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Abstract

M
icrostrip patch antennas have become essential in modern communica-
tion systems due to their compact size and ease of fabrication. However,
their performance is often constrained by narrow bandwidth, low radia-

tion efficiency, and low gain, especially in miniaturized designs. The performance
limits of microstrip patch antennas are helpful in understanding and overcoming
these challenges. These performance limits are determined for three key metrics
in this thesis, Q-factor (which is inversely proportional to bandwidth), radiation
efficiency, and gain. Limits on these metrics provide insights into the maximum
achievable performance for these antennas, guiding the design process beyond
traditional optimization methods.

The performance bounds are determined through a current optimization ap-
proach, utilizing a method of moment implementation. This implementation
makes use of specific Green’s functions for layered media, determined using Som-
merfeld integrals. This approach ensures that only the currents within the region
where the patch is designed are required. Additionally, the currents are restricted
to only components parallel to the ground plane, further refining the optimization
process.

The results demonstrate that these theoretical bounds closely match the per-
formance of traditional microstrip patch antenna designs in terms of Q-factor,
radiation efficiency, and gain. Additionally, the derived Q-factor bounds are
shown to be orders of magnitude tighter than the classical Chu limit for mi-
crostrip patch antennas. A central focus of this thesis is the balance between
the electrical and/or physical size of the design region and performance. It ex-
plores whether enhancing radiation efficiency in miniaturized antennas is more
effectively achieved by increasing the dielectric substrate between the patch and
ground plane’s relative permittivity or by refining the patch’s geometry.

To make the presented bounds more accessible to a larger part of the antenna
design community, this thesis introduces simple scaling rules. These rules allow
designers to approximate lower Q-factor bounds using standard simulation tools.
Additionally, by utilizing a new connection between Q-factor and radiation effi-
ciency, the scaling rules are extended to estimate bounds on radiation efficiency
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as well. This approach translates complex theoretical insights into easy-to-use
practical guidelines. The established relationship between lower Q-factor bounds
and maximum radiation efficiency opens up new possibilities in antenna design.
In specific scenarios, this relationship can improve the design process and simplify
measurements by allowing one parameter to be inferred from the other.

A crucial part of understanding the Q-factor is the concept of stored energy.
This thesis connects the stored energy in radiating systems to derivatives of
the reactive power and/or dissipated power with respect to background material
properties. More specifically, the stored electric energy is linked to the derivative
with respect to permittivity, and stored magnetic energy is linked to the deriva-
tive with respect to permeability. Through this, a link between material losses
and stored energies in radiating systems is established. This provides physical
insights into stored energies and how they affect the performance of microstrip
patch antennas.

Finally, this thesis investigates the use of a metasurface combined with an in-
frared camera as a method for imaging radio frequency fields. The measurement
setup relies on the heat dissipated on metasurface elements due to the field from
the device under test. A better understanding of this design setup requires an in-
vestigation into the effect of the metasurface elements on the measurement. This
is done by simulating different metasurface element designs and assessing how
their dissipated power correlates with the field in the absence of the metasurface.
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Popular Science Summary

E
lectromagnetic waves are all around us. We can easily see some of
them when they manifest as light and color, but it is far less intuitive to
understand how we manipulate the invisible ones at lower frequencies.

Antennas engineered to transmit and receive these signals are built into our
smartphones, each type serving a specific purpose. Unlike visible light, we cannot
directly observe how these antennas work, so their effectiveness must be judged
through precise, objective measures tied to their data transfer capabilities. This
thesis explores the fundamental limits of a particular class of antennas called
microstrip patch antennas, revealing how well they can perform under certain
design constraints.

Microstrip patch antennas are widely used for their versatility and compact
design. Much like musical instruments that produce sound by exciting reso-
nances/oscillations, in the case of microstrip patch antennas, resonances lead
to electromagnetic radiation as opposed to sound. These antennas are used in
numerous electronic systems, from mobile phones to satellites, owing in part to
their compatibility with existing technologies such as printed circuits.

Despite their widespread use, achieving high performance in microstrip patch
antenna design remains challenging. To help overcome this, traditional optimiza-
tion methods can benefit from leveraging fundamental physical limits on antenna
performance. Without these performance limits or a starting design that satisfies
the requirements, designers face the daunting task of searching through an infi-
nite design space without knowing whether their goals are even achievable. This
thesis addresses these challenges by introducing a systematic approach to de-
termine fundamental performance limits of microstrip patch antennas, enabling
more focused and efficient design strategies.

The motion of charged particles (electrons) often leads to the emission of
photons as electromagnetic waves, forming the basis of antenna operation. This
electron movement creates electrical currents along the antenna. Consequently,
understanding antenna performance depends on examining how its current dis-
tribution affects its ability to radiate efficiently. By identifying the optimal cur-
rent distribution within a specific design area, this thesis establishes theoretical

vii



performance limits for microstrip patch antennas. It highlights the trade-offs
between the size of the design region and the achievable performance. That
the optimal currents are achievable through a realistic design is not guaranteed.
However, it is shown that practical designs can often approach these theoretical
limits, effectively bridging the gap between idealized performance and real-world
performance.

This thesis investigates three critical performance metrics for microstrip patch
antennas: Q-factor, radiation efficiency, and gain. Bounds on these metrics de-
fine the antenna’s capabilities and provide benchmarks for practical designs. The
first metric, the Q-factor, is related to the antenna’s bandwidth (the range of fre-
quencies it can receive or transmit effectively). A lower Q-factor corresponds to
a wider bandwidth, enabling higher data rates. This thesis establishes a lower
bound for the Q-factor, demonstrating how material properties and stored energy
influence bandwidth. The second metric, radiation efficiency, measures the pro-
portion of input power converted into useful radiation, with the thesis providing
a maximum achievable efficiency for these antennas. The thesis also reveals a
previously unexplored relationship between radiation efficiency and bandwidth,
offering insights for future designs. Lastly, the gain metric is explored, which
measures the antenna’s ability to focus its radiated power in a specific direction.
The maximum gain for microstrip patch antennas is calculated, setting an upper
limit on how well these antennas can direct input power.

Together, these performance bounds provide a clearer understanding of what
microstrip patch antennas can achieve, offering new perspectives on the trade-
offs when considering bandwidth, efficiency, and gain. The findings not only help
improve existing designs but also pave the way for smarter, more compact, and
efficient antennas, addressing the increasing demands of modern communication
systems.

A crucial part of understanding the Q-factor and, thus, the bandwidth of an
antenna is the concept of stored energy. Think of it like a compressed spring,
holding energy that can later be released or the mechanical energy not dissi-
pated in a vibrating string. This thesis connects, in the case of microstrip patch
antennas, the stored energy to the properties of the materials surrounding the
antennas, providing deeper physical insights into the antenna performance.

Finally, this thesis also explores how electromagnetic waves from a radiating
device can be measured using a surface. Similar to electromagnetic radiation
from the sun and how it heats up our skin, the electromagnetic field from the
radiating device heats up the surface. The change in temperature on the surface
(metasurface) can be imaged using an infrared camera. Since the heat change
on the metasurface is proportional to the strength of the electromagnetic field,
this can be correlated to the electromagnetic field distribution. The metasur-
face design is critical, as it affects how the surface converts the electromagnetic
field to heat. This thesis compares the power absorbed by the metasurface to
the expected power from the device, thus assessing the potential of the method
and providing valuable insights into improving how electromagnetic fields are
measured and understood in practical applications.
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• INTRODUCTION
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INTRODUCTION





1
Background and Motivation

A
ntennas have been widely used for many decades, playing a vital role
across various applications, including cellular and satellite communica-
tion, broadcasting, and radar systems [43, 45, 96]. Achieving high per-

formance and efficiency in antenna design is essential for ensuring reliable and
effective communication [34, 89]. Although antennas are often just a component
in larger systems, the demand for higher data rates and reduced power consump-
tion makes it increasingly important to develop optimal or near-optimal antenna
designs [9, 23,27,28,36,111].

To quantify the performance of antennas, there are several important perfor-
mance metrics to consider [48]. For example, bandwidth or Q-factor [9,10,24,26,
44, 67, 105, 114] (inversely proportional to bandwidth), radiation efficiency [49],
and gain [112]. In simple terms, a wider bandwidth allows for higher data rates,
increased radiation efficiency means more input power is radiated leading to lower
antenna losses, and gain is a measure of how transmitted power is concentrated
in a specified direction [36] or power is received from a specific direction. All of
these performance metrics need to be traded off against form factor [98] as design
space is often limited.

Antenna performance metrics can be reliably simulated using commercially
available software such as FEKO [2] or CST [11]. They can employ several nu-
merical techniques to solve electromagnetic problems such as the method of mo-
ments (MoM) [37,51], the finite element method (FEM) [52], the finite-difference
time-domain (FDTD) [63] method and high-frequency techniques [46]. These
simulation tools can be used in the design process of antennas. They can be
used both to gain physical insight into a given design as well as to assess the
performance of a potential new design.

There are a few approaches to optimizing performance metrics of antennas, for
example, using topology optimization or heuristic methods [8, 41, 91]. However,
these approaches may find local optima far from the global optimum [6]. These
approaches may also struggle to assess the quality of the obtained design without
benchmarking against a performance limit.
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Performance Limits for Microstrip Patch Antennas

To assess whether a desired antenna performance is feasible given a set of
design constraints, bounds can be used. Antenna bounds can be traced back to
the Chu limit [9], introduced in the 1940s, which defines a fundamental physical
constraint on the Q-factor of electrically small antennas. This remains crucial
for understanding the limits of antenna performance. However, it assumes a
spherical design region, and since most antennas are not spherical, these bounds
may be far from achievable [80] in practice. Therefore, more recently bounds have
been computed using current optimization [27, 30, 49, 53, 104] along with other
approaches [28,113]. By restricting the problem to a design region, these bounds
can be tighter to practical design performance. Using current optimization to
establish antenna performance bounds requires linking the currents within the
design region to the specific performance metric under consideration. A MoM
formulation [37,51] is ideally suited as it relates antenna currents and performance
through the MoM impedance matrix.

One way of assessing the tightness of a determined bound is by comparing it
to antenna designs, given the same design constraints. If a design’s performance
is close to these bounds, it indicates that the bounds are near achievable (tight).
Conversely, if its performance differs significantly, it may reveal opportunities for
improvement. In such cases, refining the bounds and/or exploring new optimized
designs can help bring the bounds and design performance closer.

Also important to understanding the performance of antennas are stored elec-
tric and magnetic energies that have been investigated for several decades [16,95].
The main reason why stored energies are relevant to antennas is that they are
required to compute the Q-factor that can be determined at a single frequency
from antenna currents. Q-factor is inversely proportional to fractional bandwidth
and can be used to optimize the latter [29].

In this thesis, bounds are derived for microstrip patch antennas. These an-
tennas have been in use for several decades [17, 48, 88] and remain popular due
to their low profile, low cost, and ease of integration with other electronic com-
ponents [59, 97, 108]. However, microstrip patch antennas have limitations, such
as relatively narrow bandwidth and low radiation efficiency [13, 60], making in-
vestigating and understanding these parameters essential. A simple first-order
approximation of these antennas’ performance can be achieved using the cavity
model [32, 47, 48, 94]. This simple model provides an intuitive way of under-
standing how the patch operates. The cavity model is useful for understanding
half-wavelength resonant patches. Thus, while it is a reasonable method to gain
insight and get a prediction, for performance analysis, a more complex approach
that takes into account all the electromagnetic properties is required. This can
be done using a full wave electromagnetic technique such as the MoM [37,51].

One way of implementing MoM for microstrip patch antennas is by using
Green’s functions for layered media that can be evaluated using Sommerfeld
integrals [75,100]. The Sommerfeld integral formulation of Green’s functions for
these antennas [75] assumes that the dielectric substrate and the ground plane
are infinite [75]. This formulation results in the currents on the patch being
the only unknowns, all other currents being implicitly accounted for [100]. This
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1 Background and Motivation

has a considerable computational advantage over not implicitly accounting for
the currents on the ground plane and dielectric substrate [72]. Further, solving
the Sommerfeld integrals over its infinite interval is not entirely straightforward.
Fortunately, much work has been done in computing these integrals in fast and
efficient ways [70,75].

In this thesis, a single-layer dielectric substrate and infinite ground plane are
assumed [80]. This is to achieve the goal of this thesis, which is to determine
microstrip patch antenna performance limits. It should be noted that there are
a few design variations that may improve the performance of microstrip patch
antennas that are not examined in this thesis. Some examples are reducing
the size of the ground plane and using stacked patches [47,98,115]. However, the
presented bounds do include, for example, slot-loaded patches and some parasitic
elements. These bounds serve as the first canonical case for antennas that are in
wide use and can be extended in the future to consider more design variations.

Through using the layered Green’s function that is implemented using Som-
merfeld integrals [75,100], this thesis extends existing far-field expressions [75] to
the case of a lossy substrate where they can also be shown to be valid. Further,
the conventional approach is to compute stored energies by taking frequency
derivatives of the MoM reactance matrix. This is extended to Sommerfeld inte-
grals in this thesis. Then, since there is still no agreement on how to compute
stored energies of radiating systems, the question of how the material properties
surrounding an antenna influence the understanding of stored energy is also ad-
dressed here [81, 82]. This is done by showing that for a radiating system, the
stored electric energy can be related to a perturbation of permittivity, and stored
magnetic energy can be related to a perturbation of permeability.

This thesis determines bounds on microstrip patch antenna performance using
current optimization. This is done by using the computed MoM matrices using
Sommerfeld integrals. These are then used to solve quadratically constrained
quadratic programs (QCQPs) [6]. Using this, the lower bounds on Q-factor [80]
are determined and shown to be tight over a range of electrical sizes. As they
are tight, they are a good predictor of the performance of microstrip patch an-
tennas’ performance. Further bounds on maximum radiation efficiency [82] are
also determined and are shown to be tight to both the simulations and the mea-
surements of some practical antenna designs. Bounds on, maximum gain for
microstrip patch antennas are also determined and shown to be tight.

The MoM matrices required to determine the bounds for microstrip patch
antennas may not be easily accessible using commercial software. Therefore, an
easy-to-use approximation of the lower Q-factor is derived and provided [80].
Further, after linking lower Q-factor bounds to maximum radiation efficiency
this easy-to-use approach is extended to maximum radiation efficiency [82]. The
approach relies on the simulation or measurement of a half-wavelength patch and
uses a scaling rule to approximate the bounds for miniaturized designs.

Finally, the ability to measure the fields produced by radiating structures is
often time-consuming and expensive. This thesis assesses the potential of using
a metasurface to perform field measurements of a device under test [83]. This
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method relies on using an infrared (IR) camera to image the metasurface in the
presence of a radio frequency (RF) field [64]. IR cameras have been employed for
several decades to perform indirect assessments of RF fields [7,14,22,57,78]. This
thesis focuses on the metasurface elements’ design performance. The performance
of different metasurface elements is compared as potential candidates to be used
in this measurement setup. The investigated elements are chosen for properties
such as their polarization selectivity. The power dissipated on the metasurface
elements is compared to the expected RF field in the absence of the metasurface.

The remainder of this thesis is structured as follows. First, the microstrip
patch antenna geometry is described in Chapter 2. Then Chapter 3 provides
a basic understanding of half-wavelength resonant microstrip patch antennas
through the cavity model. Chapter 4 describes the MoM and how it can be
used to simulate microstrip patch antennas. Further Chapter 5 describes how
stored energies are related to material properties and how this can be used to
relate Q-factor to radiation efficiency. The formulation of the optimization prob-
lem used is presented in Chapter 6. Results obtained with this formulation are
presented in Chapter 7. Then the description and simulations of the metasurface
used for electromagnetic measurements are described in Chapter 8. Finally, a
summary of the thesis and potential future work is presented in Chapter 9.
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2
Microstrip Patch Antennas

I
n this chapter, the microstrip patch antenna geometry considered is pre-
sented along with a basic discussion on functionality. Some classical
patch designs are also shown.

An example of a microstrip patch antenna can be seen in Figure 1. The
patch design region Ω is on top of the infinite dielectric substrate of relative
permittivity εr and thickness h. The dielectric substrate is on top of an infinite
PEC ground plane. The assumption of infinite dielectric and ground plane greatly
reduces the computational cost as the currents on the patch region are the only
unknowns, implicitly accounting for all other currents and fully characterizing
the performance. This can be thought of as using image currents to characterize
the ground plane where the patch currents are the only unknowns [51, 104]. For
arbitrary substrate permittivity, this is done using layered Green’s functions [75]
as described in Chapter 4. It has also been shown that an infinite dielectric
substrate and ground plane is a reasonable assumption to model microstrip patch
antennas of moderate size [17,82].

x

yz

ϕ

θ εr

Ω
J(r)h

Ground Plane

Figure 1: The design region for the microstrip patch antenna is defined as
Ω, which includes all possible metal patch geometries that fit within it. The
surface current density over this region is denoted by J(r). An infinite dielectric
substrate with a relative permittivity εr and a thickness h is on top of an infinite
PEC ground plane.
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(a) Ω (b) (c)ℓy

ℓx

Figure 2: Three example patch geometries fitting within the rectangular design
region Ω with dimensions ℓx ×ℓy. They are (a) rectangular patch, (b) slot-loaded
patch, and (c) H-shaped patch. Example current patterns are indicated by red
arrows.

Example designs of microstrip patch antennas are shown in Figure 2. The
patch region is a conductor placed on top of a dielectric layer with relative per-
mittivity εr. Below the dielectric layer is the ground plane. The patch can be
fed, for example, with a probe feed [69] or microstrip line [60]. The patch design
region chosen for this thesis is rectangular with dimensions ℓx and ℓy (see Fig-
ure 2). Although design regions with other shapes could have been chosen, many
classical designs are rectangular or well confined within a rectangular region with
some geometry removed [47,48]. Removing part of the conducting patch geome-
try within the rectangular region can be used for miniaturized or dual resonant
applications [40,48].

Some examples of classical patch antenna designs fitting within the design
region (Ω) are the rectangular patch (a), slot-loaded patch (b), and H-shaped
patch (c), as shown in Figure 2. The H-shaped and slot-loaded patch antennas are
miniaturized designs with lower resonance frequencies for the same dimensions.
The rectangular patch is resonant at around half a wavelength in the dielectric
substrate [48]. The other patches can be resonant at a lower frequency [48] for the
same design region as they lengthen the current path by bending it, as shown in
Figure 2. This, however, comes at the cost of performance. The squeezed currents
result in higher Ohmic losses compared to radiated power and, therefore, a design
that spreads out the currents is generally desired. It should be noted that this
thesis only considers Ohmic losses on the patch region and not on the ground
plane.

The in-house code developed in this thesis uses layered Green’s functions de-
termined using Sommerfeld integrals [75]. By using these layered Green’s func-
tions, the currents on the patch design region (Ω) are the only unknowns and
fully characterize the performance of the microstrip patch antenna. Therefore,
all other currents are implicitly accounted for. In some other implementations,
such as the volumetric MoM, the dielectric substrate and ground plane also need
to be discretized.

8



3
Cavity Model

T
he cavity model [32, 48, 54, 62, 85, 94] provides a basic description of
the behavior of a half-wavelength resonant microstrip patch antenna by
representing it as a rectangular cavity, as shown in Figure 3. The figure

shows an approximation of the field distribution for a half-wavelength rectangular
patch (see Figure 3 with patch geometry shown in Figure 2(a)).

In the cavity model, the patch and its ground plane are approximated as
perfect electric conductors (PECs), and between them is the dielectric substrate
with relative permittivity εr. The cavity boundaries along the other four sides
(see Figure 3) are approximated as perfect magnetic conductors (PMCs), meaning
the tangential component of the magnetic field at these edges is assumed to be
zero.

PEC (patch)

PEC (ground plane)

Electric Field (E)

PMC PMC
εr

L

Figure 3: The cavity model with PEC at the top and bottom and PMC on the
other four walls. The cavity is filled with material that has a relative permittivity
εr, and the electric field varies sinusoidally along the length (L) of the cavity.

The choice of cavity boundary conditions can be understood by the typically
highly conductive (especially at microwave frequencies) behavior of the ground
plane and patch region being modeled as PECs. As the field typically attenuates
rather rapidly outward from the other four boundaries it is reasonable to approx-
imate these boundaries as PMCs, corresponding to open-circuit boundaries for
the magnetic field. Together, these approximations allow the patch region to be
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treated as a resonant cavity with well-defined modes, facilitating the derivation
of closed-form approximations for the patch antenna’s resonant frequencies, field
distributions, and input impedance [48].

The electric and magnetic fields in the cavity are described by their resonant
modes, with the half-wavelength resonance being the fundamental cavity mode
if the cavity length is greater than the width. For the half-wavelength resonance
along the length, the electric field varies sinusoidally along the length of the patch
while remaining uniform across its width, supported by a corresponding magnetic
field distribution. The resonant dielectric wavelength λε and resonant frequency
f for the half-wavelength resonance along the length are

λε = λ√
εr

= 2L = c0
f

√
εr

and f = c0
2L

√
εr

, (3.1)

respectively. The free space wavelength is given by λ. The resonant length is, as
the resonance name suggests, half a wavelength in the dielectric cavity [48], and
the speed of light in free space is given by c0. It should be noted that here, as is
generally a good approximation, the substrate is assumed to be nonmagnetic.

The input impedance of the antenna varies with the feed point’s position. At
the center of a half-wavelength patch, the input impedance would be observed as
a short circuit. At the edge of the patch along the dimension of charge separation,
the input impedance is an open circuit. From the cavity model, a formula can
be used to adjust the probe feed location to achieve matching [47].

The cavity model, along with the transmission line model [77], is an excellent
intuitive guide but not a tool for accurate numerical analysis due to assumptions
such as ideal boundaries that lead to inaccuracies, particularly for thicker sub-
strates or high-frequency applications. The model also neglects the surface wave.
In Chapter 4, a versatile numerical method for evaluating the performance of
microstrip patch antennas is presented.
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4
Method of Moments

T
his chapter presents the MoM formulation that is used to determine
bounds on microstrip patch antennas performance in this thesis. The
free-space MoM can be used to discretize the current density on the

conducting structure using basis function ψm [19, 37, 51, 107]. The divergence-
conforming basis functions used in this thesis are rooftop basis functions [12,87,
106], the rectangular cells are shown in Figure 4 for basis functions in the x-
direction shown in red, and basis functions in the y-direction shown in green. It
should be noted that while rectangular cells were chosen in this thesis, triangular
cells could also be used [87].

The basis functions can be used to represent the current density as

J(r) =
M∑

m=1
Imψm(r), (4.1)

where the expansion coefficients Im for the M mesh elements are collected in the
mesh currents I ∈ CM×1. Further, the dyadic free space Green’s function is used
and given by [56]

G(r′, r) =
(

1 + 1
ω2ε0µ0

∇∇
)e−jω√

ε0µ0|r′−r|

4π|r′ − r| , (4.2)

where 1 is the identity tensor. The source and observer points are given by r′

and r, respectively. The angular frequency is given by ω = 2πf . The free-space
permittivity and permeability are given by ε0 and µ0, respectively. Using the
dyadic Green’s function (4.2), the free space part of the impedance matrix used
at the conductor interface is given by integrating over the testing and source basis
functions (ψm and ψn) using the Galerkin method (same source and testing basis
functions) as

Z0,mn = jωµ0

∫

Ω

∫

Ω
ψm(r′) · G(r′, r) ·ψn(r) dS′ dS. (4.3)
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ℓx
ℓy

Ω

Figure 4: Example rectangular region with dimensions ℓx × ℓy with currents
discretized using rooftop basis functions in the x-direction shown in red and in
y-direction shown in green.

The part of the impedance matrix due to Ohmic losses is given by

RΩ,mn = Rs

∫

Ω

ψm(r) ·ψn(r)dS, (4.4)

where Rs is the surface resistivity. These integrals can be performed numerically
by using a Gaussian quadrature integration scheme on the non-singular part,
and an analytic approach can be used to integrate over the singular part. The
MoM matrix is then given by the sum of Ohmic (4.3) and free space impedance
matrices (4.4) as [30]

Zmn = Z0,mn + RΩ,mn. (4.5)

Further, as the same source and testing basis functions are used [37], the MoM
impedance matrix (4.5) is symmetric.

The MoM is often applied with a known input voltage and geometry. The
impedance matrix of the given geometry relates the currents to voltages as

V = ZI, (4.6)

where the voltage vector is given by V ∈ CM×1. The impedance matrix is given
by Z ∈ CM×M . Then, (4.6) can be rewritten to solve for the currents by inverting
the impedance matrix as

I = Z−1V. (4.7)

Much of computational electromagnetics is concerned with the performance of
a given design and excitation (input voltage) [37, 52, 79], this can be done us-
ing (4.7). However, this thesis focuses on determining the optimal currents for
an arbitrary geometry within a conducting region using in-house code and com-
mercial solvers to compare to the performance of a known design that is obtained
in part solving (4.7).
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4.1 LAYERED GREEN’S FUNCTIONS AND SOMMERFELD INTEGRALS

To model microstrip patch antennas using the MoM, the free space Green’s func-
tion (4.2) needs to be modified. This is because the infinite ground plane and
dielectric substrate require layered Green’s functions. The integrals suited to
obtaining the layered Green’s functions used to determine MoM matrices for
microstrip patch antennas are Sommerfeld integrals, they are mathematically
equivalent to inverse Hankel transforms [76]. They were originally proposed for
long-distance wireless radio and telegraphy. However, today, they have found
many applications in electromagnetic modeling [76]. In the case of microstrip
patch antennas, these integrals can be used in such a way that only the currents
on the patch design region are the unknowns. It should, however, be noted that
other approaches could also be used to determine similar matrices, such as dis-
crete complex images method [1,15] and rational function fitting method [55,84].
These Green’s functions can be used in a Mixed-Potential Integral Equation
(MPIE) formulation [74,75] that is employed in this thesis.

Using the Sommerfeld integrals, (S0), Green’s functions can be written for a
single layer microstrip patch antenna as [75]

GA(ρ12) = 1
4πS0

(
1

DTE

)
and GV(ρ12) = 1

4πS0

(
N

DTEDTM

)
, (4.8)

where GA is the dyadic Green’s function for the vector potential, GV is the
scalar Green’s function for the scalar potential, and the radial distance is given
by ρ12 = |r′ − r|. Further, DTE, DTM, and N in (4.8) are defined as [75]

DTE = u1 + u2 coth(u2h),
DTM = εru1 + u2 tanh(u2h),
N = u1 + u2 tanh(u2h),

(4.9)

with
u1 =

√
k2

ρ − ω2c−2
0 and u2 =

√
k2

ρ − ω2εrc
−2
0 , (4.10)

where kρ is the radial spectral coordinate. The Sommerfeld integral is an infinite
integral defined in the spectral domain and given by [75]

S0(g) = 2
∫ ∞

0
J0 (kρρ12) kρg (kρ, ω) dkρ, (4.11)

where g is the function the Sommerfeld integral is applied to and J0 is the bessel
function of order 0. There are many challenges when computing Sommerfeld
integrals [70]. One of these challenges comes from the poles in the spectral
domain when DTM = 0 or DTE = 0. Special care must be taken to correctly
navigate the presence of the poles and to ensure the integral is performed on
the correct Riemann-sheet [71]. Further, the convergence of the Sommerfeld
integrand may be very slow and, in some cases, even divergent [70]. To handle
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this, the generalized weighted averages procedure, also referred to as the Mosig-
Michalski algorithm, is used as presented in [68,70].

Even when the Sommerfeld integral is computed efficiently, it still takes con-
siderable time to compute each spatial distance between source and observer
points, and since each basis function has a few sample points, this time can be-
come intractable. To avoid this challenge, an interpolation scheme is used [75].
In this scheme, a set of radial distances is determined (ρ12), and the required in-
tegrals are interpolated based on this. This is done as shown in [75] in a quadratic
manner where the sample points are chosen by

ρl = ρmax − ρmin
n2 − 1 (l2 − 1) + ρmin, (4.12)

where the minimum and the maximum radial distance between source and ob-
server points are given by ρmin and ρmax, respectively. The number of sample
points is given by n and l ∈ {1, ..., n}. In this thesis, generally, between n = 300
and n = 500 sample points are taken to ensure convergence and spline inter-
polation [66] was used to approximate the scalar and dyadic Green’s functions
between sample points. It should be noted that the minimum radial distance used
is where the Green’s function is not considered spatially singular, this singularity
is discussed in more detail in Section 4.2.

4.2 SINGULARITY WHEN DETERMINING THE SELF INTEGRAL

Similar to the singularity in the spectral domain described in Section 4.1 that is
due to the surface wave, a spatial singularity is also encountered when determin-
ing the MoM impedance matrix. This is due to the denominator going to zero
as ρ12 → 0. It is important to note here already that even though the integrand
tends to infinity as ρ12 → 0, the integral is still finite. To separate the scalar
Green’s function and dyadic Green’s function into a singular and non-singular
part, the asymptotic expressions from [75] are used. For the dyadic Green’s
function, this expression is

GA ≈ µ0
4π
∑

i=0,1

e−jkρi

ρi
, (4.13)

where k = ω
√

ε0µ0 is the free space wavenumber and

ρi =
√

ρ2
12 + 4i2h2. (4.14)

Therefore, the dyadic Green’s function has a part containing a singularity (i = 0)
when ρ12 → 0 and one non-singular part. The dyadic Green’s function (4.13)
asymptotic expression is independent of the real part of relative permittivity. It
is easy to determine the non-singular part (i = 1).

The scalar Green’s function singularity is significantly impacted by the di-
electric substrate’s relative permittivity. The non-singular part is an infinite sum
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that, when the relative permittivity is one, is the same as the dyadic Green’s
function (4.13). This is given by

GV ≈ 1 − ζ

4πjωε0

[
e−jkρ12

ρ12
− (1 + ζ)

∞∑

i=1
(−ζ)i−1 e−jkρi

ρi

]
, (4.15)

where ζ = (εr−1)/(εr+1) and ρi is given in (4.14). The infinite sum converges [75]
well for reasonable i.

The singular part of both the scalar and dyadic Green’s function can have the
exponent written in terms of sine and cosine terms. Once this is done, the sine
term that is associated with losses is non-singular as limρ12→0 sin(ρ12)/ρ12 =
1 and therefore can easily be determined. However, taking the Taylor series
expansion of the cosine term results in one singular term and infinite non-singular
terms that rapidly converge.

Using the above-mentioned approach of separating the singular and non-
singular special parts of the scalar and dyadic Green’s functions, the non-singular
part is simply integrated with the rest of the non-singular interpolated (4.12)
Sommerfeld integrals to determine the impedance matrix that is linked to the
dyadic and scalar Green’s functions. With this, the dyadic Green’s function is
known or can be determined from the interpolation scheme. Spacial integration
can be performed to determine matrix entries between source and testing basis
functions

Lmn =
∫

Ω

∫

Ω

ψm(r′) · GA(ρ12) ·ψn(r) dS′ dS, (4.16)

and similarly for the scalar Green’s function, spatial integration can be performed

Cimn =
∫

Ω

∫

Ω

∇1 ·ψm(r′)∇2 ·ψn(r)GV(ρ12) dS′ dS, (4.17)

where entries of Lmn can be written in matrix form as L and entries of Cimn

written in matrix form as Ci. These matrices are broadly linked to the inductance
and inverse of the capacitance, respectively.

The contribution of the spatially singular part not considered in the inter-
polation (4.12), needs to be included [33] in the MoM matrix (4.5), setting a
threshold where the integrand is considered singular, and where not, the 1/ρ12
part is integrated spatially analytically and added back to (4.16) and (4.17). It
should be noted that when dielectric losses were added, the asymptotic expres-
sions for the dyadic (4.13) and scalar (4.15) Green’s functions were numerically
adjusted as the non-singular part associated with dissipated power has changed
in a way not captured by using complex permittivity values in the asymptotic
expressions.

The computed matrices can be used to calculate the MoM impedance ma-
trix (4.5) as [99]

Z = jωµ0L + Ci
jωε0

+ RΩ, (4.18)
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where RΩ (4.4) is due to Ohmic losses on the patch design region (Ω).
The MoM matrix along with the patch currents, can be used to analyze the

performance of the microstrip patch antenna. In this thesis, the MoM matrix
must be broken into separate components associated with a particular physical
phenomenon. This is done in Sections 4.3.

4.3 INTERPRETING THE IMPEDANCE MATRIX OF MICROSTRIP PATCH
ANTENNAS

It is possible to split the MoM impedance matrix (4.18) into a resistive (R) and
a reactive (X) part as

Z = R + jX. (4.19)

These parts of the impedance matrix can be expressed in terms of the impedance
matrix as

R = Z + ZH

2 and X = Z − ZH

2j , (4.20)

where the Hermitian transpose is denoted by superscript H.
The real part of the impedance matrix R is related to the dissipated power

(Pd) for a known current vector as

Pd = 1
2IHRI. (4.21)

When considering the resistance matrix (4.20) for microstrip patch antennas, it
can be separated into three separate parts as [82]

R = Rr + RΩ + Rε, (4.22)

where Rr is the radiation resistance matrix that relates currents to radiated
power. The derivation of this matrix is presented in Section 4.5. Further, currents
on the patch design region can lead to Ohmic losses, the matrix used to determine
this is RΩ. This matrix can be determined from the Gram matrix [23,42] as shown
in (4.4), it is a sparse matrix as Ohmic losses are only affected by overlapping
basis functions. The dielectric resistance is given by Rε. This matrix can be
influenced by both the patch currents’ relationship to dielectric losses and surface
wave losses. While strictly speaking, the surface wave is only defined for a lossless
dielectric substrate. However, in this thesis, it is still found that in some cases,
it may be necessary to separate the dielectric losses coming from a propagating
wave and those from the electric near field.

The different components of the resistance matrix (4.22) can be used to break
up the dissipated power as

Pd = Pr + PΩ + Pε = 1
2IHRI, (4.23)

16



4 Method of Moments

where the radiated power is given by Pr and power dissipated due to Ohmic losses
given by PΩ. The power lost in the dielectric is given by Pε and is due to the
surface wave and dielectric losses.

The imaginary part of the impedance matrix (4.20) for a known current is
related to the difference between total stored magnetic and total stored electric
energies as

Wm − We = 1
4ω

IHXI, (4.24)

where the stored magnetic and stored electric energies are given by Wm and We,
respectively. The imaginary part of the impedance matrix can be split into two
parts as [37,105]

X = Xm − Xe, (4.25)
where Xm relates the currents to the stored magnetic energy and Xm relates
the currents to stored electric energy. The stored electric and magnetic energies
are non-trivial to separate from the reactance matrix, and in Chapter 5, how
to compute them in alternative ways is discussed. They are required, as the
Q-factor used to optimize bandwidth requires that stored electric and stored
magnetic energies are known. When the stored electric and magnetic energies
related to (4.25) are equal, then the antenna is resonant (IHXI = 0).

4.4 RADIATION EFFICIENCY AND GAIN

Radiation efficiency and gain are key performance metrics for antennas, similar to
Q-factor. Radiation efficiency is a measure of how much power an antenna radi-
ates compared to dissipated power (4.21). Therefore, a higher radiation efficiency
means the antenna is better at converting input power into radiated power.

Radiation efficiency is given by [30]

η = Pr
Pd

= IHRrI
IHRI . (4.26)

How to determine this radiation resistance matrix is discussed in Section 4.5.
Even with a high radiation efficiency, this does not mean that the power of

the antenna is transmitted in the desired direction, this is quantified by the gain
that is given by [23]

G = 4π U

Pd
, (4.27)

where the radiation intensity is given by U . The gain is a combination of radiation
efficiency and directivity given by the relationship

G = ηD, (4.28)

where directivity (D) is the ratio of the maximum power density radiated in a
specific direction to the average power density radiated by an isotropic antenna
under the same radiated power [3, 35].
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4.5 RADIATED POWER FOR MICROSTRIP PATCH ANTENNAS

The radiation resistance matrix can be used when computing radiation efficiency,
as it is required to separate the radiated power from the dissipated power. Fur-
ther, since one of the central topics of the thesis is current optimization to com-
pute bounds on radiation efficiency, determining this matrix is of paramount
importance as this allows for a direct way of relating patch currents to radiation
efficiency.

To determine the radiation resistance matrix, the asymptotic expressions of
the electric field from [71] are used. These expressions are in spherical coordinates
(see the coordinate system in Figure 1). For this thesis, the electric far-field
expressions that are derived for an x̂-directed horizontal electric (Hertzian) dipole
(HED) with dipole moment Jh having units of Am, are converted to the far-
field [75] components as

Fθ = Z0
2π

−Jhjknθ cos ϕ cos θ

nθ − jεr cos θ cot (khnθ)

Fϕ = Z0
2π

Jhjk sin ϕ cos θ

cos θ − jnθ cot (khnθ) ,

(4.29)

where nθ =
√

εr − sin2 θ and the free-space impedance is given by Z0. By per-
forming a simple coordinate rotation, the far field from a ŷ-directed HED can
be determined. It should be noted that (4.29) was derived for a lossless dielec-
tric substrate [75] and is here extended to the case of lossy dielectric substrates.
These expressions can be shown to also be valid for lossy dielectric substrates
and can alternatively be derived using reciprocity [51].

Through the integration of the far field (4.29), the radiation can be determined
in any direction above the substrate given by [27,56]

F (θ, ϕ) ≈ FI, (4.30)

where the far-field matrix is given by F ∈ C2×M . It relates currents to the far
field in a spherical direction given by spherical coordinates, see Figure 1. The
far-field can be used to determine the radiation intensity in a specific direction,
required to compute gain (4.27). This is given by [23]

U(θ, ϕ) = |F (θ, ϕ)|2
2Z0

. (4.31)

The radiated power is calculated by integrating over a hemispherical surface on
the free-space side of the design region while neglecting surface wave effects near
the grazing angle (θ = π/2). This calculation uses a set of quadrature points
(θn, ϕn) and their corresponding quadrature weights. A matrix Fs is constructed
by evaluating the far-field matrices F in (4.30) at the quadrature points, with each
evaluation forming a row of Fs. For simplicity, the square roots of the quadrature
weights are incorporated into Fs, enabling the radiated power Pr from the patch
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currents I to be determined using the radiation resistance matrix Rr = FH
s Fs,

leading to
Pr = 1

2IHFH
s FsI = 1

2IHRrI. (4.32)

In this thesis, a simple trapezoidal method [90] was used for integration of the
far field and found to be sufficient.

4.6 RATIO OF SURFACE WAVE POWER TO RADIATED POWER

Surface waves are propagating waves in the dielectric substrate that can be
launched by the patch [75]. For an infinite and lossless dielectric substrate, these
waves propagate in the dielectric substrate. Should it be a finite substrate, the
surface wave is radiated from the edge of the dielectric substrate, leading to radi-
ation. However, this form of radiation is generally undesired [75] and, therefore,
is not considered as such. It is required to separate the radiation resistance ma-
trix (4.32) from the surface wave part to be able to determine the surface wave
from the patch currents.

The surface wave power can be determined in two ways. One is from the
Green’s function by separating the radiated power and surface wave power. This
can be done by noting that the pole in the spectral domain is connected to the
surface wave. Then determining the contribution of the pole provides the surface
wave. This was done in Paper I [80] by splitting the Sommerfeld integral into
three parts as described in [75].

In this thesis, it is assumed that only the first transverse magnetic surface
wave mode is propagating [71]. The thickness required for the first transverse
electric surface wave mode to start propagating is h > λ/(4√

εr − 1) where a
transverse electric pole is present.

In Paper II, the surface wave power was separated from the radiated power
using the radiation resistance matrix, which can be determined as discussed in
Section 4.4. Then, if there are no dielectric losses, the surface wave can be
determined by subtracting the radiation resistance matrix and Ohmic loss matrix
from the resistance matrix as (4.22)

Rε = R − RΩ − Rr. (4.33)

This makes it possible to determine the surface wave-to-radiated power ratio
for any current. However, as stated in [47], the surface wave-to-radiated power
generally maintains that of an HED for small structures. Therefore, it is worth
investigating whether this is also the case for some optimization problems. It
is shown in Chapter 7 that in some optimization problems, this ratio can be
approximated by [73]

Psw
Pr

≈ ∆sw = 3π
4

(Re{εr} − 1)3
kh

Re{εr}2 (Re{εr} − 1) + 2
5 Re{εr}

. (4.34)
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This expression has been shown to generally be accurate for dielectric thicknesses
h < 0.05λ [73]. By taking the real part of the relative permittivity in (4.34), the
surface wave-to-radiated power ratio is assumed to remain constant with added
dielectric losses.

4.7 Q-FACTOR

The Q-factor [9,10,24,26,44,67,105,114] of antennas can be determined in several
different ways [105,114]. It is defined by the quotient of the maximum of stored
electric or stored magnetic energies (4.24) and dissipated power as [9, 114]

Q = 2ω max {We, Wm}
Pd

. (4.35)

The Q-factor of a microstrip patch antenna can be related to the patch currents.
This is done by relating currents to dissipated power (4.21) and relating currents
to stored electric and stored magnetic energies as is shown in Section 4.8.

The practical interest in Q-factor largely stems from the inverse relationship
between Q-factor and fractional bandwidth given by [114]

QΓ0 = 2
BΓ0

Γ0√
1 − Γ 2

0
, (4.36)

where BΓ0 is the fractional bandwidth and Γ0 the reflection coefficient threshold.
Therefore, by minimizing the Q-factor, the fractional bandwidth is maximized.
However, since Q-factor can be determined at a single frequency, it is better
suited for current optimization.

The relationship between Q-factor and fractional bandwidth (4.36) is shown
in Figure 5 for an RLC circuit. Q-factors of 6 and 30 are chosen, and their
reflection coefficients (Γ ) are shown for a range of normalized frequencies f/f0,
where f0 is the center frequency. For the Q-factor 6 curve, a reflection coefficient
threshold of 1/

√
2 and 1/3 are shown to correspond to a fractional bandwidth of

approximately 0.33 and 0.12, respectively.
Another method to compute Q-factor for a given design is from the angular

frequency derivative of the input impedance as [92,114]

QZ′
in

≈

√
(ωR′

in)2 + (ωX ′
in + |Xin|)2

2Rin
, (4.37)

where ′ denotes angular frequency derivative and Rin and Xin are the real and
imaginary parts of the input impedance, respectively.

At low frequencies, all three of these definitions of Q-factor produce approx-
imately the same value for self-resonant antennas [95]. However, this is not
always the case [95] as at higher frequencies, the stored energies are less clearly
defined [31] as stored electric and stored magnetic energies become more corre-
lated, making separation more difficult.
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Figure 5: The resonance frequency magnitude for an RLC circuit with Q-factors
6 and 30 for center frequency f0. The Q-factor 6 curve has a fractional bandwidth
of approximately 0.33 and 0.12 for reflection coefficient threshold 1/

√
2 and 1/3,

respectively.

4.8 STORED ENERGIES

This thesis extends the understanding of stored energies [25,39,95,105] of radiat-
ing systems to microstrip patch antennas and introduces the relationship between
these stored energies and material perturbations in the surrounding media. One
way stored energies can be determined is from the electromagnetic field surround-
ing a radiating structure. This is done by approximately subtracting the radiated
energy determined from the far field as was done by [16,25,114] and given by

WF = 1
4

∫

R3
ε0 |E(r)|2 + µ0 |H(r)|2 − 2ε0

|F |2

|r|2
dV, (4.38)

where the electric field and magnetic field are given by E and H, respectively.
The terms containing the electric and magnetic fields account for the total stored
energy. The propagating energy is approximately subtracted from the total en-
ergy using the far-field (F ). However, this expression is coordinate dependent
and therefore not a universal definition of stored energies [114].

Since current optimization is used in this thesis, it is required to relate an-
tenna currents to stored energies to determine the Q-factor. It has been pro-
posed in [105] and [37] to use angular frequency derivatives of the reactance
matrix (4.25) to compute the stored electric and stored magnetic energies from
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the currents as
We = 1

4ω
IHXeI = 1

8IH
(

∂X
∂ω

− X
ω

)
I,

Wm = 1
4ω

IHXmI = 1
8IH

(
∂X
∂ω

+ X
ω

)
I.

(4.39)

It has been shown that these expressions can be equivalently expressed using
derivatives with respect to the material surrounding the antenna [81]. More
details on this are provided in Chapter 5.

4.9 STORED ENERGIES OF MICROSTRIP PATCH ANTENNAS

To determine the stored electric and stored magnetic energies from the currents
for microstrip patch antennas, the angular frequency derivative of the dyadic and
scalar Green’s functions are required. For this, the angular frequency derivative
is moved inside the integral under conditions given by Lebesgue’s dominated
convergence theorem [103]. For the dyadic Green’s function (4.8) as [82]

∂

∂ω
GA (ρ12) = 1

4πS0

(
∂

∂ω

1
DTE

)
, (4.40)

and for the scalar Green’s function (4.8) as

∂

∂ω
GV (ρ12) = 1

4πS0

(
∂

∂ω

N

DTEDTM

)
. (4.41)

Once the microstrip patch antenna frequency derivatives of the dyadic and scalar
Green’s function terms in the Sommerfeld integral have been formulated, the
Sommerfeld integral still needs to be applied to them. While the angular fre-
quency derivative removes the spatial singularity, the spectral domain pole still
remains. These Sommerfeld integrals present their own challenges. However,
their tails can also be handled using the Mosig–Michalski algorithm [70]. These
integrals are also specially interpolated using between n = 300 and n = 500 in-
terpolation points (4.12), where ρmin = 0. More details on these computations
are provided in Paper I.

The expressions to determine the Q-factor for microstrip patch antennas us-
ing (4.40) and (4.41) were validated in Paper I. This was done by comparing the
Q-factor calculated from the fractional bandwidth (4.36) and frequency derivative
of the input impedance (4.37) both from the in-house code as well as a commer-
cial solver, as shown in Figure 6. This was done for both a delta gap fed H-shaped
patch antenna (see Figure 2) as well as a microstrip-fed patch antenna [48], as
shown in the Figure 6. This indicated that for geometries of interest in this the-
sis, the derived stored energy results are reliable. The small deviation observed
comparing results to the commercial solver for the H-shaped patch is attributed
to the difference in feed used.
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Figure 6: Validation of Q-factors computed using the stored energy in (4.39)
(Q), differentiation of the input impedance (4.37) (QZ′

in
) and fractional band-

width (4.36) (QΓ0) for H-shaped and rectangular microstrip patch antennas
on a dielectric slab with relative permittivity, εr = 4, dimensions h = 0.05ℓx,
ℓy = 0.77ℓx, ℓa = 7ℓx/15, ℓb = 5ℓy/11, ℓc = 2ℓx/7, ℓd = 7ℓy/22, and ℓe = 5ℓx/42.
The Q-factors at self resonances are indicated with markers and are computed
from the bandwidth (QΓ0). Used from Paper I [80].
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5
Material Parameters and Stored

Energies

I
n this chapter, the links between material parameters and stored energies
are described [81, 101]. This is broken into two parts, firstly, how this
relationship can be used in the analysis of microstrip patch antennas, is

shown in Section 5.1, and, then how this can be used to better understand stored
energies in a more general context, is shown in Section 5.2.

5.1 RELATING Q-FACTOR TO RADIATION EFFICIENCY

The relationship between stored electric energy and dielectric losses is well estab-
lished [101]. However, in radiating systems, this link is less straightforward. For
microstrip patch antennas (as discussed in Chapter 4), one of the primary loss
mechanisms arises from the electric field within the dielectric substrate. This elec-
tric field may contribute to losses either through propagating waves or through
reactive near fields that lead to losses when interacting with the dielectric loss
properties of the substrate.

For the reactive near-field component, the stored electric energy within the
dielectric is directly associated with dielectric losses through the loss tangent [48]

tan δ =
∣∣∣∣
Im εr
Re εr

∣∣∣∣ . (5.1)

Determining the exact proportion of stored electric energy within the substrate
is challenging. In the cavity model described in Chapter 3, all stored energy is
assumed to be confined within the dielectric substrate. With this assumption,
the stored electric energy can be directly related to dielectric losses as P ≈
2ωWe tan δ. This approach, however, does not account for propagating waves
within the dielectric substrate. This needs to be added, as even when the loss
tangent (5.1) is zero, the dissipated power in the dielectric substrate can be
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nonzero. Therefore, this leads to

Pε ≈ 2ωWe tan δ + Psw, (5.2)

where Psw is in the case of no dielectric losses, the classical surface wave power,
and otherwise the propagating power in the dielectric substrate. The result
of (5.2) can be added to the dissipated power equation (4.21), resulting in an
expression that includes both dissipated and radiated power

Pd ≈ Pr + Psw + 2ωWe tan δ. (5.3)

For a self-resonant antenna, where stored electric and magnetic energies are equal,
the Q-factor can be expressed as

Q = 2ωWe
Pd

. (5.4)

Dividing both sides of (5.3) by the dissipated power gives

1 ≈ η + Psw
Pd

+ Q tan δ, (5.5)

that can be rewritten in terms of Q-factor as

Q ≈ 1
tan δ

− Pr + Psw
Pd tan δ

. (5.6)

It can be shown that the propagated power to radiated power ratio resembles
that of the lossless dielectric, even once losses are added. This is suggested by
the results presented in paper II. Therefore, the surface wave-to-radiated power
ratio (∆sw) can be used to approximate the propagated power from (4.34). This
can be used to rewrite (5.6) in terms of radiation efficiency as

η ≈ 1 − Q tan δ

1 + ∆sw
. (5.7)

This relationship can be used to approximate radiation efficiency from a Q-factor
measurement. Furthermore, should a bound be determined on either Q-factor
or radiation efficiency, an approximation of a bound on the other is easily deter-
mined. This relationship assumes that the Ohmic losses are negligible. However,
this is also related to stored energy, as shown in Paper II.

5.2 MATERIAL DERIVATIVES AND STORED ENERGIES

As discussed in Section 5.1, there is a direct relationship between stored energies
and the corresponding material properties. For example, stored electric energy is
associated with permittivity, while stored magnetic energy is associated with per-
meability. This section explores how perturbations in these material properties
influence the stored energies of radiating systems.
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In electrostatics and magnetostatics, the relationship between total stored
electric and total stored magnetic energies and derivatives with respect to ma-
terial properties was described by Stratton in the 1940s [101], with similar ap-
proaches adopted by others [58,86]. They demonstrated that electrostatic energy
is related to the permittivity of the infinite surrounding medium, while magneto-
static energy is similarly connected to permeability. Stratton showed that, under
a constant potential, the electric energy increases linearly with a perturbation in
permittivity, whereas with a constant charge, electric energy decreases linearly
as permittivity increases. In magnetostatics, the magnetic energy exhibits the
opposite proportional relationship with changes in permeability.

In electrostatics and magnetostatics, where no radiating field is present, the
energy expressions are simplified, being directly linked to the integrals of the
fields [101]. This straightforward relationship, however, does not hold for radi-
ating systems, where total electric and total magnetic energies are infinite under
far-field assumptions. This raises the question of whether it is possible to define
stored electric and magnetic energies in the non-radiating (reactive) field as the
part of the electromagnetic field not radiated. Stratton notes that his derivation
is not simply applicable to a radiating system as the analogy of force on a body
is no longer applicable [101].

Early attempts to quantify stored energy in the reactive field involved sub-
tracting the radiated field component from the total energy [16, 61, 92], as in
expression (4.38). However, as shown in [114], this approach is coordinate-
dependent. Another method involves subtracting the Poynting vector [10], but
this expression is computationally challenging to evaluate.

In Chapter 4, stored electric and magnetic energies are linked to current
distributions [37,105]. There, and in Paper I, this approach is successfully applied
to predict the fractional bandwidth of microstrip patch antennas as shown in
Figure 6. However, this method sometimes yields indefinite matrices, as shown
in [31], which is problematic since energy should be strictly positive, indicating
that this approach does not universally define stored energy.

A research question addressed in this thesis is how the stored electric and
magnetic energies of a radiating system are related to material properties. Ad-
dressing this could provide deeper physical insights into stored energies and clarify
the link between stored energies and derivatives with respect to material losses
for radiating systems.

To investigate this, one can analyze the dependence of the reactance and
resistance matrices on material perturbations by applying material derivatives to
the dyadic Green’s function (4.2)

G =
(

1 + 1
ω2εbµb

∇∇
)e−jω√

εbµbR

4πR . (5.8)

Here, the background permittivity εb and background permeability µb represents
the infinite space around the radiating structure, allowing all material parame-
ters to be expressed in terms of the background medium, as shown in Figure 7.
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ε = εb
µ = µb

Ω
J(r)
PEC ε = εr(r)εb

µ = µb
Ω
J(r)

Figure 7: The background material, with permittivity εb and permeability µb,
encloses an antenna region Ω, with a PEC conducting region and a dielectric re-
gion with permittivity εr(r)εb. In this chapter, to conserve initially the relative
permittivity to wavelength relationship ( λε = λ/

√
εr), the background permit-

tivity is assumed to have an initial value equal to the free space permittivity.
PEC regions have surface current densities, and dielectric regions contrast cur-
rents densities, both denoted J(r).

It should be noted that besides this chapter and paper III, the background mate-
rial is assumed to have the constant permittivity and permeability of free space,
therefore conserving the relation between dielectric wavelength and relative per-
mittivity (3.1).

Taking derivatives of the dyadic Green’s function (5.8) with respect to the
background permittivity εb and background permeability µb, yields the following
identity as derived in Paper III [81] and given by

εb
∂G
∂εb

= µb
∂G
∂µb

= ω

2
∂G
∂ω

, (5.9)

indicating that the material derivatives of the dyadic Green’s function are equiv-
alent to frequency derivatives with a scaling factor. While (5.9) clearly shows
the links between frequency derivatives and derivatives with respect to material
parameters, the links between these parameters and their stored energies require
additional steps. For this, the MoM impedance matrix linked to the Green’s
dyadic is used.

The MoM impedance matrix (4.3) is proportional to the product of the dyadic
Green’s function and the background permeability. Taking the material deriva-
tives of this matrix with respect to the background permittivity and background
permeability leads to

εb
∂Z
∂εb

= ω

2
∂Z
∂ω

− Z
2 and µb

∂Z
∂µb

= ω

2
∂Z
∂ω

+ Z
2 . (5.10)
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Figure 8: Stored electric energy (left) and stored magnetic energy (right) in
the limit of no background material losses expressed in terms of derivatives, with
respect to frequency, permittivity/permeability, and dielectric/magnetic losses.

Taking the imaginary part of these expressions can be expressed equivalently to
the expressions relating currents to stored electric and stored magnetic energies
using frequency derivatives (4.39), as

We = Im
(

εb
4ω

IH ∂Z
∂εb

I
)

and Wm = Im
(

µb
4ω

IH ∂Z
∂µb

I
)

. (5.11)

These expressions can be shown to be equivalent to those of Stratton [101] in
the static limit and are equivalent to the stored energy expressions by Vanden-
bosch [105]. Further, while they do not provide a different numerical value for
stored energies, they do provide a physical interpretation in terms of the response
of the reactive and dissipated power of a radiated system to a perturbation of
permittivity or permeability for a fixed current.

Using holomorphic properties of the MoM impedance matrix expressions,
Cauchy-Riemann equations [18, 21, 93] and complex derivatives [110] show that
in the case of the background material being vacuum, the stored energies can
be thought of as the derivative with respect to material losses of the resistance
matrix or the real-valued material derivative of the reactance matrix. These
expressions are shown in Figure 8 for both stored electric and stored magnetic
energies.

The stored energy expressions can be shown to be equivalent to the elec-
trostatic and magnetostatic energies in the static limit as ω → 0. To better
understand how this relates to the statement by Stratton [101], the reactance
matrix can be expressed in terms of the material derivatives (5.10) as

Z = µb
∂Z
∂µb

− εb
∂Z
∂εb

. (5.12)

Taking the derivative of this expression with respect to background permeability
leads to

µb
∂Z
∂µb

= µb
∂Z
∂µb

+ µ2
b

∂
2Z

∂µ2
b

− µbεb
∂

2Z
∂µb ∂εb

. (5.13)
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In the case of magnetostatics, the two terms on the right-hand side can be shown
to be equal to zero. This supports the statement that for a constant current, the
magnetostatic energy increases linearly with an increase in permeability, meaning
the magnetic field remains constant as expected. Taking the derivative with
respect to permittivity leads to the expression

εb
∂Z
∂εb

= εbµb
∂

2Z
∂εb ∂µb

− εb
∂Z
∂εb

− ε2
b

∂
2Z

∂ε2
b

, (5.14)

where again the mixed derivative is zero for the case of electrostatics, as the
magnetic and electric fields are independent. The second last term in this ex-
pression is in the case of electrostatics less than zero or equal to zero when there
is no charge. The final term is positive and is linked to the change in the electric
field. This confirms the statement that in a constant charge, the electric energy
decreases with an increase in permittivity.

From (5.13) it can be shown that

µ2
b

∂
2Z

∂µ2
b

= µbεb
∂

2Z
∂µb ∂εb

. (5.15)

This can be interpreted that for a steady state current, the change in stored
electric energy from a perturbation in permeability is with a scaling factor equal
to the change in stored magnetic energy coming from the same perturbation.
These terms are zero in the case of electrostatics and magnetostatics, but for a
radiating system, they are nonzero.

If one were to hypothetically measure the change in stored electric energy
coming from a perturbation of the background permittivity, one would want
the measurement to be invariant with respect to any change in stored magnetic
energy. This would suggest subtracting the term (5.15) from the permittivity
derivative of the impedance matrix (5.14). This would lead to the expression of
stored electric energy as [82]

W̃e = Im
(

εb
4ω

IH

(
∂Z
∂εb

− µb
∂

2Z
∂εb ∂µb

)
I
)

. (5.16)

Similarly, one would want the measurement of stored magnetic energy to be
invariant with respect to a change in stored electric energy coming from a per-
turbation of permeability. This would lead to an expression for stored magnetic
energy as [82]

W̃m = Im
(

µb
4ω

IH

(
∂Z
∂µb

− εb
∂

2Z
∂µb ∂εb

)
I
)

. (5.17)

Since the subtracted term is zero for the static case, the expressions are still
correct for this case. Further, since the same value is subtracted from both the
expression for stored electric and stored magnetic energy, the difference remains
the reactive energy.
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The expressions (5.16) and (5.17) can be rewritten as

W̃e = Im
(

εb
4ω

IH

(
− ∂Z

∂εb
− εb

∂
2Z

∂ε2
b

)
I
)

, (5.18)

and

W̃m = Im
(

µb
4ω

IH

(
∂Z
∂µb

− µb
∂

2Z
∂µ2

b

)
I
)

, (5.19)

respectively. Where the subtracted term can be interpreted as the change in the
electric and magnetic field with their associated material derivatives. While the
expressions (5.18) and (5.19) may not be an improvement of expressions (5.11),
they do nevertheless provide a new interpretation and highlight the complications
in validating whether an approach is indeed better. This emphasizes the require-
ment for an approach of validating new expressions to determine stored energies
of radiating systems beyond checking whether they are negative, are correct in
the static limit, and recover the reactance. One option would be to ensure that
the expressions have a unified interpretation, not only in terms of current but in
terms of voltage, that currently does not exist using (5.11).
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6
Physical Limits on Antennas

I
t is well known that miniaturizing an antenna generally comes at the cost
of many performance metrics [98]. Common performance metrics, as pre-
viously mentioned, are radiation efficiency, gain, and bandwidth (deter-

mined through the inverse relationship with Q-factor). Determining physical lim-
its on antennas can be traced back to the pioneering work done by Wheeler [109]
and Chu [9]. Chu derived an expression for the minimum Q-factor (4.35) of an an-
tenna designed in a circumscribing spherical region, as shown in Figure 9. This
simple expression is derived for electrically small antennas from an equivalent
lumped-circuit element approach and is valid for linearly polarized single-mode
antennas. It is given by

QChu = 1
(ka)3 + 1

ka
, (6.1)

for a sphere of radius a. In Chapter 7, it is shown how this bound is not tight for
microstrip patch antennas. One reason for the lack of tightness of the bounds on
the performance of microstrip patch antennas is that these antennas are planar
(nonspherical).

Following the Chu limit, an upper limit on directivity (4.27) was proposed by
Harrington [36]. It assumes an acceptable bandwidth, and it is given by

DHarrington = (ka)2 + 2ka. (6.2)

It should be noted that Harrington originally referred to this bound as a bound
on gain, however, since it assumes no losses, it is compared to directivity val-
ues (4.27) in this thesis. This bound is also for a spherical design region (see
Figure 9).

The current optimization formulation used to determine bounds on maximum
radiation efficiency, minimum Q-factor, and maximum gain is presented in the
following sections of this chapter, with the accompanying results presented in
Chapter 7 as well as Paper I and Paper II.
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a Ω J(r)ℓy

ℓx

Figure 9: The spherical design region with radius a used to determine the Chu
limit (QChu) and Harrington directivity bound (DHarrington) on the left. On the
right, the planar rectangular design region (Ω) with current density J(r) and
dimensions ℓx × ℓy.

6.1 QUADRATICALLY CONSTRAINED QUADRATIC PROGRAM

In this thesis, the current optimization problems considered can be written in the
form of QCQPs [6]. These optimization problems, as considered in this thesis,
take the form

maximize IHAI
subject to IHBI ≤ 1

IHCI = 0,

(6.3)

where the solution is the optimal currents (I).
The optimization problem (6.3) is the primal problem. This problem can be

rewritten as a dual problem by first taking the Lagrangian given by

L(I, λ1, λ2) = −IHAI + ν1IHBI − ν1 + ν2IHCI, (6.4)

Where ν1 and ν2 are Lagrange multipliers for the inequality constraint and equal-
ity constraint, respectively. By maximizing the Lagrangian with respect to the
primal variables, the dual function is obtained. Minimizing this dual function
over the multipliers ν1, ν2 then yields a bound. If the solution of the primal
problem and dual problem are equal, then either can be solved. This is referred
to as strong duality [6]. For QCQPs having two or fewer quadratic constraints
such as (6.3), there is generally strong duality [4]. However, the bounds do not
have to be equal, which means there can be a dual gap. Nevertheless, for all re-
sults presented in this thesis, there is no dual gap and, therefore, strong duality
holds [50].

34



6 Physical Limits on Antennas

6.2 MAXIMUM RADIATION EFFICIENCY

To maximize radiation efficiency (4.26), both the radiated power (4.32) and dis-
sipated power (4.21) can be expressed in terms of the design region (Ω) currents,
see Figure 9. Multiplying the current vector by a non-zero scalar has no impact
on the radiation efficiency but scales the radiated and dissipated power by the
same amount. Therefore the optimization problem can be expressed as determin-
ing the maximum radiated power for dissipated power below a certain threshold
as

maximize IHRrI
subject to IHRI ≤ 2Pin,

(6.5)

where the input power threshold is given by Pin. Here the equality in (6.3) is not
required. As stated before, the dissipated power can be chosen as any arbitrary
positive value, however, for simplicity, it is convenient to choose 2Pin = 1. The
radiation efficiency can be written in the form of a generalized Rayleigh quotient
as

η = IHRrI
IHRI . (6.6)

This problem can further be simplified using a Cholesky decomposition [20] of
the resistance matrix as

R = OOH. (6.7)
This can then be used to rewrite the generalized Rayleigh quotient as a Rayleigh
quotient using the transformation K = O−1Rr(OH)−1 as

ĨHKĨ
ĨHĨ

, (6.8)

where Ĩ = OHI. Once in the form of a Rayleigh quotient, since K is a Hermitian
matrix and can be diagonalized, the expression (6.8) can be expressed as the
weighted average of eigenvalues (λm) as

ĨHKĨ
ĨHĨ

=
∑M

m=1 λm|xm|2
∑M

m=1 |xm|2
. (6.9)

The maximum eigenvalue of K is then the maximum radiation efficiency. This
can be written as ηup = max eig(K) = max eig(Rr, R).

An alternative approach to solving this optimization problem is using the
Lagrangian. The Lagrangian [6] of this problem (6.6) is given by

L(I, ν1) = −IHRrI + ν1IHRI − ν1. (6.10)

The Lagrangian dual function can be determined as the minimum value of the
Lagrangian. Even when the primal problem is nonconvex the Lagrangian dual is
concave. This optimization problem can then be written as

minimize ν1

subject to − Rr + ν1R ⪰ 0,
(6.11)
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where ν1 ≥ 0 as this conserves the positive semidefiniteness of the product of the
scalar variable and resistance matrix (ν1R). The problem of finding the minimum
of the Lagrangian (ν1) can then be expressed as the point where the gradients
with respect to the Hermitian transpose of the currents equals zero (stationary
point) as

∂L(I, ν1)
∂IH = 0 = −RrI + ν1RI. (6.12)

This is identified as a generalized eigenvalue problem where the current that
maximizes the radiated power to dissipated radiated power produces the ν1 equal
to the maximum radiation efficiency. This is equal to the eigenvalue problem
ηup = max eig(Rr, R).

This problem can further be simplified using Cholesky decomposition (6.7).
By using this decomposition, the eigenvalue problem can be written as

ηup = max eig(O−1Rr(OH)−1) = max eig(K), (6.13)

and therefore it is clear that the two approaches produce the same maximum
radiation efficiency.

6.3 MAXIMUM SELF-RESONANT RADIATION EFFICIENCY

It is often desired to have an antenna be self-resonant to minimize reflected power.
This is done by having the reactive power be zero (IHXI = 0). This means that
no external tuning through an added capacitance or inductance is required for
matching. By adding this constraint, the input reactance would be zero, should
this optimal current be excitable with a single feed. This leads to the following
optimization problem

maximize IHRrI
subject to IHRI ≤ 1

IHXI = 0,

(6.14)

where, here, it should be noted that the self-resonant constraint means the search
space for the maximum radiation efficiency is reduced. Then (6.14) can be ex-
pressed by taking the Lagrangian given by

L(I, ν, µ) = −IHRrI + ν1IHRI − ν1 + ν2IHXI. (6.15)

The Lagrangian dual can then be written as

minimize ν1

subject to − Rr + ν1R + ν2X ⪰ 0
ν1 ≥ 0, ν2 ∈ R

, (6.16)

where the constraint ν1 ≥ 0 is to ensure the positive semidefiniteness of the
product of the scalar variable and the resistance matrix (ν1R). The variable
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ν2 ∈ R can take any real value since it acts on the indefinite reactance matrix.
This semidefinite constraint can be written as [23]

IH(ν1R + ν2X)I = ν1IH(νX + R)I ≥ IHRrI, (6.17)

where ν = ν2/ν1. To have the sum of matrices in (6.15) be positive semidefinite
means that νX + R ⪰ 0 [23] as 0 ⪰ −Rr. This leads to the following inequality

ν1 ≥ IHRrI
IH(νX + R)I ≥ min

ν
max eig

(
Rr, νX + R

)
. (6.18)

As the reactance matrix is indefinite, the task then becomes to determine over
what range of ν the sum νX + R ⪰ 0 remains positive semidefinite. For this to
be the case, the following condition needs to hold

ν
IHXI
IHRI ≤ −1. (6.19)

Since this is in the form of a Raleigh quotient similar to (6.6), the range of ν can
be calculated as −1

min eig(X, R) ≤ ν ≤ −1
max eig(X, R) . (6.20)

This range resembles the characteristic modes [38]. After this constraint has been
applied, the maximum radiation efficiency with the self-resonant constraint can
be expressed as

ηub = min
ν

max eig
(
Rr, νX + R

)
. (6.21)

Writing the radiation resistance matrix in terms of the far field integration ma-
trix (4.32) Rr = FH

s Fs means that the eigenvalue problem can be rewritten as

ηub = min
ν

max eig
(
Fs(R + νX)−1FH

s
)
. (6.22)

It should be noted that this maximum radiation efficiency will be less than or
equal to the one determined without the self-resonant constraint (6.13) due to the
reduced search space of optimal currents. Further, a simultaneous diagonalization
of R and X can reduce the computational complexity in (6.22) by inverting a
diagonal matrix [23].

6.4 LOWER BOUNDS ON Q-FACTOR

The lower bounds on Q-factor can be written as a QCQP as

maximize 2IHRI
subject to IHXeI ≤ 1

IHXI = 0.

(6.23)
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This optimization problem formulation maximizes the denominator (disputed
power) of the Q-factor expression (4.35) for a constant numerator (stored energy)
with self-resonance enforced, and therefore stored electric and stored magnetic
energies are equal. Since this optimization problem is in the same form as the
maximum radiation efficiency with the self-resonant constraint, it can be handled
in the same way leading to

1/Qlb = min
µ

max eig
(
2R, µX + Xe

)
. (6.24)

It should be noted that for 0 ≤ µ ≤ 1, the condition µIHXI + IHXeI ⪰ 0 ensures
that the constraint is positive semidefinite. Since IHXI = IHXmI − IHXeI,
performing this substitution of the reactance matrix leads to

1/Qlb = min
µ

max eig
(
2R, (1 − µ)IHXeI + µIHXmI). (6.25)

It should further be noted that rank-deficient properties of R can be used to
reduce the computational cost of (6.25).

6.5 MAXIMUM GAIN

The optimization problem for maximum gain in a specific direction is chosen in
this thesis as the normal direction from the patch on the free space side. This
leads to the optimization problem given by

maximize IHFHFI
subject to IHRI ≤ 1

IHXI = 0,

(6.26)

and written as an eigenvalue problem similar to (6.22) as

Gub,r ≈ 4π min
ν

max eig
(
F(R + νX)−1FH), (6.27)

and the same range for ν determined in (6.20) can be used.
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Microstrip Patch Antenna Bounds

Results

T
his chapter presents and discusses the results of the bounds formulation
presented in Chapter 6. These bounds are also discussed in Paper I
and Paper II. The presented bounds are on maximum radiation effi-

ciency, minimum Q-factor, and maximum gain. The bounds are determined for
a rectangular design region, as shown in Figure 10, assumed to have dimensions
ℓy = 0.77ℓx and substrate thickness h = 0.05ℓx, unless otherwise stated.

7.1 LOWER Q-FACTOR BOUNDS

The optimization problem used to determine lower Q-factor bounds in Sec-
tion 6.4, obtained by solving the eigenvalue problem (6.25) is here applied to
a patch design region (see Figure 10). The resulting bounds are shown for three
substrate permittivities, εr ∈ {1, 2, 4} across a range of design region electrical
sizes (ℓx/λ), in Figure 11. No Ohmic or dielectric losses are assumed. Three
classical patch antenna geometries are compared to the lower Q-factor bounds
as shown in Figure 11, where the black dot is an indication of the probe feed
location. The results show that all three classical patch antennas considered,
rectangular patches (resonating along either the shorter or longer dimension),
slot-loaded patches, and H-shaped patches, are near the limits, determined using
the current optimization. As it is shown that some designs perform near the
bounds, this emphasizes the bounds as a realistic benchmarking tool.

The Chu limit (6.1) can be determined for the patch design region by taking a
design region radius that encloses the patch and its image. For all three relative
permittivities, it is evident from the results presented in Figure 10 that the Chu
limit differs significantly from the computed bounds across the entire range of
electrical sizes (ℓx/λ). This is primarily because the design region is nonspherical.
Further, it should be noted that the relative permittivity of the substrate is not
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Figure 10: Microstrip patch antennas confined to a design region, Ω, with
side lengths ℓx and ℓy on top of an infinite dielectric substrate having relative
permittivity εr and thickness h. The dielectric substrate is on top of an infinite
PEC ground plane. Some possible patch geometries fitting within the design
region are rectangular patch (a), slot-loaded patch (b), and H-shaped patch (c).

0.2 0.3 0.4 0.5 0.6
100

101

102

103

ℓx/λ

Q

Qlb, εr = 1
Qlb, εr = 2
Qlb, εr = 4

a

QChu

Figure 11: Demonstration of the tightness of lower Q-factor bounds for a
rectangular design region Ω with aspect ratio ℓy = 0.77ℓx, substrate thickness
h = 0.05ℓx and relative permittivity εr ∈ {1, 2, 4} computed using (6.25). FEKO
simulation results for self-resonant antenna types (a-c in Figure 10) with Q-factors
from (4.37) are indicated with markers. The H-shaped patch (c) has additional
dimensions, ℓa = 0.5ℓx and ℓb = ℓy/3, see Figure 6. To place the new bounds
into perspective, the Chu limit (QChu) (6.1) is included.
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included in the Chu limit. Therefore, the most fair comparison is between the
Chu limit and the εr = 1 substrate.

The bounds for the three dielectric substrates shown in Figure 11 indicate
that, for a fixed size of the design region, increasing the relative permittivity
results in a lower Q-factor. The intuitive explanation is that the half-wavelength
resonance, which effectively utilizes the available design region, occurs at a lower
frequency for the same physical size patch when the relative permittivity is higher.
Another perspective comes from examining the relationship between an increase
in permittivity of the surrounding material (as discussed in Section 5.2), which
can be interpreted under a constant-current scenario. In alignment with Strat-
ton’s electrostatic analysis, increasing the medium’s permittivity, while main-
taining a constant charge, reduces the stored electric energy. Consequently, near
the static limit, this reduction can promote a lower Q-factor in the current opti-
mization formulation. However, the change to other components of the Q-factor
should also be considered since increasing the relative permittivity also influences
the stored magnetic energy (away from the static limit) and the radiated power,
complicating the overall relationship.

When the bounds are instead expressed in terms of the dielectric wavelength
ℓx/λε, where λε = λ/

√
εr (3.1), as shown in Figure 12, the bounds obtained

for lower relative permittivity exhibit lower Q-factors. However, if the physical
size of the design region remains fixed, this corresponds to operating at a higher
frequency. Examining the bounds on a log-log scale reveals that the scaling is very
similar across all four relative permittivity values (εr ∈ {1, 2, 4, 10}). Notably,
the scaling changes at around half a wavelength in the dielectric. As shown in
Figure 11, the half-wavelength patch Q-factor aligns closely with the bounds.
This is used as a starting point when applying the scaling rule presented in
Paper I. This approximation of the bounds is shown by the dashed lines, which
clearly serve as a good approximation of the bounds, especially for substrates
with higher relative permittivity. The scaling rule applied is proportional to
1/(ka)5, which is in contrast to the scaling of the Chu limit of 1/(ka)3 [9, 80].

An investigation of how surface waves influence the lower Q-factor bounds
is shown in Figure 13, which compares the bounds determined both with and
without the surface wave contribution (Qrad = Q/η). These results indicate that
including or excluding the surface waves leads to nearly identical Q-factor bounds
showing similar optimal current performance. Furthermore, it is observed that
the approximate ratio of surface wave power to radiated power can predict the
radiation efficiency using the expression (4.34) as ηHED = 1/ (1 + ∆sw). However,
this approximation becomes less accurate as the electrical size increases. These
results indicate that in some cases, the lower Q-factor bounds computed with the
surface wave power included can have its radiation efficiency approximated using
the approximate ratio between surface wave and radiated power.
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Figure 12: Lower Q-factor bounds for rectangular design regions Ω with di-
mensions ℓy = 0.77ℓx and dielectric thickness h = 0.05ℓx plotted versus ℓx/λε.
Dashed lines show how the scaling rule approximates the lower Q-factor bounds
from simulations of half-wavelength resonant patches. The markers show the
Q-factors obtained from simulating a half-wavelength resonant patch antenna as
well as the predicted Q-factors from the scaling rule (see Paper I).
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Figure 13: Radiation efficiency due to surface-wave losses of lower Q-factor
bounds currents for the lossless case given a patch with dimensions ℓy = 0.77ℓx
and dielectric thickness h = 0.05ℓx. Two relative permittivities εr ∈ {2, 4}
are used. For half-wavelength resonant patches, radiation efficiencies calculated
with FEKO are shown with markers. The approximate radiation efficiency for a
HED (4.34) is also shown for both relative permittivities.
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Figure 14: Upper bounds on radiation efficiency for all PEC microstrip patch
antennas fitting within a rectangular design region Ω with dimensions ℓy = 0.77ℓx
having dielectric loss tangents tan δ ∈ {0.001, 0.01, 0.1} and substrate thickness
h = 0.05ℓx (see Figure 10). Radiation efficiencies computed using FEKO are
shown by markers for the indicated patch antenna geometries (see insets a-c in
Figure 10).

7.2 MAXIMUM RADIATION EFFICIENCY

The maximum radiation efficiency bounds presented in Chapter 6 can be applied
to microstrip patch antennas, similarly to the lower Q-factor bounds. The first
application is to investigate the maximum radiation efficiency when dielectric
losses (4.23) are included in the substrate. These bounds are shown in Figure 14
for substrate relative permittivity εr = 4. The bounds are presented for three
loss tangents (5.1), tan δ ∈ {0.001, 0.01, 0.1}. As expected, increasing the di-
electric loss tangent reduces the maximum radiation efficiency. The simulated
performances of the rectangular, slot-loaded, and H-shaped patches are tight to
the computed bounds. However, for a loss tangent of tan δ = 0.1, there is a slight
deviation from the bounds for the half-wavelength resonant patch along the ℓy
dimension. This deviation could potentially be avoided with another patch feed.
Furthermore, as the loss tangent increases, the reduction in radiation efficiency
for miniaturized designs becomes more pronounced. For instance, at tan δ = 0.1,
the H-shaped patch exhibits an efficiency of about 1%, in contrast to approxi-
mately 10% for the half-wavelength patch at the same loss tangent.

It should be noted that the non-self-resonant bounds are not presented for
the case of dielectric losses. This is because inductive loop currents, which do not
radiate in the normal direction, would produce non-practical bounds. Even with
low surface resistance on the patch, such loop currents would lead to high Ohmic
losses, rendering these non-self-resonant bounds (formulated in Section 6.2) less
meaningful. Also, the loop current is a relatively poor radiating mode, this,
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Figure 15: Upper bounds on radiation efficiency compared with (6.5) (solid)
and without (6.13) (dashed) self-resonant constraint. The bounds are given for
varying surface resistivities along with the performance of half-wavelength patch
antennas. The design region dimensions are ℓy = 0.77ℓx, the substrate thickness
is h = 0.05ℓx, and the relative permittivity is εr = 4. Radiation efficiencies for
the classical patches shown in Figure 10 computed using FEKO are shown by
markers. PIFAs’ radiation efficiencies are also shown where the side shorted to
the ground is indicated with a red line.

along with high current density on the edges of the patch, means the reduced
dielectric losses are traded off against a large increase in Ohmic losses and a
comparable decrease in radiated power. This means using loop current as a
method to increase radiation efficiency may not have immediate practical value.

The impact of the patch surface resistivity (4.4) on the maximum radiation
efficiency is investigated for three surface resistivities, as shown in Figure 15,
assuming a dielectric substrate with relative permittivity εr = 4. The bounds are
determined both with and without the self-resonant constraint, as formulated in
Chapter 6. As expected, a higher surface resistivity results in lower maximum
radiation efficiency. It is observed that at and beyond the first half-wavelength
resonance, the two bound formulations yield similar results. Furthermore, the
performance of a simulated half-wavelength patch is tight to both bounds.

At electrical sizes ℓx/λε less than 1/2, the bounds computed with and without
the self-resonant constraint show a significant difference in Figure 15. This can be
attributed to the fact that achieving self-resonance requires modifying the patch
geometry for example, by bending it (depicted in Figure 2) as in the slot-loaded
or H-shaped patches (see Figure 10). However, a slight discrepancy is observed
for the H-shaped patch, indicating that it does not excite the optimal currents.
The reason the non-self-resonant bounds perform significantly better can be un-
derstood by noting that a planar inverted-F antenna (PIFA) design operates near
these bounds. Since the PIFA effectively makes the currents running across the
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Figure 16: Upper bounds on radiation efficiency compared with measurements.
The efficiency of three measured antennas is shown with markers. The design
regions’ dimensions are given in the legend. The relative permittivity of the
h = 3.3 mm thick substrate is εr = 4.29(1 − j0.015) and the used surface resis-
tivity of copper is Rs = 0.01 Ω/□. Error bars are based on the precision of the
measurement. The ground plane has dimensions 100 mm × 100 mm.

patch self-resonant without requiring any material removal (spreading out the
currents), it provides a direct path to realizing these improved bounds. It should
be noted, however, that while the PIFA design may be considered preferable in
this regard, it also requires the addition of vias, making it more challenging to
implement. This is discussed in more detail in Paper II.

To emphasize the practical use of the maximum radiation efficiency bounds,
they are compared to the performance of measured microstrip patch anten-
nas, as shown in Figure 16. The substrate used for the patch measurements
is 100 mm × 100 mm with a thickness of h = 3.3 mm. The substrate is assumed
to have a relative permittivity εr = 4.29(1 − j0.015), based on measurements
of a similar FR4 substrate at 2 GHz [102]. The surface resistivity is assumed
to be similar to copper at Rs = 0.01 Ω/□. The bounds are shown between
1.6 GHz − 2 GHz for three different design regions. They exhibit good agreement
with the performance of the half-wavelength, slot-loaded, and H-shaped patches.
This demonstrates that the bounds are practically relevant, as they provide a
reasonable prediction of measured antenna performances. However, it should be
noted that error bars have been added to the measurement results to approxi-
mate the effects of manufacturing variations in the design, among other varia-
tions. It should be noted that using the Q-factor bounds scaling as demonstrated
in Figure 12 and the relationship between Q-factor and radiation efficiency, the
measured Q-factor of the half-wavelength rectangular patch was shown to be able
to accurately predict its radiation efficiency bounds at lower frequencies as shown
in Paper II.
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Figure 17: Upper bounds on the gain in the normal direction, ẑ, for microstrip
patch antennas fitting within a rectangular design region with dimensions ℓy =
0.77ℓx, relative permittivity Re{εr} = 4, loss tangents tan δ ∈ {0.001, 0.01, 0.1},
and substrate thickness h = 0.05ℓx. The corresponding realized directivities are
shown by dashed lines.

7.3 MAXIMUM GAIN

To evaluate the maximum achievable gain of microstrip patch antennas for three
different dielectric loss tangents (tan δ ∈ {0.001, 0.01, 0.1}), the eigenvalue prob-
lem (6.27) is solved for relative permittivity Re{εr} = 4. As shown in Figure 17,
the three classical microstrip patch antenna geometries are shown to be tight to
the upper gain bounds for all three considered loss tangents.

The optimal currents derived from the maximum gain bounds can be used
to determine the corresponding directivity (4.28), as shown in Figure 17. For
all three loss tangents, approximately the same directivity is obtained. This
indicates that, for these antennas, the maximum gain is primarily influenced by
the radiation efficiency rather than the directivity.

The maximum directivity bounds by Harrington (6.2) is compared to the di-
rectivity results for the maximum gain bounds shown in Figure 17, though this
comparison comes with certain pitfalls. Harrington’s bounds are only meaningful
for 1 ≤ ka, which approximately corresponds to 0.5 ≤ ℓx/λε. Even beyond this
point, the directivity remains higher than Harrington’s bound. This occurs be-
cause the patch antenna is not a single-mode radiator, thus increasing directivity
and leading to the discrepancies. This observation highlights the versatility of the
current optimization approach using layered Green’s functions over some other
techniques. Since a circumscribing sphere is not required and only the design
region itself matters, the method is broadly applicable and does not rely on the
restrictive assumptions used for Harrington’s bound.
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8
Metasurface Element Designs for

Infrared-Based Antenna
Measurements

T
he design and characterization of metasurfaces have emerged as a promis-
ing technique for imaging radiated electromagnetic RF fields. By con-
verting the RF fields into heat and detecting the IR radiation using an

IR camera, these metasurfaces can provide a practical and innovative approach
to measuring radiating devices [22,78]. This chapter explores the impact of meta-
surface element designs on their ability to accurately measure RF field distribu-
tions and their associated challenges, such as polarization sensitivity, bandwidth
performance, and mutual coupling. Three metasurface element designs, dipole,
U-shape, and cross potent, are investigated, and their performance in terms of
power absorption and field mapping are compared. These insights are important
for optimizing IR-based measurement setups and ensuring an accurate represen-
tation of the electromagnetic fields from radiating sources.

IR cameras have been employed for RF field measurements for several decades
[7, 14, 22, 57, 57, 78], initially using a homogeneous sheet. Recently, metasurfaces
with sub-wavelength elements were designed to dissipate power from millimeter
waves. This approach still relies on thermal imaging with an IR camera, but it ob-
serves the localized heating of metasurface elements rather than a uniform sheet,
leading to an increase in emitted IR photons [64]. One key benefit of using meta-
surfaces over a homogeneous sheet is the former’s ability to distinguish between
orthogonal polarizations and, therefore, provide extra information. Additionally,
this technique has been used to identify defects in the radiating structure under
test [65].

The metasurface elements examined in this chapter are planar, similar to
patch antennas. The design of these elements significantly influences the per-
formance of the measurement setup. This is as the image captured by the IR
camera is correlated with the power dissipated as heat in the metasurface el-
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ements. Hence, it is necessary that the elements dissipate detectable amounts
of power and effectively receive the component of the electromagnetic field of
interest. Unlike antennas where maximum radiation efficiency is desired, the ra-
diation from the metasurface elements is desired to be minimized and dissipated
power on the elements maximized.

An example of the measurement setup is shown in Figure 18, where the meta-
surface is placed between the IR camera and the device under test (source) that
produces the RF field. The source field induces a temperature increase in the
metasurface, which is then observed by the IR camera as an increase in detected
IR photons. Effectively, the metasurface converts the RF field from the source
into IR radiation.

Source

Metasurface

IR camera

Source field

IR radiation

Figure 18: The measurement setup with the metasurface placed between the
electromagnetic source and the IR camera.

The three metasurface elements considered in this thesis are shown in Fig-
ure 19. Each element is designed for operation at a center frequency of 28 GHz, a
frequency relevant to 5G communication systems [5]. The elements are the dipole,
U-shape, and cross potent. The dipole and U-shape elements are optimized for
a y-polarized field, while the cross potent element is designed to receive both
x- and y-polarized fields. Each element is situated within a 5.35 mm × 5.35 mm
unit cell and repeats in an array, as, for example, shown by the dipole array in
Figure 18. The surface resistivities of the metasurface elements are 6.45 Ω/□ for
the dipole, 7.3 Ω/□ for the U-shape, and 10.3 Ω/□ for the cross potent element.

The elements in Figure 19 are designed so that, at 28 GHz and under the
same ŷ-polarized plane-wave illumination in an infinite array configuration, they
reflect, transmit, and absorb approximately the same amount of power, as shown
in Figure 20. Ideally, the absorbed power should be as large as possible to ensure
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Figure 19: The three metasurface elements and their dimensions, each confined
within a 5.35 mm × 5.35 mm unit cell. The surface resistivities are 6.45 Ω/□ for
the dipole, 7.3 Ω/□ for the U-shape, and 10.3 Ω/□ for the cross potent element.

a strong IR response that can be imaged using the IR camera. However, this
also leads to more reflected power that may interact with the source and other
elements, potentially having a significant effect on the measurement results.
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Figure 20: Transmittance, reflectance, and absorptance for y-polarized plane
wave over a frequency range for the three elements in Figure 19.

The polarization sensitivity of the metasurface elements is another important
factor. While the dipole exhibits strong sensitivity to y-polarized fields and min-
imal response to x-polarized ones, the U-shape element exhibits some undesired
coupling to x-polarized fields. In contrast, the cross potent element’s symmetrical
design ensures polarization independence between x- and y-polarized fields, mak-
ing it suitable for measurements of both polarizations. Additional polarization
properties of the elements are discussed in Paper IV.

To assess the performance of the metasurface, an ideal y-polarized dipole
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Figure 21: Incident power density in the normal direction from a ŷ-directed
ideal electric dipole placed one wavelength below the center.
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Figure 22: Dissipated power in each dipole element (see Figure 19 (a)) of an
11 × 11 element metasurface. The surface is illuminated by an ideal ŷ-directed
electric dipole placed one wavelength below the surface.

source is placed one wavelength below the center element of the surface (see
Figure 18). The metasurface is chosen to be 11 × 11 unit cells in size. The
incident power density for this dipole on a five-wavelength square region (equal
to the 11×11 unit cells) is shown in Figure 21. The incident power density in the
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normal direction with respect to this region decays rather rapidly outward from
the center element. This rapid decay compared to the electric energy density (see
Paper IV) is partially due to the Poynting vector moving away from the normal
direction as the distance from the center of the region is increased.

The incident power density without the metasurface, shown in Figure 22 (a),
is compared to that of a dipole array with elements shown in Figure 19 at 28 GHz.
The normalized dissipated power clearly resembles the incident power level from
the ideal source. Further, it is shown in Paper IV that x̂- and ŷ-directed electric
energy density have less agreement with the dissipated power on the elements.
This is attributed to the interaction between metasurface elements.

Further, in Paper IV, the other two metasurface elements are also shown to
have a dissipated power distribution more closely resembling that of the incident
power density rather than the electric energy density. Should only a single el-
ement be moved in the presence of the field, the dissipated power distribution
would more closely resemble that of the electric energy density of the polariza-
tion the element is set up to detect. This suggests that reducing the interaction
between metasurface elements can be used to better image the electric energy
density. This can be achieved by mismatching the elements coming at the cost of
less dissipated power. Other element designs or spacing can also be considered.
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Summary and Future Work

T
his thesis establishes new performance limits for microstrip patch an-
tennas by deriving tight bounds on Q-factor, radiation efficiency, and
gain. These bounds, numerically compared to well-known antenna ge-

ometries and measured design performance, indicate practical benchmarks that
guide trade-offs between miniaturization, bandwidth, and efficiency. One of the
key contributions is demonstrating that the lower Q-factor bounds derived in this
thesis are significantly tighter than the classical Chu limit for microstrip patch
antennas. By showing that standard designs approach these tighter bounds, this
work confirms their relevance to practical microstrip patch antennas. The de-
rived bounds also scale differently from those of antennas in free space, revealing
new scaling rules for microstrip patch antennas.

Beyond these new Q-factor bounds, the thesis introduces radiation efficiency
and gain bounds, which provide realistic benchmarks for assessing antenna per-
formance. These bounds highlight important performance trade-offs linked to
miniaturization, such as the use of high-permittivity substrates over altering
patch design geometry. A notable contribution is a new relationship derived
between maximum bandwidth and maximum radiation efficiency, which shows
that optimizing one of these parameters often enhances the other. These find-
ings create a clear framework for balancing trade-offs in patch antenna design,
emphasizing their practical relevance.

The derived bounds are made more accessible to antenna designers through
approximations based on half-wavelength resonant patch antenna simulations or
measurements. This allows for practical use even in commercial solvers, enabling
the benchmarking of designs against theoretical limits. Several practical scenarios
are explored, including how the design frequency, region shape, and dielectric
substrate permittivity influence these bounds.

In addition to performance limits, this thesis contributes a deeper material-
based understanding of stored energies in radiating systems. An interpretation of
stored energies through material derivatives is introduced, showing how electric
stored energy relates to a perturbation of permittivity and how stored magnetic
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energy relates to a perturbation of permeability. The equivalence of material and
frequency derivatives for evaluating Q-factor is demonstrated, offering a broader
perspective on stored energy. Further, this relation also links stored energies and
material losses to one another in radiating systems.

Finally, the thesis explores a preliminary step toward improving field imag-
ing techniques using metasurfaces combined with IR cameras. This investigation
demonstrates how metasurfaces with tailored absorptance, transmittance, and re-
flectance can offer high-resolution, polarization-sensitive RF field measurements.
It is shown that the dissipated power in metasurface elements correlates closely
with the incident power density rather than the electric energy density. This work
provides more insight into the importance of the choice of metasurface elements
for RF field measurements and suggests some application specific choices.

Future Work

Building on the contribution of this thesis, a number of directions for future
research can be pursued, as detailed below.

First, more complex geometries and materials could be considered by ex-
tending the current optimization methods to include stacked patches, antennas
with shorting pins (PIFA), and alternative design regions such as circular shapes.
Investigating the influence of finite ground planes and vertical currents on the
derived bounds is an essential next step to refine the models further and ex-
tend their applicability. Additionally, incorporating advanced materials with
engineered permittivity and permeability could enable further performance en-
hancements and novel design strategies for miniaturization.

Second, the accessibility of bounds in commercial solvers can be improved.
While this thesis provides approximation methods to make performance bounds
more accessible, future work could focus on integrating these methods directly
into commercial simulation tools. This will enhance the antenna design com-
munity’s ability to apply these benchmarks to complex scenarios and optimize
trade-offs between efficiency, bandwidth, and form factor.

Third, the material-derivative perspective of stored energies offers new oppor-
tunities to explore. By adopting more generalized approaches that incorporate
realistic material losses and a broader range of antenna configurations, deeper
insights into energy storage and loss mechanisms can be gained. These studies
could help link stored energy properties to specific design objectives, such as
achieving a lower Q-factor or improving efficiency in complex radiating systems.

Lastly, enhanced field-imaging techniques could be explored further. The
metasurface-based IR measurement setup offers a promising approach for field
imaging, but future efforts could focus on improving resolution and sensitivity.
Modifications in metasurface design can further align dissipated power distribu-
tions with the underlying field properties in the absence of the metasurface. Along
with additional simulations, experimental validation using IR cameras is required
to solidify this approach as a viable technique for detailed, polarization-sensitive
field measurements. Arbitrary sources and improved calibration techniques could
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also be explored to broaden the applicability of this method.
This thesis provides a robust theoretical foundation for understanding and

optimizing microstrip patch antennas. By deriving new performance bounds,
introducing material-based perspectives on stored energy, and exploring novel
field-measurement techniques, it lays the groundwork for advancing the state of
the art in antenna design. Future work can build on these contributions to ex-
plore more intricate geometries, leverage engineered materials, refine theoretical
methods, and improve imaging techniques for electromagnetic fields.
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Abstract

Antenna bounds are a useful tool in assessing feasibility or performance
of an antenna design. Microstrip patch antennas are often limited by their
relatively narrow bandwidth, and therefore Q-factor is an important design
parameter, as it is related to the inverse of the fractional bandwidth. This
paper presents the first tight lower Q-factor bounds on microstrip patch
antennas supported by an infinite dielectric substrate. The derived lower
Q-factor bounds are orders of magnitude tighter than the Chu limit and
introduce a new scaling rule. These bounds consider all possible geometries
on the predefined design region. Moreover, it is shown that well known patch
antennas have Q-factors near the bounds and have thus a near optimal
bandwidth. The computation of the bounds is done using a method of
moments formulation. However, an approximation to these bounds using
commonly available simulation tools is provided.

Index Terms

Optimization, microstrip patch antennas, Q-factor, method of moments,
Sommerfeld integrals, physical bounds.

I. Introduction

Microstrip patch antenna technology saw a rapid development in the late
1970s [1], [2] partially driven by their low-cost and ease of fabrication. Modeling of
these antennas soon followed, and reliable models showing good agreement with
measurements became available by the early 1980s [3]. These models allowed
antenna designers to improve performance parameters, such as bandwidth.
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Microstrip patch antennas are still in wide use today and can be modeled using
commercial software e.g., FEKO or CST [4], [5].

Due to the narrowband nature of microstrip antennas, the Q-factor, that
is inversely proportional to the fractional bandwidth, is an important design
parameter [6]. Bandwidth and Q-factor can be computed for a given design [7]
and are then generally optimized by varying parameters using, e.g., heuristic
methods [8], [9]. While this is a reliable design approach, it is time-consuming
and often obtains local optima rather than a desired global optimum.

Since lower Q-factor bounds of microstrip patch antenna designs are of
particular interest, an approach to compute these bounds (also referred to as
limit) is presented here. This allows designers to assess the feasibility of reaching
a required bandwidth within a specified design region. These bounds also provide
benchmarks, in the design process, and when evaluating designs from literature.

A physical bound on Q-factor was derived by Chu [10] in the late 1940s.
This bound, applicable to small antennas enclosed by a sphere, radiating into
free space, is generally known to be unobtainable for microstrip patch antenna
designs due to the latter’s form factor. Obtaining tight bounds on several param-
eters for arbitrarily shaped antennas has successfully been done, using current
optimization on antennas made of conductors having no dielectric substrate [11],
[12], [13], [14], [15]. Amongst all possible currents, the optimal one produces the
lowest possible Q-factor.

In order to determine lower Q-factor bounds, all possible design geometries
need to be considered. The performance of these design geometries can be
computed from their underlying current distribution. To compute Q-factor, this
current distribution is linked to stored energy and radiated power. Thus, a natural
method to compute lower Q-factor bounds is to optimize over all possible current
distributions on the antenna design region. Conveniently, these currents are the
unknowns in the method of moments (MoM) formulation. A similar formulation
would be very difficult in a semi-analytic method e.g., cavity model or numerical
methods such as finite element method (FEM) or finite-difference time-domain
(FDTD), where the natural unknowns are the fields. Using current optimization
with MoM, lower Q-factor bounds are computed by eigenvalue problems.

Microstrip patch antennas can be analyzed numerically, for instance with an
integral equation formulation using MoM [3]. If the ground plane and dielectric
slab are assumed to be infinite, their effect can be accounted for implicitly in the
Green’s function, given by Sommerfeld integrals [16]. In this case, the unknowns
of the problem are only the currents on the patch, providing a computational
advantage over methods, where also the ground plane and dielectric regions need
to be discretized [17]. It should be noted that while in reality the ground plane is
always finite, comparative studies [18] have found the assumption of an infinite
ground plane to be a fair approximation of reasonably large ground planes.
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Here, the original definition of a microstrip patch antenna is used, in that a
single dielectric layer having all currents horizontally on the patch is assumed.
These antennas are typically fed with a vertical feeding pin. While shorting pins,
stacked patches or miniaturized ground planes [19], [20], [21] can be used to
enhance the bandwidth, they are not considered here. Further, it is also assumed
that there is only one dominant resonance over the bandwidth. Patches similar
to the ones presented here are in wide use due to their simplicity and low cost.

This paper presents a method to determine an upper limit on achievable
bandwidth for microstrip patch antennas. These bounds account for all possible
geometries within a predefined design region, thereby obtaining a performance
limit to compare miniaturized patch designs with. Obtained bounds are shown
to be tight (near) to the performance of some practical antenna designs. As the
computation of the bounds requires a MoM formulation, it is also shown that an
approximation of the bounds can be obtained requiring only the simulation of a
half-wavelength patch antenna. The bounds are formulated in Q-factor which is
an accurate estimate of achievable bandwidth given a single dominant resonance
over the bandwidth [7]. These bounds build on [22] by allowing for the addition of
a dielectric substrate. This non-trivial addition makes the bounds more relevant
for microstrip antenna designers, where a dielectric is usually required.

Section II presents the microstrip patch antenna formulation that is used to
compute bounds. Section III validates expressions derived to compute Q-factor.
Section IV shows how to compute lower Q-factor bounds and Section V provides
a method to predict bounds based on simulating half-wavelength resonant patch
antennas. Then, in Section VI, practical examples of the proposed bounds and
comparisons with patch antennas are shown. Section VII concludes the paper.
Finally, the Appendices provide additional information on Sommerfeld integrals
and low-frequency Q-factor scaling.

II. Microstrip patch antenna model
In this paper, microstrip patch antennas are modeled by assuming an infinite

PEC ground plane and an infinite lossless dielectric substrate. On top of the
substrate is a PEC patch confined to a design region Ω, e.g., a rectangle with
side lengths `x and `y, see Figure 1. The presence of the dielectric layer affects
the microstrip patch antenna performance in several ways leading to a non-
trivial relationship between dielectric permittivity and Q-factor. The combination
of these effects with the widespread applications emphasizes the importance of
adding a dielectric to the Q-factor formulations developed in the past [22], [23]
that use image theory to account for an infinite ground plane but do not consider
the dielectric substrate.

Some classical patch antenna geometries constructed within a rectangular
design region Ω are shown in Figure 1. The rectangular patch (a) is resonant
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Figure 1: Microstrip patch antennas confined to a design region, Ω, with side
lengths `x and `y on top of an infinite dielectric substrate having relative
permittivity εr and thickness h. The dielectric substrate is on top of an infinite
PEC ground plane. Some possible patch geometries fitting within the design
region are rectangular patch (a), slot loaded patch (b), H-shaped patch (c), and
U-slot patch (d).

around half-a-wavelength [1] in the dielectric. A lower resonance frequency
is obtained by slot loading (b) effectively lengthening the current path and
miniaturizing the patch [24]. For further miniaturization the H-shaped patch (c)
can be used [24]. Dual resonances can be obtained with the U-slot patch (d) [25].
These patches can be constructed by removing metal from the rectangular design
region and then the radiated field is determined by the current density J(r) on
the remaining metal part. This enables modeling of antenna parameters such
as Q-factor and gain from all patch geometries within the design region Ω by
identifying non-metal regions with current density J(r) = 0.

In this paper, lower bounds on the Q-factor for microstrip patch antennas
are determined by optimizing over current densities J(r) in Ω for given height
(h), relative permittivity (εr), and frequency (f), see Figure 1. These bounds
implicitly account for all possible patch geometries within the design region (Ω),
such as (a)-(d) in Figure 1. Since the bounds are tailored to microstrip patch
antennas, they can be tight to designs.

Here, it is important to emphasize the key difference between a method to
compute the performance of a given structure, as opposed to the bounds for a
given design region. For a given structure and excitation, analyzing microstrip
patch antennas is well understood [3]. For instance using a commercial solver.
In contrast, bounds for a given design region rather computes a performance
limit for all antennas fitting within the design region using e.g., MoM as a tool
in current optimization. The latter is not understood as well, but may provide
simple, yet valuable, results to antenna designers.
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MoM [3], [26] is used to compute microstrip patch antenna bounds, where
the surface current density on the design region Ω is expanded in a set of basis
functions ψm(r) as

J(r) =
M∑

m=1
Imψm(r). (1)

The expansion coefficients Im are collected in I ∈ CM×1 and related to the
excitation voltages V ∈ CM×1 as

ZI = V. (2)

The MoM impedance matrix, Z ∈ CM×M , is decomposed in its real and
imaginary parts

Z = R + jX, (3)

defining the resistance R ∈ RM×M and reactance X ∈ RM×M matrices. This
MoM impedance matrix describes the interaction between all basis functions on
the patch. The interaction between the patch basis functions and the external
environment (e.g., dielectric and ground plane) is implicitly accounted for
through the Green’s functions derived using e.g., Sommerfeld integrals [3].

III. Calculating and validating Q-factor
The Q-factor of a single resonant antenna is inversely proportional to its

fractional bandwidth [7]. However, unlike bandwidth, Q-factor can be computed
at a single frequency. This is exploited here to approximate bandwidth, which
is an important microstrip patch antenna design parameter. It should be noted
that this formulation can be extended to multiband antennas, as long as there
is one dominant resonance within each band.

The Q-factor of an antenna is related to its fractional bandwidth by [7]

BΓ0 ≈
2
Q

Γ0√
1− Γ 2

0
, (4)

where Γ0 is the threshold for the reflection coefficient. An approximate Q-factor
can be determined from inverting (4) as

QΓ0 = 2
BΓ0

Γ0√
1− Γ 2

0
. (5)

In this paper, the threshold is set to Γ0 = −10 dB to calculate approximate
Q-factor values from simulated bandwidths.

The Q-factor (4) is linked to the quotient of stored energy and dissipated power
(Pd) as

Q = 2ωmax {We,Wm}
Pd

, (6)
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where angular frequency is denoted by ω = 2πf , electric stored energy by We,
and magnetic stored energy by Wm.

Surface waves [19] result in some dissipated power in (6) not being radiated
into free space even for an infinite lossless dielectric, PEC patch, and infinite PEC
ground plane. When the substrate is thin, the surface wave that propagates in
the dielectric layer only contains the first transverse magnetic surface-wave mode.
This mode has no cutoff frequency and the first transverse electric surface-wave
mode is launched when the free-space wavelength is, λ < 4h

√
εr − 1, [3].

The dissipated power can then be divided into power radiated into free space
(Pr) and power lost in the surface wave (Psw) as Pd = Pr + Psw. Then radiation
efficiency due to losses in the surface wave is expressed as

η = Pr
Pr + Psw

. (7)

Power lost in surface waves is undesirable even for a finite ground plane where
they lead to diffraction on the edges [3]. Therefore rather than using the Q-factor
in (6), a radiated Q-factor is determined as

Qrad = Q

η
= 2ωmax {We,Wm}

Pr
. (8)

Before the Q-factors (6) and (8) can be computed, expressions for dissipated
power and stored energy are required. These quantities are determined from the
current density J(r) in the design region Ω contained in the column matrix I,
e.g., computed for a given geometry and excitation using (1). The dissipated
power in (6) is evaluated from the MoM resistance matrix R in (3) as [26]

Pd = 1
2IHRI, (9)

where the Hermitian transpose is denoted by superscript H. The radiated
power (7) is similarly determined from the radiation resistance matrix Rr ∈
RM×M as

Pr = 1
2IHRrI. (10)

For a lossless dielectric, the radiation resistance matrix can be computed from
the far field (Appendix A) or by splitting up the Sommerfeld integral as shown
in [3].

Stored electromagnetic energies of microstrip patch antennas are interpreted
here as the energy that does not radiate away through the dielectric (surface
wave) or into free space (space wave). These energies are stored around the patch,
for instance in the dielectric region near the patch (standing wave).

Stored energy of small antennas in free space have been accurately mod-
eled [27], [28] and been generalized to patch antennas above an infinite ground
plane [22] and heterogeneous temporally dispersive media [29]. The total stored
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energy can be computed by differentiation of the reactance MoM matrix X in (3)
as proposed in [30] which together with the reactance define stored electric and
magnetic energies [26], [28]

We = 1
8IH

(
∂X
∂ω
− X
ω

)
I

Wm = 1
8IH

(
∂X
∂ω

+ X
ω

)
I.

(11)

Here, stored energy expressions for small antennas in free space are extended
to microstrip patch antennas, allowing for stored energy to be localized in the
dielectric substrate near the patch design region Ω. This procedure is based
on (11) where closed form expressions for the angular frequency derivative,
∂X
∂ω , are presented in Appendix A based on Sommerfeld integrals. From (11)
it can be shown that both the electric and magnetic stored energy have a term
associated with the vector and scalar potential Green’s functions [3] and the
angular frequency derivative thereof.

To validate the expressions for stored energies (11) for microstrip patch
antennas, the Q-factor (6) is compared with Q-factors based on fractional
bandwidth (5) and differentiation of the input impedance [28]. In this latter
method the Q-factor for a single resonant antenna tuned with a series capacitor
or inductor is given by [7]

QZ′
in

=

√
(ωR′in)2 + (ωX ′in + |Xin|)2

2Rin
, (12)

where ′ denotes angular frequency derivative and Rin and Xin are the real and
imaginary parts of the input impedance, respectively.

A comparison between Q-factors (6) based on stored energies (11) (solid red
curve) and differentiation of the input impedance (12) (dashed green curve) for
H-shaped and rectangular patches are shown in Figure 2. The H-shaped and
rectangular patches are fed with a delta gap excitation and microstrip line,
respectively, with position indicated by the black rectangle. For further validation
with (12), commercial software (FEKO) was used with a thin-wire feed over a
small cut in the H-shaped patch instead of a delta gap feed (blue curve). Similarly,
to validate the results for the rectangular patch the microstrip port excitation
model in FEKO was used. For both patches the self resonances (Xin = 0)
were matched to Rin, in order to compute the fractional bandwidth. Then the
fractional bandwidth was used to calculate Q-factor (QΓ0) from (5). These Q-
factors are shown by black markers in Figure 2 and confirm the calculated
Q-factor. This example indicates that Q-factor determined from the quadratic
forms (11) is an accurate indicator of Q-factor and fractional bandwidth for
microstrip patch antennas. Finally, it should be noted that when interpreting
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Figure 2: Validation of Q-factors computed using the stored energy in (11) (Q),
differentiation of the input impedance (12) (QZ′

in
) and fractional bandwidth (5)

(QΓ0) for H-shaped and rectangular microstrip patch antennas on a dielectric
slab with relative permittivity, εr = 4, dimensions h = 0.05`x, `y = 0.77`x,
`a = 7`x/15, `b = 5`y/11, `c = 2`x/7, `d = 7`y/22, and `e = 5`x/42. The Q-
factors at self resonances are indicated with markers and are computed from the
bandwidth (QΓ0).

computed Q-factor (6) and (12) in terms of bandwidth (5) for non-resonant
structures (Xin 6= 0) a series tuning capacitor or inductor is assumed.

IV. Lower Q-factor bounds

From the expressions of Q-factor (6), dissipated power (9), and stored en-
ergy (11), an optimization problem to compute lower bounds on Q-factor can be
written as

minimize max {We (I) ,Wm (I)}
strubject to Pd (I) = Pin.

(13)

Both the objective (related to numerator of (6)) and the constraint are quadratic
functions of the current (I), which is the optimization variable. Therefore, this is a
quadratically constrained quadratic program (QCQP) which can be solved using
its dual as a parametrized eigenvalue problem [31]. Note that the input power
(Pin) in (13) can be set to any arbitrary positive value. This does not change the
bounds, but rather just scales the optimal currents. For the eigenvalue problem,
a convex combination of We and Wm can be taken [15]. Then the eigenvalue
problem to compute lower Q-factor bounds can be written as [13]

Qlb = 1
2max

ν
min eig

(
νX + Xω,R

)
, (14)
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with Lagrange parameter ν ∈ [−1, 1] and Xω = ω ∂X
∂ω . It should be noted that

low-rank matrices R can be exploited [32], [33] to reduce the computational cost
of (14).

Once the optimization problem has been solved, it is possible to obtain currents
that satisfy the bound from the eigenvectors. This implies equality in (14)
and therefore no dual gap [34]. In some cases it may be necessary to test for
degenerate eigenvalues to recover the currents as shown in [15]. This phenomenon
is attributed to geometrical symmetries in the problem.

The Q-factor bounds from (14) can be determined once the MoM impedance
matrix (3) and its angular frequency derivative in Appendix A have been
computed. Q-factor bounds,

Qlb = Qlb(f,Ω, h, εr), (15)

obtained in this way are functions of several microstrip patch antenna parameters.
Investigations of the bounds for any of these parameters can lead to useful
antenna design insight. Illustrations in this paper focus on two cases; firstly how
the bounds depend on the frequency f for a fixed design region and dielectric
slab, and secondly how the bounds depend on the design region Ω for a fixed
dielectric slab and frequency.

To demonstrate the bounds for the case with a fixed geometry, a design region
Ω with `y = 0.77`x and dielectric thickness h = 0.05`x, see Figure 1, is considered
together with a sweep of frequency or equivalently free-space wavelength (λ).
For substrate relative permittivities εr ∈ {1, 2, 4}, lower Q-factor bound, Qlb, are
shown for electrical sizes `x/λ by solid lines in Figure 3. It should be further
emphasized that although the bounds are computed for a rectangular patch
region, they imply thatany patch geometry fitting within the design region, Ω
has Q-factor at or above the bound.

The Chu bound [10], [35], Q ≥ QChu = 1/(ka)3 + 1/(ka), for any antenna
enclosed in a sphere of radius a circumscribing the patch and its mirror image,
is also shown in Figure 3. The Chu limit is clearly not tight for microstrip patch
antennas and orders of magnitude off the bounds presented here. This is due to
the use of a circumscribing sphere, where the radius of the volumetric design
region is a ≈ 0.632`x instead of the actual planar design region.

The bounds are compared with Q-factors from (12) of antenna designs (a-c) in
Figure 1 with input impedance simulated in FEKO. These patches with probe
feed, having placement indicated by markers on their geometry, are shown in
Figure 3. The two half-wavelength resonant patches (a in Figure 1) are matched
to 50 Ω. The Q-factors calculated using (12) are shown to be approximately on the
bounds for all three relative permittivities. Two other matched antenna designs
(slot loaded (b) and H-shaped (c)) are shown to also be approximately on the
bounds. These examples demonstrate that the computed bounds are tight, in the
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Figure 3: Demonstration of the tightness of lower Q-factor bounds for a rectangu-
lar design region Ω with aspect ratio `y = 0.77`x, substrate thickness h = 0.05`x
and relative permittivity εr ∈ {1, 2, 4} computed using (14). FEKO simulation
results for self-resonant antenna types (a-c in Figure 1) with Q-factors from (12)
are indicated with markers. The H-shaped patch (c) has additional dimensions,
`a = 0.5`x and `b = `y/3, see Figure 2. To place the new bounds into perspective,
the Chu limit (QChu) [10] is included.

sense that it is possible to design antennas with Q-factors close to the bound.
The examples also show that the resonance frequencies scale approximately with
the wavelength in the dielectric λε = λ/

√
εr, as expected.

The optimal currents obtained from (14) given a rectangular design region
are generally associated with a polarization along the longer dimension of the
patch for radiation in the normal direction, therefore in Figure 3, x̂-polarized
as `x > `y. To enforce polarization along the shorter dimension of the patch,
the optimization problem (13) is reformulated by adding an affine constraint to
ensure no undesired polarization as

minimize max {We (I) ,Wm (I)}
strubject to Pd (I) = Pin

FoI = 0,
(16)

where Fo is the far-field vector (defined in Appendix A) for the undesired
polarization. When an x̂-polarization bound is desired but `y > `x, then Fo,
defined here for radiation normal to the patch into free space, should be for ŷ-
polarization in (16). Optimization problem (16) can be reduced to the form (13)
by eliminating the linear equality constraint [36], similar to (14), solved as an
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eigenvalue problem. It should be noted that by maximizing partial gain over
Q-factor, dependence on polarization can also be investigated [22].

The optimization problems in (13) and (16) can be reformulated to minimize
the radiated Q-factor (Qrad) in (8) by replacing Pd with Pr. This can potentially
yield different optimal currents.

V. Bounds from self-resonant patches

The formulation to obtain lower Q-factor bounds presented in Section IV
requires a MoM implementation as e.g., presented in Section II. However, a
simpler approximate formulation to obtain lower Q-factor bounds may be desired.
Therefore, this section introduces a simple approximate method for obtaining
lower Q-factor bounds over a range of frequencies (15), requiring only simulations
of half-wavelength resonant patch antennas.

Patch antenna resonances are associated with their dielectric wavelengths, as
shown in Figure 3. Therefore, it is worth comparing bounds at the same dielectric
wavelength λε as shown in Figure 4. When comparing Figure 3 and Figure 4,
it is observed that the order of the curves are swapped. This is simply due to
the bounds being represented with respect to dielectric wavelength in Figure 4
as opposed to the free-space wavelength in Figure 3. Other than the addition of
the bounds with relative permittivity εr = 10 the data is the same.A reason for
using the dielectric wavelength is that resonances of half-wavelength patches are
approximately at `x/λε ≈ 0.5.

The log-log plot in Figure 4 has straight lines, and the bounds scaling can be
read of as approximately (λε/`x)5 (doubling size reduces Q bounds by a factor 32)
up to the half-wavelength resonances. This scaling is also derived in Appendix B
through a low-frequency expansion assuming no total charge on the patch, given
εr = 1, and can be partially attributed to the ground plane acting as a short for
small h/λ. It should be noted that at low-frequencies given a total charge on the
patch, radiation from the charge difference between patch and ground plane can
result in (λε/`x)3 Q-factor scaling, however this form of monopole radiation is
not desired for patch antennas.

To use the (λε/`x)5 scaling to approximate bounds, a valid reference Q-factor is
required. For this, simulated half-wavelength resonant patch antennas’ Q-factors,
Qhw, computed using (5) or (12), are chosen. These are reasonable reference Q-
factors, as these antennas perform close to the bounds, as shown in Figure 3.
The simple scaling rule that follows from these simulations of half-wavelength
resonant patch antennas with frequency fhw and dielectric wavelength λε,hw, is
given by

Q̃lb(f) = Qhwf
5
hw

f5 = Qhwλ
5
ε

λ5
ε,hw

. (17)
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Figure 4: Lower Q-factor bounds for rectangular design regions Ω with dimen-
sions `y = 0.77`x and dielectric thickness h = 0.05`x plotted versus `x/λε. Dashed
lines show how (17) approximates the lower Q-factor bounds from simulations of
half-wavelength resonant patches. The markers show the Q-factor obtained from
simulating a half-wavelength resonant patch antenna as well as the predicted
Q-factor from (17) interpreted as for the same geometry at a desired design
frequency.

This scaling rule is presented in Figure 4 (dashed lines) for bounds varying in
frequency for a fixed design region and dielectric slab, i.e., for a fixed ε, h, `x
and `y. The results show that by only simulating one half-wavelength patch, a
good approximation of Q-factor bounds over a range of frequencies with chosen
geometric constraints and permittivity are obtained. This scaling is observed
to be more accurate for higher relative permittivity. It should be noted that
this scaling can also be added as an extension of the cavity model predicted
half-wavelength Q-factors [1], this does not require a full-wave solver but is less
accurate.

For design purposes, it is convenient to know approximate bounds on Q-factor
to obtain a benchmark before beginning the design process. To this aim, consider
a design region Ω with fixed dielectric slab and working frequency of the antenna
f . For the design region the maximum length is `x and the maximum width
is `y. The relative permittivity and height of the dielectric slab are εr and h,
respectively. An approximation of lower Q-factor bounds for the antenna under
design consideration can be obtained using the scaling (17) through the following
procedure:

1) Determine the half-wavelength resonance frequency, fhw, for the considered
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Figure 5: Lower Q-factor bounds for rectangular patch region with dimensions
`y = 0.77`x, relative permittivity εr = 4 and varying height. The axis is scaled
to show the (`x/λε)5 scaling.

dielectric slab and design region
2) Obtain the Q-factor Qhw of the half-wavelength patch using either (5)

or (12)
3) Obtain Q̃lb(f) from Qhw using (17)

An example of using the scaling rule (17) is to compute an approximation of
lower Q-factor bounds at 2.45 GHz for relative permittivity εr = 4, dimensions
`x = 20 mm, `y = 15.4 mm and h = 1 mm. Then step 1) the half-wavelength
resonance frequency is determined as approximately 3.665 GHz. For the second
step 2) the Q-factor is computed as 95.5 at the half-wavelength resonance. Then
finally 3) using the scaling Q̃lb(f) ≈ 95.5(3.665/2.45)5 ≈ 715. This corresponds
to a −10 dB bandwidth of approximately 2.3 MHz. The results from these steps
are shown by markers in Figure 4.

The scaling of (17) is further demonstrated on results presented in Figure 4,
by factoring out the λ5

ε/`
5
x scaling, as shown in Figure 5. Additional dielectric

thicknesses are also considered and shown to have similar scaling along with the
expected result that increased dielectric thickness results in a lower Q-factor [1].
Lastly, it should be noted that the small difference between the predicted scaling
and bounds in Figure 4 depends on h and λ. By reducing h or increasing λ the
proposed scaling (17) becomes a more accurate approximation. This means that
scaling comes closer to the low-frequency expansion of Appendix B, and also that
the scaling contribution of the surface wave is reduced.
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VI. Practical examples
In this section, practical applications of the lower Q-factor bounds compared

with simulated antenna designs are presented. Subsection VI-A illustrates how
the Q-factor depends on the patch width for antennas linearly polarized along
their length. Subsection VI-B examines how the size of the design region impacts
Q-factor bounds for a given frequency and substrate. Subsection VI-C shows
how the bounds can be applied to dual resonant patch antennas. Finally,
Subsection VI-D shows the effect when bounds are determined on radiated Q-
factor (8) instead of on Q-factor (6).

A. Design region width
Improvement in bandwidth can be achieved by altering the width of half-

wavelength patch antennas [1]. This subsection investigates this improvement
for arbitrary shaped antennas, designed within a rectangular design region Ω

(see Figure 1). In Figure 6, the patch width (`y) effect on the bounds (Qlb,x)
for polarization along the length (`x) enforced by (16) is shown. However, the
slopes of the bounds in Figure 6 are relatively unaffected by the change in
width. This implies that the scaling rule of (17) can be generalized to other
length-to-width ratios than shown in Figure 4. The bounds are observed to scale
roughly as `x/`y (doubling `y reduces Q bounds by a factor 2) as shown in
Figure 7 at selected `x/λε. Further, when the width is greater than the length,
the lower Q-factor bounds can be significantly greater than when polarization
is disregarded solving (13), especially at lower frequencies. This is due to the
dielectric wavelength of the patch being linked to the polarization direction
(`x) and therefore being the most significant patch dimension regarding Q-
factor scaling, especially before the half-wavelength resonance (as shown in
Subsection VI-C). Finally, the bounds of Figure 1 are shown to have both the
H-shaped and half-wavelength patch antennas near the Q-factor bounds for all
presented patch dimensions.

B. Patch design for a given substrate and frequency
A classical problem is to design patch antennas for a given frequency and

dielectric substrate. In this subsection, a design scenario is used to investigate
how the design region (Ω) affects the Q-factor bounds for a given dielectric
substrate and frequency. The chosen substrate has thickness, h = 1.57 mm, and
relative permittivity, εr = 2.33, as for RTDuroid 5870 by Rogers Corporation,
but it is considered lossless. Then, for a frequency of f = 2.45 GHz, the length
and width of the patch design region are varied. The lower Q-factor bounds,
constrained to x̂-polarization in the normal direction by solving optimization
problem (16), are shown in Figure 8. This contour plot for a range of design
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Figure 6: Effect of width `y on the lower Q-factor bounds for polarization along
`x enforced through (16), relative permittivity εr = 4 and thickness h = 0.05`x.
The bounds are compared to the performances of H-shaped and half-wavelength
resonant patch antennas using (5).
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Figure 7: Effect of width (`y) on the lower Q-factor bounds, Qlb,x, for different
electrical lengths `x/λε with polarization along `x enforced through (16), relative
permittivity εr = 4 and thickness h = 0.05`x.
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TABLE I: Numerical Q-factors of Patches Shown in Figure 8
Patch type `x/ mm `y/ mm Qlb,x QZ′

in
Half-wavelength 38.5 50 45 45
Half-wavelength 38.9 30 66 67
Half-wavelength 39.4 20 90 91

Slot loaded 35.2 28 90 94
Slot loaded 36.7 18 118 121
H-shaped 25.9 20 274 297

region dimensions provides lower Q-factor bounds. Given a design region, the
bounds indicate whether it is possible to obtain a required Q-factor. For a desired
Q-factor, the bounds also provide a range of possible design regions that can aid
patch miniaturization.

The regular spacing of the contours in log scale show that for this scenario a
relatively simple bounds scaling can be derived. The contour lines are all spaced
by 100.2, therefore, the first line less than Qlb,x = 1000 is Qlb,x ≈ 631. Going
between these two lines, it can clearly be read off that a change in `x (polarization
dimension) results in greater bounds scaling compared with an equal change in
`y (width dimension), as shown in Subsection VI-A. Thus, doubling `x results in
moving across 4 contour lines while doubling `y results in only moving across 2
contour lines.

To further demonstrate the relevance of the bounds, FEKO is used to simulate
patch antennas. This is first done for three half-wavelength patches by using a
probe feed and then obtaining Q-factors from (12). These results are shown to
be near the bounds and are indicated by their geometry in the contour plot.
Further, slot loaded patches (b) and an H-shaped patch (c), are simulated. All
patches shown in Figure 8 are within a margin of 10% from the lower Q-factor
bounds, see Table I.

C. Dual resonance
Some patch antennas are designed for dual resonance [19]. In the first example,

Q-factors for dual resonant antennas are compared with the lower Q-factor
bounds allowing for different polarization for the two resonances. In the second
example, a design with the same polarization for both resonances is considered.

For the first example, Figure 9 shows a comparison between x̂ and ŷ-polarized
lower Q-factor bounds (16) for a patch with dimensions `y = 0.77`x, h = 0.05`x
and relative permittivity εr = 4. Firstly, it shows that at lower frequencies, a
significant reduction in Q-factor can be achieved by having polarization along
the longer dimension of the design region. Further, it indicates that at higher
frequencies (around the half-wavelength resonance of the shorter (y) dimension)
there is little difference between the bounds. This result also shows that for
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Figure 8: Lower Q-factor bounds, Qlb,x, for relative permittivity εr = 2.33,
frequency f = 2.45 GHz, dielectric thickness h = 1.57 mm and a rectangular
design region Ω with side lengths `x and `y for x̂-polarized antennas in the normal
direction. The shown antenna geometries have interior colors corresponding to
their Q-factors computed using (12), see Table I.

dual resonant patch antennas, two orthogonal modes tight to the bounds can be
obtained. This patch is shown with feed placement indicated with a black dot.
Further, a reduction in Q-factor is not possible by using circular polarization [37],
[38] with these design parameters since x̂-polarization is essentially on the
bounds, calculated using (13), which allows for arbitrary polarization.

For the second example, a dual resonant antenna with the same polarization for
both bands can be obtained from the U-slot patch (d) in Figure 1. In this case,
efficiently utilizing the patch design region for both resonances is challenging.
This is because a larger portion of the design region is effectively used for the
first resonance than for the second resonance. The results in Figure 10 show this
for a chosen U-slot patch (with dimensions h = 4.5 mm, `x = 21.5 mm and `y =
26.5 mm). From simulations Q-factor is computed using (5), the resonances are
located at approximately 3.64 GHz (`x/λε ≈ 0.39) and 5.23 GHz (`x/λε ≈ 0.56).
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Figure 9: Dual polarized antenna design with x̂ and ŷ-polarization, compared
with lower Q-factor bounds for a design region with dimensions `y = 0.77`x,
h = 0.05`x and relative permittivity εr = 4 obtained from (13) and (16). The
duel resonant antenna geometry is shown with feed location and two simulated
resonance Q-factors obtained using (12) are indicated by markers.

The first resonance is near the bounds, while the second is significantly off. This
may be seen as a fair trade-off, as it results in a similar fractional bandwidth of
approximately 0.05 for both resonances. This fractional bandwidth is similar to
what is reported in [39] from CST simulations with a finite ground plane that is
double the size of the design region.

D. Surface-wave losses
To investigate the contribution of surface-wave losses on Q-factor bounds (13),

the latter are computed with (Qlb) and without surface-wave losses (Qrad
lb ).

For both Qlb and Qrad
lb the optimal currents are then used to compute the

radiation efficiency for relative permittivities εr ∈ {2, 4} as shown in Figure 11.
Observe that in the presented range of `x/λε for both relative permittivities there
is no significant noticeable difference in radiation efficiency between Qlb and
Qrad. Additionally, the quotient Qlb/Q

rad
lb (see, (8)), indicating similar radiation

efficiency, correctly suggests that the optimal currents effectively produce the
same Q-factor. At the half-wavelength resonance FEKO simulations are used
to compute the radiation efficiency as indicated with markers in Figure 11.
The FEKO simulations’ radiation efficiency was determined by integrating over
the far-field above the patch (radiated power) and comparing this with the
input power. The small difference between FEKO and the bounds come from
a combination of factors e.g., a different feed model. Furthermore, it can clearly
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Figure 10: Lower Q-factor bounds for a design region with dimensions `x =
21.5 mm and `y = 26.5 mm compared with a dual resonant U-slot patch antenna
design adapted from [39], where the relative permittivity is εr = 2.2 and substrate
thickness is h = 4.5 mm.

be seen that a greater relative permittivity and `x/λε results in greater surface-
wave losses when computing Q-factor bounds.

For a horizontal electric (Hertzian) dipole (HED) on the patch region, given a
thin substrate, an approximate ratio between surface-wave power and radiated
power is [40]

Psw
Pr

= 3π2

2
(εr − 1)3

h/λ

ε2
r (εr − 1) + 2

5εr
. (18)

From this expression, radiation efficiency can, in a lossless case, be approximated
as ηHED = 1/ (1 + Psw/Pr). This has been shown to be accurate up to h ≤
0.05λ [40].

In Figure 11, the radiation efficiency obtained for an HED is shown with two
black lines. These lines suggest that it can be sufficient to use (18) in determining
radiation efficiency once bounds have been computed with (13).

VII. Conclusion
In this paper, a formulation to compute lower Q-factor bounds for microstrip

patch antennas is presented. The results are numerically validated against ex-
pressions available in literature for computing Q-factor from fractional bandwidth
and input impedance. Current optimization is used to compute the lower Q-factor
bounds. These bounds are shown to be tight for classic patch antenna designs.
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bounds currents for the lossless case given a patch with dimensions `y = 0.77`x
and dielectric thickness h = 0.05`x. Two relative permittivities εr ∈ {2, 4} are
used and for half-wavelength resonant patches radiation efficiency calculated
with FEKO are shown with markers. The approximate radiation efficiency for a
HED (18) is also shown for both relative permittivities.

This further emphasizes the versatility of current optimization as a method of
determining lower Q-factor bounds, previously generally only applied to antennas
in free space. Further, the microstrip patch antennas under investigation serve
as a canonical case for introducing the method.

It is shown that lower Q-factor bounds can be approximated by a simple
method that only requires the simulation of half-wavelength resonant patch
antennas. The low-frequency lower Q-factor bounds scale differently from those
of antennas in free space, due to the ground plane. Further, this bound is orders
of magnitude tighter than the Chu bound. Moreover, it shows that circular
polarization cannot enhance bandwidth for the patch antennas considered here.

Some practical applications of the bounds are also considered, such as how
the design frequency and design region impact the bounds for a given dielectric
substrate. Obtained Q-factor for dual resonant antennas are also compared to
the bounds for both orthogonal, and parallel polarization, of the two resonances.
The bounds are computed with and without surface-wave losses, showing that
for electrically thin substrates, the surface-wave contribution to the bounds is
relatively small and can be accurately approximated by a closed form expression.

Among potential extensions of the proposed method are the addition of
shorting pins, stacked patches and considering other design region shapes e.g.,
circular. A further extension is using two resonances to widen the bandwidth.

90 Paper I © 2023 IEEE



Appendix A
MoM impedance angular frequency derivative

The MoM impedance matrix in (3), assuming no ohmic losses, can be expressed
as

Z = jωµ0L + Ci
jωε0

, (19)

where L and Ci are broadly linked to the inductance and inverse of the
capacitance, respectively. The permeability of free space is denoted µ0, the
permittivity of free space is denoted ε0, and the speed of light in free space
is given by c0 = 1/√ε0µ0. Matrix L has elements

Lmn =
∫

Ω

∫

Ω

ψm(r1) ·GA ·ψn(r2) dS1 dS2, (20)

and matrix Ci has elements

Cimn =
∫

Ω

∫

Ω

∇1 ·ψm(r1)∇2 ·ψn(r2)GV dS1 dS2, (21)

where the basis functions are denoted ψm and ψn. Since all basis functions
are assumed to be on the patch region, the distances between basis functions
are equal to their radial distances, given by ρ12 = |r1 − r2|. The vector Green
dyadic, GA = GA(x̂x̂ + ŷŷ) can be calculated from the scalar, GA, since no
z-directed basis functions are assumed. Along with the scalar Green’s function,
GV, are expressed in radial coordinates as

GA (ρ12) = 1
4πS0

(
1

DTE

)

GV (ρ12) = 1
4πS0

(
N

DTEDTM

)
,

(22)

where the Sommerfeld integral, S0 is [3]

S0(g) = 2
∫ ∞

0
J0 (kρρ12) kρg (kρ, ω) dkρ, (23)

where J0 is the Bessel function of order 0 and kρ is the radial spectral coordinate.
Further, DTE, DTM, and N are defined as [3]

DTE = u1 + u2 coth u2h

DTM = εru1 + u2 tanh u2h

N = u1 + u2 tanh u2h,

(24)

with
u1 =

√
k2
ρ − ω2c−2

0 and u2 =
√
k2
ρ − ω2εrc

−2
0 . (25)
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The following derivation is used to compute stored energies (11). Firstly, the
angular frequency derivative of the MoM impedance matrix is computed as

∂Z
∂ω

= jµ0L + jCi
1

ω2ε0
+ jωµ0

∂L
∂ω

+ 1
jωε0

∂Ci
∂ω

, (26)

and the imaginary part can easily be separated for computations of (11). The
angular frequency derivative of L is

∂Lmn
∂ω

=
∫

Ω

∫

Ω

ψm(r1) ·ψn(r2)∂GA
∂ω

dS1 dS2, (27)

and the angular frequency derivative of Ci is
∂Cimn
∂ω

=
∫

Ω

∫

Ω

∇1 ·ψm(r1)∇2 ·ψn(r2)∂GV
∂ω

dS1 dS2. (28)

To calculate angular frequency derivatives of the vector and scalar Green’s
functions in (22), differentiation is moved inside the integral in the Sommerfeld in-
tegral under conditions given by Lebesgue’s dominated convergence theorem [41].
The angular frequency derivative of the vector Green’s function can then be
written as

∂

∂ω
GA (ρ12) = 1

4πS0

(
∂

∂ω

1
DTE

)
. (29)

The final expressions follow from basic differentiation rules and explicit differ-
entiation of terms in (22). The angular frequency derivative of D−1

TE is given by

∂

∂ω

1
DTE

= −
∂
∂ωDTE

D2
TE

, (30)

where
∂DTE
∂ω

= ω

c2
0

(
εrh csch2 hu2 −

1
u1
− εr coth hu2

u2

)
. (31)

The angular frequency derivative of the scalar Green’s function (22) is expressed
as

∂

∂ω
GV (ρ12) = 1

4πS0

(
∂

∂ω

N

DTEDTM

)
, (32)

which is further computed using

∂

∂ω

N

DTEDTM
=
DTEDTM

(
∂N
∂ω

)
−N

(
∂DTEDTM

∂ω

)

(DTEDTM)2 , (33)

where
∂

∂ω
DTEDTM = DTM

∂

∂ω
DTE +DTE

∂

∂ω
DTM, (34)

with
∂DTM
∂ω

= ωεr
c2

0

(
− 1
u1
− tanh hu2

u2
− h sech2 hu2

)
, (35)
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and
∂N

∂ω
= ω

c2
0

(
− 1
u1
− εr tanh hu2

u2
− εrh sech2 hu2

)
. (36)

The Sommerfeld integrals of (29) and (32) can be solved in the spectral-domain
by going out into the complex plane to avoid the singularity and discontinuity at
u1 = 0. For (32) the singularity of the first transverse magnetic surface wave mode
at DTM = 0 should also be avoided. It is assumed there is only one surface wave
mode. Note, there is no singularity or discontinuity at u2 = 0 [3]. To integrate
the tail, partition-extrapolation using the Mosig–Michalski algorithm [42] can be
used, except when ρ12 = 0, where the integrals are non-oscillatory as a result of
J0(0) = 1 in (24). These integrals are also finite and relatively easy to solve.

From Sommerfeld integrals an asymptotic expression for the radiated far field
can be derived [3]. Given radiation in the z-direction from an HED at the
origin, the far-field can be rewritten assuming for instance an x-directed current
producing an x̂-polarized far-field at x = 0, y = 0 and z →∞.

Using the far-field relation [11], Eê(r̂) = e−jkrF ê(r̂)/r as r → ∞, and the
current density expanded in local basis functions as (1), the far-field vector can
then be expressed as

F ê(ẑ) ≈ FI =
M∑

m=1

−jωµ0Im

2π
(
1− j√εr cot(kh√εr)

)
∫

Ω

ê∗ ·ψm(r)ejkẑ·r dS, (37)

where ê is the unit polarization vector and superscript ∗ denotes the complex
conjugate.

Appendix B
Low-frequency expansion

Mirror currents are used to determine the low-frequency expansion for hori-
zontal current densities in a region Ω at height h above an infinite PEC ground
plane. The electric far-field F in a direction r̂ from a current density J in free
space can be expressed as

F (r̂) = −jkη0
4π

(
r̂ ×

∫

R3
ejkr̂·r1J(r1) dV1

)
× r̂, (38)

which for the patch geometry with surface currents and surface mirror currents
reduces to
∫

R3
ejkr̂·r1J(r1) dV1 =

∫

Ω

ejkr̂·r1J s(r1)− ejkr̂·(r1−2ẑr1·ẑ)J s(r1) dS1

=
∫

Ω

(
ejkr̂·r1 − ejkr̂·(r1−2hẑ)

)
J s(r1) dS1

=
(
1− e−j2hkr̂·ẑ)

∫

Ω

ejkr̂·r1J s(r1) dS1 . (39)
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The low-frequency expansion [43] is expressed in the electric p and magnetic m
dipole moments determined from the surface charge %s and surface current J s
densities in Ω, i.e.

F (r̂) ≈ j2hkr̂ · ẑ k2

4πε0

(
r̂ × (p× r̂) + c−1

0 m× r̂
)
, (40)

as k → 0, where

p =
∫

Ω

r%s(r) dS and m = 1
2

∫

Ω

r × J s(r) dS, (41)

and it is assumed that the total charge in region Ω is zero. The radiated power
for the patch geometry scales as k6 in the electrically small limit in contrast to
k4 for an electrically small antenna in free space [10], [44]. The corresponding
stored energy is independent of k in the limit k → 0 and approaches the static
energy. This produces a Q-factor scaling from (6)

Q ∼ k−5 ∼ λ5, (42)

in contrast to Q ≥ (ka)−3 for a spherical region with radius a in free space [10]
and Q ≥ 6π/(γk3) for electric dipole radiators in an arbitrary shaped region with
high-contrast polarizability γ [44].

If the height (h) is made proportional to the wavelength in free space h ∼ λ,
this from (40) produces radiated power scaling of k4.
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Abstract

This paper presents bounds on radiation efficiency and gain for microstrip
patch antennas, demonstrating close alignment with the performance of
classic antenna designs. These bounds serve as effective benchmarks for
assessing antenna performance and evaluating trade-offs and design feasibility.
The study particularly addresses the trade-off between miniaturization and
performance by comparing bounds for antennas of similar size and frequency,
achieved either by using high-permittivity substrates or by optimizing the
metallic patch design area. To enhance usability, scaling laws are applied,
enabling these bounds to be approximated across a range of frequencies using
only data from a half-wavelength patch antenna simulation or measurement.
Additionally, the study finds a strong correlation between the established
radiation efficiency bounds and lower Q-factor limits (indicative of maximum
bandwidth). This relationship is highly advantageous in the design process,
as it illustrates how bandwidth and radiation efficiency can be optimized
together.
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Microstrip patch antennas, physical bounds, radiation efficiency, gain,
method of moments

I. Introduction

Corresponding author: Ben A.P. Nel.
This work was supported by Excellence Center at Linköping – Lund in Information Technol-
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Lausanne (EPFL), 1015 Lausanne, Switzerland and the Department of Electrical and Informa-
tion Technology, Lund University, SE-221 00 Lund, Sweden (e-mail: anja.skrivervik@epfl.ch).

Paper II © 2024 IEEE 101



M ICROSTRIP patch antennas have been widely used for several
decades [1], [2], [3]. Today, these antennas can be accurately modeled

using commercially available computational electromagnetic software, such as,
FEKO [4] or CST [5]. Making use of these simulation tools, antenna designers
are able to determine performance parameters including radiation efficiency, gain,
and bandwidth.

Radiation efficiency and gain are crucial performance metrics for accessing
antenna losses. However, there is limited knowledge about the performance
limitations of these parameters in the context of microstrip patch antennas.
Understanding these performance limitations can enhance the antenna design
process and lead to innovative designs. Early work computing radiation efficiency
and gain bounds for antennas in free space can be found in [6]. More recent work
has focused on using current optimization to obtain radiation efficiency bounds
for arbitrary geometries [7], [8].

The goal of this paper is to aid microstrip patch antenna design by providing
radiation efficiency and gain bounds. This is achieved by considering all possible
patch geometries within a given design region using current optimization [9].
Some classical patch antenna designs are shown to perform near the bounds
both for Ohmic losses in the patch region as well as for dielectric losses in
the substrate. Therefore, practical design information is provided regarding the
feasibility of obtaining the desired radiation efficiency as well as a benchmark
to assess potential design improvements. The work presented here builds on
previous formulations determining lower Q-factor bounds for microstrip patch
antennas [10], [11].

In this paper, a single-layer microstrip patch antenna is considered, where
currents are confined horizontally within the patch design region. To reduce the
computational complexity, the ground plane and dielectric substrate are assumed
to be infinite. These assumptions are known to be reasonable for moderately sized
ground planes and dielectric substrates [2]. These microstrip patch antennas can
be fed e.g., with a probe feed coming from the ground plane. Note that there exist
methods that may be used to improve the radiation efficiency of a self-resonant
microstrip patch antenna, for instance using a shorting pin or by reducing the
size of the ground plane and dielectric substrate [12], [13], [14], [15], which are not
considered here. However, the bounds presented here serve as a first canonical
case for analyzing maximum radiation efficiency for antennas that are in wide
use.

Here, miniaturization refers to reducing the patch design region below its
natural resonance in free space, such as approximately half a free-space wave-
length for a rectangular design. Two methods for achieving miniaturization are
evaluated: increasing the substrate permittivity (which enlarges the electrical size
of the design region) and shaping the patch by removing metal from the patch
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design region. The latter method can reduce the natural half wavelength (in the
dielectric substrate) resonance frequency of the metal design region by forcing
the current density around slots. Miniaturization is often required even though
it is well known that reducing antenna size is challenging, coming at the cost of
radiation efficiency [12], [13], [16].

Radiation efficiency and gain are recognized as critical design parameters for
microstrip patch antennas, yet bandwidth is equally important for comprehensive
performance evaluation [10]. This paper bridges the gap between maximum
radiation efficiency and lower Q-factor bounds (directly related to the band-
width). This is achieved by deriving an approximate expression that calculates
radiation efficiency from the Q-factor. This relationship not only enhances the
understanding of microstrip patch antenna performance but also provides a
practical tool for antenna designers to optimize designs, ensuring that efficiency
and bandwidth are simultaneously addressed.

The remainder of the paper is structured as follows; Section II introduces
the microstrip patch antenna model and outlines the evaluation process for
radiation efficiency and gain. Section III formulates the procedure to compute
radiation efficiency and gain bounds using current optimization. Further, patch
design region miniaturization is investigated in Section IV. Then, using derived
semi-analytic expressions, Section V discusses bounds scaling for Ohmic and
dielectric losses. Section VI provides a link between minimum Q-factor and
maximum radiation efficiency. A brief discussion on adding vertical currents
between the ground plane and patch antenna is presented in Section VII. The
paper is concluded in Section VIII. Finally, the appendices provide additional
mathematical and procedural details and summarize the used variables.

II. Microstrip patch antenna model
The geometry considered to model microstrip patch antennas is shown in

Figure 1, where the design region Ω, that can be of arbitrary shape, is situated at
the interface between free space and a transversely infinite dielectric substrate.
This dielectric, with relative permittivity εr and thickness h, is on top of an
infinite PEC ground plane.

In this paper, a rectangular design region Ω, is chosen for simplicity, see Fig 2a.
Classical patch geometries fitting within this rectangular design region, such as
a half-wavelength patch (a) as well as miniaturized geometries that reduce the
resonant frequency e.g., slot loaded patch [17] (b), and H-shaped patch [17] (c),
are shown in Figure 2. The radiation efficiency and gain of these classical patch
geometries serve as a reference with which to compare the presented bounds. It
should be noted that these bounds consider all possible patch geometries fitting
within the design region Ω, thereby obtaining a fundamental limit on achievable
maximum radiation efficiency and gain for antenna geometries within Ω.
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Figure 1: The microstrip patch antenna design region is given by Ω. All
metal patch geometries fitting within this region are considered. Surface current
densities on this design region are denoted, J(r). The infinite dielectric substrate
with relative permittivity, εr, and thickness, h, is on top of an infinite PEC ground
plane.

(a) Ω (b) (c)ℓy

ℓx

Figure 2: A rectangular design region Ω, see Figure 1, having dimensions ℓx and
ℓy is chosen in this paper. Classical metal patch geometries such as the half-
wavelength patch (a), the slot-loaded patch (b), and the H-shaped patch (c) fit
within this design region.

Radiation efficiency and gain are defined as [6]

η = Pr
Pd

and G = 4π
U

Pd
, (1)

respectively, where Pr denotes radiated power, Pd dissipated (accepted) power,
and U radiation intensity. For a microstrip patch antenna, the dissipated power
can be due to three different loss mechanisms that can be separately analyzed as

Pd = Pr + PΩ + Pε, (2)

where the Ohmic losses on the patch are given by PΩ and losses in the substrate
due to dielectric losses and surface waves are given by Pε. In reality, the dielectric
substrate is always finite, leading to radiation from surface wave diffraction on
the edge. However, this form of radiation is generally undesirable and therefore
considered as a loss when analyzing radiation efficiency and gain [18]. The
remainder of this section focuses on how to analyze the dissipated power,
radiation intensity, and radiated power to evaluate the radiation efficiency and
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gain (1) in a way suitable for current optimization [9]. It should be noted that
Ohmic losses on the ground plane are not considered in this paper.

For a given microstrip patch antenna geometry and feed, the total dissipated
power (Pd) can be determined from the input voltage and current. However,
in this paper, all possible geometries on a design region need to be considered
and therefore another approach is required. To formulate a current optimization
problem, all patch currents need to be related to dissipated power. This can
be done using the method of moments (MoM) [19]. By making use of Green’s
functions, incorporating the effect of the dielectric substrate and the ground
plane [18], the only unknowns of the system are the currents on the design region,
see Figure 1. The current density J(r) in the design region Ω is expanded in N

basis functions ψn(r) as

J(r) =
N∑

n=1
Inψn(r), (3)

where the position vector is given by r. The MoM impedance matrix Z ∈ CN×N

relates design region currents to voltages as [19]

ZI = V, (4)

where the expansion coefficient In are collected in I ∈ CN×1 and excitation
voltages in V ∈ CN×1. The MoM resistance matrix and reactance matrix are
expressed in terms of the impedance matrix as

R = Z + ZH

2 and X = Z − ZH

2j , (5)

respectively, where the Hermitian transpose is denoted by superscript H and
j2 = −1.

The dissipated power (2) required to obtain radiation efficiency and gain (1)
can be computed from the patch currents (3) and MoM resistance matrix (5)
as [19]

Pd = 1
2IHRI. (6)

To formulate efficiency and gain optimization problems, it is also required to
relate patch currents to radiation intensity and radiated power. For this, analytic
expressions of the far-field radiated by a horizontal electric (Hertzian) dipole
(HED) located on top of the dielectric slab are used to determine the far-field of
the basis functions in (3), see Appendix B for details. This relationship is used
to relate the currents to the far-field in any arbitrary direction (θ, ϕ) as

F (θ, ϕ) ≈ FI, (7)

where the far-field matrix F ∈ C2×N relates patch currents to the far-field
direction with θ̂ and ϕ̂ components.
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The radiation intensity in a direction (θ, ϕ) used to evaluate gain in (1) is given
by

U = |F |2
2Z0

. (8)

From this, the radiated power is calculated by integrating over a hemispherical
surface on the free-space side of the design region, neglecting surface wave effects
near the grazing angle (θ = π/2). Using a set of quadrature points (θn, ϕn)
together with quadrature weights, a matrix Fs is constructed by using far-field
matrices F in (7) evaluated at (θn, ϕn) as rows. For simplicity, square roots for
the quadrature weights are incorporated into Fs such that the radiated power Pr
from patch currents I is determined by a radiation resistance matrix Rr = FH

s Fs
i.e.,

Pr = 1
2IHFH

s FsI = 1
2IHRrI. (9)

III. Bounds on radiation efficiency and gain
This section formulates and presents upper bounds on radiation efficiency and

gain using current optimization [7], [20]. Maximal efficiency (1) is in the form of
a Rayleigh quotient [19], which can also be written as a quadratically constrained
quadratic program (QCQP) [21] as

maximize IHRrI
subject to IHRI = 2Pin,

(10)

where the choice of input power Pin does not affect the bounds but only scales the
currents. The solution of this optimization problem is in the form of a generalized
eigenvalue problem [19] ηup = max eig(Rr, R).

To enforce self-resonance in the radiation efficiency optimization problem (10),
the reactive power is set to zero to model a real-valued input impedance (Im Zin =
0). This additional reactive power constraint is written as a quadratic form over
the reactance matrix (X) in (5) and reduces the search space of possible optimal
currents resulting in the optimization problem

maximize IHRrI
subject to IHRI = 2Pin

IHXI = 0.

(11)

The QCQP (11) can be transformed to a dual problem [20] and written as a
parameterized eigenvalue problem using a scalar parameter ν. Where, given the
condition R + νX ⪰ 0 and an indefinite X, the scalar parameter is restricted to
the range (29) shown in Appendix C. This leads to the use of the far-field matrix
Fs in (9) to express the solution of (11) as a parametrized ordinary eigenvalue
problem

ηub = min
ν

max eig
(
Fs(R + νX)−1FH

s
)
. (12)

106 Paper II © 2024 IEEE



0.2 0.3 0.4 0.5 0.6 0.7 0.8
10−3

10−2

10−1

100

ℓx/λε

effi
ci

en
cy

(η
)

εr = 4− 0.004j
εr = 4− 0.04j
εr = 4− 0.4j

Figure 3: Upper bounds on radiation efficiency for all PEC microstrip patch
antennas fitting within a rectangular design region Ω with dimensions ℓy = 0.77ℓx
(see Figure 2) having dielectric loss tangents tan δ ∈ {0.001, 0.01, 0.1} and
substrate thickness h = 0.05ℓx (see Figure 1). Radiation efficiencies computed
using FEKO are shown by markers for the indicated patch antenna geometries
(see insets a-c in Figure 2).

It should be noted that a simultaneous diagonalization of R and X can be used to
reduce the computational complexity in (12) by inverting a diagonal matrix [20].
There is typically no dual gap for the QCQPs presented here with one or two
quadratic constraints [22]. Therefore, the optimal currents (11) can be determined
from eigenvectors in (12).

Figure 3 shows upper bounds on the radiation efficiency computed for PEC
microstrip patch antennas with a dielectric substrate having Re{εr} = 4 and
loss tangent tan δ ∈ {0.001, 0.01, 0.1} using (12). The design region Ω has
dimensions ℓy = 0.77ℓx and substrate thickness h = 0.05ℓx (see Figure 1), where
again it should be noted that the bounds provide a performance limit for all
possible patch geometries within the design region. The bounds are shown for a
varying patch length ℓx normalized by the dielectric wavelength, λε = λ/

√
Re εr

(neglecting the imaginary part of permittivity). The bounds are tight from a
practical point of view, as shown by the comparison with realistic antennas
with an infinite ground plane simulated using commercial software (FEKO) and
indicated by the markers to have near optimal performance. For instance, the
half-wavelength patch (see Figure 2a) is shown to be essentially on the bounds
for all presented loss tangents with only a slight deviation from the bounds
when exciting the half-wavelength resonance along the shorter dimension (ℓy)
and increasing the loss tangent to tan δ = 0.1. However, this deviation could
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Figure 4: Upper bounds on the radiation efficiency for all microstrip patch an-
tennas fitting within the rectangular design region with dimensions ℓy = 0.77ℓx,
specified Ohmic losses, relative permittivity εr = 4, and substrate thickness
h = 0.05ℓx. Radiation efficiencies for the classical patches in Figure 2 computed
using FEKO are shown by markers.

potentially be minimized with a different feeding configuration. Considering
miniaturized geometries, performance near the bounds is also observed for the
slot-loaded patch (see Figure 2b) as well as the H-shaped patch (see Figure 2c).

The results in Figure 3, as expected, show that when the dielectric loss tangent
is decreased or the electrical size is increased, the maximum radiation efficiency
increases. For design regions smaller than half a wavelength in the dielectric
(ℓx/λε < 0.5), the bounds show that for a high loss tangent e.g., tan δ = 0.1
miniaturized designs perform relatively poorly. To demonstrate this compare the
bounds for tan δ = 0.1 at ℓx/λϵ ≈ 1/3 (realized by the H-shaped patch) around
1.5% efficiency and ℓx/λϵ ≈ 1/2 (realized by half wavelength patch) around 10%
efficiency. For a loss tangent tan δ = 0.001 the same comparison leads to bounds
at ℓx/λϵ ≈ 1/3 of around 60% and at ℓx/λϵ ≈ 1/2 around 80%. This emphasizes
the importance of choosing a substrate with low dielectric losses when considering
antennas that are smaller than half a wavelength in the dielectric. It should be
noted that further improvements in radiation can be achieved using designs larger
than ℓx/λε > 0.5. This is done by exciting a half wavelength resonance on the
shorter dimension (ℓy) as is well known. This is confirmed by both the bounds
and the simulated patch antennas.

Radiation efficiency bounds computed using (12) for patches with varying
surface resistivity Rs ∈ {0.0377, 0.377, 3.77} Ω/□ (ohms per square) and a lossless
dielectric are shown in Figure 4. The surface resistivity can model either a
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resistive sheet or a solid conductor with a skin depth [23]. To demonstrate
the practical application of the bounds, the performance of different patch
designs (see Figure 2), is compared to the bounds using FEKO. This shows that
the half-wavelength-patches (see Figure 2a) are essentially on the bounds and
therefore optimal for these surface resistivities. Further, the slot-loaded patch
(see Figure 2b) and H-shaped patch (see Figure 2c) perform near the bounds.
The reason the slot-loaded patch and the H-shaped patch do not align with
the bounds is that the currents are constrained in these designs, leading to high
current densities resulting in less efficient use of the available surface area. Similar
to Figure 3 it is observed that increasing design region dimensions may be used
to compensate for high losses.

A further parameter of interest is gain (1). Upper bounds on gain can be
determined by maximization of the radiation intensity and written as the current
optimization problem

maximize IHFHFI
subject to IHRI = 2Pin

IHXI = 0,

(13)

which can be formulated as an eigenvalue problem (see Appendix C for more
information) using the range computed for ν in (29) as [20]

Gub,r ≈ 4π min
ν

max eig
(
F(R + νX)−1FH)

. (14)

Upper bounds on gain for microstrip patch antennas with relative permittivity
having real part Re{εr} = 4, varying loss tangent, substrate thickness h = 0.05ℓx
and design region dimensions ℓy = 0.77ℓx are shown in Figure 5. The bounds
show that, as expected, an increased dielectric loss tangent reduces the gain.
Further, the corresponding directivity (D = G/η) values, shown by dashed
lines, are on top of one another with only a weak dependence on the electrical
size of the design region. This suggests that the maximum achievable gain is
scaled by achievable radiation efficiency with directivity relatively unaffected.
The gain bounds on Ohmic losses are not shown here, however, they lead to the
same conclusion on directivity as the bounds with dielectric losses presented in
Figure 5. This suggests that directivity is mostly determined by the electrical
size of the structure when maximizing gain.

IV. Substrate impact on antenna miniaturization
In this section, the trade-off between antenna miniaturization and radiation

efficiency bounds is investigated. Miniaturizing patch antennas can be achieved
by increasing the substrate’s relative permittivity and/or shaping the patch
geometry. A comparison between these two approaches for a given design region
and free-space wavelength is provided here. This is done for a design region
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Figure 5: Upper bounds on the gain in the normal direction, ẑ, for microstrip
patch antennas fitting within a rectangular design region with dimensions ℓy =
0.77ℓx, relative permittivity Re{εr} = 4, loss tangents tan δ ∈ {0.001, 0.01, 0.1},
and substrate thickness h = 0.05ℓx. The corresponding realized directivities are
shown by dashed lines.

with dimensions ℓy = 0.77ℓx, substrate thickness h = 0.05ℓx, and relative
permittivities Re{εr} = 2 and Re{εr} = 4, investigating Ohmic as well as
dielectric losses separately. In addition, the radiation efficiency bounds are
compared to measurements of miniaturized patch antennas for a given substrate.

A comparison of the efficiency bounds for different substrate relative per-
mittivities is shown in Figure 6 for patch Ohmic losses of Rs = 0.01 Ω/□
(similar to copper) and lossless dielectrics. It is evident that the higher relative
permittivity substrate (εr = 4) has greater radiation efficiency bounds than the
lower permittivity (εr = 1 and εr = 2) substrates, for structures miniaturized
below its half a wavelength (in the εr = 4 substrate) ℓx/λ < 0.25. The enhanced
efficiency of the high permittivity substrate (εr = 4) can be attributed in part to
its greater electrical thickness. This is demonstrated by comparing its efficiency
bound with that of a thinner substrate, h = 0.0354ℓx, equivalent to the electrical
thickness of the εr = 2 material. The results indicate that the substrate’s
electrical thickness is a critical factor in determining efficiency bounds for designs
smaller than half a wavelength.

The performance differences among the various substrates become less pro-
nounced for ℓx/λ > 0.25, where all scenarios exhibit efficiencies ranging from
around 85% to 95%. The εr = 2 substrate demonstrates marginally better
performance up to ℓx/λ ≈ 0.3, beyond which the free-space scenario (εr = 1)
excels. In this range, efficiency bounds for the two εr = 4 substrates are
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Figure 6: Upper bounds on radiation efficiency with surface resistivity Rs =
0.01 Ω/□. The design region has dimensions ℓy = 0.77ℓx and the substrate thick-
ness h and relative permittivity εr are indicated in the legend. The vertical dashed
lines indicate the half wavelength size for substrates with relative permittivity of
2 and 4.

comparable, with slightly better performance observed for the thinner substrate.
The intricate behavior within this range arises from a combination of increased
electrical size and increased surface wave losses for the higher permittivity
substrates.

Further, considering only dielectric losses, the radiation efficiency bounds for
relative permittivity εr = 2(1 − j tan δ) and εr = 4(1 − j tan δ) substrates are
compared as shown in Figure 7. The interpretation remains consistent for the
low-loss substrate with tan δ = 0.001, similar to the Ohmic losses depicted in
Figure 6. Specifically, the high permittivity substrate (Re{εr} = 4) exhibits
the highest efficiency bound below ℓx/λ < 0.25, while the lower permittivity
substrate (Re{εr} = 2) outperforms it above ℓx/λ > 0.25. Once more, this
phenomenon primarily stems from the larger electrical size in electrically small
cases and the increased surface wave power for larger sizes. Using a thinner
substrate of h = 0.0354ℓx reduces the efficiency, bringing the values closer to
those of the Re{εr} = 2 case, although with a disparity larger than observed for
the Ohmic losses in Figure 6.

In the case of higher dielectric losses with tan δ = 0.01, the higher permittivity
substrate exhibits superior performance across the entire range ℓx/λ < 0.36.
This can be attributed in part to the dominance of material losses, which hide
the impact of surface waves, resulting in lower efficiency overall. Furthermore, the
enhancement observed beyond the dielectric’s half a wavelength, ℓx/λ > 0.25, is
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Figure 7: Upper bounds on radiation efficiency for two relative permittivities with
substrate loss tangents tan δ ∈ [0.01, 0.001]. The design region has dimensions
ℓy = 0.77ℓx and indicated substrate thickness h and relative permittivity εr in the
legend. The vertical dashed lines indicate the half wavelength size for substrates
with relative permittivity of 2 and 4.

attributable to the fact that the ℓy-direction becomes half a wavelength increasing
the width of the patch.

Based on these investigations, it is recommended that when considering minia-
turization, a higher permittivity substrate should be preferred over reshaping the
design region. The exact range over which it remains favorable to do so depends
on several factors such as surface wave losses. From the cases considered here,
it is observed that for low-loss cases it is favorable to miniaturize by increasing
relative permittivity up to around half a wavelength. To better understand this a
further study of how the surface wave depends on design parameters is presented
in Section V.

For a given dielectric substrate, the bounds can be compared to measured
antenna designs. This is both a validation of the bounds’ usefulness for a
finite ground plane as well as an investigation of miniaturized designs on the
same dielectric substrate. The FR4 dielectric substrate chosen has dimensions
100 mm × 100 mm with thickness 3.3 mm and relative permittivity εr ≈ 4.29(1 −
j0.015), based on material characterization at 2 GHz [24]. Three different design
regions are considered and their radiation efficiency bounds determined between
1.6 GHz − 2 GHz as indicated in Figure 8. The smallest design region (ΩC) has
significantly lower radiation efficiency bounds than the other two design regions
(ΩA and ΩB). When comparing the two largest design regions, the one with the
largest maximum dimension has higher radiation efficiency bounds, confirming
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Figure 8: Upper bounds on radiation efficiency compared with measurements.
The efficiency of three measured antennas is shown with markers. The design
region’s dimensions are given in the legend. The relative permittivity of the
h = 3.3 mm thick substrate is εr = 4.29(1 − j0.015) and the used surface
resistivity of copper is Rs = 0.01 Ω/□. Error bars are based on the precision
of the measurement. The ground plane has dimensions 100 mm × 100 mm.

that for miniaturized geometries it is generally favorable to increase the largest
dimension.

Since a finite ground plane is used, part of the undesired surface wave power
is detected as radiated power in the measurement. However, since the ground
plane is relatively large compared to the design region, the bounds should still
be a good indication of optimal performance [2]. Should the surface wave have
a larger effect on the radiation efficiency such as in the case of an electrically
thicker dielectric substrate then this should be accounted for. When comparing
the half-wavelength patch with design dimensions ΩA at 1.9 GHz to the bounds,
the measured radiation efficiency is found to be very close to these bounds.
Similarly, for the slot-loaded patch (designed within the design region ΩB) the
measured radiation efficiency is close to the bounds at 1.87 GHz. The H-shaped
patch (designed within the design region ΩC) has a slight deviation from the
bounds at 1.8 GHz.

V. Semi-analytic approximation of bounds

In this section the contribution of substrate and patch loss parameters per-
taining to radiation efficiency bounds are further investigated, to see if this effect
can be approximated to enhance understanding and simplify computations. With
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this, insights can be derived as how the substrate or patch material properties
affect the radiation efficiency bounds.

The dissipation factor [6], [7], defined as

∆ = Pd − Pr
Pr

= Pε + PΩ
Pr

, (15)

is a natural parameter to consider when investigating the effect of loss parameters
on the scaling of radiation efficiency bounds (obtained with (12)). The dissipation
factor is related to the radiation efficiency as η = (1 + ∆)−1. Therefore, upper
bounds on radiation efficiency provide lower bounds on dissipation factor.

As shown in [7] for antennas in free space, lower bounds on dissipation factor
scale linearly with surface resistivity (Rs). However, only considering this scaling
for microstrip patch antennas does not account for surface wave effects, as,
even with lossless materials, Pε ̸= 0. To account for this effect, an approximate
expression [25]

Psw
Pr

≈ ∆sw = 3π

4
(Re{εr} − 1)3

kh

Re{εr}2 (Re{εr} − 1) + 2
5 Re{εr}

, (16)

relating the surface wave power to the radiated power of a HED is used, see
Figure 9. The surface wave is strictly only defined for lossless dielectrics but
in (16) it is assumed that the ratio between propagated power in the dielectric and
radiated power (9) remains constant with increased loss tangent. Further, due to
the choice of thin dielectric substrates, only the first transverse magnetic surface
wave mode is propagating [26]. The thickness required to have the first transverse
electric surface wave mode propagating in the substrate is h > λ/(4

√
εr − 1) [18]

in a lossless substrate. It should be noted that with a finite ground plane, the
surface wave (16) introduces edge diffraction, which alters the main lobe of the
radiation pattern and leads to the formation of sidelobes and increased back
radiation, particularly in the E-plane [2].

For three electrical thicknesses over a range of relative permittivities, the
expression (16) is used to approximate the surface wave to radiated power ratio
as shown in Figure 9. In the figure the h = 0.0125λ at εr = 4 corresponds to
a relative permittivity of 4 substrate at half a dielectric wavelength in Figure 3
and Figure 4. It should be noted that by increasing the relative permittivity
higher-order surface wave modes could be excited although this is not the case
in Figure 9.

The normalized surface wave power (16) can be approximately removed from
the dissipation factor (15) as

∆ρ = ∆ − ∆sw. (17)

This is applied to the lower dissipation factor bounds obtained using (12), along
with normalizing with the surface resistivity (∆ρZ0/Rs), as shown in Figure 10.
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Figure 9: Ratio between the first surface wave mode power (Psw) and radiated
power (Pr) for an HED approximated by (16). The expression is evaluated over
a range of relative permittivities and for three electrical thicknesses.
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Figure 10: Lower dissipation factor (17) bounds with the surface wave contri-
bution (16) subtracted. The bounds are shown for different surface resistivities
normalized by surface resistivity and different dielectric loss tangents normalized
by the imaginary part of permittivity. The substrate relative permittivity is
Re{εr} = 4, thickness h = 0.05ℓx, and the patch region dimensions are
ℓy = 0.77ℓx.
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The results show very little difference between the bounds for the different
resistivities Rs when removing the two main contributions (surface resistivity
and surface wave). It is noted that as the electrical size increases, the bounds
start to deviate slightly. This is due to the surface wave approximation (16)
not being accurate for these cases [25] along with the optimal currents trying
to suppress these losses as they become more significant. It is very important
to note that (16) does not indicate a bound on the ratio between surface wave
and radiated power. However, it is an excellent approximation when the surface
wave power is not a dominant contribution to radiation efficiency as confirmed
in Figure 10.

To investigate the bounds’ dependence on dielectric losses, the relationship
between dissipated power in the dielectric substrate and the imaginary part of
the relative permittivity is required. This is given by

Pε = −1
2

∫
Im{εr(r)}|E(r)|2 dV, (18)

where it is sufficient to integrate over the volume of the substrate. Assuming
that the non-propagating (excluding surface waves) part of the electric field in
the substrate remains constant when the dielectric losses are increased, then
the dissipation factor (15) should scale linearly with respect to the dielectric
losses (18), neglecting the surface wave. Further, as only the real part of the
relative permittivity is taken in (16), the ratio between radiated and surface
wave power is assumed to remain constant.

The normalized lower bounds on the dissipation factor for varying dielectric
loss tangents are shown in Figure 10. The bounds with this normalization, along
with subtracting the surface wave power (16), are approximately equal for all
presented loss tangents. This means that the lower dissipation factor bounds scale
approximately linearly with respect to loss tangent after the approximate surface
wave power is removed, implying negligible changes to the near field. Further,
the ratio of surface wave power to radiated power approximately follows (16)
except for electrically large patches.

VI. Closed form expression of Maximum radiation efficiency
linked to minimum Q-factor

In this section, a link between stored electric energy in the substrate and
dielectric losses is established [27]. This allows for the microstrip patch antenna
Q-factor to be related to its radiation efficiency leading to a link between
maximum radiation efficiency and minimum Q-factor (maximum bandwidth).
This link requires that most of the stored electric energy is confined in the
dielectric substrate similar to the assumption made in the cavity model [3]. With
this assumption, the stored electric energy can be related to the dissipated power
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in the near field (due to dielectric substrate losses) and along with surface wave
power (16) can be related to the total dissipated power in the substrate as

Pε ≈ 2ωWe tan δ + Psw, (19)

where the stored electric energy is given by We. Adding the radiated power to (19)
and using the total dissipated power (2), leads to

Pd ≈ Pr + Psw + 2ωWe tan δ, (20)

assuming no Ohmic losses. It is useful to rewrite (20) in terms of the Q-factor
that can be approximated from the fractional bandwidth or input impedance
frequency derivative [28] as shown in Appendix D. This can easily be measured
with e.g., a VNA.

Self-resonant antennas have equal stored electric and magnetic energies, which
simplifies the Q-factor [28] to

Q = 2ωWe
Pd

. (21)

Substituting the Q-factor (21) into (20) normalized by dissipated power and
identification of the efficiency (1) yields

1 ≈ η + Psw
Pd

+ Q tan δ. (22)

Using the approximation (16) for the surface wave power, the radiation
efficiency can be factored out in (22) and expressed as

η ≈ 1 − Q tan δ

1 + ∆sw
. (23)

Assuming the ratio of surface wave power to radiated power (∆sw) remains
constant when the loss tangent is increased, it is clear from (23) that minimizing
Q-factor is equivalent to maximizing radiation efficiency. This means that max-
imizing bandwidth and radiation efficiency are closely related for self-resonant
microstrip patch antennas.

Lower Q-factor bounds of a lossless substrate can be related to maximum
radiation efficiency [29] of a lossy substrate when the radiated Q-factor (Q/η) is
assumed to be invariant with respect to loss tangent, as suggested by results
presented in Figure 10. The lower Q-factor bounds for a patch antenna on
a lossless substrate (Qlb) are here defined in terms of the Q-factor of a half
wavelength patch (Qhw) with dielectric losses as

Qlb = Qhw
η(1 + ∆sw) . (24)
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Figure 11: Upper bounds on radiation efficiency determined using current
optimization (12) are compared to an approximation of the bounds from the
Q-factor (25). The Q-factor comes from a measured half-wavelength microstrip
patch antenna with relative permittivity εr = 4.29(1−j0.015), substrate thickness
h = 3.3 mm, design region dimensions ℓxℓy = 36.17 × 28.88 mm2 and the ground
plane has dimensions 100 mm × 100 mm.

Substituting this into the expression relating efficiency to Q-factor (23) leads to
an approximation of maximum radiation efficiency in terms of the lower Q-factor
bound for a patch antenna on a lossless substrate as

ηub ≈ 1
(Qlb tan δ + 1)(∆sw + 1) . (25)

The lower Q-factor bounds in this expression can be determined from results
presented in [10] by comparing the result with the maximum radiation efficiency
obtained from (12).

The steps required to approximate radiation efficiency bounds from the Q-
factor of a single half-wavelength patch antenna assuming negligible Ohmic
losses are outlined in Appendix E. This can be useful as the Q-factor can
be determined from measurements and simulations. The results, as shown in
Figure 11, indicate that lower Q-factor bounds of a microstrip patch antenna
are a good approximation of maximum achievable radiation efficiency when
dielectric losses are added. Further, applying a scaling rule, the measured results
can be used to approximate the maximum achievable radiation efficiency for
miniaturized designs as shown by the dashed line in Figure 11.

In [3], the Q-factor is linked to Ohmic losses of half wavelength microstrip
patch antennas by using the cavity model approximation. This can be used to
write a similar expression to (25) for only Ohmic losses by replacing tan δ in (25)
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with 2Rs/(khZ0). This assumes Ohmic losses on both the ground plane and
patch. The assumption made here of only Ohmic losses on the patch region can
be made by replacing with Rs/(khZ0) instead. This expression is expected to be
less accurate than (25) as the stored energy is less clearly linked to Ohmic losses
in a general setting.

VII. Vertical currents

In this paper, the bounds constraints do not consider vertical currents between
the ground plane and the dielectric substrate. However, it is worth noting an
interesting miniaturization approach, consisting of using a shorting pin/wall to
miniaturize the patch [12]. This avoids having to reshape the rectangular metal
design region into for instance an H-shaped patch (see Figure 2c) but requires
the addition of vias, leading to planar inverted-F antenna (PIFA) designs.
These antennas can be simulated in commercial software using a shorting wall,
as shown in Figure 12, demonstrating significantly higher radiation efficiency
compared to the self-resonant bounds. To better understand the reason for
this discrepancy, the self-resonant constraint is removed (10), demonstrating
significantly higher radiation efficiency compared to the self-resonant bounds
below half a wavelength. This leads to bounds performance similar to the PIFA
radiation efficiency, suggesting that PIFA antennas essentially make the optimal
Ohmic loss patch currents self-resonant. It should be noted that the PIFA also
performs better than the self-resonant dielectric loss bounds. However, when
the self-resonant constraint is removed, highly inductive loop currents that do
not radiate in the normal direction and produce high Ohmic losses, lead to
significantly higher radiation efficiency bounds.

VIII. Conclusion

This paper investigates the performance limitations of microstrip patch anten-
nas by presenting radiation efficiency and gain bounds. These bounds provide a
realistic benchmark for assessing the feasibility and evaluating trade-offs involved
in antenna design. Through a comprehensive study, the close alignment of
these theoretical bounds with practical designs is demonstrated, highlighting
their practical relevance. This closeness has been challenging to achieve on
previous formulations of radiation efficiency bounds, especially for miniaturized
designs [20]. The paper also presents a relationship between maximum bandwidth
and maximum radiation efficiency, which could be very useful in the design
process.

The following key findings summarize the contributions of this work:
• The radiation efficiency and gain bounds presented in this paper are shown

to be close to the practical microstrip patch antenna design’s performance.
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Figure 12: Upper bounds on radiation efficiency compared with (11) (solid)
and without (10) (dashed) self-resonant constraint. The bounds are given for
varying surface resistivities. Along with the performance of half-wavelength patch
antennas, some PIFAs’ radiation efficiency is also shown. The side of the PIFAs
shorted to the ground is indicated with red. The design region dimensions are
ℓy = 0.77ℓx, the substrate thickness is h = 0.05ℓx and relative permittivity is
εr = 4.

This emphasizes the usefulness of these bounds as they serve as a realistic
benchmark to assess feasibility and evaluate trade-offs.

• The bounds highlight the performance trade-offs linked to patch miniatur-
ization, indicating that utilizing a higher permittivity substrate is often more
beneficial than reshaping the patch design region for miniaturization

• Since the formulation for obtaining the bounds is not currently available
in commercial solvers, an approximation is derived using the performance
of a single half-wavelength patch antenna. This allows the antenna design
community to utilize the bounds when considering the miniaturization of
microstrip patch antennas.

• The bounds are further used to present an approximate relationship be-
tween maximum bandwidth (minimum Q-factor) and maximum radiation
efficiency. This new finding suggests that in many instances, optimizing one
of these parameters also implicitly optimizes the other.

This study makes significant advancements in understanding the performance
limits of microstrip patch antennas. By establishing these bounds, a valuable
tool for antenna designers is provided to benchmark their designs against the
theoretical limits. The close agreement between the bounds and practical designs
underscores their relevance and utility. However, future research should focus on
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addressing the remaining open questions, including the effects of finite ground
planes and the inclusion of vertical currents in the bounds formulation. These
investigations will further refine the bounds and extend their applicability,
ultimately aiding in the development of more efficient and effective antenna
designs.
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Appendix A
Notation used

In Table I, a summary of the notation used in the paper is provided.

TABLE I: Definitions of Frequently Used Parameters in the paper
Parameter Definition Eqn/Fig

η Radiation efficiency (1)
G Gain (1)
Pr Radiated power (1)
Pd Dissipated power (1)
PΩ Ohmic losses (2)
Pε Dielectric losses (2)
Ω Design region (3)
h Substrate thickness Figure 1
εr Relative permittivity Figure 1
J(r) Current density (3)

I patch currents (4)
Z MoM impedance matrix (4)
R Resistance matrix (5)
X Reactance matrix (5)
Fs Far-field matrix (7)
Rr Radiation resistance (9)

Appendix B
Far field expressions

The current density J(r) in (3) in the design region is related to the radiated
power by integration of the radiation intensity. Linked to the radiation intensity
is the far field, F = Fθθ̂ + Fϕϕ̂, that is defined in terms of the electric field
(rejkrE) by letting the radial distance r → ∞ using spherical coordinates, where
the elevation angle is given by θ ∈ [0, π/2) and the azimuthal angle is given by
ϕ ∈ [0, 2π], with the coordinate system shown in Figure 1.
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The far-field contribution from an x̂-directed HED with dipole moment Jh
(having units Am) is [18]

Fθ = Z0
2π

−Jhjknθ cos ϕ cos θ

nθ − jεr cos θ cot (khnθ)

Fϕ = Z0
2π

Jhjk sin ϕ cos θ

cos θ − jnθ cot (khnθ) ,

(26)

where Z0 is the free space impedance and nθ =
√

εr − sin2 θ. A simple coordinate
rotation can be used to calculate the far field from a ŷ-directed HED. It should
be noted that (26) was derived for a lossless dielectric substrate [18] and is here
extended to the case of lossy substrates. These expressions can be shown to also
be valid for lossy dielectric substrates and can alternatively be derived using
reciprocity [30].

Appendix C
Optimization formulation

The upper bound on efficiency is determined by multiplying the second
constraint in the QCQP (11) with a scalar parameter ν and adding the two
constraints IHνXI = 0 and IHRI = 2Pin which yields

min
ν

max
I

IHRrI

subject to IH(R + νX)I = 2Pin.
(27)

This problem is in the form of a Rayleigh quotient [7] and solved as a
parametrized eigenvalue problem

ηub = min
ν

max eig
(
Rr, R + νX

)
, (28)

where, given the condition R+νX ⪰ 0 and an indefinite X, the scalar parameter
is restricted to the range

−1
max ξa

≤ ν ≤ −1
min ξa

, (29)

where ξa = eig(X, R), resembles characteristic modes [31]. The far-field matrix
Fs (9) is used to rewrite (27) as an ordinary eigenvalue problem given by (12).

The upper bound on gain based on solving (14) may present some challenges
in recovering the optimal currents from the eigenvectors to test for no dual gap
or calculation of the directivity. To avoid this, the first constraint in (13) can
be added to the objective and then rewritten as an eigenvalue problem similar
to (28). It should be noted that, for all optimization problems presented here, the
problem can be reformulated to only search for solutions with radiating currents
to improve numerical stability. Further, using semidefinite programming (SDP)
the bounds can be computed in an alternative way [21].
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Appendix D
Q-factor

Q-factor can be approximated from the fractional bandwidth BΓ0 in the case
of a single resonance as [28]

Q ≈ 2
BΓ0

Γ0√
1 − Γ 2

0
, (30)

where Γ0 is the chosen reflection coefficient threshold. The frequency derivative
of the input impedance can also be used to approximate the Q-factor as [28]

Q ≈

√
(ωR′

in)2 + (ωX ′
in + |Xin|)2

2Rin
, (31)

where the angular frequency derivative is given by ′ and Rin and Xin are the real
and imaginary parts of the input impedance, respectively.

Appendix E
Relation between Q-factor and radiation efficiency

This appendix outlines the steps to go from the Q-factor of a lossy substrate to
an approximation of the maximum radiation efficiency of a miniaturized design
region and provides a practical example. Here the Q-factor is obtained from a
half-wavelength patch measurement, however, a simulation could also have been
used. Since the dielectric losses are relatively high using an FR4 substrate, the
Ohmic losses are ignored when going from Q-factor to radiation efficiency in the
following example.

To illustrate the practical use of the expressions in section VI on how to use
the Q-factor of a half wavelength patch antenna to approximate the maximum
achievable radiation efficiency for a miniaturized design region, the following
steps are used:

1) Measure Q-factor of half wavelength patch e.g., from bandwidth (30) or
impedance (31) [28]

2) Approximate the ratio of surface wave power to radiated power using (16)
3) Determine the approximate radiation efficiency using (23)
4) Determine the approximate lossless substrate Q-factor using Qlb = Q/(1 −

Q tan δ)
5) Scale the Q-factor [10]
6) Compute new approximate surface wave to radiated power ratio using (16)
7) Convert scaled Q-factor to approximate radiation efficiency bounds us-

ing (25)
As a practical example, using the half wavelength patch in Figure 11, resonant

at 1.9 GHz these steps can be demonstrated. This design region has dimensions
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ℓx = 36.17 mm (ℓx/λε = 0.476), ℓy = 28.88 mm and h = 3.3 mm. The substrate
relative permittivity is εr = 4.29(1 − j0.015). For step 1, the Q-factor of this
patch antenna is determined from its fractional bandwidth to be Qhw = 25.4
(approximately the same value can be obtained from the input impedance
frequency derivative). Then step 2 the surface wave power to radiated power ratio
is determined from (16) to be ∆sw = 0.178. Using the first two steps, in step 3
the approximate radiation efficiency of the half wavelength patch is calculated
from (23). The resulting approximate efficiency is η ≈ 0.526. This radiation
efficiency approximation is added to the bounds shown in Figure 11 and shows
a near-optimal value compared to the bounds. Then step 4 is to approximately
convert the Q-factor with dielectric losses removed. This leads to Qlb = 41. It
may be of interest to assess what the expected approximate maximum radiation
efficiency will be miniaturizing to 1.5 GHz with the same design parameters. Then
in step 5, scaling the Q-factor to this frequency, the approximate lower bounds are
Qlb ≈ 135.4. Now, the approximate surface wave to radiated power is calculated
in step 6 as ∆sw = 0.14. Finally in step 7, the approximate achievable radiation
efficiency at 1.5 GHz is η ≈ 0.29. The approximated bounds between these two
points are approximated by a dashed line.
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Abstract

Stored energies of radiating systems have generated research interest
for several decades due to their relationship with Q-factor and fractional
bandwidth. In this paper material derivatives are used to provide a new
interpretation of widely used stored energy expressions. This provides a fun-
damental relationship between stored energies of radiating systems and their
electromagnetic material properties. It is shown that electric stored energy is
related to the electric material parameter (permittivity) derivative. Similarly,
magnetic stored energy is linked to the derivative of the permeability. Further,
as an extension Cauchy-Riemann equations are used to relate stored energy
to dissipation.

Index Terms

Stored energy, reactive energy, dissipated energy, Q-factor, permittivity,
permeability.

I. Introduction

THE concept of stored electric and magnetic energy of radiating systems has
interested researchers for several decades [1]. This interest comes mainly

from the fact that stored energies are used to evaluate Q-factors, which provide
good approximations of fractional bandwidths. Although much progress has been
made in understanding stored energies, alternative methods of interpreting these
quantities are still useful in providing further physical insight.
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Past research on stored energies and Q-factor of radiating systems include
many approaches [1]. One classical technique is based on subtracting the far-
field from the total energy [2], [3], [4]. Other approaches include taking frequency
derivatives of the antenna input impedance [5], [6] and the method of moments
(MoM) impedance matrix [7], [8], [9].

Linking electrostatic and magnetostatic energies to material perturbations is
well established. Stratton [10, ch. II] notably proposed this nearly a century ago,
see also [11, ch. II], [12, ch. VI]. He related a perturbation of the background
permittivity and background permeability of a material to the changes in
electrostatic and magnetostatic energies, respectively. This showed that, given
constant charge, electrostatic energy is inversely proportional to the permittivity.
Similarly, given constant current, magnetostatic energy is directly proportional
to the permeability. Using material perturbations to interpret stored energies of
radiating systems is more complex, emphasized by the fact that there is still no
consensus on its definition [1].

The goal of this paper is to relate stored energies and Q-factors of radiating
systems to changes in material parameters. To this end, stored energies are
expressed in material derivatives by showing equality with energy expressions
proposed by Harrington, Mautz, and Vandenbosch [7], [8] based on frequency
derivatives. This shows that electric stored energy is linked to a permittivity
derivative and magnetic stored energy is linked to a permeability derivative.
Once these relationships between stored energies and material derivatives are
established, it follows from Cauchy–Riemann equations that there is a link to
material losses. This is the first time that dissipated power has been used to
express stored energies. Further, to demonstrate the versatility of the approach,
material derivatives of antenna input impedance are related to their Q-factor.

Section II provides a background on stored energies of radiating systems and
then section III derives identities between frequency and material derivatives of
the Green’s function as well as the MoM impedance matrix. These identities
are used in section IV to express stored energies with MoM matrices in terms
of material derivatives. Further, section V presents antenna Q-factor in terms of
material derivatives of input impedance. The paper is concluded in section VI. Fi-
nally, the appendices contain complementary information regarding the required
mathematical derivations.

II. Background on stored energies and Q-factor

There have been several attempts over the years to compute stored electric
and magnetic energies of antennas for time-harmonic fields in a homogeneous
lossless background, see [1] for an overview. Currently, there is no consensus on
a definition for stored energies of radiating systems [1]. However, useful methods
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of approximating stored energies of electrically small antenna in free space are
available [1].

One formulation isolates stored energy of a radiating system by subtracting
the radiated energy density approximated by the far-field amplitude |F |2 from
the time-averaged total electromagnetic energy density [2], [6], [9] as

WF = 1
4

∫

R3
ε0 |E(r)|2 + µ0 |H(r)|2 − 2ε0

|F |2

|r|2
dV, (1)

where the electric and magnetic energy densities are given by ε0 |E|2 /4 and
µ0 |H|2 /4, respectively, and r denotes the position vector. The vacuum permit-
tivity ε0 and permeability µ0 in (1) can easily be generalized to a homogeneous
background material. A flaw in (1) is that it is coordinate dependent and therefore
not a proper definition of stored energies [6], [13]. Nevertheless, this is a good
definition of stored energies of electrically small antennas [1].

Vandenbosch [7] proposed expressing the stored energy in the current density
instead of fields. These expressions are equivalent to (1), except for a coordinate-
dependent term [13, eq. 5]. In numerical calculations, the current density is
expanded in basis functions and the stored energy is conveniently written
using matrix notation producing quadratic forms proposed by Harrington and
Mautz [8], where stored electric and magnetic energies are expressed as

We = 1
8IH

(∂X
∂ω

− X
ω

)
I and Wm = 1

8IH
(∂X

∂ω
+ X

ω

)
I, (2)

respectively. Here, I is a column matrix representing the current density J(r), the
Hermitian transpose is denoted by superscript H, X denotes the MoM reactance
matrix, and the angular frequency is given by ω.

Generally, practical interest into stored energies concerns the inverse relation-
ship between fractional bandwidth and Q-factor that is defined as [6]

Q = 2ω max {We, Wm}
Pd

, (3)

where dissipated power is given by Pd. While there is currently only indirect
methods to measure Q-factor of an antenna such as the one in [6] that proposes
to estimate the Q-factor, which for a self-resonant input impedance simplifies to

QZin = ω

2Rin

∣∣∣∣
∂Zin
∂ω

∣∣∣∣ = ω

∣∣∣∣
∂Γ

∂ω

∣∣∣∣ , (4)

where Zin is the input impedance with real part given by Rin and Γ is the
reflection coefficient for a matched load. This approach has been shown to
generally agree well with Q-factor determined from frequency derivatives of the
MoM reactance matrix (2), see [1].
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ε = εb
µ = µb

Ω

J(r)
PEC

ε = εr(r)εb
µ = µb

Ω

J(r)

Figure 1: The background material with permittivity εb and permeability µb
encloses an antenna region Ω with a PEC conducting region and a dielectric
region with permittivity εr(r)εb. PEC regions have surface current densities and
dielectric regions contrast currents densities both denoted J(r).

III. Material perturbations

Dyadic Green’s functions are used to express the electromagnetic fields in
terms of currents [14]. Therefore, this function can be used to relate the
electromagnetic fields in expression (1) for stored electric and stored magnetic
energies to source currents [13]. In this section angular frequency derivatives of
the Green’s function and MoM impedance matrix are transformed to permittivity
and permeability derivatives. These expressions are used in the next section to
provide an alternative interpretation of stored electric and magnetic energies
derived from frequency derivatives of the MoM impedance matrix shown in (2).

To investigate the effect of material perturbations on an antenna structure, all
material parameters are expressed in terms of the background material, serving
as a reference point as shown in Figure 1. The permittivity and permeability of
the background material are given by εb and µb, respectively. The background
material can be considered as vacuum, but here is allowed to be any nondispersive
permittivity and permeability. A heterogeneous non-magnetic material distribu-
tion is expressed in terms of the background permittivity as ε = εrεb, where εr
is a relative value allowing all dielectric parameters to be defined in terms of the
background permittivity. Further, a PEC structure with surface current density
may be confined withing a dielectric region having contrast current density.

The scalar Green’s function (fundamental solution to the Helmholtz equation
in a homogeneous background) has derivatives with respect to background
material parameters εb, µb and angular frequency ω that can be equivalently
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expressed as

εb
∂

∂εb

e−jω√
εbµbR

4πR
= µb

∂

∂µb

e−jω√
εbµbR

4πR

=
−jω√

εbµb

2
e−jω√

εbµbR

4π
= ω

2
∂

∂ω

e−jω√
εbµbR

4πR
, (5)

where R is the distance between source and observer points and the time conven-
tion ejωt is used. This expression shows that frequency and material perturbations
of the scalar Green’s function are interchangeable. This can be understood in
the lossless case by the fact that both permittivity and permeability affect the
velocity of the electromagnetic wave. The resulting decrease in wavelength when
the frequency is increased and material kept constant is interchangeable with
increasing permittivity or permeability and keeping frequency constant. However,
the square root of permittivity and permeability accounts for the factor 1/2 in (5)
when taking derivatives with respect to angular frequency of the scalar Green’s
function.

The dyadic Green’s function (based on the scalar Green’s function) in a
homogeneous background material described by εb, µb is [14]

G =
(

1 + 1
ω2εbµb

∇∇
)e−jω√

εbµbR

4πR
. (6)

The same relationship (5) of material and frequency derivatives as for the scalar
Green’s function also hold for the dyadic Green’s function

εb
∂G
∂εb

= µb
∂G
∂µb

= ω

2
∂G
∂ω

. (7)

To account for different material properties in the antenna region, volumetric
MoM [15] is used. The MoM matrix can then be split into two parts

Z = Z0 + Zρ, (8)

where Z0 is the background term and the non-magnetic material part is given
by Zρ (described in Appendix A). The background term is evaluated using the
dyadic Green’s function (6) as

Z0,mn = jωµb

∫

Ω

∫

Ω

ψm(r′) · G(r′, r) ·ψn(r) dV′ dV, (9)

where ψm denotes the basis functions [16].
The MoM impedance matrix (8) is differentiated with respect to permittivity

and permeability using (7) for Z0 and Appendix A for Zρ and then written as

εb
∂Z
∂εb

= ω

2
∂Z
∂ω

− Z
2 and µb

∂Z
∂µb

= ω

2
∂Z
∂ω

+ Z
2 , (10)
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in terms of angular frequency derivatives.
The background material may be lossy and therefore have complex valued

permittivity and permeability. Using holomorphic properties of Z for passive
material models leads to Cauchy–Riemann equations [5], [17], [18]

∂X
∂ Re εb

= − ∂R
∂ Im εb

and ∂X
∂ Re µb

= − ∂R
∂ Im µb

, (11)

where only one of the Cauchy–Riemann equations is used. The other containing
e.g., ∂X/∂ Im εb = ∂R/∂ Re εb, is less clearly linked to stored energy. The
Cauchy–Riemann equation (11) demonstrates that the reactance matrix (X),
when differentiated with respect to real material parameters, can be expressed
in terms of the resistance matrix (R) differentiated with respect to material
losses. These matrices are defined in terms of the MoM impedance matrix as

X = Z − ZH

2j and R = Z + ZH

2 , (12)

where the reactance matrix (X), also used in (2), is the imaginary part of the
MoM impedance matrix and relates currents to the difference between magnetic
and electric energies. The resistance matrix (R) relates currents to radiated power
and dissipated power in the material.

IV. Stored energies
In this section, it is shown that stored energies derived from frequency

derivatives of the MoM impedance matrix (2) can equivalently be expressed in
terms of material derivatives of the MoM impedance matrix. For these expressions
the limit of no background material losses are assumed. This new relationship of
stored electric energy is summarized in the diagram shown in Figure 2.

This relationship identifies that the effect on the MoM impedance matrix
of differentiating with respect to permittivity (10) is, besides a scaling factor,
identical to the matrix multiplied with the current vector in (2), where stored
electric energy is computed from frequency derivatives of the MoM reactance
matrix. This leads to an expression for stored electric energy as a derivative of
the reactance matrix with respect to the background permittivity. Similarly, the
relationship between stored magnetic energy (2) and a derivative with respect
to the background permeability can be obtained through the MoM impedance
matrix differentiated with respect to the background permeability (10) and
Cauchy–Riemann equation (11), in the limit of no background material losses,
i.e., Im εb → 0 and Im µb → 0, the derivatives can be applied to the reactance
matrix (12) as

We = εb
4ω

IH ∂X
∂ Re εb

I and Wm = µb
4ω

IH ∂X
∂ Re µb

I. (13)
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Figure 2: Stored electric energy in the limit of no background material losses
expressed in terms of derivatives, with respect to frequency, permittivity, and
dielectric losses.

The expressions in (13) show that the MoM reactance matrix’s derivatives with
respect to the electric material parameter namely permittivity and the magnetic
material parameter namely permeability leads to equivalent expressions for stored
energies as ones based on taking frequency derivatives (2).

Additionally these expressions show for the first time that electric stored energy
depends on the reactance sensitivity to electric material changes. Similarly,
the magnetic stored energy depends on the reactance sensitivity to magnetic
material changes. This is related to the accepted relation between electric energy
and permittivity in electrostatics and magnetic energy and permeability in
magnetostatics [10], [11]. However, in the case where there is a radiated field,
stored electric energy and stored magnetic energy (13) are both functions of
permittivity and permeability leading to a complex relationship between these
parameters.

The expressions for stored energies from material derivatives (13) can further
be reformulated using the Cauchy–Riemann equation (11), in the limit of no
background material losses. These equations express stored electric and magnetic
energies (13) as

We = −εb
4ω

IH ∂R
∂ Im εb

I and Wm = −µb
4ω

IH ∂R
∂ Im µb

I, (14)

respectively. Equality between expressions in (14) and (13) lead to an inter-
pretation of stored energies in terms of sensitivity (derivative) to background
material losses of the resistance matrix. The negative sign in these expressions is
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due to the choice of time convention. Here, it should be noted that material
derivative expressions can be written equal to (2), not only in the lossless
limit using complex derivatives (10) [19] leading to e.g., We = Im εb

4ω IH ∂Z
∂εb

I =
Re εb

2ω IH ∂X
∂εb

I = Im εb
2ω IH ∂R

∂εb
I. Similar expressions for stored magnetic energy are

obtained by replacing background permittivity with permeability. However, for
lossy background material these expressions are difficult to interpret and may
require another approach [20].

The resistance matrix (12) used to formulate stored energies in (14) is related
to dissipated power of an antenna. This power can be split into power leaving
a volume (e.g., radiation) and power lost within the volume (e.g., material
losses). Stored energies are generally thought to only be related to changes
in antenna reactance. However, in (14) it is shown that they also relate to
changes in dissipated power. This is demonstrated by using Cauchy-Riemann
equations (11) to express material derivatives of resistance and reactance in terms
of one another.

When the derivatives with respect to material loss in (14) produce negative
definite matrices as is the case for electrically small structures they are a reliable
approximation of stored energies. For this case the dissipated power is increased
by these material loss perturbations. However, it should be noted that for
electrically large structures the expressions (14) can produce negative values [21].
One interpretation of this is that the reduction in power leaving a volume may
exceed the increase in power lost within the volume when perturbing material
losses.

V. Q-factor from input impedance

The material derivative identities of the MoM matrix (10) can be used to
reinterpret the Q-factor from input impedance (4). By doing this, the versatility
of material derivative approach is demonstrated.

The derivatives of the MoM matrix (10) are related to material derivatives of
the input impedance Zin shown in Appendix B leading to

εb
∂Zin
∂εb

= ω

2
∂Zin
∂ω

− Zin
2 and µb

∂Zin
∂µb

= ω

2
∂Zin
∂ω

+ Zin
2 . (15)

Using these expressions valid for a lossy background material, Q-factor formu-
lated with frequency derivatives of input impedance (4) can equivalently be
expressed using (15) as

QZ′
in

= 1
2Rin

∣∣∣∣εb
∂Zin
∂εb

+ µb
∂Zin
∂µb

∣∣∣∣ , (16)

leading to an interpretation of Q-factor in terms of material sensitivity of the
input impedance. It should be noted that in (16) self resonance is assumed.
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VI. Conclusion

In this paper a relationship between stored energies of radiating systems
and material derivatives is investigated. From this investigation it is shown that
widely used expressions to evaluate stored energies can be interpreted in terms of
material derivatives. This leads to the fundamental relationship between stored
electric energy and electric material properties namely permittivity. Similarly,
stored magnetic energy is related to permeability. Further, the MoM resistance
matrix is used to interpret stored energies for the first time. This demonstrates a
new link between material losses and stored energies of radiating systems. Lastly,
it is also shown that frequency derivatives used to compute Q-factor from input
impedance can be replaced by material derivatives.

Appendix A
Volumetric MoM material derivatives

The MoM material part (8) assuming only non-magnetic properties is given
by

Zρ,mn =
∫

Ω

ψm(r) · ρ(r) ·ψn(r) dV, (17)

where the complex resistivity is ρ = −j/(ωεbχe) and where χe is the electric sus-
ceptibility when the background permittivity is equal to vacuum. The derivative
with respect to background permittivity of Zρ can be expressed as

εb
∂Zρ

∂εb
= ω

2
∂Zρ

∂ω
− Zρ

2 , (18)

since ∂Zρ/∂ω = −Zρ/ω. Further, due to the assumption of non-magnetic media,
the derivative with respect to background permeability is

µb
∂Zρ

∂µb
= ω

2
∂Zρ

∂ω
+ Zρ

2 = 0. (19)

Appendix B
MoM matrix related to input impedance

From the MoM impedance matrix (8), the admittance matrix is Y = Z−1 and
is related to the input admittance as

Yin = 1
Zin

= VTYV
V 2

in
, (20)

where Zin is the input impedance. Assuming a frequency and material indepen-
dent input voltage, Vin, frequency differentiation of the input admittance lead
to

V 2
in

∂Yin
∂ω

= VT ∂Y
∂ω

V = −VTZ−1 ∂Z
∂ω

Z−1V. (21)
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Similarly the background permittivity derivative of the admittance matrix can
be written as

∂Y
∂εb

= −Z−1 ∂Z
∂εb

Z−1. (22)

Then, using the relation between derivative of background permittivity and
frequency of the MoM matrix (10) (inverse of admittance matrix) this can be
equivalently expressed in terms of a derivative with respect to the background
permittivity as

εb
∂Y
∂εb

= ω

2
∂Y
∂ω

+ Y
2 . (23)

It follows from the relationship between frequency derivatives of the input
admittance and admittance matrix (21) that

εb
∂Yin
∂εb

= ω

2
∂Yin
∂ω

+ Yin
2 , (24)

this leads to

εb
− ∂Zin

∂εb

Z2
in

= ω

2
− ∂Zin

∂ω

Z2
in

+ 1
2Zin

, (25)

and can be rewritten as the left-hand side of (15). Similarly, differentiation with
respect to background permeability can be shown to lead to the right-hand side
of (15).
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Abstract

The measurement of electromagnetic fields near a radiating device is often
required in compliance testing. In this paper, the measurement of placing
the radiating device near a metasurface designed to induce heat from radio
frequency fields is considered. This heat distribution on the surface can
be imaged with an infrared camera. A metasurface is placed between the
infrared camera and the device in this measurement setup. The metasurface
design is essential as it must respond to the source field in a way that is
interpretable by the infrared camera. Thus three possible metasurface designs
are examined. The sensitivity of these metasurface designs to two orthogonal
linear polarizations is investigated. Further, the power dissipated on the
metasurface and how it compares to the field from the source is studied. The
paper finds that the metasurface element’s dissipated power correlates better
with the incident power density than with the electric energy density.

Index Terms

Metasurface, near-field imaging, IR radiation

I. Introduction
The near field from a device e.g., a mobile phone, can be imaged using a

metasurface and an infrared (IR) camera [1]. This method utilizes the relationship
between heat (proportional to dissipated power) and the generation of IR
photons. Here the metasurface serves as a tool for up-converting the radiated
radio frequency (RF) field from the device into IR radiation that is detected by
the camera. When analyzing this conversion, the metasurface design can present
many trade-offs such as between absorbed power and reflected power.
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IR cameras have been used in indirect measurements of RF fields for a
few decades [2], [3], [4], [5], [6], [7]. However, this was initially done with a
homogeneous sheet. More recently it has been proposed to use a metasurface
designed to dissipate power from mmWaves using sub-wavelength elements. This
method also uses thermal imaging with an IR camera to observe the increase
in IR photons released due to the heat on localized metasurface elements [1]
rather than the whole homogeneous sheet. An advantage of using metasurface
elements over a homogeneous sheet is the ability to discriminate between two
orthogonal polarizations. The metasurface technique has also been applied for
defect detection in the radiating structure under test [8].

Metasurface sensors [9], [10] can be used in real-time and are less complex than
some other measurement environments [1]. However, the metasurface elements
may have a significant impact on the electromagnetic field that is being measured.
First, the reflected power can interact with the source, and second, the metasur-
face elements can interact with one another (mutual coupling). Overcoming these
challenges may be crucial to obtaining useful information from the dissipated
power on the metasurface elements.

This paper investigates how the design of the metasurface elements affects
the ability to convert the radiated RF field from the source (device) into
dissipated power from Ohmic losses on the elements. Three different elements
are considered, namely, dipole, U-shaped, and cross potent. The ability of
these elements to absorb power, be frequency selective, and have polarization
properties, is investigated. Further, the dissipated power in metasurface elements
is compared numerically with the free space electric energy density, and incident
power density from a radiating Herzian dipole (source), to better understand the
imaging of field distributions.

The remainder of the paper is structured as follows. Section II provides
background on the metasurface electromagnetic properties for the metasurfaces
being used. Section III analyzes and provides a discussion on the performance
of the metasurface. Then finally the paper has the conclusion and discussion in
Section IV.

II. Metasurface electromagnetic properties

An example of a metasurface placed between a source that radiates an
electromagnetic field, and an IR camera that captures IR photons proportional to
the temperature on the surface, is shown in Figure 1. The increase in temperature
on the surface is proportional to the dissipated power due to Ohmic losses on the
metasurface elements. This paper focuses on the source and metasurface part of
this measurement setup. However, it is worth noting that the use of the IR camera
places some design constraints on the metasurface, that are not considered. For
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Figure 1: The measurement setup with the metasurface placed between the
electromagnetic source and the IR camera.
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Figure 2: The three elements along with their dimensions. They are all confined
within a unit cell of 5.35×5.35 mm2. The elements have three different surface
resistivities, 6.45 Ω/□ for the dipole, 7.3 Ω/□ for the U-shape and 10.3 Ω/□
for the cross potent.

instance, the dissipated power in the form of heat should be detectable, and the
metasurface should have a low mass [1].

For the metasurface in Figure 1, a substrate, that is here electromagnetically
characterized with a relative permittivity of 3.1, is used. The surface is electrically
thin, with a thickness of 0.05 mm, thus it is not expected to greatly affect the
electromagnetic behavior of the metasurface elements. The metasurface elements
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are distributed on the IR camera side of the metasurface, as can be seen in
Figure 1.

The goal of the metasurface is to extract part of the power from an electromag-
netic field with a frequency located in the microwave or mm-wave bands. As an
example, a frequency (f) of 28 GHz (Ka-band) is selected, having a wavelength
of approximately 10.7 mm, as is used in 5G communication [11]. Performance of
the three metasurface elements shown in Figure 2 are compared. The elements
are designed to maximize absorptance at around 28 GHz. The dimensions of
these elements are shown and are confined within a square unit cell with a side
length of around half-a-wavelength (5.35 mm).

When an incident plane wave, here considered to be linearly polarized,
impinges on an infinite periodic metasurface, the metasurface performance can
be analyzed by assessing the transmittance T , reflectance R, and absorptance
A. For the purpose of this paper, the goal is to have as much absorbed power
(related to absorptance) as possible while maintaining a low level of reflected
power (related to reflectance), as this will interfere with the source and affect
the measurement. Conservation of power relates these quantities as

R + A + T = 1. (1)

The maximum absorptance for an infinitely thin sheet is 50%. For this case,
the transmittance is 25% and the reflectance is also 25%. By adjusting the
surface resistivity of the elements, the values of R, A, T in (1) can be altered [1].
Here, having an absorptance of approximately 44% is a trade-off to reduce the
reflectance.

The three metasurface elements used are shown in Figure 2. Their transmit-
tance, reflectance and absorptance for a y-polarized plane wave are simulated
using FEKO [12] and are shown in Figure 3. As a starting point, the U-shaped
presented in [8] is used. This element has a surface resistance of 7.3 Ω/□
(ohms per square), the dipole 10.3 Ω/□ and the cross potent 6.45 Ω/□. For
these parameters, the performance is nearly identical at 28 GHz. However, all
structures have variations in bandwidth [13] that can be seen by the difference
in performance away from the center frequency.

While the results in Figure 3 suggest a similarity in performance between the
elements, this is only for the y-polarized case and a plane wave. In the next
section, the case of an x-polarized plane wave is used to assess the polarization
purity of the elements. Along with this, an ideal source placed in the near field
is assessed.

III. Analysis and results
This section examines the ability of the metasurface elements to only dissipate

power for one polarization (polarization purity) [14]. Further, how the antenna
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Figure 3: Transmittance, reflectance, and absorptance over a frequency range for
the three antenna elements in Figure 2.

elements relate to measurable electromagnetic field properties, is also examined.
The electromagnetic field properties chosen here are the electric energy density
and incident power density. These field properties are first determined without
the metasurface and then compared to the dissipated power on the metasurface
elements.

A. Polarization purity
The ability of the metasurface element to discern between two polarizations

may be desirable [14]. This performance is examined in Figure 4 where, from
a plane wave, the absorptance on an element from a y-polarized wave and
an x-polarized wave are compared. First, for the cross potent, the results are
independent of polarization as expected from the element symmetry. In contrast,
the dipole primarily dissipates power from a y-polarized plane wave. The U-
shaped element, although it can be confined within the smallest circular region,
has non-negligible x-polarized plane wave power dissipated on the element that
can cause measurement ambiguity when interpreting results, especially away from
the center frequency (28 GHz).

B. Near-field imaging
The goal of the metasurface is to image the field radiated by the device under

test. To assess this ability for a specific metasurface element, the field distribution
of an ideal electric dipole (source) is placed one wavelength below the metasurface
(see Figure 1) and is y-polarized. First, the near field is assessed without the
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Figure 4: The absorptance for y-polarized and x-polarized plane wave impinging
on a metamaterial sheet for the three elements in Figure 2.

metasurface. This is done, as shown in Figure 5, by examining the distribution
of the normalized electric energy density, excluding the z-directed (normal) part
of the field. The elements are sensitive to the electric field component of the
energy density. For dipole and U-shaped elements, this is expected to be primarily
for the y-polarized component. Therefore, this component of the electric field is
examined, as shown in Figure 6. This distribution scales more rapidly in the
y-direction, as much of the radial near field produced by the idealized electric
dipole is not included. The incident power density is shown in Figure 7. This
field distribution scales more rapidly in all directions from the center (peak).

A metasurface with 11 × 11 dipole elements (see Figure 2a) illuminated by
an ideal y-polarized dipole placed one wavelength below the center element of
the surface is considered first. The normalized distribution of dissipated power
in the dipole elements is shown in Figure 8. The presented data in the figure
correctly shows that the field is the strongest in the center. When comparing the
normalized values with the field distributions in Figure 5-7, it best resembles the
scaling of the incident power density in Figure 7.

Absorbed power in the 11×11 U-shaped and cross potent metasurface elements
are shown in Figure 9 and Figure 10, respectively. These results also show a
similar rapid scaling as observed for the incident power density in Figure 7.

IV. Conclusion and discussion

This paper investigates the potential of using a metasurface along with an
IR camera to image RF fields. Three metasurface elements are designed to
have similar transmittance, reflectance, and absorptance for a 28 GHz, y-
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Figure 5: Tangential part (x and y components) of the electric energy density
from a y-directed ideal electric dipole placed one wavelength below the center.
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Figure 6: The y component of the electric energy density from a y-directed ideal
electric dipole placed one wavelength below the center.
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Figure 7: Incident power density in the normal direction from a y-directed ideal
electric dipole placed one wavelength below the center.
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Figure 8: Dissipated power in each dipole element (see Figure 2a) of an 11 × 11
element metasurface. The surface is illuminated by an ideal y-directed electric
dipole placed one wavelength below the surface.
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Figure 9: Dissipated power in each U-shaped element (see Figure 2b) of an 11×11
element metasurface. The surface is illuminated by an ideal y-directed electric
dipole placed one wavelength below the surface.
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Figure 10: Dissipated power in each cross potent element (see Figure 2a) of an
11 × 11 element metasurface. The surface is illuminated by an ideal y-directed
electric dipole placed one wavelength below the surface.
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polarized plane wave. Further, when adjusting the plane wave to x-polarized,
the polarization purity is shown to significantly vary for the three metasurfaces.

The metasurface dissipated power from an ideal electric dipole source is shown
to have similarities to the field under test. The scaling of the dissipated power on
the elements more closely resembles the incident power density than the electric
energy density.

Future work could investigate how, by changing the design of the metasurface,
the dissipated power distribution can more closely resemble the field distribution
of the device under test. Further, along with the shown example, more simulations
of measurement setups are required to have a clearer picture of the design
challenges. These findings could also be tested in a measurement setup with
the IR camera. Finally, arbitrary sources and calibrations of the surface can be
included.
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