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Popular science summary

Atrial fibrillation (AF) is the most common rhythmical disorder that affects how our
heart beats. The heart acts as a pump that usually beats in a regular rhythm. In atrial
fibrillation, this rhythm becomes chaotic, like a drummer who suddenly starts beating
wildly instead of keeping a steady beat. It is predicted that one in three Europeans will
develop this heart condition during their lifetime. People with atrial fibrillation have
a higher risk of stroke or death, more frequent hospital visits, and can experience a
reduced quality of life.

For the heart to pump blood, an electrical stimulation has to initiate a contraction
in the heart muscle. In a healthy heart, the electrical activity moves smoothly across
the heart’s chambers, causing them to contract in a coordinated way. Between heart
beats, the electrical activity vanishes until the heart’s intrinsic pacemaker starts a new
electrical activation for the next heart beat. In atrial fibrillation, the electrical activity
instead spreads in a chaotic and uncoordinated way over the upper chambers (called
atria) and never vanishes, which reduces the atria’s ability to push blood into the
bottom chambers (called ventricles). Compared to a healthy heart rhythm, in atrial
fibrillation the ventricles are activated at an increased and irregular rate which means
the heart can’t pump blood through the body as efficiently as it should.

The research presented in this thesis has been aimed to model and analyse the
electrophysiology and hemodynamics during atrial fibrillation. First, computer models
were created that simulate the electrical and mechanical function of the heart. These
computer models were developed based on known physiological mechanisms that allow
us to study complex behavior that would be impossible to observe directly. Second,
clinical data from patients with atrial fibrillation were analyzed to uncover patterns in
ECG recordings that could have prognostic value.

One key physiological mechanism involved the nervous system’s role in atrial
fibrillation. Our nervous system has two main parts: one that speeds up our heart
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ii Popular science summary

rate when we are active (like during exercise) and another that slows it down when we
are relaxing. Sometimes, the balance between these two parts gets disrupted, which
may trigger atrial fibrillation. By creating a mechanistic model of how the nervous
system modulates the electrical conduction between atria and ventricles, we gained
new insights into the role of the nervous system in atrial fibrillation.

Another key physiological mechanism involved the blood flow through the body
during atrial fibrillation. A computer model the heart and circulation system was
developed that can be customized to individual patients with atrial fibrillation. With
this model, we can study how blood circulation is affected when the heart rate changes
or when the heart rhythm becomes more regular or irregular.

This PhD thesis also includes a study on clinical data from a long-term study
using implantable ECG recorders. These devices recorded episodes of atrial fibrillation
during the early stages of atrial fibrillation involving patients who previously had no
atrial fibrillation. By analysing these recordings, we have found that the analysis of
these ECG recordings can help identify high-risk patients at the earliest stages of atrial
fibrillation, potentially enabling more targeted interventions.

These discoveries are more than just scientific curiosities. They provide new tools
for clinicians and researchers to understand atrial fibrillation better, potentially leading
to more personalized treatment of atrial fibrillation. The human heart is incredibly
complex, and conditions like atrial fibrillation remain challenging to manage and
treat. But research in biomedical engineering can contribute to the understanding and
treatment of this common rhythmical disorder.



Abstract

Atrial fibrillation (AF) is the most common arrhythmia globally and is characterized
by uncoordinated atrial activation and ineffective atrial contraction. Atrial fibrillation
is associated with an impaired quality of life and an increased risk of stroke, heart
failure, and death. Changes in the autonomic nervous system (ANS) control of
cardiac function are a known pathophysiological mechanism in AF, but methods
for estimating autonomic activity during AF are lacking. Moreover, although AF
is primarily an electrophysiological disease, its detrimental effects are mainly due
to its hemodynamic consequences and are challenging to predict. Computational
modeling offers a mechanistic framework that holds the potential to address both of
these issues. Hence, this thesis aimed to (1) develop and use a computational model
of the AV node to study patient-specific ANS modulation on AV nodal conduction
properties during AF based on electrocardiogram (ECG) recordings and (2) develop
and use a computational model to study patient-specific hemodynamics during AF
based on ECG recordings and hemodynamic measurements. In addition, although
f-wave characteristics derived from ECG are indicators of atrial remodeling, their
prognostic value has not been explored in early-stage AF. The third aim of this thesis
was to (3) study the prognostic value of f-wave characteristics in ECG recordings from
implantable loop recorders at the earliest stages of AF.

To address the first aim, an AV node model from a previously published formula-
tion was extended to incorporate ANS-induced changes in AV nodal refractoriness
and conduction delay. Paper I demonstrated the necessity of accounting for ANS
modulation of the AV node to accurately replicate observed changes in heart rate
variability during tilt tests. The AV node model was further refined by incorporating
respiration-induced autonomic modulation. The resulting model generated training
data for a convolutional neural network (CNN) to estimate respiration-induced au-
tonomic modulation of the AV nodal function from ECG data. Paper II showed
that the developed CNN could effectively estimate respiration-induced autonomic

iii



iv Abstract

modulation from ECG data, suggesting its potential for monitoring changes and
detecting individual differences. However, further validation with ground-truth ANS
data is required. The second aim was addressed by developing a computational model
that combines an electrical subsystem, including the refined AV node model, with
a mechanical subsystem describing cardiovascular mechanics to predict AF-induced
hemodynamic changes. Paper III successfully replicated patient-specific arterial and in-
tracardiac pressures using the integrated hemodynamic model, although discrepancies
in right ventricular diastolic pressure indicated a need for further model refinement.
The third aim was addressed by analyzing f-wave characteristics from ECG record-
ings of a large cohort of patients with early-stage AF to assess their prognostic value.
Paper IV revealed that lower f-wave indices (atrial fibrillatory rate, organization index
derived from the signal spectral characteristics, and average amplitude of the f-wave
envelope) in early-stage AF have potential as prognostic markers for increased total
and cardiovascular mortality in patients with AF episodes lasting ≥60 minutes.

In conclusion, the thesis presents several contributions to developing compu-
tational models and analytical methods for understanding and managing AF. The
development of patient-specific models of AV nodal conduction and hemodynamics,
combined with the investigation of prognostic f-wave characteristics, offers potential
pathways toward more personalized and effective treatment strategies for AF.
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Chapter 1

Background and Aims

1.1 Background

Atrial fibrillation (AF) is the most common arrhythmia globally [1], with a prevalence
in the United States alone expected to increase from 5.2 million in 2010 to 12.1
million by 2030 [2]. Atrial fibrillation is a supraventricular tachyarrhythmia with
uncoordinated atrial activation and ineffective atrial contraction [1, 3] and is associated
with impaired quality of life and an increased risk of stroke, heart failure, and death
[1, 3]. Atrial fibrillation is recognized as a progressive disease that requires different
strategies at different stages, from prevention to screening, to rate and rhythm control
therapies [1].

The progressive nature of AF is attributed to the cardiac remodeling resulting
from AF, which subsequently facilitates both the recurrence and the persistence of
the arrhythmia [4]. An important pathophysiological mechanism contributing to
AF is changes in the autonomic nervous system (ANS) control regulating the atrial
electrophysiology [4]. The ANS is densely innervating the atrioventricular (AV) node
[5], which is an anatomical structure within the cardiac conduction system with distinct
electrophysiological properties [6]. The AV node is normally the only physiological
path for electrical excitation propagation between atria and ventricles, providing a
conduction pathway between the atria and the bundle of His [6]. In AF, when
increased and irregular atrial activation enters the AV node, the filtering of electrical
impulses through AV nodal conduction or blockage determines the ventricular rate
and rhythm [7]. Hence, the AV node is an attractive indicator of autonomic function
in AF. However, due to the unfeasibility of directly measuring electrical activity within
the AV node, its function must be inferred from the relationship between atrial and
ventricular activation times.

Although AF is an electrophysiological disease, its detrimental effects are mainly
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4 Background and Aims

due to its hemodynamic consequences. The heart functions as a pump, enabling
blood circulation to and from all organs and tissues of the body. As the cardiac
muscle contracts, triggered by electrical activity propagating over the cardiac tissue,
the heart ejects blood into the cardiovascular system. Cardiac output, defined as
the blood volume ejected per minute, is determined by the duration of heartbeats
and the degree of coordinated contraction. A regular heart rhythm associated with
normal sinus rhythm results in a higher cardiac output compared to an irregular heart
rhythm characteristic of AF [8, 9, 10]. Understanding the effect of AF therapy on
hemodynamics can guide treatment selection. However, predicting the hemodynamics
for a sequence of irregular heartbeats is challenging, as the amount of blood ejected by
the heart depends on the history of preceding heartbeats.

Biomedical signals originating from electrical, mechanical, or chemical sources
contain a wealth of information about the cardiac rhythm and hemodynamics [11]. It
is recommended that all AF patients undergo a 12-lead electrocardiogram (ECG) and
transthoracic echocardiography (TTE) for diagnostic evaluation [3]. Although the
ECG contains relevant information for the diagnostic assessment in AF, the presence
of measurement noise and signal components from other interacting subsystems can
obscure this information [11]. To address this issue, signal processing techniques
can be used to extract interpretable data from these biomedical signals. For instance,
f-waves and atrial fibrillatory rate (AFR) can be extracted from the ECG during AF
and reveal information about the organization of atrial activity [12, 13]. As a second
example, given that respiration is recognized to modulate parasympathetic activity
and consequently affect cardiac rhythm, information about the respiration-induced
autonomic modulation can be extracted from ECG data [14, 15]. Incorporating
assumptions derived from a mechanistic understanding of cardiac physiology through
model fitting may be essential for extracting information from biomedical signals.
Computational modeling of cardiac physiology is a growing research field that combines
mathematics, physics, experimental, and clinical data into a mechanistic framework
with successful applications in risk prediction and personalized treatment of AF [16, 17].
These models can be fitted to individual patients using patient-specific data to provide
diagnostic information and predict treatment outcomes [18, 19]. They are an essential
tool for conducting virtual experiments, especially in scenarios where in vivo or in
vitro studies are unethical or practically impossible [20].

1.2 Motivation and Aims

The work in this PhD thesis addresses the lack of non-invasive methods to determine
the patient-specific cardiac ANS modulation during AF. Heart rate variability (HRV)
analysis of ECG signals has been used in normal sinus rhythm (NSR) to extract



5

information about ANS modulation [21], but the HRV analysis is based on the ANS
modulation of the sinoatrial (SA) node as primary pacemaker. In AF, the variations in
the heart rate do not originate in the SA node but from the continuous uncoordinated
atrial activity filtered by the AV node. Hence, new methods for analyzing the impact
of autonomic modulation of the AV node during AF are needed.

Moreover, the work in this PhD thesis addresses the challenge of predicting the
impact of the irregular heart rhythm in AF on patient-specific hemodynamics. Because
the stroke volume depends on the history of previous heartbeats [22], the hemodynam-
ics during an irregular rhythm cannot be accurately predicted from a single cardiac
cycle but rather from an irregular series of many cardiac cycles. A computational model
is suitable for predicting patient-specific hemodynamics in AF. However, there is a
lack of computational models that could simulate the hemodynamics during AF fast
enough to allow for personalized model calibration based on the hemodynamics of a
series of irregular heartbeats. Thus, there is a need for fast computational models to
study the impact of the atrial and ventricular rhythms on the hemodynamics during
AF.

It was previously shown in the MUSIC study that a low AFR in patients with
persistent AF and congestive heart failure was associated with poor outcomes, such as
an increased risk of death [23]. The AFR represents the dominant frequency of the
f-waves and is extracted from the ECG signal, and low AFR reflects more organized
atrial activity and has been suggested to be linked to atrial remodeling. The recent
LOOP study provides subcutaneous ECG recordings of automatically detected AF
episodes in a large patient cohort at the earliest stages of AF, but the connection
between f-wave characteristics at the earliest stages of AF and AF prognosis has not
been studied.

Given this background, the specific aims of the thesis are the following:

Aim 1: To develop and use a computational model of the AV node to study patient-
specific ANS modulation on AV nodal conduction properties during AF based on
ECG recordings (Paper I-II ).

Aim 2: To develop and use a computational model to study patient-specific hemo-
dynamics during AF based on ECG recordings and hemodynamic measurements
(Paper III ).

Aim 3: To study the prognostic value of f-wave characteristics in ECG recordings from
implantable loop recorders at the earliest stages of AF (Paper IV ).



6 Background and Aims

1.3 Thesis Outline

This thesis is structured into two parts, with Part I, titled Introduction, providing the
essential theoretical framework and contextual background for the research presented
in Part II, titled Included Papers. The chapters of Part I are structured as follows:
Chapter 2 describes the cardiac anatomy and physiology at the tissue, organ, and
organ system level and connects the fundamentals to typical ECG and hemodynamic
measurements. Chapter 3 focuses on the diagnosis, mechanisms, and management of
atrial fibrillation. Chapter 4 describes the analysis of clinical signals, covering methods
for ECG analysis, as well as sensitivity analysis, an overview of neural networks, and
survival analysis. Chapter 5 introduces cardiac computational modeling, providing
a comprehensive review of current computational models of the AV node and an
overview of computational hemodynamic models. Chapter 6 provides an overview of
the four journal publications presented in Part II. Chapter 7 concludes the Introduction
and highlights potential future research directions adding to this work.



Chapter 2

Cardiac Anatomy and
Physiology

This chapter provides the anatomical and physiological foundations underlying the
computational modeling and analysis of electrophysiology and hemodynamics dur-
ing AF. The chapter begins with a description of cardiac anatomy and the cardiac
conduction system at the organ level (Section 2.1). Sections 2.2 and 2.4 cover the
cardiovascular system and autonomic nervous system, respectively. Section 2.3 de-
scribes cardiac tissue properties, focusing on the electrophysiological basis of regional
variations in refractory periods and conduction delays. Given the central role of
the AV node model in Paper I–III, Section 2.5 details its anatomical structure and
dual-pathway physiology. Finally, Section 2.6 connects these anatomical and physio-
logical fundamentals to the ECG and hemodynamic measurements used in subsequent
chapters for the computational modeling and analysis of the cardiac function during
AF.

2.1 The Heart

The heart is a hollow muscular organ that serves as a pump within the circulation system
(Figure 2.1A). It comprises four chambers: two atria and two ventricles, arranged
in left and right pairs. While the atria serve as primer pumps facilitating ventricular
filling, the ventricles provide the main contractile force that propels blood through
the circulation system (Figure 2.2). Unidirectional blood flow through the circulation
system is maintained by two sets of heart valves: the A-V valves (i.e., the tricuspid and
mitral valves) prevent backflow from ventricles to atria, while the semilunar valves (i.e.,
the aortic and pulmonary artery valves) prevent backflow from the aorta and pulmonary
arteries to the ventricles. These heart valves open and close passively when a pressure

7
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Figure 2.1: Illustration of A) the anatomy of the human heart with the four heart chambers,
heart valves, and connecting arteries and veins and B) cardiac conduction system governing
the electrical excitation propagation across the heart that results in the contraction of the
myocardium. Modified from Hall and Hall [24] with permission from Elsevier.

gradient pushes blood forward or backward, respectively [24].
The cardiac conduction system governs the coordinated and rhythmical electrical

excitation propagation and the resulting cardiac contraction (Figure 2.1B). The depo-
larization of the cardiac myocytes can trigger the depolarization of adjacent cells, thus
promoting the propagation of electrical impulses across cardiac tissue, as described in
more detail in Section 2.3. In NSR, a heartbeat is initiated by the self-excitation of
the sinus node, which produces an electrical activation that propagates throughout the
heart. Upon self-excitation of the sinus node, the electrical excitation propagates over
the atria to the AV node and then via the AV node, His bundle, bundle branches, and
Purkinje fiber network to the entire ventricular muscle mass. The AV node is normally
the only electrical conduction pathway between atria and ventricles in healthy cardiac
tissue (Figure 2.3). In NSR, the primary function of the AV node is to delay the
electrical conduction between the atria and the ventricles to allow for the relocation of
blood from the atria to the ventricles between their respective contractions. In AF, the
AV node protects the ventricles from the high rate of electrical activation by enforcing
a minimum duration between electrical activations [24].
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2.2 The Cardiovascular System
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Figure 2.2: Illustration of the cardiovascular
system comprising the heart, systemic circu-
lation, and pulmonary circulation. Modified
from Hall and Hall [24] with permission from
Elsevier.

The cardiovascular system is a closed cir-
cuit comprising the heart, systemic circu-
lation, and pulmonary circulation (Figure
2.2). The cardiovascular system is respon-
sible for blood circulation, transporting
nutrients, oxygen, carbon dioxide, waste
products, and hormones throughout the
body. Deoxygenated blood arrives from
the body via the systemic veins (i.e., supe-
rior vena cava and inferior vena cava) in the
right atrium. The right heart, comprising
the right atrium and right ventricle, pumps
the blood into the pulmonary circulation,
where it is oxygenated in the lungs. The
oxygenated blood then arrives from the
lungs via the pulmonary veins in the left
atrium. The left heart, comprising the left
atrium and left ventricle, pumps blood into
the systemic circulation that connects to all
parts of the body. The arteries have strong
vascular walls that enable blood transport
to the tissues under high pressure and at
high blood velocity. The venous system re-
turns the blood to the heart, has low blood
pressure, and serves as a reservoir for extra
blood that can contract or expand in re-
sponse to the circulatory system’s demands
[24].

2.3 Cardiac Tissue

Cardiac tissue exhibits regional variations in its electrophysiological and mechani-
cal properties that emerge from its structure on the molecular level and result in a
coordinated cardiac activity on the organ level [25]. These functional differences
across the heart are especially evident in the different electrical conduction veloci-
ties. Rapid conduction in the Purkinje fibers (2.3 m/s) facilitates near-simultaneous
ventricular contraction. In contrast, slower conduction in the AV node (0.05 m/s)
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ensures a delay between atrial and ventricular activation to allow for ventricular filling
[26]. Between these extremes, the electrical excitation propagates through the atrial
and ventricular myocardium at intermediate velocities: on average 0.6 m/s in the
atria and 0.75 m/s in the ventricles [26]. The functional differences in the electro-
physiology are also evident in the mechanical function. The left ventricle has a larger
wall thickness (7.24±1.86 mm) than the right ventricle (3.4±0.8 mm), left atrium
(2.4±0.7 mm), or right atrium (2.7±0.7 mm) [27, 28, 29]. The wall thickness of
each chamber corresponds to the contractile force required to eject blood into the
subsequent compartment, with thicker walls enabling greater contractile force.

Regional variations in electrophysiological and mechanical properties emerge
from structural differences at the tissue, cellular, and molecular level [30, 31]. Papers
I–III present a computational AV node network model that approximates tissue
electrophysiology by incorporating conduction delay and refractory period parameters
that are determined by the cardiac action potential. The action potential represents the
change in membrane potential during cellular depolarization and repolarization, driven
by transmembrane ion fluxes, primarily Na+, K+, and Ca2+. Voltage-gated sodium
channels facilitate a rapid depolarization at the start of the action potential, causing
Na+ influx that elevates membrane potential from approximately -90 mV to +20 mV.
Conduction velocity and inverse proportional conduction delay are determined by
several factors, including maximal upstroke velocity of action potentials, cell size, cell
shape, and gap junction distribution [26, 25]. Following cellular depolarization, K+

efflux reduces membrane voltage while Ca2+ influx increases it. The action potential
enters a plateau phase when inward Ca2+ and outward K+ currents are approximately in
equilibrium. Subsequently, the cell returns to resting membrane potential through K+

efflux and the redistribution of Na+ and Ca2+ to the extracellular space and K+ to the
intracellular space [30]. The voltage-gated sodium channels, that facilitated the rapid
depolarization at the start of the action potential, cycle through three states based on
membrane potential: 1) closed–activated, 2) open–activated, and 3) closed–inactivated.
These channels can only reactivate when membrane potential approaches its resting
membrane potential [24]. Consequently, cells become temporarily unresponsive to
electrical stimuli, known as the refractory period. The electrophysiological properties of
cardiac tissue, such as action potential morphology, refractory period, and conduction
delay, are history-dependent and vary dynamically depending on the time since the
last activation [32].

2.4 The Autonomic Nervous System

The autonomic nervous system (ANS) represents the part of the nervous system that
governs most visceral functions, including the regulation of heart rate and contractile
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force to modulate cardiac output. The ANS comprises the sympathetic and parasympa-
thetic nervous system. The sympathetic nervous system primarily controls physiological
mechanisms that enhance energy expenditure and increase the heart rate. In contrast,
the parasympathetic nervous system primarily decreases the heart rate and facilitates
the restoration of energy supplies. Anatomically, the sympathetic and parasympathetic
nervous systems innervate the organs via separate nerves. The parasympathetic nervous
system originates in the brain stem and innervates the heart primarily via the vagus
nerve. In contrast, the sympathetic nervous system is more extensively branched, with
nerve fibers originating from multiple segments of the cervical and thoracic spinal
cord [33]. Furthermore, the heart possesses an intrinsic nervous system that releases
neurotransmitters associated with both sympathetic and parasympathetic signaling
[34]. The anatomical landmarks of the cardiac conduction system – the sinus node, AV
node, and His bundle (Figure 2.1B)– are more densely innervated by both sympathetic
and parasympathetic efferent fibers than the working myocardium [34].

Signal transmission between the ANS and heart occurs through chemical neu-
rotransmitters that bind to specific cardiac cell membrane receptors. The main
sympathetic neurotransmitters, norepinephrine and epinephrine, interact with car-
diac adrenergic receptors to increase AV nodal excitability and conduction velocity
[35, 36, 37, 38] while decreasing action potential duration [37, 38]. During head-up
tilt from a supine position, plasma concentrations of norepinephrine and epinephrine
increase significantly [39]. Head-up tilt is associated with increased sympathetic tone,
as evidenced by an increase in muscle sympathetic nerve activity and a corresponding
decrease in both AV nodal conduction delay and refractory period [40, 39]. The impact
of head-down tilt on sympathetic and parasympathetic activity is unclear. Conversely,
the main parasympathetic neurotransmitter, acetylcholine, decreases atrial contractility,
atrial effective refractory period, and ventricular contractile force [34]. In the AV node,
parasympathetic activity increases both AV nodal conduction delay and refractory
period [41]. Respiration is known to modulate the parasympathetic activity, with
inspiration reducing vagal activity and expiration increasing it [42, 14]. The ANS
utilizes multiple neurotransmitters and receptors beyond the main sympathetic and
parasympathetic neurotransmitters outlined here. For a comprehensive overview into
these neuromodulatory mechanisms, the reader is referred to [43, 34].

2.5 Atrioventricular Node

The atrioventricular (AV) node is a spindle-shaped network of cells located at the base
of the right atrium. Specifically, the AV node is located at the apex of the Triangle of
Koch, a region between the coronary sinus ostium, tendon of Todaro, and tricuspid valve’s
septal leaflet [6, 5] (Figure 2.3). The AV node is essential in the cardiac conduction
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Figure 2.3: Anatomy of AV node with its two functional pathways. Illustration is based on
the work of [6, 5].

system (Section 2.1), and its function during AF was modeled in Paper I–III. The AV
node comprises two functional conduction pathways, known as the slow pathway (SP)
and the fast pathway (FP). The FP is characterized by a shorter conduction delay and
longer refractory period compared to the SP due to differences in the structure of cells
[6]. The SP, comprising the lower nodal bundle and inferior nodal extension, extends
along the tricuspid valve from the coronary sinus towards the His bundle. While less
anatomically defined, the FP is allocated to the area of the compact node [6, 5].

2.6 Electrical Activity and Hemodynamic Variation in
the Cardiac Cycle

This section connects the anatomical and physiological fundamentals described in
Section 2.1–2.5 to typical ECG and hemodynamic measurements during a cardiac
cycle in NSR. The ECG originates from the electrical activation propagation through
the heart during each cardiac cycle. This generates a time-varying potential field outside
the heart which can be measured at the body surface using electrodes, giving rise to the
characteristic ECG signals. The cardiac cycle during NSR begins with the spontaneous
self-excitation of the sinus node and subsequent atrial electrical activation (Section
2.1). The cardiac cycle comprises two phases: systole, representing the contraction
phase, and diastole, representing the relaxation phase of the heart (Figure 2.4). Atrial
depolarization is reflected in the ECG as the P-wave (Figure 2.5), triggering atrial
systole and consequently increasing atrial pressure (a-wave) and ventricular volume
(Figure 2.4). The AV node introduces a conduction delay between atrial and ventricular
activation, evident in the P–Q interval on the ECG. Ventricular depolarization is
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Figure 2.4: Illustration of the cardiac pressure and volume trends with an ECG and phono-
cardiogram signal over two cardiac cycles. Modified from Hall and Hall [24] with permission
from Elsevier.

represented by the QRS complex, initiating ventricular contraction and a rapid rise in
ventricular pressure. Once ventricular pressure exceeds atrial pressure, the A-V valves
close, causing the v-wave in the atrial pressure signal. Subsequently, when ventricular
pressure exceeds aortic pressure, the aortic valves open, resulting in ventricular ejection
and a decrease in ventricular volume. Ventricular repolarization, following the action
potential plateau (Section 2.3), is observed as theT-wave on the ECG. As the ventricles
relax and ventricular pressure falls below aortic and atrial pressures, the aortic valves
close, and the A-V valves open. During ventricular diastole, atrial filling causes a slow
rise in atrial pressure (v-wave) until the A-V valves open and blood flows into the
ventricles, increasing ventricular volume. Systolic pressure and volume refer to the
maximum pressure and minimum volume, respectively, during systole. Conversely,
diastolic pressure and volume represent the minimum pressure and maximum volume
during diastole. Ventricular ejection fraction is a common index for assessing cardiac
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Figure 2.5: Typical ECG signal in normal sinus rhythm. Adapted from Sörnmo [44] with
permission from Springer Nature.

pumping function and is defined as in Eq. 2.1,

EFventricle(%) =
EDV − ESV

EDV
· 100, (2.1)

where EDV represents the end-diastolic volume at the aortic valve opening, and
ESV denotes the end-systolic volume at the A-V valve opening (Figure 2.4). Because
there are no valves between the veins and the atria, the atrial ejection fraction is
calculated using the atrial diastolic and systolic volumes instead of the end-diastolic
and end-systolic volumes. The cardiac output defines the amount of blood pumped
each minute.



Chapter 3

Atrial Fibrillation

This chapter focuses on the diagnosis, mechanisms, and management of atrial fib-
rillation (AF), providing an overview of the underlying pathology that prompted
the development of new techniques in this thesis. First, Section 3.1 describes the
characteristic electrical activity of AF in the ECG that differentiates AF from normal
sinus rhythm (NSR) and gives evidence for its diagnosis. Atrial fibrillation has a
progressive nature and is promoted by several pathophysiological mechanisms [4].
These mechanisms can result from cardiac disease but also from the consequences of
AF itself. Because the ECG measures the cardiac electrical activity, it may contain
information about the AF progression and the underlying mechanisms, given the
methods to extract this information exist. Section 3.2 describes the main mechanisms
behind AF. Based on these mechanisms behind AF, computational models with a
mechanistic description of AF were developed in Paper I–III to predict patient-specific
autonomic modulation and hemodynamic response in AF. Finally, Section 3.3 ad-
dresses the management of AF, emphasizing that personalized treatment approaches
must recognize patient-specific differences and that different strategies are required at
different stages.

3.1 Atrial Fibrillation in the ECG

Atrial fibrillation is a supraventricular tachyarrhythmia with uncoordinated atrial
activation and ineffective atrial contraction [1, 3]. Atrial fibrillation is a rhythm
disorder that alters the electrical activity in the atria and ventricles. In Section 2.1
and 2.6, the electrical excitation propagation in the heart and the resulting ECG
signal morphology was described for healthy NSR. In NSR, the electrical excitation
is initiated in the SA node and spreads throughout the atria. In the ECG, the atrial
depolarization phase is represented by the P-wave, the atrial repolarization phase is

15
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Figure 3.1: ECG signal in normal sinus rhythm and atrial fibrillation. A) In NSR, the P-wave
represents the atrial depolarization, the QRS complex represents the ventricular depolarization,
and the T-wave represents the ventricular repolarization. The period between heartbeats is
characterized by the RR interval between two R waves. Ventricular activations occur at a regular
rhythm. B) In AF, the f-waves represent the atrial activity and are superimposed on the QRS
complex and T-wave representing the ventricular activity. Ventricular activations occur at an
irregular rhythm. Adapted from Sörnmo [44] with permission from Springer Nature.

concealed by the QRS complex, and the remaining ECG is not affected by the atrial
electrical activity (Figure 3.1A). In AF, the electrical excitation does not terminate
between heartbeats but propagates continuously over the atrial tissue. Thus, the atrial
activity is not governed by the SA node, and the atria contract irregularly at rates of
400 to 600 beats per minute [45]. In the ECG, the P-wave is absent in AF and is
replaced by f-waves present throughout the ECG signal reflecting the continuous atrial
electrical activity (Figure 3.1B). The f-waves, their fundamental frequency, and the
f-wave frequency spectrum overall contain information about the disorganization of
atrial electrical activity and were studied in Paper IV.

In NSR, every atrial activation is succeeded by a ventricular activation after being
delayed by the AV node. In the ECG, the ventricular depolarization phase is repre-
sented by the QRS complex and the ventricular repolarization phase is represented by
the T-wave (Figure 3.1A). The period between heartbeats is characterized by the RR
interval between two R waves. The typical resting heart rate for individuals in NSR
ranges from 60 to 80 beats per minute [45]. In AF with rapid atrial activation of
400 to 600 beats per minute, the AV node is blocking part of the rapid and irregular
incoming atrial activations, resulting in a ventricular rate ranging from 110 to 180
beats per minute, which is an increased heart rate and more irregular heart rhythm
compared to NSR (Figure 3.1B) [45].
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The ECG is the gold standard, and ECG documentation is required for the
diagnosis of AF [3]. A 12-lead ECG or ≥30 s single-lead ECG displaying irregular RR
intervals and absent P waves indicate clinical AF, with diagnosis confirmed upon the
physician’s review of the ECG signal [3]. As described in Section 4, ECG signals were
processed in all of the Papers I-IV to extract patient-specific measures of atrial and
ventricular electrical activity.

3.2 Mechanisms behind Atrial Fibrillation

Atrial fibrillation arises from a complex interplay of four pathophysiological mech-
anisms that contribute to its development and maintenance: electrical remodeling,
structural remodeling, autonomic nervous system changes, and calcium handling
abnormalities [46, 4, 47]. Electrical remodeling primarily involves a reduction in
L-type Ca2+ current, an up-regulation of rectifier background K+ current, an enhanced
constitutive acetylcholine-regulated K+ current, and modified gap junction functional-
ity [4, 47]. The electrical remodeling promotes re-entry by shortening action potential
duration, hyperpolarizing atrial cardiomyocytes, and removing voltage-dependent
sodium current inactivation (Section 2.3) [48, 4, 47]. Structural remodeling includes
atrial enlargement, which increases available tissue mass, as well as tissue fibrosis, which
creates areas of slow conduction and functional block [4, 47]. These electrical and
structural remodeling mechanisms, which create a substrate prone to reentry, can
be further promoted by autonomic nervous system changes and calcium handling
abnormalities [4]. Changes in the autonomic nervous system and calcium handling
abnormalities can prolong action potentials and generate delayed afterdepolarizations
of sufficient magnitude to trigger spontaneous atrial ectopic activation [4, 47]. These
mechanisms create a substrate for AF and facilitate a vicious circle where “AF begets
AF” [49, 50, 51, 4]. Despite exhibiting uncoordinated electrical activity, AF can arise
from a regularly firing source, with propagation through the AF substrate leading
to chaotic and irregular atrial excitation patterns [4, 52]. These sources are typically
observed as either reentrant circuits or focal ectopic activity [53]. A reentrant circuit
is defined by a self-sustaining electrical excitation wave circulating an anatomical
obstacle [54], while an ectopic focus is defined as a cardiac site other than the SA
node that functions as a pacemaker with a significantly higher firing rate than the SA
node [53]. Spontaneous atrial ectopic activity can be promoted by both autonomic
hyperinnervation and calcium handling abnormalities [4]. Reentry requires that the
conduction time of a full circle of electrical activation exceeds the refractory period, a
condition facilitated by both electrical and structural remodeling [4].
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3.3 Management of Atrial Fibrillation

The management of AF starts with the confirmation using a 12-lead ECG or a
rhythm strip showing AF pattern for ≥30 s [3]. The next step in AF management
is the characterization of AF, which encompasses stroke risk stratification using the
CHA2DS2-VASc score, symptom severity assessment via the EHRA score, AF burden
quantification based on time spent in AF, and substrate severity evaluation through
clinical assessment and imaging [3]. The CHA2DS2-VASc score summarizes clinical
risk factors and awards points to congestive heart failure, hypertension, age ≥75 years,
diabetes mellitus, stroke, vascular disease, age 65–74 years, and sex category (female) [3].
The EHRA symptom scale quantifies AF-related symptoms from none to mild, mod-
erate, severe, and disabling [3]. Finally, the treatment of AF involves a three-pronged
approach: 1) stroke prevention guided by the CHA2DS2-VASc score, 2) management
of comorbidities and cardiovascular risk factors through lifestyle modifications such as
weight loss, exercise, and reduced alcohol consumption, and 3) symptom control [3].

The AF patient cohorts studied in Paper I–IV represented AF at different stages of
disease progression. The AF pattern is classified into five classes based on the duration
of continuous AF: first diagnosed (Paper IV ), paroxysmal (Paper II–III ), persistent
(Paper I–III ), long-standing persistent, and permanent. If AF has not been diagnosed
before, it is ’first-diagnosed’; if AF terminates within 7 days of onset, it is ’paroxysmal’;
if it is sustained between 7 days to 12 months, it is ’persistent’; if it is sustained for
longer than 12 months, it is ’long-standing persistent’. In these four classes, the patient
and clinician discuss treatment options to restore and maintain NSR. If no further
attempts to restore NSR are planned, then AF is classified as ’permanent’ [3, 1].

Symptom control can be realized with rate control and rhythm control. The goal
of rate control is to keep the average heart rate below 100-110 beats per minute [3].
In most cases, rate control is realized with drugs, such as beta-blockers and calcium-
channel blockers [3]. When medication fails, an alternative rate control approach is
ablating the AV node and implantation of a pacemaker to control the ventricular rate
[3]. The goal of rhythm control is to restore and maintain NSR. In the first 48 hours
of AF onset, cardioversion is the preferred method to restore NSR [3]. In patients
with paroxysmal or persistent AF, targeted ablation of ectopic foci or reentrant circuits
aims to eliminate the sources of AF and restore NSR [55, 56].



Chapter 4

Analysis of Cardiac Signals

This chapter discusses the analysis of clinical signals relevant to addressing the three
aims of this thesis. Because direct measurements of AV nodal conduction are practically
impossible to obtain in AF patients, the AV nodal conduction properties in Paper I–III
are estimated from ECG-derived features described in Section 4.1. In Section 4.1.1,
the extraction of f-wave signals from ECG signals of AF patients is described together
with three f-wave characteristics quantifying the uncoordinated atrial electrical activity.
The f-wave characteristics are used in Paper I–II to model the atrial electrical activity
and in Paper IV to study their prognostic value on clinical outcomes such as total
mortality in the earliest stages of AF. In Section 4.1.2, the detection of ventricular
activations from ECG signals are described together with three RR series characteristics
quantifying the irregular ventricular activity. The RR series characteristics are used
in Paper I–III to quantify the ventricular activity. In Section 4.1.3, the extraction
of respiration signals from 12-lead ECG of AF patients is described. The respiration
signals are used in Paper II to predict respiration-induced autonomic modulation in
AV nodal conduction during AF.

A recurring theme in this PhD thesis is the development of computational models
and the model-based analysis of clinical signals. In this context, a sensitivity analysis
described in Section 4.2 is applied in Paper I to study the individual influence of each
model parameter on the AV node model output. Furthermore, Section 4.3 gives an
introduction to convolutional neural networks (CNNs) that can be trained to learn
complex, non-linear relationships within data which is used in Paper II to predict the
magnitude of respiration-induced autonomic modulation from ECG signals in AF
patients.

Finally, to evaluate clinical significance of the derived ECG characteristics and
fitted model parameters, an introduction to survival analysis is given in Section 4.4,
which is used in Paper IV to compare the survival outcomes among groups within a
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study cohort. In Section 4.4.1, the Kaplan-Meier estimator is described for visualizing
the survival curves of each group over time. In Section 4.4.2, the Cox proportional
hazards model is described to assess whether two groups are at an equal or different
risk of a clinical outcome.

4.1 ECG Analysis

In Chapter 2, the ECG was described as a non-invasive sensor that captures the
electrical conduction propagation through the heart. The ECG measures the electric
field on the body surface that results from electrophysiological processes ranging from
the molecular to the organ level. In Chapter 3, the characteristic differences in ECG
recordings between NSR and AF were described, highlighting an irregular RR series,
absence of P waves, and presence of f-waves as the basis of AF diagnosis. This section
covers the analysis of ECG signals for quantifying the atrial rhythm based on f-wave
characteristics, the ventricular rhythm in AF based on RR series characteristics, and
the respiration based on ECG-derived respiration signals.

4.1.1 Analysis of f-waves

During AF, f-waves are a component in the ECG signal representing the rapid and
uncoordinated atrial activity. The f-waves have predictive clinical value. For example,
f-wave characteristics such as atrial fibrillation rate, average amplitude of the f-wave
envelope, and organization index derived from the signal’s spectral characteristics
can be predictive of spontaneous termination of paroxysmal AF [57, 58, 59], atrial
tissue pathology [60, 61], and increased mortality in congestive heart failure patients
with AF [23]. Because the f-waves represent atrial activity and the QRST complex
represents ventricular activity in AF (Section 3.1), the f-waves can be extracted from
the ECG by removal of the QRST component. For Paper I, II, and IV, f-wave
signals were extracted from the ECG using spatiotemporal QRST cancellation [62].
Spatiotemporal QRST cancellation is based on average beat subtraction. Each ECG
lead is processed independently. The average beat subtraction creates a beat template
from the average of time-aligned beats, which is then subtracted from each beat in
the ECG lead. Spatiotemporal QRST cancellation corrects for the variations in the
orientation of the heart’s electrical axis that is primarily induced by respiration and
takes all leads into account when creating a beat template [44]. Figure 4.1 shows a
typical f-wave signal extracted using spatiotemporal QRST cancellation.

In this thesis, the f-wave signal has been characterized by the atrial fibrillatory
rate (AFR), the average amplitude of the f-wave envelope (Amp), and an organization
index derived from the signal spectral characteristics (ExpDec). The AFR represents
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Figure 4.1: Example of f-wave signal in lead V2 using spatiotemporal QRST cancellation. The
dots indicate the location of the removed QRS complexes. Adapted from Sörnmo [44] with
permission from Springer Nature.

the dominant frequency in the f-waves and serves as a surrogate marker for the atrial
refractory period [63]. In Paper I, II, and IV, an AFR trend f(n1) sampled at 50 Hz
was estimated by fitting a complex sinusoidal model s(n1) to a 20 ms overlapping
0.5 s segment of the f-wave signal [64, 65], as defined in Eq. 4.1

s(n1) =

M1∑
m1=1

Amej(2πf0m1n1+φm), (4.1)

where AFR in each segment corresponded to the fundamental frequency f0 in s(n1)
and n1 = 0, . . . , N1 − 1 with N1 samples. The AFR trend f(n1) comprises the local
frequency estimates of f̂0 estimated from each segment using maximum likelihood
estimation. The complex sinusoidal model s(n1) consists of two harmonically related
complex exponentials (M1 = 2), where Am and φm represent the amplitude and
phase of the m:th exponential. In Paper I, the mean and standard deviation of atrial
inter-arrival times are estimated from the mean and standard deviation of f(n1) to
account for changes in AFR during the tilt test. In Paper II and IV, a constant AFR
value is computed for each patient from the mean of the extracted AFR trend.

A high average amplitude of the f-wave envelope (Amp) before catheter ablation
predicts AF termination and freedom from AF at follow-up. In contrast, a low Amp
suggests AF continuation and left atrial enlargement [60]. For the calculation of
Amp, an upper envelope eMAX(n2) and lower envelope eMIN (n2) passing through
local maxima and local minima of the f-waves, respectively, were estimated by the
shape-preserving piecewise cubic Hermite interpolating polynomial (PCHIP) [66].
The Amp was computed as the mean of the absolute difference between the upper and
lower envelope with N2 samples as defined in Eq. 4.2

Amp =
1

N2

N2∑
n2=1

|eMAX(n2)− eMIN (n2)|. (4.2)
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The degree of f-wave organization characterized by ExpDec is predictive of NSR
maintenance after cardioversion of AF [67]. The ExpDec characterizes the exponential
decay in magnitude between the AFR and its harmonics in the f-waves’ frequency
spectrum. The frequency spectrum of the f-waves was computed using a short-term
Fourier transform, where the f-wave signal was divided into 128 sample-long segments
with 50 sample overlaps [12]. For the calculation of ExpDec, a spectral line model
was fitted to the frequency spectrum of the f-waves as described in Eq. 4.3

φl(pl + hm) =

{
ble

−γlm3 , m3 = 0, 1, ...,M3,

0, otherwise,
(4.3)

where φl represents the normalized spectral profile, pl is the fundamental frequency
determined by the peak position in an exponentially averaged input spectrum, hm
denotes the offset position of the m3:th harmonic relative to pl, γl describes the
exponential decay, and bl is the magnitude at pl. The spectral line model allows a
decoupled description of the fundamental frequency and the waveform shape. In the
spectral line model, the frequency corresponding to the AFR is represented by m3 = 0,
while its harmonics are represented by m3 > 0. Here, M3 is chosen to consider only
harmonics below 20 Hz [12].

4.1.2 Analysis of RR Series

For the analysis of the ventricular activity in NSR and AF, the RR series was char-
acterized by its mean, variability, and irregularity. As illustrated in Figure 4.5, the
RR series comprises intervals between consecutive heartbeats, where the time of a
heartbeat is determined by the corresponding R peak in the ECG signal. The R peaks
were detected using CardioLund ECG parser in Paper I–II and using the free ECGdeli
toolbox in Paper III [68]. The mean of the RR intervals was computed according to

Time (s)

0 64 5321

Figure 4.2: ECG signal in atrial fibrillation with an irregular series of RR intervals RRi.
Adapted from Sörnmo [44] with permission from Springer Nature.
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Eq. 4.4

RR =
1

N

N∑
i=1

RRi, (4.4)

where RRi denotes the i:th RR interval in the RR series that follows the i:th heatbeat.
In Paper I–II, the RR series variability was computed as the root mean square of
successive RR interval differences (RR rmssd) defined in Eq. 4.5

RRV =

√√√√ 1

N − 1

N−1∑
i=1

(RRi+1 −RRi)
2. (4.5)

In Paper III, the RR series variability was computed as the RR rmssd normalized with
respect to RR to facilitate the comparison between RR series variabilities over a range
of heart rates as described in Eq. 4.6 (Figure 4.3)

R̂RV =
RRV

RR
. (4.6)

The RR series irregularity was computed as the sample entropy of the RR series,
characterized as the logarithm of the conditional probability that, within a specified
tolerance r, a sequence that recurs for m samples will also recur for m+ 1 samples, as
described in Eq. 4.7 (Figure 4.3)

RRI = − ln

(∑N−m
i=1

∑N−m
j=1,j 6=i b

m+1
i,j (r)∑N−m

i=1

∑N−m
j=1,j 6=i b

m
i,j(r)

)
. (4.7)

The binary variable bli,j(r) with l ∈ {m, m + 1} has the value 1 if the maximum
absolute distance between corresponding scalar elements in the vectors V l

i = {RRi,
RRi+1, ..., RRi+l−1} and V l

j is below the tolerance r times the standard deviation of
the RR interval series; otherwise the value is zero [69]. In Paper I–III, the parameters
were set to m = 2 and r = 0.2.

Compared to NSR, the RR is decreased, and RRV and RRI are increased in AF.
To provide context for normal ranges of RR series variability, the study by McManus
et al. [70] found an R̂R

AF
V = 0.29 ± 0.09 in 76 AF patients and an R̂R

NSR
V =

0.08± 0.08 in 18 ECG recordings during NSR. An RR series variability threshold of
0.115 for R̂RV was determined best for the use in AF detection [70]. For RR series
irregularity, the study by Corino et al. [71] found an RRAF

I = 1.68± 0.18 in 60 AF
patients and the study by Solís-Montufar et al. [72] found anRRNSR

I = 0.84±0.204
in 52 healthy subjects while sleeping.
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Figure 4.3: Comparative visualization of RR series characteristics, illustrating the independent
parameters of variability (horizontal axis) and irregularity (vertical axis). Each panel shows
an RR series with identical irregularity but increasing variability (left to right) or identical
variability but increasing irregularity (top to bottom). The axis units are arbitrary. Adapted
from Sörnmo [44] with permission from Springer Nature.
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4.1.3 ECG-derived Respiration

Respiration modulates the ECG, resulting in baseline wander, amplitude modulation,
and frequency modulation [73]. Baseline wander and amplitude modulation arise from
dynamic changes in the heart’s electrical axis relative to the electrodes and changes in
thoracic impedance [73]. Frequency modulation reflects respiratory sinus arrhythmia,
characterized by an increase in heart rate during inspiration and a decrease during
exhalation. Various filter-based and feature-based techniques have been proposed to
extract the respiration signal from the ECG, as summarized in [73]. However, in AF,
frequency modulation cannot reliably capture respiration, as RR interval fluctuations
originate not solely from the autonomic modulation of the SA node but also from the
uncoordinated and irregular atrial activity. Among the available methods, the feature-
based slope range technique demonstrated the best performance in robustly estimating
the respiration rate from the ECG during AF [74]. In a single ECG lead segment
yi(n) comprising an i:th QRS complex, the slope range method extracts respiration
information and is defined by the difference between the maximum up-slope and
minimum down-slope as defined in Eq. 4.8

dSR(i) = max
n

(
y′(n)

)
− min

n

(
y′(n)

)
, (4.8)

where y′i(n) = yi(n) − yi(n − 1) [74]. Consequently, the respiration signal is
sampled non-uniformly, with one sample at the location of each heartbeat. To create
an uniformly sampled respiration signal from the non-uniformly sampled slope range
values, the signal can be resampled using shape-preserving piecewise cubic Hermite
interpolating polynomial (PCHIP) [75].

4.2 Analysis of the Model

In the model development, a sensitivity analysis enables quantifying how uncertain-
ties in model inputs x = [x1, x2, . . . , xN ] propagate to affect the model’s outputs
y = [y1, y2, . . . , yM ] [76]. The sensitivity analysis techniques are fundamentally
divided into local and global methodologies, each offering distinct advantages for
uncertainty quantification. Local sensitivity analysis assesses parameter sensitivity by
evaluating variations around a specific point in the parameter space, utilizing par-
tial derivatives that can be approximated through methods such as finite differences.
In its most basic form, a local sensitivity analysis yields the partial derivative of the
model with respect to a single input factor ∂ym/∂xn, with the one-at-a-time approach
representing a widely implemented variation of this methodology [76]. The partial
derivative quantifies how much each input xn affects each output ym at a given point
in the input space. This computationally efficient local sensitivity analysis yields reliable
sensitivity indices for linear models with negligible parameter interactions.
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For nonlinear models, global sensitivity analysis techniques are more suitable.
These methods systematically evaluate the output variations across the complete range
of possible input parameters simultaneously, thereby accounting for parameter inter-
actions. Variance-based sensitivity analysis, particularly Sobol’s method, represents a
prominent example of global sensitivity analysis techniques [77]. In this method, the
sensitivity index of a model input represents the expected proportional reduction in
output variance resulting from fixing that particular model input.

However, variance-based sensitivity analysis techniques inherently assume that
the outputs follow a normal distribution. Given that the RR series characteristics
produced by the AV node model exhibited skewed and multi-modal distributions,
a distribution-based sensitivity analysis was implemented in Paper I instead [78].
This alternative approach requires no assumptions regarding the shape of the output
distribution, making it more suitable for the complex dynamics observed in the AV
node model. For each combination of the n:th model input xn and the m:th model
output ym, a sensitivity coefficient Sn,m is computed as defined in Eq. 4.9

Sn,m = median
c=1,...,C

median
d=1,...,D

KS(F (d)
ym (ym), Fym|xn

(ym|xn ∈ Ic)). (4.9)

The Kolmogorov-Smirnov (KS) distance measures the difference between two em-
pirical cumulative distribution functions (CDFs): the unconditional F (d)

ym (ym) and
the conditional Fym|xn

(ym|xn ∈ Ic). To approximate the conditional CDF, the
parameter space of xn is divided into C equal intervals Ic (where c = 1, ..., C), and
all samples within each interval contribute to the corresponding conditional CDF
estimation. The unconditional CDFs are generated through bootstrapping, where
K/C samples are randomly selected D times to create multiple reference distributions
F

(d)
ym (ym). All CDFs are computed as defined in Eq. 4.10

Fl(y) =
1

l

l∑
k=1

I(yk ≤ y), (4.10)

where l is the number of samples and I(yk ≤ y) is an indicator function that is 1
if yk ≤ y and 0 otherwise. Due to the finite sampling nature of both conditional
and unconditional CDFs, even parameters with no actual influence on ym may yield
non-zero Sn,m values. To account for these approximation errors, a dummy parameter
Dm is computed for each output ym:

Dm = median
d=2,...,D

KS(F (d)
ym (ym), F (1)

ym (ym)), (4.11)

This dummy parameter serves as a threshold: a model parameter xn is considered to
significantly influence ym only when its sensitivity coefficient exceeds this threshold
(Sn,m > Dm).
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Figure 4.4: The CNN was composed of five 1D convolution layers with 100 filters each. The
convolution layers had a kernel size kC = 3, stride sC = 1 and dilation factor dC . Training
datasets XSim,Train, validation datasets XSim,V al, and testing datasets XSim,Test were
constructed from the simulated data XSim

RR , XSim
Resp and XSim

AFR. A testing dataset XClin,Test

was constructed from the clinical ECG-derived features XClin
RR , XClin

Resp and XClin
AFR.

4.3 Neural network

Neural networks have emerged as powerful tools in ECG analysis, facilitating the
extraction and interpretation of complex patterns within ECG signals and predicting
clinical markers. These networks can learn complex, non-linear relationships within
data, which has led to their application in biomedical engineering tasks such as auto-
matically classifying ECG abnormalities [79]. The layered structure of neural networks
allows for the sequential processing of input features at different levels of abstraction.

Paper II presents a 1-dimensional (1D)-CNN developed to predict respiratory
modulation during AF using time series data from RR intervals, respiration signals,
and AFR (Figure 4.4). While neural networks require large amounts of training data,
clinical data is often sparse. To address this limitation, computational modeling was
used to generate synthetic datasets. The 1D-CNN architecture was constructed with
building blocks representing five layer types: 1D convolution layers, ReLU activation
layers, batch normalization layers, global average pooling layers, and dense layers. The
1D convolution layers process temporal input data by applying sliding convolutional
filters and computing the dot product of weights and inputs before adding a bias term.
Following these, rectified linear unit (ReLU) layers introduce non-linearity through
a thresholding operation that maintains positive values while setting negative inputs
to zero. The ReLU activation function enables us to learn and represent complex,
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non-linear relationships between input features [80]. This activation mechanism
shares similarities with biological neurons, where activation occurs only above a certain
threshold. Batch normalization layers normalize each row in the d-dimensional input
x = [x1(n), . . . , xd(n)]

ᵀ, enabling faster training through higher learning rates while
achieving comparable accuracy with fewer training steps [81]. At the end of the
1D-CNN, global average pooling layers reduce dimensional complexity by converting
each row in the d-dimensional input x into a single value through temporal averaging.
Finally, dense layers integrate the learned features by multiplying weights and adding
biases to produce the prediction based on the patterns in the temporal input data.

4.4 Survival analysis

Survival analysis provides a statistical framework for time-to-event analysis, allowing
one to model the time until a specific event and to compare the survival outcomes across
different groups. This section introduces two fundamental techniques: the Kaplan-
Meier method for visualizing survival probabilities over time and the Cox proportional
hazards model for assessing the impact of various factors on event occurrence.

4.4.1 Kaplan-Meier estimator

Survival analysis is a statistical approach that examines the temporal progression to a
specified event by monitoring subjects over time. Survival analysis requires two key
pieces of information: the duration from a predetermined starting point to either the
event occurrence or the end of the observation period and the event status within this
timeframe. To illustrate, in a mortality study, a subject’s death one year after enrollment
would be recorded with a time value of one year and a status indicator of 1, denoting
the event’s occurrence. Alternatively, subjects who remain alive at study completion
or lose contact during follow-up receive a status indicator of 0, representing censored
data. Censoring occurs when the event does not happen until the end of the follow-up.
This may result from various circumstances, including participant withdrawal, study
conclusion, or intervening events that preclude the event of interest. Rather than
excluding censored observations, which would introduce statistical bias, these data
provide valuable information about event-free survival up to the censoring point [82].

The Kaplan-Meier estimator is a widely used non-parametric statistical tool for
estimating the survival function, S(t), which quantifies the probability of survival
beyond time t. The estimated survival function Ŝ(t) is calculated according to Eq.
4.12

Ŝ(t) =
∏

i: ti≤t

(
1− di

ni

)
, (4.12)
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Figure 4.5: Kaplan–Meier plots for the AFR on total mortality for patients with AF episodes
≥60 min. The estimated survival function of the reference group containing patients without
AF episodes ≥60 min is illustrated by the red line, and the estimated survival function of the
patients with AF episodes ≥60 min and an AFR estimate below the population median is
illustrated by the blue line. At 0 years in the plot, patients had lived with an implantable loop
recorder for 1 year. The decreasing ’At risk’ numbers below the plot shows how many subjects
remained in the study population due to the event or censoring.

where ti denotes the time of an event, di the number of events (e.g., death, cardiovascu-
lar death, heart failure, stroke) at ti, and ni the number of individuals at risk at ti. The
number ni is defined as the total population minus those who experienced an event or
were censored before ti [83]. The Kaplan-Meier estimator computes the survival prob-
abilities at each event occurrence, accounting for the current at-risk population. These
discrete probability calculations are subsequently connected to generate a step function,
as demonstrated in Figure 4.5, which depicts survival rates for two distinct groups
analyzed in Paper IV. This graphical representation facilitates group comparisons and
provides comprehensive temporal insights into event occurrence patterns. The strength
of the Kaplan-Meier estimator lies in its distribution-free approach to survival time
analysis and its capability to accommodate censoring at varied time points across the
study population. This feature is essential in longitudinal studies where subjects may
enter and exit the study at various times.
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4.4.2 Cox proportional hazards model

The Cox proportional hazards model is a regression technique used to investigate the
influence of various covariates on event rates over time. The model is based on the
hazard function h(t|xi) described in Eq. 4.13

h(t|xi) = h0(t)·exp

 p∑
j=1

xijβj

 , (4.13)

where h0(t) ≥ 0 is the baseline hazard function, xi = [xi1, . . . , xip] represent
covariates for an individual i, and β = [β1, . . . , βp] are the corresponding scaling
factors for each covariate. The hazard function represents the instantaneous probability
of an event occurring at time t, given survival up to that point. No assumptions
are made about the functional form of the baseline hazard function h0(t). This is
possible, because h0(t) gets canceled out in the estimation of β. The Cox model
can accommodate diverse types for the covariates xi, including continuous variables
(e.g., age), categorical variables (e.g., gender), and binary variables (e.g., presence of
hypertension). The scaling factors β are estimated by maximizing the partial likelihood
in Eq. 4.14 with respect to β,

PL(β) =
∏

i:δi=1

exp
(∑p

j=1 xijβj

)
∑

i′:t′i≥ti
exp
(∑p

j=1 xi′jβj

) , (4.14)

where ti is the event time of the i:th observation that is not censored (δi = 1) [84].
A key assumption of the Cox model is the proportionality of hazards, which

means that the hazard ratio, defined in Eq. 4.15, remains constant throughout the
observation period between individuals with a hazard function hk(t) and those with a
hazard function h′k(t).

HR =
hk(t)

h′k(t)
=

h0(t)·exp
(∑N

i=1 βixi

)
h0(t)·exp

(∑N
i=1 βix

′
i

) =
exp
(∑N

i=1 βixi

)
exp
(∑N

i=1 βix
′
i

) (4.15)

If a study group has a hazard function hk(t) and a reference group has a hazard
function h′k(t), a hazard ratio greater than 1 indicates an increased risk, while a value
less than 1 indicates a decreased risk compared to the reference group. In Paper IV, the
hazard ratio was computed to investigate the prognostic value of f-wave characteristics
derived from implantable loop recorder for clinical outcomes in patients at the earliest
stages of AF.



Chapter 5

Cardiac Modeling

This chapter gives an overview of relevant cardiac computational models. Generally, the
modeling choices of the cardiac computational models are based on the accumulated
understanding of cardiac physiology developed from previous experiments in animals
or humans. The level of detail and amount of incorporated mechanisms are modeling
choices and have to be weighed against the interpretability and computation time of
the model. Therefore, no one-size-fits-all model exists, but many highly specialized
computational models have been developed for specific use cases. The challenge in
developing cardiac computational models is identifying a choice of model properties
essential for reproducing experimental data and for which previous studies can support
the choice.

Cardiac physiology can be understood on multiple levels of abstraction, from the
molecular to the cellular, tissue, organ, and organ system levels. Cardiac computational
models conform to the same levels of abstraction, e.g., modeling ion channels on
the molecular level [85], modeling action potentials on the cellular level [85, 86, 17],
modeling electrical excitation propagation on the tissue level [87, 86, 17], modeling
the cardiac conduction system on the organ level [17], and modeling the interaction
between the nervous system and the heart on the organ system level [88]. Often,
computational models focus on mechanisms on a single level if the research question
allows for the assumption that the mechanisms on this level can be viewed in isolation
from the other levels. But there are also multi-scale models integrating mechanisms
on multiple levels to explain how changes at one level can impact the entire system
[89, 90, 91, 92]. Multi-scale modeling of the heart comes with both advantages
and disadvantages. With a multi-scale model, it is, for example, possible to test the
hypothesis that a change in sodium channel conductance on the molecular level affects
the electrical excitation propagation in the heart on the organ level and explains an ST-
elevation in the ECG in Brugada syndrome [91]. A limitation of multi-scale models can

31
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be the computational cost, mainly when replicating cellular processes at high resolution
across the entire organ. For example, one cardiac cycle of 800 ms in the work of
Wülfers et al. [91] took approximately 45 min on a high-performance computer. When
investigating cardiac arrhythmias, requiring the simulation of numerous cardiac cycles,
or when personalizing models to patient-specific data, requiring numerous simulations,
the computational burden necessitates either a reduction in model complexity or the
optimization of the algorithms [18, 17]. The reduction of computational cost could be
achieved by abandoning a multi-scale approach or by reducing the complexity of the
physiological process description with an approximation of the physiological processes.

The first aim of this thesis is the development of an AV node model to study
patient-specific ANS modulation on AV nodal conduction properties during AF based
on ECG recordings. A design decision was to keep the number of model parameters
manageable so that the function could be interpreted, computation times could be
short, and the model parameters could be estimated from non-invasive clinical data.
In Section 5.1, an overview of previously published AV node models is given. Section
5.1.6 describes the network AV node model adopted in this thesis. The design decisions
for the network AV node model can be described in five points by which all the other
AV node models are assessed in this section: 1) the AV nodal dual-pathway physiology,
2) the description of the refractory period, and 3) conduction delay, 4) the arrival of
atrial impulses into the AV node model, 5) and how the model was fitted to clinical
data.

This thesis’s second aim is to develop a computational model to study patient-
specific hemodynamics during AF based on ECG recordings and hemodynamic mea-
surements. The design decisions are based on the same philosophy as the first aim:
to enable short computation times for numerous simulations with numerous cardiac
cycles. In Section 5.2, an overview of previously published hemodynamic models is
given. The design decisions for the hemodynamic model can be described in three
points by which all the other hemodynamic models are assessed in this section: 1)
the cardiac mechanics, 2) the cardiac electrophysiology, 3) and the mechanics of the
vasculature.

5.1 AV Node Models

This overview focuses exclusively on AV node models described at the tissue level
[93, 94, 95, 96, 97, 98, 99]. For models that rely on action potentials described on
the cellular level for electrical conduction, the reader is referred to [100, 101, 102,
103, 104, 105, 106, 107, 108]; these models are excluded from this overview as their
computational complexity contradicts the efficiency criteria established for the first
aim of the thesis. For models designed for fitting to experimental data collected with
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the S1S2 or S1S2S3 pacing protocols described in [109], the reader is referred to
[110, 111, 112, 113, 114]; these models are excluded from this overview as their
parameter estimation requires intracardiac recordings, contradicting the non-invasive
clinical data requirement established for the first aim of the thesis. At the tissue level,
the electrical activation propagates over the cardiac tissue as a wave (Section 2.3).
In the models described below, the electrical excitation propagation as a waveform
is frequently simplified to an impulse characterized solely by its time of arrival and
location. Commonly, various researchers use distinct variables to represent identical
model parameters in their descriptions of the same phenomenon. To enhance clarity
and facilitate the comparison of similarities and disparities among AV node model
representations, the model descriptions from prior research were reformatted to align
with the terminology utilized in our AV node network model. When applicable, the
refractory period RP (∆tk) and conduction delay DP (∆tk) are characterized for an
AV nodal pathway P with respect to the diastolic interval ∆tk defined in Eq. 5.1

∆tk = tk − tk−1 −RP (∆tk−1) , (5.1)

where tk denotes the arrival time of the k:th conducted electrical impulse.

5.1.1 Precedent Descriptions of AVN Dual-pathway Physiology

The AV node has a dual-pathway physiology with distinct electrical conduction prop-
erties within the tissue of the respective pathways (Section 2.3).

In the work of Corino et al. [96, 97] and Henriksson et al. [99], the dual-pathway
physiology was described in a lumped statistical model, where atrial impulses enter
exclusively one of two pathways. The lumped statistical model does not simulate the
conduction of discrete impulses; rather, it characterizes the conduction of a distribution
of atrial impulses through the SP with a probability of α ∈ [0, 1] and conversely
through the FP with a probability of 1−α.

In the AV node models described in Cohen et al. [93], Mangin et al. [94], Lian
et al. [95], and Masè et al. [98], the dual-pathway physiology was not incorporated,
and the conduction through the AV node was simplified by a single pathway.

5.1.2 Precedent Descriptions of AVN Refractory Period

The myocardium can be electrically stimulated to induce a mechanical contraction and
propagate the electrical excitation to adjacent cells. However, a cardiac cell is insensitive
to electrical conduction during the absolute refractory period and exhibits reduced
sensitivity during the subsequent relative refractory period. AV nodal conduction
and blockage in the following AV node models are determined by a refractory period
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R(∆tk), permitting the conduction of an impulse if ∆tk ≥ 0 (Eq. 5.1). Many of the
models described below characterize the refractory period with a minimum refractory
period Rmin [94, 95, 96, 97, 98, 99] and a prolongation of the refractory period ∆R
[95, 96, 97, 99].

In the work in Cohen et al. [93], the refractory period was defined as in Eq. 5.2

R = ∆R∞

(
1− e−(ti−ti−1)/∆R∞

)
(5.2)

where ∆R∞ is the maximum refractory period.
In the work in Lian et al. [95], the computation of the refractory period incor-

porated a prolongation caused by concealed conduction. First, a refractory period
R(∆tk) without concealed conduction was computed as in Eq. 5.3

R(∆tk) = Rmin +∆R
(
1− e−∆tk/τR

)
(5.3)

where τR was a fixed model parameter representing the time constant of the exponential
decay. Then, a correlated refractory period RCC(∆tk) was computed by adding a
term for concealed conduction as defined as in Eq. 5.4

RCC(∆tk) = R(∆tk) +Rmin

∑
j

(
t′j − tk

R(∆tk)

)θ

(max (1, V ))δ (5.4)

where t′j represents the time of the j:th blocked impulse, V is a constant for the AV
nodal membrane potential, and θ and δ are positive scaling factors.

In the work in Mangin et al. [94] and Masè et al. [98], the refractory period was
defined as in Eq. 5.5

R(∆tk) = D(∆tk) +Rmin +N (µR, n · σ2
R), (5.5)

where a stochastic prolongation was drawn from a Gaussian distribution with mean
µR and standard deviation σR multiplied by the number n of blocked impulses since
the last conducted impulse. Further, D(∆tk) was an AV nodal conduction delay
computed according to Eq. 5.7.

Unlike the previous models [93, 94, 95, 98], where the relative refractory period
is accounted for by a term incorporating the history of previously conducted impulses
(Eq. 5.1), the lumped statistical model in Corino et al. [96, 97] and Henriksson et al.
[99] described the relative refractory period for the two pathways P ∈ {SP, FP} with
a piecewise linear probability of conduction described in Eq. 5.6

β(t)P =


0, 0 < tk − tk−1 < RP

min,

tk − tk−1 −RP
min

∆RP
, RP

min ≤ tk − tk−1 < RP
min +∆RP ,

1, tk − tk−1 ≥ RP
min +∆RP .

(5.6)
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Thus, all impulses are blocked if the time since the last conducted impulse is shorter
than RP

min, and all impulses are conducted if the time is longer than RP
min +∆RP ,

and between these two phases, the ratio of conducted atrial impulses increases linearly
from 0 to 1.

5.1.3 Precedent Descriptions of AVN Conduction Delay

The speed of electrical conduction in the heart varies depending on the gap-junctions
on the cell level and differs at different parts of the heart on the tissue level (Section
2.3). In the AV node models of Mangin et al. [94], Lian et al. [95], and Masè et al.
[98], the conduction delay was characterized with a minimum conduction delay Dmin

and a prolongation of the conduction delay ∆D as defined in Eq. 5.7

D(∆tk) = Dmin +∆De−∆tk/τD , (5.7)

where τD was a fixed model parameter.
In the AV node models described in Cohen et al. [93], Corino et al. [96, 97] and

Henriksson et al. [99], the conduction delay between atrial and ventricular activation
was not incorporated, and the conduction through the AV node was assumed to be
instant.

5.1.4 Precedent Descriptions of Atrial Impulse Arrival

All AV node models described in this section required a series of atrial activation times,
that was either extracted from clinical data or drawn from a stochastic distribution.

In the model of Cohen et al. [93], Lian et al. [95], Corino et al. [96, 97] and
Henriksson et al. [99], the distribution of inter-arrival times of atrial activations
was described as exponential distribution with mean µAA = 1/λ, requiring a single
parameter λ. In Cohen et al. [93] and Corino et al. [96], the distribution of AA
intervals was defined within the ranges [0,∞). In Lian et al. [95], Corino et al. [97]
and Henriksson et al. [99], the distribution was truncated to account for a minimum
atrial refractory period of δ = 50ms and was defined within the ranges [δ,∞). The
mean of the exponential distribution after truncation was corrected in Corino et al.
[97] and Henriksson et al. [99] by adjusting λ = λAFR/(1− δλAFR).

In the model of Masè et al. [98], the distribution of inter-arrival times of atrial
activations was described as Gaussian distribution with mean µAA ∈ [100ms, 250ms]
and standard deviation σAA = 25ms.

In the AV node models described in Mangin et al. [94], the series of atrial impulses
was not drawn from a stochastic distribution. Instead, it was extracted from clinical
unipolar epicardial signals.
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5.1.5 Precedent Estimation of AV Nodal Refractory Period and

Conduction Delay

Each model parameter must be assigned a value for simulation. Some of the previously
described AV node models have been fitted to clinical data [93, 96, 97, 99, 94]. In
the model of Cohen et al. [93], the mean inter-arrival time of atrial activations λ and
average refractory period R was fitted to canine data.

In the model of Corino et al. [96, 97] and Henriksson et al. [99], the refractory
period was fitted using the maximum likelihood technique with AFR and RR series
extracted from ECG signals. The exponential distribution parameter λ = λAFR

was estimated as the average AFR. Deriving the AFR from the ECG involved the
extraction of f-waves through spatiotemporal QRST cancellation [62], followed by
AFR estimation from these f-waves with a hidden Markov model-based approach
[115]. Using the model proposed in [97], changes in the refractory period were
estimated in Corino et al. [97] between supine and head-up tilt; in Corino et al. [116]
between baseline and β-blocker metoprolol; in Sandberg et al. [117] between baseline,
β-blockers metoprolol and carvedilol, and calcium channel blockers verapamil and
diltiazem; and in Corino et al. [118] between baseline, β-blocker esmolol, and selective
A1-adenosine receptor agonist tecadenoson.

In the model of Mangin et al. [94], the refractory period and conduction delay were
estimated using atrial and ventricular activation times extracted from atrial epicardial
electrograms. Changes in conduction delay and refractory period were estimated
before and after antiarrhythmic drug therapy for patients not receiving a drug, patients
receiving amiodarone, patients receiving β-blocker metoprolol, and patients receiving
amiodarone and metoprolol.

In the works of Lian et al. [95] and Masè et al. [98], the refractory period and
conduction delay parameters were fixed and not fitted to clinical data.

5.1.6 Network AV Node Model Adopted in this Thesis

The network AV node model described in Karlsson et al. [119] was adopted for this
work. The model incorporates the dual-pathway physiology with a network of 21
nodes, wherein the SP and FP are represented by two separate chains of 10 nodes solely
connected at their last nodes. Impulses move bidirectionally between connected nodes,
allowing for retrograde conduction and concealed conduction. The impulses leave
the model through an additional node assigned to a third pathway category, namely
the coupling node (CN), which receives impulses from the last node of the SP and
FP. The nodes assigned to the same pathway P ∈ {SP, FP,CN} use the same model
parameters RP

min,∆RP , τPR for the refractory period and DP
min,∆DP , τPD for the

conduction delay. Each node in the network AV node model has its own refractory
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period RP (∆tk) and conduction delay DP (∆tk) as defined in Eqs. 5.8 and 5.9

RP (∆tk) = RP
min +∆RP

(
1− e−∆tk/τ

P
R

)
(5.8)

DP (∆tk) = DP
min +∆DP e−∆tk/τ

P
D , (5.9)

using the diastolic interval ∆tk defined in Eq. 5.1. Whether an impulse is conducted
to all adjacent nodes for ∆tk ≥ 0 or blocked by the current node for ∆tk < 0 is
determined by the refractory periodRP (∆tk). If an impulse is conducted, the delay of
conduction between adjacent nodes is determined by the conduction delay DP (∆tk).
As noted in Section 5.1.3, this description of the conduction delay was previously used
in the model of Mangin et al. [94], Lian et al. [95], and Masè et al. [98]. The impulses
are processed chronologically and conducted node by node, utilizing a priority queue
of nodes and sorted by impulse arrival time, as described in Wallman and Sandberg
[120].

The series of atrial activation times were drawn from a truncated exponential
distribution of inter-arrival times using λ = λAFR/(1− δλAFR). All inter-arrival
times below δ = 50ms were omitted to account for a minimum atrial refractory
period of 50ms. As described in Section 5.1.4, the truncated exponential distribution
was previously used in the model of Corino et al. [97] and Henriksson et al. [99].
When fitting the model to ECG signals, the λAFR was estimated from the ECG by
extracting the f-waves through spatiotemporal QRST cancellation [62], followed by
AFR estimation from these f-waves with a hidden Markov model-based approach
[115]. When the model was used to generate RR series characteristic for a patient
population, the λAFR was drawn from a uniform distribution with the ranges [100ms,
250ms].

5.2 Hemodynamic Models

This section describes hemodynamic models using a modular architecture with inter-
changeable descriptions of cardiac mechanics, cardiac electrophysiology, and mechanics
of the vasculature. This overview adopted this modular approach to accommodate
the varying levels of detail found in previous studies. Depending on the specific
research question and available clinical data, each module is represented in a simplified
0-dimensional or detailed 3-dimensional manner. All hemodynamic models in this
overview simulate the dynamic interaction between blood volume and pressure within
each compartment, numerically approximating the influence of volume on pressure
and vice versa. Blood flow is determined by the pressure gradient and impedance be-
tween adjacent compartments, resulting in blood flow towards the compartment with
lower pressure. Blood flow is bidirectional between the atria and the compartments of
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the vasculature; however, heart valves located between the atria, ventricles, and arteries
regulate blood flow. The simplest heart valve representation is analogous to a diode in
series with a resistance, permitting unidirectional flow [121]. Valve regurgitation can
be modeled using two parallel diodes with differing resistances oriented in opposite
directions [122]. A more detailed valve description incorporates a time-varying orifice
area, facilitating the calculation of blood flow velocity through the valve [123, 124].
More complex valve descriptions exist but are beyond the scope of this overview; the
reader is referred to [125, 126, 127].

5.2.1 Modeling the Cardiac Mechanics

Previously proposed computational models of cardiac mechanics vary in complexity
depending on the research question. Some incorporate all four heart chambers [123,
128, 129, 130, 90, 122], while others focus on the left and right ventricle [131], or
the left atrium and left ventricle [132].

The simplest representation of a heart chamber employs a time-varying elastance
model, where the heart muscle contraction is simulated as a change in elastance [133].
The pressure Pi at each time step ti is calculated using Eq. 5.10,

Pi = Ei(Vi − Vd), (5.10)

where Vi is the volume at time ti, Vd is a constant, and Ei is the time-varying elastance.
Various formulations for elastance have been proposed [134, 127, 135]; in Korakianitis
and Shi [127] for example, ventricular elastance was modeled as defined in Eq. 5.11,

Ei =


cos
(

ti
Ts1 π

)
, 0 ≤ ti < Ts1,

cos
(
ti + Ts2 − Ts1

Ts1
π

)
, Ts1 ≤ ti ≤ Ts2,

0, Ts2 ≤ ti < T,

(5.11)

with time constants Ts1 and Ts2 for the systolic phase and the cardiac cycle length T .
Beyond the elastance model, a more sophisticated 0-dimensional representation

of cardiac chambers has been developed. This approach, implemented in the widely
used CircAdapt model, describes the heart chambers with spherical wall segments
[123, 128]. The cavity mechanics are coupled to a one-fiber sarcomere mechanics
model that links the macroscopic hemodynamic load to the myofiber stress and strain.
The pressure in the heart chamber is determined from the myofiber stress σf , which is
the sum of a passive stress element σf,pas and an active stress element σf,act as defined
in Eq. 5.12,

σf = σf,pas(εf ) + σf,act(C,Lsc), (5.12)
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where εf is the myofiber strain that is computed from the compartment volume, C is
the contractility that is modeled as a Hill-type function and is initiated by an electrical
activation, and Lsc is the contractile element length and represents how stretched the
spherical wall is [123, 128]. In the first description of the CircAdapt model [123],
the left ventricle was a spherical chamber inside the right ventricle. This description
was updated in Lumens et al. [128] with the introduction of the TriSeg formulation,
where the left and right ventricle were described using three spherical wall segments
connected at a junction circle representing the left free wall, septal wall, and right
free wall. The curvature of the spherical wall segments is adjusted at each time step
to achieve a tension equilibrium between the three spherical wall segments. This
description of the cardiac mechanics is part of the CircAdapt model and was adopted
in the hemodynamic model used in Paper III.

In contrast to these simplified 0-dimensional models, a significant body of research
focuses on detailed multiscale 3-dimensional models [136, 137, 138, 139, 90]. These
three-dimensional models comprise detailed descriptions of cardiac electrophysiology
coupled with active and passive cardiac mechanics, represented by partial differential
equations. The computational domain for these equations, i.e., the cardiac tissue,
is typically described by geometries derived from end-diastolic magnetic resonance
imaging (MRI) or computed tomography (CT), and discretized into millions of
elements to facilitate numerical solution using, e.g., finite element methods. Due to
their high computational cost, these whole-heart models are not suitable for the aims
of this thesis.

5.2.2 Modeling the Cardiac Electrophysiology

The simulation of cardiac mechanics requires defining the timing of mechanical con-
traction, which is initiated by electrical conduction. Detailed 3-dimensional models,
as discussed previously, incorporate descriptions of cardiac electrophysiology alongside
mechanical deformation [136, 137, 138, 139, 90]. The electrical excitation propaga-
tion across cardiac tissue is frequently computed using the monodomain or bidomain
equations [140]. The bidomain equation models intracellular and extracellular spaces
as distinct but interconnected domains, whereas the monodomain equation approxi-
mates these spaces using a single set of equations. While the bidomain equation offers
greater accuracy, the monodomain equation can be computationally more efficient
and sufficiently accurate for certain applications.

In contrast to these 3-dimensional models, the 0-dimensional CircAdapt model
does not explicitly simulate electrical excitation propagation. Various approaches have
been employed to determine cardiac wall activation times in both healthy and diseased
states. Three-dimensional models created based on magnetic resonance imaging have
been employed to compute maps of local electrical excitation times as input for the
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CircAdapt model. For ventricular pacing, these maps have previously been generated
using an Eikonal model [141] and a cellular automata framework [131]. Furthermore,
the electrical excitation maps have been reconstructed using electrocardiographic
imaging and used as input for the CircAdapt model [142]. For simulations of AF in
a study by Lyon et al. [143], the ventricles were activated synchronously according
to patient-specific RR intervals extracted from ECG signals, while the atria did not
contract. The study by Lyon et al. [143] also simulated an S1S2 protocol by activating
the ventricles at a regular rate, followed by a single RR interval perturbed by ±10%,
and then resuming the regular rate. Another approach taken by [144] modeled cardiac
excitation propagation for the CircAdapt model using a system of coupled automata.

5.2.3 Modeling the Vasculature

Models of the vasculature range in complexity from 0-dimensional to 3-dimensional
representations with varying levels of spatial discretization [145, 146]. In Paper III, a
0-dimensional lumped parameter model of the vasculature was implemented using an
RCRCR Windkessel model to characterize the systemic and pulmonary circulation
[147] (Figure 5.1). This RCRCR Windkessel model represents the arterial and venous
circulation as an electrical circuit with resistances R and capacitances C, modeling
the relationship between upstream pressure Pi and flow rate Qi and their downstream
counterparts Po and Qo. Windkessel models have been proposed in different config-
urations, ranging from the most simplistic RC Windkessel model to more complex
configurations using resistances, inductances, and capacitances [148, 145, 129, 146].
Higher resolution vasculature models, such as those in Guala et al. [149], Scarsoglio
et al. [132], extend the vasculature to a 1-dimensional representation of the arterial
tree. Focusing specifically on aortic blood flow, a 3-dimensional aortic model coupled
to a 0-dimensional lumped-parameter model of the left heart and systemic circula-
tion was presented in Deyranlou et al. [150]. A complete pipeline for hemodynamic
simulations, encompassing image segmentation, 3-dimensional mesh generation, and
hemodynamic simulation, was presented in Updegrove et al. [151].

Figure 5.1: Illustration of an RCRCR Windkessel model. C, capacitance; Pi, upstream
pressure; Po, downstream pressure; Qi, upstream flow-rate; Qo, downstream flow-rate; R,
resistance.
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6.1 Paper I: An atrioventricular node model
incorporating autonomic tone

This study proposed an extension to an AV node network model presented in Karlsson
et al. [119] to investigate the influence of the ANS on AV nodal conduction during
AF (Figure 6.1). The aim of Paper I was to develop a computational model of the AV
node that incorporates changes in autonomic tone and accurately reproduces observed
changes in RR series characteristics during tilt testing.

This proposed AV node model is the first to incorporate ANS-induced changes to
AV nodal conduction by introducing scaling factors AR and AD, which account for
the combined influence of sympathetic and parasympathetic activity on the refractory
period and conduction delay, respectively, as defined in Eqs. 6.1, 6.2

RP (∆tk) = AR

(
RP

min +∆RP
(
1− e−∆tk/τ

P
R

))
(6.1)

DP (∆tk) = AD

(
DP

min +∆DP e−∆tk/τ
P
D

)
, (6.2)

where P ∈ {SP, FP,CN} denotes the pathway. Unlike previous versions of the AV
node network model [120, 119], inter-arrival times were modeled using a Pearson
Type IV distribution, which was shown to most realistically replicate inter-arrival times
observed in atrial fibrillation [152]. To guide the model extension for incorporating
ANS-induced changes to AV nodal conduction, a distribution-based sensitivity analysis
was conducted [78]. This sensitivity analysis evaluated the relative contributions of
atrial activity and AV nodal properties to the ventricular response during AF.

The results demonstrated that changes in atrial activity alone could not fully explain
changes in RR series characteristics during tilt testing. The observed trends in RR
series characteristics in response to tilt, illustrated in Figure 6.2, demonstrate the effects

Figure 6.1: A schematic representation of the AV node model. Retrograde conduction is
possible within the AV node model. Only a subset of ten nodes in each pathway is shown for
simplicity.
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Figure 6.2: Average clinical and simulated RR series characteristic trends for RR mean
(RR), RR rmssd (RRV ), and RR sample entropy (RRI ), including average clinical RR series
characteristics (A) RR

C
(t), (B) RRC

V (t), and (C) RRC
I (t) (yellow) and average simulated

RR series characteristics for the original model without ANS-induced changes in AV nodal
conduction (A) RR

O
(t), (B) RRO

V (t), and (C) RRO
I (t) (red) and average simulated RR series

characteristics for the extended model with ANS-induced changes in AV nodal conduction (A)
RR

E
(t), (B) RRE

V (t), and (C) RRE
I (t) (blue). The dashed black lines separate the five-minute

segments of supine, head-down tilt, and head-up tilt, respectively.

of the scaling factors AR and AD on model output, suggesting that combined changes
in both refractory period and conduction delay are necessary to achieve agreement
with clinical observations.

These findings suggest that ANS-induced changes in AV nodal conduction play a
significant role in observed heart rate dynamics during AF. These findings also support
the hypothesis that both atrial activity and AV nodal properties contribute to the
ventricular response in AF, providing a basis for future patient-specific modeling of
autonomic effects on AV nodal function.
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6.2 Paper II: ECG-based estimation of respiration-
induced autonomic modulation of AV nodal
conduction during atrial fibrillation

This study proposed a method for predicting the magnitude of respiration-induced
autonomic modulation from ECG-derived features in AF, recognizing the clinical
relevance of ANS activity in understanding AF progression and informing personalized
treatment. To achieve this prediction, a 1-dimensional convolutional neural network
(1D-CNN) was trained using synthetic data generated by a slightly modified AV node
model (Figure 6.3) based on the work in Paper I.

Methodologically, Paper II presents three key innovations. First, the AV node net-
work model was extended to incorporate respiration-induced autonomic modulation
by introducing a time-varying scaling factor, AP (t), affecting AV nodal refractory
period and conduction delay within AV nodal pathways P ∈ {SP, FP,CN}, as
defined in Eqs. 6.3, 6.4

RP
(
∆tk, A

P (t),θP
R

)
= AP (t)

(
RP

min +∆RP
(
1− e−∆tk/τ

P
R

))
(6.3)

DP
(
∆tk, A

P (t),θP
D

)
= AP (t)

(
DP

min +∆DP e−∆tk/τ
P
D

)
. (6.4)

This scaling factor, AP (t), shared by SP and FP was defined as a sinusoidal function
with a constant respiratory frequency fresp and peak-to-peak amplitude aresp. The
scaling factor for the coupling node (CN) was set toACN = 1 and remained unaffected
by respiration. Second, a novel approach was developed for extracting respiration

Figure 6.3: A schematic representation of the AV node model. Retrograde conduction is
possible within the AV node model. Only a subset of ten nodes in each pathway is shown for
simplicity.
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Figure 6.4: Black dots correspond to the estimated âresp of 1-min segments during normal
breathing (NB), and red squares correspond to âresp of 1-min segments during deep breathing
(DB).

signals from 12-lead ECG based on periodic component analysis. Third, a 1D-CNN
architecture was designed to predict the magnitude of respiration-induced autonomic
modulation aresp from ECG-derived time signals. This 1D-CNN was trained on a
synthetic dataset comprising RR series, respiration signals, and AFR trends generated
from 2 million simulations. The trained 1D-CNN was then evaluated on a separate
synthetic dataset generated from 2 million simulations and applied to ECG recordings
obtained from AF patients during a deep breathing task to predict aresp.

The results demonstrated that the 1D-CNN could estimate respiration-induced
autonomic modulation from RR series alone, with improved estimation accuracy
when incorporating respiration signals and AFR. Initial analysis of ECG data from 20
patients performing deep breathing indicated that the aresp prediction is reproducible
and sufficiently sensitive to monitor changes and detect individual differences in
response to deep breathing. Figure 6.4 illustrates both the inter-patient variability in
aresp predictions and the varying responses to deep breathing, with some patients
showing increased modulation, others decreased modulation, and some showing no
change.

These findings suggest that autonomic modulation during AF can be quantified
from standard ECG recordings, potentially providing a new tool for monitoring
AF progression. The observed variations in responses to deep breathing within the
predictions of respiration-induced autonomic modulation may reflect different stages
of autonomic remodeling or AF progression. This work presents a potential avenue for
non-invasive monitoring of autonomic function in AF patients, which could potentially
support more personalized treatment approaches and a better understanding of AF
progression; however, further research is necessary to validate the reproducibility,
sensitivity, and clinical significance of aresp.
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6.3 Paper III: A computational model to study
hemodynamics during atrial fibrillation

This study proposed a computationally efficient model designed to simulate hemody-
namics in AF (Figure 6.5). The aim of Paper III was to develop a model capable of
simulating a sufficient number of cardiac cycles to capture beat-to-beat hemodynamic
variability characteristic of irregular AF rhythms while maintaining computational
efficiency to permit the generation of sufficient model realizations for robust parameter
estimation. This capacity to simulate extended periods of irregular rhythm and gener-
ate sufficient realizations was intended to facilitate the investigation of patient-specific
AF hemodynamics.

The proposed model combines a mechanical subsystem based on previously pub-
lished models of cardiac mechanics [123, 128, 130, 131] and vasculature [121, 131],
with a novel electrical subsystem that produces atrial and ventricular activation tim-
ings characteristic of AF, which are used to initiate contractions in the cardiac wall
within the mechanical subsystem. Cardiac walls are divided into multiple patches
with distinct electrical activation times, with atrial activation times generated using a
Pearson Type IV distribution and ventricular activation times produced with the AV
node model described in Paper I–II. Patient-specific model parameter calibration was
performed using Bayesian history matching with Gaussian process emulators [122],
and the model was fitted to data from 17 patients from the SMURF study [153]. The
fitted estimates were compared to clinical measurements of arterial and intracardiac
pressures in NSR and AF, as well as ejection fractions and cardiac volumes in NSR.

The results demonstrated the ability to fit the computational model to clinical
measurements during NSR and AF, with a large majority (75%) of absolute pressure
and ejection fraction estimation errors below 9 mmHg and 9% respectively, and a
large majority of absolute normalized estimation errors within 1.4 standard deviations
of the inter-patient variability. However, the model showed limitations, including
underestimating systolic blood pressure during AF and challenges in reproducing
minimum pressures in the heart chambers and vessels, resulting in an underestimation
of right ventricular diastolic pressure.

Although the model underestimates systolic blood pressure during AF and right
ventricular diastolic pressure, indicating a potential area for refinement of the mechan-
ical subsystem, the hemodynamic estimates largely aligned with clinical measurements
in both NSR and AF, both in absolute and normalized terms. Moreover, the computa-
tional model approach achieved a computational efficiency of 100 simulated heartbeats
per second. This model may be useful for predicting patient-specific responses to AF
treatments and investigating the relationship between the AF electrical activity and
resulting mechanical cardiac function.
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Figure 6.5: Illustration of the computational model of hemodynamics in AF. The model
is divided into a subsystem describing cardiac electrical activation times in AF (A-C) and a
subsystem describing the cardiovascular mechanics (D).
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6.4 Paper IV: Prognostic value of ECG-derived f-wave
characteristics from implantable LOOP recorder:
Analysis from the LOOP study

This study presents a statistical analysis of the association between ECG-derived f-wave
characteristics and clinical outcomes. The aim of Paper IV was to investigate the
prognostic value of f-wave characteristics derived from implantable loop recorder (ILR)
for clinical outcomes in patients at the earliest stages of AF. The investigation focused
on three f-wave characteristics: atrial fibrillatory rate (AFR), average amplitude of
f-wave envelope (Amp), and an organization index derived from the signal spectral
characteristics (ExpDec).

The study cohort comprised 1411 patients without a prior history of AF (54%
men, median age 73 years) enrolled in the LOOP study who received ILRs. Patients
were stratified into two subgroups based on AF episode duration within the first
year following ILR implantation: episodes lasting ≥6 minutes and episodes lasting
≥60 minutes. The relationship between the f-wave indices and clinical endpoints was
assessed using Cox regression analysis, adjusted for common clinical risk factors. These
analyses encompassed a primary endpoint (total mortality) and secondary endpoints
(a composite of cardiovascular mortality or heart failure and a composite of ischemic
stroke or transitory ischemic attack).

The results demonstrated significant associations between lower values of the three f-
wave characteristics and an increased risk of total mortality in patients experiencing AF
episodes lasting ≥60 min (Figure 6.6). Specifically, AFR values below 317 fibrillations
per minute, ExpDec values below 1.25, and Amp values below 97.25 were significantly
associated with an increased risk of total mortality (Hazard ratio (HR): 2.5, 2.8, and
2.7, respectively). Furthermore, lower values of AFR and ExpDec were associated with
an increased risk of the composite endpoint of cardiovascular mortality or heart failure
(HR: 4.0 and 3.7, respectively). In patients with AF episodes ≥6 minutes, higher AFR
was significantly associated with increased risk of total mortality (Hazard ratio (HR):
1.7). Moreover, lower AFR but higher ExpDec and Amp values were significantly
associated with increased risk of the composite endpoint of cardiovascular mortality or
heart failure (HR: 2.4, 2.6, and 2.5, respectively). Importantly, none of the f-wave
indices demonstrated prognostic value for the composite endpoint of ischemic stroke
or transitory ischemic attack in the early stages of AF.

These findings suggest that ECG-derived indices of atrial remodeling, particu-
larly AFR, ExpDec and Amp, may facilitate more targeted interventions in the early
management of AF. The results indicate a possible association between these f-wave
characteristics and the identification of patients at higher risk for total mortality and
cardiovascular complications in the early stages of AF.
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Figure 6.6: Forest plot of Cox proportional hazards model of AFR, ExpDec, and Amp on total
mortality, cardiovascular mortality or heart failure (CV Death or HF), and ischemic stroke or
transitory ischemic attack (Stroke or TIA) for AF patients with episodes ≥60 min. The top
half displays the Cox model of patients with f-wave indices (AFR, ExpDec, Amp) below the
population median compared to a reference group without AF, while the bottom half illustrates
the model for patients with f-wave indices above the population median. On the right side of
the forest plot, the hazard ratio (HR), 95% confidence interval (CI) and P-value are listed for
a model adjusted for age and gender (blue) and a model adjusted for age, gender, congestive
heart failure, diabetes, hypertension, acute myocardial infarction, and coronary artery bypass
graft (orange). A Cox model with P-value<0.05 was presented in bold text.





Chapter 7

Conclusion

In conclusion, contributions have been made to computational modeling and analysis
of electrophysiology and hemodynamics during AF, addressing the aims outlined in
Section 1.2. The first aim was to develop a computational model of the AV node
that replicates patient-specific ANS modulation of AV nodal conduction properties
during AF. In Paper I, an extension to the AV node model was introduced to replicate
the observed changes in heart rate and RR series variability and irregularity during
head-up and head-down tilt. The results indicated that the changes in atrial activity
alone during tilt were insufficient to replicate the changes in RR series characteristics,
suggesting that ANS modulation of the AV node plays an important role. In succession,
the AV node model was further refined in Paper II by incorporating a time-varying
scaling factor to account for respiration-induced autonomic modulation of AV nodal
conduction. The proposed model was used to train a CNN to estimate the respiration-
induced autonomic modulation based on ECG-derived data. The results suggested
that the accuracy of the estimates was sufficiently high to monitor changes and to detect
patient-specific differences. Collectively, Paper I−II reveal the potential for model-
based analysis of autonomic modulation in AV nodal conduction properties based
on ECG recordings during AF. By quantifying ANS-induced changes in AV nodal
conduction, Paper I−II offer a novel methodological approach that could contribute
to more personalized AF management. However, a critical limitation remains: the
absence of ground-truth data on ANS activity in AF patients constrains the model
validation. To advance this research, the necessary validation data in AF patients could
be provided by future clinical studies employing novel techniques such as ultrasound
micro-neurography [154, 155].

The second aim was to develop a computational model replicating hemodynamics
during AF suited for patient-specific model fitting. Paper III introduced an inte-
grated computational framework combining an electrical subsystem, incorporating the
previously developed AV node model, with a mechanical subsystem comprising a com-
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partmental model of the heart and circulation. The computational complexity of the
proposed model enabled parallel simulations of 200 irregular cardiac cycles, allowing
both the quantification of hemodynamics at an irregular rhythm and patient-specific
parameter estimation. The proposed model was fitted to clinical data from 17 patients
in the SMURF study, and the results revealed that patient-specific differences in arterial
and intracardiac pressures could be replicated. However, the right ventricular diastolic
pressure was consistently too low, suggesting the need to refine the circulation system’s
model description. To address this issue, future research should investigate advanced
circulation system models [145, 146] that can be fitted to clinical measurements while
accurately replicating minimum pressures across cardiac compartments.

The third aim was to investigate the prognostic value of f-wave characteristics in
ECG recordings from implantable loop recorders at the earliest stages of AF. Paper IV
presented a comprehensive analysis of f-wave characteristics in the LOOP study cohort
of 1411 patients and 16538 AF episodes, stratifying patients based on AF episode
duration (≥6 min and ≥60 min), and systematically evaluated their association with
multiple clinical endpoints: total mortality, cardiovascular mortality or heart failure
admission, and ischemic stroke or transitory ischemic attack. The statistical analysis
revealed that a low AFR, a low organization index derived from the f-wave signal
spectral characteristics, and a low average amplitude of the f-wave envelope were
associated with increased total mortality and cardiovascular mortality. Conversely, the
f-wave characteristics could not predict a higher risk for ischemic stroke or transitory
ischemic attack. The findings in Paper IV suggest that f-wave analysis can help identify
high-risk patients already at the earliest stages of AF, potentially enabling more targeted
interventions.

In Paper III, the AV node network model was integrated into a computational
framework comprising a compartmental model of the heart and circulation, producing
realistic atrial and ventricular activation times characteristic of AF. The current hemo-
dynamic model operates as an open loop controller, where the electrical subsystem
determines the rate and rhythm of atrial and ventricular contractions in the mechan-
ical subsystem. Future work may extend this model into a closed loop controller,
enabling simulated hemodynamics to modulate the electrical subsystem. The ANS,
particularly through the arterial baroreceptor reflex, provides the physiological basis for
this bidirectional interaction. Paper I–II have laid the foundation for incorporating
ANS-induced changes in AV nodal conduction properties.
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The response to atrial fibrillation (AF) treatment is differing widely among
patients, and a better understanding of the factors that contribute to these
differences is needed. One important factor may be differences in the
autonomic nervous system (ANS) activity. The atrioventricular (AV) node
plays an important role during AF in modulating heart rate. To study the
effect of the ANS-induced activity on the AV nodal function in AF,
mathematical modelling is a valuable tool. In this study, we present an
extended AV node model that incorporates changes in autonomic tone. The
extension was guided by a distribution-based sensitivity analysis and
incorporates the ANS-induced changes in the refractoriness and conduction
delay. Simulated RR series from the extended model driven by atrial impulse
series obtained from clinical tilt test data were qualitatively evaluated against
clinical RR series in terms of heart rate, RR series variability and RR series
irregularity. The changes to the RR series characteristics during head-down tilt
were replicated by a 10% decrease in conduction delay, while the changes
during head-up tilt were replicated by a 5% decrease in the refractory period
and a 10% decrease in the conduction delay. We demonstrate that the model
extension is needed to replicate ANS-induced changes during tilt, indicating
that the changes in RR series characteristics could not be explained by changes
in atrial activity alone.

KEYWORDS

atrial fibrillation, atrioventricular node, autonomic tone, tilt test, mathematical
modeling, ECG, RR series characteristics, sample entropy

1 Introduction

Atrial fibrillation (AF) is the most common supraventricular tachyarrhythmia
(Hindricks et al., 2020). Characteristic for AF is an increased and irregular atrial
activity that results in a rapid and irregular ventricular activation. Atrial fibrillation is
linked to substantial morbidity and mortality, and is a significant burden to patients,
physicians, and healthcare systems globally. Twomain strategies of AF treatments are rate
control and rhythm control. Rate control is one of the corner stones of AF management,
however the effect of individual rate-control drugs are difficult to predict in advance. This
is why the choice of a rate-control drug today remains empiric and driven largely by their
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safety profile and contraindications rather than predicted
efficacy. Therefore, the complex mechanisms of AF have to be
better understood to personalize the treatment and reduce the
burden of AF on the healthcare system.

It has been shown that the autonomic nervous system (ANS)
is contributing to the initiation andmaintenance of AF (Shen and
Zipes, 2014). Either a predominance in sympathetic or in
parasympathetic modulation has been observed to initiate an
episode of paroxysmal atrial fibrillation (PAF); and in some
patients, both the sympatho-vagal and vagal predominances
have been observed to initiate PAF episodes (Lombardi et al.,
2004). Hence, differences in the ANS activity among patients
may be an important factor behind the inter-patient differences
in response to treatment. To investigate the ANS-induced
changes to the pathophysiology of AF, the effect of the ANS
has to be quantified. One common method to quantify the
autonomic tone during normal sinus rhythm (NSR) is by
heart rate variability (HRV) (Sassi et al., 2015). In sinus
rhythm, HRV can be used to obtain information about the
function of the sinoatrial (SA) node. This information is
valuable for the quantification of the autonomic tone, because
the SA node is densely innervated by the ANS (Shen and Zipes,
2014; George et al., 2017). In AF, however, HRV cannot be used
to quantify the autonomic tone, because the heart beats are not
initiated in the SA node.

Instead, the ventricular rhythm during AF is determined by
the atrial electrical activity and the subsequent AV nodal
modulation. Since the AV node is densely innervated by the
ANS, characterizing the AV nodal behavior during AF may give
valuable information about the autonomic tone. Results from
previous studies suggest that the heart rate, as well as the heart
rate variability, quantified by RR rmssd, and heart rate
irregularity, quantified by RR sample entropy, are affected by
β-blocker induced changes in sympathetic response (Corino
et al., 2015). We hypothesize that such changes in the heart
rate and its variability and irregularity reflect ANS-induced
changes in the AV node. The ANS-induced changes on the
cardiac electrophysiology can be studied using head-up and
head-down tilt test, which in a previous study was shown to
affect electrophysiological properties of atrial myocardium
during AF (Östenson et al., 2017). It is unclear if the changes
in the heart rate and its variability and irregularity are explained
by the changes in the atrial electrophysiology alone or also by
changes in the AV nodal properties. Investigating how the ANS is
modulating the heart rate during AF is a complex task and
requires a model based analysis.

Previously, several AV node models have been proposed that
incorporate important characteristics of the AV nodal structure
and electrophysiology in their design. Characteristic for the AV
node is its dual-pathway physiology enabling a parallel excitation
propagation of impulses with different electrophysiological
properties (George et al., 2017). For example, the slow
pathway (SP) has a longer conduction delay and shorter

refractory period compared to the fast pathway (FP) (George
et al., 2017). Furthermore, the refractory period and conduction
delay are dynamic and depend on the recent history of the
conducted and blocked impulses in the AV nodal tissue
(George et al., 2017; Billette and Tadros, 2019). Early models
of the AV node did not account for the dual-pathway physiology
(Cohen et al., 1983; Jørgensen et al., 2002; Rashidi and
Khodarahmi, 2005; Mangin et al., 2005; Lian et al., 2006).
Later models have incorporated this feature, represented by
separate refractory periods (Corino et al., 2011; Henriksson
et al., 2016; Inada et al., 2017; Wallman and Sandberg, 2018)
and separate conduction delays (Climent et al., 2011b; Inada
et al., 2017; Wallman and Sandberg, 2018). However, no models
have explicitly incorporated ANS-induced changes in their
model description.

Therefore, the aim of the present study is to incorporate
ANS-induced changes into the AV node network model
previously proposed by Wallman and Sandberg, (2018). The
extension of the AV node model was guided by a distribution-
based sensitivity analysis (Pianosi and Wagener 2018) and
incorporates ANS-induced changes in the computation of the
refractoriness and conduction delay. The extended model is
evaluated with respect to its ability to replicate changes in
heart rate and RR series variability and irregularity observed
during head-up and head-down tilt test.

2 Materials and methods

First, the clinical tilt test data is described in Section 2.1. The
RR series characteristics are defined in Section 2.2, followed by
the description of a network model of the AV node (Section 2.3).
A sensitivity analysis on the AV node model is described in
Section 2.4, that identifies the influence of changes in model
parameters on the RR series characteristics. Based on the
sensitivity analysis, the AV node model is modified to account
for ANS-induced changes in AV node characteristics (Section
2.5). The ability of the modified AV node model to replicate ANS
induced changes in RR series characteristics observed during tilt-
test is assessed in Section 2.6. Finally, the statistical analysis is
described in Section 2.7, that is used to determine significant
differences in AFR and RR series characteristics between tilt
positions.

2.1 Tilt test study

The autonomic influence on the RR series characteristics was
analysed using ECG data recorded during a tilt test study
performed by Östenson et al. (2017). Recordings from
24 patients with persistent AF were considered of sufficient
quality for analysis and were included in the present study;
their age was 66 ± 9 (mean ± std), and 63% were men. None
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of the patients had abnormal levels of thyroid hormones, severe
renal failure requiring dialysis, or heart valve disease. None of the
patients were ablated for AF or on any of the Class I or Class III
antiarrhythmic drugs. The tilt test was performed between 1 and
3 p.m. in a quiet study room. Standard 12-lead ECGwas recorded
during supine position, followed by head-down tilt (HDT, -30°)
and then head-up tilt (HUT, +60°). The tilt table was manually
operated and had hand grip and ankle support for HDT and foot
board support for HUT; the patients remained in each position
approximately 5 min. ECG preprocessing and R-peak detection
was performed using the CardioLund ECG parser (www.
cardiolund.com).

2.2 RR series characteristics

The RR series consists of the intervals between consecutive
heartbeats, where the time of a heartbeat is determined by the
corresponding R peak in the ECG signal. In this work, three
statistical measures of the RR series characteristics were used,
quantifying heart rate, heart rate variability and heart rate
irregularity, respectively, defined according to Eqs. 1–3. The
mean of the RR intervals (RR) is computed as

RR ! 1
N

∑N
i!1

RRi, (1)

where RRi denotes the i:th RR interval in the RR series. The
root mean square of successive RR interval differences (RRV,
variability) is computed as

RRV !

""""""""""""""""""""
1

N − 1
∑N−1

i!1
RRi+1 − RRi( )2

√√
. (2)

The sample entropy of the RR series (RRI, irregularity) is
computed as

RRI ! −ln
∑N−m

i!1 ∑N−m
j!1,j≠ib

m+1
i,j r( )

∑N−m
i!1 ∑N−m

j!1,j≠ib
m
i,j r( )

⎛⎝ ⎞⎠, (3)

where the binary variable bli,j(r) with l ∈ m{ , m + 1} has the
value 1 if the maximum absolute distance between corresponding
scalar elements in the vectors Vl

i ! RRi{ , RRi+1, . . ., RRi+l−1} and
Vl

j is below the tolerance r times the standard deviation of the RR
interval series, otherwise the value is zero (Richman and
Moorman, 2000). In this study, the parameters were set to
m = 2 and r = 0.2.

2.3 Network model of the human
atrioventricular node

The AV node is modelled by a network of 21 nodes (cf.
Figure 1) (Wallman and Sandberg, 2018; Karlsson et al., 2021).
The AV nodal dual-pathway physiology with a slow pathway
(SP) and a fast pathway (FP) is represented with two chains of
10 nodes each. The last nodes of the two pathways are connected
to each other and to an additional coupling node (CN). Impulses
enter the AV node model simultaneously at the first node of each
pathway and leave the model over the CN. Retrograde
conduction is possible due to the bidirectional conduction
within the pathways and between the last nodes of SP and FP.

Each node represents a section of the AV node and is
described with an individual refractory period RP(Δtk) and
conduction delay DP(Δtk) defined as

RP Δtk( ) ! RP
min + ΔRP 1 − e−Δtk/τPR( ), (4)

DP Δtk( ) ! DP
min + ΔDPe−Δtk/τPD , (5)

where P ∈ {SP, FP, CN} denotes the association to a pathway.
The electrical excitation propagation through the AV node is
modelled as a series of impulses that can either be passed on or
blocked by a node. This decision is based on the interval Δtk
between the k:th impulse arrival time tk and the end of the (k–1):
th refractory period computed as

Δtk ! tk − tk−1 − RP Δtk−1( ). (6)

If Δtk is positive, the impulse is conducted to all adjacent
nodes, otherwise the impulse is blocked due to the ongoing
refractory period RP(Δtk−1). The conduction delay DP(Δtk)
describes the time delay between the arrival of an impulse at a
node and its transmission to all adjacent nodes. If an impulse is
conducted, RP(Δtk) and DP(Δtk) of the current node are updated
according to Eqs. 4–6. For the computation of RP(Δtk) and
DP(Δtk), the nodes in each pathway are characterized by six
parameters, defining minimum refractory period, RP

min;
maximum prolongation of refractory period, ΔRP; time
constant τPR; minimum conduction delay, DP

min; maximum
prolongation of conduction delay, ΔDP; and the time constant
τPD. The SP, FP and CN are modelled with separate vectors
θP ! [RP

min, ΔRP, τPR, D
P
min, ΔDP, τPD], all with fixed values.

FIGURE 1
A schematic representation of the AV node model. Note that
retrograde conduction is possible within the AV node model. For
simplicity, only a subset of the ten nodes in each pathway is shown.
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The AV node model processes the impulse propagation
chronologically and node by node, using a priority queue of
nodes, sorted by impulse arrival time; details can be found in
Wallman and Sandberg (2018). The input to the AV node model
is a series of atrial impulses that is used to initialize the priority
queue. As the impulses are conducted to adjacent nodes, new
entries are added to the priority queue. The output of the AV
node model is a series of impulses activating the ventricles.

In this study, the series of atrial impulses during AF is
modelled as a point-process with independent inter-arrival
times according to a Pearson Type IV distribution (Climent
et al., 2011a). Hence, the atrial activation (AA) series is
completely characterized by four parameters, namely the
mean μ, standard deviation σ, skewness γ and kurtosis κ.

2.4 Distribution-based sensitivity analysis

The sensitivity of the three RR series characteristics y !
[RR, RRV, RRI]T to the AV node model and AA series
parameters x ! [θSP, θFP, μ, σ]T is evaluated by applying a
distribution-based sensitivity analysis, based on the work of
Pianosi and Wagener, (2018). For the sensitivity analysis,
cumulative distribution functions (CDF) are estimated using a
dataset of K = 250 000 randomly generated model parameter sets
x and the characteristics y of the corresponding simulated RR
series. For each simulation, an atrial impulse series with
60 000 AA intervals was generated using the Pearson Type IV
distribution, with μ randomly drawn from U[100, 250]ms, σ
randomly drawn from U[15, 30]ms, and γ and κ kept fixed to
1 and 6, respectively. The γ and κ were kept fixed since they
cannot be estimated from the f-waves of the ECG. Negative AA
intervals were excluded from the impulse series. The model
parameters θSP and θFP were randomly drawn from bounded
uniform distributions given in Table 1, as previously done in
Karlsson et al. (2021). The θCN were kept fixed according to
Table 1, corresponding to RP(Δtk) and DP(Δtk) of the CN equal to
250 ms and 0 ms, respectively.

The RR series characteristics were computed using a series of
4000 RR intervals corresponding to the first impulses that left the

AV nodemodel through the CN. Two selection criteria were used
to remove non-physiological parameter sets. First, a model
parameter set was only included if the slow pathway had a
lower refractory period RSP(Δtk) < RFP(Δtk) and higher
conduction delay DSP(Δtk) > DFP(Δtk) than the fast pathway
for all Δtk. Second, the resulting RR was required to be in the
range 300 ms ≤RR≤ 1000 ms, corresponding to heart rates
between 60 bpm and 200 bpm. Heart rates below 60 bpm are
disregarded, because the pacemaker function of the AV node,
that becomes relevant in this case (George et al., 2017), is not
incorporated in the AV node model. Heart rates above 200 bpm
are disregarded based on a reported minimum refractory period
in the bundle branches of around 300 ms (Denes et al., 1974).

A sensitivity coefficient Sn,m is computed for each pair of
model parameter xn and RR series characteristic ym, where xn is
the n:th element in x and ym is the m-th element in y. The Sn,m

indicates how much a change in model parameter xn affects the
distribution of ym and is defined as

Sn,m ! median
c!1,...,C

median
d!1,...,D

KS F d( )
ym

ym( ), Fym |xn ym|xn ∈ I c( )( ),
(7)

where KS(F(d)
ym

(ym), Fym|xn(ym|xn ∈ I c)) is the
Kolmogorov-Smirnov (KS) distance between the
unconditional CDF F(d)

ym
(ym) and the conditional CDF

Fym |xn(ym|xn ∈ I c). When estimating Fym|xn(ym|xn ∈ I c), the
range of variation of xn is split into C = 15 equally spaced
conditioning intervals I c, with c = 1, . . ., C (cf. Figure 2A). All
samples within I c are used to estimate the corresponding
Fym |xn(ym|xn ∈ I c) (cf. Figure 2B). To generate the set of
F(d)
ym

(ym), with d = 1, . . ., D, a subset of K/C samples are
bootstrapped D = 1000 times (cf. Figures 2A,B). The KS
distance is defined as

KS F1 y( ), F2 y( )( ) ! max
y

F1 y( ) − F2 y( )∣∣∣∣ ∣∣∣∣. (8)

As the F(d)
ym

(ym) and Fym|xn(ym|xn ∈ I c) are approximations
based on a finite number of samples, parameters that have no
influence on ym can result in Sn,m above zero. The impact of
approximation errors on Sn,m can be estimated for each ym using
a dummy parameter Dm defined as

Dm ! median
d!2,...,D

KS F d( )
ym

ym( ), F 1( )
ym

ym( )( ), (9)

A model parameter xn is determined to have influence on ym
if and only if Sn,m >Dm.

2.5 Extended atrioventricular node model
accounting for autonomic nervous system
induced changes

The results from the sensitivity analysis (Section 3.1) indicate
that changes in both the AV node model parameters and the AA

TABLE 1 Model parameters used for the sensitivity analysis.

Parameters SP (ms) FP (ms) CN (ms)

Rmin U[250, 600] U[250, 600] 250

ΔR U[0, 600] U[0, 600] 0

τR U[50, 300] U[50, 300] 1

Dmin U[0, 30] U[0, 30] 0

ΔD U[0, 75] U[0, 75] 0

τD U[50, 300] U[50, 300] 1
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series parameters have an influence on the RR series
characteristics. Based on this, the AV node model described in
Section 2.3 is extended to account for ANS-induced changes in
the AA series by allowing μ(t) and σ(t) of the Pearson Type IV
distribution to vary over time. Moreover, the AV nodemodel was
extended by two scaling factors AR and AD, accounting for the
effect of changes in autonomic tone on refractory period (AR) and
on conduction delay (AD).

RP Δtk, AR( ) ! AR · RP Δtk( ) ! AR RP
min + ΔRP 1 − e−Δtk/τPR( )( )

(10)

DP Δtk, AD( ) ! AD ·DP Δtk( ) ! AD DP
min + ΔDPe−Δtk/τPD( ) (11)

The factors AR and AD model the combined effect of changes
in sympathetic and parasympathetic activity and do not differ
between the SP, FP and CN.

FIGURE 2
Illustration of the distribution-based sensitivity analysis. (A) RR plotted against one of the model parameters ΔRSP. The samples that are used to
estimate the conditional CDFs Fym |xn(ym|xn ∈ Ic) are illustrated as circles and the conditioning intervals Ic are illustratedwith vertical dotted lines. The
samples that are used to estimate the unconditional CDF F(d)ym (ym) are illustrated as diamonds. (B) Fym |xn(ym|xn ∈ Ic) are illustrated as black lines,
where the leftmost line corresponds to Fym |xn(ym|xn ∈ I 1)with the lowest ΔRSP values and the rightmost line corresponds to Fym |xn(ym|xn ∈ I 15).
The 1,000 F(d)ym (ym) lay all within the area illustrated by the red patch. (C) Each of the 15 squares correspond to
median
d!1,...,D

KS(F(d)ym (ym), Fym |xn(ym|xn ∈ Ic)).

FIGURE 3
Schematic illustrating how the clinical and simulated RR series characteristic trends are computed.
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2.6 Tilt-induced changes in extended
atrioventricular node model

In this section, the extended AV node model proposed in
Section 2.5 is investigated with respect to its ability to mimic tilt-
induced changes in RR series characteristics.

The clinical ECG signals (cf. Section 2.1) are used to generate
AA series for the AV node model input and to compare the
characteristics of the simulated RR series to the clinical RR series
(cf. Figure 3). For this purpose, a continuous 15-min ECG signal
with 5 minutes per supine, HDT and HUT position was desired
for each patient. In the clinical data, however, the length of the
three tilt positions varied between patients with the supine
position being between 5 and 13 min, HDT being between
5 and 7 min and HUT being between 5 and 9 min. For two
patients, there was an additional minute in supine position
between the HDT and HUT. The ECG signals were aligned to
the middle of the HDT section and a 15-min long segment
centered around the same midpoint was chosen for each patient
(cf. Figure 4).

The clinical RR series characteristic trends RR
C(t, p),

RRC
V(t, p) and RRC

I(t, p) for each patient p are computed
from the RR intervals using a sliding window of length N
according to Eqs. 1–3 (cf. Figure 3). For RRV and RRI, N is
set to 200, because shorter RR interval series might lead to
inaccuracies in the sample entropy computation (Yentes et al.,
2013). For RR, N is set to 100, as its computation is more robust
than the computation of RRV and RRI and shorter RR interval
series allow for a better temporal resolution. RR intervals in the
clinical RR series preceding and following ectopic beats were
excluded. For the computation of RRI according to Eq. 3, vectors
Vl

i with excluded RR intervals were omitted. The RR series
characteristic trends of each patient RRC(t, p), RRC

V(t, p) and
RRC

I(t, p) were averaged over all 24 patients to obtain
population-averaged clinical trends RR

C(t), RRC
V(t) and

RRC
I(t) (cf. Figure 3).

For the generation of the AA series, first, an atrial fibrillatory
rate (AFR) trend is estimated from each 15-min ECG segment
(cf. Figure 3). The AFR is estimated by fitting a complex
sinusoidal model to the f-waves of the ECG, following
spatiotemporal QRST cancellation, as described in Henriksson
et al. (2018). From each of the resulting AFR trends, the AA series
parameters μ(t, p) and σ(t, p) are estimated by the mean and
standard deviation of 1/AFR using 1-min sliding windows; the
resolution of the AFR trend is 0.02 s (cf. Figure 3). Then, μ(t, p)
and σ(t, p) are averaged over all 24 patients, resulting in the
population-averaged trends μ(t) and σ(t) (cf. Figure 3). Finally,
the AA series is iteratively generated (cf. Figure 3). The first AA
interval is drawn from the Pearson Type IV distribution with
μ(0) and σ(0), and each consecutive AA interval is drawn from
the distribution with μ(ti) and σ(ti) where ti corresponds to the
accumulated time of the previous AA intervals. The γ and κ of the
Pearson Type IV distribution were kept fixed to 1 and 6,
respectively.

For the simulations using the original and extended model, a
set of 240 AV node model parameter vectors x′ !
[θSP, θFP, θCN]T were generated (cf. Figure 3). Ten parameter
vectors per patient were selected from a set of randomly drawn
parameter sets based on their ability to replicate the RR series
characteristics of the 5-min long supine segment of the respective
patient. A detailed description of the parameter sets and the
selection process can be found in the Supplementary Section 1.
The ranges of the model parameters in the 240 parameter sets are
given in Table 2.

For the computation of simulated RR series characteristic
trends using the original and the extended model, respectively,
simulations were performed with each of the 240 parameter sets
using 10 different realizations of the AA series generated from
μ(t) and σ(t). In the original model, the scaling factors AR and AD

are not included, which is equivalent to the extendedmodel using
AR = 1 and AD = 1 (cf. Figure 3). In the extended model, AR and
AD were allowed to change between supine and HDT and
between HDT and HUT, respectively, but were assumed to
remain constant within each position. Hence, for the extended
model, AR and AD were set to 1 in the supine position, and
different combinations of AR ∈ {0.95, 1, 1.05} and AD ∈ {0.8, 1,

FIGURE 4
Tilt recordings of 24 patients divided into supine (blue), HDT
(red) and HUT (yellow). The bars represent the length of the
recorded ECG data. All recordings are centered along the middle
of the HDT section.

TABLE 2 Ranges of the 240model parameters used for the illustration
(mean ± std).

Parameters SP (ms) FP (ms) CN (ms)

Rmin 339 ± 77 493 ± 82 250 ± 0

ΔR 232 ± 112 369 ± 161 0 ± 0

τR 160 ± 77 162 ± 72 1 ± 0

Dmin 20 ± 7 7 ± 6 0 ± 0

ΔD 39 ± 20 23 ± 16 0 ± 0

τD 171 ± 71 163 ± 70 1 ± 0
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1.2} were used for the simulations during HDT and HUT. For
each simulation s, the mean RR interval trends RR

O(t, s) and
RR

E(t, s) were computed from the RR interval series using a
sliding window of length N = 100 (cf. Eq. 1). Whereas the RR
variability and RR irregularity trends RRO

V(t, s) and RRO
I(t, s), as

well as RRE
V(t, s) and RRE

I(t, s) were computed from the RR
interval series using a sliding window of lengthN = 200 (cf. Eqs. 2
and 3). The simulated RR series characteristic trends were
averaged over all parameter sets and realizations to obtain the
population-averaged simulated trends RR

O(t), RRO
V(t) and

RRO
I(t) for the original model and RR

E(t), RRE
V(t) and RRE

I(t)
for the extended model (cf. Figure 3).

2.7 Statistical analysis

A Wilcoxon signed rank test was applied to determine if
AFR, RR, RRV and RRI differed significantly between supine,
HDT and HUT. For the analysis, the AFR and RR series
characteristics were computed for each patient and tilt
position using the 5-min long ECG segments (cf. Figure 4). A
p-value < 0.05 was considered significant.

3 Results

3.1 Sensitivity analysis

Results from the distribution-based sensitivity analysis (described
in Section 2.4) with respect to the influence of the AV node model
parameters on RR series characteristics are shown in Figure 5. Heart
rate, quantified by RR is predominantly sensitive to changes in the
refractory period parameters with the four largest contributors being
the Rmin and ΔR parameters of both pathways. In contrast, the
changes in the conduction delay had little influence on the RR, with
ΔDSP being the only conduction delay parameter that is slightly above

the dummy threshold. Changes in the mean of the AA series μ were
also influential on the RR, while changes in the standard deviation σ
of the AA series are not considered to have influence to changes in
RR.

For RRV quantifying RR series variability, nearly all model
parameters of the refractory period, conduction delay and AA
series had sensitivity coefficients above the dummy threshold.
The four largest contributors to changes in the RRV were the ΔR
parameters of both pathways, as well as the minimum refractory
period and minimum conduction delay of the fast pathway, RFP

min

and DFP
min.

The RRI quantifying RR series irregularity was also influenced by
most model parameters of the refractory period, conduction delay
and AA series. The four largest contributors were the minimum
refractory period of the slow pathway RSP

min, the standard deviation σ
of the AA series and the maximum prolongation of the refractory
period and conduction delay of the slow pathway, ΔRSP and ΔDSP.

3.2 Clinical data

The AFR decreased significantly from the supine position to
HDT and increased significantly from HDT to HUT, where the

FIGURE 5
Distribution-based sensitivity indices describing the influence of changes in the 14 model parameters to changes in the three RR series
characteristics. A model parameter is assumed to have influence on the RR series characteristics if the sensitivity coefficient is above the threshold of
the dummy parameter (horizontal black line), otherwise it is not influential and illustrated with a white bar. The black vertical line illustrates the 95%
confidence interval of the t bootstrapping iterations of the sensitivity coefficient. The ranking of the four most influential model parameters for
each RR series characteristic is shown with the numbers above the bars.

TABLE 3 Mean ± std of AFR and RR series characteristics of the
24 patients in the study population for each tilt position.

Tilt Position Supine HDT HUT

AFR mean (Hz) 6.78 ± 0.64 6.62 ± 0.7** 6.84 ± 0.63*,†

RR (ms) 656 ± 126 642 ± 111* 613 ± 115**,†

RRV (ms) 192 ± 54 182 ± 45 176 ± 51**

RRI 2.09 ± 0.2 2.05 ± 0.28 1.95 ± 0.31**

HDT, head-down tilt; HUT, head-up tilt. *p < 0.05 vs Supine. **p < 0.01 vs Supine. †p <
0.05 vs HDT.
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AFR during HUT was significantly higher than during supine
(Table 3). The heart rate increased during HDT and increased
further during HUT (Table 3). The results align with the
observations of Östenson et al. (2017). The variability and
irregularity of the RR series decreased during HDT and
decreased further during HUT (Table 3). For the variability
and irregularity of the RR series, only the differences between
supine and HUT were statistically significant.

3.3 Tilt-induced changes in
atrioventricular node model

The average of μ(t) and σ(t) over all 24 patients is illustrated
in Figure 6. The μ(t) shows a clear variation during HDT and
HUT, but not in supine position, where μ(t) was approximately
constant around 150 ms. Compared to μ(t) during supine
position, μ(t) increased during HDT and decreased during
HUT (cf. Figure 6).

In Figure 7, the characteristics RRC(t), RRC
V(t) and RRC

I(t)
estimated from clinical data during tilt test are illustrated. It can
be seen that RRC(t), RRC

V(t) and RRC
I(t) are decreasing from

supine to HDT and decreasing further fromHDT to HUT.When
performing the simulations with the original model, RRO(t),
RRO

V(t) and RRO
I(t) are decreasing from supine to HDT, but

increasing fromHDT to HUT.When performing the simulations
with the extended model, RR

E(t), RRE
V(t) and RRE

I(t) are
decreasing from supine to HDT and decreasing further from
HDT to HUT. Comparing the clinical and simulated trends of
RR(t) and RRV(t), it can be seen that the extended model
accounting for ANS-induced changes can better replicate the
observed changes to the clinical RR series characteristics
compared to the original model. For RRI(t), both the original
and extended model produce RR series that are more regular
than the clinical RR series, as the irregularity quantified by the
sample entropy is higher for the clinical RR series. For the

simulated RR series characteristics of the extended model, the
average of RRE(t), RRE

V(t) and RRE
I(t) during the 5 min in HDT

and HUT were illustrated for the nine different combinations of
AR ∈ {0.95, 1, 1.05} and AD ∈ {0.9, 1, 1.1}. For RRE(t), RRE

V(t) and
RRE

I(t), an increase in AR causes an increase, and for RRE(t) and
RRE

V(t), an increase in AD causes an increase. However, for
RRE

I(t), an increase in AD instead causes a decrease. The RRE(t),
RRE

V(t) and RRE
I(t) are obtained using AR = 1 and AD = 0.9

during HDT and AR = 0.95 and AD = 0.9 during HUT and are
displayed in Figure 7; the scaling factors were chosen so that the
resulting RR

E(t) and RRE
V(t) matches RRC(t) and RRC

V(t).

4 Discussion

The aim of this study was to extend the AV node model
(Wallman and Sandberg, 2018) to incorporate ANS-induced
changes. The extension of the AV node model was guided by
a distribution-based sensitivity analysis. The sensitivity analysis
indicated that the refractory period and conduction delay
parameters as well as the atrial impulse series had a
significant influence on the heart rate as well as the variability
and the irregularity of the RR series, while the most influential
parameters were predominantly those describing the refractory
period. Rather than modelling the effect of the sympathetic and
parasympathetic activity separately, we describe the joint effects,
i.e., the autonomic tone. We proposed an extension to the AV
node model that accounts for the ANS-induced changes by
introducing scaling factors for the refractory period and
conduction delay. The capability of the extended AV node
model to replicate ANS-induced changes was investigated by
comparison to ECG data acquired during tilt test.

Our results (Figure 7) indicate that the extended model, but not
the original, could replicate the observed changes in the clinical RR
series characteristics during HUT and HDT, since the changes in RR
series characteristics could not be explained by changes in atrial
activity alone. TheRRE(t),RRE

V(t) andRRE
I(t) (Figure 7) show that a

decrease in refractory period and conduction delay allow the model
to replicate the decrease in RR

C(t), RRC
V(t) and RRC

I(t). Conversely,
if the refractory period and conduction delay are kept fixed for
RR

O(t), RRO
V(t) and RRO

I(t), all three RR series characteristics
increase during HUT, which is the opposite direction of change
of RR

C(t), RRC
V(t) and RRC

I(t). When comparing RRO
I(t) and

RRE
I(t) with RRC

I(t), it can be seen that the sample entropy of
the simulated RR series is lower than that of the clinical RR series.
This highlights that the simulated RR series aremore regular than the
clinical RR series. One possible explanation for a lower irregularity in
simulated RR series is the lack of short-term variations in AV node
refractoriness and conduction delay. Such short-term variations may
be induced by respiratory modulation in ANS activity. Thus, a
natural next step in our model development will be to
incorporate the respiratory modulation of the ANS, likely via
periodical variations in the scaling factors AR and AD.

FIGURE 6
Averaged mean and standard deviation of the AA series
estimated from ECG recordings of 24 patients. The first 5 minwere
during supine position, followed by 5 min of HDT and 5 min of
HUT. The horizontal dotted line illustrates the average of the
μ trend during the first 5 min.
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Many electrophysiological (EP) studies have demonstrated
that an increase in sympathetic activity is causing a decrease in
the human AV nodal conduction delay (Lister et al., 1965;
Dhingra et al., 1973; Morady et al., 1988; Cossú et al., 1997)
and a decrease in the refractory period (Morady et al., 1988;
Cossú et al., 1997). Moreover, a decrease in sympathetic activity
in the human AV node is causing an increase in conduction delay
and refractory period (Morady et al., 1988). Head-up tilt is
associated with increased sympathetic tone, and it has been
demonstrated that the AV nodal conduction delay and
refractory period decrease when changing the posture from
supine to standing (Hashimoto et al., 1991). The results in
Figure 7 confirm that a reduction in the conduction delay
using AD = 0.9 and a reduction in the refractory period using
AR = 0.95 better replicate the observed changes in the clinical RR
series characteristics than the original model during HUT.
Decreases in refractory period and conduction delay of up to
30% in response to isoproterenol-induced increases in
sympathetic activity have been reported (Lister et al., 1965;
Dhingra et al., 1973; Cossú et al., 1997). However, when
considering that the reported changes in heart rate due to the
isoproterenol administration is larger than the observed changes
in RR during tilt, the parameter choice of AD = 0.9 and AR = 0.95
are reasonable for the tilt test data used in this study.

Increased parasympathetic activity has been associated with
an increased conduction delay (Martin, 1977); studies in dogs
reported an increased conduction delay with acetylcholine
administration (Priola et al., 1983; Bertrix et al., 1984) and
vagal stimulation (Spear and Moore, 1973; Martin, 1975;
Pirola and Potter, 1990). Moreover, there are indications that
an increased parasympathetic activity is associated with an
increased refractory period (Martin, 1977); experimental
studies using rabbit hearts reported an increased AV-nodal
refractory period (West and Toda, 1967) and occurrences of
2:1 AV nodal block (Cranefield et al., 1959) with acetylcholine
administration, and studies in dogs reported occurrences of AV
block with acetylcholine administration (Hageman et al., 1985)
and vagal stimulation (Spear and Moore, 1973; Hageman et al.,
1985).

It is unclear how the HDT affects the sympathetic and
parasympathetic activity. The results in Figure 7 show that a
reduction in the conduction delay using AD = 0.9 and no
modification of the refractory period using AR = 1 better
replicate the observed changes in the clinical RR series
characteristics than the original model during HDT. These
results are consistent with possible slight increase in
sympathetic tone provoked by HDT. However, other
interpretations are possible. Nagaya et al. (1995) postulated a
diminished sympathetic activity in HDT. Under that hypothesis,
the results in Figure 7 suggest a decrease in parasympathetic tone
to revert the direction of change caused by a decreased
sympathetic tone. It should be noted that the model presented
here does not distinguish between these two possibilities, since

FIGURE 7
Average clinical RR series characteristics (A) RR

C(t) (B) RRC
V(t)

and (C) RRC
I (t) (yellow) and average simulated RR series

characteristics for the original model (A) RR
O(t) (B) RRO

V (t) and (C)
RRO

I (t) (red) and average simulated RR series characteristics
for the extended model (A) RR

E(t) (B) RRE
V(t) and (C) RRE

I(t) (blue).
The dashed black lines mark the transition between the supine and
HDT, and HDT and HUT, respectively. Horizontal black lines show
5-min averages of RR

E(t), RRE
V(t) and RRE

I(t) during HDT or HUT
with AR as indicated and AD = 1. Arrows show the impact of
perturbing AD by +0.1 (arrow pointing up) or −0.1 (arrow pointing
down).
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AD and AR are modelling the joint effect of changes in
parasympathetic and sympathetic activity. Hence, the scale
factor AD = 0.9 during HDT could be reflecting either a slight
increase in sympathetic activity, a slight decrease in
parasympathetic activity, a larger increase in sympathetic
activity combined with an increase in parasympathetic
activity, or a large decrease in parasympathetic activity
combined with a decrease in sympathetic activity.

The set of scaling factors AR and AD used to create RR
E(t),

RRE
V(t) and RRE

I(t) in Figure 7 results in RR series characteristics
similar to that observed during HDT and HUT. The results in
Figure 7 show that a scaling factor AR below 1, i.e., a decrease of
the refractory period, causes a decrease in RR

E(t), RRE
V(t) and

RRE
I(t). Conversely, a scaling factorAR above 1, i.e., an increase of

the refractory period, causes an increase in RR
E(t), RRE

V(t) and
RRE

I(t). A scaling factor AD below 1, i.e., a decrease in conduction
delay, causes a decrease in RR

E(t), RRE
V(t) and vice versa. The

opposite relationship can be seen for the RR series irregularity,
where a scaling factor AD below 1 causes an increase in RRE

I(t)
and vice versa. Moreover, when considering one RR series
characteristic at a time, it can be anticipated in Figure 7 that
the same 5-min average value of the RR series characteristics can
be achieved with different combinations of AR and AD. Hence,
considering all three RR series characteristics simultaneously
increases the likelihood of identifying a unique pair of scaling
factors AR and AD that fits the observed data.

To reduce the complexity of the model, the refractoriness and
conduction delay of the SP, FP and CN aremodified with the same
AR and AD. However, due to the structural and molecular
heterogeneity of the different pathways, it is likely that the
ANS-induced changes affect each pathway differently (George
et al., 2017). In rabbit hearts, it was reported that acetylcholine
strongly affects fibers of the atrionodal junction but does not show
any effect in the lower part of the node or the bundle of His
(Trautwein, 1963). In the description of the AV node model, the
CN is merging the impulses from the SP and FP and its refractory
period and conduction delay is independent of Δtk. In contrast to
Karlsson et al. (2021),RCN

min was set to theminimumof the bounded
uniform distributions for the RSP

min and the RFP
min given in Table 1.

Further, the conduction delay of the CN was set to 0, as other
choices of a constant conduction delay would not have changed the
resulting RR series. In previous work on the network model
(Wallman and Sandberg, 2018; Karlsson et al., 2021), the AA
interval series was modelled as a Poisson process. However, based
on results of Climent et al. (2011a), a Pearson Type IV distribution
better reproduces the statistical properties of the AA interval series
during AF and was therefore chosen in the present study. The
mean and standard deviation of the Pearson Type IV distribution
were determined from the mean and standard deviation of the
AFR. However, the skewness and kurtosis were fixed, as their
sensitivity coefficients were uninfluential (data not shown) and
since there is no straight-forward way to estimate these parameters
from the f-waves of the ECG.

In the present study, the ability of the extended model to
mimic tilt-induced changes was investigated using data from a
previous study (Östenson et al., 2017), with tilt angles fixed to
-30° in HDT and 60° in HUT, respectively. Different tilt angles of
the tilt, i.e., different magnitude of the orthostatic stimulus, may
affect the ANS response and hence the resulting RR series
characteristics. Previous results from patients in normal sinus
rhythm show that the sample entropy of the RR series was
decreasing during HUT from 0° to 60° but remained roughly
constant from 60° to 90° (Porta et al., 2007). Based on these
results, we assume that the tilt angle of 60° is sufficiently large to
induce changes in autonomic tone. Access to data from patients
with AF during other tilt-inclinations could potentially be used to
refine the model to take the degree on inclination into account.
The tilt-induced changes in RR series irregularity observed in the
present study are in line with the results in Patel et al. (2018),
where a decrease in RR sample entropy in response to HUT in
patients with AF was reported. The tilt-induced changes in RR
series irregularity observed in the present study are also in line
with the changes reported for patients in normal sinus rhythm
during HUT (Porta et al., 2007). Results from previous studies
suggest that the RR series irregularity during normal sinus
rhythm increase in response to HDT (Porta et al., 2015),
whereas a slight but not significant decrease was observed in
the present study with patients in AF. However, it should be
noted that origin of RR series variability and irregularity during
AF differs from that during normal sinus rhythm and hence, the
interpretation of the results with respect to autonomic tone may
be different.

The effect of the ANS-induced activity was investigated with
respect to its ability to mimic the population-averaged changes
observed during tilt test. The RMSSD and sample entropy were
used to quantify RR series variability and irregularity,
respectively, since these statistical measures have been used in
previous studies to assess changes in RR series characteristics
during AF in response to drugs (Corino et al., 2015) and tilt-test
(Patel et al., 2018). Population-averaged trends were chosen over
the trends of individual patients to reduce the uncertainty in the
estimation of the clinical RRV and RRI trends. The parameter sets
used for the simulations in Section 2.6 were selected to be
representative of the patients in the present study based on
their ability to replicate RR series characteristics observed
during supine position. However, it should be noted that
fitting of the model to individual patients is outside the scope
of the present study. Due to the short measurement duration of
the clinical data, a robust estimation of individual model
parameters is not to be expected with the present
methodology (Karlsson et al., 2021). Longer measurements
from more patients will allow model development and
evaluation on a patient-specific basis, forming an attractive
next step.

A distribution-based sensitivity analysis was chosen over a
variance-based method, because the distributions of the
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simulated RR series characteristics are highly-skewed and multi-
modal. Hence, variance alone cannot adequately represent the
uncertainty (Pianosi andWagener, 2018). Instead, a distribution-
based method characterizes the uncertainty and sensitivity by
investigating the entire distribution of the model outputs
(Pianosi and Wagener, 2018). The results of the sensitivity
analysis in Figure 5 indicate that τSPD is the only model
parameter that is uninfluential, since the sensitivity
coefficients for all three RR series characteristics are below the
dummy threshold. One important outcome of the sensitivity
analysis therefore is that the refractory period and conduction
delay of the AV node as well as the atrial input are influencing the
RR series characteristics. For simplicity, we are proposing a linear
scaling of refractory period and conduction delay parameters, but
it would be interesting to refine this model description in the light
of additional clinical data. It should be noted that the sensitivity
coefficients Sn,m are quantifying sensitivity on a global scale, and
that there may be large local variations. As a result, the extent of
variation in RR(t), RRV(t) and RRI(t) for a set of scaling factors
AR and AD depend on the model parameters. For example, in
Figure 7, it is clear that the scaling factor AD affects RR(t), while
the sensitivity analysis (Figure 5) indicates that the influence of
changes in conduction delay on RR(t) is very limited on a global
scale.

In the present study, the estimates in RRE
V(t) and RRE

I(t)
were based on sliding windows of N = 200 RR intervals. The
choice of N is a tradeoff between estimation accuracy and
time resolution. The sample entropy estimation is expected to
stabilize with greater N and a minimum of N ≥ 200 was
recommended by Yentes et al. (2013). In the present study, N
was chosen as short as possible in favour of time resolution to
investigate the ANS-induced changes in the RR series
characteristics during tilt. To accommodate the estimation
uncertainty resulting from a small N, the simulated RR series
characteristics trends were averaged over 10 repeated
simulations for 240 different parameter sets. For the
sensitivity analysis, N was chosen to be 4,000 in favour of
estimation accuracy since the simulation was stationary.

While ANS modulation has been extensively studied
during normal sinus rhythm (Porta et al., 2007; Porta
et al., 2015; Sassi et al., 2015; Patel et al., 2018), no
attempts have been made towards the estimation of ANS
modulation during persistent AF. The present study is a first
step towards developing a model of the AV node that will
ultimately be used to quantify ANS modulation on a patient
specific basis by fitting to RR interval series and information
on atrial electrical activity obtained from clinical ECG
recordings. The results (Figure 7) show that the proposed
extended model of the AV node accounting for changes in
autonomic tone can better replicate changes in RR series
characteristics observed during tilt-test than the original
model, implying that this is a viable approach to take.
Further developments are needed to incorporate ANS

modulation in the model and methodology for robust
estimation of such modulation from clinical data.

5 Conclusion

Wepresent an extended AVnodemodel that incorporates ANS-
induced changes. The extension was guided by a distribution-based
sensitivity analysis showing that changes in refractoriness and
conduction delay of the AV node as well as changes in atrial
activity significantly influence the RR series characteristics. We
demonstrate that the model extension is needed to replicate the
changes in heart rate and RR series variability and irregularity
observed during head-up and head-down tilt.
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Introduction: Information about autonomic nervous system (ANS) activity may
offer insights about atrial fibrillation (AF) progression and support personalized
AF treatment but is not easily accessible from the ECG. In this study, we
propose a new approach for ECG-based assessment of respiratory modulation
in atrioventricular (AV) nodal refractory period and conduction delay.

Methods: A 1-dimensional convolutional neural network (1D-CNN) was trained
to estimate respiratory modulation of AV nodal conduction properties from 1-
minute segments of RR series, respiration signals, and atrial fibrillatory rates (AFR)
using synthetic data that replicates clinical ECG-derived data. The synthetic
data were generated using a network model of the AV node and 4 million
uniquemodel parameter sets. The 1D-CNNwas then used to analyze respiratory
modulation in clinical deep breathing test data of 28 patients in AF, where an
ECG-derived respiration signal was extracted using a novel approach based on
periodic component analysis.

Results: We demonstrated using synthetic data that the 1D-CNN can estimate
the respiratory modulation from RR series alone with a Pearson sample
correlation of r = 0.805 and that the addition of either respiration signal(r = 0.830), AFR (r = 0.837), or both (r = 0.855) improves the estimation.

Discussion: Initial results from analysis of ECG data suggest that our proposed
estimate of respiration-induced autonomic modulation, aresp, is reproducible
and sufficiently sensitive to monitor changes and detect individual differences.
However, further studies are needed to verify the reproducibility, sensitivity, and
clinical significance of aresp.

KEYWORDS

atrial fibrillation, atrioventricular node, autonomic nervous system dysfunction,
respiration-induced autonomic modulation, convolutional neural network, deep
breathing test, network model, ECG
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1 Introduction

Atrial fibrillation (AF) is the most common supraventricular
tachyarrhythmia (Hindricks et al., 2020). Characteristic of AF
is an uncoordinated atrial electrical activation that results in
increased and irregular ventricular activity. Atrial fibrillation
poses a significant burden to patients, physicians, and healthcare
systems globally, and is associated with substantial morbidity
and mortality. The recently updated guideline for the diagnosis
and management of AF emphasizes that AF is a progressive
disease that requires a variety of strategies at different stages,
from prevention, lifestyle and risk factor modification, screening
and therapy (Joglar et al., 2023). In this context, monitoring
of pathophysiological changes associated with AF progression
in individual patients can be valuable for the management of
persistent AF.

There is a bidirectional relationship between AF and
autonomic nervous system (ANS) dysfunction (Linz et al., 2019;
Malik et al., 2022). The ANS contributes to the maintenance of
AF (Shen and Zipes, 2014; Joglar et al., 2023) and the presence
of AF promotes atrial neural remodeling and deficiencies in
autonomic afferent reflexes (Wasmund et al., 2003; Yu et al., 2014;
Malik et al., 2022). For example, AF patients have shown impaired
sensitivity in the arterial baroreceptor reflex, a mechanism that
buffers acute changes in arterial blood pressure by modulating
both the parasympathetic and sympathetic nervous systems
(van den Berg et al., 2001; Miyoshi et al., 2020; Ferreira et al., 2023).
Conversely, the restoration of sinus rhythm has been shown
to improve the baroreceptor sensitivity (Field et al., 2016), and
baroreceptor activation therapy has restored sinus rhythm in a recent
case study (Wang et al., 2023).

In normal sinus rhythm (NSR), autonomic dysfunction can be
assessed by measuring the heart rate variability (Sassi et al., 2015;
Shaffer and Ginsberg, 2017), quantifying autonomic modulation
of the sinoatrial (SA) node. However, during AF, the heart
rate is instead determined by the rate of fibrillation and the
subsequent atrioventricular (AV) nodal modulation, raising the
need for alternative approaches to assess autonomic dysfunction.
Since the AV node, much like the SA node, is densely innervated
by the ANS (George et al., 2017; Hanna et al., 2021), it is an
attractive substitute for the assessment of autonomic function
under AF. However, the relation between cardiac ANS modulation
and AV nodal function under AF is far more complex than
that between ANS modulation and SA node function during
NSR. This calls for more sophisticated, model-based methods
of analysis.

The AV node is characterized by its dual-pathway physiology
allowing for parallel conduction of impulses where the two pathways
have different electrophysiological properties (George et al., 2017).
The fast pathway (FP) exhibits a shorter conduction delay and longer
refractory period compared to the slow pathway (SP) (George et al.,
2017). The AV nodal refractory period and conduction delay are
influenced by the previous activity of conducted and blocked
impulses (George et al., 2017; Billette and Tadros, 2019). There have
been several AV node models proposed that describe different
characteristics of the AV nodal structure and electrophysiology
(Cohen et al., 1983; Mangin et al., 2005; Rashidi and Khodarahmi,
2005; Lian et al., 2006; Climent et al., 2011b; Masè et al., 2015;

Henriksson et al., 2016; Inada et al., 2017; Wallman and Sandberg,
2018; Karlsson et al., 2021), but our previously proposed model
(Plappert et al., 2022) is the first to address autonomic modulation
of the AV nodal refractory period and conduction delay. We showed
that ANS-induced changes during tilt could be better replicated
when scaling the refractory period and conduction delay with a
constant factor. Because respiration is a powerful modulator of the
reflex control systems, to a large extent via effects on the baroreflex
(Piepoli et al., 1997), abnormal respiration-induced autonomic
modulation is often an early sign of autonomic dysfunction
(Bernardi et al., 2001). For the monitoring of cardiac autonomic
modulation in AF patients, the assessment of respiration-induced
autonomic modulation seems well-suited because respiration is
always present and can be extracted from ECG signals (Varon et al.,
2020). Building on the previous AV node model extension, the
respiration-induced autonomic modulation could be incorporated
by time-varying changes in the modulation of AV nodal refractory
period and conduction delay.

Machine learning is vibrant in the field of cardiac
electrophysiology with a rapidly growing number of applications
(Trayanova et al., 2021). However, one main challenge is the
acquirement of large amounts of data for proper training and
validation. In recent years, a few studies have been performed
in which synthetic data has been generated for the training of
neural networks which are then used on clinical data. For example,
synthetic images were generated to train neural networks to track
cardiac motion and calculate cardiac strain (Loecher et al., 2021),
estimate tensors from free-breathing cardiac diffusion tensor
imaging (Weine et al., 2022), and predict end-diastole volume,
end-systole volume, and ejection fraction (Gheorghita et al.,
2022). Furthermore, synthetic photoplethysmography (PPG)
signals were generated to detect bradycardia and tachycardia
(Sološenko et al., 2022), and synthetic electrocardiogram (ECG)
signals were generated to detect r-waves during different physical
activities and atrial fibrillation (Kaisti et al., 2023), and to predict
the ventricular origin in outflow tract ventricular arrhythmias
(Doste et al., 2022).

This study aims to develop and evaluate a method to
extract respiration-induced autonomic modulation in the AV node
conduction properties from ECG data in AF. We present a novel
approach to extract respiration signals from several ECG leads
based on the periodic component analysis (Sameni et al., 2008).
In addition, we present a novel extension to our previously
proposed AV node network model accounting for respiration-
induced autonomic modulation of AV nodal refractory period
and conduction delay. Furthermore, we estimate the magnitude of
respiration-induced autonomic modulation using a 1-dimensional
convolutional neural network that was trained on synthetic 1-
min segments of RR series, respiration signals, and average atrial
fibrillatory rate which replicate clinical data. The trained network
was used to analyze data from 28 AF patients performing a
deep breathing task including slow metronome breathing at a
respiration rate of 6 breaths/min. During NSR, slower breathing
causes an increased respiration-induced autonomic modulation
with a maximum HRV response typically observed at a respiration
rate of 6 breaths/min (Russo et al., 2017). Hence, we hypothesize
that the respiration-induced autonomic modulation in the AV
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node conduction properties is strengthened during the deep
breathing task.

2 Materials and methods

First, the clinical deep breathing test data from patients in
atrial fibrillation is described in Section 2.1. In Section 2.2, the
extraction of RR series and atrial fibrillatory rate (AFR) from ECG
are described. Moreover, Section 2.2 covers the extraction of ECG-
derived respiration (EDR) signals using a novel approach based
on periodic component analysis. A description of the extended
AV network model accounting for respiration-induced autonomic
modulation is given in Section 2.3, as well as a description of how
the simulated datasets are generated. In Section 2.4, the architecture
of a 1-dimensional convolutional neural network (1D-CNN) that
is used to estimate the magnitude of respiratory modulation from
ECG recordings is described together with the training and testing
of the neural network. Finally, the CNN is used to estimate the
respiration-induced autonomic modulation from the clinical ECG-
derived features and the estimates are analyzed.

2.1 ECG data

The dataset of the clinical deep breathing test consisted of 12-
leadECGrecordingswith a sampling rate of 500 Hz from individuals
with AF participating in the SCAPIS study (Bergström et al., 2015).
The participants in the SCAPIS study were from the Swedish general
population aged 50–64 years. A subset of the SCAPIS cohort (5136
participants) performed a deep breathing test (Engström et al.,
2022). Of this subset, 28 participants with complete data were in
AF at the time of recording (Abdollahpur et al., 2022). The clinical
characteristics of that subset are listed in Table 1.The deep breathing
test started with the participants resting in a supine position while
breathing normally for 5 minutes. Following this, the participants
performed slow metronome breathing at a respiration rate of 0.1 Hz
for 1 minute. During the slow metronome breathing, a nurse guided
the participants to inhale for 5 seconds and exhale for 5 seconds, for
a total of six breathing cycles.

2.2 ECG data processing

2.2.1 Extraction of RR series
ECGpreprocessing andQRS complex detectionwere performed

using the CardioLund ECG parser (www.cardiolund.com). The
CardioLund ECG parser classified QRS complexes based on their
QRS morphology. Only QRS complexes with dominant QRS
morphology were considered in the computation of the RR series.

The RR series were computed from intervals between R-
peaks taken from consecutive QRS complexes with dominant
QRS morphology, and the time of each RR interval was set
to the time of the first R-peak in each interval. The resulting
non-uniformly sampled RR series were interpolated to a
uniform sampling rate of 4 Hz using piecewise cubic Hermite
polynomials as implemented in MATLAB (‘pchip’, version R2023a,
RRID:SCR_001622).

TABLE 1 Clinical characteristics of study population.

Number

Age 60.1 ± 4.0 [50.1-64.9]

Men 23 (82%)

BMI 31.8 ± 7.2 [18.8-50.8]

Systolic BP 124 ± 23 [90-188]

Diastolic BP 79.9 ± 11 [61-104]

Hypertension∗ 17 (61%)

Diabetes 2 (7%)

Never smokers 9 (32%)

Heart failure 2 (7%)

Previous AMI or angina 2 (7%)

Beta blocker 15 (54%)

Ca-antagonist 6 (21%)

Antiarrhythmic drug 4 (14%)∗ ≥140/90 mmHg or treatment for hypertension. Values are given in the following formats:
number, mean ± SD, [range]; BP, blood pressure.

2.2.2 Estimation of atrial fibrillatory rate
The AFR was used to obtain information about the atrial

arrival process. Briefly, the estimation of the AFR involved the
extraction of an f-wave signal by means of spatiotemporal QRST-
cancellation (Stridh and Sörnmo, 2001) and estimation of an f-wave
frequency trend by fitting two complex exponential functions to
the extracted f-wave signal from ECG lead V1 as proposed in
(Henriksson et al., 2018). The two exponential functions were
characterized by a fundamental frequency f and its second
harmonic, respectively; f was fitted within the range fWelch

max ± 1.5Hz,
where fWelch

max denotes the maximum of the Welch periodogram of
ECG leadV1 in the range 4–12 Hz.The results for the deep breathing
data have been previously presented in (Abdollahpur et al.,
2022). The estimated AFR signal has a sampling rate
of 50 Hz.

2.2.3 Extraction of lead-specific EDR signals
All steps of the extraction algorithm that are described in the

following were applied to 1-min segments of the lead-specific EDR
signals taken from a 1-min running window. The lead-specific EDR
signals were computed with the slope range method (Kontaxis et al.,
2020) for the eight ECG leads V1-V6, I, and II. Only eight out of 12
ECG leads were used, because the information in the leads III, aVF,
aVL, and aVR can also be derived from lead I and II.The slope range
method uses the peak-to-peak difference in the first derivative of
the QRS complex to quantify the variations in the QRS morphology
that are assumed to reflect the respiratory activity and are caused,
for example, by periodic changes in electrode positions relative
to the heart.
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Only QRS complexes with dominant QRS morphology (cf.
Section 2.2.1) were considered when applying the slope-range
method. Further, a QRS complex was excluded as an outlier from
analysis if the slope range value of any of the leads was outside
the mean ± 3 std of the slope range values of that lead. The lead-
specific non-uniformly sampled EDR signals were interpolated
to a uniform sampling rate of 4 Hz using the modified Akima
algorithm as implemented in MATLAB (‘makima’, version R2023a,
RRID:SCR_001622). A matrix containing the resampled lead-
specific EDR signals X′ = [x′1,…,x′8]T of dimension 8×N was
constructed, where N = 240 corresponds to the length of the 1-
min segment. To remove baseline-wander in X′, a Butterworth
highpass filter of order 4 with a cut-off frequency of 0.08 Hz
was applied separately for each lead x′. The filtered X′ was
normalized to zero-mean and signals shorter than 1 min were zero-
padded to create X containing 1-min segments. A set Sseg was
created containing all Xi, where i = 1,…, I denotes all I possible
choices of 1-min segments of the lead-specific EDR signals from
one recording.

2.2.4 Extraction of joint-lead EDR signals
The joint-lead EDR signal was extracted from X using a

modified version of the periodic component analysis (πCA)
(Sameni et al., 2008), summarized in Algorithm 1. The matrix X
was whitened for its elements to be uncorrelated and to have
unit variance. The whitened lead-specific EDR signals Z were
computed as

Z =D−1/2ETX, (1)

for all Xi in Sseg do

 Xi is whitened according to Eq. 1 to obtain Zi
 for all τj ∈[10, 40] do

  obtain wj by solving the generalized eigenvalue

problem of matrix pair (Cz(τj),Cz(0))
  compute ϵ(wj,τj,Zi) according to Eq. 2

 end for

end for

compute τ∗ = minτj (∑Sseg
ϵ(wj,τj,Zi))

for all Zi in Sseg do

 Sτ = Á
 for all τj ∈[10, 40] do

  if ϵ(wj,τj,Zi) ≤ ϵ(wj,τj−1,Zi) ∨τj == 10 then
   if ϵ(wj,τj,Zi) ≤ ϵ(wj,τj+1,Zi) ∨τj == 40 then
    add τj to Sτ

   end if

  end if

 end for

 set τresp as value in Sτ closest to τ∗
 obtain wresp by solving the generalized eigenvalue

problem of matrix pair (Cz(τresp),Cz(0))
 s∗i = wTrespZi ⋅sign(∑wresp)
 fresp,i = fs/τresp
 end for

Algorithm 1. Extraction of joint-lead EDR signals.

where D is the diagonal matrix of eigenvalues of the covariance
matrix CX = E{XXT}, and the columns of the matrix E are the
unit-norm eigenvectors of CX.

The outputs of the πCA are a joint-lead EDR signal s of
dimension 1×N and its corresponding lag τ. The assumption of the
πCA is that s = wTZ is a linear mixture of the whitened lead-specific
EDR signals. The aim is to find a solution for s with a maximal
periodic structure. The periodic structure of s is characterized by
ϵ(w,τ,Z), which quantifies non-periodicity (Sameni et al., 2008) and
is defined as

ϵ (w,τ,Z) = ∑n|s (n+ τ) − s (n) |2∑n|s (n) |2 = 2[1− wTCz (τ)w
wTCz (0)w], (2)

where s(n) is the n:th element of s. We solved the generalized
eigenvalue problem (GEP) of the lag-dependent matrix pair(Cz(τ),Cz(0)) to obtain a full matrix V whose columns correspond
to the right eigenvectors and a diagonal matrix U of generalized
eigenvalues so that Cz(τ)V = Cz(0)VU (Sameni et al., 2008). Here,
Cz(τ) = [Cz(τ) + (Cz(τ))T +Cz(−τ) + (Cz(−τ))T]/4 for some lag τ is
a modified lagged covariance matrix, which is always symmetric,
unlike the time lagged covariance matrix Cz(τ) = En{z(n)z(n− τ)T},
where z(n) is the n:th column ofZ and En{⋅} indicates averaging over
n. The weight vector w = [w1,…,w8]T that minimizes ϵ(w,τ,Z) is
obtained as the first column ofV (Sameni et al., 2008). In the present
study, ϵ(w,τ,Z) is also used to quantify signal quality, where a lower
value of ϵ(w,τ,Z) corresponds to a more periodic signal assumed to
have a higher SNR.

As τ is unknown, ϵ(w,τ,Z) was minimized for all integer values
of τ between 10 and 40, corresponding to respiration rates between
0.1 and 0.4 Hz. To improve the robustness of the πCA for signals
with low quality, a τ∗ was determined in an intermediate step
that corresponds to a global minimum of ϵ(w,τ,Z) over all 1-
min segments in Sseg. It was assumed that there were no significant
transient changes in respiration frequency in the clinical data and
we determined two different τ∗ for each subject; one for normal
breathing and one for deep breathing.Then, for each 1-min segment
separately, a τresp was estimated as the local minimum of ϵ(w,τ,Z)
closest to τ∗ . The respiration frequency estimate f̂resp = fs/τ̂resp
results from the estimate τ̂resp and the sampling rate fs = 4 Hz and
is in the range f̂resp ∈ [0.1,0.4]Hz corresponding to the limits set by
τ. Finally, the weight vectorwresp for the respiration signal extraction
was obtained by solving the GEP of thematrix pair (Cz(τresp),Cz(0)).
The extracted s = wT

respZ was normalized to unit variance. An
ambiguity of πCA is that the sign of s is undetermined. The sign of
the joint-lead EDR signal was selected as s∗ = s ⋅ sign(∑wresp),
where ∑wresp denotes the sumof the elements in the vectorwresp.This
was done under the assumption that all lead-specific EDR signals
are in phase.

2.2.5 Estimates from clinical data
The joint-lead EDR signal extraction from Section 2.2.4 was

applied to all 1-min segments X in Sseg for each patient and
recording. Segments X were excluded from further analysis if they
do not satisfy the following three criteria, for which a valid QRS
complex has a dominant QRS morphology and is not classified as
outlier based on its slope range values: i) the maximum distance
between valid QRS complexes is 2 s; ii) the minimum number of
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valid QRS complexes in a 1-min segment is 48; iii) the minimum
number of valid QRS complexes in a 1-min segment is 80% of the
normal-to-normal average heart rate of the 1-min segment. After
exclusion, several sets of non-overlapping 1-min segments could
be created from the remaining X. Out of these, the set S ∗seg that
resulted in the smallest sum of ϵ(wresp,τresp,Z) was chosen, and
used to produce joint-lead EDR signals X Clin

Resp of dimension 1×N as
described in Section 2.2.4. In addition, the corresponding 1-min RR
series X Clin

RR of dimension 1×N was extracted from the RR series
obtained in Section 2.2.1.We estimated themean arrival rate of atrial
impulses to the AV node μ̂ as 1000/AFR, where AFR is the average
AFR-trend within each of the selected 1-min windows as described
in Section 2.2.2. To match the dimensions of X Clin

RR and X Clin
Resp , μ̂ was

then repeated N times to produce X Clin
AFR of dimension 1×N. From

the clinical data, a maximum of five non-overlapping 1-min long
segments in normal breathing and one segment in deep breathing
was obtained for X Clin

RR , X Clin
Resp and X Clin

AFR .

2.3 Simulated data

2.3.1 Network model of the human
atrioventricular node

The atrioventricular node is modeled by a network of 21
nodes (cf. Figure 1). The presented AV node model was initially
proposed in (Wallman and Sandberg, 2018), updated with minor
modifications in (Karlsson et al., 2021), and extended using constant
scaling factors AR and AD for the refractory period and conduction
delay to account for the effect of changes in autonomic modulation
in (Plappert et al., 2022). The slow pathway (SP) and fast pathway
(FP) are described by two chains of 10 nodes each, which are
only connected at their last nodes. Impulses enter the AV node
model simultaneously at the first node of each pathway. Within the
pathways and between their last nodes, the impulses are conducted
bidirectionally to allow for retrograde conduction. The last nodes
of the two pathways are connected to an additional coupling node
(CN), through which the impulses leave the model.

Each node represents a section of the AV node and is
characterized by an individual refractory period RP(Δtk,AP(t),θPR)
and conduction delay DP(Δtk,AP(t),θPD) defined as

RP(Δtk,AP (t) ,θPR) = AP (t)(RP
min +ΔRP (1− e−Δtk/τPR)) (3)

DP(Δtk,AP (t) ,θPD) = AP (t)(DP
min +ΔDPe−Δtk/τPD) (4)

Where P ∈ {SP,FP,CN} denotes the pathway. The refractory period
and conduction delay are defined by fixed model parameters for
the refractory period θPR and conduction delay θPD as well as model
states for the diastolic interval Δtk and respiratorymodulationAP(t).
Each pathway has a separate set of fixed model parameters for the
refractory period θPR = [RP

min, ΔR
P, τPR] and conduction delay θPD =

[DP
min, ΔDP, τPD], where RP

min is the minimum refractory period,
ΔRP is the maximum prolongation of the refractory period, τPR is a
time constant, DP

min is the minimum conduction delay, ΔDP is the
maximum prolongation of the conduction delay and τPD is a time
constant. For clarity, the notation of RP(⋅,AP(t), ⋅) and DP(⋅,AP(t), ⋅)
are specifiedwith dots when the replaced parameters ormodel states
are currently not discussed.

The scaling factor AP(t) accounts for the effect of changes in
autonomic modulation on the refractory period RP(⋅,AP(t), ⋅) and
the conduction delay DP(⋅,AP(t), ⋅). The time-varying scaling factor
AP(t) is common between the SP and FP, defined in Eq. 5 as

ASP (t) = AFP (t) = 1+ aresp2 sin(2πt fresp) , (5)

with a constant respiratory frequency fresp and peak-to-peak
amplitude aresp. The scaling factor of the refractory period and
conduction delay of the CN is described by ACN = 1 and not
modulated by respiration.

The electrical excitation propagation through the AV node is
modeled as a series of impulses that can either be conducted or
blocked by a node. An impulse is conducted to all adjacent nodes,
if the interval Δtk between the k:th impulse arrival time tk and the
end of the (k–1):th refractory period, computed as

Δtk = tk − tk−1 −RP(Δtk−1, ⋅, ⋅) (6)

is positive. Then, the time delay between the arrival of an impulse
at a node and its transmission to all adjacent nodes is given by
the conduction delay DP(Δtk, ⋅, ⋅). If Δtk is negative, the impulse is
blocked due to the ongoing refractory period RP(Δtk−1, ⋅, ⋅). After an
impulse is conducted,RP(Δtk, ⋅, ⋅) andDP(Δtk, ⋅, ⋅) of the current node
are updated according to Eqs 3, 4, 6. Details about how the impulses
are processed chronologically and node by node, using a priority
queue of nodes and sorted by impulse arrival time, can be found in
(Wallman and Sandberg, 2018).

The input to the AV node mode is a series of atrial impulses
during AF, with inter-arrival times modeled according to a Pearson
Type IV distribution (Climent et al., 2011a). The AA series is
generated with a point process with independent inter-arrival
times and is completely characterized by the four parameters of
the Pearson Type IV distribution, namely, the mean μ, standard
deviation σ, skewness γ and kurtosis κ.

The output of the AV node model is a series of ventricular
impulses, where tVq denotes the time of the q:th ventricular
impulse. As the refractory period RP(Δtk, ⋅, ⋅) and conduction
delay DP(Δtk, ⋅, ⋅) are history-dependent, the first 1,000 ventricular
impulses leaving the AV node model are excluded from analysis to
avoid transient effects.

2.3.2 Simulation of AV nodal conduction
For the training and validation, a dataset with 2 million unique

parameter sets was generated. This dataset was divided into 20
datasets with 100,000 parameter sets each, where a dataset was
either used for training or validation of one of ten realizations
of the convolutional neural network (CNN) that is described in
Section 2.4.2. Simulations were performed with each parameter set
using the AV node model described in Section 2.3.1. For each
simulation, a series of 11,000 AA intervals was generated using the
Pearson Type IV distribution, defined by the four parameters μ, σ, γ,
and κ. The parameter μ was randomly drawn from U[100,250]ms
and σ was randomly drawn from U[15,30]ms. The parameters γ
and κ were kept fixed at 1 and 6, respectively, since they cannot
be estimated from the f-waves of the ECG (Plappert et al., 2022).
Negative AA intervals were excluded from the impulse series. The
model parameters for the refractory period θPR and conduction
delay θPD of the SP and FP were drawn from bounded uniform
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FIGURE 1
A schematic representation of the AV node model. Retrograde conduction was possible within the AV node model. For simplicity, only a subset of the
ten nodes in each pathway is shown. Note that the atrioventricular node used different θPR and θPD for the three different pathways, the same
time-varying AP(t) for SP and FP and a constant ACN = for CN.

TABLE 2 AV Node model parameters used for simulated data.

Parameters P ≡SP (ms) P ≡FP (ms) P ≡CN (ms)

θPR RP
min U[250,600] U[250,600] 250

ΔRP U[0,600] U[0,600] 0

τPR U[50,300] U[50,300] 1

θPD DP
min U[0,30] U[0,30] 0

ΔDP U[0,75] U[0,75] 0

τPD U[50,300] U[50,300] 1

distributions and the model parameters of the CN were kept
fixed according to Table 2. The given ranges were in line with
our previous work (Plappert et al., 2022). The model parameters
for the respiration-induced autonomic modulation and simulated
respiration signal that are used in Section 2.3.3 were also drawn
from bounded uniform distributions, with aresp randomly drawn
from U[−0.1,0.5], fresp randomly drawn from U[0.1,0.4]Hz and
η randomly drawn from U[0.2,4]. For testing, another dataset
with 2 million unique parameter sets was generated using the
same ranges listed above, except for aresp, which was randomly
drawn from U[0,0.4].

When sampling, initially a value for aresp was drawn from a
uniform distribution. To exclude non-physiological parameter
sets from the dataset, we resampled the rest of the parameters
until the following five selection criteria were met: 1) the slow
pathway in every parameter set must have a higher conduction
delay DSP(Δtk, ⋅, ⋅) > DFP(Δtk, ⋅, ⋅) and lower refractory period
RSP(Δtk, ⋅, ⋅) < RFP(Δtk, ⋅, ⋅) than the fast pathway for all Δtk; 2)
the resulting average RR interval has to fall within the range of

300 ms–1,000 ms, which corresponds to heart rates between 60
bpm and 200 bpm; 3) the resulting root mean square of successive
RR interval differences (RR RMSSD) has to be above 100 ms; 4) the
resulting sample entropy of the RR series has to be above 1; 5) the
relative contribution of the respiration frequency in the frequency
spectrum of the RR series with zero-mean FRR( fresp)/∑f FRR( f) has
to be below 7% to exclude RR series with visible periodicity. Note
that the frequency spectrum is computed from the RR series with
240 samples and the sampling rate of 4 Hz.

Similar to the clinical data described in Section 2.2.1, RR series
were computed from intervals between the simulated ventricular
impulses, and the time of each RR interval sample was set to the
time of the first ventricular impulse. The resulting non-uniformly
sampled RR series were interpolated to a uniform sampling rate
of 4 Hz using piecewise cubic hermite interpolating polynomials
as implemented in MATLAB (‘pchip’, version R2023a, RRID:SCR_
001622). The simulated RR series were cut into 1-min segments of
length N = 240, resulting in RR series X Sim

RR of dimension 1×N. For
each RR series, μ was repeated N times to form a vector X Sim

AFR of
dimension 1×N, corresponding to the mean atrial arrival rate.

2.3.3 Modelling respiratory signals
For the modeling of the respiratory signals resembling joint-

lead EDR signals (cf. Section 2.2.4), we start with the underlying
assumption that respiration can be described according to
m(t) = sin(2πtfresp), i.e., by a sine wave oscillating at the respiratory
frequency fresp. Eight identical lead-specific EDR signals m′p(t) with
p = 1,…,8 were created, composed of non-uniform samples of m(t)
at the times of the ventricular impulses tVq generated by the AV node
model. To emulate lead-specific EDR signals, Gaussian noise with
standard deviation ηwas added to all samples ofm′p(t), making them
non-identical.

Next,m′p(t)were processed in five steps to mimic the processing
steps for the clinical ECG-derived features (cf. Sections 2.2.3 and
2.2.4): 1) using the same criteria as for the outlier exclusion in the
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clinical data, all samples in m′p(t) for the same ventricular impulse
were excluded as outliers, if the value in one of the eight leads
was outside the mean ± 3 std, computed for each lead within a 1-
min runningwindow; 2) as for the clinical lead-specific EDR signals,
the simulated signalsm′p(t)were interpolated to a uniform sampling
rate of 4 Hz using the modified Akima algorithm as implemented in
MATLAB (‘makima’, version R2023a, RRID:SCR_001622), resulting
in m′p(n); 3) m′p(n) were cut into 1-min segments of length N = 240
and had the dimension 8×N; 4) the resampled and cut signals are
filtered with a Butterworth highpass filter of order 4 with the cut-off
frequency 0.08 Hz to remove baseline-wander; 5) a joint-lead EDR
signal X Sim

Resp with dimension 1×N was extracted from m′p(n) using
the periodic component analysis described in Section 2.2.4.

2.4 Estimation of respiratory modulation

2.4.1 Training and estimation using a linear
regression model

A linear regression model is used here to estimate the peak-
to-peak amplitude of respiration-induced autonomic modulation
aresp. The linear regression model LRR,Resp,AFR was trained using a
training dataset X Sim,Train with the format X = [X Sim

RR ;X Sim
Resp;X Sim

AFR]
containing 100,000 parameter sets, as described in Section 2.3.2.
The performance of LRR,Resp,AFR on simulated data was assessed
using the testing dataset X Sim,Test containing 2 million parameter
sets, as described in Section 2.3.2. The performance onX Sim,Test was
assessed using the RMSE, Pearson correlation, and coefficient of
determination R2 between the true aresp and estimated âresp.

2.4.2 Architecture of 1-dimensional
convolutional neural network

To estimate the peak-to-peak amplitude of the respiration-
induced autonomic modulation, aresp, a 1D-CNN architecture was
used as illustrated in Figure 2. The CNN architecture consists of
five convolution layers, where each layer l was composed of 100
1D-CNN filters with kernel size kC = 3, stride sC = 1 and dilation
factor dC = 2l−1, followed by a rectified linear unit (RELU) and a
batch normalization layer. After the five convolution layers, the data
passed through a global average pooling layer and dense layer, the
output of which is an estimation âresp. To assess the performance
of the CNN with or without the RR series, respiration signal, and
mean μ of the AA series, seven versions of the CNN were trained.
The respective CNNs and their input data are given as follows: the
CNN CRR was trained on the input data with the format X = X Sim

RR ;
CResp was trained on X = X Sim

Resp; CAFR was trained on X = X Sim
AFR;

CRR,Resp was trained on X = [X Sim
RR ;X Sim

Resp]; CRR,AFR was trained on
X = [X Sim

RR ;X Sim
AFR]; CResp,AFR was trained on X = [X Sim

Resp;X Sim
AFR]; and

CRR,Resp,AFR was trained on X = [X Sim
RR ;X Sim

Resp;X Sim
AFR].

2.4.3 Training the convolutional neural network
For each CNN version, i.e., CRR, CResp, CAFR, CRR,Resp, CRR,AFR,

CResp,AFR and CRR,Resp,AFR, described in Section 2.4.2, ten realizations
were trained with unique training and validation datasets,X Sim,Train

and X Sim,Val, respectively, containing 100,000 parameter sets each,
as described in Section 2.3.2. The CNNs were trained to estimate
the aresp and the weights of the CNN were updated during
backpropagation based on the root-mean-square error (RMSE) of

the residuals. Every epoch, X Sim,Train was randomly divided into
20 mini-batches, each containing input data for 5,000 different
parameter sets. A cyclical learning rate was set for the training,
where the learning rate started at 5 ⋅ 10–3 and was increased and
decreased in a ‘zig-zag’ between [2 ⋅ 10–3, 3 ⋅ 10–3, 5 ⋅ 10–3, 8 ⋅ 10–3,
10 ⋅ 10–3] every time the RMSE of X Sim,Val did not improve for 50
epochs (Smith, 2017). The initial learning rate and the minimum
and maximum boundary values of the cyclical learning rates were
determined using the ‘learning rate range test’, described in (Smith,
2017). The network was validated after every epoch. The CNN was
trained until the RMSE of X Sim,Val did not improve for 50 epochs
for each of the five learning rates, and the network weights giving
the lowest validation RMSE was chosen. The estimate âresp was
computed as the average of the individual estimates of each of the
ten CNN realizations.

2.4.4 Estimation of respiratory modulation in
simulated data

The performance of the CNN on simulated data was assessed
for CRR, CResp, CAFR, CRR,Resp, CRR,AFR, CResp,AFR and CRR,Resp,AFR, using
the testing dataset X Sim,Test described in Section 2.3.2. The total
performance on X Sim,Test was assessed using the RMSE, Pearson
sample correlation, and coefficient of determination R2 between the
true aresp and estimated âresp.

In addition, the performance was assessed over a range of
respiration frequencies fresp and characteristics of non-periodicity
in the respiration signal ϵ(w,τ,Z), here denoted ϵ. To produce
local RMSE estimates σ( f′resp, ϵ′) for specific values f′resp and ϵ′,
the following three steps were applied: 1) a squared difference(aresp − âresp)2 was computed for each of the 2 million parameter
sets in X Sim,Test; 2) a weighted average of the 2 million squared
differences was computed using a Gaussian kernel centered at f′resp
and ϵ′ with the standard deviation of 0.015Hz and 0.075 for the
fresp and ϵ, respectively; 3) the square root of the weighted average
resulted in σ( f′resp, ϵ′).

In the present study, all versions of the CNN were trained
and tested using 1-min segments, with one exception: An
additional CNN C2.5min

RR,Resp,AFR was trained and tested using X ∗ =[X Sim,2.5
RR ;X Sim,2.5

Resp ;X Sim,2.5
AFR ] containing 2.5-minute-long segments

to investigate the impact of segment length on the RMSE.
For C2.5min

RR,Resp,AFR, ten realizations were trained with additional
unique training and validation datasets, X ∗Sim,Train and X Sim,Val,
respectively, containing 100,000 parameter sets each. Apart from the
different segment lengths, the additional datasets were generated as
described in Section 2.3.2.

2.4.5 Estimation of respiratory modulation in
clinical data

The CNN CRR,Resp,AFR was used for estimating aresp in the
clinical deep breathing test data, described in Section 2.1. The
clinical estimates were used to investigate differences in âresp
between deep breathing and normal breathing using Monte Carlo
sampling. Using these samples, the probabilities of the following
three scenarios were computed for each patient: 1) the highest
âresp was achieved for deep breathing, 2) the lowest âresp was
achieved for deep breathing and 3) the highest and lowest âresp
did not correspond to deep breathing. To draw the samples for
each 1-min segment in X Clin,Test, the estimate âresp was determined
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FIGURE 2
The CNN was composed of five 1D convolution layers with 100 filters each. The convolution layers had a kernel size kC, stride sC and dilation factor dC.
Training datasets X Sim,Train, validation datasets X Sim,Val, and testing datasets X Sim,Test were constructed from the simulated data X Sim

RR , X Sim
Resp and X Sim

AFR . A
testing dataset XClin,Test was constructed from the clinical ECG-derived features XClin

RR , XClin
Resp and XClin

AFR .

using the CNN CRR,Resp,AFR, while the f′resp and ϵ′ were estimated
by the f̂resp and ϵ(w,τ,Z) described in Section 2.2.4. Next, values
of âresp were resampled 100,000 times for each 1-min segment
in S ∗seg. The samples were drawn from Gaussian distributions
with âresp as mean and σ( f′resp, ϵ′) described in Section 2.4.4 as
standard deviation.

3 Results

3.1 Analysis of clinical data

The length of the interpolated RR series varied between patients
depending on the duration of the recordings; during normal
breathing, the length of the RR series was in the range between
288 s and 328 s; during deep breathing, the length of the RR series
was in the range between 57 s and 72 s. Statistics quantifying
the clinical dataset are shown in Table 3. In accordance with the
exclusion criteria defined in Section 2.2.5, 98 out of 120 non-
overlapping 1-min segments remained in the normal breathing
data and 22 out of 28 1-min segments remained in the deep
breathing data. Typical examples of a clinical ECG-derived RR
series X Clin

RR and joint-lead respiration signal X Clin
Resp during normal

breathing and deep breathing, respectively, are shown in Figure 3.
The characteristics of these signals, listed in Table 4 are within 1
standard deviation of the populationmean (cf. Table 3). Fluctuations
in the clinical RR series matching the respiration frequencies were
not clearly visible and FRR( fresp)/∑f FRR( f) was always below 7%.
The respiration signals estimated from clinical data had ϵ(w,τ,Z)
ranging between 0.198 and 1.485. The clinical value pairs of
ϵ(w,τ,Z) and respiration frequency f̂resp are shown in Figure 4.There
was a statistically significant weak negative correlation between

f̂resp and ϵ(w,τ,Z) in the clinical data during normal breathing(r = −.217,p = 0.032), but no significant correlation during
deep breathing.

3.2 Simulated RR series and respiration
signals

The statistics quantifying X Sim,Train, X Sim,Val and X Sim,Test are
shown in Table 3 together with X Clin,Test. The simulated datasets
were created according to the description in Section 2.3 and
compared to the clinical data using the unpaired t-test. It should
be noted that although there are significant differences between the
characteristics of the clinical and simulated data, the distributions
of the simulated data cover the distribution of the clinical data.
The heart rate was on average slightly faster and more regular
in X Sim than in X Clin, as indicated by the differences in RR
mean, RR RMSSD, and RR sample entropy. Further, the RR series
in X Sim showed on average more visible fluctuations matching
the respiration frequency compared to the RR series in X Clin,
as indicated by the difference in FRR( fresp)/∑f FRR( f). The AFR
was on average slightly lower in X Sim than in X Clin, whereas
fresp was slightly higher. In normal breathing, ϵ in X Clin was
comparable toX Sim; however, in deep breathing, ϵwas lower inX Clin

than in X Sim.
Examples of a simulated RR series X Sim

RR and joint-lead
respiration signal X Sim

Resp resembling clinical signals during normal
breathing and deep breathing, respectively, are shown in Figure 3.
The signals were chosen based on similarities to the clinical ECG-
derived signals in the RR series characteristics and respiration
signal morphology. The characteristics of these signals are listed
in Table 4. Note, that while the peak-to-peak amplitude of
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TABLE 3 Characteristics of clinical and simulated data.

Clinical data XClin,Test Simulated data

Normal breathing Deep breathing
Training Data Testing Data

[X Sim,Train;X Sim,Val] X Sim,Test

Number of X 98 22 10 ⋅ 2 ⋅ 100,000 2,000,000
RR mean (ms) 763± 173 747± 162 676± 164† 676± 164†

RR RMSSD (ms) 262± 100 230± 60 188± 60†,‡ 185± 58†,‡

RR sample entropy 2.08± 0.49 2.18± 0.63 1.53± 0.39†,‡ 1.52± 0.38†,‡

FRR( fresp)/∑f FRR( f)(%) 2.5± 1.3 1.1± 0.8 3.4± 1.8†,‡ 3.3± 1.7†,‡

AFR(Hz) 6.99± 0.7 6.95± 0.71 5.97± 1.57†,‡ 5.96± 1.57†,‡

fresp(Hz) 0.220± 0.067 0.107± 0.015 0.263± 0.085†,‡ 0.261± 0.085†,‡

ϵ 0.66± 0.25 0.44± 0.15 0.64± 0.27‡ 0.64± 0.27‡

aresp 0.282± 0.101 0.285± 0.131 0.200± 0.173†,‡ 0.200± 0.115†,‡

†p < 0.05 vs. normal breathing. ‡p < 0.05 vs. deep breathing. The training data is divided into 20 datasets with equal size to train the 10 realizations of the CNN with unique X Sim,Train and
X Sim,Val. The variables AFR, fresp, and aresp characterize estimates in the clinical data and model parameters in the simulated data.

FIGURE 3
Two examples of clinical RR series (A + E), simulated RR series (B + F), clinical respiration signals (C + G), and simulated respiration signals (D + H)
during normal breathing (A–D) and deep breathing (E–H).
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TABLE 4 Characteristics of the clinical and simulated examples shown in Figure 3.

Signals RR mean (ms) RR RMSSD (ms) RR sample entropy aresp fresp (Hz) η ϵ(w,τ,Z)
A/C 661 250 1.85 - 0.286 - 0.47

B/D 651 204 1.91 0.36 0.288 2.48 0.76

E/G 818 251 2.28 - 0.118 - 0.44

F/H 792 138 1.97 0.05 0.116 1.46 0.45

FIGURE 4
Scatter plot showing ϵ(w,τ,Z) over f̂resp for each 1-min segment during
normal breathing (NB) and deep breathing (DB).

respiration-induced autonomic modulation aresp is high during
normal breathing and low during deep breathing in this example,
a general conclusion about the aresp values of the clinical signals
can not be drawn from this comparison and is not intended.
When emulating lead-specific EDR signals and adding Gaussian
noise with standard deviation η, the simulated data showed
a strong correlation between η and ϵ (r = 0.89, p < 10–5). The
examples in Figure 3 are representative of this correlation with
the η and ϵ listed in Table 4, where X Sim

Resp in Figure 3D was
generated with a higher η and showed a higher ϵ compared to X Sim

Resp
in Figure 3H.

3.3 Accuracy of convolutional neural
network

All CNNs CRR, CResp, CAFR, CRR,Resp, CRR,AFR, CResp,AFR and
CRR,Resp,AFR, described in Section 2.4.2 and trained according to
Section 2.4.3, were tested using X Sim,Test described in Section 2.3.2.
The resulting distribution of estimated âresp over true aresp for
CRR,Resp,AFR is shown in Figure 5. Also displayed in Figure 5
for comparison is the corresponding distribution for estimation
using linear regression LRR,Resp,AFR based on the same data
X = [X Sim

RR ;X Sim
Resp;X Sim

AFR]. The RMSE, Pearson sample correlation
and R2 are listed for the seven CNN versions and LRR,Resp,AFR

in Table 5. The CRR,Resp,AFR resulted in the lowest RMSE and
highest correlation and R2. The CNNs CAFR, CResp and CResp,AFR
without RR series in the input data performed poorly. The CRR
estimated âresp with an RMSE of 0.074, where the addition of
X Sim

Resp or X Sim
AFR to the input improved the accuracy of the âresp

estimation slightly.
For CRR, CRR,AFR, CRR,Resp and CRR,Resp,AFR, the local RMSE of âresp

for specific f′resp and ϵ′were computed according to Section 2.4.4 and
illustrated in Figure 6. It can be seen in all four contour plots that
the RMSE is dependent on f′resp and ϵ′. The CNNs produce more
accurate estimations for datawith a high f′resp and low ϵ′, however, the
RMSE is more sensitive to changes in f′resp. AddingX Sim

AFR to the input
improves the RMSE for all values of fresp and ϵ. While the addition of
X Sim

Resp to the input improves the RMSE formost f′resp and ϵ′, it worsens
the RMSE for high ϵ′ and low f′resp as indicated in Figure 6. Within
the indicated region, the accuracy of âresp is higher without X Sim

Resp in
the input data.

The accuracy of the CNN improves with longer input data,
indicated by the fact that the RMSE of C2.5min

RR,Resp,AFR was 0.050.
The RMSE, Pearson sample correlation and R2 is listed for
C2.5min
RR,Resp,AFR in Table 5. The RMSE improved for all values of ϵ′ and
f′resp, whereas the local RMSE improved especially at lower f′resp
(data not shown).

3.4 Estimation of respiration-induced
autonomic modulation in clinical data

The CNN CRR,Resp,AFR was used to obtain âresp from the clinical
ECG-derived features inX = [X Clin

RR ;X Clin
Resp ;X Clin

AFR].The resulting âresp
for 1-min segments during normal breathing and deep breathing
are shown in Figure 7. There was high interpatient variability in âresp
in the study population and no clear relation was found between
âresp during normal breathing and deep breathing. No significant
correlation was found between a change in respiration frequency
f̂DBresp − f̂NBresp and a change in respiration-induced autonomic
modulation âDBresp − âNBresp.

The vertical lines around âresp in Figure 7A correspond to±σ( fresp, ϵ), described in Section 2.4.4 and is used for the Monte
Carlo sampling described in Section 2.4.5. For 20 subjects, âresp
was available for at least one segment during normal breathing
and one segment during deep breathing (cf. exclusion criteria in
Section 2.2.5). For those 20 subjects, Monte Carlo sampling was
used to investigate whether âresp is larger during deep breathing than
during normal breathing as described in Section 2.4.5. As illustrated
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FIGURE 5
Binned scatter plot of estimated âresp versus true aresp for the CNN
CRR,Resp,AFR and linear regression LRR,Resp,AFR, where both were based
on the same input data X = [X Sim

RR ;X Sim
Resp;X Sim

AFR ]. The black dotted line
shows where âresp is equal to aresp. The white dotted line shows the
sample mean of the âresp estimation.

TABLE 5 RMSE, Pearson sample correlation and R2 of the seven CNN
versions and linear regression LRR,Resp,AFR using 1-min segments, and
C2.5min
RR,Resp,AFR using 2.5-min segments.

RMSE Pearson correlation r R2

C2.5min
RR,Resp,AFR 0.050 0.923 0.816

CRR,Resp,AFR 0.066 0.855 0.674

CRR,Resp 0.070 0.830 0.636

CRR,AFR 0.070 0.837 0.630

CRR 0.074 0.805 0.585

CResp,AFR 0.098 0.583 0.284

CResp 0.101 0.513 0.231

CAFR 0.115 0.073 0.001

LRR,Resp,AFR 0.119 0.037 −0.068
in Figure 7B: it wasmost likely for 5 patients that the highest aresp was
achieved for deep breathing; it was most likely for 5 patients that the
lowest aresp was achieved for deep breathing; and it was most likely
for 10 patients that neither the highest nor lowest aresp corresponded
to deep breathing.

4 Discussion

To address the need for assessing autonomic dysfunction
in patients with persistent AF, we developed a method to

extract respiration-induced autonomic modulation in the AV node
conduction properties from ECG data in AF. We focused on
respiration-induced autonomic modulation because respiration is
always present, respiration can be extracted from ECG signals,
and abnormal respiration-induced autonomic modulation is often
an early sign of autonomic dysfunction (Bernardi et al., 2001). To
achieve this we extended our AV node model (Plappert et al.,
2022) to account for respiration-induced autonomic modulation by
including a time-varying scaling factor in the formulations of the
AV nodal refractory period and conduction delay. We trained a 1D-
CNN on simulated 1-min segments of RR series, respiration signals,
and mean arrival rate of atrial impulses which replicate clinical
data to estimate the peak-to-peak amplitude of respiration-induced
autonomicmodulation aresp.We evaluated the network on simulated
data and the results indicated that aresp can be estimated with an
RMSE of 0.066, corresponding to a sixth of the expected range for
aresp between 0 and 0.4. Previous studies indicate thatAFprogression
is linked to impaired baroreflex sensitivity (van den Berg et al.,
2001; Field et al., 2016; Miyoshi et al., 2020; Ferreira et al., 2023;
Wang et al., 2023). Additionally, in healthy subjects, the baroreflex is
a major contributor to respiration-induced autonomic modulation
(Piepoli et al., 1997). Together, this suggests that our proposed
estimate for respiration-induced autonomic modulation, aresp, holds
potential as a marker for AF progression. However, further studies
are needed to confirm this relationship.

Initial results from analysis of clinical ECG data from patients
in AF (cf. Figure 7A) indicate that during normal breathing, âresp
is often consistent between consecutive 1-min segments from the
same patient, and displays a systematic difference between patients,
suggesting that âresp is reproducible and sensitive. During controlled
breathing at 0.1Hz, âresp displayed a large interpatient variability
(cf. Figure 7A) and represented the most extreme value in 10
of 20 patients (cf. Figure 7B), further supporting an adequate
sensitivity. However, further studies with a larger study population
and repeated tests with multiple fixed respiration rates are needed
to verify reproducibility and sensitivity. The respiration rate of
0.1 Hz is associated with a maximized HRV response and baroreflex
sensitivity in NSR (Russo et al., 2017), and hence we expected an
increase in âresp during deep breathing. However, results from the
Monte Carlo sampling showed that âresp increased in response
to deep breathing in 5 patients, decreased in 5 patients, and
remained the same in 10 patients. There are several possible reasons
for this, e.g., the differences in respiration rate during normal
breathing (cf. Figure 4), individual variation in the cardiorespiratory
system resonance frequency (Russo et al., 2017), and differences
in autonomic remodeling. It should be noted that the individual
differences cannot be entirely attributed to the differences in
respiration rates, since there was no correlation between changes
in respiration rate and changes in aresp. Due to the small patient
group and lack of ground truth data in this study, future work with
access to ground truth data is required to investigate if there is a
correlation between aresp and baroreflex sensitivity, andwhether aresp
is a diagnostic marker for autonomic dysfunction. A re-evaluation
of 50% of the SCAPIS population is currently underway within
the SCAPIS2 study, and the data could allow for the investigation
of whether the aresp estimates decrease over time in the same
AF patients, which would indicate a progression in autonomic
remodeling. Furthermore, the collected data could be used for
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FIGURE 6
Contour plot of local RMSE estimates over a range of f′resp and ϵ′ for CRR (A), CRR,AFR (B), CRR,Resp (C) and CRR,Resp,AFR (D). Except for the grey region, the
CNNs in (C, D) have a higher accuracy than the CNNs in (A,B) respectively.

phenotyping the relation between respiration-induced autonomic
modulation, autonomic dysfunction, and AF progression.

In our previous model formulation, we accounted for the
autonomic modulation by introducing constant scaling factors for
the refractory period and conduction delay (Plappert et al., 2022).
With the scaling of AV nodal conduction properties, it was shown
that the incorporation of ANS-induced changes in the model
allowed better replication of several statistical properties of clinical
RR series obtained from tilt tests. In the present study, this approach
was further developed by using a time-varying scaling factor
AP(t) to account for respiration-induced autonomic modulation
in AV nodal conduction properties based on the assumption
that some degree of respiration-induced autonomic modulation
generally influences RR series characteristics during AF. We model
respiration-induced autonomicmodulation as a joint increase in AV
nodal refractoriness and conduction delay in response to exhalation
and a joint decrease inAVnodal refractoriness and conduction delay
in response to inhalation. It is known that respiration modulates
the parasympathetic activity, where inspiration decreases vagal
activity and expiration increases vagal activity (Katona et al., 1970;
Russo et al., 2017). Many electrophysiological (EP) studies have
demonstrated that an increase in parasympathetic activity causes
an increase in AV nodal conduction delay; studies in dogs reported
an increased conduction delay with vagal stimulation (Irisawa et al.,
1971; Spear and Moore, 1973; Martin, 1975; Nayebpour et al., 1990;

Pirola and Potter, 1990; Goldberger et al., 1999) and acetylcholine
administration (Priola et al., 1983). Furthermore, an increase in
parasympathetic activity with vagal stimulation in dogs has been
demonstrated to increase the AV nodal refractory period (Spear
and Moore, 1973; Nayebpour et al., 1990; Goldberger et al., 1999).
For a decrease in parasympathetic activity with atropine, EP studies
demonstrate that the AV nodal conduction delay decreases in dogs
(Irisawa et al., 1971) and humans (Lister et al., 1965; Akhtar et al.,
1974), and the AV nodal refractory period also decreases in humans
(Akhtar et al., 1974).

The assumption that some degree of respiration-induced
autonomic modulation generally influences the RR series
characteristics during AF is also indicated by the fact that some
AF patients display clear fluctuations in their RR series matching
their respiration frequency (Rawles et al., 1989; Chandler and
Trewby, 1994; Nagayoshi et al., 1997). Such fluctuations could
also be seen in simulated RR series for some AV node model
parameter sets. During model development, we noticed that an
increase in aresp leads to an increase in the relative contribution
of the respiration frequency in the frequency spectrum of the RR
series with zero-mean FRR( fresp)/∑f FRR( f) and an increase in the
sample entropy of the RR series. We also noticed that an increase
in fresp leads to a decrease in FRR( fresp)/∑f FRR( f) and an increase in
the sample entropy of the RR series. When averaging over several
realizations of RR series (data not shown), FRR( fresp)/∑f FRR( f) could
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FIGURE 7
(A) Black dots correspond to the estimated âresp of 1-min segments during normal breathing (NB) and red squares correspond to âresp of
1-min segments during deep breathing (DB). The vertical lines correspond to ±σ( fresp, ϵ), where the local RMSE σ( fresp, ϵ) is taken from Figure 6D. (B)
Probabilities of aresp being higher in DB than in NB (yellow, arrow-up), similar in DB and NB (red, tilde), and lower in DB than in NB (blue, arrow-down).

be clearly seen for most of the parameter sets but is usually masked
in individual RR series segments by the irregularity of the RR
series. Using cross-spectral analysis, no simple linear relationship
has been found between respiration signal and RR series in AF
patients, but a linear relationship was shown in NSR (Pitzalis et al.,
1999). A possible reason for this is that the relationship between
the RR series and respiration-induced autonomic modulation in
AV nodal conduction properties during AF is complex and non-
linear, emphasizing the need for a model-based approach. Besides
some indications of fluctuations in the RR series, for most of the
patients reported in (Rawles et al., 1989; Chandler andTrewby, 1994;
Nagayoshi et al., 1997; Pitzalis et al., 1999; Pacchia et al., 2011) and
also for the clinical data used in this study, no fluctuations in the RR
series matching their respiration frequency were found. To match
FRR( fresp)/∑f FRR( f) in the clinical data which was always below 7%,
parameter sets with a higher relative peak spectral energy were
excluded from the simulated data (criterion 5 in Section 2.3.2). The
RR series characteristics of the simulated data differed significantly
from both the normal breathing and deep breathing data (cf.
Table 3). Simulated data with RR series characteristics more similar
to the clinical data could be generated by imposing stricter exclusion
criteria, e.g., increasing the lower bounds for irregularity and
variability set by criteria 3 and 4 in Section 2.3.2. However, the
simulated data still included signals resembling the clinical data, and
the wider range of characteristics likely improved the CNN training
by facilitating generalization across a broader range of RR-series.
Nevertheless, it is assumed that by the sheer size of the simulated
datasets and the conservative model parameter ranges, there will be
simulated RR series in the dataset that resemble the clinical data.

The lead-specific respiration signals were computed using the
slope range method which was designed for ECG data during AF

(Kontaxis et al., 2020) and found to be one of the best performing
and simplest methods for lead-specific respiration signal extraction
(Varon et al., 2020). The result of the lead-specific respiration signal
extraction can be improved when combining respiration signals
from multiple ECG leads with a joint-lead respiration signal.
Previously, the principal component analysis (PCA) has been used
to extract joint-lead respiration signals from the clinical data used
in this study (Abdollahpur et al., 2022). However, the principal
components were sensitive to high variance noise as the PCA is
based on second-order statistics. To address this issue, we developed
a novel approach for robust fusion of lead-specific respiration signals
based on the πCA (Sameni et al., 2008). Under the assumption
that the respiration signal has a periodic structure where the
respiration frequency and volume between breaths are constant, the
πCA is more suitable for the extraction of joint-lead respiration
signals compared to other blind-source separation methods, such
as the PCA and basic independent component analysis (ICA).
This is because the πCA finds the linear mixture of lead-specific
respiration signals with maximal periodic structure, whereas the
PCA and basic ICA are based on second-order and fourth-order
statistics, respectively. We assume that the respiration frequency
and volume between breaths do not vary much in 1-min segments,
making the πCA a suitable approach for the extraction of short
joint-lead respiration signals. However, considering that the CNN
C2.5min
RR,Resp,AFR performs better when using 2.5-min segments instead of

1-min segments, anothermethodmay be required for the extraction
of longer joint-lead respiration signals.

The comparison between the CNN CRR,Resp,AFR and the linear
regression LRR,Resp,AFR shown in Figure 5 demonstrates that
the relation between the ECG-derived features, i.e., RR series,
respiration signal and mean atrial arrival rate to aresp is complex
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and nonlinear. TheLRR,Resp,AFR was unable to estimate aresp (Pearson
sample correlation r = 0.037) and performed clearly worse in
estimating aresp than the investigated CNN CRR,Resp,AFR (r = 0.855).
It should be noted that the purpose of this comparison is to
exclude the possibility that there is a simple and linear relationship
between the ECG-derived features and aresp. We also investigated
the performance of a Gaussian kernel support vector machine
for estimating aresp, representing a classical non-linear algorithm.
Results were slightly better than for the linear model (r = 0.254,
details in Supplementary Section 1), but still clearly worse than
for the CNN. The advantage of the CNN over the less flexible
models might be partially due to its ability to implicitly extract
more complex features from the respiration signal and RR series in
the early layers. While no such set of features is currently known for
this problem, this leads us to speculate that some type of additional,
pre-defined feature extraction step might improve the performance
of also the simpler models. However, this task is far from trivial and
lies outside the scope of the present study, but may nevertheless offer
an interesting avenue for future work, e.g., by investigating statistical
properties of the RR series based on RMS of successive RR interval
differences or entropy measures.

In this study, we only investigate the performance of one basic
CNN architecture. While some variations on this were tested during
the neural network development, no extensive investigation has
been performed and there is always the possibility that alternative
architectures or algorithms may further increase the performance
for the present task. For instance, a recent study suggests that
combining the regression loss with a classification loss during
training might improve regression results on imbalanced data
(Pintea et al., 2023). The CNN described in this study requires the
RR series for the estimation of aresp and the mean atrial arrival
rate always improved the estimation. In this evaluation, however,
μ was set to the correct value; we did not account for estimation
errors that are most likely present in real data since AFR provides a
crude estimate of the atrial arrival rate. Moreover, the addition of the
respiration signal only improves the estimation when of sufficient
quality as quantified by ϵ. The linear dependence between η and
ϵ supports our assumption of ϵ as a marker of respiration signal
quality (cf. Section 3.2). Whereas the addition of the respiration
signal andmean atrial arrival rate can improve the estimation of âresp,
a method based on RR series only is less sensitive to noise in the
recordings. Potentially, the RR series could be extracted from pulse
watch data, allowing for continuous monitoring of aresp in a wide
range of applications.

The performance of the CNN is dependent on fresp and ϵ
(cf. Figure 6), where fresp appears to have a larger impact on the
performance than ϵ. The marker of respiration signal quality ϵ was
not used as an exclusion criterion for 1-min segments, because the
addition ofX Sim

Resp to the input only slightly improved the accuracy of
the âresp estimation and the influence of ϵ on the RMSE compared to
fresp was small. Instead, ϵ was used to choose the best combination
of non-overlapping 1-min segments. Interestingly, the performance
of the CNNs CRR, CAFR, CRR,AFR still show a slight dependence on
ϵ although this parameter quantifies the non-periodicity and signal
quality ofX Sim

Resp (cf. Figure 6).This suggests that ϵ carries information
about the RR interval series, andmay indicate that the distribution of
AV node model parameters varies over different ϵ and that different
subsets of model parameters result in different local RMSEs. One

possible explanation why the impact of fresp on the performance
is prominent may be that there are fewer respiratory cycles in
the 1-min segment at lower fresp. When using 2.5-min segments in
the input data, the performance of the CNN C2.5min

RR,Resp,AFR improved
overall, especially at lower fresp. The segment length was set to
1 min in this study due to the recording length of 1 min during
deep breathing.

There are several limitations of the present study. We assume for
simplicity that the variations in AV nodal refractoriness are similar
to the variations in AV nodal conduction delay. We also assume
that the variations in AV nodal refractoriness and conduction
delay are similar between SP and FP. Moreover, the model does
not include phase shifts between the RR series and respiration
signal for different respiration frequencies (Angelone and Coulter,
1964), or effects of respiration volume (Grossman and Taylor,
2007). Hence, a different scaling for the refractory period and
conduction delay, a different scaling for the SP and FP, a phase
shift between the RR series and respiration signal, and an inclusion
of respiration volume might form interesting directions for future
model improvements. We did not account for respiration-induced
modulation in theAA series, because themodulation is small during
AF (Celotto et al., 2020; Abdollahpur et al., 2022). When choosing
the bounded uniformdistribution of aresp for the training and testing
dataset, we made a tradeoff between bias and variance. The reason
why aresp was randomly drawn from U[−0.1,0.5] in the training
data and randomly drawn from U[0,0.4] in the testing data of the
CNN is to reduce the bias in the âresp estimation (cf. Figure 5).
Without extending the range of aresp in the training data, the sample
mean of the âresp diverged more from aresp at values close to 0 and
0.4. However, the accuracy of the CNNs decreased by extending
the range of aresp in the training data. While plenty of simulated
data with aresp ground truth can be generated using the AV node
model, there was no aresp ground truth available for the clinical
dataset and its size was limited. A viable approach to obtain aresp
ground truth may be through measurements of vagal nerve activity,
which were previously collected in a large number of experimental
studies, e.g., to assess the relationship to HRV during sinus
rhythm in rat models (Marmerstein et al., 2021) and to assess the
relationship to paroxysmal AF episodes in caninemodels (Tan et al.,
2008). Furthermore, ultrasound-guided microneurography was
proposed to obtain in vivo recordings from the human vagus nerve
(Ottaviani et al., 2020) and results from analysis of intraneural
recordings from cervical nerve in awake humans suggest that
cardiac and respiration-induced autonomic modulation during
normal sinus rhythm can be identified (Patros et al., 2022). Another
possibility would be indirect quantification of respiration-induced
autonomic modulation via acetylcholine concentration (Świt et al.,
2023), but we are not aware of any procedure or method that would
produce the required time resolution.

5 Conclusion

We presented an extended AV node model that accounts for
respiration-induced autonomicmodulation in conduction delay and
refractory period.We trained a 1D-CNN to estimate the respiration-
induced autonomic modulation in the AV node with simulated
RR series, respiration signal, and mean atrial arrival rate which
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replicates clinical ECG-derived data. Using simulated data, we
demonstrated that the respiration-induced autonomic modulation
can be estimated using the 1D-CNN from RR series alone and that
the estimation is improved when adding a respiration signal and
AFR. Initial results from analysis of ECG data from 20 patients
performing a deep breathing task suggest that our proposed estimate
of respiration-induced autonomic modulation aresp, is reproducible
and sufficiently sensitive tomonitor changes and to detect individual
differences. A reduced estimate of aresp may possibly indicate
some degree of autonomic dysfunction. However, further studies
are needed to verify the reproducibility, sensitivity, and clinical
significance of aresp.
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Abstract1

Atrial fibrillation (AF) is associated with reduced cardiac output, which is cor-2

related with an increase in symptomatic burden and a decline in quality of life.3

Predicting the hemodynamic effects of AF remains challenging due to the complex4

interplay of multiple contributing mechanisms. Computational modeling offers5

a valuable tool for simulating hemodynamics. However, models that are both6

capable of replicating beat-to-beat hemodynamic variations during AF and well7

suited for fitting to clinical data are largely lacking. In this study, we present a8

computational model comprising an electrical subsystem that produces the atrial9

and ventricular activation times characteristic for AF and a mechanical subsys-10

tem describing the cardiovascular mechanics. The model was fitted to replicate11

individual hemodynamic measurements of 17 patients from the SMURF study12
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in normal sinus rhythm (NSR) and AF. The fitted model replicated systolic and13

diastolic blood pressure and intracardiac pressure measurements in both NSR14

and AF with an absolute simulation error below 8.1 mmHg in a large majority15

of simulated patients (75%). Furthermore, the fitted model replicated left atrial16

and left ventricular ejection fraction measurements in NSR in a large majority of17

simulated patients with an absolute simulation error below 8.6%. In NSR, the right18

ventricular diastolic pressure was consistently underestimated, whereas in AF, the19

right ventricular systolic pressure and mean left atrial pressure were consistently20

overestimated. When comparing the simulated hemodynamic trends during AF21

across three models of atrial contraction, a model dividing the atria into multiple22

patches with independent and irregular mechanical activation times best replicated23

atrial and ventricular pressure and volume trends during AF within physiological24

ranges.25

Keywords computational modeling · hemodynamics · atrial fibrillation · SMURF ·26

RR series characteristics · atrioventricular node27
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Abstract1

Background: Atrial fibrillation (AF) is characterized by uncoordinated atrial acti-2

vation and is recognized as a progressive disease requiring different management3

strategies at various stages. ECG-derived indices of atrial remodeling have demon-4

Prognostic value of ECG-derived f-wave characteristics ... 115



arXiv Template MANUSCRIPT

strated predictive value in established AF. These indices include atrial fibrillatory5

rate (AFR), average amplitude of the f-wave envelope (Amp), and the organization6

index derived from the signals spectral characteristics (ExpDec). However, their7

utility in early-stage AF remains unexplored.8

Methods: The study comprised 1 411 participants (758 men, median age 73 years)9

without previously documented AF who participated in the LOOP study and10

received implantable loop recorders (ILR) for continuous monitoring. ECG signals11

from detected AF episodes were analyzed using the Cardiolund AFR Tracker12

software to extract AFR, ExpDec, and Amp indices. Two patient subgroups13

were formed based on AF episodes within the first year after ILR implantation:14

patients with AF episodes ≥6 minutes (n=231) and ≥60 minutes (n=96). For15

each subgroup, a reference group was formed from patients without AF episodes16

meeting the respective duration threshold. AFR, Amp and ExpDec from AF17

episodes recorded within one year after ILR implantation were considered baseline18

and tested for association with the outcome during the remaining duration of follow-19

up. Cox regression analysis, adjusted for clinical risk factors, was used to assess20

the relationship between f-wave indices and total mortality (primary endpoint),21

cardiovascular mortality or heart failure admission (secondary endpoint), and22

ischemic stroke or transitory ischemic attack (secondary endpoint).23

Results: In patients with AF episodes ≥60 minutes, lower values of AFR (<31724

fpm), ExpDec (<1.25), and Amp (<97.25) were significantly associated with25

increased risk of total mortality (Hazard ratio (HR): 2.5, 2.8, and 2.7, respectively)26

and increased risk of the composite endpoint of cardiovascular mortality or heart27

failure (HR: 4.0, 3.7, and non-significant, respectively). In patients with AF28

episodes ≥6 minutes, higher AFR was significantly associated with increased risk29

of total mortality (HR: 1.7). Moreover, lower AFR but higher ExpDec and Amp30

values were significantly associated with increased risk of the composite endpoint31

of cardiovascular mortality or heart failure (HR: 2.4, 2.6, and 2.5, respectively).32

Importantly, none of the f-wave indices demonstrated prognostic value for the33

composite endpoint of ischemic stroke or transitory ischemic attack in the early34

stages of AF.35

Conclusions: ECG-derived indices of atrial remodeling, particularly AFR, ExpDec,36

and Amp, demonstrate significant predictive value for total mortality and the37

composite endpoint of cardiovascular mortality or heart failure in patients with38

early-stage AF episodes, suggesting their potential utility as risk stratification tools39

in early AF management.40
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