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Abstract

Abstract

Two-view estimation is a fundamental problem in 3D computer vision, and an important
sub-task of multi-view estimation pipelines such as Structure-from-Motion (SfM) and Si-
multaneous Localization and Mapping (SLAM). In recent years, the main focus in the field
has been on keypoint-based methods, where interest points are first detected and matched
across the two images, followed by robust estimation of the geometry based on these key-
points. In this robust estimation step, the traditional approach is to use keypoint coordi-
nates as basis for the estimation, by minimizing a geometric residual such as the reprojection
error.

This thesis investigates estimation based on keypoints using richer geometric information,
in addition to the keypoint coordinates. The goal is to increase efficiency in the estima-
tion to achieve better runtime with maintained accuracy, which is an important factor for
inclusion in multi-view systems for StM and SLAM.

The thesis is based on three papers; the first two concern sample efficient minimal solvers
for relative pose and homography estimation, using keypoints augmented with additional
geometric information. In the first paper, we use scale information to constrain relative
depths when estimating relative pose. In paper II, we use both scale and orientation infor-
mation to constrain estimation of a plane-induced Euclidean homography. By combining
multiple similar and seemingly redundant constraints, we develop a novel minimal solver
allowing us to get noisy but surprisingly good homography estimates from even a single
correspondence. The third paper is focused on summarizing semi-dense keypoint matches,
to harness recent improvements in dense, detector-free keypoint matching. We introduce
a summarization scheme that reduces the redundancy of semi-dense keypoints, which sig-
nificantly decreases runtime compared to traditional estimation, with negligible reduction
in estimation accuracy.
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Introduction

A central problem in 3D computer vision is the estimation of scene geometry from un-
constrained image collections, known as Structure-from-Motion (SfM). In the general for-
mulation, SfM involves simultaneous optimization of the 3D structures in a scene and
the unknown parameters of the cameras that captured it. SfM, and the related task Si-
multaneous Localization and Mapping (SLAM), have received a lot of attention in recent
decades and emerged as useful tools for visual localization and large-scale photogrammetry,
with applications ranging from autonomous navigation [26] and augmented reality [2], to
geosciences [46] and cultural heritage preservation [11]. Scene reconstruction can also be
used as a prior for novel view synthesis, which has recently gained tremendous attention in
the vision research community following the success of neural radiance fields [35] and 3D
Gaussian splatting [22].

The main challenge in Structure-from-Motion is to robustly handle image collections taken
from different viewpoints, potentially with different cameras, and presented to the system
in no particular order. The images may also be taken at widely different points in time,
which mean they can contain large variation in lighting conditions, changing seasons, and
potentially even changes to the scene itself; see Figure 1 for a few examples.

L

Figure 1: Wide baseline image pairs. Unconstrained image collections may contain large variations in camera position, illu-
mination, and structural changes in the scene. Even if humans easily can understand the relation between camera
positions in these images, automated estimation can be challenging. Image pairs are from the WxBS dataset [36].
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Systems with better robustness to these conditions typically come with a trade-off in terms
of runtime, 7.e. more robust and accurate methods tend to have a greater computational
burden. This thesis investigates methods for improving this runtime-accuracy trade-off,
to achieve shorter runtimes with maintained estimation accuracy. It is based on three pa-
pers, with the common theme of estimating geometry from correspondences containing
more geometric information compared to the traditional keypoints used in most modern
pipelines. The focus is on two-view estimation, which is an important sub-problem in both

SfM and SLAM.

The thesis is organized as follows: the next two sections cover the relevant background and
context of the presented research. Section 1 gives an overview of the mathematical models
used in two-view geometry, while Section 2 covers methods for robustly estimating two-
view geometry from real data. Then, in Section 3, a summary of the research contributions
in this thesis is given, as well as a discussion on future research directions. The full papers
are included at the end of the thesis.

1 Two-view Geometry

This section introduces the necessary mathematical models for two-view geometry: the
Sfundamental matrix, the essential matrix, and homographies, as well as the camera model.
In this thesis, we always assume a pinhole camera model with no distortion. For a more
detailed discourse on camera models and two-view geometry, we refer to [20].

1.1 The Pinhole Camera Model

Consider a camera placed at the origin in some coordinate system, which we will refer to
as the camera’s coordinate system, looking down along the positive z-axis. In the pinhole
camera model, each scene point X € R? is projected along a line ¢ = {1X | pn € R} that
passes through the origin, see Figure 2. This line’s intersection with the image plane z = 1
gives the image point (z,y,1) € R3, which corresponds to (x,y) € R? in the plane.

However, since all points on the line ¢ projects to the same point, any triplet (Az, Ay, \)
for A # 0 is an equivalent representation of (x,y). Any such representation is referred to
as the homogeneous coordinates of (x,y). Then, we can write

A =X, 1
where @ is a homogeneous representation of (z,y).

To describe simultaneous projection into multiple cameras, it is necessary to convert be-
tween each camera’s own coordinate frame and a world coordinate system. If the camera is
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. (R, t) - K
<: /\4 -7 — oD

Figure 2: Overview of the pinhole camera model. A scene point X € R? in world coordinates is transformed to the
camera’s coordinate system by a rotation R and a translation . The transformed point X is projected along the line
uX . The corresponding calibrated image point in homogeneous coordinates is . The calibrated image point x is
transformed to homogeneous image or pixel coordinates p using the calibration matrix K.

rotated by R € SO(3), followed by a translation ¢ € R in the rotated coordinate system,
then a scene point X € R? in world coordinates is given in the camera’s coordinate system

by the transformation R
X =RX +t. (2)

This gives us the projection from world coordinates as

A =RX +¢. (3)

To model transformation from the camera’s calibrated coordinate system to image or pixel
coordinates, we use the calibration matrix

fz 0 x
K=10 f, v/, (4)
0 0 1

where (20,90) € R? is the principal point, fy, f; € R the focal lengths, and we have
assumed zero skew. The image point p in homogeneous image coordinates is related to X
by the camera equation

Ap = K(RX +1). 5)

The point p is also referred to as the uncalibrated image point.

1.2 The Fundamental Matrix

Image points that represent projections of the same 3D scene point into different cameras
is called a keypoint correspondence. For a keypoint correspondence, the camera equation (5)
must be satisfied for both keypoints simultaneously, for the same scene point. Formally, let
(p, P') be an uncalibrated keypoint correspondence associated with the scene point X. If
the relative pose of the two cameras is (R, t) € SE(3), then the camera equations are

Ap =KX,

6
Np' = Ky(RX + ), (©)
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where K1, K are the calibration matrices of the two cameras.

Substituting X = MK 'p from the first row into the second and multiplying from the
left with (K5 'p/)T[t]x, where []x is the skew-symmetric matrix representation of the
cross-product, gives the well-known epipolar constraint

(p)'Fp=0, @)

were F = K5 T [t]XRKl_l is known as the Fundamental Matrix [32]. From (7), the
fundamental matrix can be recovered from eight keypoint correspondences using the Direct
Linear Transform (DLT) algorithm. By also using the non-linear constraint det F' = 0, the
problem can even be solved from seven correspondences [20]. Since this is the least number
of keypoint correspondences required to constrain the fundamental matrix, it is called the
minimal sample, and the 7-point solver is called the minimal solver for the fundamental
matrix. However, if additional geometric constraints are known, the minimal sample can
be less than seven points. For example, Bentolila and Francos [10] introduced a solver
requiring only three affine correspondences, i.e. point correspondences with associated local
affine transformations.

1.3 The Essential Matrix

If the camera parameters are known, the keypoint correspondences can be replaced by
their calibrated counterparts ¢ = K| 'p and &’ = K, 'p’. The corresponding camera
equations are

Ax = X, ®)
Nz’ =RX +t.
The epipolar constraint for a calibrated keypoint correspondence is
() TEx =0, ©)

where E = [t] <R is known as the Essential Matrix [30]. The Essential matrix thus encodes
the relative rotation and translation between cameras with known calibration.

Similarly to the fundamental matrix, the DLT algorithm can be used to recover the essential
matrix from eight keypoint correspondences. The minimal problem, however, only requires
five correspondences, and was efficiently solved by Nistér in 2004 [38]. If more geometric
constraints are known, in addition to the keypoint coordinates, the problem can be solved
from even fewer than five correspondences. For example, in [19] a minimal solver was
introduced for the case of known vertical direction, obtained from an inertial measurement
unit. In this case, three correspondences were enough to solve the minimal problem. Other
works have used constraints from monocular depth [8] or affine correspondences [3].
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In Paper I, we introduce a minimal solver leveraging the inter-image relative scale of key-
points, reducing the minimal number of correspondences to three. A similar idea was
presented in [29]; however, we present an alternative parametrization that we show is more
stable to noisy estimates of the relative depth. If we also assume known vertical direction,
our solver is able to recover the pose using only two correspondences.

1.4 Homographies

If a collection of scene points { X; }ien lie on a plane v = (n, d) in 3D, parameterized by
the normal n € R3 and depth d € R, then in addition to the camera equations (6) or (8)
the plane equation

n'X;+d=0 (10)

must be satisfied. We shall only treat the calibrated case here; inserting (10) into the camera
equations (8) gives

Na' = A (R n tnT> x, )

where

H=R+tn' (12)
is the plane-induced Euclidean homography. Using the DLT algorithm, the homography

can be recovered from four keypoint correspondences.

Just like for fundamental and essential matrix, previous works have introduced additional
constraints to estimate the homography from fewer correspondences. For example, Barath
and Hajder [4] used just two affine correspondences to constrain the homography. Sim-
ilarly, Barath and Kukelova [5] used scale and orientation estimates to approximate the
affine correspondences, to also solve from two correspondences. In paper II, we introduce
an alternative minimal solver from two correspondences, also by leveraging both scale and
orientation constraints. This is then extended by including the affine constraint from [5],
along with a heuristic line-normal constraint, to give noisy but surprisingly good homog-
raphy estimates from just a single correspondence.

2 Robust Two-view Estimation

The dominant approach for robust two-view estimation is based on first establishing key-
point correspondences in the image pair, and then trying to find a model that best fit to
these keypoints. Since the matching step may introduce large errors caused by incorrect
matches, keypoint-based geometry estimation must be robust to such errors. An alternative
approach is to learn direct regression of a geometry model from the images. An overview
of methods for keypoint detection, robust estimation, and direct regression is given below.
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2.1 Keypoint Detection and Matching

Some of the earliest work on detection and matching of salient keypoints in images was
done by Moravec [37] in 1981. In a seminal work from 2004, Lowe later introduced the
Scale Invariant Feature Transform (SIFT) [31], detecting interest points at multiple scales
and estimating an associated orientation. This enabled keypoint matching that is covariant
to scale and rotation changes. As a further consequence, SIFT-keypoints provide a rough
estimate of the associated scale and orientation of matched features, in addition to establish-
ing keypoint correspondences. In papers I and II, we leverage this additional information
to present novel minimal solvers for relative pose and homography.

In contrast to the hand-crafted features in SIFT, more recent developments in keypoint
detection, such as SuperPoint [15], have focused on deep neural networks that learn both the
detection and description of interest points through self-supervised learning. The matching
of learned feature descriptors was later improved with SuperGlue [41] and LightGlue [28],
by formulating matching as an optimal assignment problem on a Graph Neural Network,
where features are aggregated using attention [44].

Recently, an emerging trend has also been seen in detector-free matching, sparked by the
introduction of the Local Feature TRansformer (LoFTR) in 2021 [42]. Instead of first
detecting salient and repeatable interest points and then matching them, the detector-free
paradigm works by first matching images pixel-wise and then extracting refined keypoints.
In LoFTR, the matching is done using self- and cross-attention on feature maps encoded
by a Convolutional Neural Network (CNN). In addition to generally giving more matches
per image pair, detector-free matchers are able to find correspondences even where salient
keypoints are not available, such as on homogeneous surfaces or in repetitive patterns;
see Figure 3 for an example.

The feature matching in LoFTR is however limited by the coarse level at which features
are extracted, due to down-sampling in the CNN. In ASpanFormer [12], attention at dif-
ferent scales is used to get a more fine-grained matching. Dense Kernalized Matching
(DKM) [16] instead refines coarse initial matches through depthwise convolutions on a
pyramid of feature maps, resulting in the prediction of pixel-dense warps between images.
In RoMa [17], coarse features are encoded using the visual foundation model DINOv2 [39],
which has shown a remarkable ability to match semantically similar features under extreme
pose changes, different image styles, and even between different objects. These coarse fea-
tures are then decoded into coarse matches using a transformer architecture, and refined
with a separate CNN-based feature encoding.

For the purpose of geometry estimation using traditional keypoint-based methods, pixel-
dense warps such as the ones established by DKM and RoMa need to be sampled into
semi-dense keypoint correspondences. In both DKM and RoMa, this sampling is done by
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—-

|
SP+LG: 193 inliers

B -
ASpanFormer: 2,389 inliers | - RoMa: 5,489 inliers

Figure 3: Qualitative comparison of keypoint correspondences using different matchers on an image pair from Scan-
Net [14]. The two top images show sparse keypoint matches from SIFT (left) and SuperPoint+LightGlue (right). Here,
green lines denote matches with a Sampson error lower than 2.5 pixels (i.e. inliers) based on the provided ground-
truth pose. Conversely, red lines denote matches with an error larger than 2.5 pixels (i.e. outliers). The two bottom
images show semi-dense keypoints from ASpanFormer (left), and dense matching from RoMa sub-sampled to 10,000
semi-dense matches (right). Here, black points denote outliers while a color gradient is applied to inliers such that
corresponding keypoints have the same color in both images.

balancing a predicted warp certainty per pixel with a reciprocal match density to enforce
diversity; see [16] for details.

2.2 Robust Estimation

When estimating geometry on real data, it can be expected that the measurements, in the
form of keypoint correspondences, contain some noise. It is well known that if all noise is
normally distributed, the maximum likelihood estimator is found by minimizing squared
residuals. However, correspondence sets may also contain mismatched keypoints, called
outliers, which do not follow a normal distribution. For difficult image pairs, this outlier
ratio can be significant, even for state-of-the-art image matchers like SuperPoint+LightGlue
(SP+LG) or RoMa, as observed in Figure 3. In order to find an optimal model by least-
squares optimization, it is necessary to filter away outliers. This needs to be done simul-
taneously with estimation of the model, since the two problems are interconnected. The
problem of simultaneously estimating a model and its support is colloquially known as
robust estimation.

The most common paradigm for robust estimation in computer vision is RANdom SAm-
ple Consensus (RANSAC), introduced by Fishler and Bolles in 1981 [18]. RANSAC uses
a hypothesize-and-verify approach, alternating between generating new candidate models
and verifying them. The candidate model generation is done by randomly drawing a min-
imal sample, and then estimating the model using a minimal solver. Verification is then
done by calculating residuals using the candidate model (or models, as minimal solvers
may generate multiple possible solutions). From these residuals, a consensus ser is found
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that supports the candidate model according to an inlier threshold hyperparameter. This
process is repeated until the probability of finding a model with a new largest consensus set
falls below a specific threshold, typically less than 1 %. The final model is then refined by

local optimization on its consensus set.

Much attention has been given to improving the initial RANSAC in terms of conver-
gence speed, robustness, and accuracy. Notably, in Locally Optimized RANSAC (LO-
RANSAC) [13, 23] local optimization is done each time a new best model is found. This
not only leads to faster convergence, but also better final model estimates. Following [43],
it is common practice to use truncated residuals for the local optimization. In Graph-Cut
RANSAC (GC-RANSAC) [7], the consensus set is updated based on spatial coherence by
alternating local optimization with solving a graph-cut problem.

2.3 Regression-based Methods

An alternative approach to keypoint-based estimation is direct regression of the geometry
with a neural network. Early works on relative pose regression required highly overlapping
camera views, while later works were able to handle wider baselines [34]. Instead of regress-
ing just a single pose, RelPose [47] estimates probabilistic relative rotations, enabling joint
reasoning from multiple views despite pairwise initial estimation. RelPose++ [27] extends
this to 6D poses, while also processing multiple views jointly.

Recently, Wang ez al. [45] introduced DUSt3R, instead regressing 2D-3D pointmaps for
both images with a single pass through a Siamese vision transformer, followed by separate
transformer-based decoders utilizing cross-image attention. The pointmaps can then be
used for a variety of downstream estimation tasks; for example can relative pose be estimated
through either robust perspective-n-point, or global alignment of the 3D coordinates.

As an extension of [45], MASt3R [24] introduces feature-based matching alongside the
pointmap regression, by adding a second regression head per image to predict feature maps.
Semi-dense keypoint correspondences are then established by sub-sampled mutual nearest-
neighbor matching. Robust estimation from these keypoints further improves performance
of downstream tasks, such as multi-view relative pose estimation.

In general, since direct regression involves no intermediate match assignment, this approach
avoids propagation of errors from strict match decisions performed early in the pipeline.
This also means that expensive robust estimation with RANSAC is typically not required
in regression-based methods, although DUSt3R, for example, does run RANSAC for esti-
mation from the regressed pointmaps. Another consequence of not running intermediate
match assignment is that direct regression typically does not rely on the detection of salient
and repeatable image features, which is essential for sparse keypoint-based methods. How-
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Figure 4: Relative depth from scales. Paper I builds on the idea that relative scale observed from the images is inversely
proportional to the relative depth. By estimating the relative scale, either using SIFT-features or a proposed CNN,
we can calculate the relative depth. We introduce a novel three-point solver for relative pose using this additional
constraint, as well as a two-point solver for known vertical direction.

ever, estimation from keypoints is usually more interpretable compared to direct regression.
In addition, MASt3R shows benefits of adding keypoint matching back on top of a regres-
sion method. For these reasons, it is not obvious whether one of these paradigms is superior
to the other for all applications.

3 Summary of Research Contributions

The research behind this thesis is focused on keypoint-based two-view estimation. How-
ever, unlike purely point-based methods, we focus on extending keypoints with additional
geometric constraints, creating richer geometric correspondences, to get more efficient esti-
mation. In papers I and II, we focus on minimal solvers leveraging scale and/or orientation
estimates to reduce the number of correspondences required for minimal solvers of rela-
tive pose and homography, respectively. In Paper III, we instead summarize semi-dense
keypoints into sparse clusters, with a small matrix approximating the total residual con-
tributions of all keypoints within a cluster. In all papers, the increased efficiency leads to
faster convergence in RANSAC, with at worst a relatively small loss in accuracy. In paper
11, the sample efficiency also leads to increased accuracy for homography estimation.

3.1 Paperl

In paper I, we revisit the minimal problem for two-view relative pose estimation. Similarly
to [29], we observe that the relative depth between keypoints gives one additional constraint
on relative pose and can be obtained from the relative scale in the images, see Figure 4.
With this additional constraint, only three correspondences are needed to solve the minimal
problem. Using fewer samples in the minimal solver increases the chance of finding all-
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Table 1: Results from paper I. Our solver is compared to the traditional, purely coordinate-based five-point solver from [38], and
the solver from [6] approximating affine correspondences from SIFT-keypoints. Evaluation is done on ScanNet-1500[14,
41], using both SIFT and SuperPoint+SuperGlue keypoints. Note that our method only requires scale estimates, while
[6] requires scale and orientation. Thus when using RelScaleNet to estimate the scales, our method is applicable to any
type of keypoints. All compared solvers are using in LO-RANSAC for robust estimation.

SIFT keypoints SP+SG keypoints
Method AUC@5° AUC@10° RT(ms) AUC@5° AUC@10° RT(ms)
5 pt. [38] 11.06 21.99 8.2 17.55 34.21 59.4
3 pt. + SIFT [6] 4.94 10.33 3.7 - - -
3 pt. + SIFT Ours 9.90 20.59 2.9 - - -
3 pt. + RelScaleNet ~ Ours 10.43 21.21 2.9 18.39 35.46 2.9

inlier samples, and this can significantly reduce the number of RANSAC iterations required
for convergence, especially in scenarios with a high outlier ratio. In the paper, we present an
alternative parametrization to that of [29], which we show is more stable to noisy estimates
of the relative depth. Since it is typically harder to get good relative depth estimates than
keypoint coordinates, this stability has a significant impact on the solver performance.

Our parametrization of the relative pose estimation is based on first solving for the unknown
depths A, X" in the camera equations (8). Given three keypoint correspondences (z;, &),
i € {1,2, 3} with associated depths \;, A}, we find that if two of the correspondences have
known relative depths o; = X,/ \i, we can formulate the constraints

@) — o2do@h|* = ||@1 — Agaa|?, (13)
1] — Nsah||* = ||y — Ags]|?, (14)
lo2homhy — Ny || = [|Aama — Azas . (15)

The three unknowns A2, A3, A5 can then be found by solving two quadratics. The key to the
stability of our solver is that we only use two of the relative depths; so if all correspondences
have known estimates of ¢;, we can use all possible permutations to generate candidate
solutions.

We further demonstrate two ways of obtaining the relative scales. First, we show that scale
estimates from SIFT-keypoints are sufficiently accurate for our solver. Then, to make our
method work with any type of keypoints we introduce a CNN, RelScaleNet, that can esti-
mate the relative scale for any keypoint correspondences based on image patches. Through
experiments, we show that our solver performs on par with the five-point solver for both
types of scale estimates in high-inlier scenarios. In low-inlier scenarios, however, our solver
has significantly lower runtime compared to the five-point solver, while maintaining most
of the estimation accuracy, see Table 1. Furthermore, we extend the three-point solver to a
two-point solver for the special case of known vertical direction.

10
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Figure 5: Results from paper Il. Left: Qualitative examples showing top-5 homographies obtained from minimal samples
(blue) and output from GC-RANSAC (red), compared to ground-truth (green). We note that our solver converges in
GC-RANSAC even in some cases where all minimal estimates are noisy.) Right: mAA vs. runtime trade-off on HEB [9].

3.2 Paperll

In Paper II, we continue on the idea of using the scale-derived relative depth constraint from
paper I, and apply it to Euclidean homography estimation. For a point correspondence
(x, ") with relative depth o, the Euclidean homography H: @ — &’ fulfills

ox’ = Hx. 16)

Additionally, we use the orientation estimates from SIFT to form a line correspondence.
Taking ! to be the line through @ with orientation equal to the SIFT orientation (and
analogously for I), we get a line correspondence (1,1’) that fulfills [20]

[MxH'l' = 0. 17)

Using these constraints, together with the constraint from [33, 48] that the second singular
value should be one, we developed a novel homography solver from two SIFT correspon-
dences.

Similarly, a 2-point homography solver using SIFT correspondences was also introduced
in [5], but this differed from ours by using the scale and orientation to approximate an affine
correspondence. By also including this approximation in our solver, we can constrain our
solver further. Although this uses seemingly redundant constraints, we argue that they are
algebraically independent due to relying on different approximations.

Combining these constraints means a single SIFT correspondence gives eight linear con-
straints on the homography, out of which seven are linearly independent. In order to make
the system full rank, we finally add a heuristic constraint that, although formally incorrect,
turns out to have little impact on the result. This constraint is achieved by treating the line
normal as an image point that is mapped by the homography.

11
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Figure 6: Overview of the method in paper lll. Dense matches are first clustered, and then replaced with a representative
match and a 9 x 9 matrix summarizing the residuals. The summarized matches are then used for two-view relative
pose estimation.

Through experiments, we show that the resulting one-point solver, although noisy, has
similar stability as the two-point solver in [5] but with superior sample efficiency. When
integrated into GC-RANSAC, this leads to surprisingly good results as shown in our evalua-
tion, see Figure 5. We draw the conclusion that sample efficiency might be more important
for homography estimation than model accuracy, when used in a robust framework with
strong local optimization such as GC-RANSAC.

3.3 Paperlll

In paper II1, our focus is to take advantage of recent developments in dense and semi-dense
matching, described in Section 2.1. The superior ability of these methods to find accurate
correspondences, even for very wide baselines and homogeneous image regions, enables
downstream estimation even in very challenging scenarios, as demonstrated by the exper-
iments in [17]. However, traditional keypoint-based estimation pipelines were originally
designed for sparse keypoint matches. The computational complexity of robust estimation
in RANSAC scales poorly with number of keypoints, making it prohibitively expensive
to run the same pipelines for pixel-dense sampling of correspondences. Thus, both DKM
and RoMa employ a balanced sub-sampling scheme to extract 5,000-10,000 semi-dense
correspondences for downstream estimation.

In paper III, we show through experiments that semi-dense keypoints provide heavily re-
dundant geometric constraints, which makes traditional robust estimation inefficient, and
suggests that a different approach is needed for semi-dense matches. Our experiments fur-
ther show that too heavy subsampling, on the other hand, leads to a loss in estimation
accuracy.

Instead, we suggest a scheme for clustering correspondences with similar contributions of
geometric constraints, and summarizing their residuals. Our approach is summarized in
Figure 6. In the first step of our approach, we cluster correspondences using K-means in 4D

12
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Figure 7: Results from paper lIl. Left: Example of using our clustering and summarization approach on an image pair from
MegaDepth [25]. In the top images, 10,000 DKM-matches are used to calculate the relative pose. This gives a
pose error is e = 0.38°. Our approach (bottom images) has comparable accuracy but is 43x faster on this image
pair. Right: AUC vs runtime trade-off ScanNet-1500 using different keypoint correspondences, and our summarized
correspondences (CCC and CCA).

match-space and select the match closest to the cluster centroid as a representative march. In
our experiments, we show that using the representative matches for model verification leads
to a runtime improvement of more than 50x compared to fully dense robust estimation, at
only a small cost in pose accuracy (see method CCC in Figure 7).

While the representative matches can also be used for model refinement, we found that
more of the accuracy could be recovered by approximating the Sampson error for all cor-
respondences (&, ), in a cluster with representative match (¢, '), as

(z') Bx)? - (=) Bax)?

EE,z,x') = R~ . (18)
%) = [Epsal + B )0w P ™ TBrael + B e
This lets us write the sum of residuals for a cluster as a matrix expression
1 2
fcl(E; C) ~ |A6|| ) 19)

TBrcl® 1 BT d]?

where A € R™* has rows A; = (z; ® )T, using ® to denote the Kronecker product.
Through Cholesky factorization, the matrix A can equivalently and efficiently be replaced
with a reduced measurement matrix [40] M € R9*9
match, summarizes the geometric constraints of the cluster. By further assuming that each

which, together with the representative

cluster is either all-inlier or all-outlier, the robust approximate cost function for all matches,
using truncated residuals, is approximated with

K
: 1 2 2
18~ Y min{ e Ml e o
k=1

where 7 is a threshold hyperparameter, K is the number of clusters, and |Cy| is the size
of cluster k. This is fast to compute for a reasonably sized K, which can be made at least

13



Introduction

two orders of magnitude smaller than the number of dense matches. By using (20) as cost
function in the model refinement, we recover more of the estimation accuracy compared
to only using representative matches, while still achieving over 40x speedup compared to
dense estimation (see method CCA in Figure 7).

3.4 Conclusions and Future Work

The research presented in this thesis was focused on efficient keypoint-based two-view esti-
mation, using keypoint correspondences with additional geometric information along with
2D coordinates. In papers I and II, the extra information was relative depth, inferred from
relative scale, and relative orientation; both obtainable from SIFT keypoints. We used this
to solve minimal problems with fewer correspondences than purely point-based methods.
Paper III instead focused on summarizing the residuals from semi-dense matches, allowing
the use of dense geometric information in sparse estimation. The main improvements in
the presented work have been in terms of runtime, although we have also shown that in-
creased sample efficiency can lead to better estimates, at least for homography estimation

in GC-RANSAC.

In future work, the summarization scheme in paper III can be extended to other estimation
problems, for example homographies where the transfer errors in a cluster can be summa-
rized similarly to the Sampson error as

(1)

s IHe @) A

Hsx)? Hsc)?’
(z,x’)eC ( 3 ) ( 3 )
where the approximation Hzx ~ H3c corresponds to fronto-parallelism. If the clusters
are approximately planar, we can further use this to reformulate relative pose estimation as
the optimization of K homographies

H, =R+tn], ic{l,... K} (22)

with shared R and ¢. While this introduces additional parameters to optimize for the
two-view case, for multi-view optimization we may benefit from the fact that the normals
are shared across different views. To ensure validity of the co-planarity approximation, it
could be helpful to include the use of a plane detector, similar to [21, 1]. Furthermore,
the approximation of fronto-parallelism could potentially be validated though monocular
depth estimation.

Another possible multi-view extension of paper III could be the formation of tracks of sum-
marized clusters. However, this would require the clustering to be multi-view consistent,
and it is not immediately clear how this should be achieved. Perhaps a more sophisticated

14
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clustering approach is needed for this case, using learned priors such as semantic-aware seg-
mentation. However, the clusters would simultaneously need to be constrained to ensure
tightness of the used approximations.

15
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