
d

Q
M

M
D

st
ru
ct
ur
e

so
lv
at
io
n

fi
t

co
m
m
en
ts

re
ce
pt
or

no
.

R
2

B
al
az

34
9

20
05

Q
M
/M

M
(E
E)

B
3L

Y
P/

LA
V
3P

**
L
+
5
aa

M
M

av
er
ag
e
M
D

SA
SA

3
M
M
P-
9

28
0.
90

B
al
az

35
0

20
07

Q
M
/M

M
(E
E)

B
3L

Y
P/

LA
V
3P

**
L
+
5
aa

M
M

M
D

po
la
r
an
d
no
np
ol
ar

SA
SA

4
M
M
P-
9

28
0.
90

B
al
az

35
1

20
07

Q
M
/M

M
(E
E)

B
3L

Y
P/

LA
V
3P

**
L
+
5
aa

M
M

av
er
ag
e
M
D

SA
SA

3
M
M
P-
3

28
0.
90

T
uñ
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calculations which gave large absolute errors (>40 kJ/mol) and
R2 = 0.01−0.14. The same method was also used for the binding
of five tetrapeptides to BRCA1. This gave R2 = 0.47, slightly
better than for the MM/PBSA method (R2 = 0.37).343

We have used a similar approach to calculate binding free
energies:344 We replaced the first four terms in eq 8 with an
SEQM energy, calculated in COSMO solvent for the whole
protein−ligand complex, but used the standard MM/PBSA
terms for the entropy and the nonpolar solvation energy.
Structures were obtained from MD simulations at the MM level
(40 snapshots), without any optimization. We compared the
performance of three SEQM methods, AM1, RM1, and PM6,
and tested the inclusion of two types of dispersion corrections
and one type of hydrogen-bond correction. The method was
tested for the binding of seven biotin analogues to avidin, nine
inhibitors to blood-clotting factor Xa, and nine phenol
derivatives to ferritin. As often observed with end-point
methods,167 the results varied and were nonconclusive, except
that a dispersion correction was mandatory. On average, AM1
with the DH2 correction gave the best results, but the results
were not significantly better than those of the standard MM/
GBSA approach. The time consumption was only ∼1.5 times
larger than forMM/GBSA, because it was dominated by the time
for the MD simulations and the entropy calculation.
Finally, Skylaris and co-workers have suggested a QM-PBSA

method in which the entire protein was treated by a linear-scaling
DFT method (PBE with pseudopotentials).345 The DFT energy
was complemented with a dispersion correction. The polar
solvation energy was obtained with PB at theMM level, but it was
scaled by the quotient between the DFT energy and the
electrostatic MM energy raised to the power of 0.91 (obtained
from a fit). To this was added an unscaled SASA energy, whereas
the entropy term was obtained from an NMA at the MM level.
They studied the binding of two 15-peptide moieties to 163
residues of RAD51 (2800 atoms) and employed averages over 40
snapshots. Unfortunately, no comparison with experimental data
was done, only to standard MM/GBSA calculations. The
approach was then used for the tennis-ball host−guest system,
using a slightly different scaling of the solvation energies.346 The
QM-PBSA ΔHbind values agreed with experimental data much
better than MM/PBSA. However, QM-PBSA overestimated the
binding by 23−35 kJ/mol, although the correlation for the three
ligands was reasonable, R2 = 0.66.
In 2014, they applied the QM-PBSA method to the binding of

eight ligands to a T4 lysozyme mutant (2602 atoms).347 This
time they had implemented a continuum-solvation model in the
DFT calculations, thereby avoiding the doubtful scaling of the
MM solvation energy. A total of 50 snapshots were employed for
the energies, giving a statistical precision of 2−3 kJ/mol. Special
corrections were added for the nonpolar solvation term for the
buried binding site. Two of the studied ligands were nonbinders
according to experiments, but QM-PBSA could identify only one
of them (none with MM/PBSA). Excluding these ligands, QM-
PBSA gave a decent MAD of 7 kJ/mol compared to the
experimental results, appreciably better than that of MM/PBSA
(23 kJ/mol). On the other hand, it gave a correlation line with an
incorrect slope, whereas MM/PBSA gave a correct correlation
with R2 = 0.51. However, the range of the experimental estimates
was only 6 kJ/mol, which would be very hard to reproduce (the
ranges of the QM-PBSA and MM/PBSA methods were 18 and
23 kJ/mol, respectively).
In conclusion, a variety of QM(/MM)-PBSA approaches have

been suggested. These have employed many different QM

approaches, using QM only for the ligand, also for the nearest
amino acids, or for the full protein. Docked, minimized structures
or MD snapshots have been used. When employed for several
systems, no uniformly improved performance has been observed.
This has also been observed at the MM level;167 the MM/
PB(GB)SA approach seems to give an uneven performance for
different systems, and it is very sensitive to the continuum-
solvation model used, giving binding affinities that can vary by
210 and 85 kJ/mol in absolute and relative terms.348 Therefore,
we doubt that MM/PB(GB)SA is accurate enough to allow for a
consistent improvement by the use of QM calculations. On the
other hand, it is quite clear that the continuum-solvation energy
provides a consistent improvement over plain QM/MM
energies328 and that the QM(/MM)-PBSA approach provides
an interesting paradigm to include most effects being important
for ligand binding.

4.2. LIE-Type Approaches

Fewer groups have used LIE-type approaches to include QM
effects into binding-affinity estimates, as can be seen in Table 7.
In 2005, Balaz et al. developed a QM/MM-LIE approach.349

They studied 28 hydroxamate inhibitors of matrix metal-
loproteinase 9. Structures were first docked by FlexX. The best
structure with the ligand binding to Zn was then optimized by
EE-QM/MM. The QM system involved the ligand, the Zn ion,
side chains of the three His Zn-coordinating residues, one Glu
side chain (accepting a hydrogen bond from the ligand), and the
backbone between two of the residues. Only protein atoms
within 5 Å of the ligand were optimized. The B3LYPmethod was
used for theQM system and theOPLS-AA force field for theMM
system. Next, MD simulations at the MM level were performed
with Zn−ligand distances restrained to those found in the QM/
MM structures and Mulliken charges for the QM system. Only
residues within 5 Å of the ligand were allowed to move. The
simulation was run for 200 ps, and 2000 structures were
collected, averaged, and minimized. Therefore, only a single
structure was studied in the final step, in which a single-point
QM/MM energy was calculated, together with an SASA term.
Three terms were fitted to the experimental data, viz., the QM/
MM and SASA energies, as well as a constant term. The docking
score gave no correlation with the experimental data (R2 = 0.04),
but the QM/MM energies gave a much improved correlation (R2

= 0.50), although they were completely dominated by the SASA
term, giving the same correlation alone. Even better correlation
was obtained from theMD-averaged structures (R2 = 0.76), again
dominated by the SASA term. However, the best correlation was
obtained from the QM/MM + SASA calculations (R2 = 0.90),
although it should be remembered that this involved the fitting of
three parameters.
Two years later, they studied the same system, but extended

the number of parameters by considering both polar and
nonpolar SASA. They also treated averages over each 25 ps
simulation as a separate binding mode.350 The results were
somewhat improved for the pure MM approach (R2 = 0.84, most
likely owing to the increased number of fitting parameters), but
not for the QM/MM-LIE approach (R2 = 0.90). They also used
the original approach to study the binding of the same ligands to
a related protein, MMP3.351 The results were similar: The
correlation increased steadily from the docking (R2 = 0.06), the
QM/MM minimization (R2 = 0.46), MM-LIE (R2 = 0.81), and
QM/MM-LIE (R2 = 0.90). If the three adjustable parameters
were fitted for both MM3 and MMP9 simultaneously, the fit was
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deteriorated to R2 = 0.77, and nearly identical results were
obtained without the QM/MM term (R2 = 0.76).
In 2012, the method was extended to also consider multiple

protonation and tautomeric states.352 They studied the binding
of 66 inhibitors of a protein kinase with up to five different
ionization states and seven tautomers. The QM system involved
the ligand, two full residues, and the backbone of three other
residues, and it was treated at the B3LYP/6-31G** level. Only a
single SASA term was included. Again, the results were strongly
improved when going from docking, via QM/MMminimization
and MM-LIE, to QM/MM-LIE (R2 = 0.00, 0.20, 0.35, and 0.91).
Without the multistate treatment of the tautomers and ionization
states, the correlation was appreciably worse, R2 = 0.66.
Tuñoń and co-workers have developed another QM/MM-LIE

approach in which they evaluated the average QM/MM
interaction energy between a QM ligand and an MM protein
from 1 ns QM/MM-MD simulations of 11 inhibitors of HIV-1
integrase.353 They employed the AM1 method and obtained a
quite good correlation with experimental affinities, R2 = 0.82.
However, the calculated differences between the various
inhibitors were more than 10 times larger than the experimental
ones. In a related study of the same enzyme with three inhibitors,
they calculated interaction energies at the ME-QM/MM level
with BLYP/6-31G* calculations for the ligand and a single Mg
ion in the QM system, using a single structure optimized from
the last MD snapshot.354 In the QM/MM MD simulation, the
ligand was treated by AM1, whereas the rest of the protein was
described by MM. In another investigation, they studied a
mutant of the enzyme, reproducing the experimentally observed
decreased affinity of the ligand.355

They also used the original method to study the binding of five
inhibitors to CDK2.356 The QM/MM-MD simulation was 350
ps. They obtained a good correlation between experimental IC50
values and QM/MM interaction energies (R2 = 0.85), although
the calculated energies were very large (up to −520 kJ/mol) as
were the reported uncertainties (12−34 kJ/mol). They also
attempted an LIE-like fit to the electrostatic and van der Waals
QM/MM components, which increased the correlation to R2 =
0.95.
Xiang et al. used a similar approach to study the binding of

eight cyclic peptides to αVβ3 integrin.
357 They performed short

(150 ps) QM/MM MD simulations on docked structures,
employing AM1 for the peptide inhibitors only. They showed

that a linear fit of the average QM/MM interaction energy
correlated with the binding affinity (R2 = 0.80). Even better
correlation was obtained by fitting separately the electrostatic
and van der Waals components of the QM/MM energy (R2 =
0.88).
Finally, FMO interaction energies have been used as a

descriptor in LIE (or almost QSAR-like) approaches: Chuman
and co-workers studied the binding of 12 inhibitors to HIV-1
protease.358 They employed the HF/6-31G method on 10 MM-
minimized snapshots from an MD simulation without any
solvation. The fit was based on the binding or interaction
energies, supplemented with SASA and constant terms. They
obtained a good correlation to experimental affinities (R2 = 0.81).
In a later study, they used a similar approach to study the binding
of 16 sulfonamide ligands to carbonic anhydrase.359 However,
they used only five structures obtained from a cluster analysis of
the MD snapshots and then optimized by EE-QM/MM using
HF/6-31G* for the ligand and the catalytic Zn ion and its three
His ligands. In a later study, they used single structures for the
FMO calculations, but averages over 50 MD structures for the
solvation energies.360 They obtained a good correlation to
experimental data for both PB and GB solvation (calculated at
the MM level), after fitting two parameters, R2 = 0.96 and 0.88,
respectively, for the binding of six ligands to neuraminidase.
Thus, only four groups have employed QM-LIE approaches,

all based on QM/MM or FMO calculations, but three groups
have used this approach systematically for several different
systems. Only a single study used a QM method which includes
dispersion effects, and all studies have been performed with too
small basis sets to give any reliable results. Still, quite good results
have been obtained, but it is not clear whether this is mainly an
effect of the fitting of some parameters or is really caused by the
QM calculations.

4.3. Other Approaches

Muddana and Gilson have rescored 29 small ligands docked to
the cucurbit[7]uril host systems with the mining minima (M2)
approach, using the PM6-DHmethod coupled with the COSMO
implicit solvation model.156 After removal of a systematic error,
they obtained anMAD of 7 kJ/mol and R2 = 0.91 to experimental
affinities. The SEQM results were better than those obtained by
MM. However, two years later, they used the same approach to
calculate binding free energies for 14 small ligands binding to the
cucurbit[7]uril host in the SAMPL4 blind challenge.361 In this

Table 8. Summary of Strict FES Binding Studiesa

group ref year FES QM method QM syst comments receptor no. R2

Reddy 363 2007 EA AM1 L fructose-1,6-
bisphosphatase

5 0.98

Essex 376 2011 elstat-ssEA B3LYP/6-31G** L 3000 QM evaluations COX2 2
Reddy 364 2012 EA AM1 L fructose-1,6-

bisphosphatase
14 0.99

Moliner 365 2012 EA, US AM1 L HIV-1 RT 5
Ryde 216 2014 ssEA, NBB TPSS-D3/def2-

QZVP′
L + H + 6 Å W octa-acid host 8 0.6−0.7

Mulholland 377 2015 MH-MC BLYP/aug-cc-pVDZ L 180000 QM evaluations neuraminidase 8
Ryde 378 2015 ssEA, NBB BLYP-D3/def2-TZVP L + 4.5 Å polarized multipole

MM
galectin 3 2

Ryde 379 2016 ssEA PM6-DH2X L + 4.5 Å 60000 QM evaluations octa-acid host 8 0.32
NBB 0.15

aThe table lists the research group, the reference, the publication year, the FES method used (US = umbrella sampling, MH-MC = Metropolis-
Hastings Monte Carlo, ssEA = single-step exponential averaging, NBB = non-Boltzmann BAR), the QM method used, the size of the QM system (L
= ligand, H = host, W = water, and Å gives the maximum distance to the ligand), possible comments, the receptor used, the number of systems
studied, and the obtained correlation coefficient. All calculations employed QM/MM methods.
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case, they obtained a much better correlation with MM + PBSA
than with SEQM (R2 = 0.74 and 0.24, respectively).
Merz and co-workers have suggested another method to

estimate free energies.157 They studied the L99A T4 lysozyme
mutant with eight different ligands. Protein residues within 5 Å
from the ligand were minimized withMMwithout the ligand and
solvent. The ligands were then put into the rigid binding site and
were systematically translated and rotated, and all rotable bonds
were systematically sampled. All poses that did not overlap with
protein atoms were added to an ensemble of reasonable
structures. The free ligand was treated in a similar way (no
translation or rotation needed). Free energies were directly
estimated from conformational integrals. The best results were
obtained with the PM6-DH2 method combined with the
COSMO model (R2 = 0.68), whereas the SMD model and
MM calculations gave slightly worse results (R2 = 0.56 and∼0.5).
However, the calculated energies were much too negative (e.g.,
by ∼40 kJ/mol for PM6-DH2/COSMO), the slopes were far
from unity, and the maximum relative error was ∼20 kJ/mol.
They suggested that this is probably an effect of the rigid protein
and the implicit solvent. They also tried to improve the results by
adding corrections for systematic errors from reference
calculations,148,149 which changed the absolute and relative
affinities by ∼4 and ∼2 kJ/mol, respectively.

5. FREE-ENERGY SIMULATIONS

The statistical mechanically strict way to obtain binding free
energies is to perform free-energy simulations (FESs). However,
these require extensive sampling of the receptor−ligand complex
and various intermediate states, making them computationally
very demanding. Therefore, full FES simulations for ligand
binding have been performed only at the SEQM/MM level and
in only a few cases. It has been more common to perform the
sampling at theMM level and then try to extrapolate these results
to the QM level. The studies are summarized in Table 8 and are
described in two separate subsections.

5.1. FES Simulations

Reddy and Erion have used QM/MM-FES to calculate the
binding free energies of five inhibitors of fructose-1,6-
bisphosphatase.362 They used AM1 for the ligand and MM for
the protein and solvent. With standard EA, they obtained results
with a suspiciously high accuracy: Five relative binding affinities
were reproduced with an error of less than 1.4 kJ/mol, although
the reported statistical uncertainties of the calculated affinities
were 1.9−2.5 kJ/mol. The results obtained at the MM level were
almost equally good, with a maximum error of 2.1 kJ/mol. The
SEQM calculations increased the computational time by a factor
of 5. The same approach was later used to study the binding of
some other inhibitors to the same enzyme.363 Again, excellent
results were obtained for 22 relative binding affinities, with
maximum errors of 1.7 and 3.3 kJ/mol for SEQM and pure MM,
respectively, although the reported uncertainty in the relative
energies is 3.8 kJ/mol.
Likewise, Moliner et al. have used QM/MM MD simulations

to perform two types of free-energy calculations, alchemical FES
calculations and umbrella sampling potential-of-mean-force
calculations, for five ligands binding to HIV-1 reverse tran-
scriptase.364 Only the ligand was in the QM system, and the AM1
method was employed. They used 100MD simulations of 100 ps
each to turn off first the charges and then the van der Waals
interactions, thereby giving absolute binding affinities. The study
analyzed the sampling requirements, but unfortunately, the

demanding energy function prohibited a proper convergence of
any of the methods.
5.2. Reference-Potential Methods

A slightly more common approach has been to perform the
sampling at the MM level and then evaluate QM/MM energies
only for a restricted number of snapshots. The problemwith such
an approach is that the energy functions used for the simulations
and the perturbations are not the same, so that eq 7 (or similar
formulas) cannot directly be applied to the QM/MM energies.
Instead, valid QM/MM free energies should be obtained either
by an MM → QM/MM FES calculation, employing the
thermodynamic cycle in Figure 7a,129,365,366 or by reweighting

the MM snapshots with the QM/MM energy function (Figure
7b), e.g., by the non-Boltzmann BAR approach (NBB).367 Such
approaches have been used quite extensively for enzyme
reactions,44,129,365,366,368,369 for solvation free energies,370−375

and in a few cases also for ligand binding.216,376−379 The
challenge with these approaches is to obtain converged results for
the MM→QM/MM perturbation, which must be performed in
a single step to avoid the need of QM/MM sampling, i.e., to
ensure that the overlap of the distributions generated by the MM
and QM/MM potentials is large enough. For enzyme reactions,
proper convergence has been obtained by keeping the QM
system fixed,129,365,366 but for binding affinities, such an
approximation seems inappropriate, because the entropy and
reorganization of the ligand is crucial for the binding.
In 2011, Essex and co-workers suggested a method to include

QM calculations in binding free-energy calculations.376 They first
performed a standard FES calculation at the MM level. For a
number of snapshots of the end states, they then performedQM/

Figure 7. (a, top) Thermodynamic cycle to obtain relative QM/MM
binding free energies. We can obtain the desired binding energy by
ΔGL1→L2

QM/MM = ΔGL1→L2
MM − ΔGL1

MM→QM/MM + ΔGL2

MM→QM/MM (and similar

for the free ligands in water solution). If the QM/MM and MM
potentials are similar enough, it may be enough to use sampling at the
MM level. (b, bottom) Method of reweighting MM simulations to
conform to theQMpotential surface. Inmany applications, only the first
and last points are reweighted to the QM/MM surface, whereas the
remainder of the binding is studied only on the MM surface.
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MM single-point energy calculations to estimate the free energy
of going from MM to QM/MM using a single-step EA (ssEA)
calculation (Figure 7a). However, to avoid convergence
problems, they considered only the electrostatic interaction
energy between the ligand and the surroundings, calculated
either with QM/MM or with MM (i.e., two QM calculations
were performed for each snapshot and state, one with a point-
charge model of the surroundings and one in vacuum). After
testing and evaluating the method on the difference in hydration
energy of CH4 and H2O, they applied it to study the difference in
binding affinity of two inhibitors of COX-2, differing in one
single group (−OH or −CH3). They used the B3LYP/6-31G**
method for the ligand only and performed the calculations on
3000 snapshots for each state, both inside the protein and in
water solution. They obtained a result that was appreciably closer
to experiments than that obtained at the MM level (deviations of
1 and 7 kJ/mol, respectively, for the difference in affinity of 19 kJ/
mol). The uncertainty was only 2 kJ/mol (but this was still 5−10
times larger than at the MM level, owing to the lower number of
snapshots employed for the averages).
Mulholland and co-workers have used a different approach to

calculate the absolute binding affinity of water molecules in two
conserved binding sites of neuraminidase.377 The water
molecules were rigid and were treated at the BLYP/aug-cc-
pVDZ level of theory, whereas the surroundings were treated by
MM. They employed eight λ values, i.e., performing sampling
withQM/MM, usingMonte Carlomethods. However, they used
the Metropolis−Hastings MC (MH-MC) approach370 to reduce
the number of QM calculations by a factor of 500. Still, 160000
QM energy evaluations were used for each state. They found that
the TIP4P→ QM correction was significant for all eight studied
water molecules, amounting to 2−12 kJ/mol, more for the polar
site than for the hydrophobic site. The statistical uncertainty was
up to 4 kJ/mol. Unfortunately, there were no experimental
affinities for comparison.
Both these studies included only the ligand in the QM system.

However, to fully exploit the advantage of the QM methods, it is
necessary to also include the nearest surroundings of the ligand.
We have done this in three studies: In the SAMPL4 blind-test
competition, we tried to improve MM FES results by DFT-D3
calculations for the octa-acid host−guest system.216 For 100
snapshots from the end states and from the intermediate λ = 0.5
state, we performed QM/MM calculations at the TPSS-D3 level
of theory (including three-body dispersion corrections), using
the def2-QZVP′ basis set for the ligands and the def2-TZVP basis
set for the host and water molecules within 6 Å of the ligand
(287−312 atoms in total). To make the energies more stable,
only the difference in interaction energies betweenQM/MMand
MM was considered (i.e., E(RL) − E(R) − E(L) using the same
geometry for all three calculations; this has been shown to be a
valid approximation in another study involving full QM/MM
FES380). If the MM → QM/MM correction was used as an
extrapolation, a reasonable standard error could be obtained (2−
3 kJ/mol). However, if the strict ssEA approach was used (Figure
7a), the standard errors were much larger, 3−23 kJ/mol.
Reweighting with the NBB approach (Figure 7b) gave a slightly
lower uncertainty, 5−13 kJ/mol. All three approaches repro-
duced experimental affinities worse than FES at the MM level,
with R2 = 0.6−0.7 andMAD= 13−23 kJ/mol (0.84 and 4 kJ/mol
at the MM level), probably owing to the large uncertainties.
We have also used a similar approach for a protein system, viz.,

the relative binding affinity of two substituted disaccharides to
the carbohydrate-recognition domain of galectin 3.378 For 100

snapshots of the end states and the λ = 0.3 state, we calculated
BLYP-D3/def2-SV(P) interaction energies. The QM system
included the full ligand, as well as all protein groups and water
molecules within 6 Å, in total 744−748 atoms. For 20 snapshots,
CP corrections were calculated, and for 10 snapshots, more
accurate BLYP-D3/def2-TZVP energies were calculated. The
effect of the basis set was significant, 6−7 kJ/mol, and the CP
correction for the def2-TZVP basis set was still 2−4 kJ/mol. The
surroundings were modeled by the same polarizable multipole
(up to quadrupoles) description as in the PMISP approach, also
obtained at the MFCC/BLYP/def2-SV(P) level of theory. As for
the octa-acid system, we hadmajor problems converging theMM
→ QM/MM perturbations: ssEA and NBB calculations gave
standard errors of 14 and 23 kJ/mol, respectively. Therefore, we
had to employ BAR calculations directly on the QM/MM
energies, although this ignores the differences in the structures
sampled by MM and QM/MM potentials. Still, this gave a
difference in the binding affinity of the two ligands of 3 ± 3 kJ/
mol, which was essentially identical to that obtained at the MM
level, 3.6. ± 0.5 kJ/mol, and quite far from the experimental
estimate of 10 kJ/mol.
Very recently, we have studied how many QM calculations are

needed to obtain converged MM→QM/MM perturbations for
the octa-acid system.379 We sped up the calculations by using a
neutralized host molecule, slightly smaller QM systems (waters
within 4.5 Å of the ligand, 158−224 atoms), and the much
cheaper PM6-DH2X method. Then we could obtain converged
QM/MM binding energies (a standard error of 1 kJ/mol for all
eight perturbations) with 60000 snapshots for each of the end
states, employing ssEA with a cumulant expansion.381,382 On the
other hand, theNBB result still showed an uncertainty of 2−7 kJ/
mol, and it required twice as many QM evaluations. All except
one (small) MM → QM/MM correction was in the correct
direction (i.e., toward experimental data), but they were mostly
too large so that no net improvement of the binding affinities was
observed (R2 = 0.0 was much worse and MAD = 5 kJ/mol was
slightly worse than for MM). However, this was not the aim of
the study, and it was perhaps not expected for such a simple
SEQM method.
In conclusion, QM methods have also started to be used for

FES calculations. Undoubtedly, this is the ultimate goal of the
QM methods, because the FES approaches are limited only by
the sampling and the energy function. Therefore, it is only for
such methods that a consistent gain of improving the energies
can be expected. However, we have seen that such calculations
are extremely demanding and that there are great problems to
obtain converged results. Clearly, a large number of QM
evaluations are needed for accurate results, but it is so far not
certain whether these are most efficiently used for single-point
energy evaluations on MM snapshots or directly in QM/MM
MD simulations.

6. CONCLUDING REMARKS

This review has illustrated the great interest of using QM
calculations to improve estimates of binding affinities. This is
quite natural, considering the increasing awareness of the
shortcomings of standard MM force fields. In particular, QM
calculations automatically include effects of polarization, charge
transfer, charge penetration, and the coupling of the various
terms.Moreover, QM avoids the need of parametrization of force
fields for the ligands, which is a tedious and time-consuming
procedure, if you aim at accurate results. QM can also
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consistently treat the formation of covalent or metal-coordina-
tion bonds.
Many different QM methods have been employed, ranging

from cheap SEQM approaches, via DFT, to strict MP2 and
CCSD(T) calculations. In the latest decade, numerous
calibration studies of various QM methods have been presented
and dispersion corrections to DFT have been developed, giving
strongly improved results for nonpolar interactions and large
systems. Thereby, DFT methods have become a competitive
alternative to the more expensiveMP2 calculations. Likewise, the
SEQM methods have been extended with dispersion and
hydrogen- and halogen-bond corrections, bringing them
appreciably closer to CCSD(T) reference values.
The calibrations have also emphasized the importance of large

basis sets for DFT and, in particular, correlated QM methods.
SVP calculations give poor results and enormous BSSEs, which
seem to be overestimated by CP corrections. Not even TZVP
calculations are converged (within the desired accuracy of∼6 kJ/
mol), so basis sets of QZVP quality seem to be required (at the
DFT level) to obtain reliable results. For correlated methods,
basis-set extrapolations or explicitly correlated calculations
should be used. The need for large basis sets is very problematic
for FMO, which breaks down for large basis sets. A problem for
DFT calculations with large (and diffuse) basis sets is that the
energy calculations sometimes can converge to multiple states or
saddle points.125,383 Finally, it should be noted that the self-
interaction error in DFTmethods often leads to a partial transfer
of charge between zwitterionic systems, which can give rise to
wrong electronic states when applied to significant parts of a
receptor or a charged ligand.384 Large portions of HF exchange
or range-separated functionals seem to be needed to avoid that
problem.
Still, the calibration studies show that there is a significant

improvement in the results going from SEQM, via DFT-D, to
CCSD(T). On the other hand, the time consumption also
increases strongly along this series, e.g., by a factor of ∼1000
between SEQM and DFT-D. This determines the size of the
systems that can be studied by the various methods. With SEQM,
a full protein can be studied, with DFT-D up to ∼2000 atoms,
and with local CCSD(T) methods ∼200 atoms. Fragmentation
approaches can increase this limit, but they may introduce
approximations (e.g., exclusion of many-body effects) that easily
may limit the accuracy. On the other hand, there aremany studies
that indicate that it may be enough to include groups within 4.5−
6 Å of the ligand (with a proper embedding),121,130,273 but it is
unlikely that calculations involving only the ligand in the QM
system will provide all improvements expected from QM
methods.
Finally, the amount of sampling is crucial for the results. The

statistical mechanically proper way to obtain binding free
energies is the use of free-energy simulations. So far, this has
only been performed with SEQM and only the ligand in the QM
system. Valid free energies can also be obtained by reference-
potential simulations (i.e., sampling at theMM level) followed by
reweighting or MM → QM perturbations (Figure 7).
Unfortunately, the large difference between MM and QM
makes the convergence of theMM→QMpoor, requiring a large
number of QM evaluations (∼60000).
Consequently, the bulk of the studies have used more

approximate approaches involving restricted or no sampling,
primarily MM/PBSA-like approaches (based on a number of
MD snapshots of the receptor−ligand complex) or minimization
approaches (based on a single structure, possibly preceded by a

docking or some sort of conformational search). We have
emphasized in this review the importance of including all
important terms for ligand binding, i.e., large basis sets,
dispersion corrections, polar and nonpolar solvation, and
entropy. Otherwise, it is unlikely that the method will give
reliable and transferable results (but proper trends can be
obtained for certain systems dominated by one type of
interaction, and for most systems good geometries are obtained
by QM/MM minimization). In this respect, the approaches by
the Merz, Hobza, and Grimme groups show the largest promise,
but also theQM(/MM)-PBSA approaches include the important
terms. However, there is always the risk that themissing sampling
may make these approaches too approximate, hiding the gain of
the use of QM. In fact, this was our conclusion after trying to
improve the MM/GBSA approach with QM methods in a series
of ∼10 studies.167
From reading this paper, you can easily get the impression that

inclusion of QM methods nearly always improves calculated
binding affinities. This is not an accurate picture; in our hands,
QM methods mostly have given comparable or even worse
results than MM methods.216,344,336 The apparent success is
probably an effect of the fact that it is easier to publish success
stories.385,386 Moreover, the performance of a method depends
on the quality measures used: Methods not based on FES or
fitting tend to overestimate energies and energy differences, and
QM methods often increase this overestimation. However, this
typically improves the correlation between experimental and
calculated affinities. Therefore, a correlation coefficient should
always be supplemented by a measure of the agreement in terms
of the free energy (MAD or RMSD), but such results are much
more seldom reported. We have tried to emphasize this problem
frequently in this review.
Therefore, the best estimates of the true accuracy of QM-

affinity methods come from blind-test competitions, in which the
results are not biased by experimental data. For the octa-acid
host−guest system in the SAMPL4 competition, the best results
were obtained by FES calculations at theMM level (MAD= 4 kJ/
mol; this system was ideal for an FES study of relative
energies).215,216 A similar accuracy (4−6 kJ/mol) was obtained
in three recent large-scale tests of MM FES of relative affinities in
a range of proteins.387−389 Attempts to extrapolate the octa-acid
results to the DFT-D level completely failed. On the other hand,
both we and the Grimme group obtained reasonable results
(MADs of 8−10 kJ/mol) with a DFT-D minimization approach,
although this was worse than for most MM methods.90,216

Similar results (MAD = 8 kJ/mol) were obtained also for the
binding to the cucurbit[7]uril host, which was more similar to the
results for MM methods (because this test case was less
appropriate for FES calculations for relative affinities). On the
other hand, Gilson and co-workers obtained better results with
MM than with QM for the same system (R2 = 0.74 and 0.24,
respectively).361 Thus, we tend to conclude that QMmethods do
not currently automatically provide a clear improvement in
computational estimates of binding affinities. This is probably
caused by a combination of several effects: insufficient sampling
and treatment of entropy effects, the use of rather crude
continuum-solvation methods, and the fact that a QM treatment
of most interactions (e.g., electrostatics, polarization, and
repulsion) gives rise to larger energy components (of opposite
signs) that require a higher precision to give accurate final results
(MM methods gain much from error cancellation). However,
this may change as it becomes possible to perform valid FES
simulations at the QM(/MM) level.
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ABBREVIATIONS

6-31+G* split-valence basis set with diffuse functions
6-31G* split-valence basis set
6-311G(2df,sp) triple-ζ basis set
AM1 Austin model 1 (semiempirical method)
aug-cc-pVTZ triple-ζ basis set with diffuse functions
B3LYP hybrid Becke and Lee−Yang−Parr den-

sity-functional method
BAR Bennett acceptance ratio FES method
BH&HLYP Becke half-and-half density-functional

method

BP86 Becke−Perdew 1986 density-functional
method

BSSE basis-set superposition error
CBS complete basis set
cc-pVDZ split-valence basis set
cc-pVTZ triple-ζ basis set
cc-pVQZ quadruple-ζ basis set
CCSD(T) coupled-cluster calculations with single,

double, and peturbatively treated triple
excitations

COSMO conductor-like solvent model
COSMO-RS COSMO for real solvent full solvation

method
CP counterpoise correction for the basis-set

superposition error
def2-SV(P) split-valence basis set
def2-TZVP triple-ζ basis set
def2-TZVPD triple-ζ basis set with diffuse functions
def2-QVP quadruple-ζ basis set
DFT density-functional theory
DFT-D3 Grimme’s dispersion correction
D3H4 dispersion and hydrogen-bond corrections

to semiempirical methods
D2H dispersion and hydrogen-bond corrections

to semiempirical methods
DH dispersion and hydrogen-bond corrections

to semiempirical methods
DH2X dispersion, hydrogen-bond, and halogen-

bond corrections to semiempirical meth-
ods

DLPNO-CCSD(T) domain-based local-pair natural-orbital
coupled-cluster method

EA exponential averaging
EE electrostatic embedding
EE-PA electrostatically embedded pairwise addi-

tive fragmentation method
EE-GMFCC electrostatically embedded generalized

MFCC approach
EFMO combination of FMO and EFP
EFP effective fragment potential force field
FES free-energy simulation
FMO fragment molecular orbital
GB generalized Born solvation
ΔGbind binding free energy
HF Hartree−Fock method
L ligand
LCCSD(T0) local coupled-cluster method
LIE linear interaction energy method
M06-L Minnesota 2006 pure density-functional

method
M06-2X Minnesota 2006 hybrid density-functional

method with double exact exchange
MAD mean absolute deviation
MADtr mean absolute deviation after removal of

the systematic error (MSD)
MBAR multistate Bennett acceptance ratio FES

method
MC Monte Carlo
MD molecular dynamics
ME mechanical embedding (for QM/MM)
MFCC molecular fractionation with conjugate

caps
MH-MC Metropolis-Hastings Monte Carlo
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MM molecular mechanics

MM/GBSA

molecular mechanics with generalized
Born and solvent-accessible surface-area
solvation

MM/PBSA molecular mechanics with Poisson−Boltz-
mann and solvent-accessible surface-area
solvation

MP2 Møller−Plesset many-body perturbation
theory to the second order

MP3 Møller−Plesset many-body perturbation
theory to the third order

MP4 Møller−Plesset many-body perturbation
theory to the fourth order

MSD mean signed error
NBB non-Boltzmann BAR
NEMO polarizable force field
NMA normal-mode analysis
OM2 semiempirical method
ONIOM our own N-layered integrated MO and

MM, a QM/QM or QM/MM approach
mPWLYP modified Perdew−Wang Lee−Yang−Parr

density-functional method
PA pairwise-additive fragmentation method
PB Poisson−Boltzmann solvation
PBE Perdew−Burke−Ernzerhof density-func-

tional method
PCM polarized continuum model solvation

method
PDDG/PM3 pairwise distance-directed Gaussian PM3

method (semiempirical method)
PE polarized embedding for QM/MM
PI predictive index
PM3 parametrized model 3 (semiempirical

method)
PM6 parametrized model 6 (semiempirical

method)
PMISP polarizable multipole interaction with

supermolecular pair fragmentationmethod
PW6B95 Truhlar hybrid functional for kinetics
QM quantum mechanics
QM/MM combined QM and MM calculations
QM/QM combination of several QM methods
QSAR quantitative structure−activity relationship
QZP quadruple-ζ basis set
R receptor
R2 correlation coefficient
RL receptor−ligand complex
RM1 reparametrized model 1 (semiempirical

method)
RMSD root-mean-squared deviation
SASA solvent-accessible surface-area solvation
SCC-DFTB self-consistent charge density-functional-

based tight binding semiempirical method
SEQM semiempirical quantum-mechanical meth-

ods
SIBFA sum of interactions between fragments ab

initio computed polarizable force field
SMD solvation model based on density
ssEA single-step exponential averaging
SVP split-valence basis set
SZ minimal basis set
SZP minimal basis set with polarizing functions

TPSS Tao−Perdew−Staroverov−Scuseria den-
sity-functional method

TZP triple-ζ basis set
τ Kendall’s rank correlation coefficient
τ90 Kendall’s rank correlation coefficient,

based on only statistically significant pairs
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(97) Valdeś, H.; Sordo, J. A. Ab Initio Study on the (OCS)2·CO2 van
der Waals Trimers. J. Phys. Chem. A 2002, 106, 3690−3701.
(98) Antony, J.; Grimme, S.; Liakos, D. G.; Neese, F. Protein-Ligand
Interaction Energies with Dispersion Corrected Density Functional
Theory andHigh-Level Wave Function BasedMethods. J. Phys. Chem. A
2011, 115, 11210−11220.
(99) Graton, J.; Le Questel, J.-Y.; Legouin, B.; Uriac, P.; Van deWeghe,
P.; Jacquemin, D. A DFT-D Evaluation of the Complexation of a
Molecular Tweezer with Small Aromatic Molecules. Chem. Phys. Lett.
2012, 522, 11−16.
(100) Hampel, C.; Werner, H.-J. Local Treatment of Electron
Correlation in Coupled Cluster Theory. J. Chem. Phys. 1996, 104,
6286−6295.
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Quantum Mechanical/Molecular Mechanical (QM/MM) Docking:
Development and Benchmark of a Scoring Function. J. Chem. Inf. Model.
2014, 54, 3137−3152.
(232) Parks, J. M.; Kondru, R. K.; Hu, H.; Beratan, D. N.; Yang, W.
Hepatitis C Virus NS5B Polymerase: QM/MM Calculations Show the
Important Role of the Internal Energy in Ligand Binding. J. Phys. Chem.
B 2008, 112, 3168−3176.
(233) Burger, S. K.; Thompson, D. C.; Ayers, P. W. Quantum
Mechanics/Molecular Mechanics Strategies for Docking Pose Refine-
ment: Distinguishing between Binders and Decoys in Cytochrome c
Peroxidase. J. Chem. Inf. Model. 2011, 51, 93−101.
(234) Gleeson, M. P.; Gleeson, D. QM/MM As a Tool in Fragment
Based Drug Discovery. A Cross-Docking, Rescoring Study of Kinase
Inhibitors. J. Chem. Inf. Model. 2009, 49, 1437−1448.
(235) GOLD; Cambridge Crystallography Data Centre Software Ltd.:
Cambridge, England, 2013.
(236) Cho, A. E.; Chung, J. Y.; Kim, M.; Park, K. QuantumMechanical
Scoring for Protein Docking. J. Chem. Phys. 2009, 131, 134108.
(237) Tian, F.; Yang, L.; Lv, F.; Luo, X.; Pan, Y. WhyOppA Protein can
Bind Sequence-independent Peptides? A Combination of QM/MM,
PB/SA, and Structure-based QSAR Analyses. Amino Acids 2011, 40,
493−503.
(238) Tian, F.; Lv, F.; Zhou, P.; Yang, L. Characterization of PDZ
Domain−peptide Interactions using an Integrated Protocol of QM/
MM, PB/SA, and CFEA Analyses. J. Comput.-Aided Mol. Des. 2011, 25,
947−958.
(239) Guo, X.; He, D.; Huang, L.; Liu, L.; Liu, L.; Yang, H. Strain
Energy in Enzyme−Substrate Binding: An Energetic Insight Into the
Flexibility Versus Rigidity of Enzyme Active Site. Comput. Theor. Chem.
2012, 995, 17−23.
(240) Guo, X.; He, D.; Liu, L.; Kuang, R.; Liu, L. Use of QM/MM
Scheme to Reproduce Macromolecule−Small Molecule Noncovalent
Binding Energy. Comput. Theor. Chem. 2012, 991, 134−140.
(241) Wang, M.; Wong, C. F. Rank-ordering Protein−Ligand binding
Affinity by a Quantum Mechanics/Molecular Mechanics/Poisson−
Boltzmann-Surface Area Model. J. Chem. Phys. 2007, 126, 026101.
(242) Ai, X.; Sun, Y.; Wang, H.; Lu, S. A Systematic Profile of Clinical
Inhibitors Responsive to EGFR Somatic Amino AcidMutations in Lung
Cancer: Implication for the Molecular Mechanism of Drug Resistance
and Sensitivity. Amino Acids 2014, 46, 1635−1648.
(243) Yang, L.; Mo, X.; Yang, H.; Dai, H.; Tan, F. Testing the
Sensitivities of Noncognate Inhibitors to Varicella Zoster Virus
Thymidine Kinase: Implications for Postherpetic Neuralgia Therapy
with Existing Agents. J. Mol. Model. 2014, 20, 2321.
(244) Zhou, Z.-G.; Yao, Q.-Z.; Lei, D.; Zhang, Q.-Q.; Zhang, J.
Investigations on the Mechanisms of Interactions between Matrix
Metalloproteinase 9 and Its Flavonoid Inhibitors Using A Combination
of Molecular Docking, Hybrid Quantum Mechanical/Molecular
Mechanical Calculations, and Molecular Dynamics Simulations. Can.
J. Chem. 2014, 92, 821−830.
(245) Hayik, S. A.; Dunbrack, R.; Merz, K. M. Mixed Quantum
Mechanics/Molecular Mechanics Scoring Frunction to Predict
Protein−Ligand Binding affinity. J. Chem. Theory Comput. 2010, 6,
3079−3091.
(246) Raha, K.; Merz, K. M. A Quantum Mechanics-Based Scoring
Function: Study of Zinc Ion-Mediated Ligand Binding. J. Am. Chem. Soc.
2004, 126, 1020−1021.
(247) Brahmkshatriya, P. S.; Dobes, P.; Fanfrlik, J.; Rezac, J.; Paruch,
K.; Bronowska, A.; Lepsík, M.; Hobza, P. QuantumMechanical Scoring:
Structural and Energetic Insights into Cyclin-Dependent Kinase 2
Inhibition by Pyrazolo[1,5-a]pyrimidines. Curr. Comput.-Aided Drug
Des. 2013, 9, 118−131.
(248) Fanfrlík, J.; Bronowska, A. K.; Rezać, J.; Prenosil, O.; Konvalinka,
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