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Abstract 
Meeting the food demand of a growing global population with limited agricultural 
resources is one of the greatest challenges of the 21st century. Crop yield is highly 
sensitive to weather variability and climate extremes, which are becoming more 
frequent due to climate change. Accurate regional yield prediction is essential for 
helping farmers adapt, ensuring food security, and strengthening the resilience of 
agriculture. This PhD project focused on improving crop yield prediction in Sweden 
using satellite remote sensing and the ecosystem model LPJ-GUESS (Lund-
Potsdam-Jena General Ecosystem Simulator), resulting in four research papers. 
Paper I introduced the first application of a triple collocation (TC)-based merging 
framework to evaluate the error structure of existing global evapotranspiration (ET) 
products and merge new ET datasets over the Nordic Region. The satellite-derived 
ET product Penman-Monteith-Leuning Version 2 (PML-V2) demonstrated the best 
overall performance among the selected ET products. Validated against Integrated 
Carbon Observation System (ICOS) in-situ measurements, the merged ET datasets 
outperformed individual parent products in terms of multiple evaluation metrics. 
This study provided reliable ET estimates to support the subsequent crop yield 
prediction. Paper II developed a novel framework for estimating spring barley yields 
at the district level in southern Sweden using meteorological data and multi-source 
satellite datasets with the random forest (RF) approach. The combination of 
vegetation indices (VIs) and solar-induced fluorescence (SIF) achieved high 
accuracy in crop yield estimation in April and May, suggesting that barley yield can 
be reliably forecasted two months prior to harvesting. Adding the monthly ET in 
June had slight contributions to the modelling performance. Paper III enhanced the 
performance of LPJ-GUESS (Lund-Potsdam-Jena General Ecosystem Simulator) in 
simulating district-level crop yields in southern Sweden by calibrating the model 
with observed yield and satellite-based ET data. Calibration with observed yield 
significantly improved accuracy for spring barley and winter wheat, while adding 
the satellite-based ET product PML-V2 led to only moderate gains. The calibrated 
model also effectively assessed the drought impacts of 2018, accurately estimating 
yield losses for both crops. Paper IV assessed the impacts of future climate change 
on crop yields in southern Sweden using the calibrated LPJ-GUESS model, driven 
by 3-km high-resolution climate projections. The results showed significant yield 
increases for spring barley and winter wheat by the end of the century under both 
Representative Concentration Pathways (RCP)4.5 and RCP8.5 scenarios. Rising 
carbon dioxide levels and warmer growing-season temperatures drove yield 
improvements, while reduced precipitation (i.e., drought) was expected to sharply 
decrease yields. This PhD project developed a robust framework for crop yield 
prediction using two approaches, following a state-of-the-art TC-based accuracy 
assessment of existing ET datasets. Our results provided a solid foundation for 
improving agricultural management in Sweden and supporting global efforts to 
enhance food security under climate change. 
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Popular summary 
Meeting the growing demand for food driven by a rapidly expanding global 
population is one of the most pressing challenges of the 21st century. Crop yield, 
which measures the amount of harvest produced relative to the land area used for 
cultivation, is a key indicator of agricultural productivity. Accurate predictions of 
crop yields help farmers optimize their financial planning and farming strategies, 
while also playing a crucial role in preventing food shortages and ensuring global 
food security. Most previous research on crop yield prediction falls into two 
categories: data-driven, satellite-based empirical models and process-based crop 
models. This PhD project aimed to improve crop yield predictions in Sweden by 
leveraging both approaches, providing a more comprehensive and reliable 
understanding of future food production from multiple perspectives. 

The development of high-quality evapotranspiration (ET) products is essential for 
enhancing the accuracy of crop yield predictions. As such, the first part of this 
project involved evaluating the accuracy of several existing ET datasets in the 
Nordic Region. The datasets with the least error were selected for further research. 
The second part of this project focused on predicting spring barley yield using 
satellite remote sensing data, climate information, and machine learning techniques. 
The results demonstrated that satellite-based vegetation indices (VIs) and solar-
induced fluorescence (SIF) could achieve high accuracy in crop yield estimation 
during April and May. This suggested that the model could predict spring barley 
yields up to two months before harvest. The third part of the project aimed to 
improve crop yield simulations in the process-based ecosystem model LPJ-GUESS 
(Lund-Potsdam-Jena General Ecosystem Simulator). Six parameters related to crop 
growth in LPJ-GUESS were modified to better simulate crop yields in southern 
Sweden. By fine-tuning the model with real-world yield data and satellite-based ET 
datasets, the model's ability to predict the yields of spring barley and winter wheat 
improved, particularly during extreme weather events like the drought in 2018. The 
final part of this project explored how climate change might impact crop yields in 
southern Sweden under different climate scenarios by using the calibrated LPJ-
GUESS from the last work. The results indicated significant yield increases for both 
spring barley and winter wheat by the end of the century. Warmer temperatures and 
higher carbon dioxide levels were found to generally boost yields, although drought 
conditions could lead to sharp declines in production. From the methodological 
perspective, this project developed an effective framework to improve the accuracy 
of crop yield prediction in Sweden using both satellite remote sensing data and the 
ecosystem LPJ-GUESS model, which can also be applied to other crops and regions. 
From the knowledge perspective, all these studies provided powerful instructions to 
enhance agricultural management and safeguard food security in a changing climate. 
We hope the outcome of this project will enable farmers and policymakers to make 
smarter, more informed decisions. 
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Populärvetenskaplig sammanfattning 
Förmågan att möta växande efterfrågan på mat, driven av en snabbt expanderande 
global befolkning, är en av våra mest pressande utmaningar under det kommande 
århundradet. Skördeutbyte, som mäter mängden skörd i förhållande till den odlade 
ytan, är en nyckelindikator för jordbrukets produktivitet. Noggrannare prognoser för 
skördeutbyte hjälper lantbrukare att optimera sin ekonomiska planering och sina 
jordbruksstrategier, samtidigt som de spelar en avgörande roll för att förhindra 
livsmedelsbrist och säkerställa global livsmedelsförsörjning.  

En majoritet av de tidigare forskningsarbeten som involverar 
skördeutbytesprognoser kan oftast delas in i två olika metodkategorier: antingen 
använder de sig främst av datadrivna, satellitbaserade empiriska modeller eller så 
använder de sig av processbaserade växtmodeller. Denna avhandling syftar till att 
förbättra prognoser för skördeutbyte i Sverige genom att använda sig av en 
kombination av båda dessa tillvägagångssätt. Detta syftar till att ge en mer 
omfattande och tillförlitlig förståelse till framtida livsmedelsproduktion utifrån 
olika perspektiv. 

Högkvalitativa evapotranspirations-(ET) dataprodukter är avgörande för att 
förbättra noggrannheten i skördeutbytesprognoser. Därför handlar den första delen 
av avhandlingen om att utvärdera noggrannheten hos flera befintliga ET-
dataprodukter i den nordiska regionen. De ET-dataprodukter som uppvisade bäst 
resultat i detta steg valdes ut för vidare forskning. Den andra delen av projektet 
fokuserade vidare på att uppskatta skördeutbyte av vårkorn med hjälp av 
satellitbaserade fjärranalysdata, klimatvariabler och maskininlärningstekniker. 
Resultaten visade att användandet av satellitbaserade vegetationsindex (VIs) och 
solinducerad fluorescens (SIF) kunde bidra till att uppnå en hög noggrannhet vid 
skördeutbytesuppskattning redan i april och maj. Detta tyder på att modellen kan 
förutsäga vårkornets skördeutbyte upp till två månader innan skörden. Den tredje 
delen av projektet syftade till att förbättra skördeutbytesimuleringarna i den 
processbaserade ekosystemmodellen LPJ-GUESS (Lund-Potsdam-Jena General 
Ecosystem Simulator). Sex parametrar relaterade till växttillväxt i LPJ-GUESS 
modifierades för att bättre simulera skördeutbyten i södra Sverige. Genom att 
finjustera modellen med verkliga skördeobservationer och satellitbaserade ET-
dataprodukter, förbättrades modellens förmåga att förutsäga skörden av vårkorn och 
vintervete, särskilt gällde detta under extrema väderhändelser, exempelvis 
sommartorkan 2018. I den avslutande delen av projektet utforskades hur 
klimatförändringar kan påverka skördeutbyte i södra Sverige under olika 
klimatscenarier med hjälp av den kalibrerade LPJ-GUESS-modellen, som 
kalibrerades i den föregående delen av projektet. Resultaten här indikerar betydande 
ökningar av skördeutbyte för både vårkorn och vintervete vid seklets slut. Varmare 
temperaturer och högre koldioxidnivåer som väntas råda i framtiden visade sig 
generellt öka skörden, även om torkförhållanden kan leda till kraftiga minskningar 
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i produktionen. Utifrån ett metodologiskt perspektiv utvecklade detta projekt en 
effektiv ram för att förbättra noggrannheten i skördeutbudsprognoser i Sverige 
genom att använda både satellitbaserade fjärranalysdata och ekosystemmodellen 
LPJ-GUESS, vilket också kan tillämpas på andra grödor och regioner. Från ett 
kunskapsperspektiv gav dessa studier kraftfulla verktyg för att förbättra 
jordbrukshantering och säkerställa framtida livsmedelsförsörjning i ett förändrat 
klimat. Vi hoppas därmed att resultatet av detta projekt kommer att kunna hjälpa 
lantbrukare och beslutsfattare att fatta smartare och mer informerade beslut. 
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Introduction 

The importance of crop yield prediction under climate 
change  
Global food security is under increasing pressure as the world population continues 
to rise. The 2020 World Population Data Sheet from the Population Reference 
Bureau projected a continuous increase in the global population from 7.8 billion in 
2020 to 9.9 billion by 2050. Meeting the resulting food demand would require a 
25%–70% increase in current crop production levels (Hunter et al., 2017). Ensuring 
food security under rapid population growth remains one of the most critical 
challenges of the 21st century (Godfray et al., 2010). Crop yield, defined as the ratio 
of harvested product to the cropped area (Carletto et al., 2015), is a fundamental 
measure of food productivity. Crop yields are highly sensitive to weather variability 
and climate extremes (Osborne et al., 2007). Climate change, driven by rising 
temperatures and increased atmospheric carbon dioxide (CO₂) levels, significantly 
affects the thermal growing seasons of plants, including their quantity and duration 
(Easterling et al., 2007). It also alters soil conditions, such as nutrient availability, 
soil temperature, and moisture, while impacting key agricultural management 
strategies essential for sustainable crop production (Gomez-Zavaglia et al., 2020). 
Additionally, human-induced climate change has increased the frequency and 
intensity of daily temperature and precipitation extremes (Zhang et al., 2013), 
leading to extreme events such as floods, droughts, and wildfires worldwide 
(Schickhoff et al., 2016), posing significant challenges to global food security. In 
2018, northern Europe experienced widespread and simultaneous crop yield 
reduction due to an unusual combination of exceptionally low rainfall and high 
temperature from March to August (Beillouin et al., 2020). In Sweden, grain 
production declined by 45% compared to 2017, marking a 43% decrease from the 
five-year average and the lowest yield recorded in 59 years (Statistiska 
Meddelanden, 2018). These events highlight the urgent need to improve our 
understanding of climate change impacts on crop production, which is essential for 
developing effective adaptation strategies to enhance the resilience of the 
agricultural sector in a changing climate. 
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Accuracy assessment of multi-source ET data for crop 
yield prediction 
Terrestrial evapotranspiration (ET) represents the total loss of water through canopy 
interception, plant transpiration, and soil evaporation (Samuel et al., 2018). Given 
its critical role in the plant physiological processes, ET serves as an essential 
variable for monitoring and estimating the agricultural production (Tadesse et al., 
2015; Yang et al., 2018). Therefore, the development of high-quality ET products 
is crucial for improving the accuracy of crop yield prediction. 

In recent decades, multiple global gridded ET products have been developed, 
primarily driven by three approaches: (1) remote sensing-based approach, including 
the Global Land Evaporation Amsterdam Model (GLEAM) (Miralles et al., 2011), 
MOD16 (Mu et al., 2007), and the Priestley-Taylor Jet Propulsion Laboratory 
algorithm (Fisher et al., 2008); (2) model-based approach, such as the Medium-
Range Weather Forecasts model (Crow et al., 2020), ERA-5  (Hersbach et al., 2020), 
the Global Land Data Assimilation System (Rodell et al., 2004), the Land Surface 
Analysis-Satellite Application Facility model (Ghilain et al., 2011), and the 
Mapping Evapotranspiration with Internalized Calibration model (Allen et al., 
2007); and (3) upscaling or interpolation of in situ measurements, exemplified by 
FLUXCOM (Jung et al., 2019). However, each ET estimation method is subject to 
distinct sources of uncertainty, including sensor calibration limitations (Jia et al., 
2012), model parameterization challenges (Byun et al., 2014), and errors in in situ 
observations (Baik et al., 2016). These uncertainties highlight the need for robust 
error estimation techniques to assess and improve the accuracy of ET products. 

Eddy Covariance (EC) systems have been widely utilized to measure latent heat 
fluxes—the energy-driving ET—and are commonly regarded as the “ground truth” 
for evaluating ET estimates. Frequently used EC measurement networks include 
AmeriFlux (Yang et al., 2021), LaThuileFlux and AsiaFlux (Yao et al., 2015), the 
FLUXNET Canada Research Network (Wang et al., 2015), the Coordinated 
Enhanced Observing Period and ChinaFLUX (Yao et al., 2013), and the Southern 
African Regional Science Initiative (SAFARI 2000) project (Majozi et al., 2017). 
However, EC-based evaluations pose challenges in regions with limited or no 
available EC measurement sites. In the Nordic Region, which serves as the study 
area for this research, only a small number of EC stations are available for validating 
ET products. For instance, FLUXCOM includes latent heat data from eight sites 
(Tramontana et al., 2016), GLEAM relies on only two sites (Martens et al., 2017), 
and Penman-Monteith-Leuning Version 2 (PML-V2) incorporates data from three 
sites (Zhang et al., 2019). The scarcity of measurement sites in this region 
complicates efforts to achieve reliable ET product validation. 

Triple collocation (TC) analysis (Stoffelen, 1998) is a widely used statistical 
approach for quantifying uncertainties in various geophysical products. This method 
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has been extensively applied to assess errors in datasets related to precipitation 
(Dong et al., 2020; Duan et al., 2021), soil moisture (Chen et al., 2018; Xu et al., 
2021), and ocean wind speed and wave height products (Li et al., 2021). Unlike 
traditional validation methods that rely on ground observations, TC enables the 
evaluation of dataset uncertainties across broader geographic regions (Chen et al., 
2021). The TC technique estimates the uncertainty (i.e., error variance) of input 
datasets within a triplet without requiring knowledge of the absolute truth. Building 
on this methodology, Yilmaz et al. (2012) developed a TC-based least squares 
merging approach to generate improved products by integrating multiple parent 
datasets. McColl et al. (2014) extended the TC framework by introducing Extended 
Triple Collocation (ETC), which calculates the correlation of geophysical products 
with an unknown true state. Despite the versatility of TC, its application to ET 
products remains limited (Khan et al., 2018). No existing studies have specifically 
examined ET product uncertainties and developed merged ET datasets in the Nordic 
Region. 

Main crop yield prediction approaches 
Two primary approaches have been developed in recent decades to enhance the 
timeliness and spatial coverage of crop yield prediction: (1) satellite-based empirical 
models and (2) process-based crop growth models, with a specific focus here on the 
ecosystem model LPJ-GUESS (Lund-Potsdam-Jena General Ecosystem Simulator). 
Satellite-based empirical models, some combined with machine learning techniques, 
rely on the observed remote sensing data to predict crop yield within the current or 
upcoming growing season, provided that relevant satellite-based environmental 
variables are available. On the other hand, process-based crop growth models, such 
as LPJ-GUESS, can be driven by climate projections to enable longer-term climate 
impact assessment. By estimating plant-climate interactions and simulating 
biophysical processes, both models offer valuable insights into future agricultural 
productivity under varying climatic conditions. As crop yield prediction using LPJ-
GUESS relies on future climate data, this chapter focuses on introducing the model 
itself. The climate data and the application of the model for crop yield prediction 
are addressed in the subsequent chapter. 

Satellite-based empirical models 
Satellite-based empirical models involve the establishment of statistical 
relationships between in-situ crop yield data and satellite-derived variables. The 
rapid advancement of satellite remote sensing technology has significantly 
enhanced the potential for accurate and reliable crop yield estimates in regional 
studies (Tucker et al., 1981; Murthy et al., 1996; Wardlow and Egbert, 2008; 
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Mariotto et al., 2013; Azzari et al., 2017; Mateo-Sanchis et al., 2019; Marshall et al., 
2022). Currently, three primary satellite-derived variables are commonly used for 
estimating crop production: (1) vegetation indices (VIs), (2) biophysical or 
biochemical features, and (3) abiotic factors (Moulin et al., 1998; Johnson, 2014; 
Marshall et al., 2022). 

Commonly used VIs were derived from surface reflectance measurements, 
primarily in the red and near-infrared wavelengths from satellite observations 
(Lobell, 2013). The widely applied VIs include the Normalized Difference 
Vegetation Index (NDVI, James and Kalluri, 1994), Enhanced Vegetation Index 
(Huete et al., 2002), Difference Vegetation Index (Richardson and Wiegand, 1977), 
Soil Adjusted Vegetation Index (Huete, 1988), and the recently introduced Plant 
Phenology Index (PPI, Jin and Eklundh, 2014). A typical biophysical feature used 
in crop yield estimation is the Leaf Area Index (LAI), which represents half of the 
total green leaf area per unit of horizontal ground surface area (Chen and Black, 
1992). Another significant biochemical proxy is Solar-Induced Fluorescence (SIF). 
Guan et al. (2016) provided the first framework to link SIF retrievals to crop yield 
in the USA from 2007 to 2012 and proposed a new approach for yield estimation. 
Among abiotic factors, precipitation and temperature have been widely shown to 
improve crop yield estimation when combined with other satellite-derived variables 
(Balaghi et al., 2008; Schwalbert et al., 2020; Qader et al., 2023). Additionally, ET, 
which integrates multiple environmental factors such as precipitation, temperature, 
and soil moisture, has proven to be an important variable for crop yield estimation 
(Huang et al., 2015). The theory of de Wit (1958) indicated the linear function 
between crop yield and ET, which was been further proposed by Stewart and Hagan 
(1973) and Katerji et al. (1998). Spatially explicit remotely sensed ET data have 
been related to crop yield by empirical regressions for cereal crops in Ethiopia 
(Tadesse et al., 2015), wheat yield in Australia (Cai et al., 2019), and maize yield in 
the United States (Ghazaryan et al., 2020). In addition, the Evaporative Stress Index 
has shown its capability to explain yield variability in regional- and field-scale 
studies among the Czech Republic (Anderson et al., 2016a), Brazil (Anderson et al., 
2016b), and the United States (Yang et al., 2018). Despite these advancements, no 
studies have focused on exploring the use of remote sensing-based ET products to 
estimate crop yield in Sweden. 

Process-based crop growth model LPJ-GUESS 
Process-based dynamic crop growth models (hereafter referred to as crop models) 
simulate crop growth and development by modelling the underlying physical and 
physiological processes (Bouman et al., 1995). LPJ-GUESS is a process-based crop 
growth model of vegetation dynamics and biogeochemistry, designed for 
applications ranging from regional to global scales (Smith et al., 2001). The model 
operates on a daily time step and is driven by a range of climatic variables, including 
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air temperature (℃), precipitation (mm), wind speed (m s⁻¹), relative humidity (%), 
solar radiation (W m⁻²), atmospheric CO₂ concentration, and nitrogen deposition. 
The key processes governing crop growth in LPJ-GUESS encompass plant 
photosynthesis and respiration, soil decomposition, carbon allocation, crop 
development, soil hydrology, and human management practices such as fertilization, 
irrigation, and harvest (Lindeskog et al., 2013; Olin et al., 2015a). Crops in LPJ-
GUESS are represented by 11 distinct plant functional types, each characterized by 
specific temperature requirements for sowing, heat requirements for growth, and 
carbon allocation patterns (Bondeau et al., 2007; Waha et al., 2012). Carbon 
allocation to different crop organs is regulated by the accumulated heat units over 
the growing season, with the potential heat unit sum for each crop type dynamically 
calculated based on the mean air temperature over the preceding 10 years from the 
sowing date to the end of the sampling period (Lindeskog et al., 2013). Furthermore, 
Smith et al. (2014) incorporated nitrogen cycling and limitation into the model, 
enhancing LPJ-GUESS’s capability to simulate biogeochemical feedback, thereby 
establishing it as one of the most comprehensive crop models available today. 
Subsequent improvements by Olin et al. (2015a) introduced management options 
such as irrigation, tillage, and inter-growing season grass cover into the crop module. 
Except for sowing and irrigation, crops in LPJ-GUESS are assumed to be grown 
under consistent management practices, nutrient levels, and pest pressures across all 
grid cells (Bodin et al., 2016). Crop yield outputs from LPJ-GUESS are provided as 
annual yield data, offering crucial insights into long-term agricultural productivity. 

The simulation of a particular area or grid cell in the LPJ-GUESS model typically 
follows two or three distinct phases. The process begins with the “bare ground” state, 
where the modelled area is devoid of vegetation. The first phase, known as the “spin-
up” phase, involves the gradual accumulation of vegetation, soil, and litter carbon 
pools until they reach an equilibrium with the prevailing climate conditions. This 
equilibrium serves as the baseline for the subsequent “historical” phase, during 
which the model is driven by observational climate data, soil properties, 
atmospheric CO₂ concentrations, and other environmental variables. In many cases, 
a third “scenario” phase follows, simulating future climate change projections, 
which will be discussed in detail in the later chapter. 

Integrating satellite remote sensing with crop growth 
models 
Process-based crop growth models are often constrained by inadequate 
representations of critical internal physical and biological processes within 
vegetation. This limitation arises from uncertainties in input parameters, such as soil 
conditions, sowing dates, planting density, and initial field conditions. Parameters 
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utilized in crop models are commonly sourced from existing literature or past 
experiences and are frequently assumed to be universally applicable across diverse 
regions (Tubiello et al., 2007; Xiong et al., 2008; De Wit et al., 2010; Lobell et al., 
2013). Such generalized parameterizations often fail to account for region-specific 
environmental conditions, crop varieties, and management practices (Chang et al., 
2023), which can result in inaccuracies in simulating crop growth processes and 
further in simulating the crop yield (Jin et al., 2018). Therefore, the integration of 
satellite-based data with crop growth models has gained increasing recognition over 
the past two decades as a promising approach to enhance crop growth simulations 
and improve crop yield estimation accuracy at the regional levels (Clevers and 
Leeuwen, 1996; de Wit et al., 2007; Mo et al., 2005; Liang and Qin, 2008; Chen and 
Tao, 2020).  

Currently, three primary methods are employed to integrate remote sensing 
observations into crop growth models: (1) forcing, (2) assimilation, and (3) 
calibration (Delécolle et al., 1992; Dorigo et al., 2007). The forcing method utilizes 
remote sensing data as input to drive crop growth models. Crop models rely on the 
observed state variables rather than their own predictive mechanisms, which may 
incorporate inherent errors present in remote sensing data. Assimilation involves 
continuously updating the crop model simulation under the premise that improving 
simulation data at a certain time enhances the accuracy of subsequent predictions 
(Jin et al., 2018). The assimilation method can minimize errors brought into crop 
growth models during the process. However, it requires the most expensive 
calculation and information on measurement uncertainty (Jin et al., 2018). In 
addition, the dates of selected remote sensing images and phenological shifts can 
also affect the final estimation results (Curnel et al., 2011). In the calibration method, 
the initial parameters of crop growth models are adjusted to reduce discrepancies 
between model outputs and satellite-derived variables, which serve as reference data. 
Compared to the first two methods, model calibration offers greater flexibility and 
introduces minimized errors from the reference data into the crop model during the 
calibration process (Jin et al., 2018). In this regard, the calibration method was 
selected and focused on this PhD project to improve the model performance of crop 
yield simulation.  

Satellite remote sensing datasets have been largely employed to calibrate the crop 
growth-based parameters across various spatial resolutions, including LAI (Tripathy 
et al., 2013; Jiang et al., 2014; Yao et al., 2015), NDVI (Fang et al., 2011), the 
estimated interception efficiency index (Morel et al., 2012), the fraction of absorbed 
photosynthetically active radiation (Morel et al., 2014), aboveground nitrogen 
accumulation (Jongschaap, 2006), soil moisture (Eini et al., 2023), and phenological 
dates (Jongschaap and Schouten, 2005). ET represents the combined water loss from 
soil and plant surfaces, which directly links to the carbon dioxide assimilation in 
plants, making it a key variable for monitoring and estimating the agricultural 
production (Senay et al., 2011). As mentioned in the last chapter, satellite-based ET 
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datasets have been widely used in remote sensing-based empirical models for crop 
yield estimation. Nevertheless, the use of ET datasets to calibrate process-based 
crop models for enhancing the accuracy of crop yield simulations remains 
unexplored. 

Driving crop growth models with future climate data for 
crop yield prediction 
Climate change is already impacting crop growth worldwide through various 
mechanisms, primarily driven by rising average and extreme temperatures, altered 
precipitation patterns, and elevated atmospheric CO₂ concentrations (Jägermeyr et 
al., 2021). At the global scale, climate change is expected to pose challenges in 
increasing yields (Foley et al., 2011). Rising temperatures will exacerbate drought 
stress, accelerate crop development, and increase yield variability and the risk of 
yield loss (Lobell et al., 2011). However, at higher latitudes, elevated CO₂ levels 
and warmer temperatures may boost yields by extending the growing season in 
temperate and cold regions (Webber et al., 2018; Rezaei et al., 2023). In Scandinavia, 
elevated atmospheric CO₂ concentrations have been observed to enhance yields of 
C3 cereals, such as wheat, by effectively fertilizing the crops and increasing their 
organic matter inputs (Rötter et al., 2011; Lugato et al., 2014; Wiréhn, 2018; 
Makowski et al., 2020). Lobell et al. (2011) suggested that mid-to-high latitude 
regions may be well-positioned to adapt agricultural production to climate change, 
with rising temperatures potentially creating opportunities for increased crop 
production. Additionally, studies by Peltonen-Sainio et al. (2009) and Olesen et al. 
(2011) indicated that warmer temperatures could boost crop yields by extending the 
growing season and reducing the likelihood of frost in the Nordic Region. 

Process-based crop growth models forced with future climate data have been 
extensively utilized to systematically assess agricultural production potential under 
the projected climatic conditions (Porter et al., 1995; White et al., 2004; Müller et 
al., 2017; Jägermeyr et al., 2021). Bias-corrected weather data, commonly used as 
climate input for models, are primarily derived from the Coupled Model 
Intercomparison Project (CMIP). CMIP5 (Taylor et al., 2012) and CMIP6 (Eyring 
et al., 2016) have been currently employed for crop yield prediction. CMIP5 
included 40 CO₂ concentration-driven General Circulation Models (GCMs) and 
Earth System Models (ESMs) from 20 research institutions (Kamworapan and 
Surussavadee, 2019), while CMIP6 expanded to over 100 models contributed by 
more than 50 modelling centers worldwide. GCM/ESM simulations are available 
for both historical and future periods. For future projections, each GCM operates 
under different scenarios representing key natural and anthropogenic drivers 
influencing the climate system. One of the most widely used scenario frameworks 
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is the Representative Concentration Pathways (RCPs), which include four radiative 
forcing levels—RCP 2.6, RCP 4.5, RCP 6.0, and RCP 8.5—ranging from low to 
high radiative forcing and atmospheric CO2 levels (Blanc et al., 2015), as 
summarized in Table 1. 

Table 1 Different scenarios for four RCPs (Moss et al., 2010). 

Name Radiative forcing Concentration 
(p.p.m.) 

Model providing 
RCP* 

RCP 
2.6 

Peak at ~3W m-2 before 
2100 and then declines 

Peak at ~490 CO2-
equiv, before 2100 
and then declines 

IMAGE 

RCP 
4.5 

~4.5W m-2 at 
stabilization after 2100 

~650 CO2-equiv. (at 
stabilization after 

2100) 
GCAM 

RCP 
6.0 

~6W m-2 at stabilization 
after 2100 

~850 CO2-equiv. (at 
stabilization after 

2100) 
AIM 

RCP 
8.5 > 8.5 W m-2 in 2100 > 1370 CO2-equiv. in

2100 MESSAGE 

*MESSAGE, Model for Energy Supply Strategy Alternatives and their General
Environmental Impact, International Institute for Applied Systems Analysis, Austria; AIM,
Asia-Pacific Integrated Model, National Institute for Environmental Studies, Japan; GCAM,
Global Change Assessment Model, Pacific Northwest National Laboratory, USA
(previously referred to as MiniCAM); and IMAGE, Integrated Model to Assess the Global
Environment, Netherlands Environmental Assessment Agency, The Netherlands.

The reliability and applicability for regional crop yield prediction are limited by two 
key challenges. The first challenge lies in the coarse spatial resolution of the climate 
forcing data. Most previous studies have relied on climate forcing data derived from 
GCMs or ESMs, such as EC-EARTH (Hazeleger et al., 2010), GFDL-CM3 (Donner 
et al., 2011), GISS-E2-R (Rind et al., 2020), etc. These models typically offer coarse 
spatial resolutions, ranging from 100 to 500 km. Such resolutions encompass 
diverse land surface types, including croplands, forests, and urban areas, which 
limits their ability to capture the fine-scale heterogeneity essential for representing 
agricultural systems. To overcome this limitation, convection-permitting regional 
climate models (CPRCMs) have been developed, operating at much finer spatial 
resolutions of 1–5 km. These models enable an improved representation of local 
climate processes and land surface heterogeneity, reducing uncertainties in 
capturing key climatic features—particularly precipitation patterns and extreme 
weather events—by better resolving the climate dynamics associated with 
heterogeneous surfaces (Kendon et al., 2012; Belušić et al., 2020; Lind et al., 2023). 
Previous research utilizing CPRCM output data has largely focused on improving 
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the accuracy of precipitation forecasting (Pal et al., 2019), characterizing 
precipitation distribution (Prein et al., 2020), monitoring extreme weather events 
(Prein et al., 2015), and assessing snowpack and snow cover distribution (Adinolfi 
et al., 2020). However, the application of CPRCMs for climate change impact 
assessments in agroecology remains limited (Garcia-Carreras et al., 2015). To the 
best of our knowledge, no study to date has employed CPRCMs to evaluate climate 
change impacts on crop yield in Scandinavia, leaving the assessment of climate risk 
for Scandinavian farming systems largely uncertain under the intensification of 
future climatic extremes. 

The second challenge concerns the lack of model calibration prior to crop yield 
prediction. As discussed in the previous chapter, model calibration is essential for 
tailoring model parameters to reflect local conditions, which is crucial for reducing 
the uncertainty of yield simulations under changing climate conditions. Angulo et 
al. (2013) highlighted the importance of region-specific calibration in crop yield 
prediction at the pan-European level, demonstrating that the calibration strategy 
significantly influenced the extent of simulated climate change impacts. Despite this, 
only a limited number of studies have calibrated crop models before assessing the 
impacts of climate change on crop yields across different countries (Tao et al., 2017; 
Quansah et al., 2020; Wang et al., 2022). To the best of our knowledge, no previous 
research has undertaken model calibration prior to evaluating the impact of climate 
change on crop yields in Sweden, nor has any study employed the LPJ-GUESS 
model for this purpose. 
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Aims and thesis structure 

Building on the gaps and limitations mentioned in the Introduction section, this 
thesis aims to improve the accuracy of crop yield predictions in Sweden using 
satellite remote sensing and the ecosystem LPJ-GUESS model. Four specific 
objectives are addressed in this study: 

1. In Paper I, the study aims to evaluate the accuracy of various multi-source
gridded ET products and two merged ET datasets using the TC-based
merging framework across the Nordic Region. Datasets with the lowest
errors are used in Paper II and Paper III to enhance the accuracy of crop
yield estimation in Sweden.

2. In Paper II, the study aims to estimate the district-level spring barley yield
in southern Sweden using various combinations of monthly satellite-based
and climate variables and the RF approach.

3. In Paper III, the study aims to calibrate multiple crop-growth-related
parameters in LPJ-GUESS to improve the district-level spring barley and
winter wheat yield simulation accuracy in southern Sweden.

4. In Paper IV, the study aims to assess the potential impacts of future climate
change on crop yields in southern Sweden by integrating the calibrated LPJ-
GUESS model from Paper III with the projected climate data under future
scenarios.

The structure of the whole thesis, and the connections between each paper are 
shown in Fig. 1.  
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Fig. 1. Illustration of the thesis structure showing the linkages among the four papers 
included in this study. 
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Materials and methods  

Overview and study area 
For the study area, Paper I focused on four Nordic countries — Denmark, Sweden, 
Finland, and Norway — within the Nordic Region, shown in Fig. 2. Paper II, III, 
and IV focused on southern Sweden, including four counties and 17 yield survey 
districts, shown in Fig. 3 (II) and Fig. 4 (III and IV). 
 

 
Fig. 2. The land cover classification based on MCD12Q1 of the Nordic Region, along with 
the location of 10 ICOS sites (Friedl et al., 2010). ENF, MF, CRO, and SBF are short for 
evergreen needleleaf forests, mixed forests, croplands, and sparse boreal forests, 
respectively. If there exists a discrepancy between the vegetation types of MCD12Q1 and 
ICOS, we use the types labelled by the former one. 
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Fig. 3. Distribution map of spring barley fields in southern Sweden in 2022 (SCB, 2023). 
The distribution of spring barley varies slightly from year to year due to crop rotation. Four-
digit numbers indicate district codes. 

 

 
Fig. 4. Distribution map of spring barley and winter wheat fields in southern Sweden in 2022 
(SCB, 2023). The distribution of both crops varies slightly from year to year due to crop 
rotation. Four-digit numbers indicate district codes. 



35 

The findings of this thesis were derived using a diverse set of scientific tools and 
research methods. Paper I employed the TC technique to quantify the error 
structures of global gridded ET products in the Nordic Region. It also evaluated a 
TC-based merging framework that optimally accounts for the error cross-correlation 
(ECC) to combine multiple ET products. Paper II developed an estimation method 
using the RF approach, incorporating four satellite-derived products —NDVI, PPI, 
SIF, and ET — alongside two gridded climate variables: precipitation and air 
temperature. Paper III calibrated six crop growth-based parameters in LPJ-GUESS 
to enhance the crop yield simulation in southern Sweden using the observed crop 
yield data and satellite-based ET as reference. Paper IV utilized the calibrated LPJ-
GUESS from Paper III to project district-level spring barley and winter wheat yield, 
driven by the 3-km high-resolution climate data. 

Paper I 
TC approach assumes three collocated and independent measurement systems that 
are all related to the unknown “truth” in the linear additive error model (McColl et 
al., 2014; Chen, et al., 2017, 2021, Equation 1): 

  𝐸𝐸𝐸𝐸𝑖𝑖 = 𝛼𝛼𝑖𝑖 + 𝛽𝛽𝑖𝑖𝑡𝑡 + 𝜀𝜀𝑖𝑖   (1) 

where 𝐸𝐸𝐸𝐸𝑖𝑖 represents a random ET time-series data (using X, Y and Z as a triplet 
example, i ∈ [𝑋𝑋,𝑌𝑌,𝑍𝑍]); 𝛼𝛼𝑖𝑖  and 𝛽𝛽𝑖𝑖  represent the ordinary least squares intercepts 
(additive biases) and slopes (multiplicative biases) in the ET dataset i; t represents 
the unknown ET reference dataset; and 𝜀𝜀𝑖𝑖 represents the zero-mean random errors 
(noises) of the ET dataset 𝑖𝑖. 

Four selected ET products in our study (Table 2) were transformed into zero-mean 
anomaly time series before applying the TC approach (Chen et al., 2017). 
Anomalies were calculated against the long-term seasonality (also referred to as 
climatology), defined as the average value for the same day of the year over their 
overlapping period (Liu et al., 2012; Peng et al., 2021), as described in Equation 2.         

𝐴𝐴𝐴𝐴𝐴𝐴𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑌𝑌 = 𝐴𝐴𝑂𝑂𝑂𝑂𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑌𝑌 − �∑ 𝐷𝐷𝑌𝑌𝑂𝑂𝐷𝐷𝐷𝐷𝐷𝐷
𝐷𝐷𝑌𝑌2018

𝐷𝐷𝑌𝑌=2003 �
𝑁𝑁

  (2) 

where ANO represents the anomalies; YR represents the year from 2003 to 2018; 
DOY represents the day of the year; ORI represents the original time series of ET 
estimates; and N represents the number of the years with valid ET estimates. 
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Table 2 Summary of the four used gridded ET products. 

Product Temporal 
Resolution Temporal extent Spatial 

resolution Data unit 

FLUXCOM 8-day 2001–2019 0.083° MJ m−2 day−1 
GLASS 8-day 2000–2018 0.05° W m−2 
GLEAM 

v3.5b daily 2003–2020 0.25° mm day−1 

PML-V2 8-day 2002–2019 0.05° mm day−1 

The difference notation of the TC approach was selected in this study, which is more 
widely applied in previous research (Gruber et al., 2016). It provided unscaled error 
variances, presented as absolute error variances, and rescaled error variances for 
estimating ET merging weights (Draper et al., 2013). The error variances of the 
unscaled/rescaled ET anomalies were calculated as (Equation 3) (Gruber et al., 
2016): 

   𝜎𝜎𝜀𝜀𝑋𝑋
2 = 𝜎𝜎𝜀𝜀𝑋𝑋∗

2 = 〈(𝑋𝑋∗ − 𝑌𝑌∗)𝑇𝑇(𝑋𝑋∗ − 𝑍𝑍∗)〉 

𝛽𝛽𝐷𝐷∗
2𝜎𝜎𝜀𝜀𝐷𝐷

2 = 𝜎𝜎𝜀𝜀𝐷𝐷∗
2 = 〈(𝑌𝑌∗ − 𝑋𝑋∗)𝑇𝑇(𝑌𝑌∗ − 𝑍𝑍∗)〉,𝛽𝛽𝐷𝐷∗ = 𝜎𝜎𝑋𝑋𝑋𝑋

𝜎𝜎𝐷𝐷𝑋𝑋
   (3) 

𝛽𝛽𝑍𝑍∗
2𝜎𝜎𝜀𝜀𝑋𝑋

2 = 𝜎𝜎𝜀𝜀𝑋𝑋∗
2 = 〈(𝑍𝑍∗ − 𝑋𝑋∗)𝑇𝑇(𝑍𝑍∗ − 𝑌𝑌∗)〉,𝛽𝛽𝑍𝑍∗ = 𝜎𝜎𝑋𝑋𝐷𝐷

𝜎𝜎𝐷𝐷𝑋𝑋
 

where 𝜎𝜎𝜀𝜀𝑋𝑋
2  represents the error variances of the unscaled data anomaly 𝑋𝑋 (same for 

other datasets);  𝜎𝜎𝜀𝜀𝑋𝑋∗
2  represents the error variances of the rescaled data anomaly 𝑋𝑋∗ 

(same for other datasets); 𝜎𝜎𝑋𝑋𝐷𝐷 represents the temporal covariance of X and Y (same 
for other anomaly datasets), and 〈∙〉 represents the temporal average. 

The ET merging weights were identified by the error variances of the rescaled ET 
data anomalies (Dong et al., 2020; Zhou et al., 2021) (using X, Y and Z as a triplet 
example, Equation 4): 

    𝑤𝑤𝑋𝑋 =
𝜎𝜎𝜀𝜀𝐷𝐷∗
2 𝜎𝜎𝜀𝜀𝑋𝑋∗

2

𝜎𝜎𝜀𝜀𝑋𝑋∗
2 𝜎𝜎𝜀𝜀𝐷𝐷∗

2 +𝜎𝜎𝜀𝜀𝑋𝑋∗
2 𝜎𝜎𝜀𝜀𝑋𝑋∗

2 +𝜎𝜎𝜀𝜀𝐷𝐷∗
2 𝜎𝜎𝜀𝜀𝑋𝑋∗

2

   𝑤𝑤𝐷𝐷 =
𝜎𝜎𝜀𝜀𝑋𝑋∗
2 𝜎𝜎𝜀𝜀𝑋𝑋∗

2

𝜎𝜎𝜀𝜀𝑋𝑋∗
2 𝜎𝜎𝜀𝜀𝐷𝐷∗

2 +𝜎𝜎𝜀𝜀𝑋𝑋∗
2 𝜎𝜎𝜀𝜀𝑋𝑋∗

2 +𝜎𝜎𝜀𝜀𝐷𝐷∗
2 𝜎𝜎𝜀𝜀𝑋𝑋∗

2    (4) 

     𝑤𝑤𝑍𝑍 =
𝜎𝜎𝜀𝜀𝑋𝑋∗
2 𝜎𝜎𝜀𝜀𝐷𝐷∗

2

𝜎𝜎𝜀𝜀𝑋𝑋∗
2 𝜎𝜎𝜀𝜀𝐷𝐷∗

2 +𝜎𝜎𝜀𝜀𝑋𝑋∗
2 𝜎𝜎𝜀𝜀𝑋𝑋∗

2 +𝜎𝜎𝜀𝜀𝐷𝐷∗
2 𝜎𝜎𝜀𝜀𝑋𝑋∗

2

The least-square-based optimal merging of the ET anomalies was then calculated as 
(Equation 5): 

            𝐸𝐸𝐸𝐸𝑚𝑚 = 𝑤𝑤𝑋𝑋𝑋𝑋∗ +𝑤𝑤𝐷𝐷𝑌𝑌∗ + 𝑤𝑤𝑍𝑍𝑍𝑍∗  (5) 

The multi-source merged ET dataset was finally achieved by adding the climatology 
/seasonal variability to 𝐸𝐸𝐸𝐸𝑚𝑚 (Dong et al., 2020).  
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It is worth mentioning that if there existed multiple (over three) datasets, quadruple 
collocation (QC) approach should be applied to calculate ECC for each data pair, 
generating triplets for the TC algorithm. In a triplet, the errors from each dataset 
should be uncorrelated with each other (Chen et al., 2018). Therefore, the dataset 
pairs with non-negligible ECC errors, should not appear in the same triplet. If the 
nonzero ECC only exists between 𝑋𝑋 and 𝑌𝑌 (the same applies to other data pairs), 
then the calculation of the ECC value is shown in Equation 6:  

                                                     𝐸𝐸𝐸𝐸𝐸𝐸𝑋𝑋𝐷𝐷 =
𝜎𝜎𝜀𝜀𝑋𝑋𝜀𝜀𝐷𝐷

�𝜎𝜎𝜀𝜀𝑋𝑋
2 𝜎𝜎𝜀𝜀𝐷𝐷

2
                                                         (6) 

Finally, four different statistical comparison metrics including Root Mean Squared 
Error (RMSE) (Equation 7), Mean Absolute Error (MAE) (Equation 8), unbiased 
RMSE (ubRMSE) (Equation 9), and the correlation coefficient (R) (Equation 10) 
were applied for the statistical analysis at each site against the Integrated Carbon 
Observation System (ICOS) observed data shown in Fig. 2. 

                                               RMSE = �∑ (𝐸𝐸𝑇𝑇𝑎𝑎−𝐺𝐺𝑎𝑎)2𝑁𝑁
𝑎𝑎=1

𝑁𝑁
                                                         (7) 

                                                   MAE = ∑ |𝐸𝐸𝑇𝑇𝑎𝑎−𝐺𝐺𝑎𝑎|𝑁𝑁
𝑎𝑎=1

𝑁𝑁
                                                             (8) 

                                      ubRMSE = �∑ �(𝐸𝐸𝑇𝑇𝑎𝑎−𝐸𝐸𝑇𝑇����)−(𝐺𝐺𝑎𝑎−�̅�𝐺)�
2𝑁𝑁

𝑎𝑎=1
𝑁𝑁

                                           (9) 

                              R = ∑ (𝐸𝐸𝑇𝑇𝑎𝑎−𝐸𝐸𝑇𝑇����𝑁𝑁
𝑎𝑎=1 )(𝐺𝐺𝑎𝑎−�̅�𝐺)

�∑ (𝐸𝐸𝑇𝑇𝑎𝑎−𝐸𝐸𝑇𝑇����)2𝑁𝑁
𝑎𝑎=1 �∑ (𝐺𝐺𝑎𝑎−�̅�𝐺)2𝑁𝑁

𝑎𝑎=1

 ,−1 ≤ R ≤ 1                             (10) 

where ET represents four datasets (𝑋𝑋, 𝑌𝑌, 𝑍𝑍 and 𝑊𝑊) and the merged ET datasets, 
respectively; G represents the ICOS flux data; a represents the ath ET data of the 
whole ET time-series data; N represents the range of a, which depends on the 
available years of ICOS flux data (one year contains 46 8-day ET data); and 𝐸𝐸𝐸𝐸���� and 
�̅�𝐺 represent the mean ET values (within the available years of each site) of four 
datasets and merged datasets, respectively. 

Paper II 
Four satellite-derived variables, two climate variables, and the spring barley yield 
were gathered from various sources, which were shown in Table 3. The satellite 
variables were grouped into five combinations: (1) NDVI, (2) VI (NDVI + PPI), (3) 
SIF, (4) VI + SIF, and (5) VI + SIF + ET, with climate data added to each to test the 
improvements in the prediction accuracy (LeCun et al., 2015; Cai et al., 2019; Cao 
et al., 2021). Pearson correlation analysis was then applied to remove monthly 
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variables insignificantly related to barley yield (P > 0.01) to avoid impractical inputs 
and prevent model overfitting. Finally, all satellite and climate variables were input 
into the RF approach to compare prediction performance across the ten above-
mentioned combinations. 

 
Table 3 Summary of the collected datasets for barely yield estimation.  

Category Variables Temporal 
Resolution 

Spatial 
resolution  Source Abbreviations 

Crop 
yield Barley yield Annual District Jordbruksverket och SCB 

(www.jordbruksverket.se) Yield 

Satellite 
imagery 

NDVI, 
PPI 5-day 10 m 

High-Resolution Vegetation 
Phenology and Productivity 

product suite 
(https://www.wekeo.eu/) 

- 

CSIF 4-day 0.05° 
Global spatially contiguous 
SIF dataset (Zhang et al., 

2018) 
SIF 

ET Daily 0.25° 
Global Land Evaporation 

Amsterdam Model 
(https://www.gleam.eu) 

- 

Climate  
Air 

temperature, 
Precipitation 

Daily 4 km 

Swedish Meteorological and 
Hydrological Institute 

(https://www.smhi.se/data/la
dda-ner-data/griddade-

nederbord-och-
temperaturdata-pthbv) 

Tmean, Tmax, 
Tmin, 

Pmean, Pmax 

 

RF (Breiman, 2001) has been widely implemented in crop yield estimation (Kang 
et al., 2022). RF has advantages in its ease of training, minimal sensitivity to outliers, 
high computational efficiency, and resilience against overfitting (Shao et al., 2015). 
The modelling process consisted of three steps. First, data from all districts (2017–
2021) were randomly split into a training set (70%) and a testing set (30%). Second, 
two key hyperparameters ntree (number of trees) and mtry (number of features for 
the best split) were tuned using 10-fold cross-validation on the training data (Fushiki, 
2011). Third, the optimized model was tested on the testing data to calculate the 
predicted R² and RMSE. This process was repeated 100 times to improve model 
robustness and minimize the impact of random data splits (Zhou et al., 2022), with 
the average predicted R² and RMSE used to evaluate model performance.  

To assess the practical performance of the model, each optimized model from the 
previous step was used to predict barley yield for 2022. The training data remained 
unchanged, while the 2022 variables served as the testing data. The average 
predicted yield (based on 100 runs) for each combination was compared with the 
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observed barley yield in 2022 using the percentage error (i.e., 100 × ((predicted 
yield–observed yield)/observed yield). 

Paper III 
For the model calibration process, six yield-related crop parameters (Fig. 5) were 
selected based on a literature review and expert knowledge of the LPJ-GUESS 
model (Wu et al., 2018; Xu et al., 2018), with their ranges outlined in Table 4. These 
parameters include: (1) the minimum C:N ratio (CNmin), indicating the maximum 
N level in leaves; (2) the C:N ratio range (CNran), a scaling factor determining the 
maximum C:N ratio; (3) the retranslocation of nitrogen and carbon (Nret and Cret) 
to grains during senescence; (4) the nitrogen extinction coefficient (kN), describing 
the vertical decline in leaf nitrogen concentration; and (5) the reduction in nitrogen 
demand by leaves after anthesis (Ndred). These parameters are essential for 
simulating light extinction, carbon allocation, and nitrogen and carbon 
retranslocation, which are critical for yield simulation in LPJ-GUESS (Camargo-
Alvarez et al., 2023). 

The model was calibrated using observed crop yield and satellite-based ET data 
from the growing season (April to June), respectively. The amount of crop yield 
could influence the optimal selection of parameters during the calibration process 
(Camargo Alvarez et al., 2023). Therefore, the twelve districts in the study area were 
categorized into low-yield (1111, 1123, 1213, 1215, 1222, 1321) and high-yield 
groups (1121, 1122, 1211, 1212, 1214, 1216) based on the annual yield production. 
Two districts with intermediate yields (1123 and 1214) were chosen for calibration. 
A total of 9072 simulations were run, combining different parameter levels 
(7×6×3×3×3×8). The best 100 crop yield parameter combinations, of which the 
simulated crop yield had the lowest RMSE compared with the reference data 
(observed crop yield data or satellite-based ET data), were selected to run on the 
remaining ten districts for validation, with performance assessed using RMSE 
(Equation 11) and the normalized RMSE (nRMSE) (Equation 12): 

         RMSE = �1
𝑁𝑁
∑ (S𝑖𝑖 − 𝐴𝐴𝑖𝑖)2𝑁𝑁
𝑖𝑖=1           (11) 

   nRMSE = �1
𝑁𝑁
∑ (S𝑖𝑖 − 𝐴𝐴𝑖𝑖)2𝑁𝑁
𝑖𝑖=1 × 100

𝐷𝐷
                (12) 

where S𝑖𝑖 is the ith simulated value, 𝐴𝐴𝑖𝑖 is the ith observed value, 𝐴𝐴� is the mean of the 
observed values, 𝑆𝑆̅ is the mean of the simulated values, and N is the total number of 
paired observed-simulated values. 
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Fig. 5. Diagram of the relationship between calibrated parameters and crop organs during 
different developmental stages (DS). 

 

Table 4 Parameters for calibration and their ranges, default values for both spring barley 
(SB) and winter wheat (WW). 

Parameter Abbreviation Default 
value 

Calibrated 
ranges References 

Minimum C:N 
ratio CNmin 12.5 

10, 10.5, 11, 
11.5, 12, 12,5, 

and 13 

(Xu et al., 
2018) 

C:N range CNran 2.5 (SB), 2 
(WW) 

2, 2.1, 2.2, 2.3, 
2.4, and 2.5 

(Camargo-
Alvarez et al., 

2023) 
Retranslocation 

rate of N Nret 0.1 day-1 0.05, 0.1, and 
0.15 day-1 

(Olin et al., 
2015b) 

Retranslocation 
rate of C Cret 0.1 day-1 0.05, 0.1, and 

0.15 day-1 
(Olin et al., 

2015b) 
Nitrogen 
extinction 
koefficient 

kN 
0.25 (SB), 

0.18 
(WW) 

0.15, 0.2, and 
0.25 

(Olin et al., 
2015b) 

Nitrogen 
demand 

reduction 
factor 

Ndred 

2.565 
(SB), 
1.087 
(WW) 

0, 2, 4, 6, 8, 10, 
15, and 20  

(Olin et al., 
2015b) 
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Paper IV 
In this study, the calibrated LPJ-GUESS model was driven by the daily climate data 
downscaled from the HCLIM model cycle 38 (HCLIM38) at a 3 km spatial 
resolution over Fenno-Scandinavia (Lind et al., 2023). Two parent global climate 
models (GCMs), EC-EARTH (Hazeleger et al., 2012) and GFDL-CM3 (Griffies et 
al., 2011), were downscaled with HCLIM38 under two emission scenarios: RCP4.5 
(for EC-EARTH only) and RCP8.5 (Lind et al., 2023). Climate simulations were 
conducted for a 20-year historical period (1985–2005) and two future 20-year 
periods: mid-century (2040–2060) and end-of-century (2080–2100), as shown in 
Table 5. 
 

Table 5 Description of the 3-km HCLIM38 downscaled climate outputs using two parent 
GCMs as boundaries under different RCP scenarios and time periods. MC denotes mid-
century, and LC denotes end-of-century. 

Parent GCM  Climate Scenarios  Period 

EC-Earth 

- 1985–2005 (Historical) 

RCP4.5 2040–2060 (MC), 2080–2100 (LC) 

RCP8.5 2040–2060 (MC), 2080–2100 (LC) 

GFDL-CM3  
- 1985–2005 (Historical) 

RCP8.5 2040–2060 (MC), 2080–2100 (LC) 
 

To correct the biases in the HCLIM38 non-bias-corrected climate outputs, a non-
parametric empirical quantile mapping (QM) method was applied (Osuch et al., 
2017). This adjustment was made for five climate variables: temperature, 
precipitation, wind speed, relative humidity, and solar radiation. The ERA5-Land 
reanalysis dataset (https://cds.climate.copernicus.eu/datasets/reanalysis-era5-
land?tab=download) served as the reference data for the historical period. The bias 
correction involved three steps to align the high-resolution 3 km HCLIM38 data 
with the 0.1° ERA5 data while preserving fine-scale features. First, the HCLIM38 
climate data were upscaled from 3 km to 0.1°. Second, the QM method adjusted the 
full probability distribution of the 0.1° HCLIM38 data using the 0.1° ERA5 data as 
a reference. Third, the time-series differences between the upscaled HCLIM38 data 
before and after bias correction were added back to each 3 km HCLIM38 pixel. This 
ensured the retention of the spatial variability of the high-resolution dataset. For 
future scenarios, the time-series differences between the 0.1° ERA5 and the 0.1° 
upscaled HCLIM38 data during the historical period were applied to the 



42 

corresponding quantiles of the future climate data, enabling consistent redistribution 
of future projections. 

The whole experiment design followed a step-by-step approach to assess crop yield 
projections. First, observed annual crop yield data at the district level (SCB, 2023) 
were used to validate the accuracy of simulated crop yield driven by bias-corrected 
HCLIM38 climate data for the historical period. Second, the calibrated LPJ-GUESS 
model was driven by bias-corrected HCLIM38 data for two future periods and two 
emission scenarios, including: (1) EC-EARTH under RCP4.5 (2040–2060); (2) EC-
EARTH under RCP8.5 (2040–2060); (3) EC-EARTH under RCP4.5 (2080–2100); 
(4) EC-EARTH under RCP8.5 (2080–2100); (5) GFDL-CM3 under RCP8.5 (2040–
2060); and (6) GFDL-CM3 under RCP8.5 (2080–2100). Third, the annual relative
crop yield change (%) from the historical period was calculated to evaluate yield
variability under different future periods and RCP scenarios. Finally, the spatial
distribution of crop yield for both historical and future periods was visualized to
highlight the spatial heterogeneity of spring barley and winter wheat production
across different districts. For consistency, the HCLIM38 simulated climate data
were referred to as HCLIM38 EC-Earth and HCLIM38 GFDL-CM3 hereafter in the
Results and discussion section.
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Results and discussion  

Error structure of evapotranspiration datasets (Paper I) 
Fig. 6 showed the error variances for each ET data anomaly across two triplet groups. 
FLUXCOM, GLEAM, and PML-V2 consistently had lower error variances than 
GLASS across the Nordic Region. GLEAM performed especially well in croplands 
and shrublands, which were more sensitive to drought than taller vegetation. This 
strong performance was likely due to its use of high-quality satellite-based 
hydrological data, the TRMM 3B42v7 product (Huffman et al., 2007) and the ESA 
soil moisture dataset version 2.3 (Liu et al., 2012), both known for their accuracy 
(Martens et al., 2017).  
 

 
Fig. 6. The TC-based error variances (mm2 day−1) of each data anomaly in triplet 1: (a) 
FLUXCOM, (b) GLASS, (c) GLEAM, and triplet 2, (d) FLUXCOM, (e) GLASS, (f) PML-
V2. 
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Fig. 7. Statistical comparison between ICOS flux data and six method-derived datasets by 
means of (a) RMSE (mm day−1), (b) MAE (mm day−1), (c) ubRMSE (mm day−1), and (d) R 
among 10 ICOS sites. M1_F and M2_F are the merged datasets based on triplet 1 
(FLUXCOM, GLASS, and GLEAM) and triplet 2 (FLUXCOM, GLASS, and PML-V2) 
with FLUXCOM climatology; M1_G and M2_G are the merged datasets based on triplet 1 
and triplet 2 with GLASS climatology. Red lines show median values and diamonds show 
average values. 
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Fig. 7 compared the statistical metrics of four parent datasets (FLUXCOM, GLASS, 
GLEAM, and PML-V2) and four merged datasets with different climatology 
(M1_F, M2_F, M1_G, and M2_G). GLASS had the highest RMSE values (1.34–
2.52 mm day−1), while FLUXCOM and GLEAM had lower RMSEs (0.42–1.07 mm 
day−1 and 0.33–1.08 mm day−1, respectively). PML-V2 aligned most closely with 
the ICOS reference dataset, with RMSE values between 0.42–1.05 mm day−1. The 
merged datasets M1_F and M2_F had lower average RMSEs (0.56 mm day−1 and 
0.57 mm day−1) compared to FLUXCOM (0.61 mm day−1), GLASS (1.69 mm 
day−1), and GLEAM (0.77 mm day−1), and were similar to PML-V2 (0.56 mm 
day−1). In contrast, M1_G and M2_G only outperformed GLASS, with average 
RMSEs of 1.62 mm day−1 and 1.61 mm day−1. A similar trend was seen in MAE and 
ubRMSE values. All datasets had R above 0.80 at each site. Given its strong 
performance, PML-V2 is highly recommended for future hydrological applications, 
while FLUXCOM and GLEAM also show promise for broader use. 

Crop yield prediction using satellite data and random 
forest approach (Paper II) 
The predicted R² and RMSE for barley yield estimation using different input 
combinations were compared (Fig. 8). When using only satellite variables, NDVI 
and VI performed well, with R² values of 0.69 and 0.71 and RMSE of 550 and 533 
kg/ha, respectively. SIF alone had lower performance (R² = 0.63, RMSE = 595 
kg/ha), likely due to its coarse resolution and high noise (Guan et al., 2016). CSIF 
was used in this study for its higher spatiotemporal resolution compared to other 
global datasets like GOSAT, GOME-2, and OCO-2. Although TROPOMI SIF 
offers finer resolution (3.5 km × 5.5 km, daily), it’s only available since 2018. 
Combining SIF and VI significantly improved model performance (R² = 0.77, 
RMSE = 488 kg/ha), showing that SIF provides unique information beyond VIs by 
capturing short-term climate stresses like heat and water stress and reflecting actual 
photosynthetic activity (Song et al., 2018; Zhou et al., 2022). Since June variables 
had a weaker correlation with barley yield, we tested the model using only April 
and May variables (“VI+SIF_AM” in Fig. 3). This combination also performed well 
(R² = 0.76, RMSE = 499 kg/ha), suggesting that barley yield can be predicted two 
months before harvest. Adding ET data (VI+SIF+ET) didn’t improve performance 
beyond the VI+SIF combination, likely because using only June’s monthly ET data 
added little value. Despite GLEAM v3.7b ET’s coarse spatial resolution (0.25°), its 
notable correlation with barley yield after resampling suggests ET is a useful 
indicator for crop yield estimation. Using ET at a finer resolution could further 
enhance results. Adding climate data to satellite variables didn’t significantly 
improve barley yield predictions (Fig. 8). Previous studies have found overlapping 
information between VIs and climate data (Cai et al., 2019; Zhou et al., 2022). Shao 
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et al. (2015) also noted that a short climate data record (less than 5–6 years) may 
not be effective for yield prediction due to yearly climate variations (like drought) 
and the delayed response of crop growth to climate changes (Seddon et al., 2016). 
 

 
Fig. 8. Testing performance of spring barley yield prediction using both satellite and climate 
variables in different combinations. The upper and below subfigures represent mean R2 and 
RMSE of different combinations, respectively. The error bars are one standard deviation of 
predicted R2 and RMSE from 100 ensembles by randomly dividing training and testing 
dataset. The label “VI+SIF_AM” indicates the model inputs only include the April and May 
variables in the VI+SIF combination. 
 
To compare model performance with previous studies, we showed the spatial 
patterns of percentage errors in Fig. 9. Large prediction errors (≥ 20% or ≤ −20%) 
were only seen in a few districts (1124, 1321, 1211), while most districts had the 
relative errors between −10% and 10%. These results aligned with the relative errors 
found in rice yield predictions by Cao et al. (2021) and corn yield predictions by Ma 
et al. (2021) using the RF model, where most counties had absolute errors below 
10%–15%. Districts with the most accurate predictions (errors within −10% to 10%) 
were mainly in the middle, west coast, and east coast of southern Sweden, where 
barley is most grown.  
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Fig. 9. Spatial distribution of the percentage error of barley yield prediction in 2022 using 
remote sensing variables (a)–(f), and combining remote sensing and climate (i.e., cli) 
variables (g)–(l) in different combinations. “AM” in (e) and (k) indicate that the model inputs 
only include the monthly variables of April and May.  

Validation of the calibrated LPJ-GUESS (Paper III) 
Fig. 10 showed the validation performance across ten districts using the top 100 
parameter combinations (the districts and 100 combinations were detailly described 
in Paper III). For spring barley, the simulated yield improved significantly in both 
low- and high-yield districts, with a mean RMSE of 663–788 kg/ha compared to 
1784–3431 kg/ha using the default parameters. A similar improvement was seen for 
winter wheat in high-yield districts, where the mean RMSE dropped from 1095–
1746 kg/ha to 815–1150 kg/ha after calibration. In low-yield districts, the accuracy 
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of winter wheat yield increased slightly, with RMSE values of 740–994 kg/ha 
compared to 745–1044 kg/ha using default parameters. Overall, the mean RMSE 
across all districts was 710 kg/ha for spring barley and 907 kg/ha for winter wheat, 
with the mean nRMSE values of 12.8% and 12.2%, respectively. These results 
highlighted the effectiveness of model calibration using observed crop yield data, 
especially when compared to the much higher nRMSE values of 50.3% for spring 
barley and 15.5% for winter wheat using default parameters. As noted by 
Talebizadeh et al. (2018), using observed crop yield helped directly select the right 
crop growth parameters suited to site-specific conditions, leading to more accurate 
yield simulations. The good performance in our study also aligned with previous 
research using observed crop data for calibration (Liben et al., 2018; Li et al., 2019; 
Jiang et al., 2021).  

The overall validation performance presented in Fig. 11 only demonstrated a slight 
improvement. The mean RMSE values were 2266 kg/ha (nRMSE = 41.0%) for 
spring barley and 1056 kg/ha (nRMSE = 14.2%) for winter wheat, both were barely 
slightly lower than the mean RMSE values without calibration (2786 kg/ha and 1148 
kg/ha). Satellite-based evapotranspiration (ET) datasets have been widely applied 
in crop model assimilation in previous studies. Vazifedoust et al. (2009) and Huang 
et al. (2015) both assimilated MODIS-derived ET data into the Soil–Water–
Atmosphere–Plant (SWAP) model to improve winter wheat yield estimation. The 
results indicated that the assimilation process had only a slight impact on the 
accuracy of yield simulations. In the study by Vazifedoust et al. (2009), the yield 
simulation bias for three individual wheat fields was -30%, 22%, and -10% without 
calibration, and -31%, 13%, and -5% after calibration. Huang et al. (2015) reported 
an even greater increase in estimation error, with the mean relative error rising from 
6.13% before calibration to 12.86% after calibration. They attributed this poor 
performance to the heterogeneous agricultural landscape, where the coarse 1-km 
resolution of the MODIS ET product likely introduced bias by encompassing a 
mixture of land cover types, including substantial non-wheat areas, when used as 
reference data for calibration. Although the PML-V2 ET data (0.05°) employed in 
this study provided higher spatial resolution compared to the simulated ET data 
(0.1°), it still presented challenges in accurately distinguishing small-scale plots and 
non-agricultural areas within the study region. 
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Fig. 10. Comparison of simulated crop yields with and without calibration using RMSE from 
observed yield data. "Total" shows the average yield across all districts, with grey-shaded 
areas indicating where calibration didn’t reduce RMSE. Yellow dots show RMSE with 
default parameters. 

Fig. 11. Comparison of simulated crop yields with and without calibration using RMSE from 
satellite-based ET data. "Total" shows the average yield across all districts, with grey-shaded 
areas indicating where calibration didn’t reduce RMSE. Yellow dots show RMSE with 
default parameters. 
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Crop yield prediction using calibrated LPJ-GUESS and 
future climate data (Paper IV) 
For the relative yield change, both spring barley and winter wheat exhibited similar 
patterns under future climate scenarios. Therefore, here we focused solely on the 
yield prediction of spring barley in this analysis, shown in Fig. 12. Compared to the 
historical period, spring barley yield showed significant increases during the MC 
and LC periods. In the MC period under the RCP4.5 scenario, spring barley yields 
increased by 28% in low-yield districts and 25% in high-yield districts for 
HCLIM38 EC-EARTH. Under the RCP8.5 scenario, the increases were 42% (low-
yield) and 40% (high-yield) for HCLIM38 EC-EARTH, and 41% (low-yield) and 
37% (high-yield) for HCLIM38 GFDL-CM3. During the LC period, yields 
increased by 56% (low-yield) and 54% (high-yield) under RCP4.5, and more than 
doubled (over 100%) under RCP8.5 for both models. 

Significant yield losses were observed in the 10th year (i.e., 2089) of the LC period, 
likely due to insufficient precipitation (i.e., drought) during the growing season (Fig. 
13). The average precipitation during the growing season in "normal" years was 
269.23 mm, 263.64 mm, and 244.23 mm, respectively, while in 2089, it decreased 
to 108.32 mm, 56.06 mm, and 66.43 mm. This anticipated yield loss in the projected 
warm and dry year (i.e., 2089) is consistent with historical observations, as the 
Nordic Region experienced low wheat and barley yields during the 2018 drought 
(Mohammadi et al., 2023). De Toro et al. (2015) examined annual yield data at the 
county level in Sweden for various crops between 1965 and 2014 and found that the 
lowest yields were typically associated with prolonged dry periods (e.g., < 20 mm 
of precipitation over 40 days). Additionally, the findings of Beniston et al. (2007) 
suggest that the projected increase in drought events during the future period (2071–
2100) could negatively affect crop production. 

The use of high-resolution (3-km) climate data as input for LPJ-GUESS enabled the 
simulation of the detailed crop yield distributions in each district. Fig. 14–15 show 
the spatial variability of spring barley and winter wheat yield in the district 1211. 
Although farmland distribution in southern Sweden varies annually, these fine-
resolution yield maps can help identify optimal zones for newly reclaimed 
agricultural land. Spring barley consistently produced the highest yields in the 
southwest and the lowest in the northern and eastern parts, across both historical and 
future periods (Fig. 14). Given the minimal yield differences across different areas, 
we caution against generalizing this pattern beyond these two districts. Based on 
these results, for spring barley in district 1211, the southwest appears most suitable 
for new croplands. For winter wheat, the location of croplands in district 1211 has 
little impact on overall yield production. 
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Fig. 12. Mean relative spring barley yield change (%) from the historical period (1985–2005) 
under different future periods and scenarios. The shadowed areas for each line denote the 
mean relative changes (%) in spring barley yield simulated for the top 100 parameter 
combinations selected from the LPJ-GUESS model calibration (paper III).  

Fig. 13. Time series of the overall growing season precipitation across all districts over the 
LC period (2080–2100) under both RCP4.5 and RCP8.5 scenarios. 
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Fig. 14. Average spatial distribution of spring barley yields over historical and future periods 
in low-yield district 1211. 

 

 

Fig. 15. Average spatial distribution of winter wheat yields over historical and future periods 
in low-yield district 1211. 
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Limitations and outlook 

Despite the valuable insights gained from this study, several limitations remain and 
should be addressed in future research, which are summarized from four 
prospectives corresponding to four papers as follows: 

For evaluating the accuracy of multi-source gridded ET data in the Nordic Region 
(Paper I), discrepancies between flux tower observations and gridded products can 
lead to spatial representativeness errors. This “mismatch in spatial scale” is a 
common challenge in the scientific community, requiring collaborative efforts 
across fields such as measurements, modelling, and satellite remote sensing to find 
practical solutions in future research. Additionally, we only evaluated four widely 
used global gridded ET products in the Nordic Region. Future studies should include 
newly developed global ET products and assess their performance across various 
spatial and temporal scales. Therefore, further exploration is to study the impact of 
reference climatology selection on TC-based merging results for different variables 
and regions. 

For crop yield prediction using the satellite-based variables and machine learning 
technique (Paper II), further enhancements can be achieved by incorporating 
downscaled datasets with higher spatiotemporal resolution, such as VIs, SIF, 
climate data, and soil moisture, as inputs to the machine learning model. High-
precision remote sensing products are continuously being developed. For instance, 
the GLEAM4 global ET dataset, which offers daily data from 1980 to 2023 at a 0.1° 
spatial resolution, has been newly generated (Miralles et al., 2025). We are hopeful 
that the upcoming high-precision datasets will significantly enhance the accuracy of 
crop yield estimation and forecasting in the future. Secondly, while RF 
demonstrated good yield estimation results in this study, exploring other machine 
learning or deep learning algorithms could potentially yield better performance. 
Lastly, averaging predictors based on specific phenophases, such as emergence or 
anthesis periods, rather than using monthly intervals, could reveal more precise 
relationships between the variables and crop yield. Future research can be extended 
to a longer time span with more predictors (e.g., sowing dates, soil properties and 
management practices) for analyzing both spatial and temporal variations in crop 
yield at the pan-European regional level. 

For the LPJ-GUESS model calibration (Paper III), six key parameters were initially 
calibrated based on prior knowledge. However, this selection may not cover all 
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parameters needed to accurately regulate yield responses. Besides, this study 
focused on two crop types due to the lack of long-term yield data for other crops 
like rye and maize. While LPJ-GUESS can simulate up to 11 crop types, more 
continuous field data is needed to improve yield simulations and achieve more 
thorough model calibration. Using higher resolution climate and satellite-based ET 
data could enhance both model performance and calibration accuracy. However, 
LPJ-GUESS requires significant computation time (~ 10 seconds per simulation per 
pixel), and finer data would demand more computing power and longer processing 
times. Thus, optimizing the model's running speed is necessary. Future research 
should focus on to refining calibration strategies to account for spatial variations in 
crop growth using high-quality, satellite-based crop growth-based datasets. 

For crop yield prediction using the calibrated LPJ-GUESS with future climate data 
(Paper IV), bias correction was applied to the HCLIM38-simulated 3-km climate 
data using the 0.1° ERA5-Land reanalysis product as a reference. Any biases in the 
reanalysis data could carry over to the corrected climate data, potentially affecting 
crop yield accuracy. Additionally, model validation was done with district-level 
yield data, which may not fully reflect yield variability at finer spatial scales. 
However, this is the only long-term crop yield data available in the study area. Lastly, 
while this study focused on growing-season temperature, precipitation, and crop 
yields, crop growth is influenced by more complex interactions with other 
environmental factors. Future research should gather more ground-observed crop 
yield data at a finer scale and incorporate additional variables to better understand 
the factors driving yield variability under the impact of climate change. 
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Conclusions  

This thesis conducted a comprehensive investigation into enhancing the accuracy of 
crop yield prediction in Sweden through two approaches: (1) the integration of 
satellite-based empirical models with machine learning algorithms and (2) driving 
the calibrated process-based ecosystem model LPJ-GUESS with the future climate 
data. Given that both approaches relied on satellite-based ET datasets, a TC-based 
framework was first employed to select the global gridded ET products with the 
highest accuracies across the Nordic Region. This study provided valuable insights 
into the strengths of both approaches, offering a solid foundation for future research 
and practical applications in Nordic agricultural management. A detailed summary 
of the key findings from each paper included in this thesis is presented below. 

Paper I applied and evaluated the TC technique and TC-based merging framework, 
offering the first assessment of error structures in four widely used global gridded 
ET products and two merged ET datasets for the Nordic Region. The study reached 
three main conclusions. First, the QC-based error cross-correlation calculation 
effectively identified datasets with the least correlated errors, helping minimize 
violations of TC assumptions — a crucial step for applying the TC approach. Second, 
both absolute and relative error variances should be considered when evaluating 
datasets. Among the four products, PML-V2 showed the best overall performance, 
with low error variances and a high signal-to-noise ratio. Third, the TC merging 
technique proved effective for improving ET accuracy in the Nordic Region. 
Validated against ICOS in situ measurements, the merged ET datasets using 
FLUXCOM climatology outperformed all parent products in terms of RMSE. 
However, the choice of climatology can influence the final merged ET results, 
highlighting the need for further investigation. Beyond supporting dataset selection 
for Papers II and III, our findings have important implications for various 
applications, such as drought assessment and crop yield estimation. 

Paper II focused on estimating district-level spring barley yield in southern Sweden 
from 2017 to 2022 using satellite data, climate data, and the RF approach. This study 
found strong positive correlations between barley yield and the monthly average 
SIF and VIs in April and May, showing that yield can be reliably forecasted two 
months before harvest. VIs, with their finer spatial resolution, outperformed the 
coarser-resolution SIF in model predictions. The best results were achieved by 
combining VIs and SIF, highlighting the unique and valuable information provided 
by SIF. Adding climate variables did not improve model performance, likely due to 
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their overlapping information with VIs and the short study period. Although adding 
June’s monthly ET contributed little to model performance, its strong correlation 
with barley yield suggests ET is a promising indicator for yield estimation — one 
that could perform better with finer spatial resolution. The yield prediction for 2022 
showed robust and accurate results, especially in districts with widespread spring 
barley cultivation. This study proposed a simple and effective framework using 
freely accessible multi-source data to estimate barley yield, which can also be 
applicable to other crops and geographic contexts.  

Paper III evaluated the performance of LPJ-GUESS with calibration in simulating 
crop yields at the district level in southern Sweden with a focus on two crop types, 
spring barley and winter wheat. The model calibration using observed crop yields 
as reference data significantly improved simulation accuracy for both crop types. 
Across all studied districts, the mean RMSE was 710 kg/ha for spring barley and 
907 kg/ha for winter wheat, with nRMSE values of 12.8% and 12.2%, respectively. 
This was a major improvement compared to the uncalibrated model, which showed 
nRMSE values of 50.3% for spring barley and 15.5% for winter wheat. Calibration 
using the satellite-based ET product PML-V2 during the growing season slightly 
enhanced simulation accuracy, achieving an nRMSE of 41.0% for spring barley and 
14.2% for winter wheat. This highlighted the potential of freely available satellite-
based ET products as alternative reference data when observed crop yield data were 
unavailable. Additionally, the calibrated LPJ-GUESS model effectively assessed 
drought impacts on crop yields, accurately estimating yield losses for spring barley 
under drought conditions. Therefore, this calibration approach can effectively 
improve yield estimation and be used to support agricultural decision-making in 
Sweden. 

Paper IV evaluated the potential impacts of future climate change on crop yields in 
southern Sweden using the calibrated LPJ-GUESS model from Paper III, driven 
by 3-km high-resolution climate data downscaled through the advanced CPRCM 
HCLIM38. During the historical period (1985–2005), the simulated yields aligned 
closely with observed data, demonstrating the model’s reliability. Future projections 
showed significant yield increases, peaking at the end of the century (2080–2100). 
Under the RCP4.5 scenario, the average simulated yield reached 7753 kg/ha for 
spring barley and 9043 kg/ha for winter wheat, while in the RCP8.5 scenario, yields 
rose to 10378 kg/ha and 11411 kg/ha, respectively. In northern Sweden, rising CO₂ 
levels and higher growing-season temperatures were key drivers of yield 
improvements. No consistent spatial patterns were observed in low-yield areas, but 
in high-yield districts like 1211, expanding croplands in the southwest was 
recommended. These findings highlight the importance of region-specific model 
calibration when assessing climate change impacts on crop yields and emphasize 
the need to expand the use of CPRCMs for high-resolution climate simulations 
across diverse regions in Europe. 
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