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Abstract

This paper introduces Parameter Estimation by Raw Moments (PERM), a flexible
method for evaluating a policy’s impact on the parameters of an outcome distribu-
tion. Such parameters include the variance (E[Y 2]−E[Y ]2), skewness and covariance
of two outcomes. PERM simplifies distributional analysis by first separately estimat-
ing higher-order moment treatment effects (e.g., E[Y 2]), then combining these to derive
distribution parameter treatment effects. Two implementations are discussed: regres-
sion with controls and DiD with staggered roll-out. Applying PERM DiD to a Swedish
school reform finds it reduced education inequality but increased earnings variance
resulting in a lower covariance between education and earnings.
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Introduction

It is ironic that much of the research evaluating the impact of compulsory school reforms has
focused on mean outcomes rather than their wider distributional effects, even though many
of these policies were designed to improve equality of opportunities and reduce inequality,
(see e.g. Meghir and Palme, 2005; Oreopoulos, 2006; Clark and Royer, 2013; Fischer et al.,
2021). The focus on the mean in the policy evaluation literature can likely be attributed to
its desirable statistical properties that include unbiasedness, consistency, and additive sep-
arability. These properties are crucial for commonly used policy evaluation methods, such
as those based on linear regression or differences-in-differences analysis. Distribution pa-
rameters beyond the mean lack these properties, making it empirically challenging to apply
these same tools. This paper introduces a new method, Parameter Estimation by way of Raw
Moments (PERM), a simple extension to common policy evaluation techniques that enables
investigation of a broader range of univariate and bivariate distribution parameters.

PERM builds on the simplicity of our mean analysis. Although the variance (µ2) itself is
not additively separable, it can be expressed exclusively as a nonlinear function of addi-
tively separable components µ2 = E[Y 2]−E[Y ]2.1 E[Y ] and E[Y 2] are the first and second
raw moments of the distribution and are additively separable being the means of Y and
Y 2 respectively. PERM first estimates a policy’s impact on each raw moment, noting that
most studies already estimate the impact on the mean E[Y ]. Second, these raw moments are
then combined to estimate the observed and counterfactual distribution parameter of inter-
est. For the variance, this only requires an additional estimate of the second raw moment,
whose identification and estimation is a simple extension of the mean. The PERM method
of combining estimates of raw moments provides a new flexible way to estimate treatment
effects on distribution parameters of outcomes.

Raw moments (e.g.E[Y ], E[Y 2],...) are means of polynomials of observed outcomes and
like the mean possess the same desirable statistical properties such as unbiasedness, con-
sistency, and additive separability. These properties allow the same empirical tools used
for mean analysis to be applied to higher-order raw moments. Raw moments are not only
straightforward to estimate, but also highly informative about the distribution of outcomes.
Historically, the method of moments has played a foundational role in statistics. Andrey
Markov used it to prove the Central Limit Theorem, while Karl Pearson employed it to
define distributions based on empirical moments (Pearson, 1894). Moreover, certain distri-
butions can be uniquely characterized by their sequence of raw moments.2 Even when only

1The Law of Total Variance states that the total variance can expressed as a function of subgroup (G)
variances and the variance of subgroup means: µ2 = E[µ2(Y |G)]+ µ2(E[Y |G]). The second term represents
the between group variance that prevents additive separability.

2The Hamburger moment problem addresses whether a sequence of moments uniquely identifies a distri-
bution over the real line.
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a few lower-order raw moments are available, they provide valuable insights into the nature
of a distribution.

Estimates of these moments enable causal analysis of distribution parameters expressed as
functions of raw moments, including variance, skewness, and even certain univariate in-
equality measures such as the Coefficient of Variation and the Thiel Index.3 In some set-
tings, the impact of a policy on the joint distribution of outcomes may also be of interest.
Treatment may not only affect these outcomes independently, but also change how they re-
late to each other. Distribution parameters that capture this bivariate relationship include
the covariance and the slope coefficient, which are functions exclusively of both univari-
ate raw moments as well as bivariate or joint raw moments (e.g.E[YW ]). By focusing on
raw moments, PERM transforms the challenging task of estimating treatment effects on the
distribution of outcomes into a tractable, two-step, nonparametric procedure.

For the sake of clarity, we focus on the treatment effect on the distribution of outcomes, not
on the distribution of treatment effects.4 In particular, we estimate the difference between
the distribution of outcomes and what it would have been without treatment - what we call
the Distribution Parameter Treatment Effect (DPTE).5 The DPTE will depend on both the
heterogeneous treatment effects and how these are distributed in relation to the untreated
outcomes.

Several methods already exist that allow the estimation of distribution parameter treatment
effects. One popular method is the marginal estimation technique of Recentered Influence
Function (RIF) Regression (see e.g. Firpo, Fortin and Lemieux, 2009b, 2018; Essama-Nssah
and Lambert, 2012; Heckley, Gerdtham and Kjellsson, 2016, for alternative use cases). This
method provides a linear approximation of how the distribution parameter will change in
response to a marginal change in treatment. As a consequence, RIF only estimates ’local
effects’ and is therefore only useful for ’small’ policy changes. For ’larger’ policies that
substantially affect the distribution of outcomes, local linearisation techniques like the RIF
approach, may provide a poor approximation (Rothe, 2015).

Several non-local estimation techniques exist. These methods require the assumption of

3Note that means of ranks are not raw moments as ranks are themselves functions. Rank-dependent in-
equality measures such as the Gini index therefore fall out of scope. Rank-based measures are particularly
tricky because they make the contribution of observations dependent on other observations (i.e. not additively
separable into the contribution of each observation or group). This is because a rank change for one obser-
vation will, by construction, change the rank for at least one other observation. Rank-dependent inequality
measures therefore require estimation of the entire distribution of counterfactual outcomes.

4The distribution of treatment effects can be considered as the distribution of the difference in potential
outcomes (see e.g. Fan and Park, 2010; Firpo and Ridder, 2019; Melly and Wüthrich, 2017, for recent
contributions). The distribution of treatment effects ignores the relationship between individual treatment
effects and the baseline distribution of outcomes.

5Firpo and Pinto (2016) call this the inequality treatment effect. We utilise more general terminology
because our focus here is not specific measures of inequality.

2



treatment unconfoundedness, an assumption requiring selection into treatment based only
on observable characteristics, also known as strong ignorability. Examples include re-
weighting based approaches (Firpo and Pinto, 2016; DiNardo, Fortin and Lemieux, 1996;
Card et al., 2004), location shift estimators (Juhn, Murphy and Pierce, 1993), and methods
that parametrically or non-parametrically estimate the full conditional distribution (Cher-
nozhukov, Fernández-Val and Melly, 2013; Rothe, 2010).

In this paper we first introduce a regression-based PERM approach (PERM regression)
which assumes weak ignorability (independence of treatment across the required raw mo-
ments) and compare it to methods that require strong ignorability. Strong ignorability re-
quires ALL raw moments to be conditionally independent of treatment given observables. In
a Monte Carlo exercise alongside an empirical application of union coverage in the USA we
show that PERM regression yields very similar results compared to the Inverse Probability
re-Weighting approach (IPW). Our finding that PERM performs well when evaluated against
IPW, combined with the results from Firpo and Pinto (2016) that show IPW performs well
against the methods of Juhn, Murphy and Pierce (1993); Chernozhukov, Fernández-Val and
Melly (2013), together suggest that PERM regression performs well more generally, while
requiring slightly weaker assumptions. These results are confirmed in our first empirical
application that assesses the impact of union coverage on US log hourly wages. The results
show that union coverage not only improves the mean of log earnings, but also reduces vari-
ance and standardised skewness. Both PERM and IPW yield very similar conclusions.

The advantage of PERM, however, is that it can also be utilised under alternative identify-
ing assumptions. In this paper, we also introduce a difference-in-difference based PERM
approach (PERM DiD) that relaxes the raw moment independence assumption and instead
utilises parallel trend assumptions. We show that PERM DiD identifies the second raw
moment under the assumption of parallel trends in the mean and variance of groups. A
parallel trend in the mean is, in general, incompatible with parallel trends in the mean of
any non-linear transformations of the outcome variable. This is because any trend in the
mean will, in general, lead to non-parallel trends in the mean of the transformation.6 We
show that under a parallel group variance assumption the trend in the mean has a mechan-
ical effect on the second raw moment which can be estimated and used to correct the DiD
of the second raw moment yielding unbiased results. We extend this idea to higher-order
and bivariate raw moments. Our empirical implementation of PERM DiD utilises the stag-
gered event study DiD regression approach of De Chaisemartin and dHaultfoeuille (2020)
and De Chaisemartin and d’Haultfoeuille (2024), for which we provide a Stata command
did_multiplegt_PERM.

Our second empirical application illustrates PERM DiD by estimating the DPTE of a major

6Roth and Sant’Anna (2023) provide a proof of this.
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Swedish educational reform affecting children born in the 1940’s and 1950’s that increased
the minimum years of schooling, delayed ability streaming (tracking) and thereby mixed
ability peer groups for longer. This reform had the explicit aim of reducing inequalities in
outcomes through improved equality of opportunity. Previous research has shown that this
reform increased average years of education as well as income (Meghir and Palme, 2005;
Holmlund, 2007; Fischer et al., 2021). We replicate these findings and then extend the previ-
ous analysis to consider distribution impacts. We find that the reform substantially reduced
the variance in years of schooling, but the impacts on labour earnings indicate an increase
in the variance. We also consider the impact on the association between education and
earnings and find a clear reduction in the covariance and slope of earnings and education.
This suggests that the comprehensive school reform reduced education inequality and weak-
ened the education gradient in earnings in Sweden but increased labour market inequalities.
The results suggest that even well-targeted education policies aimed at reducing education
inequalities may not be effective policy tools in reducing labour market inequalities.

Several alternative distribution DiD estimators have been suggested (Athey and Imbens,
2006; Bonhomme and Sauder, 2011; Callaway and Li, 2019; Roth and Sant’Anna, 2023;
Fernández-Val et al., 2024). Each impose alternative parallel trends assumptions to allow
the identification of the distribution effects. If one’s interest is focused on identifying only
a few distribution parameters, then the alternative assumptions required by distribution DiD
approaches are in general stronger than those required by PERM DiD. This is because these
alternative methods require identification of the full counterfactual distribution in order to
identify the counterfactual distribution parameter, whereas PERM only requires identifica-
tion of the relevant counterfactual raw moments, which is less demanding. Furthermore,
it is not obvious how the distribution DiD estimators of (Athey and Imbens, 2006; Bon-
homme and Sauder, 2011; Callaway and Li, 2019; Roth and Sant’Anna, 2023) can be easily
extended to consider the nature of a policy’s impact on the bivariate outcome distribution,
such as, the covariance of education and labour earnings. The analysis of parameters of the
bivariate outcome distribution is relatively straightforward using PERM DiD.

PERM is a flexible framework that identifies the DPTE under alternative identifying as-
sumptions. PERM regression and PERM DiD are just two PERM based approaches that
could be used to identify the DPTE. More generally, PERM is valid in any empirical set-
ting as long as credible counterfactual raw moments can be identified. PERM is relatively
straightforward and quick to implement and provides a natural extension to causal inference
methods that focus on the mean. Finally, there is an intuitiveness to the PERM approach
which potentially opens up its usefulness to a wider audience compared to alternative DPTE
estimators. PERM builds on what is already familiar, means and regressions. No new
concepts are required, rather PERM provides a framework for the analysis of DPTE using
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concepts commonly understood.

1 Parameter Estimation using Raw Moments

1.1 Distribution Parameter Treatment Effects

We want to know how exposure to a treatment changes the distribution of outcomes. First,
let us define a binary treatment variable, Di = (0,1) where 0 is untreated and 1 is treated. For
all d ∈ D, let Yi(di) be the potential outcome for individual i and let Yi denote the observed
outcome that is realised:

Yi =Yi(0) · (Di −1)+Yi(1) ·Di

=Yi(0)+ τiDi, ∀i,
(1)

where τi = (Yi(1)−Yi(0)) and is the treatment effect for each individual i.

The distribution of the outcome variable Y for a population can be defined in terms of param-
eters, v(Y ), which describe it. Common parameters used to describe distributions include
the mean, variance and standardised skewness. We need not restrict ourselves to parameters
that describe a univariate outcome distribution. Suppose that a treatment affects the distri-
bution of two outcomes. How treatment affects this association can be summarised using
parameters that describe the joint distribution of two or more outcomes, v(Y,W ), such as the
covariance of Y and W , for example.

A natural way to compare two potential outcome distributions is to consider the difference
in their parameters. The difference between the parameters of the observed and potential
outcome distribution for the treated population gives the Distribution Parameter Treatment

effect on the Treated (DPTT)7:

∆DPT T =v(Y (1)|D = 1)− v(Y (0)|D = 1)

=v11 − v01
(2)

where v11 and v01 are the parameters of the distribution of potential outcomes for the treated
group, if they were treated and untreated, respectively. Examples of the DPTT include the
familiar Average Treatment effect on the Treated (ATT) and the Variance Treatment effect
on the Treated (VTT).

In this paper we focus on the treated population to simplify our exposition but there are other
population comparisons that may also be of interest. For example, Firpo and Pinto (2016)

7Firpo and Pinto (2016) refer to the DPTT as inequality treatment effect on the treated due to their inequal-
ity focus.
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define the overall inequality treatment effect as the difference in the distribution of outcomes
for the whole population if everyone was treated compared to a counterfactual where no
one was treated, and the current inequality treatment effect as how the observed outcome
distribution for the overall population has been impacted by only part of the population
being treated. These treatment effects can be estimated by the methods we introduce in this
paper, but we leave this as an extension.

1.2 Identifying Distribution Parameter Treatment effects on the Treated

To identify the distribution parameter treatment effect on the treated we need to estimate
a counterfactual. Let the outcome data be defined by a sequence {Yi}N

i=1 where each Yi is
a random draw from Y where Y ∈ Y and individual characteristics data be defined by a
sequence {Xi}N

i=1 where each Xi is a random draw from X where X ∈ χ . Two assumptions
commonly used in the inequality policy evaluation literature (see e.g. Firpo and Pinto, 2016;
Firpo, Fortin and Lemieux, 2009b; Card et al., 2004; Card, Lemieux and Riddell, 2020;
Chernozhukov, Fernández-Val and Melly, 2013; Juhn, Murphy and Pierce, 1993) to identify
a counterfactual distribution are:

Assumption 1 (Unconfoundedness). Given a set of observed characteristics X ∈ χ , then

for each x our potential outcomes (Y (1),Y (0)) are jointly independent of treatment D given

X = x.

Assumption 2 (Common Support). For all x in χ , there is a positive probability of being

both treated and untreated: 0 < P(D = 1|X = x)< 1.

Assumption 1 is also known as selection on observables. Assumption 2 ensures that a con-
trol group exists that closely matches the treated group for all values of x. When both
assumptions hold Rosenbaum and Rubin (1983) define treatment assignment as strongly
ignorable.

Under strong ignorability, it is possible to identify not only the average treatment effect on
the treated, ∆µ ′ = E[Y (1)|D = 1]−E[Y (0)|D = 1], but also every raw moment treatment
effect on the treated, ∆µ ′

q
= E[Y q(1)|D = 1]−E[Y q(0)|D = 1], where Y q is the qth order

polynomial of Y (Imbens, 2004). That is, we can identify not only the counterfactual first
raw moment (the mean) but also all counterfactual raw moments.

Raw moments beyond the mean are of interest because they tell us more about the distribu-
tion of outcomes. Table 1 provides a non-exhaustive set of discrete distribution parameters
that can be expressed as functions of raw or joint moments. These distribution parameters,
familiar to many, are often used in the analysis of inequality and can be used to help depict
full distributions using fitted parametric distributions. For example, the normal distribution,
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Table 1: Distribution Parameters Expressed as Functions of Raw Moments

PARAMETER FORMULA

Univariate Distribution:

Mean µ E[Y ]

Variance µ2 E[Y 2]−E[Y ]2

Coefficient of Variation (µ2)
1/2/µ

(E[Y 2]−E[Y ]2)1/2

E[Y ]

Skewness µ3 E[Y 3]−3E[Y 2]E[Y ]+2E[Y ]3

Standardised Skewness
µ3

(µ2)3/2

(E[Y 3]−3E[Y 2]E[Y ]+2E[Y ]3)
(E[Y 2]−E[Y ]2)3/2

Bivariate Distribution:

Covariance µYW E[YW ]−E[Y ]E[W ]

Slope
µYW

µ2(W )

(E[YW ]−E[Y ]E[W ])

(E[W 2]−E[W ]2)

Notes: Standarised Skewness is sometimes referred to as the Coefficient of Skewness, or just as Skewness.

the gamma distribution, and Poisson distribution can all be parameterised with only knowl-
edge of the mean and variance. More flexible models such as the Pearson I-IV family of
distributions can be parameterised by the mean, variance, standardised skewness and stan-
dardised kurtosis. Moments can also be used to calculate parameters of a joint distribution
including the covariance and the slope coefficient.

Identification of a larger and larger set of raw moments allows a more and more detailed
description of the counterfactual distribution. With more information regarding higher-order
moments, it is possible to estimate more distributional parameters that are expressed as
functions exclusively of these raw moments. Let us consider a distribution parameter v that
can be expressed as a function g exclusively of a vector of a subset of the population’s
raw moments µ′

q ∈ (µ ′
1,µ

′
2, . . . ,µ

′
q) such that v = g(µ′

q).
8 The set of raw moments for the

observed distribution of the treated is given by µ′
q(Y (1)|D = 1) and for the counterfactual

distribution of the treated is given by µ′
q(Y (0)|D = 1). The population DPTT is v∆DPT T =

g(µ′
q(Y (1)|D = 1))−g(µ′

q(Y (0)|D = 1)).

8Note the set of raw moments can also include joint raw moments if the outcome distribution of interest is
multivariate, such as the first joint raw moment of two random variables X and Y , E[XY ].
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As long as the relevant raw moments (µ′
q) can be consistently identified, it follows from the

Continuous Mapping Theorem (Billingsley, 2013) that any distribution parameter that can
be expressed as a function exclusively of these raw moments will be a consistent estimator.
This leads us to the following proposition.

Proposition 1. Consistency of distribution parameter treatment effects estimated by way
of raw moments If v

µ ′
q

n (Y (1)|D = 1) and v
µ ′

q
n (Y (0)|D = 1) are weakly consistent sample es-

timators for µ ′
q(Y (1)|D = 1) and µ ′

q(Y (0)|D = 1), respectively, for all µ ′
q ∈ µ′

q, such that

plim
n→∞

v
µ ′

q
n (Y ) = µ ′

q, and assuming g(µ′
q(Y (1)|D = 1)) and g(µ′

q(Y (0)|D = 1) exist and are

continuous at µ′
q(Y (1)|D = 1) and µ′

q(Y (0)|D = 1) respectively, then the sample DPT T es-

timator, v∆DPT T
n = g(vµ

′
q

n (Y (1)|D = 1))−g(vµ
′
q

n (Y (0)|D = 1)) will also be weakly consistent,

plim
n→∞

v∆DPT T
n = ∆DPT T .

Proof. By the Continuous Mapping Theorem:

plim
n→∞

v∆DPT T
n =plim

n→∞
(g(vµ

′
q

n (Y (1)|D = 1))−g(vµ
′
q

n (Y (0)|D = 1)))

=g(plim
n→∞

(vµ
′
q

n (Y (1)|D = 1)))−g(plim
n→∞

(vµ
′
q

n (Y (0)|D = 1)))

=g(µ′
q(Y (1)|D = 1))−g(µ′

q(Y (0)|D = 1))

=∆DPT T

Consider, for example, the variance that can be expressed as a function of raw moments
E[Y 2]−E[Y ]2. It follows from Proposition 1 that the counterfactual variance can be consis-
tently estimated given consistent estimates of the counterfactual raw moments E[Y (0)] and
E[Y 2(0)] and likewise for the observed variance. Given consistent estimates of the coun-
terfactual and observed variance, we can thereby estimate the variance treatment effect on
the treated parameter. This is what we term Parameter Estimation by way of Raw Moments
(PERM), which is applicable to any distribution parameter or inequality measure expressible
solely as a function of raw moments.

PERM turns a complex analytical problem of estimating distribution parameter treatment
effects into a more tractable challenge of estimating raw moments. This approach not only
makes estimation of discrete distribution parameters more manageable, but also requires
weaker identifying assumptions. Unlike strong ignorability, which is necessary to identify
the entire counterfactual distribution (e.g., Juhn, Murphy and Pierce, 1993; Firpo, 2007;
Chernozhukov, Fernández-Val and Melly, 2013), PERM only requires independence in the
specific raw moments of interest:
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Assumption 3 (qth Raw Moment Independence). Given a set of observed characteristics

X ∈ χ , then for each x the counterfactual and observed raw moment outcomes are jointly

identified, E[Y q(d)|D = d,X ] = E[Y q(d)|X ], given X = x and d = 0,1.

Mean independence for the first raw moment (q = 1) is also known as weak ignorability and
is unquestionably weaker than unconfoundedness (Imbens, 2004). If one’s interest lies in
the variance, then we require raw moment independence in both the first and second raw mo-
ments (Assumption 3 holds for q = 1,2). Mean independence in the first two raw moments
is a stronger assumption than just mean independence, but it is still a weaker assumption
than unconfoundedness. However, this weaker assumption comes at the cost of revealing
less about the counterfactual outcome distribution. If raw moment independence is invoked
for all q∈ {1, ...,∞} only then does assumption 3 become as strong as the unconfoundedness
assumption.

1.3 How Does PERM Work?

PERM utilises the fact that higher order raw moment treatment effects tell us more about
this distributional impacts of treatment. To illustrate the information we gain from consider-
ing the average treatment effect on higher-order raw moments, let us assume the following
simple Data Generating Process (DGP) for outcome Y :

Yi = α1 + τiDi + εi (3)

Under this DGP, α1 is the mean untreated outcome, εi determines the distribution of un-
treated outcomes and τi is individual i’s own treatment effect. Unfortunately, it is impos-
sible to identify the full joint distribution of τi and εi without making strong un-testable
assumptions. A common simplification to this identification problem is to assume a com-
mon treatment effect τ1 and the τi − τ1 differences are moved to the error term:

Yi =α1 + τ1Di +(τiDi − τ1Di + εi)

=α1 + τ1Di +u1i
(4)

Equation 4 estimated using OLS is sometimes referred to as the mean equation, or a model
of the first raw moment of the population distribution, given that the expectation of both
equation 3 and 4 yield the same result. OLS of equation 4 identifies how the mean of
the outcome distribution Y for the treated population changes in response to being treated,
E[Y (1)−Y (0)|D = 1] = τ1, the ATT.

We can reveal additional information about how treatment changes the unconditional dis-
tribution of Y by considering polynomial transformations of Y . Let us consider what is
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revealed about the distribution of Y from an equation of the square of the outcome variable
and assuming a common treatment effect τ2:

Y 2
i =(α1 + τiDi + εi)

2

=α2
1 + τ2

i Di + ε2
i +2α1τiDi +2α1εi +2τiDiεi

=α2
1 +(τ2

i +2α1τi +2τiεi)Di +2α1εi + ε2
i

=α2
1 + τ2Di +(τ2

i +2α1τi +2τiεi − τ2)Di +2α1εi + ε2
i

=α2 + τ2Di +u2i

(5)

where α2 is an intercept term and u2i is an individual error term. OLS of equation 5 provides
an unbiased estimate of the second raw moment ATT, τ2 , conditional on second raw moment
independence E[u2i|D] = E[u2i]. τ2 is the expectation of τ2

i + 2α1τi + 2τiεi. τ2 therefore
contains information about the variance in treatment effects (E[τ2

i ]) and how the treatment
effects are distributed in relation to the baseline outcome distribution (E[τiεi]).

Let us consider the PERM estimate of the variance treatment effect on the treated to illustrate
the information gained from analysing higher-order raw moments:

∆V T T [Y |D = 1] =Var[Y (1)|D = 1]−Var[Y (0)|D = 1]

=(E[Y 2(1)|D = 1]−E[Y (1)|D = 1]2)− (E[Y 2(0)|D = 1]−E[Y (0)|D = 1]2)

=(α2 + τ2 − (α1 + τ1)
2)− (α2 −α2

1 )

=(τ2 − (τ2
1 +2α1τ1))

(6)

Equation 6 illustrates that for treatment to impact the variance, then τ2 ̸= (τ2
1 + 2α1τ1). A

non zero treatment effect on the variance therefore requires both the variability in treatment
effects (E[(τ2

i |D = 1]Di − τ2
1 ) and how the distribution of individual treatment effects are

related to the distribution of their untreated outcomes, (E[2τiεi|D = 1]), be different to what
is predicted from (τ2

1 and 2α1τ1), respectively.

Estimates of τ1 and τ2 from regressions of the first and second raw moments, therefore
provide greater information regarding the impact of treatment on the (unconditional) dis-
tribution of outcomes, compared to just an estimate of τ1 alone. It follows that additional
estimates of ATTs from regressions of higher-order polynomial transformations of the out-
come variable provide more and more information. PERM combines these informative raw
moment treatment effects that are straightforward to estimate separately to provide consis-
tent estimates of the impact of treatment on distributional parameters of the outcome.

Here we have simplified the exposition by not including covariates in the DGP. However,
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it follows from assumption 3 and proposition 1 that the same approach could be applied to
a model with covariates. If covariates are included and there are heterogenous treatment
effects, which is what we are in effect investigating, then one must fully interact treatment
status with covariates to estimate the unbiased ATT (Wooldridge, 2010). This holds for all
raw moments.

1.4 Differences-in-Differences Identification of Raw Moments

In this section we consider a differences-in-differences (DiD) set-up to identify counterfac-
tual raw moments and thereby identify counterfactual distribution parameters using PERM.
Let us consider a binary treatment whose implementation depends on the time period T and
group G, indexed by t and g respectively. To simplify, without any loss of generality, let
(g, t) ∈ {1,2}×{1,2} so that there are only two time periods and two groups and treatment
status of group g in period t is given by Dgt , such that for the treated group (g = 2) in the
treatment period (t = 2), Dgt = 1{g = 2, t = 2}, zero otherwise . This set-up is the simplest
example of Design Restriction 1 in De Chaisemartin and d’Haultfoeuille (2024), and the
following arguments are extendable to the more general case they consider.

For this two-by-two comparison, consider a simple DGP, where δi is an individual-specific
group effect, ρi is an individual-specific time effect, τi is an individual treatment effect, and
αi is the sum of the intercept and an individual error term. We can express our outcome
variable as the sum of these terms:

Yigt = αi +δiG+ρiT + τiDgt (7)

Equation 7 is not identifiable. We cannot therefore estimate the full distribution of Yigt .
Instead, let us assume we are interested in the first raw moment, the average treatment
effect on the treated (ATT). To estimate the ATT, the following DiD assumptions are often
made.

Assumption 4 (No Anticipation). ∀d ∈ D,Yigt(d|T = 1,G = 2) = Yigt(0|T = 1,G = 2).

Assumption 4 ensures that treatment in the second period does not affect the distribution of
outcomes in the first period.9

Assumption 5 (Parallel trends in the first raw moment). Let α1 = E[αi] be an intercept,

E[δi] be a first raw moment time-invariant group effect and E[ρi] be a first raw moment time

9Callaway and SantAnna (2021) utilise a limited treatment anticipation assumption which is weaker. We
keep things simple for now, noting that later in our empirical application we know there is pre-reform rollout
of one year of the Swedish school reform and account for this in our estimation.
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effect common to all groups, then the counterfactual mean for the treatment group in the

treatment period is E[Yigt(0)|D = 1,G = 2,T = 2] = α1 +E[δi]+E[ρi].

Assumption 5 states that the counterfactual first raw moment is determined by an additive
time-invariant mean group effect and an additive mean common time effect across groups.
If assumption 5 holds we are able to identify the ATT.

DiD performed on higher-order raw moments tells us more about the distributional impacts
of a social policy intervention. Estimation of the variance treatment effect on the treated
(VTT) using PERM DiD requires consistent estimates of both the first raw moment and
the second raw moment. A possible assumption one could make using PERM DiD is the
assumption of parallel variances. Assuming parallel group variances implies that the change
in the group variances in the control group is informative as to how the group variances
would have changed in the treatment group in the absence of treatment.

Assumption 6 (Parallel trends in each group’s variance). Let α2 be an intercept term,

ω be a variance time-invariant group effect, γ be a variance time effect common to both

treatment and control groups, then the counterfactual variance (E[Y 2(0)]−E[Y (0)]2) for

the treatment group in the treatment period is given by E[Y 2
igt(0)|D = 1,G = 2,T = 2]−

E[Yigt(0)|D = 1,G = 2,T = 2]2 = α2 +ω + γ .

PERM provides a consistent estimate of the population variance treatment effect if there
are consistent estimators for the relevant raw moments. PERM DiD can provide a consis-
tent estimate of the second raw moment under assumptions 5 and 6, but an adjustment is
required. It turns out that the standard DiD estimator of the second raw moment would be
biased if a time trend exists in the first raw moment, (E[ρi] ̸= 0), and there are differences
across the group’s first raw moments, (E[δi] ̸= 0). However, this bias is known under certain
assumptions. If the first raw moment is changing over time but parallel in both groups, and
the variance is parallel between the treatment and control group, then we can work out how
E[Y 2] has to change, which leads us to proposition 2.

Proposition 2. Unbiased PERM DiD estimation of the counterfactual second raw mo-
ment: Given assumptions 5 and 6, then the counterfactual second raw moment for the

treatment group in the treatment period is given by E[Y 2
igt(0)|D = 1,G = 2,T = 2] = α2 +

ω + γ +2E[δi]E[ρi]

The proof is found in the Appendix. Proposition 2 states that the counterfactual second raw
moment is determined by an additive time-invariant second raw moment group effect and
an additive second raw moment common time effect across groups plus an additional term
2E[δi]E[ρi]. Assumptions 5 and 6 enable PERM DiD to adjust a standard DiD of the second
raw moment for 2E[δi]E[ρi] estimated from the DiD of the first raw moment. PERM DiD
applies this adjustment and thereby provides the variance treatment effect on the treated
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(VTT).

Assumption 6 enables identification of treatment effects on group level variances. However,
the analysis of group level variances by itself does not reveal the impact on the population

level variance because such an analysis ignores the between group effects. This follows from
the variance decomposition formula, which states the population variance can be decom-
posed as the average of within group variances plus the variance of group means.Analysis
of just within group variance ignores the variance of the means, and therefore does not
provide the full information needed to understand the effect of treatment on the population
variance. PERM DiD, by utilising proposition 2 and the assumptions therein, allows the
analysis of the population’s first and second raw moments and thereby the population level
variance.

For higher-ordered central moments, further assumptions are required in order to identify
the PTT parameter using PERM DiD. For the unstandardised skewness, a potential source of
information about how the treatment group’s unstandardised skewness would have changed
in the absence of treatment is how the unstandardised skewness of the control group changed
over time. If it is assumed that the mean, group variance and group unstandardised skewness
are changing over time but are parallel across groups, then the counterfactual third raw mo-
ment of the treated, E[Y 3(0)|D = 1] will change mechanically due to trends in the mean and
variance. This can be accounted for and leads to proposition 3 under assumption 7.

Assumption 7 (Parallel trends in each group’s unstandardised skewness). Let α3 be

an intercept term, θ be a unstandardised skewness time-invariant group effect and ϕ be

a unstandardised skewness time effect common to both treatment and control groups, then

the counterfactual unstandardised skewness of the treated group in the treatment period

is given by E[Y 3
igt(0)|D = 1,G = 2,T = 2]− 3E[Y 2

igt(0)|D = 1,G = 2,T = 2]E[Yigt(0)|D =

1,G = 2,T = 2]+2E[Yigt(0)|D = 1,G = 2,T = 2]3 = α3 +θ +ϕ .

Proposition 3. Unbiased PERM DiD estimation of the counterfactual third raw moment:
Given assumptions 5, 6, and 7, then the counterfactual third raw moment for the treatment

group in the treatment period is given by: (E[Y 3
igt(0)|D = 1,G = 2,T = 2]) = α3 +θ +ϕ +

3γ E[δi]+3ω E[ρi]−6α1E[δi]E[ρi]

The proof of proposition 3 is relegated to the Appendix.

Proposition 3 states that if the mean, group variance and group unstandardised skewness are
changing over time but are parallel across groups, then the counterfactual third raw moment,
E[Y 3], in the treatment group has to change by 3γ E[δi]+3ω E[ρi]−6α1E[δi]E[ρi] in the ab-
sence of treatment. PERM DiD can then be used to calculate the population unstandardised
skewness. Note, PERM DiD of the third raw moment that follows from proposition 3 allows
PERM DiD estimation of not only the unstandardised skewness, but also the standardised
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skewness. This follows from the definition of the skewness as the ratio of the unstandard-
ised skewness and the standard deviation cubed. PERM DiD can be used to estimate either
definition of the skewness under these assumptions.

PERM DiD can also be used to consider multivariate outcomes such as the covariance or the
slope of two outcomes, W and Y , if there are parallel trends in the group’s covariance.

Assumption 8 (Parallel trends in each group’s covariance). Let αWY be an intercept

term, ωWY be a covariance time-invariant group effect and γWY be a covariance time effect

common to both treatment and control groups, then the counterfactual group covariance for

the treated group in the treatment period is given by: E[Wigt(0)Yigt(0)|D = 1,G = 2,T =

2]−E[Wigt(0)|D = 1,G = 2,T = 2]E[Yigt(0)|D = 1,G = 2,T = 2] = αWY +ωWY + γWY .

Proposition 4. Unbiased PERM DiD estimation of the joint (bivariate) raw moment:
Given assumption 5 holds for both outcomes Y and W and assumption 8 holds, then the

counterfactual joint raw moment is given by: E[WYigt(0)|D = 1,G = 2,T = 2] = αWY +

ωWY + γWY +E[δi,W ]E[ρi,Y ]+E[δi,Y ]E[ρi,W ]

The proof of proposition 4 is relegated to the Appendix.

2 Estimation of PERM

In this section we consider the empirical estimation of PERM Regression and PERM DiD,
including its small sample properties as well as alternate ways of estimating standard er-
rors.

2.1 Estimation of PERM Regression

PERM Regression is the combination of regression and the PERM method to estimate the
DPTT. Assume the following set of raw moment equations for functions of the outcome
variable Y q:

yi =α1 + τ1di +X ′
i β1 +(di ×Xi)

′ζ1 + r1i

y2
i =α2 + τ2di +X ′

i β2 +(di ×Xi)
′ζ2 + r2i

...

yq
i =α + τqdi +X ′

i βq +(di ×Xi)
′ζq + rqi

(8)

where yi is the outcome variable of individual i; Xi is a vector of observables; β is the return
to observables; ri is the residual, yq

i is a functional form applied to yi, and q is a positive
integer polynomial. These are our raw moment regressions of Y q which allow us to predict
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both the observed and counterfactual raw moments under assumptions 1 and 2, or under the
weaker assumptions of 2 and 3.

In eq. 8 we fully interact treatment status with covariates. This is because the ATT estimated
without fully interacting with covariates can yield a biased estimator if there are heteroge-
nous treatment effects (Słoczyński, 2022). Fully interacting treatment with covariates solves
this (Wooldridge, 2010). This holds for all raw moments.

To provide PERM regressions we use the sample analogues to these formulas. In our Monte
Carlo simulation exercise and empirical example, we use OLS to estimate the raw moment
regressions in eq. 8. Standard errors for the treatment effects can be obtained via estimating
all raw moments in a seemingly unrelated regression framework in combination with the
linearization technique of Graubard and Korn (1999). This approach requires us to estimate
unconditional standard errors for our predicted means that account for the uncertainty in
the explanatory variables at the population level. Non-parametric bootstrap standard errors
and bootstrap 95% percentile confidence intervals are also alternative approaches that can
be used. We compare these alternatives in the following Monte Carlo simulation.

2.2 Estimation of PERM DiD

We utilise the method of De Chaisemartin and d’Haultfoeuille (2024) to illustrate PERM
DiD utilising a staggered DiD set-up. Our aim is to provide event study figures and event-
study regressions for a binary treatment whose implementation is staggered across a group
variable. The population distribution parameters we consider are the mean, variance, un-
standardised and standardised skewness, observed for a cross-section where time elapsed
since the reform was first implemented, ℓ, varies depending the date of first treatment for
each treatment group. The event-study regression estimator provides a weighted average
of the effect of treatment for those that were exposed ℓ periods after it was first imple-
mented.10

The following notation defines the DiD set-up as introduced in
De Chaisemartin and d’Haultfoeuille (2024) utilising their notation and definitions, fol-
lowed by the introduction of the PERM DiD estimator for any raw moment. Let us consider
a "sharp" binary reform where the implementation is staggered over time periods T and
groups G. We assume the use of individual level data, and the total number of observations,
N, are divided across every (g, t)∈ {1, . . . ,G}×{1, . . . ,T} so that there are Ng,t observations
in each group g and time period t. From hereon in the Ng,t notation is suppressed to improve
legibility, noting that it is just a mechanical exercise to extend the estimators to include

10Note that the methods of De Chaisemartin and dHaultfoeuille (2020); De Chaisemartin and
d’Haultfoeuille (2024) allow application to a broader set of empirical designs than the design we consider.
We leave the alternative designs and their implementation with PERM for future research.
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weights. Let Dg,t denote the treatment of group g at period t. Let Dg = (Dg,1, . . . ,Dg,T ) be
a vector stacking g’s treatments from period 1 to T , and let D = (D1, . . . ,DG) be a vector
stacking the treatments of all groups 1 to G at every period.

The grouping variable is defined as those who are first treated in the same period. For
all g, let Fg = min{t : t ≥ 2,Dg,t ̸= Dg,t−1} be the first treated period for group g. For a
school reform rolled out across states and time, this would entail grouping by year of reform
implementation. In the DiD design we consider all groups are initially untreated, so there is
at least one untreated observation for each group (Fg ≥ 2).

The last period we are able to consider must also have a relevant control group that has
remained untreated throughout the period. For every g, let Tg = max

g′:Dg′,1=Dg,1
Fg′−1 denote the

last period where there is still a group who were untreated in period-one, as g, and and have
remained untreated. Consequently, if all g are eventually treated then the last treated group
is dropped due to lack of a relevant control group.

A treatment group g in period t can have a number of relevant control groups that have
remained untreated between the first period and period t. For any finite set A, let #A be the
number of elements of A. For all (g, t), let Ng

t = #{g′ : Dg′,1 = Dg,1,Fg′ > t} be the number
of control groups g′ that like g were untreated in period-one and if they were treated, this
treatment happened after period t.

The DiD estimate comparing the period just before treatment implementation Fg −1 to the
outcome evolution of g ℓ periods later Fg − 1+ ℓ to that of groups that have remained un-
treated from period 1 to Fg−1+ℓ for any raw moment E[Y q] for all q∈Z+ is given by:

DIDg,ℓ(Y q) = Y q
g,Fg−1+ℓ−Y q

g,Fg−1 −
1

(Ng
Fg−1+ℓ)

∑
g′:Dg′,1=Dg,1,Fg′>Fg−1+ℓ

(Y q
g′,Fg−1+ℓ−Y q

g′,Fg−1)

(9)

Note that DIDg,ℓ(Y q) from eq. 9 uses groups’ Fg − 1 outcome as the baseline always, not
an average of their period 1 to Fg − 1 outcomes. For q = 1, eq. 9 is the DiD estimator of
De Chaisemartin and d’Haultfoeuille (2024) and is an unbiased and consistent estimator of
the ATT.

For any q > 1, eq. 9 is a biased DiD estimator if there are trends and pre-treatment group
raw moment differences in lower order moments. Propositions 2 - 4 state that this bias can
be accounted for. To account for this bias, estimates of the differences in the relevant raw
moments between group g and their counterfactual group(s) g′ in period Fg−1 are required.
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For each raw moment and g the mean group difference for raw moment Y q is given by:

∆g,Fg−1(Y q) = Y q
g,Fg−1 −

1
(Ng

Fg−1+ℓ)
∑

g′:Dg′,1=Dg,1,Fg′>Fg−1+ℓ

(Y q
g′,Fg−1)

For q = 1 this gives E[δi], for q = 2 this gives ω , and for q = 3 this gives θ . Propositions
2 - 4 also state that estimates of the time trend between period Fg − 1 and period ℓ for all
relevant raw moments for group(s) g′ are required. For each raw moment and ℓ, the time
trend in group(s) g′ is given by:

∆g′,ℓ(Y
q) =

1
(Ng

Fg−1+ℓ)
∑

g′:Dg′,1=Dg,1,Fg′>Fg−1+ℓ

(Y q
g′,Fg−1+ℓ−Y q

g′,Fg−1)

For q = 1 this gives E[ρi], for q = 2 this gives γ , and for q = 3 this gives ϕ .

PERM DiD adjusts DIDg,ℓ(Y q) for parallel trends in lower order moments using a function
of the parameters ∆g,Fg−1(Y q) and ∆g′,ℓ(Y q):

PERM DIDg,ℓ(Y q) = DIDg,ℓ(Y q)− f (∆g,Fg−1(Y q),∆g′,ℓ(Y
q)) (10)

where f (∆g,Fg−1(Y q),∆g′,ℓ(Y q)) is defined by propositions 2-4 for the second and third and
joint first raw moments under parallel mean, variance, skewness and covariance assumptions
respectively.

Let L = maxg(Tg−Fg+1) denote the largest ℓ such that δg,ℓ can be estimated for at least one
g. Under design restriction L ≥ 1. For every ℓ ∈ {1, . . . ,L}, let Nℓ = #{g : Fg −1+ ℓ≤ Tg}
be the number of groups for which PERM DIDg,ℓ(Y q) can be estimated. The PERM DID
estimate of the average effect of being exposed for ℓ periods is therefore:

PERM DIDℓ(Y q) =
1
Nℓ

∑
g:Fg−1+ℓ≤Tg

PERM DIDg,ℓ(Y q). (11)

De Chaisemartin and d’Haultfoeuille (2024) show that PERM DIDℓ(Y (q=1)) is a consistent
estimator of the ATT. It then follows that, conditional on the additional assumptions and
adjustment for trends in lower order raw moments, that PERM DiD will also consistently
estimate the ATT of higher-order raw moments. As shown in Proposition 1, Slutsky’s Theo-
rem ensures that by combining these consistent raw moment estimates one can consistently
estimate the DPTT.

We provide the Stata package did_multiplegt_PERM to estimate PERM DiD, which is an
adaptation of De Chaisemartin and dHaultfoeuille (2020)’s Stata package did_multiplegt.
did_multiplegt_PERM provides the extra terms set out in propositions 2, 3 and 4 that are

17



required to estimate variance and skewness treatment effects as well as the treatment effect
on the covariance of two outcomes on the treated using PERM DiD. Like De Chaisemartin
and dHaultfoeuille (2020) we use a non parametric bootstrap to provide standard errors for
the DiD estimate of the DPTT by bootstrapping the whole PERM DiD procedure.

The Stata package did_multiplegt provides the option of estimating the ATT for each value
of ℓ, and these can be used to provide event study figures. Event study figures are useful
to understand the dynamics of treatment over time and can also help explore the validity
of the parallel trend assumptions by assessing differences in the pre-treatment period. Roth
(2024) suggests using the long differences (default) option in did_multiplegt to compare pre-
treatment trends between F −(1+b) and F −1, where b is time before the reference period.
This method of assessing parallel trends in the pre-treatment period is straight forward for
the first raw moment.

The Stata package did_multiplegt_PERM allows extension of event study figures to the
variance, skewness and covariance. PERM DiD based event study figures plot the DPTT
for all relevant treatment and control groups in each period. The same event study figures
are valid for testing for pre-trends. As shown in Appendix B, the DPTT for any period
F − (1+b) is informative of group parallel trends for variance, skewness and covariance. A
zero DPTT estimate in the pre-treatment period for the variance, skewness and covariance
is consistent with parallel trends at the group level in the respective distribution parameters.
did_multiplegt_PERM based event study figures are therefore both informative going for-
ward from the reference period but also backwards assessing the pre-treatment period.

2.3 Properties of the PERM Sample Estimator

Just like the standard sample variance and sample covariance estimators, PERM’s sample
variance and covariance estimates are biased in small samples. This is because the PERM
estimates rely on the sample estimate of the mean which itself is measured with error. In
the variance formula the squaring of the sample mean which includes its measurement error
introduces bias, and in the covariance formula the cross multiplication of the two sample
means and their included error terms has the potential to introduce bias.

In Appendix A we derive the small sample bias for the sample (co)variance and sample
skewness and propose a correction that uses the standard errors of the raw moments. Be-
cause the DPTT is the difference between the treated and counterfactual distribution param-
eters, the bias of the DPTT will be the difference in the biases in each term, and because
both biases will be in the same direction as each other, the bias of the DPTT will likely be
of minor concern compared to the overall precision of the DPTT.

In our empirical estimation of the small sample bias corrected DPTT we utilise both the
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linearisation technique and bootstrapping with replacement to provide estimates of the mea-
surement errors of the raw moments, that are in turn used to correct the PERM DPTT esti-
mates.11

3 Monte Carlo Exercise

In this section, we aim to better understand the performance of our PERM regression es-
timator in small samples and to compare it with the Inverse Probability Weighting (IPW)
estimator using a Monte Carlo Exercise. The experiment is designed around a data generat-
ing process (DGP) that models selection into treatment based on observables. The DGP is
an exact replica of the DGP used in Firpo and Pinto (2016) and is chosen because it allows
PERM regression to be compared with the wider simulation results from other distributional
methods presented in Firpo and Pinto (2016).

The DGP has a very simple set-up consisting of two explanatory variables, X = [X1,X2]
T ,

which determine both the treatment status D and the potential outcomes Y (0) and Y (1).
The observed outcome is therefore Y = Y (0) · (1−D)+D ·Y (1). Full details of the Monte
Carlo simulation setup are provided in Appendix C.12 The simulated data are non-normal
and highly positively skewed, but has a much more symmetrical distribution in logs (see
Figure C.1 in Appendix C).

We extend the Monte Carlo exercise of Firpo and Pinto (2016) to consider the variance
(VTT), skewness (STT) and standardised skewness (SSTT) treatment effect on the treated.
Two criteria are used to judge the estimates: bias (average difference between the small
sample estimate and the true value); and precision as measured by root mean squared error
(RMSE). An infeasible estimator is calculated using the ’unobserved’ potential outcomes
from the DGP for the given sample size. Because the DGP does not have an easily derived
closed analytical form, the true, or target values, are calculated based on the average of an
unfeasible estimator with 1000 replications of sample size 10,000,000. A naive estimator
is calculated as the raw difference between the treated and untreated groups, assuming no
selection into treatment. Comparison of the infeasible and naive estimators provides a sense
of the selection bias.

A replication of Firpo and Pinto (2016) for the mean and the coefficient of variation is pre-

11Note that the standard errors for the bias corrected PERM sample (co)variance estimates do not account
for the uncertainty in the bias correction term. Bootstrapping the whole procedure would address this, but it
turns out that bias is of low order importance compared to the overall precision in all the examples considered
(i.e. if one has enough data to accurately estimate the impact of treatment on the distribution of outcomes then
the small sample bias is likely to be very small).

12The replication package for the Monte Carlo Simulation is available here: https://github.com/
Analyst-GH/PERM/.
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Figure 1: Monte Carlo Exercise - Bias and Root Mean Squared Error
Notes: Figures (a) and (c) plot a line of the average sample estimator of the Parameter Treatment effect on the
Treated from the Monte Carlo Exercise with varying sample size and 20,000 replications for each sample size
versus the ’truth’ (horizontal dotted line). Figures (b) and (d) plot Root Mean Squared Error. Estimates are
provided by two methods, PERM and IPW. PERM Bias corrected utilises the sample bias correction from
section 2.3 and Appendix A. The y-axis scale for the bias figures is the true value +- 1 RMSE at samplesize
250.

sented in Appendix D Table D.1 that considers 100,000 replications of sample sizes of 250
and 1,000. The Monte Carlo simulation results show that both IPW and PERM regression
yield very similar results when assessed for bias and RMSE, even under miss-specification.
This, combined with the conclusion of Firpo and Pinto (2016) that IPW performs well com-
pared to the methods of Juhn, Murphy and Pierce (1993) and Chernozhukov, Fernández-Val
and Melly (2013) in terms of bias and RMSE, suggests PERM regression performs well
against these methods too. The replication is extended to the variance and shows that IPW
and PERM regression yield similar results, both in terms of bias and RMSE. Finally, the
small sample bias correction of the PERM variance estimator is shown to perform well,
although the bias is very small compared to the statistical precision.
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Figure 1 presents the Monte Carlo simulation estimates from 20,000 replications for sam-
ple sizes 250 through to 100,000 of the bias and the RMSE for both the VTT and STT.13

According to the bias criteria, both PERM regression and IPW based estimates are similar
and perform well in all sample sizes. The similarity of the two methods also extends to the
RMSE criteria. Both methods show a clear downward trend in RMSE towards zero as the
sample size increases to 100,000. A decreasing RMSE is consistent with a sample estimator
that approaches the true value with reducing variance as sample size increases. In Appendix
E Table ?? we present results for 100,000 replications of sample sizes 250 and 1,000 to see
in more detail the small sample properties of the estimators. Across the VTT and STT the
sample bias for the PERM estimator is very similar to the infeasible estimator and very small
relative to the level of precision. Again PERM and IPW show very similar results.

In figure 2 we consider the coverage rates for alternative 90% confidence intervals from
PERM and IPW estimators for DPTTs from the Monte Carlo simulation of 20,000 replica-
tions for sample sizes of 250 through to 100,000. PERM and IPW 90% confidence intervals
are estimated based on the standard errors estimated using non-parametric bootstrap with
200 replications, as well as by using the percentile method. For VTT, PERM 90% con-
fidence intervals are also provided by the standard errors estimated using the linearisation
technique following simultaneous regression of Y and Y 2 to estimate the VTT.14

The coverage rates from the main Monte Carlo simulation are reported in figure 2 panels
(a) and (c). Panel (a) reports results for the VTT and shows that the coverage rates for all
estimation methodc are relatively low (< .7) in small samples, but coverage does improve
with increasing sample size in a very similar way for both PERM and IPW. The small sample
coverage rates are even lower for STT (panel (c)) with both PERM and IPW again showing
very similar results but again both improve in a similar way for larger sample sizes. The
choice of bootstrap standard errors to calculate the confidence intervals or bootstrap 90%
percentile confidence intervals yields very similar conclusions, and again this is true for
both PERM and IPW.

The results in figure 2 panels (a) and (c) show that statistical inference for all standard error
approaches is relatively poor in small samples when the distribution of the outcome vari-
able is highly skewed (non-normal) for both IPW and PERM. Panels (b) and (d) show that
standard errors of parameters of an outcome distribution that is more normally distributed
(i.e. the logged outcome in this case) achieve better coverage in smaller samples, and this

13To calculate the STT using IPW we multiplied the standardised statistics by the variance estimate raised
to the relevant power, as there was no standard procedure available in Stata for these statistics.

14We only use the linearisation technique to estimate standard errors for the VTT as Stata fails when si-
multaneously estimating higher-order raw moments for our DGP we use, suggesting this method may be of
limited practical use beyond the variance.
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Figure 2: Monte Carlo Exercise - 90% Coverage Rates
Notes: These figures plot a line of the 90% confidence interval coverage rates of the Parameter Treatment
effect on the Treated from the Monte Carlo Exercise with varying sample size and 20,000 replications for
each sample size. Estimates are provided by two methods, PERM and IPW and alternative methods of
standard error estimation. PERM linearisation standard errors are provided by the linear approximation
method of Graubard and Korn (1999). Bootstrap standard errors and Percentile Bootstrap 90% Confidence
Intervals are from a non-parametric bootstrap with 200 replications.

true for both PERM and IPW.15 Further results for the log transformation of Y are presented
in appendix E summarising the bias and RMSE results. Appendix E also presents results
for the standardised skewness, showing similar performance of PERM regression to that
of IPW. The results in Appendix E also illustrate the well-known small sample bias of the
estimators for standardised skewness Joanes and Gill (1998).

15An alternative method that could potentially improve inference performance suggested by Wilcox (2012)
is to estimate bootstrap-t confidence intervals. The cost of this approach is that it requires a procedure that
provides bootstrap standard errors for each bootstrap replication of the t-statistic. That is, it requires a bootstrap
of a bootstrap, which extends processing time substantially.
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4 Empirical Application I: Unionisation in the USA

Our first empirical application of PERM allows further comparison with IPW using non-
simulated data to confirm the conclusions drawn from the Monte Carlo exercise. We con-
sider how unionisation coverage impacts the distribution of hourly log wages for those cov-
ered by unionisation in the US, following a long line of research on distributions that re-
lies on a selection on observables assumption (see e.g. Card et al. (2004); Card, Lemieux
and Riddell (2020); Firpo, Fortin and Lemieux (2009b)). We maintain the assumption that
unionisation status is exogenous, conditional on observables, to allow comparison with the
IPW estimation procedure, acknowledging that this assumption may introduce a bias.

The data is from a sample of 266,956 U.S. males from the 1983 - 1985 Outgoing Rota-
tion Group (ORG) supplement of the Current Population Survey provided as a replication
package for Firpo, Fortin and Lemieux (2009b).16 Hourly log wages in 1979 dollar terms
are provided alongside information on union coverage status and other factors that may be
associated with both union coverage and wages; ethnicity, marital status, level of education
and years of experience. PERM regression follows the methodology described in section
2.1. IPW estimation follows the methodology described in Firpo and Pinto (2016). More
detailed description of the data and methods is found in Appendix F.17

Table 2 presents the PERM regression and IPW based DPTT estimates of the impact of
union coverage on the mean, variance and standardised skewness. The PERM regression
estimates show that for the population covered by unionisation, the mean of log hourly
wages is higher but the variance and standardised skewness in log hourly wages are lower for
those covered by union membership. These results are consistent with previous findings, that
union coverage in the U.S. increased mean log wages, and also reduced log wage inequalities
Card et al. (2004); Firpo, Fortin and Lemieux (2009b). The results presented in table 2 show
this reduction in inequality is due to a compression of the distribution which also makes it
less skewed. The IPW based estimates are very similar to those estimated using PERM,
confirming the finding from the Monte Carlo exercise, that PERM regression performs as
well as IPW when selection on observables holds. The precision of both PERM and IPW
are also very similar.

Firpo and Pinto (2016) show that IPW performs well against other distributional methods
under selection on observables, and the results presented in this section show that PERM
produces very similar results to IPW under the same empirical conditions. This suggests
PERM also performs well against other distributional methods under selection on observ-
ables. The advantage of PERM over IPW, as we shall illustrate, is that it can be extended to

16See Firpo, Fortin and Lemieux (2009a) for data and code.
17The replication package for the analysis performed in this section is available here: https://github.

com/Analyst-GH/PERM/.
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Table 2: Impact of Unionisation on log Hourly Wages Inequality

OBSERVED STATISTIC PERM IPW

MEAN:

Union 1.9625 0.1770 0.1792
(0.0015) (0.0019) (0.0018)

VARIANCE:

Union 0.1655 -0.1655 -0.1629
(0.0011) (0.0016) (0.0015)

STANDARDISED SKEWNESS:

Union -0.1787 -0.4109 -0.3945
(0.0174) (0.0183) (0.0194)

Notes: This table presents the estimated impact of unionisation on the mean, variance and standardised
skewness of the natural log of hourly wages in the USA. Each cell represents results from separate estimates
with corresponding standard errors in parenthesis. PERM estimates utilise fully factorised controls for
ethnicity, marriage status, education and experience and also considers that the treatment effect of
unionisation may vary by these controls and thus includes these controls all fully interacted with unionisation
status. IPW estimates utilise a probit regression of union status using the same factorised controls variables as
used in PERM. PERM standard errors are provided by the linearization method and IPW standard errors are
provided by bootstrapping (200 replications).

situations where selection on observables does not hold, which is not possible for IPW.

Instead of PERM or IPW, we could have also used alternative methods to understand the
impact of union coverage. One popular alternative is Recentered Influence Function (RIF)
regression, first introduced by Firpo, Fortin and Lemieux (2009b), that like PERM is com-
putationally simple.18 However, a key difference and drawback of the RIF approach is that
RIF regression only provides the linear approximation of the DPTT. We can use PERM to
estimate both the DPTT and its linear approximation to better understand the interpretation
of the RIF approach.

A RIF regression based estimate of the DPTT is provided by estimating the average impact
of treatment on the first derivative of the distribution parameter. RIF regression therefore
provides a linear approximation of the DPTT and will have approximation error. The size
of the approximation error will depend on the degree of non-linearity of the distribution
parameter function and the size of the treatment effect. PERM can be used to provide both
the DPTT and its linear approximation, thereby demonstrating how RIF works. The PERM
estimate of the linear approximation of the DPTT is estimated by calculating differential

18For example Bossler and Schank (2023) apply RIF regression to investigate the impact of minimum wages
on the variance of earnings in Germany.
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of the distributional parameter expressed as a function of raw moments. In appendix G we
illustrate this using the variance.

Finally, one may be interested in whether particular groups are driving the results. The
variance decomposition formula allows contributions of subgroups to be estimated, and this
is straightforward with PERM regression and is illustrated in appendix H.

5 Empirical Application II: Inequality Impacts of a
Compulsory School Reform

Our second empirical example illustrates PERM DiD applied in a staggered DiD setting.
We consider a major school reform in Sweden that had the specific aim of reducing inequal-
ity. This reform attempted to reduce inequality by raising the minimum years of schooling
from seven (or eight) to nine years and also by postponing entry into selective schooling
(tracking), replacing it with comprehensive schooling for all abilities up to the ninth grade.
The reform was rolled out slowly over time across municipalities (see Appendix I for more
details regarding the reform).

A school system reform is an interesting application because it has the potential to substan-
tially change the formation of education and earnings inequalities (Blanden, Doepke and
Stuhler, 2023). Many similar reforms were also introduced in other Western countries mak-
ing the results of wider interest (Holmlund, 2016). Sweden is especially interesting because
it has achieved a high degree of earnings equality, relative to the US and its European coun-
terparts. An improved understanding of how Sweden achieved this relatively low level of
inequality would be useful. The Swedish school reform we consider has been extensively
evaluated, with a focus on the mean of education and income (Meghir and Palme, 2005;
Fischer et al., 2022), intergenerational transmission of human capital (Lundborg, Nilsson
and Rooth, 2014; Lundborg and Majlesi, 2018), health (Lager and Torssander, 2012; Palme
and Simeonova, 2015; Meghir, Palme and Simeonova, 2018; Fischer et al., 2021) and crime
(Hjalmarsson, Holmlund and Lindquist, 2015). There is no evidence of its impact on the
unconditional distribution of education or earnings or on their joint distribution.

5.1 Data and Empirical Strategy

We use data from the Swedish Interdisciplinary Panel (SIP) that encompasses the entire
Swedish population born between 1932 and 1985, and is comprised of data from various
administrative databases.19 Our population sample is the entire population born in Swe-

19SIP is administered by the Centre for Economic Demography at Lund University, Sweden.
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den during the years 1932-1952 and their parents.20 Using personal identification numbers
we match individuals to income and tax records for years 1968-2016, the national cen-
sus for 1960, 1965 and 1970, population registers, and education records for years 1990-
2016.

To measure exposure to the comprehensive school reform we utilise information the roll-out
of the new comprehensive school system from the Swedish National Archives and provided
by Hjalmarsson, Holmlund and Lindquist (2015). For each municipality we have the first
birth cohort exposed to the reform. Individuals are assigned as exposed or unexposed to
the reform using their year of birth and municipality of residence obtained from the 1960
and 1965 censuses following the method of Holmlund (2008) and Fischer et al. (2021)
and explained in more detail in Appendix J. Our earnings measure is annual total pre-tax
labour earnings and includes earnings from work as an employee and as self-employed.
We express earnings in 100,000 SEK and in 2016 prices (100,000 SEK translates to about
US $12,000 in 2016). We are interested in long-run earnings and follow the literature by
using an average of earnings aged 36-55 years (Bhuller, Mogstad and Salvanes, 2017). We
measure years of education by combining highest achieved level of schooling (primary and
upper secondary school) as measured in the 1970 Census with highest achieved level of
post-mandatory schooling (vocational training and tertiary education) as recorded in the
education records as documented for the years 1990-2016 following the approach of Fischer
et al. (2022).

Our sample starts with 2,136,250 born in Sweden between and including the years 1932
through to 1952. We drop individuals whose data is not available on their place of residence,
years of education, earnings and reform status. We then restrict the sample to those who
were not living in the cities of Stockholm, Gothenburg and Malmö.21 Finally we restrict the
sample to individuals born ten years before and nine years after the pivotal reform cohort to
ensure control cohorts are not too dissimilar to treated cohorts.22 Our final sample size is
1,096,170 individuals. More details on the data are found in Appendix J.

We utilise empirical PERM DiD approach as outlined in section 2.2 to estimate the school
reform’s impact on the mean, variance, and standardised skewness of years of education,
and earnings, as well as the covariance and slope coefficient (association) of education on
income for those exposed to the reform. Under assumptions 5, 6, 7 and 8, PERM DID
provides credible estimates of the impact of the school reform on the first three observed and

20We exclude immigrants to ensure individuals were in fact exposed to the reform
21This restriction is made because the reform was rolled out in different parts of these cities in different

years making reform assignment difficult. These individuals made up about 19% of the total population in
1960 (Statistics Sweden, 1961).

22there are no relevant controls for the treated group 10 years after reform implementation with a restriction
of born 10 years before first affected cohorts, which is why it becomes an asymmetric sample restriction
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counterfactual raw moments as well as their first joint raw moment, necessary to estimate
our distributional parameters. PERM utilises these estimates to provide the distribution
parameter treatment effect on the treated.

As a visual presentation of our results we provide PERM DiD event study results that illus-
trate the impact since first implementation for the mean, variance, and skewness following
the empirical approach set out in 2.2 that builds upon the DiD estimator of De Chaisemartin
and dHaultfoeuille (2020). As noted in 2.2, event study figures for the mean, variance and
skewness allow assessment of the DPTT going forward, and assessment of the parallel trends
assumptions in the pre-period (Roth, 2024). We provide event study figures with four peri-
ods pre-treatment and nine periods post-treatment, the longest our sample allows.23

The PERM DiD regression results are utilised to summarise the overall DPTT for the whole
combined treated population presented in the event study figures. Standard errors and 95%
confidence intervals are provided by 200 replications that bootstrap the whole PERM pro-
cedure, combining the Stata command did_multiplegt_PERM with PERM estimation of the
DPTT parameters.24

5.2 PERM Event Studies
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Figure 3: Education and Earnings First Raw Moment Event Studies
Notes: These figures plot the ATT by birth years till first treated birth cohort in their municipality using the
method described in section 2.2. 95%CI clustered by municipality of residence and provided by
bootstrapping the whole PERM DiD procedure with 200 replications are shown as capped vertical lines.

23Note we only need parallel group variance and parallel group (unstandardised) skewness assumptions to
provide estimates of the PERM standardised skewness.

24The replication package for the analysis performed in this section as well as the STATA ado file
did_multiplegt_PERM is available here: https://github.com/Analyst-GH/PERM/.
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Figure 4: PERM Event Study Figures
Notes: These figures plot the DPTT by birth years till first treated birth cohort in their municipality using the
methods set out in section 2.2. 95%CI clustered by municipality of residence are shown as capped vertical
lines, provided by bootstrapping the whole PERM DiD procedure with 200 replications.

28



In this section, we present PERM DiD event study evidence of the impact of the school
reform on our parameters of interest for our outcomes years of education, and earnings.
Figure 3 presents the event study figures for the first raw moment of education and earnings.
Both education and earnings observe parallel trends in the pre-treatment period. A test
of joint significance of the placebo pre-treatment effects fails to reject the null for both
outcomes. Focusing first on years of education (panel (a)), the first treated birth cohort
(t = 0) shows a meaningful impact of the reform, which then increases substantially in
the t = 1 period that is then largely sustained. The partial jump at t = 0 is due to partial
implementation also observed in prior studies examining the impact of the comprehensive
school reform (Holmlund, Lindahl and Plug, 2011; Fischer et al., 2021). The overall impact
of the reform indicated by the event study figures is an increase in years of education of over
0.5 years, large relative to other school reforms (Galama, Lleras-Muney and van Kippersluis,
2018) and an increase in average annual earnings of around 20,000 SEK (Panel (b)).

Figure 4 presents PERM event study figures for the population variance and population
(unstandardised) skewness of education as well as earnings. The event study results for
education indicate clear negative impacts of the reform on the variance and skewness of
education. For earnings, the event study figures indicate no precise impacts, although there
was perhaps a slight increase in variance. We consider the joint significance in the next
section.

Event study figures of the population variance and population skewness as presented in Fig-
ure 4 also allow assessment of pre-trends in group variance and group skewness respectively,
as discussed in section 2.2. The figures suggest no clear trends in the pre-treatment period,
supporting the PERM DiD assumptions for these parameters. Finally, panel (e) of Figure 4
presents the event study figure for the covariance of years of education and earnings. Again,
like for years of education, the covariance observes clear impact post reform and no clear
pre-trends. The impact of the reform appears to have reduced the covariance between earn-
ings and education.

In Appendix K we present some additional material that illustrates how PERM DiD works.
As set out in section 1.4, PERM DiD corrects for the bias in standard DiD of higher-order
raw moments. This is illustrated in Appendix K, where standard event study estimates are
compared to PERM DiD event study estimates.

The PERM distribution parameter event study estimates shown in Figure 4 are the difference
between a function of PERM based estimates of the lower order distribution parameters and
the highest raw moment relevant for the distribution parameter of interest. For example, an
impact on the variance requires the impact on E[Y 2] to be different compared to the impact
on E[Y ]2. PERM DiD is therefore a set of building blocks where distribution parameters util-
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ising higher-order raw moments require estimates of lower order raw moments. Appendix K
illustrates this. Figures K.2 panel (b) and K.3 present the raw moment components as event
study figures. The difference between the two curves is the DPTT for each birth cohort
shown in Figure 4.

5.3 PERM DiD Main Results
Table 3: PERM DiD Regression Results

Mean Variancea Skewnessa Standardised
Skewnessa,b

Years of Education

Treatment Effect 0.470 -0.833 -2.504 0.046
( 0.027) ( 0.082) ( 0.500) ( 0.024)

Observed 11.052 5.680 14.362 1.061

Earnings - 100,000 SEK pa

Treatment Effect 0.023 0.176 6.784 1.553
( 0.008) ( 0.106) ( 5.407) ( 1.378)

Observed 2.372 2.173 20.147 6.290

Joint Distribution of Years of Education and Earnings

Covariancea Betaa,b

Treatment Effect -0.087 -0.015
( 0.030) ( 0.005)

Observed 1.262 0.222
Notes: This table presents distribution parameter estimates PERM DiD based estimates of the comprehensive
school reform’s effect on these distribution parameters. The population is the population exposed to the
reform, N=304,313. Beta is the regression coefficient of education on earnings. Cluster along municipality
robust standard errors are provided by non-parametric bootstrap with 200 replications and shown in
parenthesis. a standard errors may be downward biased in small samples, especially for very non-normal
distributions. b standardised skewness and regression coefficient can be biased in small samples, especially
for very non-normal distributions.

The main PERM DID results are presented in Table 3 and show that the comprehensive
school reform increased mean years of schooling by about 0.47 years and reduced the pop-
ulation variance by 0.83, both substantial effects compared to the observed baseline. The
school reform also reduced the population skewness by about 2.5. These are also relatively
large effects, but when standardising the population skewness by the variance, the relative
impact size becomes smaller and positive, suggesting the negative effect was driven by the
reduction in variance.
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The results for earnings show an economically meaningful positive mean effect of 20,000
SEK per annum due to the reform. A positive variance impact of 0.18 is also observed, a
substantial increase compared to baseline, although imprecisely estimated. Imprecise pos-
itive effects are found for the skewness (unstandardised and standardised). Whilst raising
the floor of education clearly reduces inequalities in education, this reduction in inequality
has not translated into a reduction in labour market earnings inequality, rather the results
suggest labour market inequalities increased. In Appendix J figure J.1 plots a histogram of
earnings of those with less than comprehensive schooling and not treated by the reform. This
shows considerable variation in earnings with a large right tail, even for this low education
group. If low-educated but high-potential earners benefited from this school reform, then
this would be consistent with an increase in earnings variance due to the reform. A school
reform that targets the low educated does not necessarily target low earners and thereby is
not necessarily an effective inequality policy. Note, we consider earnings and not log earn-
ings. These conclusions are therefore in terms of absolute differences, rather than relative
differences.

The impacts on our bivariate distribution measures, the covariance and beta slope coefficient
of education and earnings, suggest the relationship between education and earnings has been
weakened due to the school reform. The impact of the school reform on the slope suggests
that an additional year of schooling is now associated with 20,000 SEK less compared to
prior the reform. This suggests a reduction in education related income inequalities.

Overall, the Swedish comprehensive school reform helped reduce education inequalities, in-
crease mean earnings and reduce education related earnings differentials. However, earnings
differences, as measured by the variance, appear to have increased as a consequence of the
reform. These conclusions are supported by analysis of pre-trends. The PERM event study
figures show parallel trends in the parameters prior to introduction of the reform supporting
our identification assumptions. To further support our conclusions we provide evidence of
covariate balance between treated and counterfactual groups, and also evidence of robust-
ness to outliers by removing the single highest earner in each reform year - birth cohort cell
(293 cells in total), details found in Appendix L.

6 Discussion

This paper has developed a new empirical framework for the analysis of treatment effects
on the distribution of outcomes, an approach we call Parameter Estimation by Raw Mo-
ments. The advantages of the PERM approach include its familiarity, its relative ease of
application, and the opportunity to invoke weaker identifying assumptions than most alter-
native approaches. Ease of empirical application of the PERM approach follows from its
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familiarity as merely an extension of commonly used causal inference methods that focus
on the mean. The ability to make weaker assumptions follows from PERM’s focus on es-
timating counterfactual distribution parameters by first identifying a low dimensional set of
counterfactual raw moments, then calculating the parameter of interest. For the variance,
this requires one additional raw moment, as generally the mean has already been identified.
Other available methods generally require identifying the full counterfactual distribution to
then calculate the variance, which is a much more demanding approach. Compared to al-
ternative approaches PERM tells us less, but also requires less demanding assumptions as a
consequence.

The results of our Monte Carlo simulation illustrate that under the assumption of selection
of observables PERM implemented with regression (PERM regression) produces almost
identical results to those produced using Inverse Probability Weighting (IPW), a method
that performs well in terms of bias and root mean squared error compared to the leading
alternative distribution methods (Firpo and Pinto, 2016). This result is confirmed in our
first empirical example analysing the impact of union coverage on US log wages, where
IPW and PERM regression yield almost identical results. We found that not only are mean
wages higher due to unionisation, but also more equal in terms of reduced variance, and
(standardised) skewness for those who were covered by union membership.

We have also shown that the PERM framework is not only applicable in a selection on
observables setting, but can also be extended to cases where selection may depend on unob-
servables. We suggest some reasonable identifying assumptions and a PERM DiD estimator
that yields unbiased estimators of the distribution parameter treatment effect on the treated
under these assumptions. Employing PERM DiD we assessed a Swedish comprehensive
school reform that introduced a higher minimum years of schooling, from seven or eight
years to nine years, and kept mixed ability groups together for longer. The results show
that the reform led not only to an increase in the average years of education but also to a
meaningful reduction in the variance of years of education, compressing the education dis-
tribution. However, this compression in years of education did not translate to earnings:
earnings were found to have increased on average (significant at the 1% level), yet sugges-
tive evidence is found for an increase in earnings variability (significant at the 10% level).
Measures of skewness also suggest increases, although these were not significant. Finally,
we find that the relationship between years of education and earnings is weakened by the
reform. Both the covariance and the slope were reduced by the reform. This last finding il-
lustrates a further advantage of PERM, it’s ability to consider the distribution of multivariate
outcomes in a DiD set-up.

PERM DiD is not the only DiD based method available that allows analysis of distribu-
tion impacts of social policies. Other methods have been proposed that utilise alternative
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assumptions to identify distribution impacts by way of DiD (see Roth et al. (2023) for a re-
cent overview). The Changes-in-Changes model of Athey and Imbens (2006), allows one to
identify the full counterfactual distribution under the assumption that the mapping between
each and every quantile of interest across treated and untreated groups remains stable over
time. The distribution DiD model of Bonhomme and Sauder (2011) proposes a method util-
ising a parallel trends assumption for the characteristic function. Callaway and Li (2019)
propose a distribution DiD model based on a copula stability assumption and Fernández-
Val et al. (2024) propose a distribution regression DiD approach utilising a trends in the
transformed distribution assumption. Roth and Sant’Anna (2023) show that if a form of
parallel trends assumption for the cumulative distribution of Y means parallel trends holds
for all functional forms of Y then one can also estimate the full counterfactual distribu-
tion of the treated group. This implies that for any distributional DiD method to provide a
counterfactual distributional parameter, some form of a ’parallel distribution’ assumption is
required.

PERM DiD offers potential advantages compared to the alternative distribution DiD meth-
ods noted above when the aim is to estimate DPTTs. This is due to the general properties
of PERM when estimating distribution parameters – the ability to invoke weaker assump-
tions, relative computational simplicity in estimating distribution parameters, and the ability
to easily consider multivariate outcomes – which also apply to PERM DiD. If the end goal
is to summarise the impacts of a social policy using distribution parameters, then PERM
DiD offers an approach that is computationally less burdensome than the distribution DiD
methods outlined above. This is is because distributional DiD methods require identifica-
tion of the full counterfactual distribution to then calculate the counterfactual distributional
parameter. Furthermore, compared to these alternative methods, the identifying assump-
tion(s) of PERM DiD, parallel trends in group-level distribution parameters of interest, are
collectively a weaker assumption than a parallel distribution type assumption required by
distributional DiD methods. The larger the set of parameters considered, the less clear this
distinction will be. Finally, to date, only PERM DiD and the method of Fernández-Val et al.
(2024) has provided a way to estimate how treatment affects the multivariate distribution of
two outcomes.

Potential extensions to the work presented here include consideration of a doubly robust
estimator (Robins, Rotnitzky and Zhao, 1994), which combines regression and IPW to es-
timate the relevant raw moments. Alternative assumptions could also be considered. For
example, PERM regression can permit one to relax the common support assumption to con-
sider out-of-sample predictions and also flexibility when faced with missing data, cases we
have not considered here but are potentially useful in empirical practice. Alternative treat-
ment effects could also be considered. In this paper, we have focused on the distribution
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parameter treatment effect on the treated. Alternative treatment effects have been suggested
by Firpo and Pinto (2016). These treatment effects consider other policy relevant scenarios,
such as the comparison of where no-one is treated to where everyone is treated, what Firpo
and Pinto (2016) call the overall inequality treatment effect. Another policy relevant treat-
ment effect is the impact of an intervention on current observed inequality if only a subset
were exposed to treatment, the current inequality treatment effect (Firpo and Pinto, 2016).
PERM can be easily extended to consider these treatment effects.

Whilst the PERM approach has several positive attributes that suggest its empirical feasibil-
ity and applicability in the estimation of distribution parameter treatment effects, there are
some important limitations worth noting. The first is that PERM is limited to distribution
parameters and inequality measures that can be expressed exclusively as functions of raw
moments. This disqualifies rank-based measures of inequality such as the Gini Index for ex-
ample. This is because the rank itself is a function not expressible in terms of raw moments.
IPW based approaches, for example, are not limited in this regard and allow analysis of any
distribution measure. A second drawback, related to the first, PERM’s statistical features de-
pend on the parameter of interest. As our Monte Carlo exercise has shown, bootstrap-based
standard errors of higher-order distribution parameters achieve lower rates of coverage in
small samples, although this limitation is also common with IPW approaches.

To conclude, this paper has introduced a new framework to examine the impact on dis-
tributions, PERM, which is built around the analysis of raw moments. PERM is familiar
because it can utilised our established toolkit for means. As a result, PERM allows flexible
identifying assumptions to yield unbiased distribution parameter treatment effects compared
to several leading alternative methods. This paper has provided two use cases for PERM,
PERM regression and PERM DiD, but PERM can also be extended to cases beyond those
considered in this paper.
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Appendix

Proof. (Proposition 2) Under a parallel group variance assumption and in the absence of
treatment, the PERM DiD estimate of the variance treatment effect on the treated is zero:

0 =(µ2(Yigt(0)|D = 1,G = 2,T = 2)−µ2(Yigt(0)|D = 1,G = 2,T = 1))

−(µ2(Yigt(0)|D = 0,G = 1,T = 2)−µ2(Yigt(0)|D = 0,G = 1,T = 1)) ,

where µ2(Y ) = E[Y 2]−E[Y ]2 denotes the variance of Yigt . Rearranging for E[Y 2
igt(0)|D =

1,G = 2,T = 2], and substituting Yigt = αi +δiGg +ρiTt , we have:

E[Y 2
igt(0)|D = 1,G = 2,T = 2] = E[αi +δi +ρi]

2 +(E[(αi +δi)
2]−E[αi +δi]

2)

+(E[(αi +ρi)
2]−E[αi +ρi]

2)− (E[α2
i ]−E[αi]

2).

Expanding terms, we simplify to:

E[Y 2
igt(0)|D = 1,G = 2,T = 2] = E[α2

i ]+E[δ 2
i ]+E[ρ2

i ]+2E[δiαi]

+2E[ρiαi]+2E[δi]E[ρi].

Define the following contributions: α2 := E[α2
i ] (intercept), ω := E[δ 2

i ]+2E[δiαi] (group-
level differences), γ := E[ρ2

i ] + 2E[ρiαi] (common time-level effects). Substituting these
definitions, the second raw moment for the treated group in the treated period, in the absence
of treatment, is expressed as:

E[Y 2
igt(0)|D = 1,G = 2,T = 2] = α2 +ω + γ +2E[δi]E[ρi].

Proof. (Proposition 3) In the absence of treatment, the PERM DiD estimate of the skewness
treatment effect on the treated under a parallel skewness assumption is given by:

0 =(µ3(Yigt(0)|D = 1,G = 2,T = 2)−µ3(Yigt(0)|D = 1,G = 2,T = 1))

−(µ3(Yigt(0)|D = 0,G = 1,T = 2)−µ3(Yigt(0)|D = 0,G = 1,T = 1)) ,

where µ3(Y ) = E[Y 3]−3E[Y 2]E[Y ]+2E[Y ]3 denotes the skewness of Yigt . Rearranging for
E[Y 3

igt(0)|D= 1,G= 2,T = 2], and substituting Yigt =αi+δigGg+ρitTt , E[Yigt(d)|D,G,T ] =
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E[αi +δigGg +ρitTt ] and E[Y 2
igt(d)|D,G,T ] = α2 +ωGg + γTt +2E[δi]E[ρi]Dgt we get:

E[Y 3
igt(0)|D = 1,G = 2,T = 2] =((3(α2 + γ +ω +2E[δi]E[ρi])(α1 +E[δi]+E[ρi])

−2(α1 +E[δi]+E[ρi])
3)

+(E[(αi +δi)
3]−3(α2 +ω)(α1 +E[δi])

+2(α1 +E[δig])
3))

+((E[(αi +ρi)
3]−3(α2 + γ)(α1 +E[ρi])

+2(α1 +E[ρi])
3)

− (E[α3
i ]−3α2α1 +2(α1)

3))

Define the following contributions: α3 :=E[α3
i ] (intercept), θ :=E[δ 3

i ]+6E[δ 2
i αi]+6E[δiα2

i ]

(group-level differences), ϕ := E[ρ3
i ]+ 6E[ρ2

i αi]+ 6E[ρiα2
i ] (common time-level effects).

Substituting these definitions, the third raw moment for the treated group in the treated pe-
riod, in the absence of treatment, is expressed as:

E[Y 3
igt(0)|D = 1,G = 2,T = 2] =α3 +θ +ϕ +3γ E[δi]+3ω E[ρi]−6α1E[δi]E[ρi].

Proof. (Proposition 4) In the absence of treatment, the PERM DiD estimate of the covari-
ance treatment effect on the treated under a parallel covariance assumption is given by:

0 =(µWY (Wigt(0)Yigt(0)|D = 1,G = 2,T = 2)−µWY (Wigt(0)Yigt(0)|D = 1,G = 2,T = 1))

−(µWY (Wigt(0)Yigt(0)|D = 0,G = 1,T = 2)−µWY (Wigt(0)Yigt(0)|D = 0,G = 1,T = 1)) ,

where µWY (WY ) =E[WY ]−E[W ]E[Y ] denotes the covariance of Wigt and Yigt . Rearranging
for E[WYigt(0)|D = 1,G = 2,T = 2], and subsequently substituting in the DGP for Wigt and
Yigt (given by equation 7 with the relevant subscript for W or Y ) we get:

E[WYigt(0)|D = 1,G = 2,T = 2] =E[(αi,W )(αi,Y )]

+E[δi,W ]E[ρi,Y ]+E[δi,Y ]E[ρi,W ]

+E[δi,W δi,Y ]+E[δi,W αi,Y ]+E[δi,Y αi,W ]

+E[ρi,W ρi,Y ]+E[ρi,W αi,Y ]+E[ρi,Y αi,W ]

Define the following contributions: αWY :=E[(αi,W )(αi,Y )] (intercept), ωWY :=E[δi,W δi,Y ]+

E[δi,W αi,Y ]+E[δi,Y αi,W ] (group-level differences), γWY :=E[ρi,W ρi,Y ]+E[ρi,W αi,Y ]+E[ρi,Y αi,W ]

(common time-level effects). Substituting these definitions, the joint raw moment for the
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treated group in the treated period, in the absence of treatment, is expressed as:

E[WYigt(0)|D = 1,G = 2,T = 2] =αWY +ωWY + γWY +E[δi,W ]E[ρi,Y ]+E[δi,Y ]E[ρi,W ].
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Online Appendix

Appendix A Properties of the sample PERM
estimator

Proposition A.1. Bias of the PERM sample covariance estimator: Let W1, . . . ,Wn be i.i.d

random variables with first raw moment µW and variance µ2,W , Y1, . . . ,Yn be .i.d random

variables with first raw moment µ ′
Y and variance µ2,Y , that together have a joint first raw

moment µ ′
WY and covariance µWY = µ ′

WY −µW µY . Let the corresponding sample raw mo-

ments be defined as:

W̄ =
1
n

n

∑
i=1

Wi, Ȳ =
1
n

n

∑
i=1

Yi, WY =
1
n

n

∑
i=1

WiYi

The sample raw moments are measured with error, but are unbiased:

E[u] = E[W̄ −µW ] = 0, E[e] = E[Ȳ −µY ] = 0, E[m] = E[WY −µ ′
WY ] = 0

The PERM sample covariance is biased due to measurement error in the sample raw mo-

ments:

E[SWY ] =µWY −E[ue]

Proof. (Proposition A.1) The PERM sample covariance is:

SWY =
1
n

n

∑
i=1

WiYi −
1
n

n

∑
i=1

Wi
1
n

n

∑
i=1

Yi

The PERM sample covariance is biased due to measurement error in the sample raw mo-
ments:
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E[SWY ] =E[
1
n

n

∑
i=1

WiYi −
1
n

n

∑
i=1

Wi
1
n

n

∑
i=1

Yi]

=E[WY −W̄Ȳ ]

=E[WY ]−E[W̄Ȳ ]

=E[µ ′
WY +m]−E[(µW +u)(µY + e)]

=E[µ ′
WY ]+E[m]−E[µW µY ]−E[µW e]−E[µY u]−E[ue]

=µ ′
WY −µW µY −µW E[e]−µY E[u]−E[ue]

=µWY −E[ue]

The direction of the bias for the covariance is negative. The variance is a special case of the
covariance, where W = Y . The PERM sample variance for Y is:

S2,Y =
1
n

n

∑
i=1

Y 2
i − (

1
n

n

∑
i=1

Yi)
2

By similar argument for the PERM sample covariance, the PERM sample variance is bi-
ased:

E[S2,Y ] =µ2,Y −E[e2]

The bias of the PERM sample variance, −E[e2], can also be expressed as −E[(Ȳ −µY )
2] =

−1
n µ2,Y , which follows from the Bienaymé formula. The standard sample variance bias

correction formula therefore follows, n
n−1 E[S2,Y ] = µ2,Y . A similar line of argument tells us

that the bias of the PERM sample covariance −E[eu], can also be expressed as −E[(W̄ −
µW )(Ȳ −µY ))] =−1

n µWY ,

An alternative to the standard n
n−1 sample covariance correction is to employ an empirical

estimator of E[eu]. The i.i.d bootstrap provides consistent estimates of the standard error of
the mean (see chapter 23 of Van der Vaart, 2000, for a relevant proof). Given consistent esti-
mates of the covariance of the sample mean measurement errors for the observed outcomes,
E[û1e1|D = 1] and counterfactual outcomes E[û0e0|D = 1] for the treated group, then the
bias corrected PERM sample covariance treatment effect on the treated is given by:

δ µWY
PT T = (SW1Y1 |D = 1]+E[û1ε1|D = 1])

− (SW0Y0 |D = 1]+E[û0ε0|D = 1])

The PERM sample skewness is also biased and for the same reason as the (co)variance:
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the measurement errors of the raw moments bias the sample distribution parameter esti-
mates.

Proposition A.2. Bias of the PERM sample skewness estimator: Let Y have first raw

moment µ , second raw moment µ ′
2, third raw moment µ ′

3, variance µ2 = µ ′
2 − (µ)2, and

skewness µ3 = µ ′
3 −3µ ′

2µ +2(µ)3. Let the sample raw moments, and sample skewness, S3

be defined as:

Ȳ 2 =
1
n

n

∑
i=1

Y 2
i , Ȳ 3 =

1
n

n

∑
i=1

Y 3
i , Ȳ 4 =

1
n

n

∑
i=1

Y 4
i

S3 =
1
n

n

∑
i=1

Y 3
i −3(

1
n

n

∑
i=1

Y 2
i )(

1
n

n

∑
i=1

Yi)+2(
1
n

n

∑
i=1

Yi)
3

The sample raw moments are measured with error, but are unbiased:

E[e1] = E[Ȳ −µ] = 0, [E[e2] = E[Ȳ 2 −µ ′
2] = 0

E[e3] = E[Ȳ 3 −µ ′
3] = 0

The PERM sample skewness is biased due to measurement error in the sample raw moments:

E[S3] =µ3 −3E[e1e2]+6µ E[e2
1]+2E[e3

1]

Proof. (Proposition A.2) The PERM sample skewness is biased due to measurement error
in the sample raw moments:

E[S3] =E[
1
n

n

∑
i=1

Y 3
i −3(

1
n

n

∑
i=1

Y 2
i )(

1
n

n

∑
i=1

Yi)+2(
1
n

n

∑
i=1

Yi)
3]

=E[Ȳ 3 −3Ȳ 2Ȳ +2(Ȳ )3]

=E[Ȳ 3]−3E[Ȳ 2Ȳ ]+2E[(Ȳ )3]

=E[µ ′
3 + e3]−3E[(µ ′

2 + e2)(µ + e1)]+2E[(µ + e1)
3]

=E[µ ′
3]−3E[(µ ′

2µ]+2E[(µ)3 −3E[e1e2]+6E[µe2
1]+2E[e3

1]

=µ3 −3E[e1e2]+6µ E[e2
1]+2E[e3

1]

Given consistent estimates of the sample mean measurement errors for the observed out-
comes and counterfactual outcomes for the treated group, then the bias corrected PERM
sample skewness treatment effect on the treated is given by:
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δ µ3
PT T = ((S3,Y11)− (−3E[ ̂e11,1e11,2]+6µ̂Y11,1 E[ê2

11,1]+2E[ê3
11,1]))

− ((S3,Y01)− (−3E[ ̂e01,1e01,2]+6µ̂Y01,1 E[ê2
01,1]+2E[ê3

01,1]))

Appendix B Parallel trends in centered moments

Proposition B.1. Parallel group variance is parallel population variance: Consider two

time periods, t-1 and t. Between t-1 and t let the trend in group variance be ∆B and the

trend in group first raw moment be ∆A, then by the law of the total variance, the trend in the

population variance will be:

∆µ2(Y ) = ∆B

Proof. of proposition B.1

The law of total variance states:

µ2(Y ) = E[µ2(Y |X)]+µ2(E[Y |X ])

The change in total variance is therefore:

µ2(Y )t −µ2(Y )t−1 = E[µ2(Y |X)]t −E[µ2(Y |X)]t−1 +µ2(E[Y |X ])t −µ2(E[Y |X ])t−1

Let ∆µ2(Y ) be the change between t-1 and t, then:

∆µ2(Y ) = ∆E[µ2(Y |X)]+∆µ2(E[Y |X ])

If the trend in group variance is ∆B and the trend in group first raw moment is ∆A, then by
the law of the total variance, the trend in the population variance will be:

∆µ2(Y ) =∆B +µ2(E[Y +∆A|X ])−µ2(E[Y |X ])

=∆B +µ2(E[Y |X ])+µ2(∆A)−µ2(E[Y |X ])

=∆B

Noting that because the variance of a constant is zero, µ2(∆A) is equal to zero.

Proposition B.2. Parallel group skewness is parallel population skewness: Consider two

time periods, t-1 and t. Between t-1 and t let the trend in group skewness be ∆C, the trend in
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group variance be ∆B and the trend in group first raw moment be ∆A, then by the law of the

third central moment, the trend in the population skewness will be:

∆µ3(Y ) = ∆C

Proof. of proposition B.2

The law of total third central moment states:

µ3(Y ) = E[µ3(Y | X)]+µ3(E[Y | X ])+3E[µ2(Y | X)(E[Y | X ]−E[Y ])]

A change in total third central moment is therefore composed of :

∆µ3(Y ) =∆E[µ3(Y | X)]+∆µ3(E[Y | X ])+3∆E[µ2(Y | X)(E[Y | X ]−E[Y ])]

If the trend in group skewness is ∆C, the trend in group variance is ∆B and the trend in
group first raw moment is ∆A, then by the law of the third central moment, the trend in the
population skewness will be:

∆µ3(Y ) = ∆C +µ3(E[Y +∆A|X ])−µ3(E[Y |X ])

+3E[(µ2(Y | X)+∆B)(E[Y +∆A | X ]−E[Y +∆A])− (µ2(Y | X))(E[Y | X ]−E[Y ])]

The skewness of the conditional means simplify, and the changes in the first raw moment
inside the last term cancel out:

∆µ3(Y ) = ∆C +µ3(∆A)

+3E[(µ2(Y | X)+∆B)(E[Y | X ]−E[Y ])− (µ2(Y | X))(E[Y | X ]−E[Y ])]

The skewness of ∆A is the skewness of a constant, which equals zero, and the conditional
variances multiplied by the difference in the conditional mean and population mean cancel
out:

∆µ3(Y ) = ∆C +3E[∆B(E[Y | X ]−E[Y ])]

By law of iterated expectations, E[E[Y | X ]] = E[Y ], ∆µ3(Y ) is therefore:

∆µ3(Y ) = ∆C
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Appendix C Monte Carlo Exercise - The Setup

Two explanatory variables, X1 and X2, predict both the outcome variable Y and the treatment
exposure variable D and are given by:

X1 ∼Uni f orm
[

1− (12)1/2

2
,1+

(12)1/2

2

]
(C.1)

X2 ∼Uni f orm
[

5− (12)1/2

2
,5+

(12)1/2

2

]
(C.2)

Treatment is set as:

D = 1{−0.5+1.35X1 −0.2X2 +0.15X12 −0.1X22 +0.5X1 ·X2 +η > 0} (C.3)

where η ∼ Normal(0,100) . The potential outcomes are:

Y0 = exp(0.01−0.01X1 +0.01X2 +0.01X2
1 −0.01X2

2 −0.02X1 ·X2 + e0) (C.4)

Y1 = exp(0.1+0.01X1 +0.01X2 +0.01X2
1 +0.01X2

2 +0.01X1 ·X2 + e1) (C.5)

where
e0 = (0.01−0.01X1 +0.01X2 +0.01X2

1 −0.01X2
2 −0.02X1 ·X2) · k0 (C.6)

e1 = (0.01+0.01X1 +0.01X2 +0.01X2
1 +0.01X2

2 +0.01X1 ·X2) · k1 (C.7)

where k0 ∼ normal(0,1) and k1 ∼ normal(0,1).

The parameters of interest are the mean (MTT), variance (VTT), skewness (STT) and stan-
dardised skewness (SSTT) treatment effect of the treated. An unfeasible estimator is cal-
culated using the potential outcomes from the DGP for the given sample size. A naive
estimator is calculated using the observed values of Y and treatment status assuming no
selection into treatment.

To estimate the PTT using PERM regression the correct specification of X1 and X2 is inter-
acted with treatment status in regressions of the first four raw moments, providing observed
and counterfactual raw moments following the method set out in section 2.1. The PTTs
are then calculated and both standard errors following linearisation technique and standard
errors utilising a bootstrap procedure with replacement for the whole procedure are pro-
vided.

Estimation of the PTTs using IPW requires two weighting functions that convert the ob-
served distribution function into weighted distribution functions of the observed and coun-

6



terfactual distribution functions, conditional on being treated. The propensity score, the
conditional probability of being treated, is defined as p(x)≡ Pr[D = 1|X = x], where X ∈ χ .
The unconditional probability of being treated is defined as p≡Pr[D= 1], which we assume
exists and is positive. The two weighting functions of interest are:

ω11(d, p(x)) = d/p

ω01(d, p(x)) = ((1−d)/(1− p(x)))× (p(x)/p)

p is observed. p(x) is estimated using logit regression, with treatment status as the dependent
variable and X1 and X2 correctly specified as explanatory variables. PTTs are then estimated
using IPW re-weighting to provide the treated and counterfactual estimates. This whole
procedure is then bootstrapped with replacement to provide standard errors.

0

.2

.4

.6

.8

D
en
si
ty

0 10 20 30 40
Y

(a)

0

.2

.4

.6

.8

1

D
en
si
ty

-4 -2 0 2 4
ln(Y)

(b)

Figure C.1: Distribution of observed Y
Notes: Probability density functions of Y and ln(Y ) for a sample of N=100,000 from Monte Carlo Exercise.

Appendix D Monte Carlo Exercise - A Replication

7



Ta
bl

e
D

.1
:M

on
te

C
ar

lo
E

xe
rc

is
e

(r
ep

lic
at

io
ns

10
0,

00
0)

Sa
m

pl
e

Si
ze

25
0

Sa
m

pl
e

Si
ze

10
00

A
ve

ra
ge

St
an

da
rd

B
ia

s
R

oo
tM

ea
n

A
ve

ra
ge

St
an

da
rd

B
ia

s
R

oo
tM

ea
n

D
ev

ia
tio

n
Sq

ua
re

d
D

ev
ia

tio
n

Sq
ua

re
d

E
rr

or
E

rr
or

PA
N

E
L

A
:R

E
P

L
IC

A
T

IO
N

O
F

F
IR

P
O

A
N

D
P

IN
T

O
(2

01
6)

M
ea

n
Tr

ea
tm

en
te

ff
ec

to
n

th
e

Tr
ea

te
d:

Tr
ue

:1
.1

02
U

nf
ea

si
bl

e
1.

10
2

0.
10

9
0.

00
0

0.
10

9
1.

10
2

0.
05

4
-0

.0
00

0.
05

4
N

ai
ve

1.
07

7
0.

10
6

-0
.0

25
0.

10
9

1.
07

7
0.

05
3

-0
.0

25
0.

05
9

IP
W

1.
10

2
0.

11
2

0.
00

0
0.

11
2

1.
10

2
0.

05
5

-0
.0

00
0.

05
5

PE
R

M
1.

10
2

0.
11

2
0.

00
0

0.
11

2
1.

10
2

0.
05

5
-0

.0
00

0.
05

5

C
oe

ffi
ci

en
to

fV
ar

ia
tio

n
Tr

ea
tm

en
te

ff
ec

to
n

th
e

Tr
ea

te
d:

Tr
ue

:0
.2

69
U

nf
ea

si
bl

e
0.

25
0

0.
12

7
-0

.0
19

0.
12

8
0.

26
3

0.
07

7
-0

.0
07

0.
07

7
N

ai
ve

0.
29

7
0.

12
7

0.
02

8
0.

13
0

0.
31

0
0.

07
7

0.
04

1
0.

08
7

IP
W

0.
25

5
0.

13
2

-0
.0

15
0.

13
2

0.
26

4
0.

08
0

-0
.0

05
0.

08
0

PE
R

M
0.

25
3

0.
13

1
-0

.0
16

0.
13

2
0.

26
3

0.
07

9
-0

.0
06

0.
08

0

P A
N

E
L

B
:E

X
T

E
N

S
IO

N

V
ar

ia
nc

e
Tr

ea
tm

en
te

ff
ec

to
n

th
e

Tr
ea

te
d:

Tr
ue

:1
.2

85
U

nf
ea

si
bl

e
1.

28
7

0.
88

4
0.

00
1

0.
88

4
1.

28
3

0.
43

6
-0

.0
02

0.
43

6
N

ai
ve

1.
30

2
0.

88
5

0.
01

7
0.

88
5

1.
29

9
0.

43
6

0.
01

3
0.

43
6

IP
W

1.
28

8
0.

88
4

0.
00

2
0.

88
4

1.
28

4
0.

43
6

-0
.0

02
0.

43
6

PE
R

M
1.

27
7

0.
87

7
-0

.0
08

0.
87

7
1.

28
1

0.
43

5
-0

.0
04

0.
43

5
PE

R
M

bi
as

co
rr

ec
te

d
1.

28
7

0.
88

3
0.

00
1

0.
88

3
1.

28
3

0.
43

6
-0

.0
02

0.
43

6

Sk
ew

ne
ss

Tr
ea

tm
en

te
ff

ec
to

n
th

e
Tr

ea
te

d:

Tr
ue

:6
.8

93
U

nf
ea

si
bl

e
6.

85
2

31
.0

20
-0

.0
41

31
.0

20
6.

83
5

15
.5

06
-0

.0
58

15
.5

06
N

ai
ve

6.
86

4
31

.0
20

-0
.0

29
31

.0
20

6.
84

6
15

.5
06

-0
.0

46
15

.5
06

IP
W

6.
85

3
31

.0
21

-0
.0

40
31

.0
20

6.
83

5
15

.5
06

-0
.0

58
15

.5
07

PE
R

M
6.

77
1

30
.6

43
-0

.1
22

30
.6

43
6.

81
5

15
.4

60
-0

.0
78

15
.4

60
PE

R
M

bi
as

co
rr

ec
te

d
6.

93
5

31
.4

61
0.

04
2

31
.4

61
6.

85
5

15
.5

52
-0

.0
37

15
.5

52

8



The Monte Carlo experiment of 100,000 replications with sample size of 250 is shown
in table D.1 columns 1-4 and a sample size of 1000 shown in columns 5-8 of the same
table. The results for the truth, naive, unfeasible and IPW based estimators of the ATT
and the Coefficient of variation treatment effect on the treated (CVTT) are precise replica-
tions of the results of Firpo and Pinto (2016). Firpo and Pinto (2016) conclude that IPW
yields favourable results in terms of bias and RMSE compared to the alternative inequality
treatment effect estimators by Chernozhukov, Fernández-Val and Melly (2013) and Juhn,
Murphy and Pierce (1993). PERM regression based results are presented alongside these
replication results and show very similar results to IPW based estimates. PERM regression
performs in terms of bias and RMSE compared to IPW, and by extension also compared to
the alternative inequality treatment effect estimators by Chernozhukov, Fernández-Val and
Melly (2013) and Juhn, Murphy and Pierce (1993).

Extending the Monte Carlo simulation to consider the variance, both IPW and PERM re-
gression based estimators of the variance are similar in terms of bias and RMSE. The naive
estimates show there is meaningful selection into treatment and both IPW and PERM re-
gression are able to account for this when correctly specified (quadratic specification). The
standard deviation and RMSE show that the variance of both IPW and PERM regression
point estimates decrease as the sample size increases, as expected. The sample bias correc-
tion of the PERM regression VTT estimator reduces the bias, but the SSB is small compared
to the precision of the estimates.

Appendix E Monte Carlo Exercise - Additional
Material

In table D.1 panel b) we present Monte Carlo Simulation results for 100,000 replications of
sample sizes 250 and 1,000 to see in more detail the small sample properties of the estima-
tors. The difference between the unfeasible and naive estimates is relatively minor suggest-
ing the degree of selection is into treatment is small for the variance, and skewness. Across
both the VTT and STT the sample bias for the PERM estimator is very similar to the unfea-
sible estimator and small relative to the precision. Again PERM and IPW show very similar
results. Finally there is indicative evidence that the bias correction of the PERM sample es-
timators improves the estimate. However, the statistical precision is not high enough, even
with 100,000 replications, to say anything with meaningful certainty.

Figure E.2 presents MCS results for the bias and RMSE by sample size when considering the
log of outcomes, a distribution that more closely follows a normal distribution compared to
the non-logged outcomes distribution. For both the VTT and STT there is no clear evidence
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Figure E.1: Monte Carlo Exercise - Bias
Notes: These figures plot a line of the average sample estimator of the Parameter Treatment effect on the
Treated from the Monte Carlo Exercise with varying sample size and 20,000 replications for each sample size
versus the ’truth’ (horizontal dotted line). Estimates are provided by two methods, PERM and IPW and
alternative methods of standard error estimation. The y scale is the true value +- 1 RMSE.

of meaningful bias and the RMSE figures suggest the estimates approach the true value with
increasing precision as the sample size increases.

Figure E.1 represents MCS results for the bias of the standardised skewness (SSTT) for
both unlogged and logged outcomes. The results show that the SSTT is substantially biased
in small samples, relative to the precision. This is because they are ratios, which perform
poorly in small samples (Joanes and Gill, 1998). The RMSE error results in Figure E.3
suggest that the SSTT approaches the true value with increasing precision as sample size
increases, however. Coverage of the SSTT is poor in small samples as shown in Figure E.4
but this improves with sample size, or with data that more closely approximates a normal
distribution.

The results are very similar across PERM and IPW.
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Figure E.2: Monte Carlo Exercise - Bias, Root Mean Square Error for ln(Y)
Notes: This figure is a replication of Figure 1 but for log transformation of outcome. These figures plot lines
of sample estimator vs the ’truth’ (to illustrate bias) and lines of the RMSE of the Parameter Treatment effect
on the Treated by sample size from the Monte Carlo Exercise of 20,000 replications for each sample size.
Estimates are provided by two methods, PERM and IPW. PERM Bias corrected utilises the sample bias
correction from Appendix A. The y scale for the bias figures is the true value +- 1 RMSE.
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Figure E.3: Monte Carlo Exercise - Root Mean Square Error
Notes: These figures plot a line of the RMSE of the Parameter Treatment effect on the Treated from the
Monte Carlo Exercise with varying sample size and 20,000 replications for each sample size.
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Figure E.4: Monte Carlo Exercise - 90% Coverage Rates
Notes: These figures plot a line of the 90% coverage rates of the Parameter Treatment effect on the Treated
from the Monte Carlo Exercise with varying sample size and 20,000 replications for each sample size.
Estimates are provided by two methods, PERM and IPW and alternative methods of standard error
estimation. Bootstrap standard errors and Percentile Bootstrap 90% Confidence Intervals are from a
non-parametric bootstrap with 200 replications.
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Appendix F Unions - Data and Methods

We begin our analysis from 1983 because it marks the initial year when the ORG supple-
ment inquired about union membership status. The dependent variable is the real logarithm
of hourly wages for all wage and salary workers. Our set of explanatory variables encom-
passes six education categories, marital status, non-white ethnicity, and nine experience
classifications.

The dependent variable refers to the real logarithm of hourly wages for all wage and salary
earners. Hourly wages are directly assessed for hourly employees and are determined by
dividing typical earnings by usual hours worked for other employees. Explanatory variables
include six levels of education, nine levels of labour market experience, marital status and
ethnicity. Education is grouped into six categories: 0 – 8 years of schooling, High school
dropout, High school, some college, college graduate, college post-graduate which are in
turn defined as dummy variables (ed0 – ed5) Labour market experience is grouped into
eight categories: 0 – 4 years, 5 – 9 years, 10 – 14 years, 15 – 19 years, 25 – 29 years, 30 – 34
years, 35 – 39 years, and 40+ plus years, which are in turn defined as dummy variables (ex1
– ex9). Ethnicity is defined as a dummy variable equal to one if non-white, marital status is
defined as a dummy variable equal to one if married. The reference category is high school
education, 20-24 years experience, non-married and white.

The parameters of interest are the mean (MTT), variance (VTT) and standardised skewness
(SSTT) treatment effect of the treated. To estimate these parameters using PERM regression
dummy variables for education (ed0 – ed5), labour market experience (ex1 - ex9), ethnicity
(non-white), marital status (married) are interacted with union coverage status in regressions
of the first four raw moments, providing observed and counterfactual raw moments follow-
ing the method set out in section 2.1. The PTTs are then calculated and this whole procedure
is bootstrapped with replacement to provide standard errors.

Application of IPW to estimate the PTTs of interest requires two weighting functions that
convert the observed distribution functions into weighted distribution functions of the ob-
served and counterfactual distribution functions, conditional on being treated. The propen-
sity score, the conditional probability of being treated, is defined as p(x)≡ Pr[D = 1|X = x],
where X ∈ χ . The unconditional probability of being treated is defined as p ≡ Pr[D = 1],
which we assume exists and is positive. The two weighting functions of interest are:

ω11(d, p(x)) = d/p

ω01(d, p(x)) = ((1−d)/(1− p(x)))× (p(x)/p)
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p is observed. p(x) is estimated using probit regression, with union coverage status as the
dependent variable and dummy variables for education (ed0 – ed5), labour market experi-
ence (ex1 - ex9), ethnicity (non-white), marital status (married) as explanatory variables.
PTTs are then estimated using IPW re-weighting to provide the treated and counterfactual
estimates. This whole procedure is then bootstrapped with replacement to provide standard
errors.

Appendix G Unions - PERM versus RIF

In this section we show how the DPPT provided by RIF-OLS is an average of first order
approximations of the distribution partial effects on the treated. PERM can estimate both
these parameters and thereby illustrates that the Recentered Influence Functions (RIF), a
linearisation method, provides an approximation for the true treatment effect.

We compare the estimated effects of union coverage on the variance in log hourly wages esti-
mated using the PERM based approach with those estimated using the Recentered Influence
Function based approach. RIF regression introduced by Firpo, Fortin and Lemieux (2009b)
estimates the Parameter Partial Effect (PPE) of a covariate on any parameter of interest as
long as the parameter is differentiable, and applications have included the unconditional
quantiles (Firpo, Fortin and Lemieux, 2009b), the variance, the Gini (Fortin, Lemieux and
Firpo, 2011; Firpo, Fortin and Lemieux, 2018) and bivariate measures of income related
health inequality (Heckley, Gerdtham and Kjellsson, 2016).

The DPPT provided by RIF-OLS is a linearisation of conditional expectations of the deriva-
tives of the parameter. We can use PERM to estimate the same approximation by differenti-

ating the formula for the variance. For the variance we have
dVar[Y ]

dX
=

d(E[Y 2]−E[Y ]2)
dX

=

dE[Y 2]

dX
− 2E[Y ]

E[Y ]
dX

where the estimated regressions for E[Y 2] and E[Y ] are used in their
place. We illustrate this by estimating the DPPT of union coverage on the variance of log
hourly wages, results shown in table G.1). PERM regression of the derivative of the vari-
ance and RIF regression find the same DPTT estimate of -0.1421 on the variance of log
hourly wages and with the same standard errors. However, this substantially different from
the DPTT estimated without approximation error, -0.1655 (from table 2. RIF regression
cannot estimate the true DPTT impacts because it first linearises the distribution parameter
before estimating the regression and thus can only be used to approximate the impact of
small changes. So although RIF regression can be extended to account for selection into
treatment when selection is not observed such as the use of Fixed Effects or Differences in
Differences, it can only estimate the DPTT with approximation error.
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Table G.1: Linear approximation of the DPTT of Unionisation on Log Hourly Wages In-
equality

PERM RIF
Union -0.1421 -0.1421

(0.0018) (0.0018)

Notes: This table presents the linear approximation estimates of the DPPT of unionisation on the variance of
hourly wages in the USA. Each cell represents results from separate estimates with corresponding standard
errors in parenthesis. PERM linearisation standard errors are provided by the linear approximation method of
Graubard and Korn (1999) and RIF robust standard errors are analytical. PERM and RIF estimates utilise
fully factorised controls for ethnicity, marriage status, education and experience all fully interacted with
unionisation status.

Appendix H Unions - PERM Based Sub-group Analysis
of the Variance

In this section we illustrate decomposing the variance PTT of unionisation by ethnic group.
The variance decomposition formula states that the variance is the sum of conditional group
variances plus a between groups variance effect, and is given by:

Var(Y ) = E[Var(Y |G)]+Var(E[Y |G]) (H.1)

The results in table H.1 show that the population variance effect of unionisation is fairly
uniform across ethnicity groups and not driven by changes in the means between the groups
due to unionisation.

Table H.1: PTT of Unionisation on Log Hourly Wages Inequality, sub-group analysis

PERM
Total union effect -0.1655

(0.0016)
Within ethnic groups effect -0.1644

(0.0019)
Variance within white ethnic group -0.1658

(0.0020)
Variance within non-white ethnic group -0.1530

(0.0053)

Between ethnic groups effect 0.0011

Notes: Each cell represents results from separate estimates with corresponding standard errors in parenthesis.
PERM linearisation standard errors are provided by the linear approximation method of Graubard and Korn
(1999). PERM utilises fully factorised controls for ethnicity, marriage status, education and experience all
fully interacted with unionisation status.
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Appendix I Institutional Background to Sweden’s School
System and the Compulsory School
Reform

The Swedish comprehensive school system was first introduced in the late 1940s and rolled
out over time through the 1950s and 1960s across the municipalities of Sweden. As noted
in Husén (1986) "The main motive for a structural [educational] reform was in their view
to provide increased equality by providing equal access to further education irrespective
of social class and place of residence. The inequalities existed not only between social
classes but also, and to an even greater extent, between rural and urban areas". The reform
is described in detail in Holmlund (2007). Here, we provide details of its most important
elements.

Prior to the comprehensive school reform children went to Swedish primary school (folk-

skola), for seven or eight years depending on which municipality one lived in. To go on
to higher education children had to apply to a selective junior secondary school (realskola)
which was subject to ability testing. Selective schools were from either fourth grade or sixth
grade, depending on the school and continued up to ninth or tenth grade. Attendance at a
selective junior secondary school was necessary in order to attend upper secondary school,
which in turn was necessary in order to be accepted to university. Students who stayed on
at primary school for the full seven or eight years could not pursue further education be-
yond the minimum years of schooling. They could attend vocational training or find work.
The old school system in Sweden therefore meant that children not tracked into a selective
school had fewer years of schooling than those who went to a selective school, and the peer
groups children were exposed to were more homogeneous in terms of ability.

The two most important components of the comprehensive school reform were the delay
of the selective school system, bringing together higher ability and lower ability children
for longer, and raising the minimum years of schooling to nine years for the lower ability
children. All schools would now share a unified curriculum, however in reality this was
a small change (Fischer et al., 2021). The reform roll-out was gradual and was rolled out
municipality by municipality rather than by separate schools or classes. Municipalities could
choose the timing of the roll-out of the reform, but eventually it was implemented across the
whole of Sweden, where nearly 100 per cent coverage was achieved for cohorts born 1955
onwards. The reform was finally implemented for birth cohorts born in 1962. The coverage
of the reform roll over time is illustrated in Figure I.1, indicating that whilst we do not
follow the entire roll-out period in our analysis, coverage goes from 0% to nearly 70% in
the analysis period.
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Figure I.1: Birth cohort profile of reform coverage, by individuals/municipalities
Notes: This figure plots the birth cohort profile of coverage of the comprehensive school reform, expressed as
either proportion of the population or proportion of municipalities for the birth cohorts included in our
analysis sample.

Appendix J Compulsory School Reform: Data and
Descriptives

We use data from the Swedish Interdisciplinary Panel (SIP) administered by the Centre
for Economic Demography, Lund University. This data comprises Swedish administrative
data provided by Statistics Sweden covering the universe born in Sweden during the years
1932-1952 and their parents. We exclude immigrants to ensure individuals were in fact
impacted by the reform. Using each individual’s personal identification number we are able
to match individuals to various administrative data including the income and tax records for
years 1968-2016 Statistics-Sweden (1968–2016b), the national census for 1960, 1965 and
1970 Statistics-Sweden (1960–1970), population register Statistics-Sweden (1968–2016c),
multigenerational register linking parents to children Statistics-Sweden (1932–2016a), and
education records for years 1990-2016 Statistics-Sweden (1990–2016d).

To measure exposure to the comprehensive school reform we utilise information the roll-
out of the new comprehensive school system from the Swedish National Archives as used
in Hjalmarsson, Holmlund and Lindquist (2015). For each municipality we have the first
year in which the reform was implemented, which we minus 14 years to give the first birth
cohort exposed to the reform. Individuals are assigned as exposed or unexposed to the
reform using their year of birth and municipality of residence obtained from the 1960 and
1965 censuses. We follow Holmlund (2008) and Fischer et al. (2021) and assume that
the place of residence in 1960 is where individuals born between 1943 and 1948 went to
school, and place of residence in 1965 for individuals born on or after 1949. For individuals
born before 1943 we use place of residence of the mother in 1960 (father if information
is missing for the mother). We do not use municipality of birth to assign treatment status
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as this refers to the location of the hospital where they were born, which is not necessarily
the same as their location of residence, inducing substantial measurement error in reform
assignment (cf., Fischer et al. (2021)). Municipalities merged into larger units over time,
and to make municipalities consistent, we map pre-1952 municipalities to municipalities
as defined by the 1960 census. In the few cases when a treated municipality merged with
an untreated area, we have defined the whole new municipality as treated. Because there
is a well documented partial roll-out of the reform in many municipalities one year before
the reform was officially enacted (see e.g Holmlund (2007); Hjalmarsson, Holmlund and
Lindquist (2015)), we recode for all municipalities the first exposed birth cohort in each
municipality to be one birth cohort earlier.

Our earnings measure is annual total pre-tax labour earnings and includes earnings from
work as an employee and as self-employed. We express earnings in 100,000 SEK and in
2016 prices (100,000 SEK translates to about $12,000 in 2016). We are interested in long-
run earnings and follow the literature by using an average of earnings aged 36 to 55 years
(Bhuller, Mogstad and Salvanes, 2017).

We measure years of education by combining highest achieved level of schooling (primary
and upper secondary school) as measured in the 1970 Census with highest achieved level of
post-mandatory schooling (vocational training and tertiary education) as recorded in the ed-
ucation records as documented for the years 1990-2016. We then assign the years of educa-
tion typically associated with the achieved level of schooling and post-mandatory schooling
to provide an approximation of the total years of education (see Fischer et al. (2022) for the
exact algorithm used). For mothers and fathers education we use highest level of schooling
achieved (primary and upper secondary school) as measured in the 1970 Census.

Our sample starts with 2,136,250 born in Sweden between and including the years 1932
through to 1950. We drop individuals whose data is not available on their place of residence,
years of education, earnings and reform status. We then restrict the sample to those who
were not living in the cities of Stockholm, Gothenburg and Malmö. This restriction is made
because the reform was rolled out in different parts of these cities in different years making
reform assignment difficult. These individuals made up about 19% of the total population
in 1960 (Statistics Sweden, 1961). Finally we restrict the sample to individuals born ten
years before and nine years after the pivotal reform cohort to ensure control cohorts are
not too dissimilar to treated cohorts (there are no relevant controls for the treated group 10
years after reform implementation with a restriction of born 10 years before first affected
cohorts, which is why it becomes an asymmetric sample restriction). Our final sample size
is 1,096,170 individuals.

Table J.1 provides the descriptive statistics of the variables used in the analysis for the whole
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Table J.1: Descriptive Statistics

WHOLE SAMPLE UNTREATED TREATED

YEARS OF EDUCATION

Mean 10.28 9.98 11.05
Variance 6.94 7.10 5.68
Skewness 1.06 1.19 1.06

EARNINGS (100,000 SEK PER ANNUM)

Mean 2.24 2.19 2.37
Variance 1.77 1.60 2.17
Skewness 4.33 3.08 6.29

EARNINGS AND EDUCATION

Covariance 1.39 1.38 1.26
Beta 0.20 0.19 0.22

MEAN BACKGROUND CHARACTERISTICS

Birth Cohort 1946 1945 1949
[4.21] [4.05] [3.12]

9 Year Reform Exposure 0.28 0.00 1.00
[0.45] [0.00] [0.00]

Male 0.51 0.51 0.51
[0.50] [0.50] [0.50]

N 1,096,170 791,857 304,313

Notes: This table presents descriptive statistics of our two main outcomes (mean, variance and standardised
skewness), years of education and earnings earned between 36-55 years of age, and important background
variables, and where relevant their standard deviations (shown in brackets) for the whole sample and for those
treated and untreated by the 9 year comprehensive school reform.

sample and split by those treated and not treated by the 9-year reform. Individuals in our
sample have about 10 years worth of education, a variance of 7 years and the distribution is
positively standardised skewed. The untreated have lower mean level of education, higher
variance and skewness than the treated population. Average earnings between 36-55 years
old (expressed as 100,000 SEK per annum in 2016 prices) is 224,000 SEK for the whole
population, with a variance of 1.77 and a positive standardised skew of 4.33. The untreated
have lower mean earnings, lower variance and lower standardised skewness compared to
the treated group. The treated group are born later but gender remains balanced across the
groups.

We characterise the joint distribution of education and income using the covariance and also
the slope (the covariance of education and earnings divided by the variance of education), or
more commonly thought of as the raw association between years of education and earnings.
The covariance for the whole sample and the untreated is circa 1.4, but the treated have a
lower covariance of 1.26. This lower covariance among the treated does not translate across
to the slope coefficient of education on earnings, which is slightly higher for the treated.
Broadly speaking however, the coefficient is around 0.2, suggesting earnings is on average
20,000 SEK higher with each additional year of education.
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Figure J.1: Earnings Histograms of Untreated

Figure J.1 presents histograms of the earnings distribution of the untreated for those with less
than 9 years of education and for all. This illustrates that even within the low educated group
there were still many high earners even before they were exposed to the comprehensive
school reform.

Appendix K Compulsory School Reform: Additional
Event Study Results

The PERM event studies in Figure 4 build upon PERM DiD estimates of raw moment treat-
ment effects that are subsequently plugged into the raw moment based formulas for the
parameters of interest. We illustrate these two steps. In Figures K.1 and K.2 panel (a) stan-
dard event study figures and PERM event study figures are compared for the second, third
and fourth raw moments of education and income. The differences between the two is due to
standard event study figures not accounting for the impact of trends and group differences in
lower order raw moments mechanically affecting the estimates and biasing the raw moment
treatment effects of higher-order raw moments. There are greater differences between the
standard event studies and PERM event studies for years of education, suggesting education
had a more substantial time trend during this time period.

Utilising the PERM event study raw moment estimates shown in Figures K.1 and K.2 panel
(a) we can compare these estimates to a no parameter effect event study curve. The no pa-
rameter event study curve is the impact on the parameter driven by lower order raw moments.
For there to be a parameter effect, the highest order raw moment effect must be different to
the remaining part of the parameter formula formed of the lower order moments. For the
variance, given by the formula µ2 = E[Y 2]−E[Y ]2, the no variance effect is given by E[Y ]2.
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Figure K.1: Raw Moment Event study figures
Notes: Event study figures by birth years till first treated birth cohort for raw moments of education and
earnings, comparing standard DiD with PERM DiD (Treatment Effect) estimates. DiD is implemented using
the method of De Chaisemartin and dHaultfoeuille (2020), PERM DiD utilises the method of 2.2. 95%
clustered along municipality of residence confidence intervals are shown as capped vertical lines, provided by
bootstrapping with 200 replications.
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Figure K.2: Bivariate Event Study Figures
Notes: Event study figures by birth years till first treated birth cohort for joint raw moment of education and
earnings. DiD is implemented using the method of De Chaisemartin and dHaultfoeuille (2020), PERM DiD
utilises the method of 2.2. 95% clustered along municipality of residence confidence intervals are shown as
capped vertical lines, provided by bootstrapping with 200 replications.
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Figure K.3: Raw Moment PERM Event Studies
Notes: PERM event studies comparing raw moment vs no distribution parameter effect by birth years till first
treated birth cohort are estimated using the method of 2.2. 95% clustered along municipality of residence
confidence intervals are shown as capped vertical lines, provided by bootstrapping with 200 replications.

For the skewness, given by the formula µ3 =E[Y 3]−3E[Y 2]E[Y ]+2E[Y ]3, the no skewness
effect is given by −(−3E[Y 2]E[Y ]+2E[Y ]3).

The difference between the raw moment curves and the no parameter effect curves shown
in Figures K.2 panel (b) and K.3 is the parameter treatment effect for the treated, shown in
Figure 4.

Appendix L Compulsory School Reform: Robustness of
Empirical Results

Figure L.1 presents PERM event studies for the mean, variance and skewness PTTs of earn-
ings for a sample removing the highest earner from the 293 reform year - birth cohort cells.
The precision of the estimates improves, especially for the higher-order distribution pa-
rameters. The large jump in t=6 is no longer present. However, the substantial conclusions
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Figure L.1: Income Distribution Parameter Event study figures, excluding outliers
Notes: These figures are as Figure 4 but instead estimated on a sample that excludes the single highest earner
from each g, t cell. See notes for Figure 4 for details.

remain the same; there was a positive mean earnings effect of the compulsory school reform,
a possible positive earnings variance effect but no impact on the skewness of earnings.

Table L.1 presents the results of covariate balancing regression estimates. The outcomes
are parent’s occupational status as recorded in the 1960 status, and whether either parent
is recorded as having the outcome. Column one provides estimates from an OLS regres-
sion of reform status on parent occupation group controlling for child birth cohort fixed
effects. Column two utilises the DiD method of De Chaisemartin and dHaultfoeuille (2020)
to estimate the difference between the treated and control groups. The results in column
one show economically meaningful and statistically significant associations between reform
status and parent occupation groupings suggesting non-randomness of reform roll-out even
when controlling for child birth cohort fixed effects. The results in column two suggest that
applying a DiD approach substantially improves covariate balance.
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Table L.1: Balancing Tests

OLS DiD
(1) (2)

PARENT’S CHARACTERISTICS

Blue Collar Worker 0.021 -0.008
( 0.006) ( 0.003)

White Collar Worker 0.066 0.004
( 0.013) ( 0.003)

Farmer -0.079 -0.002
( 0.012) ( 0.002)

Notes: This table presents estimates of the impact of reform exposure on background characteristics of the
parents of children exposed to the reform. Each variable is dummy variable equal to one if either parent has
the characteristic. Column (1) presents results of an OLS regression of parent characteristic on reform status
and cohort fixed effects, column (2) presents results of a DiD event study regression using the approach of
De Chaisemartin and dHaultfoeuille (2020). Clustered along municipality level robust standard errors are
presented in parenthesis in column (1) and bootstrap standard errors accounting for clustering at municipality
level from 200 replications are presented in column (2).
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