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Abstract

The emergency department is a stressful environment, in which physicians are re-
quired to make fast and accurate diagnostic assessments amidst an ever increasing
flood of clinical information, including a growing body of medical knowledge. Mean-
while, the digitization of medical health records in combination with recent break-
throughs in Artificial Intelligence is ushering in a new era of precision medicine.
Deep-learning powered decision support tools represent a promising avenue for im-
proving patient outcomes and reducing work-flow complexity for physicians. The
goal of this thesis was to explore ways to apply modern deep-learning algorithms to
improve predictions of adverse cardiac events among chest-pain patients at the emer-
gency department.

The first paper investigated the utility of prior electrocardiograms (ECGs) for pre-
dicting major adverse cardiac events (MACE). We found that, contrary to clinical
recommendations, prior ECGs will not meaningfully contribute to the predictions
of MACE. The second paper aimed at quantifying the benefit of transfer learning for
models using ECGs to predict acute myocardial infarction (AMI). We found that a
simple transfer-learning strategy of pre-training on patient age and sex resulted in a
substantial increase in the downstream performance of AMI, while simultaneously
enabling the use of larger and more powerful deep-learning model architectures. The
third paper explored options for early rule-out of AMI. The results indicated that
as many as 16% of chest-pain patients can be safely ruled out based on age and sex
alone, suggesting opportunities to further streamline the clinical pathway for low-
risk patients. The fourth paper was concerned with identifying and predicting acute
coronary occlusion myocardial infarctions (OMI), which are particularly serious and
require urgent invasive treatment. We found that 29% of all AMI patients could be
classified as OMI, but only 11% of those patients received timely treatment. Our
deep-learning ECG model was able to predict the OMI outcome with an AUC of
88% using only the ECG and medical history, and 95.3% when including the initial
high-sensitivity cardiac troponin T lab results.

In conclusion, this thesis identified several promising applications and improvements
of deep-learning algorithms in predicting adverse cardiac events in chest-pain patients.
Much work remains to be done, including prospective clinical trials, but hopefully we
are now one step closer to the implementation of a deep-learning powered decision
support tool that can help save lives at the emergency department.
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Populärvetenskaplig sammanfattning på svenska

Hjärtinfarkt är den vanligaste dödsorsaken både i Sverige och resten av världen, och
bröstsmärta är en av de vanligaste besöksorsakerna på akuten. Samtidigt är det ba-
ra en bråkdel av bröstsmärtepatienterna som faktiskt har en hjärtinfarkt. En snabb
och korrekt handläggning av patienter är nödvändig för att de med livshotande och
tidskritiska besvär ska få den behandling de behöver, utan att man överbelastar sjuk-
vårdssystemet eller genomför fler kliniska tester än nödvändigt.

Målet med den här avhandlingen har varit att tillämpa så kallade maskininlärnings-
algoritmer på stora mängder patientdata, för att skapa prediktionsmodeller som kan
hjälpa sjukvårdspersonal på akuten att fatta bättre och snabbare beslut för patienter
med bröstsmärta. Maskininlärning är en form av artificiell intelligens som automa-
tiskt lär sig att identifiera mönster i data genom att träna på exempel. I min forskning
har det framför allt handlat om att hitta samband mellan elektrokardiogram (EKG)
vid ankomsttillfället och diagnosticerad hjärtinfarkt inom 30 dagar.

EKG är ett viktigt redskap för läkare att identifiera hjärtinfarkt, speciellt för att hit-
ta de mest akuta formerna av hjärtinfarkt som kräver omedelbar invasiv behandling.
Analysen av EKG:et är till stor del manuell, och även om det fungerar bra, så finns
det forskning som visar att det kan bli ännu bättre. Avhandlingen är baserad på fy-
ra delarbeten, som alla syftar till att utveckla eller förbättra metoder för att predicera
hjärtinfarkt på akuten, med hjälp av EKG och annan på akuten lättillgänglig infor-
mation.

I det första delarbetet undersökte vi tilläggsvärdet av tidigare EKG:er för prediktion av
hjärtinfarkt och andra allvarliga utfall. Det är nämligen rekommenderat att jämföra
ett nytt EKG med tidigare EKG från samma patient, om sådant finns tillgängligt,
eftersom EKG-markörer för hjärtinfarkt ibland är permanenta. Vi fann dock att de
tidigare EKG:erna inte ledde till några förbättringar i prediktionerna.

Maskininlärningsmodeller fungerar oftast bättre ju mer data de har tillgång till. Men
att skaffa mer data är inte så lätt, särskilt i den medicinska världen. Ett alternativ
är att använda så kallad överförd inlärning, där man utnyttjar annan data som finns
tillgänglig, men som på olika sätt skiljer sig från den ursprungliga problemdomänen.
Detta har varit en mycket framgångsrik strategi i många andra tillämpningar, men har
inte tidigare studerats i kontexten av att förutsäga hjärtinfarkter med hjälp av EKG:er.
I det andra delarbetet utnyttjade vi närmare en miljon EKG:er från patienter som sökt
vård för annat än bröstsmärta. Vi tränade en modell som kunde gissa patienternas
ålder och kön med stor träffsäkerhet, och visade att denna sedan kunde lära sig att bli
mycket bättre på att predicera hjärtinfarkter än motsvarande modell som inte först
fick börja med att träna på ålder och kön.
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På akuten är det inte bara viktigt att fatta rätt beslut, utan det spelar också roll hur
snabbt man kan fatta rätt beslut. I det tredje projektet undersökte vi olika tidpunk-
ter under ett akutvårdsbesök som ny information normalt sett blir tillgänglig, och
byggde maskininlärningsmodeller för att predicera hjärtinfarkt givet den information
som fanns just då. Det visade sig bland annat att omkring 15% av alla bröstsmärte-
patienter med goda säkerhetsmarginaler kan skickas hem innan man ens hunnit ta
några prover över huvud taget. Runt hälften av alla patienter kan skickas hem redan
efter ett första blodprov, och därigenom slippa vänta på ett andra blodprov som är
det normala förfarandet. Det verkar alltså finnas goda möjligheter till att effektivisera
akutvårdsförloppet genom att utesluta de allvarligaste utfallen ännu tidigare.

Den allvarligaste formen av hjärtinfarkt är den som orsakas av en total blockering
(ocklusion) av ett kranskärl. Detta är ett akut livshotande tillstånd som kräver omgå-
ende invasiv behandling för att mekaniskt lösa upp ocklusionen. I praktiken identifie-
ras denna form av hjärtinfarkt med hjälp av EKG, och många liv har räddats genom
att man numera rutinmässigt avläser EKG:et i ambulansen, med möjligheten att åka
direkt till hjärtmottagningen. I det fjärde delarbetet har vi retrospektivt identifierat
patienter med ocklusionsinfarkter, och hittat att de utgör omkring en tredjedel av al-
la hjärtinfarkter i Skåne. Endast en bråkdel av dessa fick vård inom rekommenderad
tid. Vi byggde en maskininlärningsalgoritm för att identifiera dessa patienter utifrån
EKG och labb-värden, och visade att den kunde hitta fler än dubbelt så många fall av
ocklusionsinfarkter som om man använde traditionella EKG-mönster.

Sammanfattningsvis har jag i de olika delprojekten som utgör den här avhandling-
en tillämpat moderna maskininlärningsalgoritmer för prediktion av hjärtinfarkter på
akuten. Mycket återstår att göra, inte minst i form av kliniska valideringsstudier, men
förhoppningsvis kan dessa algoritmer till slut komma att användas i form av beslut-
stödsystem på akuten, med snabbare och mer tillförlitlig vård som resultat.
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Chapter 1

Introduction

The research presented in this dissertation is inter-disciplinary: we are applying meth-
ods from computer science and engineering to solve problems in emergency medicine.
In this chapter, I provide a brief overview of the most relevant parts of each respec-
tive discipline. The first three sections cover the symptoms, pathophysiology, and
management of patients with chest pain at the emergency department (ED). This is
followed by a brief introduction to the most relevant machine learning concepts, and
an overview of previous research. The chapter concludes by summarizing the aims of
this thesis.

Chapter two covers the data and methods specific to this thesis, and chapter three
provides a description and commentary of each of the four papers. Chapter four
contains a brief summary, followed by an outlook of the future.

1.1 A strangling feeling in the chest

Slut ömt i ditt sköte min smäktande kropp
Förkväv i ditt famntag min smärta

I maskar lös tanken och känslorna opp
I aska mitt brinnande hjärta

— Erik Johan Stagnelius, Till förruttnelsen

Heart and pain, as observed by the romantic poets, rhymes in the Swedish language.
Chest pain is among the most common complaints at the emergency department,
accounting for approximately 8% of all visits in southern Sweden [1]. The underlying
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causes for chest pain range from benign, such as musculoskeletal disorders, to life-
threatening, including heart attacks. Chest pain originating from the heart is called
angina pectoris – a strangling feeling in the chest – and the most common of the serious
outcomes is the acute myocardial infarction (heart attack), which is found in about
4%–6% of all chest-pain visits [2, 3]. The primary focus of this thesis is to develop
computer models that can help physicians at the emergency department to identify
patients undergoing myocardial infarction.

The heart, like all organs, require oxygen to function. This oxygen is delivered via the
blood, through coronary arteries that wrap around the heart. If the bloodflow through
the coronary arteries is insufficient, for instance as a result of an occlusion (blockage),
parts of the heart become ischemic – oxygen starved. If the ischemia continues for
too long, the affected cells die, which is called infarction. An infarction in the heart is
called an acute myocardial infarction (AMI), or more colloquially, a heart attack.

There are different possible causes for myocardial infarction, but the most common is
the rupture of a plaque inside a coronary artery, formed by the buildup of cholesterol
over the course of several decades. The ruptured plaque can lead to the formation
of a thrombus (blood clot) which can get stuck and limit or completely block the
flow of blood. Other causes of infarction include a mismatch between oxygen supply
and demand, for instance due to fever, increased heart-rate or respiratory failure, and
injuries related to coronary revascularization procedures [4].

1.2 Myocardial infarction

And then it happened - the attack, the trance,
Or one of my old fits. There sat by chance

A doctor in the front row. At his feet
Patly I fell. My heart had stopped to beat,

It seems, and several moments passed before
It heaved and went on trudging to a more

Conclusive destination. Give me now
Your full attention.

— Vladimir Nabokov, Pale Fire

1.2.1 Diagnosis

In practice, myocardial infarction is diagnosed as a clinical syndrome: it’s a collection
of symptoms and measurements that indicate that a myocardial infarction has taken

2



place [5]. There have been several different definitions in the past 75 or so years,
starting with the world health organization in the 1950s [6], all the way up to the
present. As technology and biomarkers have improved, the definitions have been
refined and unified. The latest de-facto version is the fourth universal definition of
myocardial infarction, published in 2018 in collaboration with the American heart
association, the European society of cardiology, the American college of cardiology,
and the world heart federation [4].

The current definition for diagnosis of AMI require the presence of elevated troponin
levels (above the 99th percentile upper reference limit), accompanied by a rise or fall
in troponin levels, together with either ischemic electrocardiogram changes, imaging
evidence of infarction, or symptoms of acute myocardial ischemia [4]. Symptoms of
myocardial ischemia include discomfort in the chest, upper extremity, neck or jaw,
or the upper central region of the abdomen (epigastrium), as well as ”ischemic equiv-
alents” like shortness of breath (dyspnea) or fatigue [4, 7]. The discomfort is often
diffuse, non-localized, and not affected by movement of the region.

1.2.2 Biomarkers

Cardiac troponin I and T are two types of proteins that are part of the building block
within the myocardial cell that is responsible for contraction, and they are found
almost exclusively in the heart [8]. When heart cells die, the troponin levels in the
blood become elevated within 2-3 hours, with a peak after 24 hours, and may remain
elevated for several weeks [9]. Although other biomarkers for myocardial necrosis
exist, cardiac troponin I and T are preferred for the evaluation of myocardial injury
[10, 11]. Highly sensitive and specific laboratory assays are able to detect troponin
concentrations lower than what is present in 99% of healthy individuals [12]. Analysis
of high-sensitivity cardiac troponin (hs-cTn) in the central laboratory typically takes
30–60 minutes; however, high-sensitivity assays are now available, if not yet widely
used, for point-of-care testing within minutes in the ED [13].

The concentration of troponins in the bloodstream following myocardial injury is
dynamic, and depend on kidney function, blood flow, and the extent and timing
of heart damage, among other things [4]. The typical concentrations follows the
trend illustrated in Fig. 1.1. A secondary lab-value is required to properly distinguish
myocardial infarction from chronic myocardial injury, in which troponin levels are
elevated but stable [4].

ESC guidelines recommend an initial hs-cTn measurement upon ED arrival, followed
by a second measurement one hour later, unless the initial test didn’t detect any tro-
ponins at all [7]. Although this protocol is widely implemented, adhering to the strict
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Figure 1.1: Idealization of how the concentration of cardiac troponin in the bloodstream changes over time,
following a myocardial infarction. URL = Upper reference limit.

timing can be challenging in a busy ED. In real-world practice, the repeated troponin
measurement often occurs within 1–3 hours [14].

1.2.3 The electrocardiogram

The contraction and relaxation of the heart muscle is regulated by electric signals.
These signals can be measured as changes in electric potential by placing electrodes
on different parts of the body. Such a measurement is called an electrocardiogram
(ECG), and is highly informative of the health the cardiovascular system. There are
many variations of ECG machines, but the clinical standard has become to place 10
electrodes on specific parts of the chest, arms and legs, as illustrated in Fig. 1.2. The
potential difference between the leads can then be combined to form 12 parallel time-
series, known as leads, typically plotted on grid paper, as in Fig. 1.3. Normally this
12-lead ECG is measured at a rate of 500Hz, for ten seconds, while the patient is in
a resting position. Each lead can be conceptualized as capturing the activity of the
heart from a certain angle, and if there’s an infarction, it may or may not be visible
depending on what area of the heart is affected [15].

A normal heart beat presents on the ECG as a waveform with a characteristic shape,
idealized in Fig. 1.4. The peaks and valleys are traditionally labeled P, Q, R, S, and
T. A large part of analyzing the ECG is concerned with the morphology of the heart
beat: different shapes, patterns, and deviations, which can be expressed¹ as functions

¹Sometimes only with considerable effort.
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Figure 1.2: Electrode placement of a standard 12-lead ECG. Image by Baklazan99, Wikimedia Commons.

of the PQRST points. Over the years, a wealth of knowledge has been accrued that
associate ECG patterns with clinical outcomes and conditions. Identifying the most
consequential of these remains an important part of diagnosing AMI [4].

1.2.4 The spectrum of myocardial ischemia

Infarctions come in all sizes, and the underlying ischemia, as we have seen, can be
caused by different things. One of the most dangerous types of infarctions are those
caused by a complete reduction of blood-flow: acute coronary occlusion (ACO). In
these cases, it is recommended that the patient undergo invasive treatment as soon as
possible to clear the occlusion [4, 7]. The primary method by which ACO is detected
in clinical practice is with the help of the ECG. The defining pattern is the elevation of
the ST-segment in at least two adjacent leads,² and the resulting diagnosis is known as
ST-segment elevation myocardial infarction (STEMI). Early detection systems to pri-
oritize and speed up the management of patients with STEMI has massively improved
the outcome of what, for much of human history, was essentially a death sentence.
For these reasons, guideline documents, including the fourth universal definition of
myocardial infarction, classify infarctions as either STEMI or non-STEMI infarctions
(NSTEMI), with correspondingly different treatment options [4, 7].

²There are additional and somewhat complicated fine prints and contraindications, but the ST-
segment elevation is the main pattern.
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Figure 1.3: Typical 12-lead ECG, showing normal sinus rhythm. Only 5 s from each lead is plotted in this print-
out.

In order to speed up the treatment of patients with ACO, many countries, including
Sweden, use early detection systems for ambulance patients. The ECG is collected
and analyzed while the patient is in transit, and if STEMI is found, the patient is sent
directly to the angiography lab, bypassing the ED and saving valuable minutes [16].

The overwhelmingly positive impact and undeniable clinical usefulness of STEMI
notwithstanding, the correlation with ACO is not perfect. Studies have shown that
about 35% of STEMI cases do not show angiographic evidence of occlusion [17, 18],
and conversely, about 40% of all infarctions from ACO show no signs of STEMI
on the ECG [19–21]. Although several modifications of the standard STEMI crite-
ria exist, they still do not capture the full picture [22, 23]. The dichotomization of
myocardial infarction into STEMI and NSTEMI has thus been challenged, in favor
of the more pathophysiologically grounded, if not more easily identified, concept of
acute coronary occlusion myocardial infarction (OMI) [23–26]. We will return to this
subject when we discuss paper IV in section 3.4.

1.2.5 Treatment

Once a diagnosis of AMI has been determined, there’s a number of treatment options,
based on the severity of the event. Medications include thrombolytics to dissolve ex-
isting blood clots, anticlotting agents to prevent further clots, nitroglycerin to widen
coronary vessels, and stimulants to regulate heart rhythm and relieve pain [7]. Un-
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Figure 1.4: Idealized version of ECG heart-beat. Image by Anthony Atkielski, Wikimedia Commons.

stable patients and patients with STEMI are sent to the cardiac care unit as soon as
possible, where a coronary angiography can be performed. Patients with NSTEMI
are also usually scheduled for angiography within a few days [7]. Coronary angiog-
raphy is a so-called minimally invasive procedure in which a catheter is used to inject
contrast liquid into the heart, which allows a real-time visual inspection of the heart
vessels by means of X-rays [27]. The catheter can then also be used to mechanically
remove plaques and blockages, as well as insert a small metal mesh tube (stent) to phys-
ically keep an artery open. These procedures are referred to as percutaneous coronary
intervention (PCI).

Another treatment option which is often preferred in the cases of multiple stenosis is
the coronary artery bypass graft surgery (CABG), in which healthy blood vessels from
the arm, chest, or leg is used to create an alternate path around a narrowed or blocked
artery in the heart [7].
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1.3 The emergency department

Eight days a week
Is not enough to show I care

— The Beatles, Eight days a week

The emergency department is special. It’s open 24 hours a day, 7 days a week, 365 days
per year. Patients arrive with all sorts of ailments, and the goal of the tending physician
is not just to treat, but also to admit to the appropriate hospital ward where the patient
can get expert care. This is an inherently time-constrained process, in which patients
are prioritized at multiple stages based on the urgency of their conditions.

First up is a spot check, in which a nurse makes a judgment call to prioritize obviously
severe cases. Then, after orderly awaiting their turn, the patient talks to a triage nurse,
who admits the patient to the digital system, collects symptom descriptions, vital signs
and sometimes blood samples and the electrocardiogram, and assigns a priority to the
patient. This priority essentially dictates the urgency with which a doctor will see the
patient: low priority patients may have to wait for hours, depending on how busy
the ward is, allowing the highest priority patients to get medical attention as soon as
possible.

Figuring out what is wrong can be an invasive process: X-rays, catheterizations and
even blood samples can be costly not just in terms of equipment, but also in terms of
harm to the patient, and the treatments for many conditions can have serious negative
side effects [28].

The immediate goal of the clinician essentially boils down to the decision of ruling in
(admitting to the hospital) or ruling out (discharging). Although AMI is the primary
concern when it comes to chest pain (and this thesis), other serious outcomes, some
of which are time-sensitive, must also be considered. If a patient is discharged from
the ED, we don’t want them to return the next day (or week, or month), at least not
due to the same condition. A way to conceptualize this concern is to consider, besides
a discharge diagnosis of AMI, any subsequent diagnosis exceeding some magnitude,
within, say, 30 days of the initial visit. A commonly used composite endpoint for this
purpose is that of major adverse cardiac events (MACE). The exact definitions vary,
but commonly include unstable angina, AMI, pulmonary edema, invasive cardiac
treatment such as PCI and CABG, and death.

Starting at the point when a patient arrives at the ED, there’s typically a number
of discrete points in time when a physician can make the decision to rule in or out,
corresponding to the order in which new information becomes available, as illustrated
in Fig. 1.5. Initially, nothing is known except for the medical history in the electronic
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Figure 1.5: Schematic overview of different moments when new data becomes available (red lines), corre-
sponding to logical decision points at the emergency department. POC = Point-of-care samples,
hs-cTnT = high-sensitivity cardiac troponin T.

health record and the initial symptoms. Virtually all chest-pain patients will undergo
an ECG, since it is both informative, quick, cheap, and non-invasive. The ECG is
normally performed within 10 minutes of first medical contact (which may be in the
ambulance). In most cases, the ECG is followed by drawing blood for analysis, with
some tests analyzed in the emergency department (point-of-care), and others sent
to the central laboratory. Point-of-care tests includes glucose, hemoglobin, lactate,
and creatinine, and are quick to analyze, with results being available within minutes.
The lab samples take about 30 to 60 minutes to process, but are able to measure
important biomarkers, including troponin levels, at very low concentrations. If it
was not possible to rule out after the initial lab-values have been analyzed, additional
samples are collected after one to three hours.

1.3.1 Rule-based algorithms

A number of rule-based algorithms and guidelines exist to assist physicians in the
management of chest-pain patients at the emergency department. One example is
the HEART score [29] classifies patients as low, intermediate, and high risk based
on history (H), ECG (E), age (A), risk factors (R), and troponin (T). Each category
contributes between 0 and 2 points, and a total score of 0–3 corresponds to low risk,
4–6 to intermediate risk, and 7–10 corresponds to high risk. The HEART pathway
[30] was developed as an extension of the HEART score to incorporate serial troponin
testing, and the protocol continues to be updated and improved [31].

Another rule-based algorithm is the ESC 0h/1h rule-out and rule-in algorithm, sum-
marized in Fig. 1.6, which relies on troponin levels measured at arrival and again after
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Figure 1.6: The first version of the 0h/1h rule-out and rule-in algorithm, by Reichlin et al. ED=Emergency
Department, hs-cTnT=high-sensitivity cardiac troponin T.

one hour if the initial troponin was outside the decision boundary [32]. It has been
validated and improved upon in several studies, incorporating additional timings for
troponin, ECG symptoms and patient history, and has received a ”class 1” recom-
mendation by the European Society of Cardiology [7, 14, 33–35].

1.3.2 Decision support tools

Computerized clinical decision support systems have been around since the 1970s [36],
and have been shown to play an important role in patient management, improving
clinical outcomes, alleviating crowding, and decreasing healthcare costs. Advance-
ments in machine learning, and deep learning in particular, which we will talk about
in section 1.4, has the potential to revolutionize health care.

But despite all the promises and recent success stories in other areas of medicine, most
impressively in radiology and pathology, studies specific to the emergency department
are relatively few. So far, there has been practically no implementations of machine
learning (ML) powered decision support systems into routine ED care. This thesis
represents my work toward bridging this gap, by bringing us one step closer to the
practical application of a new generation of decision support tools at the ED.
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1.4 Machine learning

I’m just a spectator
An advocate documenting the loss

— Opeth, Blackwater Park

If artificial intelligence was a taxonomy of living things, machine learning might cover
the animal kingdom, and this thesis would be concerned with the entomological study
of a particular species of cranefly and their ecological impact as pollinators in organic
farming. There are over 15 000 documented species of craneflies, divided into more
than 500 genera [37]. The cranefly of this thesis is the artificial neural network, and
the farming application is predicting adverse cardiovascular outcomes for chest-pain
patients at the emergency department.³

A neural network is a type of function that takes an input and produces an output. It
works essentially as a graph of interconnected computational nodes, sometimes called
neurons, each of which can carry out some simple operation, such as addition or
multiplication. A key point is that the neurons can have a state, i.e. a number (also
referred to as parameters or weights), attached to them, which adjusts their behavior.
The nodes can be grouped into modules, or layers, and the type and arrangement
of these layers is referred to as the model architecture. Much like pieces of lego, new
layers are invented at a rate that is difficult to keep up with, and they can be combined
in ways constrained primarily by the imagination.⁴

In order for a neural network function to do anything useful, the parameters, often
counting in the thousands, millions or even billions, need to be adjusted. This is done
by a process called training. In the branch of supervised machine learning, the training
relies on examples of correctly classified input-output pairs. The untrained model, in
which all the parameters are randomly initialized, is then trained by an optimization
algorithm (usually some variation of gradient descent) by observing the input-output
pairs one by one, each time slightly adjusting the parameters of the model so that the
model output for the input more closely resembles the correct output. The process
is typically repeated so that the model ”studies” each example multiple times. The
method by which the parameters are adjusted is called back-propagation.

A number of problems must be addressed. If the model is complex enough, it is
usually capable of ”memorizing” all the training data, producing perfect predictions.
But when such a model is presented with new, unseen data, the predictions can be

³A project hopefully more feasible than using craneflies for pollination, which I just made up.
⁴Also as with lego, the most impressive builds require a lot of money to build, or rather to train, in

the case of neural networks.
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Table 1.1: Summary of popular regularization techniques.

Technique Pros Cons

Add more data Leads to better perfor-
mance

Often costly. Slower training.

Reduce model complexity Faster training Reduced complexity. Can lead to
lower performance, and underfit-
ting

Data augmentation Often better performance Slower training.
Penalize large weights Fast and simple Can reduce performance.
Dropout (randomly ignore dif-
ferent nodes each update cycle)

Fast and simple Reduces performance. May re-
quire reduced learning rate, lead-
ing to slower training.

Early stopping (stop training be-
fore overfitting occurs)

Easy in principle Not always obvious when overfit-
ting begins

arbitrarily bad. This phenomenon is known as overfitting. The converse, underfit-
ting, is also possible, in which the model simplifies too much and fails to capture
the complexity of the relationship between the inputs and the outputs. Both over-
and underfitting are failures of the trained model to generalize to unseen examples.
Several strategies exist to combat overfitting, collectively referred to as regularization.
Table 1.1 summarizes some of the more common variations.

Another major problem is how to measure progress. If we use all the data for training,
there is no way to know if the model is overfitting or not. It is thus typical to divide
the data into two parts, often called training and validation⁵ sets. The validation set is
then used to regularly evaluate the model during training. But it is often necessary to
train a model multiple times, to find an architecture and corresponding settings that
work well for the problem at hand. The longer this development process continues,
the more likely it is that the best performing model on the validation set will perform
worse on unseen data, than what the validation set performance indicated. This is
known as data leakage [38]. To address this, the best practice is to divide the original
data into three, rather than two, sets: one for training, one for validation, and one
for testing. It is then crucial not to evaluate the model on the test set until one is
happy with the final results, or else information from the test set, too, may leak into
the model and prevent an accurate assessment of the true generalization performance.

Machine learning algorithms, including neural networks, are typically designed to
produce a fuzzy output (usually a real number between 0 and 1, which can be viewed
as a probability), even when the target outcome is binary. From this perspective, all
predictions are wrong, but some are less wrong than others. How wrong a prediction is
can be formalized mathematically as a so-called loss function. The goal of the training

⁵Sometimes also referred to as tuning set.
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process is for the optimization algorithm to minimize the loss. Different loss functions
exist, and depending on the problem, some may be more appropriate than others. For
binary classification, cross-entropy loss [39] is the most common choice.

Once a model has been trained, the predictions on the validation or test set can be
evaluated. The loss, which is what the model has been trained to minimize, is not
always easy to interpret, and might not correspond well to the application. In many
situations, we need the model to produce a binary response rather than a probability,
and in those cases, we are interested in quantifying the performance of the binary
response. This is done in practice by selecting a threshold θ, and considering all
predictions below θ to predict 0, or False, and the rest to predict 1, or True. How to
select θ depends on the application, and what types of errors are worse.

When the predictions have been binarized, we can calculate the so-called confusion
matrix by tallying each of the four possible combinations of predictions and outcomes:
True positives (TP), where the prediction is ”True” and the outcome is ”True”, false
positives (FP) where the prediction is ”True” and the outcome is ”False”, true nega-
tives (TN) where both the prediction and outcome are ”False”, and finally the false
negatives (FN) where the prediction is ”False” and the outcome is ”True”. From these
four numbers, a couple of dozen different metrics can be calculated. Appropriately
confusingly, many of these metrics have multiple names: for instance, sensitivity,
defined as TP/(TP + FN) is also called recall, true positive rate, probability of
detection, hit rate, and power.

Importantly, many of the binary performance metrics are trade-offs, and it is some-
times possible to neglect one in order to be great at another, and vice versa. Several
metrics also depend directly on the balance of the dataset, i.e. the proportion of true
cases in the outcomes. For instance, if we are predicting a disease with a prevalence of
0.1%, we can trivially achieve a 99.9% accuracy, defined as (TP+TN)/(TP+FP+
TN + FN), by predicting all examples as negative. To avoid such problems, it is
often necessary to consider multiple metrics at once, such as sensitivity and specificity.

When developing prediction models, it is convenient to be able to rank models based
on a single number. It is perfectly possible to be in a situation where one model is
better with respect to some metrics at some given threshold, and another model to be
better at another threshold. This makes model selection and training very difficult.
Ideally, we want to consider a metric that matches our real-world application, and then
try to optimize for that. Failing at that, another common approach is to consider
metrics where the selection of a threshold is not necessary. One way to do that is
to plot the receiver operating characteristic (ROC), which is the curve obtained by
calculating the true positive rate (TPR) and false positive rate (FPR) for all possible
thresholds, and plot them against each other. The integral of this curve, called the
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area under the receiver operating characteristic (AUC),⁶ can be used as a threshold-
independent metric, and it has some useful properties making it a popular choice
among data scientists. The AUC is always a number between 0 and 1, where 0.5
corresponds to predictions made at random, 1 corresponds to perfect predictions, and
0 correspond to perfectly bad predictions. Amusingly, a model with an AUC below
0.5 is ”so bad it’s good”, in that we can do the opposite of what the model tells us to
get an AUC score above 0.5 instead. The AUC is independent of the class balance,
which makes it easier to compare model performance across datasets.

A thing to note about all these metrics, is that while we might decide that we care
about the AUC, or, say, the sensitivity so long as the specificity is sufficiently high, or
some other metric, the minimizing of the loss function is not necessarily the same as
maximizing the metric of choice. In particular, metrics like the AUC which depend
on the entire dataset, are difficult to optimize with a traditional loss function.

Machine learning is a very broad category of algorithms that includes both tree-based
models, neural networks, and many other completely different approaches. Deep
learning is a subset of machine learning, typically defined as artificial neural networks
(ANNs) with multiple layers.⁷ The exact threshold at which a traditional ANN be-
comes ”deep” is not well defined. However, a unifying characteristic is in the shift
away from the manual crafting of input features, instead letting the model learn its
own features automatically from the raw data. This end-to-end approach is of course
attractive, because creating good features is usually difficult and time-consuming, re-
quiring a deep understanding of the problem domain. Furthermore, the process of
crafting features from complex inputs is almost by definition a lossy operation, and
useful patterns can easily be overlooked, resulting in less capable models. The main
disadvantage of deep learning end-to-end models is that they tend to require extremely
large datasets. Techniques such as transfer learning and data augmentation can help
to alleviate this ”data hunger”, but often there is no obvious limit to the benefits that
can be realized by simply adding more data and using larger models.

An important caveat to the more-is-merrier dictum is that data quality is also essential.
It’s usually not enough to have a lot of data, if the data is unlabeled, noisy, corrupt
or otherwise unstructured or unreliable. It is a common misconception that one can
simply collect everything and throw it into some magic machine that figures out the
rest. Perhaps that will be possible in the future, but for now, if you put garbage in,
you’ll get nothing but garbage in return [41–43].

⁶Sometimes also AUROC, to distinguish it from similar metrics, like the area under the precision-
recall curve. In characteristically confusing fashion, the AUC is also sometimes referred to as the C-
statistic.

⁷Other, more esoteric interpretations exist, such as the one favored by the excellent book ”Deep
Learning” by Goodfellow et al. [40].
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1.5 Previous research

Of the nature of Mr. Knott himself Watt remained in particular ignorance. Of the many
excellent reasons for this, two seemed to Watt to merit mention: on the one hand the
exiguity of the material propounded to his senses, and on the other the decay of these.

What little there was to see, to hear, to smell, to taste, to touch, like a man in a stupor he
saw it, heard it, smelt it, tasted it, touched it.

— Samuel Beckett, Watt

When it comes to emergency care and chest pain, AMI is perhaps the most obvious
outcome to consider, and of all the things that we can use to predict it, the electro-
cardiogram shines like a grail-shaped beacon in the night. There are several reasons to
focus on the ECG: it is quick, non-invasive, cheap, available almost everywhere, and
it provides a detailed, if sometimes difficult to interpret, view of the cardiovascular
health of the patient.

One of the ”top tips” in the book ”ECGs made easy” by Hampton et al. [15] is to
not panic, because ”the ECG really is very easy!”. The book, suspiciously, is several
hundred pages long. The ECG clearly contains a lot of information, but extracting
that information and turning it into clinical insight is a non-trivial task.

For a long time, the main challenge of automatic ECG analysis has revolved around
feature-engineering [44]. A standard 12-lead ECG, sampled for 10 s at 500Hz, is
essentially a large table with 12 columns and 5000 rows, containing 60 k numbers.⁸
Building a model that can (successfully) operate directly on such a large input has
only recently become feasible with the advent of deep-learning algorithms, and even
so, require datasets with tens of thousands of ECGs together with modern computer
hardware that are several orders of magnitude faster than what was available even 20
years ago.

For these reasons, much of the history of computerized ECG analysis, which date
back to at least the 1960’s [45], rely on ways to extract and condense the most im-
portant parts of the ECG into a more manageable number of features [44]. Once
extracted, the features can then be used to train machine learning models such as
logistic regression, random forests, or neural networks.

There is no shortage of imagination in the various approaches to ECG feature en-
gineering. Morphological features, including amplitudes and durations of different
parts of the heart beat, are natural targets for extraction, since they correspond well to

⁸Though the standard ECG has 12 leads, 4 of them are linear combinations of the others, which
means they do not contain additional information. Thus it is common in ML applications to only use
the 8 linearly independent leads, to reduce the dimensionality of the input.
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patterns recognized by humans. Other ideas include principal component analysis,
hidden markov chains, transforms such as the discrete wavelet transform, the fourier
wavelet transform, and the Karhunen-Loéve transform [44].

Many of these approaches to ECG feature engineering are sensitive to noise, such
as baseline wander, power line interference, noise due to muscle activity, and radio
frequency noise from other equipment. Additional pre-processing steps are thus often
required, such as band-pass filters, discrete wavelet transforms, and beat averaging.
These techniques can help to get rid of noise, but they also risk destroying important
information.

Then, in the 2010s, major breakthroughs in computer vision ushered in a new age
of machine learning, promising unparalleled performance with less engineering re-
quirements: no more difficult and time-consuming hand-crafting of features that rely
on hard-won human expert knowledge [46, 47]. Let the algorithm engineer its own
features! The only problem is the data. And computational power. But mostly data.

A limiting factor for the application of machine learning, and particularly deep learn-
ing algorithms to ECG analysis, is the availability of large, public ECG datasets. For
a long time, the only available databases were quite small, with ECGs numbering in
the low hundreds or fewer. It was not until the Physionet Computing in Cardiology
challenge of 2017 that larger ECG databases started to become publically available
[48]. A summary of datasets can be found in Table 1.2.

Since 2016, the number of papers describing deep-learning approaches for ECG anal-
ysis has increased rapidly [47, 69, 70]. Although the majority of the publications fo-
cus on atrial fibrillation or arrhythmia detection, with a notable early example in the
ResNet implementation by Rajpurkar et al. in 2017 [71], all sorts of other applications
have been explored as well, including pulse detection, pediatric heart murmurs, mor-
tality prediction, sleep apnea detection, P-wave detection, left bundle branch block
detection, hypoglycemic event detection, data compression, emotion detection, bio-
metric applications, and many others [47].

Applications of deep-learning to predict AMI using ECGs are less common, and many
of the earlier examples are based on beat-segmented ECGs, use only morphological
features, or are trained on small datasets [44]. In 2020, Ribeiro et al. [72] published
a seminal paper describing one of the first successful applications of a deep-learning
(ResNet) model to predicting AMI, using a dataset of over 2 million ECGs. Part of
the dataset was subsequently released publicly, as the CODE 15% database [67].

In 2020, Wagner et al. [65] published the PTB-XL database, with a companion paper
[73] exploring a variety of deep-learning methods applied to the dataset, including
one for predicting AMI, among other outcomes. In 2022, Gustafsson et al. [74]
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Table 1.2: Summary of public ECG datasets.

Dataset Release year Channels Sample rate Duration Records

MIT-BIH Noise stress test database
[49]

1984 2 360 30min 15

UCI Machine Learning Repository Ar-
rhythmia Dataset [50]

1998 12 N/A N/A 452

MIT-BIH normal sinus rhythm [51] 1999 2 N/A 24h 18
MIT-BIH malignant ventricular ec-
topy database [52]

1999 2 250 30min 22

The QT dataset [53] 1999 2 250 15min 105
MIT-BIH Atrial fibrillation [54] 2000 2 250 10h 23
BIDMC Congestive heart failure [55] 2000 2 250 20h 15
Fantasia [56] 2003 12 250 2h 40
PTB diagnostic ECG database [57] 2004 15 1000 2 min 549
MIT-BIH arrhythmia database [58] 2005 2 360 30min 48
Creighton university ventricular tach-
yarrhythmia database [59]

2007 1 250 8min 35

St Petersburg INCART 12-lead ar-
rhythmia [60]

2008 12 257 30 min 75

European ST-T [61] 2009 2 250 2h 90
Chinese CVD database [62] 2012 12 500 10s 90
Physionet/CinC [48] 2017 2017 1 300 9-61s 12186
ICBEB2018 [63] 2018 12 500 6-60s 9831
Icentia11k [64] 2019 1 250 3-14 days 11000
PTB-XL ECG dataset [65] 2020 12 500 10s 21837
Chapman university and Shaoxing
people’s hospital dataset [66]

2020 12 500 10s 10646

CODE-15% [67] 2021 12 400 7-10s 345779
Large-scale multi-label ECG database
[68]

2022 12 500 10s 25770

published a ResNet model trained on 500 k ECGs from unselected ED patients, to
predict AMI. The model was able to predict STEMI and NSTEMI with an AUC of
98.5% and 83.2%, respectively.

In 2023, Al-Zaiti et al. [75] published an ML model for predicting OMI using the
ECG. This was quickly followed by the publication of the Queen-of-Hearts model by
Herman et al. [76] in 2024. Both models achieved excellent results, outperforming
the STEMI criteria. We return to this topic in section 3.4.

Several studies have explored machine learning models predicting AMI using one
or several high-sensitivity cardiac troponin (hs-cTn) samples, with and without the
addition of other features. In 2019, Than et al. [77] used gradient boosting to con-
struct the myocardial-ischaemic-injury-index (MI3) algorithm, predicting index visit
AMI using paired hs-cTnI measurements combined with age and sex. In contrast to
rule-based protocols like the HEART pathway or the ESC 0/1h protocol, the MI3 al-
gorithm allows for different and flexible timings between the troponin measurements,
which is useful in the ED setting. The MI3 algorithm has been externally validated in
several studies and found to perform well [78, 79].
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In 2023, Doudesis et al. [80] developed a similar model, called CoDE-ACS, which
classified fewer patients as intermediate compared to the ESC 0/1h protocol. Also in
2023, Neumann et al. [81] developed and validated the ARTEMIS model, capable of
using single or serial hs-cTn samples from multiple different assays. The model was
developed with heterogeneous global data.

In 2020, Zhang et al. [82] published the first machine learning model for predicting
AMI that was actually integrated as a decision support tool in real-time clinical prac-
tice. It used a collection of features derived from medical history, together with the
initial hs-cTnI value. ECG features were not included.

A thoroughly unthorough publication search on PubMed reveals a striking trend, vi-
sualized in Fig. 1.7. It would appear that more has been published on machine learning
applications for ECGs during the first four years of my PhD, than was published in
total when I first started.⁹

⁹As much as I would like to take credit for this, I have (so far) only contributed a single published
paper to this veritable mountain of research.
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Despite considerable interest in the development of deep-learning based prediction
models for AMI and similar outcomes, very few such models have been prospectively
evaluated in clinical trials, and fewer still are available as actual support systems for
use in clinical practice. This speaks both of the difficulty of bringing such systems to
their usable conclusion, but also of the opportunities that remain unfulfilled.

1.6 Aim of this thesis

The overall aim of this thesis was to further the development of decision support
tools at the emergency department, by exploring ways to utilize digital health-care
records for building deep-learning prediction models. The primary focus has been
on predicting short-term adverse cardiac events among patients presenting with chest
pain at the emergency department.

Paper I

In paper I, we aimed to quantify the benefit of prior electrocardiograms when pre-
dicting major adverse cardiac events using machine learning.

Paper II

In paper II, the aim was to quantify the improvements from transfer learning when
predicting acute myocardial infarctions with electrocardiograms.

Paper III

In paper III, the aim was to develop a model for early rule-out of acute myocardial
infarction, at multiple decision points, with step-wise increasing information.

Paper IV

In paper IV, we aimed to retrospectively identify and subsequently build a deep-
learning model to predict the occurrence of acute coronary occlusion myocardial in-
farction among patients with chest pain at the emergency department.

19





Chapter 2

Data and Methods

2.1 Data sources

My work is based primarily on two large datasets containing health records from chest-
pain patients at the ED: ESC-TROP (Effectiveness and Safety of a Clinical assess-
ment and 0h/1h Troponin Rule-Out Protocol)[14, 35] and SEM (Skåne Emergency
Medicine)[1]. ESC-TROP was the first to become available, and although the bulk
of the data from SEM was delivered in 2021, it wasn’t until the fall of 2023 that the
ECGs were finally ready.

2.1.1 ESC-TROP

ESC-TROP contains information from 26 545 consecutive patients with non-traumatic
chest pain at five different EDs in Skåne, Sweden, between February 2017 and Novem-
ber 2018. The exclusion criteria of the original study were previous enrollment (i.e.
only the first visit in the time-period was included), non-Swedish residence, age under
18, discharge against medical advice, no hs-cTnT ordered, and STEMI diagnosis at
the ED. Importantly however, the data I was ultimately given access to still included
patients with STEMI diagnosis at the ED.

The dataset contains information from the relevant ED visit, including lab-values,
diagnoses, and interventions. Diagnoses and interventions were included for a five
year period prior to the visit, and one year after. All ECGs from any health-care visit
were included as far back as possible, with the earliest being recorded in 1970, for a
total of 536 135 ECGs. Additional information included cause of death for a follow-
up period of 1 year, medications, socioeconomic data, and information about health-
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care costs. Data sources included excerpts from the regional hospital records (Melior),
the Swedish national patient register, the Swedish prescribed drug register, the Swedish
Longitudinal Integrated Database for Health Insurance and Labour Market Studies
(LISA), SECTRA, and the SWEDEHEART registers, including RIKSHIA, SEPHIA,
and SCAAR.

All the ECGs were pre-processed to a standardized format, and the Uni-G ECG anal-
ysis program [83] was applied to extract diagnoses, rhythm statements, and morpho-
logical features.

2.1.2 SEM

The SEM database includes everything that’s in the ESC-TROP database (with some
minor exceptions), and more. It includes all ED visits, including re-visits, for all
causes, from all eight EDs in Skåne, for the full two-year period of 2017 to 2018. In
total, SEM contains information from 325 539 patients and 630 275 ED visits, of
which 51 351 visits were due to chest pain. A total of 1 223 642 ECGs are included.
The only meaningful disadvantage to SEM compared to ESC-TROP is that the ECGs
in SEM only cover a five year history, and were not initially processed by the Uni-G
program.

2.2 Ethics

The large print giveth, and the small print taketh away
— Tom Waits, Step right up

The ESC-TROP study was approved by the Regional Ethics Review Board in Lund,
Sweden (Dnr 2017/831 and 2018/708). The creation of the SEM cohort and its use
for ML research has been approved by the Swedish Ethical Review Authority (Dnr
2019–05783) and Region Skåne (KVB 302-19). Both studies received ethical approval
without the need for written informed consent. Written information was available
online and posted visibly at the emergency departments. All patients had the option
to decline participation at any time, for any reason.

The datasets provided to Lund University from Region Skåne were pseudonymized,
removing all names, addresses, dates of birth, personal identification numbers and
other sensitive information of no clinical value. The data is still considered highly
sensitive, and is stored on encrypted servers within Lund University, without open
access from the Internet.
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2.3 Data processing

At every level, vital instructions were missing, and the instructions about what to do in
the event of discovering that vital instructions were missing, were also missing.

— Douglas Adams, The hitch-hiker’s guide to the galaxy

It is worth noting that the data received, both for ESC-TROP and SEM, was un-
structured, in the sense that explicit relations between visits, diagnoses and such were
no longer present. Part of the difficulties in processing the data was therefore simply
to match events between the data sources using timestamps and other information.
The pre-processing work also revealed several problems and inconsistencies with the
data, ranging from duplicate entries, ”impossible” events (such as when patient is
supposedly admitted within minutes to hospitals in different cities), incomplete rows
(missing timestamps, diagnoses, etc), duplicated entries where part of the informa-
tion is in one row and some other part of the information is on a different row, and
inconsistent diagnoses.

The diagnoses in particular presented us with a dilemma. There were three primary
sources of information: the regional database system Melior, the national patient
register, and the RIKSHIA register from SWEDEHEART (only for heart-related di-
agnoses). Counting the number of patients with an AMI diagnosis (ICD-10 code
starting with I21) within 30 days of the index visit, resulted in the venn diagram in
Fig. 2.1, suggesting a concerning inconsistency between the registers for this very im-
portant diagnosis. Upon closer examination, we made the judgment call to ”trust”
the national register sources, and simply ignore the diagnoses from Melior. Of the
161 AMI cases only recorded by Melior, about 30 turned out to be prior diagnoses,
another 30 were from outpatient clinics, and around 100 were I21-diagnoses that were
revised after ED discharge, sometimes to R074 (unspecified chest pain), sometimes
to other I-diagnoses (diseases of the circulatory system). These patients were typically
old, with multiple diseases.

2.4 Machine learning methods

You’re not even close to baseline
— Blade Runner 2049

The algorithmic foundation of this thesis has been the artificial neural network (ANN),
which comes in many different shapes and forms. The ANN can be conceptualized
as a computational directed graph (i.e. a network), where the nodes of the graph
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Figure 2.1: Venn-diagram of AMI diagnoses (I21) according to different sources. Melior = the regional elec-
tronic health record database, Patient register = the Swedish national inpatient register, SWEDE-
HEART = National quality register for heart disease.

correspond to calculations and manipulations of data, and the edges connecting the
nodes determine the order of the calculations. We refer to the specification of this
computational graph as the architecture of the ANN. Although the computational
nodes, or layers, in the graph could in principle be almost anything, most realizations
of ANNs are built from a pool of standard layers. In the following subsections, I will
describe some of the building blocks (layers) used in my work, as well as the different
structures (architectures) used. For a more in-depth introduction to deep learning, I
warmly recommend the book aptly titled Deep Learning, by Goodfellow et al. [40].

2.4.1 Building blocks

Here is a brief and non-exhaustive overview of the most important layers that I have
been using.
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Dense layer

One of the simpler and more straightforward building blocks is the dense layer, some-
times called fully-connected layer. This is essentially just a multiplication of the input
tensor by some weights, optionally followed by the addition of a constant. A feature
of the dense-layer is that it can reduce the dimension of the input.

The rectified linear unit

The rectified linear unit (ReLU) is a popular choice to introduce non-linearities into
the computational network [84]. Despite its complicated sounding name, it simply
lets all positive inputs through without change, and sets any negative numbers to zero.

The convolutional layer

The convolutional layer applies a mathematical convolution operation to the input.
The parameters of the convolutional layer correspond to a kernel, that essentially acts
as a filter on the input. The convolutional layer is a popular way to reduce the number
of parameters in a network that works on images or time-series data. Rather than
connecting every data point in the input with some weight, as is done in the dense
layer, the filter is applied in a sweeping fashion across the entire input. The resulting
output is the same size as before (it can also be reduced or increased by adjusting the
step-size of the sweeping), but the number of necessary parameters is limited to the
size of the filter. In contrast, the dense layer would require at least as many parameters
as there are inputs, which is costly when the input is a large image, or, say, an ECG.
Typically, a convolutional layer applies not just one, but multiple filters at once. How
many, and the size of the filters are part of the hyper-parameters of that layer [85].

Pooling Layers

Pooling is way to summarize and down-sample information across multiple dimen-
sions, commonly used in conjunction with the convolutional layer. There are several
variations, including max-pooling and average-pooling, and one of the use-cases is
to reduce the dimensionality to obtain a more compact feature representation, which
increases the receptive field of subsequent layers.

25



Flatten

Flatten is a simple operation that just reduces a high-dimensional tensor into a single
vector. Sort of like turning all the words in a book into a single (very long) line. It is
typically used at the end of a convolutional network.

The dropout layer

The dropout layer, as discussed briefly in section 1.4, is a simple but effective way to
reduce overfitting [86]. It picks a random subset of its inputs and turns them to zero,
and lets everything else pass unaffected. The set of inputs that are thus dropped out is
different for each training sample. The dropout is only applied during training, and
not during inference. The intuition is that by removing parts of the data at random,
the network is forced to become more robust, and not rely entirely on an individual
feature.

Batch Normalization

One of the problems that can occur when building deep neural networks is that the
loss-gradient becomes smaller and smaller, leading to numerical instability and poor
performance. This is known as the vanishing gradient problem. A way to counter
this is to scale and shift the layer inputs so they are approximately zero mean and
unit variance (i.e. they are normalized). This is what the batch normalization does,
by keeping track of batches of input data and gradually adjusting the normalization
parameters during training [87]. The layer is commonly used in deeper networks.

2.4.2 Architectures

Logistic regression

Arguably the simplest type of ANN is that consisting of just a single dense layer that
compresses the input to a single number. If we plug this number into the logistic
function, we obtain a neural network that is equivalent to logistic regression. The
structure is visualized in Fig. 2.2.
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Feed-forward neural network

A feed-forward neural network, sometimes called a multilayer perceptron, is any ANN
in which the computational graph is just a straight line: the data passes through each
layer one at a time, sequentially and without any loops. See Fig. 2.2 for an example.

Convolutional neural networks

A convolutional neural network (CNN) is an ANN that makes use of convolutional
layers. Typically, convolutional layers are staggered in such a way as to gradually
reduce the dimensionality of the input, with the idea of capturing features at different
levels of detail. The convolutional layers are usually paired with pooling layers, non-
linearities like ReLU, and sometimes regularization and normalization layers as well.
It is common to end a sequence of convolutional layers with a flattening layer, and
follow with dense layers. Fig. 2.2 shows an example.

Residual neural networks

The residual neural network (ResNet), introduced by He et al. in 2016 [88], is a type
of CNN that is characterized by the use of shortcut connections in the computa-
tional graph. Network depth were shown to be of critical importance for complex
tasks [89, 90], but attempts to build very deep networks proved to be difficult [91,
92]. The shortcut connections solved a problem with degrading training accuracy,
which allowed for substantially increased network depths. The idea has sparked many
variations and modifications [93, 94], and enjoyed widespread popularity in many ap-
plications, including for ECGs [71, 72, 74, 76]. One variation is visualized in Fig. 2.2.
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2.4.3 Hyper-parameter optimization

The implementation of most machine learning algorithms require certain choices to
be made with regards to settings and parameters of the model. These hyper-parameters
affect (sometimes profoundly) the workings of the model, and are not learned auto-
matically during the training process. Instead, they have to be adjusted to match the
specifics of the application. Hyper-parameters that work well for one task on one data
set are unlikely to be optimal for any other.

Finding good hyper-parameters can be quite difficult and time-consuming. Many
strategies exist. The perhaps most obvious one, called grid-search, is to exhaustively
try all combinations in a pre-specified space of settings (the grid), and pick the one that
performed best. This can work well when the parameter space is small, but quickly
becomes prohibitively expensive as the number of hyper-parameters increase. A pop-
ular and simple alternative that often works well in practice is called random search:
pick hyper-parameters at random, train the model, and repeat. This slightly moronic-
sounding approach has been shown to find good settings faster than grid-search [95],
and because of the ease of implementation, it is widely used. Modifications exist to
stop training early, or to automatically adjust the search space after each iteration.

It is not always well-defined what counts as a hyper-parameter. It is possible to con-
struct models and networks where the number of layers, for instance, or even choice
of ANN architecture, becomes a hyper-parameter. I used this approach in paper IV,
for instance, when determining which type of ResNet structure to use.

2.5 Reproducibility

Applying machine learning methods to real-world data comes with some challenges.
Many tests and experiments are typically required, in which different models are
trained and compared across a whole range of settings, which can be difficult to spec-
ify in advance. An inordinate amount of time is usually spent trying to understand,
and fix, the data, wrangling it to conform with some expected model format, slicing
it this way and that. The iterative nature of the process makes it difficult to keep
track of results, especially if you have to go backwards (the stuff you did two weeks
ago worked better than this, but now you can’t remember how you did it exactly).
Cleaning and manipulating the data – a process I have come to call massaging – is
difficult and error-prone, with no obvious way to know when it’s done, or that what
you did was correct. Sometimes you might find out weeks, months or even years later
that some subtle (and, we pray, insignificant) mistake was made in the processing of
some part of the dataset, which might affect the results of some past project. But now
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the code-base has evolved to the point where it’s difficult or impossible to know how
the data was processed exactly, if it is even affected by the newly discovered mistake,
and re-running anything would require a lot of effort. If I can’t reproduce what I did
in the past, can I still claim to be a data scientist?

These are some of the questions, observations and fears that motivated me to build my
own framework, or laboratory, as it were, for conducting data science experiments. I
call it mim, pretentiously after the Norse god of wisdom and knowledge.¹ The source
code for mim, including all the projects described in this thesis, warts and all, can be
found at https://www.github.com/Tipulidae/mim.

The guiding principle for the mim project was reproducibility and traceability. The
main idea is that rather than trying to keep track of tests or experiments by manual
documentation, I use the code itself, together with version control (git), to organize
experiments. An experiment in this context is a piece of executable code, specifying
exactly the data to use, together with how to process it, and what model and param-
eters and other settings to use. Executing the experiment automatically saves all the
potentially relevant metadata, along with the results of the model, history of training,
and other things, to disk. The results of a particular experiment can then be loaded at
any point, with a reference to the exact conditions under which it was executed, even
if the code-base itself is subsequently changed. Moreover, re-running an experiment
after correcting a mistake in the data-processing, for instance, is ideally just a key-press
away. Each experiment thus designed is therefore reproducible, and we can trace any
bugs in the code back to any previously run experiment to figure out what has or has
not been affected. In theory.

The data, especially when it’s sensitive, requires additional attention. On the one
hand, it’s important to be able to reuse and continuously develop and improve the data
processing and massaging. But how to keep track of changes to the data? Traditional
version control systems don’t work well with large datasets, and saving the data for
all intermediate steps presents further challenges in organization, as well as additional
storage space, and concerns regarding sensitive data. There’s also a risk that we fix
mistakes in the processing code, but forget to actually update the relevant data and its
dependencies. The resulting mismatch between the data and the code that produced
the data can be incredibly difficult to identify and resolve.² The alternative is to keep
only the ”raw” form of the data, and track only the code that is used to process it.
This works well, as long as we remember to commit all code changes before running
an experiment, and as long as the data processing isn’t computationally expensive.
In mim, I have mostly relied on the latter approach, with only the most expensive
pre-processing performed ”offline”.

¹Plausibly etymologically linked to the word ”memory”.
²Ask me how I know.
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I firmly believe that something like mim is necessary to organize and maintain some
sort of structure when exploring data-science questions. A different question is whether
my solution was particularly good, and what I could have done differently. In ret-
rospect, I think me ”doing it myself ” may have resulted in a certain reluctance to-
ward adapting novel or experimental methods, especially when they would require
the adaptation of new libraries, such as pytorch [96], to work with an API that was
designed mostly with scikit-learn [97] and tensorflow [98] in mind. On the other
hand, once things were working, I felt more confident in a lot of the reproducibility,
as well as correctness of many of the intermediate steps, than I probably would have
if I for instance had used someone else’s code as a starting point.

I should have probably tried harder to decouple my own interface, especially the one
for constructing data sets, from other libraries (tensorflow). It’s a tough line to draw,
which has to be balanced against ”reinventing the wheel”. In contrast, I never regret-
ted my reliance on the scikit-learn library for dealing with anything related to data
splits, cross-validation, pre-processing and ”old school” ML methods.

Because each experiment is a separate unit of code, and because you naturally end
up testing a lot of things throughout the lifetime of a research project, some of the
experiment listings became somewhat unwieldy, even when using fancy code-folding
technology. The experiments for paper I, for instance, is around 5k lines of code, and
paper II is over 11k lines. This unwieldy listing of experiments prompted some possibly
misguided attempts at refactoring, and also lead to less-than-rigorous re-running of
experiments, with the almost instant regret of being unable to access previous versions.
A more sophisticated way of versioning old experiments, or otherwise keeping track
of possibly useful experimentation without creating an unholy mess of a code listing,
would be a necessary addition to mim, moving forward.

At the end of the day, it is interesting to consider the current status of computational
science, with respect to the tools and technologies being used. Other disciplines take
pride in their highly advanced laboratory equipment, and employ entire teams of
engineers to help them build it. We may not require rockets or particle accelerators to
do our job, but many of the daily challenges of data science could likely be alleviated
by better, professionally developed software. Just like how the cookbook of Marie
Curie is still radioactive a hundred years later, I think a lot of my own work, to not
mention others, bear the hallmarks of being developed in a kitchen, and not a lab.
That’s not to say the work is bad – Curie won the Nobel prize not once but twice –
but it is, perhaps, similarly nascent.
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Chapter 3

Results and discussion

In this chapter, I discuss some of the background and motivation, challenges, results,
and limitations for each of the four papers. My hope is to provide a bit of nuance and
behind-the-scenes commentary while also summarizing the most important results
and discoveries.

In general, it is fair to say that the first two papers are mostly concerned with generic
ways to improve predictions of AMI at the emergency department by introducing
additional data: prior ECGs in paper I and pre-training on unrelated ECGs in pa-
per II. In contrast, the last two papers focus on more specific applications. The goal
of paper III was to systematically investigate early points of rule-out of AMI, while
paper IV identifies and predicts OMI.
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3.1 Paper I – The case of prior electrocardiograms

Title Prior electrocardiograms not useful for machine learn-
ing predictions of major adverse cardiac events in emer-
gency department chest-pain patients

Aim To quantify the benefit of prior electrocardiograms
when predicting MACE using machine learning.

Data ESC-TROP (19 499 ED chest-pain patients)

Results No added benefit from prior ECGs was found. This
was consistent across several models of varying com-
plexity, both with and without additional clinical in-
put variables, for different subgroups of patients, and
for different subsets of the outcome.

3.1.1 Motivation

In paper I we explored options for utilizing prior ECGs to predict major adverse
cardiac events (MACE) within 30 days of ED chest-pain visits.

For a layperson, the idea that previous ECGs should be useful might seem some-
what far-fetched. But it makes sense both from a practical and pathophysiological
perspective: infarctions are known to sometimes permanently alter the appearance of
the ECG, so when looking at an ECG in isolation, it is not necessarily obvious if an
indication of infarction is new or if it originates from a prior event. International
guidelines recommend the consultation of prior ECGs [99], based primarily on re-
sults from a study by Lee et al. in 1990 [100], which associated the availability of prior
ECGs with an increased specificity for triage of AMI. As a result, it is not unusual for
an emergency department physician to consult prior ECGs.

3.1.2 Previous research

There are some recent studies analyzing prior ECGs in a machine-learning setting,
though they rely on ”old-school” ML techniques and primarily hand-crafted mor-
phological features [101–103]. Probably the most similar previous study was that of
Ohlsson et al. [104] from 2001, in which a neural network was trained on morpholog-
ical features from 4691 ECGs to predict AMI. The authors found that the addition of
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a prior ECG lead to an improvement in AUC from 0.85 to 0.88. As far as I’m aware,
ours is the first study to evaluate the usefulness of prior ECGs for deep-learning mod-
els working on the full ECG signal.

3.1.3 Challenges

Defining MACE turned out to be a challenge in and of itself. Apparently there is no
real consensus on what a major adverse cardiovascular event really entails, with differ-
ent authors using different sets of diagnoses and intervention codes. Even internally,
within our research group, there was no clear answer: at one point I had four different
lists of diagnose codes to choose from, from different people. These problems were
ultimately resolved by my supervisors, but in hindsight, I think it might have been
better to simplify and focus on AMI, which makes up the vast majority of all MACEs
anyway.

There were two primary technical challenges in this paper: How do we process the
ECGs, and how do we convince ourselves (and the reader) that any improvement
(or lack thereof ) can be attributed to the prior ECG? The simplest solution to the
first question seemed to be to begin by extracting features from each ECG, and then
use those features in a down-stream model. We opted for two basic types of feature
extraction: a set of hand-picked morphological features mirroring those of Forberg
et al. [105], optionally followed by a dimensionality reduction, and automatic feature
extraction based on convolutional neural networks operating on the full ECG signal.

To address the second challenge, we decided to build (and tune) two versions of each
model: one where features from only the index ECG was used, and one where the
features from a prior ECG was included. This model structure is illustrated in Fig. 3.1.
We chose four different models of varying complexity, and repeated the process both
for ECGs only, and for ECGs including additional clinical features (most importantly,
the initial hs-cTnT lab-value). Thus, a total of 16 different models were developed
(four model types, two types of input, with and without prior ECGs).

3.1.4 Results

The expectation was overwhelmingly that the prior ECGs should be of some help. To
our surprise, this turned out not to be the case, as illustrated by Fig. 3.2, which shows
similar AUC scores for models with and without prior ECGs, for all four model types,
both with and without additional clinical variables.

So we started looking for other patterns: perhaps there’s a subgroup where the prior
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Feature extractor Feature extractor

Combiner

Classifier

Prediction
MACE within 30 days

Figure 3.1: Abstract overview of the basic structure of the machine learning models. Each ECG is passed
through a feature extractor function before being combined with additional clinical variables. The
feature extractor is the same within a model, but can differ between models. All models make use
of the index ECG (middle column), but the prior ECG (left column) and additional clinical variables
(right column) are only used for some of the models. ∆t is the time between index and prior ECG.

ECG is helpful, but it is somehow drowned out in the full population? We divided
the test set into different groups, and evaluated the models on the groups separately
to see if there was any group where prior ECGs helped more. We tried doing this for
patients where the index ECG was ”pathological”, according to the Uni-G algorithm.
We stratified on age quartiles, on previous AMI, and we predicted the different main
subsets of the MACE outcome separately. Although there were some variations across
models, none of the groups showed any improvement from prior ECGs that was either
substantial or consistent between models.

For all our unsuccessful efforts to find any way at all to make use of prior ECGs in
this context, or indeed any context, it seems to me that if there is a useful signal, it
is at least non-trivial to exploit it. To be sure, human beings work differently from
the algorithms explored in this study, but I am nevertheless left wondering about the
origin of the clinical practice of consulting prior ECGs. How much does it actually
help the clinicians? The conclusions about increased specificity by Lee et al. is based
on data that is 40 years old, and a lot has happened since then. The very definition of
the AMI diagnosis has changed multiple times, the population has naturally shifted,
and we are much better at detecting (and treating) minor infarctions that would have
previously gone undetected. It would be very interesting to see a modern study of the
impact of prior ECGs for physicians, and how often they actually alter the clinical
decision on the floor.
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Figure 3.2: Main results showing the test-set AUC, including 95% confidence intervals approximatedwith boot-
strapping. The blue bars correspond to models not using prior ECGs, and the orange bars corre-
spond to models using both the index ECG and the prior ECG. The additional variables used by
models on the right hand side of the figure are patient age, sex, troponin T and time since the
previous ECG. LR = Logistic Regression, MLP = Multi-Layer Perceptron, CNN = Convolutional Neural
Network, RN = ResNet.

3.1.5 Limitations

The choice of MACE as the target outcome might seem odd in hindsight. It was
perhaps a combination of over-confidence (it was my first paper after all), and a belief
that MACE, being more complex and a better approximation of what we actually
care about (compared to predicting AMI alone), might somehow be more strongly
coupled to prior ECGs.

37



3.2 Paper II – Transfer learning

Title Transfer learning for predicting acute myocardial in-
farction using electrocardiograms

Aim To quantify the improvements from transfer learning
when using ECGs to predict AMI.

Data SEM (44 k ED chest-pain visits, and 800 k ECGs from
non-chest-pain visits)

Results Pre-training to predict age and sex lead to a consid-
erable improvement in the downstream task of pre-
dicting AMI. The improvements were consistent across
several state-of-the-art ECG models, with the best per-
forming model improving from 79% AUC to 85%
AUC.

3.2.1 Motivation

The experience of working with ECGs so far was somewhat disappointing. It seemed
difficult to outperform traditional ML methods using traditional ECG-features, and
any models we trained from scratch tended to do better when they were smaller and
used median-beats instead of the full signal. In a way it is perhaps not surprising: the
traditional ECG features represent, more or less, a century’s worth of human pattern
recognition applied to ECGs. It’s a powerful set of expert features, hard-won through
clinical trials and real-world experience.

My experience with more complex models, such as the ResNet model in study I, was
disheartening. Training from scratch seemed outright impossible, and even the pre-
trained version from Ribeiro et al. [72] was slow, prone to overfitting, and ultimately
didn’t perform any better than much smaller counterparts. Then again, it was trained
on 2 million ECGs, whereas we used only around 10 k in our training sets. That’s two
orders of magnitude less data, in a field where data generally is known to be decisive
for performance.

Then, in the fall of 2023, we finally gained access to the long-awaited ECGs from the
full SEM cohort. SEM was a super set of the ESC-TROP database, and included
not just the chest-pain visits, but all ED visits in that time-period. The total ECG
count was just over 1.2M. Unfortunately, most of those ECGs can’t be used directly
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for supervised learning, because they were not from patients with chest pain, and so
training to predict the AMI outcome would be very misleading. However, it opened
up the door to transfer learning in a whole new way.

3.2.2 Previous research

Transfer learning, in a nutshell, is a way to improve the performance of a machine
learning model by transferring information from another domain [106]. This can of
course be done in many ways, but a popular variation is to pre-train a model on one
dataset (called the source), and fine-tune on a different dataset (the target). Transfer
learning has been used to great success in many applications, including for ECGs.
The most relevant to this paper is Strodthoff et al. [73], who showed a significant
improvements on PTB-XL [65] for using ECGs to predict 71 different outcomes, in-
cluding AMI. Jang et al. [107] used a large single lead ECG dataset to pre-train an
autoencoder, which was subsequently fine-tuned to predict ECG rhythms. Weimann
et al. [108] found an improved performance for detecting atrial fibrillation after pre-
training on 630 k hours of single lead ECG data. Mehari et al. [109, 110] explored
novel self-supervised methods for ECGs, and obtained large improvements on the
PTB-XL outcomes. To my knowledge, we are the first to investigate the benefits of
transfer learning explicitly for predicting AMI.

3.2.3 Challenges

Initial experiments were very promising. But even though it was useful to my own
efforts to build ECG-based prediction models, it wasn’t instantly obvious how to
convert the results into a useful paper. At first I thought about comparing my simple
transfer learning strategy (pre-training on age and sex) with other approaches, but was
discouraged by the complexity of the alternatives that I found, and was scared that
trying to implement them would require too much time and effort.

Ideally, a thorough evaluation of a model with and without transfer learning would
require proper tuning of the model hyper-parameters. However, such tuning is com-
putationally expensive, and the pre-training for the largest model already took several
days to converge. Even with multiple GPUs running in parallel, back-of-the-envelope
calculations suggested the tuning process might take half a year, if not more. This
seemed excessive, so we started to consider other options. That’s how we came up
with the idea of picking a handful of published, well-performing ECG models, and
evaluating them without any further parameter tuning.
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Figure 3.3: Bar chart showing the AUC for predicting AMI. The bottom of each bar shows the AUC for models
without pre-training, and the top of each bar shows the AUC for models pre-trained on age, using
the full source dataset. The size of each bar thus corresponds to the improvement from transfer
learning.

3.2.4 Results

We ended up comparing four different models, evaluating the effect of transfer learn-
ing for different amounts of pre-training and fine-tuning data. All models turned
out to benefit our transfer learning strategy, with the best overall model (a type of
ResNet model described by Mehari et al. [109]) improving from 79% AUC to 85%
AUC. Fig. 3.3 shows the improvement for each model when pre-training on the full
source dataset, for different sizes of the target dataset. The larger models tended to
benefit more from pre-training, and the benefit was greater when the target dataset
was smaller. The full results for the best model is shown in a heat-map in Fig. 3.4,
illustrating the benefit of transfer learning across different combinations of source and
target dataset sizes. Remarkably, comparing the top-left and bottom-right cells in the
heat-map, it can be seen that with on 10%, i.e., fewer than 3000 training examples,
the model utilizing transfer learning performs on par with a non-pre-trained model
that has 10 times as much training data on the target task.

I had previously, and I would now say erroneously, been under the impression that
transfer learning was primarily a way to speed up training, as opposed to directly
improving predictions. Perhaps this view makes sense in theory: whatever patterns
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Figure 3.4: Heatmap showing the AUC for predicting AMI with the RN-900k model, for different amounts of
source and target training data. The x-axis shows the number of ECGs in the target training dataset,
and the y-axis shows the number of ECGs in the source training dataset. The bottom row shows
results without pre-training.

and information is in your source dataset is not going to change just because you did
some pre-training on a different task. But in practice, all the models I’ve worked with
so far have been helped by transfer learning, some more than others. But it’s better
than that: not only does it seem that any given model performs better when it is first
pre-trained, the improvement from pre-training is bigger for more complex models,
essentially ”unlocking” that technology for use in the downstream task. Thus it seems
that, at least when dealing with ECGs and AMI, the benefit is two-fold: there’s a
benefit from training on additional ECGs, and a benefit from being able to use a
bigger or more complex model that would otherwise perform poorly.

3.2.5 Limitations

Perhaps the biggest limitation of paper II, in my opinion, is that we didn’t end up
trying any other options for transfer learning. Instead of saying ”here’s the best out
of several popular transfer learning option for ECGs”, we settled for the more modest
”this simple transfer learning method seems to work well”. Another limitation is the
choice to not explicitly tune the models. This naturally introduces a certain amount
of variance in our estimates of the transfer learning benefits. But, as discussed earlier,
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parameter tuning is computationally expensive, and it’s likely that tuning attempts
would have led to either testing fewer models, or testing on fewer combinations of
dataset sizes.
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3.3 Paper III – Stepwise predictions and the super model

Title Stepwise increasing input to machine learning models
predicting 30-day AMI or death in emergency depart-
ment chest-pain patients

Aim To develop a model for early rule-out of AMI, at mul-
tiple decision points corresponding to when informa-
tion becomes available at the ED. Also, to elucidate the
feature importance at each step.

Data SEM (40 312 ED chest-pain visits)

Results 16% could be safely ruled-out based only on age and
sex. 49% could be ruled-out after the initial hs-cTnT
lab-value was included. Medical history and point-
of-care blood samples were not important when the
ECG was available. Troponin, when available, was the
strongest predictor of AMI. Sequential rule-out at each
step resulted in a breach of the safety margins, despite
each individual predictor being within the safety mar-
gins.

3.3.1 Motivation

One approach to improving predictions of AMI at the ED, besides obtaining more
data, is to include more features. Lab-values, especially hs-cTnT measurements, are
particularly good predictors. This should not be a surprise, especially considering that
they are part of the diagnostic process, and so there’s an obvious and strong causal
connection between the measured troponin levels and an AMI diagnosis.

Although including additional lab-values can help to make better predictions, the
clinical utility is not necessarily increased: once multiple hs-cTnT samples are avail-
able, we essentially already know if there was an infarction, and a decision support
tool would be of limited impact.

An alternative to making better predictions, is to make earlier predictions. Informa-
tion typically become available at discrete decision points during a patient visit, cor-
responding to when measurements such as the ECG or lab-values are collected and
processed. Ever since I started as a PhD student, we have dreamed about the ”ideal”
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ED decision support model (a ”super model”, if you will), which makes predictions
from what is available at the moment, and gradually refines the predictions as more
information is collected.

In this paper, I collaborated with Pontus Olsson de Capretz to finally bring us a step
closer to realizing this ”super model”, by creating and combining models for five
different decision points at the ED. In step one, we use only age and sex as predictors,
in step two we include variables relating to the patient medical history, in step three the
ECG, in step four point-of-care blood samples (glucose, creatinine, and hemoglobin),
and finally in step five the initial hs-cTnT lab variable.

My contribution as second author was mostly on the technical side, assisting with the
data processing and model development. The work on paper III and paper IV was
largely conducted in parallel.

3.3.2 Previous research

In previous studies, models have been developed for different decision points at the
emergency department: Than et al. [77] and Björkelund et al. [111] developed models
relying on two hs-cTn lab-values, and found improvements when compared to the
ESC 0h/1h pathway. Olsson de Capretz et al. [112] found that a large number of
patients could be safely ruled-out based only on the initial hs-cTnT and the ECG. In
paper I, part of the analysis considered the index ECG alone for predicting MACE.

To the best of our knowledge, this is the first study to use the holistic approach of
predicting AMI at multiple discrete decision points and estimating a cumulative rule-
out by applying models sequentially.

3.3.3 Challenges

As always, combining ECGs with other features can be challenging. The approach
used in this study mirrored that of paper IV, in which ECG features were extracted
in a pre-processing step before being combined with other features. In an earlier
draft, Olsson de Capretz used a model developed by Björkelund et al. in 2020 [111] to
extract ECG features. But as I was making progress on paper IV, we realized that the
same transfer learning approach would likely work well also in this project, with only
minor changes. Replacing the model by Björkelund et al. with the one developed for
paper IV resulted in a substantial improvement, as illustrated in Fig. 3.5. Curiously,
however, the improvement from using a more powerful ECG feature extractor was
largely canceled once the initial hs-cTnT values were included in the feature-set.
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Figure 3.5: Results of the (combined) models, using features from all steps up to the current point. The models
represented by the blue bars used the old ECG extraction model, whereas the orange bars used the
new ECG extraction model. The black lines indicate 95% confidence intervals. POC=Point-of-care
features (creatinine, hemoglobin, glucose), AUC=Area under the receiver operating characteristic
curve.

The concept of a safe rule-out is intuitive and well-established among ED physicians.
However, using the number of safely ruled-out patients as a model performance met-
rics comes with a few challenges. One of the challenges is how to define the safety
constraints that determine the binary threshold.

A much-cited 2010 survey of 1029 emergency department physicians by Than et al.
[113] provided some guidance. In the survey, participants were asked what they con-
sider to be an acceptable risk of major adverse cardiac events after discharge from the
ED. The results suggested a generally acceptable risk of between 0.1% and 1%. Based
on this, we decided to use a minimum sensitivity of 99% in combination with a min-
imum negative predictive value of 99.5% as the main safety constraints. However, if
we want to realistically discharge a patient without even observing an initial hs-cTnT
lab-value, as is the goal in the first four decision steps, even stronger safety constraints
may be warranted. For this reason, we enforced a 100% sensitivity constraints for the
first four decision steps.

3.3.4 Results

We trained and evaluated models for each of the five feature groups individually, as
well as in combination, where features from previous steps were included. The orange
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Table 3.1: Rule out results for the combined models on the test set, evaluated for each step in isolation and se-
quentially. POC=Point-of-care blood samples (hemoglobin, glucose, and creatinine), hs-cTnT=high-
sensitivity cardiac troponin T, NPV=negative predictive value.

Rule out Sensitivity NPV Missed
Step Step-specific (%) Sequential (%) Step-specific Sequential Step-specific Sequential Sequential

1. Age+sex 1561 (16%) 0.991 0.996 6
2. +History 1589 (16%) 1816 (18%) 0.986 0.984 0.994 0.994 11
3. +ECG 549 (6%) 1865 (19%) 0.999 0.984 0.998 0.994 11
4. +POC 572 (6%) 1874 (19%) 0.999 0.984 0.998 0.994 11
5. +hs-cTnT 4843 (49%) 5039 (51%) 0.978 0.963 0.997 0.995 26

bars in Fig. 3.5 show the AUC for the combined models.

Rule-out, i.e. the greatest proportion of patients that could be ruled-out while sat-
isfying the safety constraints, was evaluated for each model separately as well as cu-
mulatively by applying the models in a step-wise fashion, such that only patients not
ruled-out by previous models would proceed to the next step. The rule-out results are
summarized in Table 3.1.

As many as 16% of chest-pain patients could be safely ruled-out based only on age
and sex. Interestingly, steps three and four had a lower rule-out score than steps one
and two, despite using more data and having a higher AUC. Applying the models
sequentially, we could rule-out 51% of the patients at the final step, but the sensitivity
was reduced below the acceptable level of 99%.

In terms of feature importance, this project confirmed some loosely held hypotheses,
that essentially boil down to this: age is much more important than the medical
history, but once the ECG is introduced, it’s value is diminished. Point-of-care blood
samples don’t help that much, and once the initial hs-cTnT lab-value is introduced,
the other variables are only marginally useful, with the ECG being the most important
of those.

3.3.5 Limitations

One of the limitations of this paper is related to the sequential evaluation of the models
across the different steps. The erroneous rule-out of a patient at an early step can’t
really be undone in subsequent steps. This means that false negatives are tallied up
across all steps in a fashion that can easily breach the safety margins, even though each
individual model on its own passes the test. I believe this is what happened at step
5 of the cumulative model, where the sensitivity unexpectedly dropped to 96%, even
though the last model on its own had a sensitivity of 98%.

Another limitation is related to a lack of power owing to the very strong safety con-
straints of the rule-out metric. When combined with the relatively low incidence of
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AMI, the safety constraints forces the threshold selection to be very sensitive to the
predictions of individual patients. Not only does this make rule-out very difficult to
optimize, it also causes a large uncertainty in the metric itself. Estimating the dis-
tribution of rule-out via bootstrapping reveals a tendency for scores to cluster into
several modes, which are due to the presence or absence of individual patients in the
bootstrap sample. The somewhat curious results of the step-specific rule-out numbers
illustrates this effect, I think. The model at step 2, based on age, sex, and medical his-
tory, ruled out 16% of the patients, but at step 3, when ECGs were added, suddenly
only 6% of the patients were ruled out, despite the AUC being 12% higher. Presum-
ably a single ”unlucky” AMI patient got a very low predicted probability, drastically
shifting the threshold to conform to the 100% sensitivity constraint. In my view, this
casts serious doubts on the validity of the rule-out percentages reported in the paper.

For these reasons, I think we should either relax the safety constraints of the rule-
out metric, or abandon it all together, at least until we can figure out better ways to
estimate its uncertainty. For now, though, it seems like the clinical appeal of the rule-
out metric is valued higher than concerns around generalizability and discriminative
power.
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3.4 Paper IV – Predicting occlusion myocardial infarctions

Title Predicting occlusion myocardial infarctions in the
emergency department using artificial intelligence

Aim To identify acute coronary occlusion myocardial in-
farction among patients with chest pain at the emer-
gency department, and to build a deep-learning model
to predict this outcome from the ECG and other
health-care data available early in the ED process.

Data ESC-TROP (24 511 ED chest-pain visits)

Results A total of 467 patients (1.9% of all ED chest-pain visits,
29% of AMI cases) were identified, out of which only
about one in ten received timely reperfusion therapy.
The deep-learning model was able to predict the out-
come with an AUC of 95.3% when using the ECG and
the initial hs-cTnT lab-value, and an AUC of 87.2%
when using ECGs only. The model had roughly twice
the sensitivity of the STEMI criteria at the same speci-
ficity.

3.4.1 Motivation

I first read the ”OMI-manifesto” by Meyers et al. [24] in 2021, and although I’m not
really in a position to judge the voracity of their claims, it always seemed to me like
they were on to something. The basic observation, like we covered in section 1.2.4,
is that out of all myocardial infarctions, only some – the acute coronary occlusion
myocardial infarctions (OMI) – require emergent revascularization treatment. But
the method by which these patients are identified in practice depend entirely on the
ECG and the presence of ST-segment elevations [4, 7].

There is a growing body of research indicating that STEMI is an imperfect predictor
of OMI, with a sensitivity as low as 44% [114]. This suggests there is considerable room
for improvement, where about 40% of OMI patients presenting without STEMI go
largely undetected [21], and between 30% and 40% of patients undergoing emergency
treatment as a result of ST-elevations on the ECG, show no angiographic evidence of
an occlusion ever having taken place [18].
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3.4.2 Previous research

There have been numerous attempts to create better ECG rules for identifying OMI
[22, 115–117], but they tend to be complex and subtle, with unclear inter-evaluator
reliability [118–120]. And as we saw in section 1.5, hand-crafting features is both dif-
ficult and time consuming, and is fundamentally limited to the pattern recognition
skills of humans. In this day and age, surely we can do better with deep learning!

At the moment of writing, only two machine learning algorithms for predicting OMI
have been published. The first was the ECG-SMART algorithm by Al-Zaiti et al. [75]
in 2023, which obtained an AUC of 87%, outperforming both doctors and the STEMI
criteria. The ECG-SMART model is a random forest model, using a collection of
hand-crafted features. In 2024, Herman et al. [76] published the Queen-of-Hearts
algorithm, which had an AUC of 93.8%, also beating the STEMI criteria, and per-
forming similarly to human ECG-experts. The Queen-of-Hearts is currently being
validated at multiple external sites [121–124], including on the ESC-TROP material.

3.4.3 Challenges

Meanwhile in Lund, we have this beautiful (all things considered) dataset of over
20 k mostly unselected chest-pain patients, complete with all the most important
Swedish national quality register data. The only problem is that OMI is not an ICD-
10 diagnosis, and the registers don’t exhaustively document occlusions. Without the
labels, we can’t use supervised learning, and even if we could, we wouldn’t be able
to tell if the predictions were correct. The only solution, if we want on the OMI
bandwagon, is to somehow find a good enough proxy for OMI, with the material
that is available.

Our work in this regard started in earnest in the spring of 2023, and it would take a year
and a half before we were finally satisfied that we had identified most of the OMI cases.
During this time, we had analyzed and combined different register data, manually read
over 600 free-text angiography summaries, watched angiography recordings, studied
ECGs and performed manual reviews of full health records. My part in this process
was mostly confined to the slicing and dicing, combining and restructuring of data,
in order to answer questions from my supervisors about how many patients were in
group so-and-so, carefully trying to patch together information from different sources
so as not to miss anything. Fig. 3.7 shows an overview of the final flowchart, hinting
at some of the complexity involved. Part of the difficulty of the process was due
to inconsistencies between the data sources, and how to cross-reference them. For
example, one of the sub-groups had 10 patients with intervention codes suggesting
CABG or PCI, but no registered angiography. Similar corner-cases were found for
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pretty much every other ”impossible” situation imaginable. In the end, I estimate we
spent 95% of the time identifying the final 5% of OMI cases. There are probably still
cases missing, but we did the best we could with what we had, and I think it’s about
as good as it can get without manually examining all angiographies.¹

With labels defined, I was excited to build on previous experiences with transfer learn-
ing for ECG models and to finally create a model to predict OMI. Although the results
from the transfer learning was very promising, one of the remaining challenges was
how to squeeze the last bits of performance by model selection and tuning. The main
obstacle was the pre-training process, which was the most time consuming by far. It
is tempting to optimize the pre-training and fine-tuning separately, but I was worried
that the best model with respect to mean absolute error in predicting age, would not
necessarily be the best choice for fine-tuning on OMI. The only way to know for sure
is to test it empirically. Also, two different pre-trained model architectures may easily
end up requiring different parameters for fine-tuning. In other words, the two steps
are entangled.

I decided to begin with a round of random search over model architectures (mostly
variations of ResNet) for pre-training. It took almost a month to train 500 models,
using 6 high-end consumer-grade GPUs² in parallel. Next, I selected a static fine-
tuning protocol for predicting AMI in SEM (I was avoiding the OMI task for fear
of overfitting), and created the scatter-plot in Fig. 3.6 to visualize the correlation be-
tween the pre-training and fine-tuning performance metrics. Although there is a clear
correlation, it confirmed my suspicions that we can’t naively use the best model with
respect to age predictions, and expect it to be the optimal choice for the downstream
task.

In a second round of random search, I let the choice of pre-trained model be part of the
search space, picking randomly from the top 50 models. The fine-tuning target was
still AMI on SEM. Although the best model on the downstream task was dominated
by a handful of pre-trained models, these were not the ones at the very top of the
pre-training performance. But what do we even mean by best downstream model
anyway? By what metric? The clinical perspective provides some constraints in this
regard. In order to provide urgent angiography to suspected OMI cases, we need the
positive predictive value (PPV) to be reasonably high. The low prevalence of OMI
(around 1.9%) would thus force a very high specificity. As a result, even without an in-
depth analysis (which would fall out scope for the paper), the clinical expectation was
that we are more interested in the high-specificity region of the ROC space (i.e. the
left-most part). For these reasons, besides the regular AUC metric, I also considered

¹This is not a bad idea as such. Unfortunately, the angiography recordings were not part of the
ESC-TROP database itself, and had to be reviewed separately for selected patients.

²Two each of Nvidia GeForce 3090, 4090, and A40 GPUs.
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Figure 3.6: Scatter plot showing mean absolute error (MAE, years) for age-predictions on the x-axis, and AUC
for predicting AMI on the y-axis. Each dot corresponds to a different pre-trained model architec-
ture. Metrics are evaluated on the validation sets.

the partial AUC [125], where specificity is above 95% and 98%. I also evaluated the
sensitivity at a few fixed thresholds, corresponding to a minimum specificity.

Annoyingly, the results of my fine-tuning experiments would find different ”winners”
depending on the choice of metric. In other words, the best model with respect to
overall AUC was different from the best model with respect to sensitivity at speci-
ficity 97%, for instance. Further scrutiny of the high-specificity metrics indicated a
worrying trend: the uncertainty, as could be estimated for instance by bootstrapping,
was very high. For the threshold specific metrics, the threshold also appeared to be
extremely sensitive to individual data points, which in hindsight is natural when con-
sidering the low prevalence of OMI. This high variance made me wary of selecting
parameters based on these metrics, as it seemed to me I wasn’t really able to distin-
guish a good model from a mediocre one. After careful consideration, I thus made
the decision to select model parameters based on overall AUC performance, rather
than the other metrics discussed.
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Figure 3.7: Overview of the annotation process for acute coronary occlusion myocardial infarction (OMI). AMI
= Acute myocardial infarction, PCI = Percutaneous coronary intervention, CAG = Coronary angiog-
raphy, CABG = Coronary artery bypass graft surgery, hs-cTnT = high-sensitivity cardiac troponin T.

3.4.4 Results

In the end, we identified 467 cases of OMI, corresponding to 1.9% of all ED visits,
and 29% of AMI cases. Compared to non-OMI infarctions (NOMI), the patients
with OMI had twice as high 30-day mortality rate, despite being younger and with
fewer comorbidities. These numbers are largely in line with that of previous research
[126, 127]. Furthermore, only 11% of the OMI patients received angiography within 2
hours, which further confirms the need for improved routines for this patient group.

The prediction model turned out well, predicting OMI with an AUC of 87.2% using
ECGs only. When combined with medical history and lab-values, it reached an AUC
of 95.3%. ROC-curves for a few of the input feature group combinations are plotted
in Fig. 3.8, together with the decision points corresponding to the universal STEMI
criteria (machine interpreted), and STEMI-equivalents calculated by the Uni-G ECG
program [83].

It turned out that the inital hs-cTnT lab-value scored really well on its own. In fact,
even without any logistic regression shenanigans, just straight-up using the hs-cTnT
lab-value as a predictor for OMI, we end up with an AUC of 91.1%. A hard threshold
of 110 ng/L on the initial hs-cTnT leads to a sensitivity of 48%, compared to 27% for
the STEMI criteria. This information alone seems to me could be employed almost
instantly in clinical practice, without the need for complex AI models and all the
implementation difficulties associated with it. Although of course a more thorough
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Figure 3.8: Receiver Operating Characteristic (ROC) curves for the AI model with different inputs, evaluated on
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criteria and the Uni-G algorithm statements corresponding to STEMI. The dashed line corresponds
to randomly guessing the outcome.

analysis would still be required to determine the appropriate tradeoff between sensi-
tivity and specificity, as well as clinical trials to evaluate the safety and efficiency of
such an algorithm. And at that point, we might as well go the extra mile of evaluating
an AI model too.

Out of curiosity, I also evaluated the AUC for the maximum recorded hs-cTnT values
for each patient, even though they are obviously not known when the patient arrives at
the ED, and are thus ”cheating”. The AUC turned out to be 99.3%, which means the
maximum recorded hs-cTnT are essentially perfect proxies for risk of OMI (a thresh-
old of 250 ng/L results in a sensitivity of 92.5% at a specificity of 97.7%). Note also
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that these are only the highest recorded hs-cTnT measurements, not a systematically
measured peak. Even though it is not directly useful from a clinical perspective, it is a
potentially valuable proxy outcome to train supervised models against. After all, from
an ML perspective, the lack of labeled datasets currently represents the greatest ob-
stacle to building stronger models, and by simply predicting the maximum hs-cTnT
instead, we might have a very strong candidate pre-training target in existing as well
as future datasets.

Ultimately, our contributions to the OMI game is two-fold: our annotation efforts
confirm previous research, and highlight the need for change both for pre-hospital
screening and ED management of suspected OMI. The dataset will continue to be of
value for future studies, including as external validation of other models: a collabo-
ration with Herman et al. to validate the Queen-of-Hearts algorithm is already well
underway, with very promising results. The second contribution is in the develop-
ment of our own OMI model, which is only the third of its kind, and the first to be
non-proprietary and open source. We are also first to explore the benefit of additional
clinical variables for predicting OMI using deep learning.

3.4.5 Limitations

Despite a large initial cohort of over 26 000 chest-pain patients, the final number
of identified OMI cases was only 467. Although this is of course a good from the
perspective of the general health and well-being among patients, it is a bit on the low
side from a machine learning perspective. Class imbalance is a challenging problem,
and the development of strategies suitable for deep-learning methods is an area of
active research [128]. Exploring how recent advancements in area might be useful to
our application would be an interesting future research direction.
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Chapter 4

Conclusions

Why is this thus? What is the reason for this thusness?
— Artemus Ward

4.1 Summary

In this thesis, we have explored different ways to apply deep-learning algorithms to
predict adverse cardiac events among chest-pain patients at the emergency depart-
ment. In paper I, we found – surprisingly, and contrary to clinical expectations –
that prior electrocardiograms appear to be of limited value when predicting MACE.
Besides calling into question the general recommendation for physicians to consider
prior ECGs, the main benefit of our discovery lie in the opportunity to simplify the
development of future prediction models, which in light of our results would be un-
likely to extract much benefit from such efforts. In paper II, we confirmed that trans-
fer learning is a valuable technique when training deep-learning models to predict
AMI using ECGs. We found that a simple-to-implement strategy of pre-training on
age and sex can lead to a considerable increase in the downstream classification per-
formance. The fact that age and sex are available alongside most ECG recordings
increases the utility of our approach, thus forming a valuable baseline before imple-
menting more complex approaches.

In paper III, we built models for early rule-out of AMI, at multiple clinical decision
points. We found that 16% of patients could be safely ruled out based on age and sex
alone, and 50% could be ruled out when incorporating the ECG, medical history and
initial lab-values. This suggests that a rule-out decision could be possible very early in
the clinical pathway, possibly already at ED presentation.
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In paper IV, we identified patients with acute coronary occlusion myocardial infarc-
tions, finding that although 29% of all AMI cases fall into this high-risk category, only
11% receive treatment within the recommended timeframe. We constructed a deep-
learning model capable of predicting OMI with an AUC of 95.6% when utilizing both
the electrocardiogram and initial hs-cTnT lab-sample, resulting in more than twice
as high sensitivity as the international STEMI criteria at the same specificity.

Much work remains to be done, including clinical validation studies, before we can
use any of these algorithms in clinical practice. Nevertheless, the contributions in
this thesis brings us forward in several important regards: we discovered strategies
that considerably enhance the predictive power of deep-learning models using ECGs,
and identified multiple areas where such models could potentially be used as decision
support tools to streamline the clinical pathway for chest-pain patients at the emer-
gency department. We hope this work will ultimately contribute to improved patient
outcomes for this important and vulnerable patient group.

4.2 Future work

The driving force behind the work in this thesis was always the possibility of improved
health-care practices through the use of decision support tools. The road to deploying
such tools in clinical practice is understood to be both long and winding, with many
uncertainties, and this thesis can only take us so far. Among the most important
milestones yet to cross is the conduction of a prospective clinical study in which the
impact of the prediction models we have constructed can be evaluated in terms of
patient outcomes. Before such a study can even begin, software must be developed
by, or in collaboration with the hospital, to connect the various required systems
for electronic health records and other data sources. The prediction model must be
prospectively validated, a graphical user interface must be designed, study protocols
must be written, ethical and legal permits must be applied for and received. Much
of this work is happily already in progress, and I’m hopeful that the first prospective
validation study can be started as early as the fall of 2025.

When it comes to data collection, good things are expected: The construction of the
SEM2 database is in full progress, and will fill the information gap between 2018 and
2024. We estimate an additional 2 million ECGs, together with all the other health-
care records, to be available as early as this summer.

In terms of model development, we have barely scratched the surface of what can
be done with the data sources currently at hand, to not even mention what we hope
to get. The technical field is advancing at a staggering pace, with new and exciting
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papers being published on a daily basis. There are so many ideas for novel model
architectures, and when combined with the ever increasing amount of available data,
the opportunities are seemingly endless. Large public ECG databases are published
left and right, with perhaps the most exciting one that I’ve seen so far containing well
over 10M ECGs [129], coupled with rich patient metadata, including hundreds of
diagnostic outcomes. At this point, the development of a foundation model [130] for
ECGs may be within reach, with efforts in this direction already on-going [131].

As for the OMI paradigm shift, I think it is already well underway. The Queen-of-
Hearts model is currently on-going external validation at multiple sites, including a
collaboration with us. My impression is that the model is extremely capable, and I
would be surprised if it does not become widely used. And as more data is pooled and
bigger and better models can be applied, it seems to me that the gaps of the STEMI
era might finally be entirely closed.
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If artificial intelligence was a taxonomy of living things, machine learning 
might cover the animal kingdom, and this thesis would be concerned with 
the entomological study of a particular species of cranefly. There are over 
15000 documented species of craneflies, divided into more than 500 genera. 
The cranefly of this thesis is the artificial neural network, and the entomo-
logical study explore ways to apply modern deep-learning algorithms for 
predicting adverse cardiovascular outcomes for patients with chest pain at 
the emergency department. 
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