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Non-Negative Spherical Relaxations for
Universe-Free Multi-Matching and Clustering

Johan Thunberg1 and Florian Bernard2

1 Halmstad University, Sweden
2 University of Bonn, Germany

Abstract. We propose a novel non-negative spherical relaxation for op-
timization problems over binary matrices with injectivity constraints,
which in particular has applications in multi-matching and clustering. We
relax respective binary matrix constraints to the (high-dimensional) non-
negative sphere. To optimize our relaxed problem, we use a conditional
power iteration method to iteratively improve the objective function,
while at same time sweeping over a continuous scalar parameter that is
(indirectly) related to the universe size (or number of clusters). Opposed
to existing procedures that require to fix the integer universe size before
optimization, our method automatically adjusts the analogous continu-
ous parameter. Furthermore, while our approach shares similarities with
spectral multi-matching and spectral clustering, our formulation has the
strong advantage that we do not rely on additional post-processing pro-
cedures to obtain binary results. Our method shows compelling results in
various multi-matching and clustering settings, even when compared to
methods that use the ground truth universe size (or number of clusters).

Keywords: Multi-matching · Clustering · Spectral methods · Spectral
clustering · Permutation synchronization.

1 Introduction

In this work we propose a novel method that generalizes the power iteration
algorithm to handle non-negative matrices with rows on the unit sphere (i.e. the
intersection of the non-negative orthant and the unit sphere), referred to as “non-
negative sphere”. This is highly relevant for optimization problems that aim to
find assignments between elements, such as they occur in multi-matching (e.g. for
finding correspondences between keypoints in a collection of images [58]), or in
clustering problems, where points are to be grouped according to some similarity
criterion [43]. While there is a range of approaches based on spectral matrix
decompositions, such as spectral permutation synchronization [58, 60, 54, 8] or
spectral clustering [69], existing procedures have the downside that they require
that the universe size (or number of clusters) k is known, and additionally require
post-processing to find binary solutions representing discrete assignments.

Our method circumvents these shortcomings by using a similarity matrix
to group vectors on the (k−1)-dimensional non-negative sphere, where k is an
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(arbitrarily loose) upper bound for the universe size (i.e. the total number of
unique elements across all objects in multi-matching problems, or the number of
clusters in clustering problems). Our procedure shares resemblance with power
iterations and orthogonal iterations for eigenspace computation [35], but opti-
mizes over non-negative matrix rows with unit length (instead of orthogonal
columns). In addition, we automatically determine a single real-valued param-
eter that is (indirectly) related to the (unknown) integer number k, which we
address by utilizing specific properties that directly arise from our novel formu-
lation. We summarize our main contributions as follows:
– Our formulation does not require the knowledge of k. Instead, we simply re-

quire to select an (arbitrarily loose) upper bound of k, which corresponds to
the number of columns of our matrix optimization variable. We emphasize
that it is not possible to choose a too large upper bound that would impair
the result quality.

– Opposed to related existing methods, our method does not require any addi-
tional post-processing in order to find discrete assignments.

– We show that our procedure leads to state-of-the-art results in diverse multi-
matching and clustering problems.

2 Related Work

In the following we provide an overview of the relevance of spectral methods for
multi-matching and clustering.

Multi-matching and permutation synchronization. Multi-matching
refers to the problem of finding correspondences across a collection of objects
(e.g. correspondences between keypoints in images, or between vertices of meshes,
etc.). Many approaches are based on permutation synchronization [58, 60, 54, 41,
14, 10, 39, 13, 8], which is a procedure that establishes cycle consistency in the
set of pairwise matchings. The main idea is to represent pairwise matchings
in a large block matrix, and then use low-rank matrix factorization (e.g. via
spectral decompositions, convex or non-convex optimization) to extract cycle-
consistent matchings. Similarly, analogous strategies have been used for other
types of pairwise transformations, such as functional maps [40, 33], or spatial
transformations [9, 4]. While permutation synchronization can be interpreted
as a multi-object version of the linear assignment problem [56], respective ap-
proaches generally do not consider pairwise terms and thereby are unable to
take into account geometric consistency. Instead, to consider geometric consis-
tency, a multi-object version of the quadratic assignment problem [48, 49] can
be considered, which, however, leads to an objective function that is a fourth-
order polynomial. The latter was successfully addressed based on a higher-order
projected power iteration method [11]. All of the mentioned approaches require
that the universe size is known (or accurately estimated). In contrast, in this
work we propose an approach that does not rely on this information.

Spectral clustering and related work. Clustering is well studied and
thousands of algorithms have appeared [43] since the k-means algorithm was in-
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troduced over sixty years ago [64]. Spectral clustering was first developed in the
context of graph partitioning [30], and a large number of related approaches have
been proposed [61, 26, 46, 57, 25, 5, 76, 53]. Essentially, in spectral clustering the
intractable NP-hard clustering problem [28] is “relaxed” to a tractable eigenvec-
tor problem, whose solution is then eventually rounded to approximate a solution
of the original problem. Typically, pairwise distances between data points are
computed first, which are then represented as a distance matrix, i.e. an object
that reflects dissimilarities between data points. Subsequently, a kernel func-
tion is applied to the distance matrix [74, 75, 70, 71] in order to convert it to a
similarity matrix. Kernel functions range from fixed Gaussians [57] to adaptive
approaches [71, 44]. Once a suitable similarity matrix is obtained, eigenvectors
are computed as a low-dimensional embedding of the similarity matrix, which
is then used for clustering. A common way to compute spectral clustering solu-
tions is via power iterations or orthogonal iterations [35]. Spectral formulations
furthermore appear as relaxations to normalized cut and min-cut formulations
for clustering [16, 65]. There is also a connection to kernel-based k-means [23].
Recently there have been several works that incorporate learning of balance
parameters in the spectral clustering formulation [17, 18, 59].

Spherical clustering refers to the clustering of points distributed over the
(unit) sphere. Two common methods for spherical clustering are spherical k-
means [24] and online spherical k-means [77]. The k-means clustering method [64,
29] is a special case of a Gaussian mixture model in which all priors are equal
for the components, and all parameters are equal for the concentrations. The
spherical k-means methods share analogous properties with respect to mixture
models based on the von Mises-Fisher distribution on the unit sphere [7, 6],
which uses cosine-functions of angular differences. This transitions into genera-
tive model-based (or parametric models) for spherical clustering, for which many
approaches have been suggested [78, 27, 47, 12, 63]. In this context the Expecta-
tion Maximization algorithm is commonly used [6, 36]. While spherical clustering
approaches have the objective to cluster points distributed over the sphere, in
our approach we consider the clustering of points in any space. To this end,
we consider a conditional power iteration method [31, 42] that iteratively finds
points on the non-negative sphere in order to separate them into clusters.

Generalizations of power iterations. Due to its simplicity and its high
practical value, there have been a diverse range of generalizations of the power it-
eration method. Among them are the higher-order power method [22], the incor-
poration of additional penalties [45], a variant for nonlinear eigenproblems [37],
a max-pooling-based variant [21], tensor power iterations [62], coordinate-wise
power iterations [52], projected power iterations [19], higher-order projected
power iterations [11], or a sparsity-inducing formulation [8]. Moreover, the power
iteration algorithm can also be interpreted as a special case of the Frank-Wolfe
algorithm [31, 42] applied to Rayleigh quotient optimization.
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3 Preliminaries

We define the set of binary row-stochastic matrices with m rows and k columns
as Pm,k. Another description of Pm,k is that it comprises m-by-k matrices with
rows equal to the canonical basis vectors in Rk. Suppose a data matrix X ∈ Rm×k

is given, where the rows represent a total of m data points in k dimensions. A
similarity matrix W ∈ Rm×m for X is a non-negative symmetric matrix, where
each element Wij captures the similarity (in some appropriate sense) between
the row i (i.e. data point i) and row j (i.e. data point j) of X. Larger values
indicate higher similarity, and smaller values indicate lower similarity.

Consider the nonlinear least-squares optimization problem on the form

argmin
U∈P⊂Pm,k

f(β,W,U), (1)

where P is a subset of Pm,k that depends on the type of problem we want to
solve, and

f(β,W,U) = ∥W−βUUT ∥2F = tr(W 2)−2β tr(UTWU)+β2 tr(UUTUUT ), (2)

where β > 0 is some parameter of choice. Note that this formulation only in-
volves W (and not a data matrix X), which could have been obtained without
using a data matrix X in applications such as graph clustering or permutation
synchronization.

As mentioned, the choice of P in (1) depends on the type of problem consid-
ered. In clustering, P is equal to Pm,k. In multi-matching, P has additional struc-
ture. In such cases P is the set of matrices on the form U = [UT

1 , UT
2 , . . . , Uq]

T ,
where q < m and each Ui is a partial permutation matrix, i.e. Ui ∈ Pmiq with

Pmiq := {X ∈ {0, 1}mi×k : X1k ≤ 1mi , 1
T
mi

X ≤ 1T
k } and

q∑
i=1

mi = m. (3)

3.1 Non-Negative Spherical Relaxation

We revisit equation (2) and note that for U ∈ Pm,k it holds that

tr(UUTUUT ) = tr((UTU)(UTU)) = tr(UT1m,mU), (4)

where 1m,m is the matrix in Rm×m whose elements are all 1. This means that
minimization of f in (2) over Pm,k may equivalently be expressed as maximiza-
tion of

2β tr(UTWU)− β2 tr(UT1m,mU) (5)

over Pm,k, since the constant term in (2) can be ignored. We introduce the
quadratic form formulation as

argmax
U∈Pm,k

g(α,W,U), (6)
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where
g(α,W,U) = (1− α) tr(UTWU)− α tr(UT1m,mU). (7)

We see that (6) is equivalent to maximization of (5) by setting α = β2/(β2 +
2β) > 0. The maximization of (5) is in turn equivalent to minimization of (2),
as stated above. Now we define its non-negative spherical relaxation as

argmax
U∈Sp+

m,k

g(α,W,U), (8)

where Sp+
m,k = {[uT

1 , u
T
2 , . . . , u

T
m]T ∈ Rm×k : ui ≥ 0 and uiu

T
i = 1 ∀ i}, i.e. each

row ui of a matrix U in Sp+
m,k has non-negative elements and unit length (a point

on the non-negative part of the unit sphere). An illustration of this relaxation
is provided in Fig. 1 for m = 3.

Fig. 1. Left: points in the set Pm,3 are corner points on the non-negative sphere.
Right: points in the relaxed set Sp+

m,3 lie on the non-negative sphere.

3.2 Conditional Power Iteration

We define two operations for re-balancing the similarity matrix W before used
in the optimization problem, the normalization

W ← DWD, where D =
√
m diag(W1m)−

1
2 ; (9)

and the κ-shift
W ←W + κ1m,m, (10)

for a κ > 0. There is an efficient (local) optimization method for (8) (with the
re-balanced W ) referred to as conditional power iterations, see Algorithm 1. In
the algorithm we use the matrix

V (α) = δ(α)Im + (1− α)W − α1m,m, (11)
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where δ(α) ≥ 0 is some function of α such that V (α) is positive definite. We will
throughout assume δ is given by minus the smallest eigenvalue of (1 − α)W −
α1m,m plus some additional positive epsilon.

Input: U0 ∈ S
Output: U
Initialise: t← 0
repeat

Ut+1 ← argmax
Ũ∈S

tr(UT
t V (α)Ũ)

t← t+1
until convergence
U ← Ut

Algorithm 1: Conditional power iterations

The algorithm resembles the conditional gradient method (also known as the
Frank-Wolfe method [42]), for objectives of quadratic form, where we allow for
S to be any (not necessarily convex) compact subset of Rm×k. In the following,
we summarize convergence properties of Algorithm (1).

Proposition 1 The following holds for the conditional power iterations in Al-
gorithm (1).
1. tr(UT

t+1V (α)Ut+1) ≥ tr(UT
t V (α)Ut).

2. There is δ > 0, s.t. tr(UT
t V (α)Ut)→ δ as t→∞, i.e. the objective converges.

3. For any ϵ > 0 there is a T ∈ N (as a function of ϵ) s.t.
∑∞

t=T ∥Ut+1−Ut∥2F ≤ ϵ.

A proof of Proposition 1 is provided in the appendix. For manifolds one can,
in general, further strengthen condition 3: the solution converges to a critical
point, and converges almost everywhere to a local maximum [51].

Using Algorithm 1: when S = Sp+
m,k, we immediately note that the maximiz-

ers of (8) are equal to those of tr(UTV (α)U). This can be observed by noting
that tr(UT (δ(α)Im)U) = δ(α)tr(UUT ) = δ(α)tr(UTU) = δ(α)m is constant for
U ∈ Sp+

m,k.
The main update in Algorithm 1 reads

Ut+1 ← argmax
Ũ∈Sp+

m,k

tr(UT
t V (α)Ũ). (12)

Since the rows of matrices in the set Sp+
m,k are independent, the maximization

in (12) can be solved by performing maximizing for each column of UT
t V individ-

ually. An efficient solution to this per-column maximization problem is presented
in Algorithm 2.

In the following we assume that S = Sp+
m,k and that the maximization prob-

lem in (12) is solved using Algorithm 2. Given the output U to Algorithm 1, we
subsequently perform a rounding to obtain a matrix Ũ ∈ Sp+

m,k ∩ Pm,k, from
U ∈ Sp+

m,k.
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Input: x ∈ Rk

Output: y ∈ Sp+
1,k

if maxi xi ≤ 0 then
y ← 0k

i = argmaxi xi // select any solution if not unique
yi ← 1

else
y ← max(x, 0) (element-wise maximization)
y ← y

∥y∥2
end

Algorithm 2: Projection onto non-negative sphere

4 Universe-Size-Free Procedure

In Sec. 3.2 we provided a strategy for local optimization of (8) for a given α.
The problem is that this parameter α is not given. It does not make sense to,
for example, choose α = 1, since then the optimal solution U∗ does not depend
on W . The main approach in this section is to select a “good” α by using the
convergence rate of Algorithm 1 for different choices of α. Regarding the choice
of k, our only requirement in the proposed procedure is that it is sufficiently
large.

4.1 Description of the method

First the matrix W is normalized, see (9), and consecutively κ-shifted, see (10),
(with some small κ > 0). The procedure is then to run two consecutive algo-
rithms: α-sweep, see Algorithm 3 below, and α-pick, see Algorithm 4 below. The
method is illustrated on a high level for a multi-matching problem in Fig. 2. The
main intuition behind the algorithms is illustrated for a clustering problem in
Fig. 3.

α-sweep: Initially we choose α = 1 and k to some sufficiently large positive
integer. We choose U0 to the unique matrix K ∈ Rm,k for which there is a ma-
trix R and integer m̄ > m such that [KT , RT ]T = [Ik, Ik, . . . , Ik]

T ∈ Rm̄×k. In
other words, U0 comprises the upper part (the first m rows) of a tall matrix
with repeated identity matrix blocks. Then we decrease α (from 1) to 0 with a
specified step-size ϵα. For each α considered on the path from 1 to 0, we run the
conditional power iteration Algorithm 1 (outlined in Section 3.2) for a few fixed
number of steps to update U . Thus, when we update α with the step size ϵα,
we use the final U obtained from for the previous α as initialization. For each
α considered, we compute the difference between the objective function with U
from the last iteration and the objective function with U from the second last
iteration. We call this difference η(α) and it is a measure of how fast the objec-
tive converges for each considered α.
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UT0

W

α-sweep -pickα+

Solve LAP for 
the four 
blocks

UUT

ŨŨŨT

U

Fig. 2. Illustration of the method for a small multi-matching problem. Universe size
(number of unique points) is k∗ = 3, number of images is 4, each containing either 2
or 3 point points in correspondence with points in other images. The sum of all points
(in all objects) is m = 9. We choose k = 6 for the method. There are two inputs to the
method: the noisy similarity matrix W , where erroneous entries are marked by red; and
the matrix U0. The main procedure α-sweep (Algorithm 3) and α-pick (Algorithm 4)
produces a matrix U ∈ Sp+

9,6. The linear assignment problem (LAP) is solved for each
of the four blocks of U to produce the matrix Ũ , which defines the correspondences.

α-pick: This proceedure is illustrated in the right sub-figure of Fig. 3. We find
the first local maximum of η from the right, referred to as “Right max” in the
figure. Then we find the first local maximum of η from the left, referred to as
“Left max” in the figure. Then we pick α∗ as the corresponding α for the min-
imum η between “Left max” and “Right max”, shown with a green dot in the
figure. In the figure we also show the F-score (blue line), which is the harmonic
mean of precision and recall. The black dashed line illustrates the corresponding
F-score for the picked α∗. The procedure for finding the index of the value α∗

in the α-vector is formally described in Algorithm 4.

4.2 Brief Motivation

We begin by addressing initialization of U0 and why α is decreased from 1 to 0
in the α-sweep algorithm. For α = 1, one can show that K is an optimal solution
to (6). Optimal solutions for α = 0 comprise matrices with all rows equal. But,
the optimal solutions for α = 0 comprise a critical set for all α ∈ [0, 1]. Hence the
solution will not change when α is increased from 0 to 1, as we would always get
the same trivial solutions when varying α from 0 to 1. The pink curve in Fig. 3
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Input: W , k, ϵα, ϵη N k
Output: αtot, ηtot, Utot

Initialise: α← 1, αtot ← [ ], htot ← [ ], U0 ← K, Utot ← U0

// outer-loop sweeps discretely over α
repeat

α← α− ϵα
λmin ← min(eig((1− α)W − α1m,m)) // smallest eigenvalue
V ← (λmin + ϵη)Im + (1− α)W − α1m,m

i← 0,
// inner-loop uses Algorithm 1
repeat

Ut+1 ← argmax
Ũ∈Sp+

m,k

tr(UT
t V (α)Ũ)

i← i+ 1
t← t+ 1

until i = N
αtot ← [αtot, α]
Utot ← [Utot|Ut]
ηtot ← [ηtot, |g(α,W,Ut)− g(α,W,Ut−1)|]

until α− ϵα < 0
Algorithm 3: α-sweep

Input: αtot // from Algorithm 4
Output: i∗

Initialise: ir ← 0, il ← length(ηtot) // length of the vector
repeat

ir ← ir + 1
until ηtot(ir + 1) < ηtot(ir) // value at subsequent index in vector is

smaller

repeat
il ← il − 1

until ηtot(il − 1) < ηtot(il) // value at previous index in vector is
smaller

i∗ ← ir + minIndex(ηtot(ir : il)) // index of minimum value between the
two maxima

Algorithm 4: α-pick

would be replaced by a straight line. Now, with a κ-shift, the optimal solutions
for α > 0 small enough are the matrices with all rows equal. The objective will
be the same when varying α in that region. Thus the η-values will be close to
zero in that region, see Fig. 3 when α is smaller than 0.43. If the similarity
matrix is “free of noise”, there is a region of α-values for which the optimal
solution is retrieved and η on that interval should be close to 0 (convergence of
objective is assured by Proposition 1). The objective value, however, is different
from that when α = 0 or α = 1. By varying α between 1 and 0, one should first



10 Johan Thunberg and Florian Bernard

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8
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-sweepα -pickα

Left

max

Right

max

Fig. 3. The method is used for a sample clustering problem for illustration. Left: the
computed measure of convergence rate η (pink) as a function of α for Algorithm 3 (i.e.
α-sweep). Right: an α-value is picked for the (pink) η-curve using Algorithm 4 (i.e.
α-pick). For illustration, the F-score for the solution for each α is shown in blue and
the dashed line shows the F-score value of the solution corresponding to the picked α.

experience an increase in η, then a local minimum, then an increase, and then a
local minimum again.

5 Experiments

5.1 Multi-Image Matching

Multi-image matching refers to the problem of establishing correspondences be-
tween given keypoints in a collection of images [58, 79, 73, 68, 66, 11, 14, 13]. Our
procedure for these type of problems is illustrated with an example in Fig. 2. As
rounding, we solve q (partial) linear assignment problems for the q blocks in the
output matrix U .

CMU house image sequence. We begin by considering the CMU house image
sequence [1], from which we generate a range of multi-image matching problems
following the procedure of [58]. We compare our method with MatchEig [54],
Spectral [58], SparseStiefelOpt [8], MatchALS [79], NmfSync [10]. In this
experiment for Our we use k = 100, ϵα = 0.01, N = 5, ϵη = 0, κ = 0.01. We
present results in Fig. 4 in terms of F-score, i.e. harmonic mean of precision and
recall.

WILLOW-ObjectClass data set. Next we follow the procedure in [2] to per-
form multi-image matching for the WILLOW-ObjectClass data set [3]. Sample
images are shown in Fig. 5. We compare Our method in terms of F-score with
PG [72], Spectral [58], MatchLift [20], MatchALS [79], NmfSync [10], and
SparseStiefelOpt [8]. Except Our, all methods use the known ground-truth
universe size for the multi-matching. For Our we use k = 100, ϵα = 0.01,
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Fig. 4. Top left: two images from the CMU house image sequence. Top right: example
of correct vs. incorrect pairwise matchings. Green lines show correct matchings, whereas
red lines show incorrect matchings. Bottom: quantitative comparison of state-of-the-
art multi-image matching methods in terms of the F-Score. All methods with dashed
lines use the ground-truth universe size for matching, whereas Our (solid) does not.

N = 20, ϵη = 0, κ = 0. Results are shown in Table 1, where it can be seen that
our method is competitive without knowing the universe size.

Duck   12/  50 : 0600017.pngDuck   15/  50 : 0600022.png
Duck   13/  50 : 0600018.pngDuck   14/  50 : 0600019.png

Fig. 5. Sample images with corresponding ground truth feature correspondences from
the WILLOW-ObjectClass data set.

Multi-matching with partial observations. We continue with experiments
on simulated (synthetic) problems where only a subset of features are observed
for each of the q objects (corresponding to images). This means that the number
of points mi is not necessarily equal to mj for i ̸= j. We conduct a series
of experiments where we generate problems using the following parameters. q:
number of objects; d: ground truth universe size; ρ: probability that a feature is
observed (for ρ = 0 it holds mi = 0 for all i, and for ρ = 1 it holds mi = d for all
i); σ: this parameter specifies the degree of error in the similarity matrix W . It
is the portion of randomly shuffled ground truth matchings for pairs of objects.
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Car Duck Face Motorbike Winebottle universe size

Our 0.985 0.935 1 0.983 1 estimated
PG 0.990 0.925 1 1 1 ground truth

Spectral 0.990 0.929 1 0.975 1 ground truth
Matchlift 0.990 0.925 1 0.976 1 ground truth

MatchALS 0.980 0.921 1 0.960 1 ground truth
NmfSync 0.990 0.925 1 0.975 1 ground truth

SparseStiefelOpt 0.980 0.861 1 0.975 1 ground truth

Table 1. WILLOW dataset F-score comparison for different methods. Horizontally:
image data sets. Vertically: methods.

An evaluation for different parameter settings is shown in Fig. 6, where average
F-scores over 50 problems are presented for each parameter setting.

Our SparseStiefelOpt NMFsync Spectral MatchALS
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e
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Fig. 6. F-score (↑) comparison of Our (Red) and four other methods for synchro-
nization of partial permutation matrices. Methods with dashed lines use ground-truth
universe size (i.e. d) in the matching, whereas the method with solid line (Our) does
not. In each setting three of the parameters (q, d, ρ, σ) are constant, whereas the fourth
is varying along the x-axis. The y-axis represents the average F-score over 50 problem
instances for each choice of the varying parameter. All methods except Our use the
universe size for the synchronization.

5.2 Clustering

Random binary similarity matrices. We begin the clustering evaluation
by considering binary similarity matrices as input, which can be seen as the
adjacency matrix of an unweighted graph, and hence the setting is in line with
graph clustering. The similarity matrix represents matchings between m points
randomly assigned to one of the k∗ clusters. In this context, two parameters
capture the noise level of the similaity matrices considered: 0 ≤ ρ ≤ 1 and
0 ≤ ν ≤ 1, where the former captures the degree of randomness in the elements,
and the latter captures the degree of missing data (i.e. the degree of connectivity
of the graph). Higher values are more challenging.
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Fig. 7. F-score (↑) comparison of Our (pink) and five other clustering methods. In
each setting three of the parameters (m, k∗, ρ, ν) are constant, whereas the fourth is
varying along the x-axis. The y-axis represents the average F-score over 50 problem
instances for each choice of the varying parameter. Methods with solid lines assume no
knowledge of k∗, whereas methods with dashed lines use k∗ as the number of clusters
to determine.

We compare our method to existing clustering methods in this setting. Re-
sults are provided for four different settings in Fig. 7. In each of the four settings
one parameter varies, whereas the others are fixed. The average F-scores are
shown for 50 simulations for each choice of the varying parameter. The algo-
rithms we compare are the following ones. Our: Algorithm 3 and Algorithm 4;
APclustering: Affinity propagation clustering [15, 32]; NMF: Non-negative
matrix factorization of W [34] with multiplicative updates [50] and simple round-
ing; Spectral + kmeans: Spectral clustering with k-means clustering [55] using
rounding as in [57]; Spectral + skm: same as Spectral + kmeans except
rounding with spherical k-means clustering [38]. Of the compared methods, only
Our and APclustering (solid lines) do not use k∗ explicitly in the clustering.
Regarding Our, we have chosen the following parameters in all experiments in
Fig. 7: k = 100, ϵα = 0.01, N = 20 ϵη = 0, κ = 0.

Gaussian mixture models. Here we consider data from 2D Gaussian mixture
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Fig. 8. Quantitative comparison in terms of the mean F-Score (↑) between our method
and Spectrum for varying number of mixture components k∗.

models (GMM), where the number of mixture components is k∗ and the m rows
of a data matrix X correspond to m observations. The generated problems are
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challenging with highly overlapping clusters and different scales. We used the
adaptive kernel proposed by [44] to construct a similarity matrix W and used
their method Spectrum provided in [55, 67] as comparison method, which is
a self-tuning spectral clustering method using the adaptive kernel, followed by
a procedure for selecting the appropriate number of clusters, as well as a final
step of Gaussian mixture model fitting. Results are shown in Fig. 8, where we
vary the number of k∗ ground truth clusters. For each choice of k∗, we randomly
generate 30 GMMs. In this generation of models, the mean distance between
cluster centers is 1 and mean variance within clusters is 0.7. For each GMM we
generate 200 sample points to create a problem for evaluation.

5.3 Discussion and Limitations

Once we know the index i∗ from Algorithm 4, we can run Algorithm 3 again for
i∗ many steps in the outer loop and then terminate. An alternative is to save
the cluster assignments after each iteration in a vector. For clustering problems,
the rounding procedure does not comprise a computational bottleneck (its com-
putational complexity is O(km)). Thus it can be added in each iteration of the
outer loop to observe how the number clusters vary with varying α. From a com-
putational perspective the per-iteration complexity of Algorithm 1 is equivalent
to that of the orthogonal iteration algorithm for computing eigenvectors. The
computational time is reasonable for moderate problem sizes. For example, the
largest computational time observed for all problems used for Fig. 7 in Section 5,
was 1.34 seconds on a 2,7 GHz Intel Core i7 MacBook Pro. However, the pro-
posed method suffers from some shortcomings from a computational perspective.
Increasing N and decreasing ϵα results in more iterations (the total number be-
ing N times the number of discretization steps of α). The optimal initialization
with U0 = K helps to reduce the N needed to get a good solution. However, the
eigenvalue computation in each iteration could provide a computational bottle-
neck. This can be alleviated by using more efficient approximation methods and
additionally use a previously computed eigenvector as initialization for the next
iteration in the outer loop.

6 Conclusion

In this work have presented a novel non-negative spherical relaxation for multi-
matching and clustering without the knowledge of universe size. An efficient and
easy-to-implement conditional power iterations method is used for optimization,
where a continuous parameter is selected by comparing convergence rates for
values thereof. The solution for this parameter-choice is subsequently rounded
to determine the assignments. The method is competitive against state-of-the
art methods that assume knowledge of the universe size.
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A Proof of Proposition 1

1. It holds, by definition of Ut+1 that a)

tr(UT
t V (α)Ut+1) ≥ tr(UT

t V (α)Ut). (13)

Moreover, since V (α) is positive definite, it holds that b)

0 ≤ tr((Ut+1 − Ut)
TV (α)(Ut+1 − Ut)) (14)

= tr(UT
t+1V (α)Ut+1) + tr(UT

t V (α)Ut)− 2tr(UT
t V (α)Ut+1). (15)

Combining a) and b) yields the desired inequality.

2. Since S is compact and f(Ut) = tr(UT
t V (α)Ut) is increasing (see 1. above), f(Ut)

converges to a point as t goes to ∞.

3. For symmetric and positive definite matrices in Rm×m we define the inner product
as ⟨X,Y ⟩V (α) = tr(XTV (α)Y ), and the norm ∥ · ∥V (α) =

√
tr((·)TV (α)(·). We prove

the statement with this alternative norm, whereby it holds for the Frobenius norm due
to the equivalence of the two norms.

We know from 1) and 2) that ∥Ut∥2V (α) monotonically converges to a δ > 0 from
below, as t goes to infinity. Thus, for ϵ > 0 there is a T such that δ − ∥Ut∥2V (α) ≤ ϵ for
t ≥ T . We note that, as a consequence of the relations (13) and (14), the following is
true (for all t ≥ 0):

∥Ut+1 − Ut∥2V (α) ≤ ∥Ut+1∥2V (α) − ∥Ut∥2V (α). (16)

For t > T ≥ 0 we define the partial sum sT,t as below. On the right-hand side, we use
(16) (repeatedly) to obtain the inequality.

sT,t :=

t−1∑
l=T

∥Ul+1 − Ul∥2V (α) ≤ ∥Ut∥2V (α) − ∥UT ∥2V (α) ≤ ϵ. (17)

Now, since sT,t is monotonically increasing for increasing t and bounded from above
by ϵ, there is s∗ ≤ ϵ s.t. limt→∞ sT,t = s∗. □


