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Introduction 

Cancer  
Cancer is a malignancy caused by an uncontrolled growth of abnormal cells in any 
part of the human body. The human body consists of over 30 trillion cells, and new 
cells are produced when a pre-existing cell divides into two daughter cells. Before 
cell division starts, a dividing cell must duplicate its genome, and this process is 
strictly regulated by repair and multiple proofreading mechanisms.1 However, the 
system is imperfect, and errors can be introduced into the genome of the daughter 
cells, carrying these errors on to the next generation of cells. Such errors, known as 
“mutations”, within the genome can result in cells having fundamental growth or 
survival advantages, enabling them to outcompete normal cells. These abnormal 
cells can invade nearby tissues, spread to other parts of the body, and disrupt normal 
bodily functions, ultimately culminating in death.  

The excessive cell expansion results in the formation of abnormal tissue, generally 
referred to as cancer, neoplasms, or tumors. Cancer was first documented about 
3,500 years ago in ancient Egypt, in The Edwin Smith Surgical Papyrus.2 In the 
1910s, before the structure of the genome (the “DNA double helix”)3 was known, 
Theodor Boveri proposed the theory that cancer was caused by genetic changes.4 
This theory was not fully supported until the 1960s, when the first structural genetic 
aberration was discovered: the Philadelphia chromosome in chronic myeloid 
leukemia.5 Today, tumors are recognized as being highly dependent on ten 
biological capabilities, known as the "hallmarks of cancer", one of which is genomic 
instability. 6–8 More than 200 different types of cancer are now characterized, each 
with a unique genetic makeup that affects different body systems. This diversity is 
reflected in the World Health Organization's (WHO) estimation of 20 million new 
cancer cases and 9.7 million cancer-related deaths in 2022.9  

This thesis will focus on hematologic malignancies, which impact the blood system. 
Hematological malignancies serve as an exceptional model for cancer research, 
offering critical insights into the complex biology of cancer. Due to the accessibility 
of bone marrow and blood compared to solid organs, research in this field has 
significantly advanced our understanding of how cancer develops. These 
breakthroughs are directly influencing the development of innovative cancer 
therapies, solidifying hematological malignancies as an indispensable model to 
study cancer, improve diagnosis, and to identify new treatment alternatives. 
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Next generation sequencing  
The Human Genome Project, launched in the 1990s and completed in 2003, 
successfully sequenced approximately 92% of the human genome with high 
accuracy, marking a major milestone and the beginning of a new era in the field of 
genetics.10 However, the first truly complete, gapless, human genome was not 
reported until 2022.11  

After the introduction of next-generation sequencing (NGS) technologies in the 
2000s, enabling rapid and highly parallel sequencing of DNA and RNA, our 
understanding of the genetic landscape in cancer has dramatically increased.12 These 
studies have enabled detailed mapping of mutational patterns and the effects of 
various mutations on global gene expression.13 With this rapid technological 
advancement, The Cancer Genome Atlas (TCGA) has become the most 
comprehensive and largest repository of cancer genomic data. This repository holds 
genomic information from over 20,000 tumor and matched normal samples across 
33 types of cancer and currently hosts more than 2.5 petabytes of publicly available 
sequencing data (https://cancergenome.nih.gov), providing an extensive resource 
for cancer research.14 Today, next-generation sequencing encompasses several 
methods, each with unique advantages and applications, such as whole-genome 
sequencing (WGS), targeted DNA sequencing (e.g., whole-exome sequencing and 
gene panels), RNA sequencing, epigenomic sequencing, and chromatin 
immunoprecipitation sequencing. Importantly, many of these methods are now used 
daily in research and in clinical applications, spanning diagnostics, prognostics, and 
therapeutic development. 

Bioinformatics 
Advancements in sequencing technology have led to a decrease in costs, resulting 
in the rapid generation of immense volumes of data, that require specialized 
expertise for analysis. This transformative field of data analysis, bioinformatics, has 
become fundamental for modern cancer genomic research. Bioinformatics bridges 
biology and data science by combining computer science, mathematics, statistics, 
and biology to enable the interpretation of large-scale biological data. Sequence 
analysis is a standardized, multi-stage process that begins at the laboratory bench 
(Figure 1). Prior to sequencing, DNA or RNA molecules are extracted from 
millions of cells in a biological sample of interest. These molecules undergo library 
preparation, which typically involves fragmentation and addition of adapter 
sequences and molecular barcodes needed for sequencing. Billions of DNA 
fragments are loaded into the sequencing instrument and these fragments are 
sequenced simultaneously, generating an immense amount of data.15 

https://cancergenome.nih.gov/
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Figure 1 | Standard sequencing workflow.  
A schematic illustration of the standard sequencing workflow, outlining the process from patient sample 
collection to bioinformatic analysis and interpretation. 

To interpret these data, bioinformatics is applied. In short, this is the process of 
determining the precise order of nucleotides in DNA molecules, with the purpose 
of translating the genetic information into a readable format, allowing for the 
analysis of the DNA's structure and function. The first step involves preprocessing 
of the raw sequencing data that are converted into independent FASTQ files. 
FASTQ files contain sequencing reads, representing the nucleotide sequences of 
unique DNA molecules, tagged with a unique read name and quality scores that 
describe the probability that each nucleotide call is correct. Subsequently, sequence 
alignment is performed by aligning the reads in the FASTQ files to a human 
reference genome and mapping them to genes or transcripts. This results in binary 
alignment map files,16 which can be further interpreted through integrative analysis 
(Figure 1).  

Today, a plethora of data analysis tools exist to enable genetic data analysis, 
encompassing both standard preprocessing and integrative data analysis. Integrative 
analysis uses various analytical techniques, with key steps including data 
visualization, which graphically represents the data to facilitate biological 
interpretation.  

Single-cell sequencing  
Genetic data in healthy specimens and cancer have, to date, mainly been studied 
through bulk cell sequencing, where genetic alterations of individual cells are 
averaged across cell populations. While bulk analysis has offered valuable insights 
into genetic variability and identified several genetic drivers of tumor entities, it 
fails to capture the cellular heterogeneity of both normal and malignant cells within 
tumors. This heterogeneity likely plays a pivotal role in cancer pathogenesis and 
contributes to the highly individualized and often ineffective therapeutic responses 
observed in cancer treatment.  
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The emergence of powerful single-cell technologies has revolutionized cancer 
genomics, offering new ways to characterize cellular ecosystems by isolating 
individual cells before sequencing (Figure 2). The first full transcriptome 
sequencing study of a single cell was reported in 2009, involving a mouse 
embryonic cell.17 In 2012, the first study describing single-cell RNA sequencing 
(scRNA-seq) of single cancer cells was published, analyzing 39 individual 
melanoma cancer cells.18 These studies marked a milestone in genomics and lead to 
a broad uptake of single-cell technologies in biomedical research. 
 

 
Figure 2 | Single-cell droplet isolation.  
A schematic representation of single-cell isolation through droplet formation in a microfluidic device. 

  

With continuous and remarkable advancements in single-cell technologies, two 
large-scale initiatives were subsequently launched in 2016 and 2018: the Human 
Cell Atlas (HCA) (https://www.humancellatlas.org/) and the Human Tumor Atlas 
Network (HTAN) (https://humantumoratlas.org/).19,20 The HCA aims to map human 
cell types, including their molecular characteristics, across different tissues and 
organs in the healthy human body.19 In contrast, the HTAN established a framework 
of single-cell atlases of tumor cells and their microenvironment across various 
cancers, utilizing single-cell and spatially resolved technologies alongside the 
collection of extensive clinical data.20 This rapid generation of highly informative 
data have provided a foundation for our understanding of both healthy and 
cancerous cell development.  

Many single-cell modalities have been developed enabling, transcriptomic, genetic, 
epigenetic, and proteomic studies of individual cells,21 with some protocols also 
allowing multimodal measurement, for example combined readout of 
transcriptomic and epigenetic alterations in the same cell.22 (see Methodological 
approaches and single-cell technologies). These advances present exciting avenues 
for a more comprehensive understanding of the cellular and molecular heterogeneity 
within a sample, allowing precise analyses across multiple dimensions within 
individual cells.  

  

https://www.humancellatlas.org/
https://humantumoratlas.org/
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Normal Hematopoiesis  
Daily, the human body produces 300 billion blood cells.23 This formation of cellular 
blood components, known as the hematopoiesis, takes place in the bone marrow. 
All cells derive from the quiescent hematopoietic stem cells (HSCs) defined by self-
renewal capacity and multipotency; giving rise to several lineage-restricted cells.24,25 
The definitive experimental evidence for the existence of self-renewing, multipotent 
HSCs capable of producing all blood cell types was provided by Till and McCulloch 
in 1961.24 Since then, HSCs and the hematopoietic system have been among the 
most studied regenerative tissues. The essential functions of hematopoiesis, such as 
oxygen transport, coagulation, and immune response, are carried out by specialized, 
late-stage blood cells, many of which are short-lived and require continuous 
replenishment.26 The high turnover of short-lived, mature blood cells demands a 
strictly regulated hematopoiesis, which is programmed to rapidly adapt to shifting 
conditions, such as infections and blood loss. This adaptability allows for the 
expansion and skewed production of blood cells.27 If somehow this fine-tuned 
regulatory machinery of hematopoietic differentiation, proliferation, and survival is 
disturbed by genetic alterations, it can lead to severe hemopoietic malignancies, 
with fatal outcomes. 

The hematopoietic hierarchy and blood lineages 
The classical model of the hematopoietic system has a hierarchical structure, with 
repopulating HSCs residing at the apex of the hierarchy (Figure 3). Lineage 
development occurs through lineage-committed progenitor populations, such as 
multipotent progenitors (MPPs), common myeloid progenitors (CMPs), and 
lymphoid-primed multipotent progenitors (LMPPs), in a stepwise, ordered series of 
discrete branching steps.28,29 As blood cells mature along the hierarchy, stemness 
and multipotency are lost. Progenitors differentiate into specialized cell lineages, 
which are broadly divided into two branches. The myeloid lineage includes 
granulocytes (basophils, eosinophils, neutrophils), monocytes/macrophages, 
dendritic cells (DCs), megakaryocytes/platelets, and erythrocytes. The lymphoid 
lineage comprises natural killer (NK) cells, T cells, B cells, and a subset of DCs 
(Figure 3). 
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Figure 3 | The hematopoietic tree model.  
The classical model of the hematopoietic system shows HSCs at the apex of the hematopoietic 
hierarchy, and as cells differentiate, multipotency is lost, and the cells become increasingly lineage-
restricted (left). Both T cells and B cells involve a multi-step maturation process. A force-directed K-
nearest neighbors graph of all hematopoietic cells from normal bone marrow samples, based on single-
cell RNA sequencing data. Each cell is represented by a dot and colored according to its cell type 
(right). HSC; hematopoietic stem cells, MPP; multipotent progenitors, CMP; common myeloid 
progenitors, LMPP; lymphoid-primed multipotent progenitor, MEP; megakaryocyte-erythroid 
progenitors, GMP; granulocyte-monocyte progenitors, CLP; common lymphoid progenitors, and DC; 
dendritic cells. 

 

The architecture of the hematopoietic system has been refined and redefined 
multiple times, particularly over the last few decades. The current understanding of 
the hematopoietic system primarily comes from the identification and isolation of 
progenitor populations using cell surface markers through fluorescence-activated 
cell sorting (FACS), colony-forming assays, and transplantation experiments. These 
studies initially relied on murine models, and later on humanized murine models.30,31 
As hematopoiesis is continually refined by additional studies, new modifications to 
the model have emerged. These include the later divergence of lymphoid and 
myeloid lineage fates in the differentiation hierarchy.32,33 In addition, early 
megakaryocyte branching has been identified,34 demonstrating that megakaryocyte 
cells can bypass the stepwise progenitor maturation process and arise directly from 
the multipotent HSC compartment (Figure 3). However, with the emergence of 
high-resolution single-cell technologies,23,35–37 there has been a game-changing 
advancement in the understanding of hematopoietic cellular trajectories and a 
complete reassessment of the classical hierarchical model, which endorsed stepwise 
maturation. Today, hematopoiesis is suggested to follow a continuous process in 
which cells gradually mature and lose stemness, without distinct intermediate states, 
referred to as the continuum model (Figure 4).38  
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Figure 4 | The hematopoietic continuum model. 
The continuum model of the hematopoietic system shows a heterogeneous HSC pool at the apex of 
the hematopoietic hierarchy, where cells do not pass through discrete progenitor states but instead 
differentiate from HSCs to mature cells in a continuous process. HSC; hematopoietic stem cells, and 
DC; dendritic cells. 

Heterogenous HSC pool  
The continuum model represents a diversity of possible routes of differentiation and 
emphasizes a functionally and molecularly heterogeneous HSC pool.23,35–40 Instead 
of committed progenitor cells such as MPP, CMP, and LMPP, the HSC pool shows 
a repertoire of distinct HSC subsets, each with biases toward specific lineages and 
varying levels of self-renewal potential (Figure 4).36,37 These biases reveal 
overlapping lineage potential, rather than a strict separation between myeloid and 
lymphoid fates, suggesting that HSC differentiation is a more flexible and plastic 
process. Under specific conditions, cells within the HSC pool can switch between 
lineages and have the capacity to transdifferentiate. As a result, various mature cell 
types can originate from more than a single differentiation trajectory.38–41 

Specialized functional cells  
While the heterogeneous HSC pool serves as the foundation of the hematopoietic 
system, ensuring continuous repopulation, specialized late-stage blood cells carry 
out the essential hematopoietic functions. The myeloid lineage plays crucial roles in 
homeostasis, tissue repair and innate immunity.26 While erythrocytes and 
megakaryocytes are responsible for oxygen transport and coagulation, the 
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remaining myeloid cells, along with lymphoid-lineage NK cells, form part of the 
innate immune system. This system acts as the first line of defense, providing a 
rapid, nonspecific response against pathogens, foreign substances, and abnormal 
cells, such as cancerous cells. It is an intertwined system, with various cells working 
together, relying on physiological, endocytic, phagocytic, and inflammatory 
mechanisms.42 In particular, monocytes play a role in orchestrating inflammation by 
releasing pro- and anti-inflammatory signals (e.g. IL-1β, TNF-α, IFN-γ, IL-10 and 
TGF- β). Some myeloid cells, such as monocytes and DCs, also function as antigen-
presenting cells. Antigen-presenting cells reveal the antigen via major 
histocompatibility complex (MHC) molecules, encoded by human leukocyte 
antigen (HLA) genes, to T cells.26 This process can activate the adaptive immune 
system, which includes T and B cells and provides a specific, targeted immune 
response and long-term immune memory. 

The intricate maturation of T cells and B cells 
Both T cells and B cells undergo a complex maturation process involving multistep 
receptor development through genetic rearrangements known as V(D)J 
recombination, which represents a hallmark of adaptive immunity.26 This process 
generates a vast array of antigen receptors, T cell receptors (TCRs) and B cell 
receptors (BCRs), enabling these cells to recognize diverse pathogens.26,43,44 

T cells originate in the bone marrow but fully mature in the thymus, where they 
undergo crucial stages of development. These include the double-negative stage, 
where T cells rearrange their TCR genes, followed by the double-positive stage, 
where they express both CD4 and CD8. They then differentiate into either CD4+ or 
CD8+ naïve T cells. Upon encountering an antigen, naïve T cells become activated, 
undergo clonal expansion, and differentiate into effector T cells (CD8+ cytotoxic T 
cells or CD4+ helper T cells) and memory T cells.26,43 

Unlike T cells, the first critical stages of B cell maturation occur in the bone marrow. 
B cells produce antibodies, with immunoglobulin (Ig) genes serving as blueprints 
(Figure 5). During V(D)J recombination, these DNA segments are rearranged to 
encode the antigen-binding part of a functional membrane-bound BCR. Upon 
activation, B cells secrete the soluble form of the BCR, known as an antibody.26,44 
An antibody is composed of four polypeptide chains, two identical heavy chains 
(IgH) and two identical light chains (IgL). These are encoded from multiple gene 
regions, including the IGH locus, IGK locus, and IGL locus in humans, with the 
latter two encoding light chain kappa and light chain lambda (Figure 5). The IGH 
locus contains the gene segments V (Variable), D (Diversity), J (Joining), and C 
(Constant, which determines the antibody class: IgM, IgG, etc.), whereas the IGL 
locus lacks a D gene segment. Additional variability in the DNA sequences 
encoding IgH and IgL is generated through random nucleotide addition and 
trimming between the V-D, D-J, or V-J gene segments.26,44 
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Figure 5 | V(D)J-recombination. 
As B cells mature, they generate antibodies through a process called V(D)J recombination, in which 
immunoglobulin genes undergo DNA segment rearrangement to create diverse antigen receptors. 
CLP; common lymphoid progenitors. 

Ig rearrangements occur gradually and are associated with discrete maturation 
stages during B cell differentiation. At the common lymphoid progenitor (CLP) 
stage, no rearrangement has occurred yet. However, in the early Pro-B cell stage, 
IGH rearrangement begins with D-J recombination, followed by V-DJ 
recombination in the late Pro-B cell stage. Pro-B cells then differentiate into Pre-B 
cells, where IGK/IGL rearrangement occurs between V and J segments. If 
successful, an early version of the BCR is expressed on the cell surface (Figure 
6).26,44  
 

 
Figure 6 | V(D)J-recombination during B cell maturation..  
A force-directed K-nearest neighbors graph of cells involved in B cell maturation based on single-cell 
RNA sequencing data, accompanied by a cell density plot showing the number of cells along the 
trajectory. Inferred time points are indicated along the B cell trajectory. Cells are colored by cell type 
(left) and B cell receptor chain status (right). HSC; hematopoietic stem cells, LMPP; lymphoid-primed 
multipotent progenitors, CLP; common lymphoid progenitors, BCR; B cell receptor, IGH; 
immunoglobulin heavy chain, and IGL; immunoglobulin light chain.  
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As pre-B cells transition into immature B cells, the membrane-bound BCR 
undergoes negative selection to ensure it does not bind to self-antigens. From this 
point, B cells leave the bone marrow as naïve B cells. Upon activation by antigen 
binding, they undergo clonal expansion and differentiate into either plasma cells, 
which directs large-scale antibody production, or memory B cells.26,44 

Regulation of hematopoiesis 
Together, extrinsic and intrinsic factors create a dynamic regulatory network that 
ensures proper hematopoietic differentiation by guiding HSCs and progenitor cells 
along specific pathways to produce specialized blood cells.26 This process, known 
as lineage commitment,45 occurs prior to the functional specialization of already 
committed cells. Extrinsic factors refer to external signals that influence 
hematopoietic cells, such as immune responses triggered by infection, physical 
forces in the bone marrow, or hypoxia. For instance, low oxygen (hypoxic) 
conditions influence erythropoiesis, the production of erythrocytes.26 Extrinsic 
factors are typically supplied by the bone marrow microenvironment through 
various cell-to-cell interactions and the secretion of cytokines essential for lineage 
specificity.46 Intrinsic factors refer to internal genetic, epigenetic, and molecular 
signals within cells that regulate their response to extrinsic cues and guide their 
commitment to a specific lineage or specialized function. These factors include 
transcription factors, epigenetic modifications, and intracellular signaling 
pathways.26,45 

Bone marrow microenvironment  
The bone marrow provides structural and biochemical lifelong support for 
hematopoietic progenitors.46,47 These essential signals are largely supplied by 
specialized microenvironments known as niches (Figure 7). These niches form a 
multiparametric ecosystem composed of extracellular matrix components, multiple 
hematopoietic and non-hematopoietic populations, and their molecular signals. 
Specifically, the main components of the niche include structural extracellular 
matrix components, such as collagen and proteoglycans, as well as various cell 
types, including mesenchymal stromal cells (MSC), perivascular cells, osteoblasts, 
endothelial cells, and HSC-derived cells like megakaryocytes and immune cells. 
This matrix regulates HSC function through cell-cell interactions and secretion of 
factors like cytokines and growth factors, such as IL-3, IL-6, TGF-β, and 
CXCL12.48,49 These non-autonomous signals are essential for the HSC pool, 
supporting niche retention, maintaining self-renewal, promoting quiescence, and 
restricting differentiation. In this context, CXCL12 is a critical chemokine primarily 
secreted by non-hematopoietic cells such as MSCs. CXCL12 binds to its receptor, 
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CXCR4, which is highly expressed on HSCs. The CXCL12-CXCR4 interaction 
anchors HSCs within the bone marrow and maintains them in a quiescent state. This 
well-studied interaction is relevant in hematological malignancies, where this 
signaling provides protective niches, allowing leukemic cells to evade treatments 
like chemotherapy.50 
 

 
Figure 7 | Bone marrow microenvironment.  
An illustration of the key components of the bone marrow niche, showcasing its complex, 
multiparametric ecosystem composed of extracellular matrix components, diverse hematopoietic and 
non-hematopoietic cell populations, and their molecular signals. HSC; hematopoietic stem cells, and 
MSC; mesenchymal stem cells. 

Transcriptional lineage priming 
Cell fate is governed by changes in gene expression, orchestrated by transcription 
factors that can be rapidly activated in response to external signals.1 These 
transcription factors are crucial proteins that set the stage by activating or repressing 
gene expression programs. Master transcription factors achieve this by directly 
binding to specific DNA sequences, such as promoters or enhancers, acting as 
"commanders" that dictate cell identity. Lately, the heterogeneous HSC pool has 
been shown to display gene expression biases toward specific lineages,38–41 a 
phenomenon proposed to result from multilineage priming. Here, transcription 
factors play a crucial role to ensure hematopoietic plasticity. This flexibility is 
achieved by fine-tuning minimal activation or inhibition of gene expression patterns 
for alternative lineages. During lineage commitment, one transcriptional program 
dominates, suppressing competing programs driven by transcription factors. One 
well-established cross-antagonistic interaction is that of PU.1 (encoded by SPI1) 
and GATA1.51 When GATA1 is preferentially expressed, it results in the 
suppression of PU.1 and enforces differentiation toward megakaryocytic and 
erythroid cells, whereas PU.1 represses GATA1 and directs cells toward the 
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lympho-myeloid lineage. Transcription factors are universal regulators for all cells, 
coordinating many cellular trajectories, such as B-lymphoid lineage commitment 
(e.g., EBF1, ERG, IKZF1, and PAX5),44,52 myeloid development (e.g., PU.1, 
C/EBPα, β, ε, and IRF8),53 and T cell maturation (e.g., LEF1, GATA3, and TCF 
family factors).43 Lately, many transcription factors have also been suggested to be 
mediators in T cell dysfunction through so-called epigenetic enforcement of 
exhaustion, such as NFAT, BATF, NR4A, and TOX-family genes.54,55 This 
emphasizes the role of transcription factors in cell fate, whereas T cell dysfunction 
refers to a condition in which T cells fail to perform their normal functions 
effectively, such as recognizing and responding to cancerous cells. 

Epigenetic regulation 
Epigenetic modifications fine-tune hematopoiesis in response to environmental cues 
by controlling gene expression without altering the underlying DNA sequence. This 
is mainly achieved through DNA methylation, histone modification and chromatin 
remodeling.56 These changes can influence cell reprogramming and the 
differentiation potential of HSCs, as demonstrated by clonal tracking of individual 
HSCs in vivo.57 During lineage commitment, dynamic nature of chromatin structure 
regulates the accessibility of DNA sequences in the chromatin.58,59 However, the 
temporal interactions between individual transcription factors and their chromatin 
targets during differentiation remain poorly understood.60 Although many other key 
mechanisms influencing these chromatin dynamics have been described, such as the 
role of certain epigenetic modifiers, one example is the scaffold protein ASXL1,61 
which is heavily involved in regulating histone modifications. Other examples of 
epigenetic modifiers include enzymes such as TET2 and DNA methyltransferases 
(DNMTs), including DNMT1, DNMT3A, and DNMT3B.62,63 These epigenetic 
modifiers play a role in maintaining and establishing DNA methylation patterns, 
which are crucial for epigenetic regulation. Furthermore, they have been linked to 
skewed lineage commitment. For instance, elevated DNMT expression favors 
differentiation toward the myeloid lineage. Mutations in the genes encoding 
ASXL1, DNMTs and TET2 are frequent early oncogenic events in hematological 
malignancies. These mutations can disrupt normal epigenetic regulation, leading to 
abnormal gene expression and, consequently, altered cell maturation.61,64,65 

Signaling pathways 
Signaling pathways play key roles in lineage commitment and are often influenced 
by both intrinsic and extrinsic signals. These pathways can be activated by extrinsic 
factors through interactions with receptors on the cell surface, leading to cascades 
of intracellular signaling events. For instance, Notch signaling is critical for T cell 
differentiation.43 Moreover, common intracellular signaling molecules, such as 
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AKT, mTOR, and MAPK, are active in extensive signaling networks that can be 
subdivided into different groups.66,67 For example, the phosphoinositide 3-kinase 
(PI3K)/AKT signaling pathway plays a critical role in various cellular processes. 
Persistent AKT signaling can promote C/EBPα-dependent mechanisms that enforce 
myeloid differentiation.68 Additionally, the PI3K/AKT pathway is pivotal in the 
transition from early progenitor B cells to more differentiated B cells.44,69,70 In B 
cells the PI3K/AKT pathway is activated as a downstream signaling cascade 
triggered by the pre-BCR complex on the cell surface and promotes cell survival by 
inhibiting apoptotic pathways. PI3K/AKT is one of many signaling pathways that 
interact with several others, including Notch, mTOR, and MAPK, all of which 
create an intertwined network capable of controlling cell survival, proliferation, and 
differentiation. When aberrantly activated by oncogenic events, these pathways can 
drive constitutive signaling, thereby facilitating the survival of cancerous cells. 
Hence, such dysregulation in malignancies represent vulnerabilities that can serve 
as basis for therapeutic interventions, as demonstrated in Article I and Article II.  

Hematological malignancies 
The WHO and the International Consensus Classification (ICC) have categorized 
malignancies of the hematopoietic system based on clinical aspects and distinct 
genetic alterations.71–73 These classifications encompass over 50 different 
malignancies, reflecting advances in understanding these diseases. Malignancies 
originating in the bone marrow are referred to as leukemia. Leukemia can progress 
either slowly or rapidly, leading to impaired production of healthy blood cells in the 
bone marrow over years or just a few days, respectively. Based on disease 
progression, leukemia is further categorized into chronic and acute leukemia. This 
thesis focuses on the more rapidly and aggressively evolving leukemias, known as 
acute leukemias. 

Acute Leukemia  
Acute leukemias are highly heterogenous malignancies caused by recurrent 
mutations and chromosomal aberrations.74,75 These genetic alterations disrupt 
normal hematopoiesis and result in an uncontrolled expansion of abnormal cells at 
the expense of normal blood cell formation (Figure 8). The expansion of abnormal 
cells and lack of functional blood cells results in symptoms such as fatigue, 
increased risk of infection, shortness of breath, and abnormal bruising and bleeding. 
If left untreated, acute leukemia progresses rapidly and may be fatal within weeks.26 
Acute leukemias are broadly divided into acute myeloid leukemia (AML) and acute 



25 

lymphoblastic leukemia (ALL), based on the lineage of the hematopoietic cell 
affected by acquired genetic alterations and how these alterations impair the 
maturation and differentiation of cells.74,75 In AML, the myeloid lineage is affected, 
leading to the accumulation of immature myeloid progenitors. In contrast, ALL 
involves the expansion of lymphoid progenitor cells. In rare cases, leukemic cells 
express lineage markers of both myeloid and lymphoid cells; these leukemias are 
classified as mixed phenotype acute leukemia.71  
 

 
Figure 8 | The cellular landscape of acute leukemia.  
UMAP visualization of single-cell RNA sequencing gene expression data representing cells from acute 
leukemia and normal bone marrow samples, representing a total of 569,993 cells. Every single cell 
represents a dot, and each cell is colored by cell type. HSC; hematopoietic stem cells, LMPP; 
lymphoid-primed multipotent progenitors, GMP; granulocyte-monocyte progenitors, cDC; Conventional 
dendritic dell and pDC; plasmacytoid dendritic cell. 
 

AML is the most common form of acute leukemia, with a yearly incidence of 
approximately 4 per 100,000 inhabitants, whereas ALL has an incidence of 2 per 
100,000 inhabitants.76,77 Prior to the advent of next-generation sequencing, risk 
stratification in acute leukemias relied on methods such as morphology, 
conventional karyotyping, fluorescence in situ hybridization, immunophenotyping 
by FACS, and targeted molecular analyses. However, these techniques are limited 
in their ability to detect cryptic genetic rearrangements, structural DNA variations, 
and gene expression changes.26 The outcome of acute leukemias is now understood 
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to be heavily influenced by the distinct types of genetic changes. Today, these 
genetic alterations serve as critical markers for the classification and risk 
stratification of acute leukemias, allowing treatment strategies to be tailored 
accordingly.78  

Age at diagnosis is also a critical determinant of prognosis. Acute leukemias affect 
all age groups, but AML is more common in the elderly, with a median age at 
diagnosis of approximately 72 years.79–81 In contrast, ALL is the most common 
childhood malignancy, accounting for approximately 30% of all childhood cancers, 
with a median age at diagnosis in children being approximately 5 years and in adults 
around 51 years at diagnosis.82–85 The outcome for children is typically favorable, 
with a 5-year survival rate of around 75% in AML and 90% in ALL.86–88 However, 
survival rates decline with age, dropping to about 50% in younger adults (<65 years) 
and below 10% in elderly patients (>65 years).77,88,89 Nevertheless, the prognosis for 
patients with relapse is poor, regardless of age or type of leukemia.77,86–89 

Leukemic transformation 
During the last decade, scientific efforts have generated comprehensive insights into 
a large set of leukemia-associated mutations and their role in driving the disease. 
The number and type of mutations can differ drastically between different leukemia 
subtypes. In fact, the majority of mutations in a single leukemia are considered 
harmless and referred as “passenger mutations” as they are not expected to confer 
any growth advantage. Conversely, mutations that promote cancer development are 
termed “driver mutations”.13 The trajectory of cancer development is shaped by the 
accumulation of both driver and passenger mutations over time, with the patterns 
and timing of their acquisition varying both between and within different leukemia 
entities. Leukemia comprises a genetically diverse group of diseases, with its 
complexity arising from multiple somatic driver mutations that define distinct 
subgroups.71–73 These mutations drive the disease pathogenesis and can therefore 
inform therapeutic strategies.  

When a mutation occurs, it gives rise to a group of cells sharing the same genetic 
profile, known as a clone. Over time, new mutations can accumulate, leading to 
formation of subclones. A dominant clone arises when a mutation or a set of 
mutations confer a selective advantage.90–92 In the context of cancer, this means that 
the mutation/mutations provide benefits such as faster growth and division, 
resistance to cell death (apoptosis), immune evasion, and/or resistance to treatments. 
The complexity of leukemia is partly due to the coexistence of multiple leukemia 
clones with distinct genetic profiles and their evolution over time.90–94 A classical 
model of subclone progression follows a linear evolutionary trajectory, where the 
sequential acquisition of genetic alterations produces increasingly fit leukemia 
clones that outcompete their predecessors through selective sweeps (Figure 9). 
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However, high-throughput sequencing studies have revealed increased complexity 
in the clonal architecture of leukemia, which exhibits clonal evolution following a 
branching pattern, where a single founding clone can give rise to multiple 
genetically distinct subclones that evolve in parallel (Figure 9).90–97 In this model, 
multiple subclones frequently coexist within the bulk leukemia population and 
actively compete for predominance. Subclones can play a crucial role in leukemia 
relapse. High-throughput sequencing studies have demonstrated that relapse often 
originates from minor subclones present at diagnosis or from rare ancestral clones 
that survive treatment.90–98 These subclones can acquire additional mutations, 
providing a survival advantage that allows them to expand and dominate, leading to 
disease recurrence.  
 

 
Figure 9 | Clonal evolution in leukemia.  
Additional genetic alterations lead to the formation of distinct leukemia subclones, which evolve through 
either linear or branching paths. In linear evolution, dominant clones emerge sequentially via selective 
sweeps of fitter subclones. Branching evolution, however, results in multiple divergent leukemia clones. 

 

Cancer progression can vary drastically, even within specific entities. In solid 
tumors and some myeloid malignancies, such as certain types of AML, mutations 
often accumulate gradually over time before a driver event occurs.93 In contrast, 
ALL often develops following a single strong genetic event. As the disease 
progresses, however, new mutations may emerge, some of which can confer a 
survival advantage and lead to the formation of new subclones.99,100  

The pre-leukemia model  

In adult AML, clonal hematopoiesis is a common phenomenon characterized by the 
progressive expansion of clones with enhanced fitness over time.101–103 This process 
often begins with an initial mutation in a HSC or a progenitor cell leading to the 
formation of pre-leukemia stem cells (pre-LSCs; Figure 10).93 Temporal patterns 
of preleukemic mutation acquisition most commonly start with epigenetic modifiers 
(DNMT3A, TET2 and ASXL1), potentially followed by splicing factors 
(SF3B1 and SRSF2) and apoptosis regulators (TP53 and PPM1D).104 The pre-LSC 
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cells retain multilineage potential and can produce cells of all hematopoietic 
lineages, as demonstrated by the presence of mutations in non-leukemic lineages, 
such as T cells.93 Pre-LSCs can remain clinically silent for years but lay the 
groundwork for leukemic transformation when additional cooperating mutations are 
acquired. These mutations drive the progression from clonal hematopoiesis to full-
blown leukemia by altering the bone marrow microenvironment and promoting LSC 
dominance, which acquire unlimited self-renewal and proliferative capacity (Figure 
10). At this stage, a block in differentiation results in the accumulation of leukemic 
blast that are produced by the LSC.65,93 Secondary events or cooperating mutations 
required for leukemic transformation typically include driver mutations, such as 
NPM1 or activating mutations in tyrosine kinase receptors like FLT3.105  

A pre-leukemic stage is most common in AML, but can also exist in pediatric ALL. 
For example, 1-5% of healthy newborns are carrying an ETV6::RUNX1 fusion 
gene.106–108 This alone is not enough to cause leukemia. Secondary genetic events 
(such as CDKN2A deletions) are typically required to develop ALL.106,109  
 

 
Figure 10 | The model of leukemic transformation.  
Primary mutations in HSCs can transform them into pre-LSCs, which exhibit enhanced self-renewal 
and clonal expansion while retaining multilineage potential. The acquisition of secondary mutations 
further transforms pre-LSCs into LSCs, which drives the development of full-blown leukemia. HSC; 
hematopoietic stem cells and LSC; leukemia stem cells. 

 

Clonal hematopoiesis is common in older adults and is referred to as age-related 
clonal hematopoiesis (ARCH).101–103 ARCH has been identified in 50% of 
individuals over the age of 85.110 If an ARCH associated mutation occurs in a 
candidate leukemia driver gene and the variant allele frequency exceeds 2%, the 
condition is referred to as clonal hematopoiesis of indeterminate potential (CHIP).111 
CHIP is suggested to act as a pre-malignant state. However, approximately 10% of 
healthy individuals over the age of 70 have a detectable CHIP.112 In fact, when 
applying sensitive high-throughput sequencing techniques that allow for the 
detection of mutations below 2% variant allele frequency, CHIP clones can be 
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detected in nearly all elderly adults.113 Despite this, only a small fraction of 
individuals with these mutations progress to AML, indicating that additional genetic 
or environmental factors are required for malignant transformation.  

In comparison to solid tumors,114 relatively few mutations are required for the 
development of acute leukemia, with an average of 13 coding mutations per patient 
in adult AML, as reported by the TCGA and Beat AML studies.115–117 The influence 
of age on genomic instability is evident when comparing pediatric and adult AML. 
Pediatric AML typically harbors fewer mutations, averaging around 5 somatic 
coding mutations per patient,117 and is more often driven by structural chromosomal 
alterations rather than the accumulation of point mutations seen in adults. Similar 
trends are observed in ALL, where the mutational burden is generally even lower 
than in AML.100,118,119 The low mutational burden in childhood acute leukemia is 
partly due to the fact that genetic mutations accumulate with age, as evidenced by 
ARCH. Additionally, adults are exposed to environmental and lifestyle risk factors 
that further increase the likelihood of mutations. 

Acute myeloid leukemia  
AML was the first cancer to be fully characterized by WGS, with pioneering studies 
by TCGA leading to the discovery of multiple novel disease-driving 
alterations.115,120 With continuous advances in molecular profiling, more AML 
subtypes are being genetically defined and redefined. The distribution of AML 
subtypes in adults is generally difficult to define, as it is largely influenced by age, 
even within adult and pediatric populations (Table 1).115–117,121 
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Table 1 | Summary of genetically defined subtypes in AML. 
Distribution of genetically defined subtypes in AML according to WHO 5th edition in adult AML and 
pediatric AML.73,122 

Defining genetic abnormalities Epidemiology 

AML with NPM1 mutation ~33% in aAML, 6-8% in pAML 

AML-MR (including cytogenetic 
abnormalities and somatic mutations)*,† 

24-25% in aAML, less frequent in pAML 

AML with CEBPA mutation 5-11% in aAML, ~5% in pAML 

APL with PML::RARA  5-8% (more prevalent in younger patients, 
frequency declines with age) 

AML with CBFB::MYH11  5-8% (more prevalent in younger patients, 
frequency declines with age) 

AML with KMT2A-r 2-3% in aAML, ~20% in pAML 

AML with NUP98-r 2-3% in aAML, 2-5% in pAML 

AML with MECOM-r 1-2% in aAML, ~2% in pAML 

AML with RUNX1::RUNX1T1  1-5% 

Additional, rare (<2%) entities: AML with DEK::NUP214, RBM15::MRTFA, BCR::ABL1, 
CBFA2T3::GLIS2 (more prevalent in pAML), KAT6A::CREEBP, FUS::ERG, MNX::ETV6 
(predominately in pAML) and NPM1::MLF1  

Additional somatic mutations not included as defining entities by WHO 5th edition 

AML with TP53 mutations 10% aAML, < 1% pAML 

aAML; adult acute myeloid leukemia, pAML; pediatric acute myeloid leukemia, APL; acute 
promyelocytic leukemia, MR; myelodysplasia-related, -r; rearranged, and WHO; world health 
organization. 
*AML-MR cytogenetic abnormalities includes; complex karyotype (≥3 abnormalities), 5q deletion, 
Monosomy 7, 7q deletion, 11q deletion, 12p deletion, Monosomy 13, 13q deletion, 17p deletion, 
isochromosome 17q, and idic(X)(q13) 
†AML-MR somatic mutations includes mutations in; ASXL1, BCOR, EZH2, SF3B1, SRSF2, STAG2, 
U2AF1, and ZRSR2. 

The main subtypes in adult AML are defined by mutations in NPM1, 
myelodysplasia-related (MR) genes, CEBPA and TP53 AML.115,116 Pediatric AML 
has historically been less well-characterized compared to adult AML. However, 
recent advances have refined genomic classifications in this age group.117,121,123 
Pediatric AML shows a bias toward gene fusions, with KMT2A rearrangements in 
20% being among the most prevalent driver events. These occur far more frequently 
in pediatric AML than in adult AML, where KMT2A-rearranged (KMT2A-r) AML 
is represented at a low frequency (~2-3%). Events defined by mutations are less 
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frequent in pediatric AML with exceptions such as NPM1, CEBPA, FLT3 and the 
newly identified tandem duplications in UBTF.124 For example, AMLs with mutated 
TP53 are very rare, occurring in <1% of pediatric AML cases.121 The high 
prevalence of AML with other rare recurring translocations' in pediatric cases, 
accounting for up to 16%,121 is another distinction that emphasizes unique biology 
of pediatric AML compared to adult AML. Moreover, with current classification 
systems, AML cases that do not fit into any of the well-defined genetic, cytogenetic, 
or clinical categories are categorized as either “acute myeloid leukemia with other 
defined genetic alterations” or AML, not otherwise specified (NOS). This category 
functions as a residual group, accounting for approximately 15% of all AML 
cases.116,121 This highlights the need for further refinement, and over time, with 
improved genomic and molecular characterization, the proportion of AML cases 
classified as NOS is likely to decrease. 

Aside from important driver events that form the basis for categories in 
classification systems, other recurring mutations also significantly influence 
leukemic progression.94,115,121 These can be further separated into groups that confer 
various biological functions, such as activated signaling gene mutations (e.g., FLT3-
ITD, FLT3-TKD, JAK2, and NOTCH), which can also be grouped with RAS 
pathway gene mutations (e.g., NRAS, KRAS, and PTPN11). Other categories include 
DNA methylation-related gene mutations (e.g., DNMT3A, TET2, IDH1, and IDH2), 
chromatin-modifying gene mutations (e.g., ASXL1 and EZH2), spliceosome-
complex gene mutations (e.g., SRSF2, SF3B1, U2AF1, and ZRSR2), cohesin-
complex gene mutations (e.g., STAG2 and RAD21), cell cycle gene mutations (e.g., 
CCND1, CCND2, and DNM2), and transcriptional regulator gene mutations (e.g., 
RUNX1, CEBPA, GATA2, IKZF1, and MYC). 

Risk stratification in AML 

Genomic classification and clinical aspects have formed a critical basis for risk 
categories refined over the past decades. The first classification of AML, proposed 
by the French-American-British system, solely stratified cases based on blast 
morphology and the maturation stage of the cells.125 Today, risk stratification relies 
on two genetic classification systems. While the WHO and ICC share many 
overlapping criteria,71,73 notable discrepancies exist that may impact patient 
treatment regimens and outcomes. The ICC further subdivides certain groups within 
the WHO classification, as exemplified by the AML-MR group. While the WHO 
considers AML-MR a single entity, the ICC divides it into three subgroups: AML 
with MR cytogenetic abnormalities, AML with MR gene mutations (including 
RUNX1), and AML with mutated TP53. Other discrepancies in genetic subtypes 
apply to AML with CEBPA mutations, KMT2A-r, MECOM-r, and NUP98-r AML. 
Another difference lies in the diagnostic thresholds, with the WHO separating AML 
and Myelodysplastic Syndrome (MDS), while the ICC introduces MDS/AML as a 
transitional category. All these definitional differences can correlate with variations 
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in overall survival,126–128 particularly for AML with mutated TP53, which is 
considered one of the subtypes with the poorest prognosis.94 At present, reliance on 
two classification systems remains necessary. However, as research advances, a 
unified AML classification would be preferable to enhance consistency and 
comparability across diagnostic centers. 

Today, the European LeukemiaNet (ELN) is an international consortium that 
integrates both the ICC and WHO classification systems and provides standardized 
risk stratification and treatment guidelines.78 The ELN divides genomic classes into 
three risk categories: favorable risk, intermediate risk, and adverse risk, tailoring 
treatment regimens accordingly. However, the current classification systems and 
risk stratifications are predominantly based on evidence from adult AML. Given the 
distinct molecular characteristics of pediatric AML, there is ongoing debate about 
the need for an additional, adapted genetic framework specifically for children.117,121 
This discussion also extends to the development of age-tailored risk stratification 
strategies and alternative treatment approaches.129–132 

Acute lymphoblastic leukemia  
ALL is thought to arise from the B cell precursor lineage (BCP-ALL) or, less 
commonly, the T cell precursor lineage (T-ALL), and comprises over thirty 
genetically distinct subtypes of prognostic importance.99,100,133,134 T-ALL is less 
common in children, representing approximately 12% of pediatric ALL cases, 
compared to around 25% in adults. T-ALL can be further subclassified into 10 
subtypes,100,135 which are not depicted in this thesis. The characteristics of BCP-
ALL will be discussed in more detail. 

In total, BCP-ALL cases are classified into approximately 25 different molecular 
groups,99,100 recognized by both the WHO and ICC.71,72 The WHO and ICC 
classifications are relatively well-aligned and present a more uniform terminology 
for BCP-ALL subtypes. These subtypes include those defined by single-point 
mutations, recurrent chromosomal gains and losses, and chromosomal 
rearrangements. These rearrangements often deregulate genes through the formation 
of chimeric fusions, many of which are frequently associated with hematopoietic 
transcription factors. Furthermore, these driver lesions can be broadly categorized 
into chromosomal abnormalities, transcription factor rearrangements, other 
transcription factor alterations, and kinase-driven alterations.99,100,133,134 The 
distribution of these lesions varies significantly across different age groups (Table 
2).72,122 
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Table 2 | Summary of genetically defined subtypes in BCP-ALL. 
Distribution of genetically defined subtypes in BCP-ALL according to WHO 5th edition in adult ALL and 
pediatric ALL.72,122  

Defining genetic abnormalities Epidemiology 

BCP-ALL with KMT2A-r 70-80% in infant ALL (<1y) 

BCP-ALL with HeH 25-35% in pALL, 7-8% in aALL 

BCP-ALL with ETV6::RUNX1 ~25% in pALL (rare in infants and adults) 

BCP-ALL with BCR::ABL1 Incidence increases with age (2-4% in <15 y, 
~10% in 15-39 y, ~25% in 40-49y and 20-

40% in >50 y) 

BCP-ALL with BCR::ABL1-like 10-15% in pALL, 25-30% in adolescents and 
young adults, 20-25% in aALL 

BCP-ALL with other defined genetic 
alterations (e.g. DUX4-r, MEF2D-r, 
ZNF384-r, PAX5 alt, PAX5 p.80R, 
NUTM1-r, MYC-r) 

10-15% in pALL, 20-35% in aALL 

BCP-ALL with TCF3::PBX1 ~5% in pALL (rare in adults) 

BCP-ALL with iAMP21 ~2% in pALL (rare in adults) 

Additional entities: BCP-ALL with hypodiploidy (<1% in pALL, >10% in aALL), 
ETV6::RUNX1-like (1-3% in pALL, uncommon in adults), IGH::IL3 (<1%), TCF3::HLF 
(<1%) 

BCP-ALL; B cell precursor acute lymphoblastic leukemia, aALL; adult acute lymphoblastic leukemia, 
pALL; pediatric acute lymphoblastic leukemia, -r; rearranged, HeH; high hyperdiploidy, and iAMP21; 
isolated amplification of chromosome 21. 

There could be multiple reasons for the opposite genetic patterns observed in 
children and adults diagnosed with ALL. One explanation may be that certain 
genetic lesions, such as ETV6::RUNX1 and high hyperdiploidy (HeH), often arise 
during fetal development.100 Conversely, BCR::ABL1 and BCR::ABL1-like ALL are 
more prevalent in adults, likely due to an increasing risk over time that the fusion 
will arises in a cell vulnerable to the transforming event.  

The presence of many "genetic-like" subtypes in ALL, such as BCR::ABL1-like and 
ETV6::RUNX1-like ALL reflects the complexity of genetic and molecular 
heterogeneity in the disease. These classifications are based on the fact that different 
genetic alterations can mimic the biology and clinical outcomes of well-defined 
subtypes without necessarily sharing the same primary genetic lesion. This 
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phenomenon highlights that leukemia is driven by networks of mutations rather than 
single genetic events, and that different mutations can lead to similar disease 
behavior. Similar to AML, there are still subtypes of BCP-ALL lacking defining 
lesions, collectively known as B-other ALL or BCP-ALL NOS.71,72 These undefined 
subtypes represent a smaller proportion than in AML, accounting for approximately 
10% of all BCP-ALL cases.99,100 

Secondary genetic alterations are also essential in leukemogenesis and treatment 
response and vary both between and within BCP-ALL subtypes. Common targets 
include B cell pathway genes important for B-lymphoid lineage commitment (e.g., 
EBF1, IKZF1, PAX5, and RAG1/2), RAS pathway alterations (e.g., KRAS, NRAS, 
and PTPN11), transcription factors (e.g., ERG, ETV6, LEF1, and TOX), the JAK-
STAT pathway (e.g., JAK1, JAK2, and JAK3), and epigenetic modifications (e.g., 
CREBBP, KMT2D, SETD2, and TBL1XR1).100 Additionally, a handful of structural 
variations involve the non-coding genome, a field that remains largely unexplored 
but holds potential for future discoveries. 

Risk stratification in ALL 

Unlike AML, which has a well-defined classification and risk-stratification system 
like the ELN, ALL lacks a single, standardized classification to guide treatment 
decisions. Instead, several risk stratification systems are used in existing guidelines, 
typically with separate protocols for children and adults. One such example is the 
ALLTogether protocol (clinicaltrials.gov: NCT04307576), a collaborative initiative 
involving multiple European countries, which offers a standardized treatment 
approach for children and young adults. In this protocol patients are classified into 
four risk groups: standard risk, intermediate-low risk, intermediate-high risk, and 
high risk.  

From a future perspective, today’s genetic classifications will likely continue to 
evolve, redefining risk categories and further shrinking the AML NOS and B-other 
categories. Ultimately, this will lead to new risk category systems for more precise 
risk assessment and refined targeted treatment approaches. 
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Leukemia stem cell biology  
A central objective in leukemia research is the characterization and selective 
targeting of LSCs, which play a crucial role in leukemia initiation, progression, and 
relapse. Gaining deeper insights into their biology and developing precise therapies 
against them remains the ultimate goal in leukemia research, as it holds the potential 
to achieve a lasting cure for these malignancies. 

The cell of origin and the concept of leukemia stem cells 
The "cell of origin" refers to the normal cell (e.g., a HSC or progenitor cell) in which 
the initial leukemogenic mutation arises.136 When the full leukemic transformation 
has occurred this will give rise to LSCs that are responsible for the long-term 
maintenance of the disease and are believed to persist and cause relapse after 
treatment.90–98  

Conceptually, LSCs are functionally defined by their ability to engraft and sustain 
leukemia in immunodeficient mice upon serial transplantation.137,138 The first 
experimental evidence for the existence of LSCs in AML was provided by Bonnet, 
Dick, Lapidot, and colleagues, who demonstrated that not all leukemic cells have 
the functional capacity to generate leukemia in immunodeficient mice. The rare LSC 
population was identified within the same broad immunophenotypic compartment 
as normal HSCs (CD34+CD38-).137,138 Further studies on LSCs in AML have 
demonstrated the presence of LSCs in the CD34- compartment, primarily in 
leukemias with NPM1 mutations and KMT2A rearrangements.139–141 The concept of 
LSC has proven challenging to fully implement experimentally, leading to the 
development of surrogate assays to approximate LSC capacity. Studying LSCs in 
immunodeficient mice presents additional challenges, as the degree of murine 
immune system compromise, the improvement of engraftment through the 
expression of human cytokines, and the genetic characteristics of the leukemia can 
all influence engraftment and stem cell properties.142–144 Consequently, stem cell 
properties may be context-dependent, further complicating efforts to define LSCs 
consistently. 

Transplantation studies in immunodeficient mice have provided evidence that LSCs 
are also present in ALL.145,146 It has been reported that the cell of origin in ALL 
varies between HSCs and committed lymphoid progenitors.147 Unlike AML LSCs, 
which are typically enriched in specific immature immunophenotypic populations 
(e.g., CD34+ and CD38-), BCP-ALL LSCs are found across a range of maturing 
immunophenotypic populations,148 commonly within the CD34+, CD38-, and CD19+ 
cell compartments. LSCs in ALL often exhibit characteristics similar to those of 
lymphoid progenitor cells and are generally more differentiated than LSCs in AML. 
Gene expression data from primary AML samples have, however, also revealed 
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LSC potential in various cellular subsets, including populations resembling healthy 
LMPPs and granulocyte-macrophage progenitors (GMPs), rather than HSCs.149 
Interestingly, normal HSC behavior changes with age, with HSCs in elderly being 
primed towards the myeloid lineage,150 which may explain the more committed 
behavior of AML LSCs and the age-related discrepancy between ALL and AML. 
Together, these findings suggest that LSCs may either arise from committed 
progenitors that aberrantly acquire self-renewal capacity and multipotency or 
originate from HSCs that transitions into LSCs generating more differentiated and 
defective progenitors. 

Phenotypic characteristics of leukemia stem cells  
Despite HSCs and LSCs similarities, cell surface markers distinguish LSCs from 
HSCs, highlighting cell-intrinsic differences. Specifically, AML LSCs can exhibit 
higher levels of CD25, CD32, CD44, CD96, CD123, CLL-1, IL1RAP, and 
C3AR.151–153 In Article II, C3AR was shown to be expressed both on the LSC and 
the progenitor cells in NPM1-mutated AML. In addition, the monocytic marker 
CD33 is also more highly expressed on AML cells compared to HSCs, although its 
expression is lower on LSCs compared to bulk cells.152 In ALL, LSC markers vary 
depending on the leukemia subtype, with many being associated with either T cell 
or B cell phenotypes.154,155 However, some subtypes deviate from this pattern and 
express additional markers. For example, BCR::ABL1-positive ALLs commonly 
express CD123,156 which is a LSC marker also in AML.152 In addition, DUX4-
rearranged (DUX4-r) ALLs express CD371 (CLL-1),157 which is also recognized as 
a LSC marker in AML,158 and to be expressed on healthy monocytic cells.159 Some 
of these unique LSC surface markers play a crucial role in clinical practice, 
including immunophenotypic diagnostics and minimal residual disease monitoring. 
However, these markers are also important as they may serve as targets for antibody-
based therapies and cellular therapies. 

Leukemia stem cell signatures and cell hierarchies 
Identification of “stemness” signatures has showed notable prognostic value and 
superiority in predicting outcomes and treatment resistance in AML patients.160–166 
One of the most well-established signatures is LSC17, which consists of 17 genes 
highly expressed in both LSCs and healthy HSCs.162,167 (Figure 11). Overall, LSC17 
is clinically relevant across all ages, but its predictive power may be even more 
critical in older AML patients who have fewer treatment options.161,168,169  
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Figure 11 | Expression of LSC17 genes in different cell types.  
Expression of the LSC17 gene set in distinct cell types from AML samples and healthy bone marrow 
samples, based on single-cell RNA sequencing data. LSC17 is a stemness signature composed of 17 
genes that are highly expressed in stem cells and has demonstrated notable prognostic value. LSC; 
leukemia stem cell, AML; acute myeloid leukemia HSC; hematopoietic stem cells, LMPP; lymphoid-
primed multipotent progenitors, GMP; granulocyte-monocyte progenitors, cDC; Conventional dendritic 
dell and pDC; plasmacytoid dendritic cell. 

 

Lately, the prognostic value of the LSC17 signature has been suggested to be limited 
when used alongside conventional genetic risk stratification. Instead, a 47-gene LSC 
signature (LSC47) was found to be more effective and to improve risk prediction, 
particularly when considering molecular subtypes like KMT2A-rearrangements, 
CEBPA mutations, and FLT3-ITDs alterations.161 While gene expression scores, 
such as the LSC17 and LSC47 gene signatures, and the more recent 3-Gene, APS, 
CODEG22 and pLSC6 signatures,163–166 are valuable prognostic tools in AML, it 
has been becoming increasingly clear that a more detailed understanding of 
leukemia cell hierarchies may improve predictions of drug response and disease 
progression.170,171,121  

LSCs that sustain leukemia result in the expansion of immature cells that exist in 
various maturation states,170,171 as also emphasized in Article I, Article III, and 
Article IV. These maturation states influence their response to anti-cancer drugs.171 
For instance, certain drugs have been found to be more effective against AML with 
less mature cell states, while others work better against more mature forms. This 
variation underscores the necessity of considering cell maturation stages when 
developing treatment strategies. Thus, moving beyond traditional gene signatures 
like LSC17, or integrating LSC17 with hierarchy-based biomarkers, may enable 
more precise stratification of AML patients. In this context, a comprehensive 
mapping of all cellular states is essential for understanding the cellular hierarchies 
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of LSCs and the leukemic progenitor pool. Recently, more than 80 distinct subsets 
of hematopoietic stem and progenitor cells have been identified using machine 
learning-based refinement and single-cell sequencing techniques.172 This represents 
the most detailed view of normal hematopoietic stem and progenitor cells to date. 
As a proof of concept, this study also aligned healthy HSC counterparts with LSCs 
and identified discrete LSC states by categorizing them into primitive and more 
mature LSCs. Collectively, these studies highlight the growing importance of 
understanding LSC heterogeneity and integrating hierarchical frameworks with 
molecular signatures to predict treatment response. 

Leukemia stem cell plasticity  
Lately, lineage plasticity has been described in more detail, especially in the context 
of treatment or relapse. For example, venetoclax-resistant AML can, in some 
instances, arise from a monocytic LSC rather than a more primitive LSC driving the 
disease initially.173,174 Additionally, single-cell studies of pediatric AML samples 
have revealed that transcriptional networks can shift from myeloid to lymphoid 
programs upon relapse.175 In pediatric ALL, single-cell multiomics revealed 
increased plasticity and the emergence of resistant populations in KMT2A-r 
leukemia.176 This plasticity was correlated with age, where leukemic cells from 
patients under six months old exhibited significantly higher lineage plasticity during 
treatment compared to those from older patients. These two latter studies also 
described lineage switching during treatment between AML and ALL,175,176 
respectively, highlighting the dynamic nature of leukemia. Lineage switching cells 
were also observed in Article I in one diagnostic ALL sample, even before 
treatment.  

Altogether, LSC and leukemic progenitor populations exhibit remarkable plasticity, 
encompassing both phenotypic and functional diversity, much like the 
heterogeneous HSC pool in the continuum model of normal hematopoiesis.38 
Similar to the heterogenous HSC pool, LSC plasticity is partly regulated by 
transcriptional programs and epigenetic deregulation, both of which play crucial 
roles in disease evolution and the establishment of intratumoral heterogeneity.177 
Understanding these transcriptional programs and epigenetic alterations may offer 
therapeutic avenues to target the disrupted processes. 

The leukemic bone marrow niche 
Similar to HSC regulation, the LSC pool is shaped by a dynamic interplay between 
cell-intrinsic mechanisms and extrinsic signals from the microenvironment. The 
bone marrow niches serve as a sanctuary for LSCs and malignant cells, supporting 
their clonal evolution and reinforcing both drug resistance and leukemia relapse.178 
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This complex regulatory network, which encompasses the adhesion between 
leukemic cells and their microenvironment as well as signal transduction, has gained 
increasing attention with the advent of single-cell techniques. First, single-cell 
studies have shown that LSCs in AML and malignant cells in ALL activate genes 
involved in signaling pathways typically associated with non-hematopoietic cell 
lineages, such as VEGF and IL-5 in AML,179 and MCAM and PDGFRA in ALL,180 
which are involved in angiogenesis and tissue interactions.181–183 This aberrant 
activation of lineage-inappropriate signaling by LSCs emphasizes their high 
plasticity and may contribute to their growth and persistence within the bone 
marrow microenvironment. Secondly, other single-cell studies have focused on 
defining the immune microenvironment. For example, a recent study identified a 
nonclassical monocytic cell population in the ALL microenvironment that supports 
leukemic clone expansion, further highlighting the complex interactions at play.184 
This myeloid dependency in ALL has also been observed in T-ALL, where 
leukemia-associated myeloid cells are required for leukemia cell survival. Notably, 
depletion of these myeloid cells significantly reduces leukemia progression.185 

In addition, inflammation has emerged as a crucial player in shaping the 
microenvironment. In AML, samples from patients in complete remission show a 
higher presence of inflammatory M1 macrophages.186 In contrast, high-
inflammation AML patients exhibit an enriched dysfunctional B cell subtype, 
alongside an increase in CD8+GZMK+ and regulatory T cells.187 These findings 
suggest that the inflammatory state remodels the immune microenvironment in 
leukemia, potentially influencing disease progression and patient prognosis. 
Additionally, immune cell dysfunction is increasingly recognized in both AML and 
ALL,180,187–190 when examining the leukemic microenvironment, which may 
represent a novel immune escape mechanism. In Article I, a distinct CD4⁺ T cell 
subset displaying transcriptional signatures of dysfunction was identified within the 
leukemic niche in ALL cases. 

Another aspect of microenvironment remodeling is the impact of aging.191,192 In 
children, the bone marrow niche supports rapid cell growth, which may create a 
favorable environment for specific leukemia subtypes. However, in adults, the 
immune system and bone marrow function decline with age, potentially allowing 
the expansion of aggressive leukemic clones. Whether this shift contributes to the 
generally better outcomes observed in pediatric leukemia patients remains to be 
elucidated. Taken together, investigating the mechanisms of microenvironment 
remodeling in leukemia and understanding how LSCs and other leukemic cells 
exploit and reshape their niche may help identify essential pathways that drive 
disease progression, drug resistance, and relapse. Targeting these pathways could 
provide new therapeutic strategies to improve treatment response and patient 
outcomes. 
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Therapies of Acute Leukemia 
Despite decades of groundbreaking advancements and relentless efforts in leukemia 
research, intensive chemotherapy remains the backbone of treatment. 
Chemotherapy drugs target all rapidly dividing cells, a hallmark of leukemia cells. 
However, these drugs lack specificity, and severely impact also healthy tissues, 
which leads to considerable morbidity and long-term adverse effects. Despite the 
aggressive nature of chemotherapy, residual leukemia cells that are not actively 
dividing will not be eliminated, which is believed to contribute to the high relapse 
rates in leukemia.90–98 Residual leukemic cells adapt to survive the cytotoxic assault 
through various molecular mechanisms, leading to resistant and potentially more 
aggressive disease, where therapeutic options become increasingly limited, often 
leaving patients with no viable treatment options. 

Despite the challenges associated with chemotherapy, ALL is considered a success 
story in pediatric oncology, with cure rates exceeding 90%.74,88 This success has 
been achieved through the optimization of dosing and scheduling of the same 
chemotherapeutic agents that have been in use for the past five decades. For AML, 
modest improvements in survival have primarily been attributed to the optimization 
of curative therapies over the years, including intensive chemotherapy and 
allogeneic hematopoietic stem cell transplantation (HSCT),193 in which the patient’s 
hematopoietic system is replaced through the transplantation of HSC collected from 
healthy donors. The decision to pursue HSCT is influenced by factors such as the 
patient's age, overall health (performance status), and specific risk factors.78 
According to the ELN treatment guidelines, standard chemotherapy may be 
sufficient for AML patients with favorable risk profiles. However, for those with 
adverse-risk profile, HSCT is recommended. Nevertheless, these advancements in 
treatment are largely confined to younger patients and those without high risk 
profile, while older and less fit patients continue to exhibit a poor prognosis.77  

Although chemotherapy remains the primary therapeutic approach today, 
alternative options to traditional chemotherapy have become a key focus in recent 
years. Since the year 2000, a growing number of targeted therapies, including both 
molecular and immunotherapies, have become available. Some targeted therapies 
can be used as single agents but the trend in leukemia treatment is shifting toward 
combination therapies rather than monotherapies. As a result, chemotherapy is often 
used in conjunction with other therapies, such as targeted drugs, immunotherapies, 
and HSCT, to enhance survival rates and improve patients' quality of life. 
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Molecular targeted therapies 
By the mid-1990s, the success story of targeted therapies in leukemia began with 
the success of all-trans retinoic acid in PML::RARA-positive AML.194,195 Shortly 
thereafter, the tyrosine kinase inhibitor (TKI) imatinib was approved,196,197 
revolutionizing the treatment of chronic myeloid leukemia (CML) by benefiting the 
entire patient population. These breakthroughs established the concept of targeted 
therapies in hematological malignancies. Unlike CML, which is characterized by 
the BCR::ABL1 rearrangement as a universal genetic lesion,197 the genetic 
complexity of acute leukemias has made the discovery of molecular targeted 
therapies for AML and ALL more challenging. As a result, existing therapies are 
often limited to a small subset of patients. For example, PML::RARA-positive AML, 
which previously had a dismal prognosis with most patients dying within weeks 
before the advent of all-trans retinoic acid, experienced another major breakthrough 
with the discovery that arsenic trioxide degrades the PML::RARA fusion 
protein.194,195 The all-trans retinoic acid + arsenic trioxide combination therapy is 
now the standard of care for PML::RARA-positive AML, offering cure rates greater 
than 90%.198 This combination therapy has now replaced chemotherapy for most 
PML::RARA patients, making it the first and only leukemia subtype curable without 
traditional chemotherapy. 

In ALL, TKI therapy remain the only available molecular targeted therapies for both 
pediatric and adult patients. However, these therapies are limited to the BCR::ABL1 
positive subtype and the success is not as high as in CML,199,200 with less durable 
remissions and a greater reliance on combination therapies.  

At least 12 targeted therapeutic agents have been Food and Drug Administration 
(FDA) approved for the treatment of AML.201 These drugs are now being 
incorporated into induction, consolidation, and relapsed/refractory (R/R) settings. 
For instance, FLT3 inhibitors (e.g., Midostaurin and Quizartinib) have been 
integrated into first-line therapy for FLT3-mutated AML, while IDH1/IDH2 
inhibitors (e.g., Ivosidenib and Enasidenib) are used in the R/R setting for IDH1- 
and IDH2-mutated AML. Additionally, BCL-2 inhibitor combination therapy,202 
where Venetoclax is used in combination with other active agents, has proven 
especially effective with improved survival rates in elderly AML patients not 
eligible for intensive chemotherapy. The most recently approved targeted agent in 
AML was the menin inhibitor Revumenib,203 which was FDA-approved in 2024 for 
use in the R/R setting, for pediatric and adult AML with mutated NPM1 or KMT2A 
rearrangements. These targeted therapy approvals have primarily benefited adult 
AML patients, whereas pediatric AML has historically lacked effective targeted 
therapies.204 Therefore, the recent approvals of Midostaurin and Revumenib, 
intended also for treatment of pediatric patients, have been especially welcome. 
However, ongoing clinical trials and research are likely to further expand the 



42 

toolbox of targeted therapies, providing a hope that safe and effective treatment 
options for pediatric and adult acute leukemia can become available in the future. 

Immunotherapies  
Contrary to traditional chemotherapy, immunotherapies aim to eradicate the 
leukemia cells using the immune system while sparing healthy tissue. The origins 
of immunotherapy can be traced back over 50 years to the introduction of HSCT,205 
where immune cells from a healthy donor were observed to help eliminate leukemia 
cells. The ability to evade the immune system is described as one of the hallmarks 
of cancer.6–8 In this regard, leukemia cells employ various strategies to evade 
immune surveillance. They may, for example, downregulate antigen-presenting 
molecules such as MHC class I and II, alter the cytokine milieu by inducing an 
inflammatory state, increase immunosuppressive cell types, or entice T and NK cells 
into dysfunctional states.206 Thus, immunotherapies for leukemia represent 
strategies to counter these evasion mechanisms. The available immunotherapies can 
broadly be categorized into antibody-based and cellular immunotherapies (Figure 12). 

 
Figure 12 | Immunotherapies in acute leukemia.  
Representative immunotherapeutic strategies are shown, including blocking antibodies, antibody-drug 
conjugates, bispecific antibodies and cellular therapies. ADCC; antibody-dependent cellular 
cytotoxicity, ADCP; antibody-dependent cellular phagocytosis, CAR; chimeric antigen receptor.  
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Antibody-based Immunotherapies 

Targeting LSCs through their expression of cell surface markers absent on normal 
cells offers an attractive treatment strategy. Monoclonal antibodies can be used for 
the specific targeting of leukemic cells. Upon binding to specific cell surface 
markers on target cells, antibodies can inhibit or enhance essential signaling and 
opsonize cells for immune-mediated killing. Additionally, when targeting LSCs, 
antibodies can mobilize them from their bone marrow niches.207 There are several 
ways of engineering antibodies to increase their therapeutic effect, and these can be 
broadly categorized based on the mechanism of action into antibodies engaging 
effector cells, blocking antibodies, bispecific antibodies, and antibody-drug 
conjugates, which are widely used in hematologic malignancies. 

Antibodies engaging effector cells exert their effect by recruiting immune cells such 
as NK cells, macrophages, and neutrophils to eliminate target cells via mechanisms 
such as antibody-dependent cellular cytotoxicity (ADCC) and antibody-dependent 
cellular phagocytosis (ADCP).208,209 In ADCC, fragment crystallizable γ receptor 
(FcγR)-expressing effector cells, such as NK cells, recognize and kill antibody-
coated target cells, while in ADCP, macrophages and neutrophils phagocytose 
opsonized cells. Examples of therapeutic antibodies using these mechanisms 
include Rituximab (anti-CD20) and Daratumumab (anti-CD38).210,211 Based on 
discoveries in our laboratory,212,213 a Phase 1B/2A clinical trial (clinicaltrials.gov: 
NCT06548230) was recently initiated to evaluate ADCC-enhanced IL1RAP-
targeting antibodies in patients with high-risk MDS and AML. 

Blocking antibodies bind to specific receptors or ligands to block their function. For 
example, checkpoint inhibitors are a subclass of blocking antibodies that block 
inhibitory immune checkpoint proteins like PD-1 and CTLA-4,214 thereby hindering 
one strategy for immune evasion by the cancer cells. This discovery, which was 
awarded the Nobel Prize in 2018, has proven most effective against solid cancers. 
However, there are no FDA approvals of checkpoint inhibitors for leukemia so 
far.215  

Bispecific antibodies work by simultaneously binding two different targets, such as 
a cancer cell and an immune cell (e.g., T or NK cells), consequently redirecting the 
immune cells to attack the cancer. Bispecific T cell engagers (BiTEs) are a subclass 
of bispecific antibodies,216 with Blinatumomab being the first FDA-approved BiTE 
therapy,217 currently used for relapsed or refractory CD19-positive ALL. 

Antibody-drug conjugates (ADCs) are antibodies linked to drugs that are utilized in 
cancer therapy to deliver chemotherapy directly to tumor cells, minimizing toxicity 
to healthy cells. For AML, Gemtuzumab ozogamicin (Anti-CD33 ADC) and 
Inotuzumab ozogamicin (Anti-CD22 ADC) are used for relapsed/refractory AML 
and ALL, respectively.218,219 
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Cell-based Immunotherapies 

So far, the most successful form of adoptive cell therapy involves T cells, which 
utilizes their cytotoxic mechanisms by which T cells identify and eliminate tumor 
cells. This is accomplished through various strategies, including the genetic 
modification and expansion of a patient's autologous T cells (Figure 13).220 One 
such approach is chimeric antigen receptor (CAR) T cell therapy, where the 
endogenous TCR is engineered with an artificial receptor composed of three parts: 
an intracellular signaling domain from a TCR that provides activation signals upon 
binding to its target, a transmembrane domain that anchors the receptor in the T cell 
membrane, and an extracellular antigen-recognition domain, typically derived from 
an antibody, enabling the recognition of tumor antigens (Figure 13).220 Unlike 
normal T cells, which require antigen presentation via MHC, CAR-T cells, with 
their engineered antigen-recognition domain linked to a functional intracellular 
signaling domain, can recognize surface antigens directly on leukemic cells and 
elicit a cytotoxic immune response. 
 

 
Figure 13 | CAR-T cell therapy.  
A schematic illustration of CAR-T cell therapy. In this therapeutic approach, a patient’s T cells are 
isolated, genetically modified to express CAR for better cancer recognition and killing, and then 
reinfused into the patient. CAR; chimeric antigen receptor.  
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Unlike AML, which lacks tumor-associated antigens consistently expressed across 
all patients and subtypes, ALL cells express CD19 as a nearly universal target, 
covering most ALL subtypes. As a result, CD19-directed CAR-T cell therapy has 
emerged as a groundbreaking benchmark in targeted therapies for ALL.221,222 
However, current FDA-approved CAR-T cell therapies for ALL are primarily 
reserved for relapsed or refractory cases. The complex manufacturing process, high 
cost, potential side effects such as cytokine release syndrome (CRS) and 
neurotoxicity, further limit accessibility of CAR-T cell therapy. In addition, some 
patients fail to respond due to CD19 antigen loss.223 Nevertheless, as the therapy 
continues to evolve, its use may expand through combination treatments or earlier 
integration into the treatment process. Unfortunately, CAR-T cell therapies for 
AML remain in research stages, as progenitor and myeloid markers such as CD123, 
KIT, CD33, and FLT3 have not demonstrated the same strong clinical utility as 
CD19-targeted CAR-T cells.224–229 This is likely due to the prolonged ablation of 
healthy myeloid lineages that result from eliminating cells expressing the selected 
markers, a challenge that must be addressed. However, applying a dual-target 
approach to target AML specific surface antigen combinations may help overcome 
this obstacle and is currently being explored for CAR-T cell therapies.230–232 

Other emerging cellular therapies for acute leukemias that are not yet FDA-
approved include TCR therapy and NK cell therapies.233,234 TCR therapies are being 
explored for acute leukemias but remain in an experimental stage. Unlike CAR-T 
cells, TCR T cells are genetically modified with an intact TCR of choice, enabling 
them to recognize intracellular antigens, thereby expanding the range of potential 
targets.234 Currently investigated targets include TdT for ALL and FLT3 for 
AML.235,236 Engineered NK cell-based approaches have the potential to offer safer 
alternatives without some of the challenges associated with T cell therapies, such as 
CRS and neurotoxicity.233,237–239 Allogeneic NK cells are typically derived from 
peripheral blood and cord blood, though induced pluripotent stem cell-derived NK 
cells are also emerging as an option. Additionally, unlike autologous CAR-T cells, 
CAR-NK cells offer off-the-shelf availability. However, CAR-NK cells remain in 
clinical development, and their full therapeutic potential will depend on further 
research and validation. 
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Methodological approaches and 
single-cell technologies 

Single-cell transcriptomic technologies 
Single-cell transcriptomics has become one of the most widely used techniques in 
recent years, driven by rapid technological advancements. Specifically, 
improvements in library preparation, high-throughput sequencing platforms, and 
bioinformatics have made scRNA-seq methods more scalable, efficient, and 
accessible.  

Technical platforms 
A wide range of technical platforms is available, each offering unique advantages 
depending on the specific application, such as Smart-seq2,240 Smart-seq3,241 Single-
Cell Tagged Reverse Transcription sequencing (STRT-seq),242 Cytometry 
Sequencing (Cyto-seq),243 Indexing Droplets sequencing (inDrop),244 Droplet 
Sequencing (Drop-seq),245 10x Genomics,246 Cell Expression by Linear 
amplification Sequencing 2 (CEL-seq2),247 Quartz Sequencing (Quartz-seq),248 
Massively Parallel RNA Single-cell sequencing (MARS-seq),249 Sequential Well 
sequencing (Seq-Well),250 multiplexed dual annealing sequencing (RamDA-seq),251 
and full-length alternative transcriptome Sequencing (FLASH-seq).252  

ScRNA-seq methods can generally be divided into two main types based on whether 
they generate full-length or partial RNA molecules, with a trade-off between 
transcriptome quality and the number of cells sequenced. Full-length methods 
capture the entire RNA transcript, from the 5' end to the 3' end, whereas partial-
length methods capture only a portion of the RNA transcript, typically targeting 
specific regions like the 3' end or the 5' end. Full-length methods, such as Smart-
seq2 and Smart-seq3, can capture up to 65-75% of expressed genes in a cell.240,241 
However, some advanced full-length methods, like RamDA-seq251 and FLASH-
seq,252 can achieve up to 80-85% coverage of the transcriptome. Full transcriptome 
profiling allows for the study of isoform diversity, alternative splicing, and genetic 
changes. However, full-length transcriptional profiling techniques typically capture 
a smaller number of single cells (1-1,500 cells).240,241 In contrast to full-length 
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techniques, 3' or 5' end-biased methods like 10x Genomics or Drop-seq typically 
have lower accuracy and detect about 10-20% of the transcriptome.245,246 However, 
partial-length RNA techniques allow the isolation of around 100-100,000 single 
cells. Moreover, 10x Genomics continues to enhance its high-throughput 
capabilities by optimizing single-cell isolation techniques like GEM-X253 and 
refining multiplexing methods such as cell hashing254 and CellPlex255. In addition to 
differences in transcriptome quality and the number of cells sequenced, partial-
length methods are currently a more cost-effective alternative.256  

In summary, full-length RNA-seq methods provide a deeper understanding at the 
transcriptional level by offering the highest sensitivity and the most comprehensive 
coverage of genes per cell. However, partial-length techniques enable large-scale 
gene expression studies with higher throughput and are more cost-effective 
alternatives.  

Experimental designs 
Methodologically, single-cell sequencing involves several steps, including the 
isolation of individual cells by various techniques, library preparation, high-
throughput sequencing, and subsequent bioinformatic analyses. The process of 
single-cell isolation, i.e. capturing individual cells, varies between platforms and is 
typically performed through dilution into PCR plates, chips containing thousands of 
nanowells, or microfluidic devices.240–252  

In this thesis, the technique used for transcriptomic profiling of single cells was the 
10x Genomics Chromium platform, which utilizes a microfluidic device (Figure 
14). Single-cell isolation is achieved by encapsulating cells in nanoliter-scale 
microdroplets, referred to as gel beads in emulsion (GEMs).257 Cells, along with gel 
beads and reagents, are loaded onto a chip and processed in the Chromium Single 
Cell Controller (10x Genomics, USA). The gel beads play a critical role by 
providing oligonucleotides required for cell identification. Once the cells are 
encapsulated in GEMs, cell lysis occurs, releasing mRNA molecules. These mRNA 
molecules are then tagged with a unique cell barcode (linking the transcript to its 
cell of origin) and unique molecular indices (UMIs; distinguishing individual RNA 
molecules) during the reverse transcriptase step. This constitutes the initial reaction 
of library preparation. Once this step is completed, the GEMs are dissolved, and the 
resulting complementary DNA (cDNA) is released. Library preparation proceeds 
with several steps, including cDNA amplification, fragmentation, end-repair, A-
tailing, and index adaptor ligation. Finally, the prepared libraries are then subjected 
to high-throughput sequencing, typically using Illumina sequencing technology 
(Figure 14). 
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Figure 14 | Workflow of single-cell RNA-sequencing. 
A schematic illustration of the single-cell RNA sequencing workflow. The process begins with the 
collection of patient samples, followed by an optional FACS step used for sorting specific cells or 
removing dead cells to improve sample quality. Next, single-cell isolation is performed, followed by 
library preparation before sequencing. Finally, the data undergoes bioinformatic analysis. FACS; 
Fluorescence-Activated Cell Sorting, GEM; Gel Bead-in-Emulsion, and mRNA; messenger RNA.  

Single-cell targeted transcriptomics 
In Article III, a novel mutation tracking method, scRNAmut-seq, was developed 
to identify which cells constituted a leukemic clone in each sample. ScRNAmut-
seq was performed using leftover full-length cDNA from the original scRNA-seq 
libraries (Figure 15). Mutation-specific PCR primers were designed to target 
mutations identified through whole exome sequencing for each patient. Evaluation 
was based on transcript coverage from both scRNA-seq and bulk RNA-seq data, 
as well as the mutation's distance from the gene's 3′-end. Prior to performing 
scRNAmut-seq, the full-length cDNA material was repaired, followed by targeted 
PCR amplification of the selected mutations and a second PCR using primers that 
added sequencing adapters. 
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Figure 15 | Overview of mutation calling PCR strategy. 
Single-cell mutation calling, developed in Article III, was performed on single-cell RNA sequencing 
material using a two-step PCR amplification protocol. cDNA; complementary DNA, and UMI; unique 
molecular index. 

Single-cell V(D)J sequencing 
Other transcriptomic single-cell modalities include the characterization of the 
repertoire of BCRs and TCRs, which are crucial components of adaptive immunity. 
This is achieved by amplifying the V(D)J regions of the antigen receptors (BCR or 
TCR), a process known as V(D)J-sequencing, BCR-sequencing, or TCR-
sequencing. These regions are located within the first ~500 nucleotides of the 5′ end 
of the transcripts.258 Thus, most technologies that capture BCR and TCR sequences 
are performed in combination with 5´ scRNA-seq, amplifying both the V(D)J 
sequences and the transcripts. One such method is commercially available through 
10x Genomics’ single-cell immune profiling technology.259 This technology is 
utilized in Article I. 

In short-read scRNA-seq, after the first step of reverse-transcribing mRNA into 
cDNA, full-length V(D)J segments are enriched from the amplified cDNA via PCR 
amplification using primers specific to either the BCR or TCR constant regions of 
the immune receptor genes. Amplifying the V(D)J regions is necessary because the 
BCR/TCR regions are present at low levels in individual cells and require robust 
amplification to be effectively sequenced. These data provide an in-depth 
understanding of the immune repertoire by examining the diversity of the immune 
system, accounting for receptor types generated by V(D)J recombination, the 
clonality of specific immune responses by tracking the expansion of receptor 
sequences, and BCR/TCR pairing and interaction with antigens.  
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Single-cell transcriptomic data analysis 
Today, data processing follows a well-established standard workflow, with initial 
steps resembling certain aspects of traditional bulk data analysis. These data are 
typically processed through specialized bioinformatics pipelines. 

Raw data processing 
Following short-read sequencing on Illumina instruments, data processing begins 
with the conversion of sequencing output, where BCL files are transformed into 
FASTQ files. This is followed by demultiplexing, where sequencing reads are 
assigned to their respective cells. Next, the sequencing reads are aligned to a 
reference genome, mapping them to genes or transcripts. Lastly, quantification is 
performed, where the number of reads corresponding to each gene is counted to 
quantify gene expression for each individual cell. The result is a gene-by-cell count 
matrix, also referred to as a single-cell count matrix, where rows represent genes, 
columns represent cells, and the values indicate the number of detected transcripts. 
A higher number of detected transcripts reflects higher expression of the specific 
gene. These steps form the preprocessing phase, which is then followed by 
downstream analysis.260,261 

Downstream analysis 
Recent advancements in experimental technology have driven large-scale 
innovation in computational methods, resulting in the availability of over 1,400 
tools for scRNA-seq data analysis,262 with popular frameworks for downstream 
analysis including Bioconductor263 and Seurat264 for the R environment, as well as 
Scanpy265 for Python. 

Downstream analysis of the single-cell count matrix commonly involves quality 
control steps to ensure data reliability (Figure 16). During this stage, low-quality 
genes, such as those expressed in only a few cells, are excluded. Similarly, low-
quality cells are filtered out; these include cells with low read counts or a higher 
percentage of mitochondrial reads, which often indicate cell death. Quality control 
can also include the removal of doublets, achieved by identifying and excluding 
droplets that contained more than one cell.260 Following quality control, a 
normalization step is performed to account for differences in sequencing depth 
across cells and to stabilize variance across genes. This is then followed by 
dimensionality reduction, a process involving several steps. Here, the first step 
involves the selection of the most informative genes, referred to as highly variable 
gene selection. Next, principal component analysis (PCA) is performed to reduce 
the dimensionality of the data. This is commonly followed by nonlinear methods 
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such as t-distributed stochastic neighbor embedding (t-SNE),266 uniform manifold 
approximation and projection (UMAP),267 or k-nearest neighbors (KNN) force 
layout graphs,268 which are used to visualize the data in two or three dimensions. On 
the dimensionally reduced data, clustering methods are applied to group cells based 
on their similarities in gene expression patterns. Techniques such as graph-based 
clustering, hierarchical clustering, and k-means clustering are often used to uncover 
distinct cell states or types represented in the data. Alternatively, instead of 
mathematical clustering, cell type annotation can be employed. This involves 
assigning groups of cells to specific cell types based on gene expression or reference 
datasets.260 
 

 
Figure 16 | Overview of single-cell RNA sequencing bioinformatic analysis. 
After raw sequencing, the resulting single-cell count matrix is further processed with downstream 
analysis. The downstream analysis of the single-cell count matrix commonly involves five key steps: 
quality control, normalization, dimensionality reduction, mathematical clustering and/or cell type 
annotation, followed by various specific analyses tailored to the research question, referred to as 
integrative analysis. 

 

After these analyses, depending on the desired application, various types of 
computational approaches can be performed (integrative analysis; Figure 16). For 
example, differential expression analysis can be applied to identify genes that 
differentiate between cell states, while pathway enrichment analysis highlights 
biological pathways that are overrepresented under specific cell conditions. 
Additionally, trajectory analysis, also known as pseudotime analysis, is used to infer 
developmental progression or differentiation patterns within the data.260 For each 
step mentioned in this description, there are countless software tools and 
repositories available,262 which are continuously being developed and improved to 
meet the growing demands of single-cell data analysis.  
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Data challenges and future perspectives 
Computational analysis of single-cell transcriptomic data is known to be 
challenging, as the data are usually noisier compared to standard bulk sequencing. 
Technical noise in single-cell sequencing arises primarily due to the low 
concentration of starting material obtained from an individual cell.256,261 Dropout 
events, where transcript molecules fail to be captured from individual cells, 
contribute significantly to this noise. Additionally, the low RNA concentration 
necessitates extensive amplification of genetic material, which can introduce 
polymerase-induced errors and allelic dropout. This technical noise results in data 
sparsity, as scRNA-seq datasets often contain near-zero or zero counts, 
complicating downstream analyses. Furthermore, technical variability and batch 
effects present additional challenges. Batch effects, caused by differences in library 
preparation, sequencing depth, and platform-specific biases, introduce technical 
variability that hinders comparisons across studies. Even with similar study designs, 
small technical differences, such as sampling individuals at different time points, 
can lead to batch effects. Proper handling of these batch effects is crucial for 
ensuring improved comparability and accurate biological interpretations.260 Partial-
length sequencing methods are associated with additional challenges. In addition to 
limited transcript coverage and low detection of isoforms and non-coding RNAs, 
quantification biases also pose a challenge. These biases include favoring gene ends 
or shorter transcripts, reduced sensitivity for lowly expressed genes, and an 
overrepresentation of highly expressed genes.256 

An additional challenge is the high dimensionality of the dataset. Even though some 
single-cell data suffer from sparsity and limited transcript coverage, they still hold 
immense amounts of information. With tens of thousands of genes measured per 
cell and datasets containing millions of cells, scRNA-seq data result in high-
dimensional matrices (e.g., millions of cells × 30,000 genes).260 Due to rapid 
technological advancements, increasingly larger datasets are being produced,21 
further challenging computational analysis and visualization. Although a growing 
number of computational tools and algorithms are being developed to facilitate the 
analysis of single-cell sequencing data,262 the field of single-cell sequencing is still 
relatively young, rapidly evolving, and becoming more cost-effective. This calls for 
the development of improved computational tools. In addition, there will be a 
continuous need for substantial computational resources and efficient algorithms to 
handle the complexity and size of large-scale single-cell datasets. 
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Other single-cell modalities  

Single-cell proteomic technologies 
A number of single-cell proteomics techniques have been developed to understand 
the proteomic makeup of individual cells. These techniques are highly dependent 
on protein concentration, which is very low in single cells. Unlike DNA or RNA, 
proteins cannot be amplified, presenting unique challenges for single-cell 
proteomics. Single-cell proteomics approaches mainly include antibody-based 
methods, mass spectrometry based methods, and imaging based methods capable of 
detecting proteins while providing spatial context.269  

FACS is one of the first antibody-based methods and a widely used single-cell 
technique in immunology, cancer research, and stem cell studies.270 This method 
labels cells with fluorescent antibodies, enabling laser detection of fluorescence and 
light scattering to analyze size and granularity for precise sorting. All antibody-
based methods typically target a limited number of predefined proteins. Other 
antibody-based methods have gained popularity due to their ability to integrate 
protein and transcriptomic data. These methods use oligo-conjugated antibodies to 
target specific cell surface proteins, which are sequenced alongside transcriptomic 
data. Cellular indexing of transcriptomes and Epitopes by Sequencing (CITE-seq) 
was the first antibody-based method developed to merge transcriptome and 
proteome analysis, marking a milestone in the field.271 Subsequently, 10x Genomics 
adapted CITE-seq for integration with their transcriptomic workflows (Figure 17), 
known as Antibody-Derived Tag Sequencing (ADT-seq).272 Initially limited to a 
few markers, these methods have expanded, with companies like BioLegend now 
offering antibody cocktails that target over 100 proteins.273 In Article I and Article 
III, the ADT-seq technology was used to investigate the protein expression of 
approximately 20 specific cell surface markers. 
 

 
Figure 17 | Antibody-Derived Tag Sequencing. 
ADTs are antibody clones labeled with unique barcodes, which are attached to a capture sequences 
(eg. poly(A) sequence) and a PCR handle. These barcodes are amplified during subsequent library 
preparation. The antibodies bind to specific cell surface proteins, and the sequenced ADT counts 
represent the expression levels of these specific proteins. ADT; Antibody-Derived Tag. 
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Mass spectrometry is the gold standard for large-scale proteomic analysis at the bulk 
level. In the context of single-cell proteomics, single-cell mass spectrometry has 
shown success, particularly with the method Cytometry by Time-of-Flight 
(CyTOF), which combines MS with flow cytometry.274 Recently, single-cell mass 
spectrometry as a standalone tool has also demonstrated promising results, with 
increased protein throughput achieved through automated sample preparation 
methods and highly sensitive, multiplexed instruments, enabling the quantification 
of 1,000 to 1,500 proteins per cell.275–277 Unlike antibody-based methods such as 
CyTOF, ADT-seq, and CITE-seq, single-cell mass spectrometry does not require 
consideration of antibody specificity or cross-reactivity, which can become 
problematic as the number of targeted proteins increases. Single-cell Imaging Mass 
Cytometry (IMC) combines high-plex proteomic analysis with spatially resolved 
tissue imaging. However, this technique operates at a subcellular level. While there 
is ongoing work to optimize experimental designs and improve sensitivity at the 
single-cell level, IMC holds significant potential for advancing spatial proteomics 
and tissue analysis in the future.278 

Single-cell DNA technologies 
Today, transcriptomic methods remain the primary single-cell tools for defining cell 
states due to scalability, accessibility and ability to capture the dynamic nature of 
gene expression. However, single-cell genomic analysis, specifically single-cell 
DNA sequencing, is indispensable for understanding genetic mutations, structural 
variations, and the fundamental framework that regulates RNA expression. Single-
cell DNA sequencing includes whole-genome amplification to amplify DNA from 
a single cell, followed by WGS to uncover genetic information.256,279–281 Several 
whole-genome amplification methods have been developed, with early examples 
including PCR-based methods such as degenerate oligonucleotide-primed PCR 
(DOP-PCR),282 isothermal multiple displacement amplification (MDA),279 and 
multiple annealing and looping-based amplification cycles (MALBAC).280 Single-
cell DNA sequencing has traditionally been limited by low cellular throughput. 
However, in recent years, modest increases in throughput have been achieved by 
optimization of protocols, employing microfluidic devices, and single-cell, 
combinatorial indexed sequencing and digital library preparation.283–285 

Single-cell epigenetic technologies 
The field of single-cell epigenomics is rapidly evolving, driven by continuous 
advancements in technology. Several single-cell epigenetic methods are now 
available for studying various aspects of the epigenome, such as DNA methylation, 
histone modifications, and chromatin accessibility. For example, single-cell reduced 
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representation bisulfite sequencing (scRRBS-seq), single-cell Assay for 
Transposase-Accessible Chromatin using sequencing (scATAC-seq), and Single-
cell Cleavage Under Targets and Tagmentation sequencing (CUT&Tag-seq) are a 
few of these applications.286–289 ScRRBS-seq isolates DNA from individual cells, 
enriches for regions of interest such as promoters (CpG-rich regions) through 
restriction enzyme digestion, and treats the DNA with bisulfite to distinguish 
between methylated and unmethylated positions.287 ScATAC-seq profiles 
chromatin accessibility in individual cells by identifying open chromatin regions, 
which are areas where DNA is accessible to transcription factors and other 
regulatory proteins.286 The scATAC-seq workflow involves nuclear isolation, 
followed by the addition of a hyperactive mutant Tn5 transposase (Figure 18). This 
enzyme recognizes open chromatin regions, cleaves the DNA, and tags the resulting 
fragments. Next, individual nuclei are captured using microfluidic technology, 
followed by library preparation and sequencing. The number of sequencing reads 
for a region reflects the degree of chromatin accessibility in individual cells. This 
process generates a matrix similar to a single-cell count matrix, with nuclei instead 
of cells and peaks instead of genes. Notably, this type of data not only identifies 
accessible DNA but also maps regions of transcription factor binding sites. In this 
thesis, scATAC-seq was employed to examine the epigenetic state of childhood 
BCP-ALL (Article I). 
 

 
Figure 18 | Assay for Transposase-Accessible Chromatin using sequencing. 
To investigate chromatin state dynamics at the single-cell level, scATAC-seq measures genome-wide 
chromatin accessibility by isolating individual nuclei. The open chromatin regions are tagged through 
Tn5 transposition, generating DNA fragments that are then sequenced. 

 

ScCUT&Tag-seq enables the analysis of histone modifications and has recently 
gained popularity for its ability to examine tens of thousands of single cells 
simultaneously.288,289 This method is conceptually similar to scATAC-seq; however, 
scCUT&Tag-seq employs an antibody-directed approach, where a specific antibody 
binds to a histone modification or protein of interest. As a result, scCUT&Tag is 
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more targeted and specific for studying histone modifications or protein-DNA 
interactions, whereas scATAC-seq provides a broader overview of chromatin 
accessibility across the genome. 

Mutational detection at a single-cell level 
In cancer research, understanding the initiation, development, and maintenance of 
cancer pathogenesis requires insights into the mutational makeup of cells. 
Techniques such as single-cell DNA-seq, RNA-seq, and ATAC-seq, as previously 
mentioned, provide valuable tools for studying these mutational patterns. However, 
much remains to be explored in this area. While full-length methods are not yet cost-
effective,256 partial-length and targeted single-cell sequencing have emerged as 
popular alternatives for studying mutational patterns at the individual cell level. The 
Mission Bio Tapestri platform is a leading partial-length single-cell multi-omics 
platform based on a microfluidic droplet-based system, enabling the identification 
of genetic abnormalities, including single nucleotide variations, insertions and 
deletions, copy number variations, and translocations.290 In addition to genetic 
analysis, this platform simultaneously performs protein analysis using oligo-tagged 
antibodies.291 Moreover, targeted single-cell sequencing methods, such as 
TARGET-seq,292 have been developed. These approaches, while sacrificing 
genome-wide mutational patterns, are limited to predefined regions using primers 
designed to capture specific areas of interest. This enables deeper sequencing for 
those regions, increasing sensitivity and precision. While these methods focus on 
clinically relevant regions or specific mutations in well-defined diseases, they also 
reduce computational resource demands and enhance cost-efficiency. 

Multiomic single-cell modalities  
Single-cell sequencing technologies, when used as standalone modalities, have 
already revolutionized our understanding of the cellular landscape of acute 
leukemia. However, combining multiple modalities within the same cell offers even 
greater potential by integrating and mapping interconnected networks.21 This 
approach is known as single-cell multiomics. For instance, combining V(D)J 
sequencing, proteomics via ADT sequencing, and transcriptome analysis within the 
same cell exemplifies this methodology, as applied in Article I. Other multiomics 
modalities enable the integration of transcriptomic and epigenetic data in the same 
cell,22 as well as genetic and transcriptomic information.293–295 These representative 
technologies are just a few examples of the many multi-modality approaches 
currently in use. 
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A future perspective for single-cell sequencing 
Several technologies are currently being optimized, along with a few emerging ones 
that, while not yet widely used, have the potential to provide valuable insights in the 
future. One example is single-cell CRISPR-based tools,296–298 which leverage the 
CRISPR-Cas9 system to manipulate genes at the individual cell level, enhancing 
our understanding of gene function. A popular platform, Perturb-seq,297 combines 
CRISPR perturbations with scRNA-seq to assess gene expression changes 
following edits. However, challenges remain, particularly in delivery efficiency and 
off-target effects. Another example is spatially-resolved single-cell techniques, 
which combine genetic data with spatial context to preserve a cell's location within 
tissue.278 Moreover, with advances in single-cell multiomic technologies, the 
combination of transcriptomics, proteomics, epigenomics, and metabolomics with 
spatial and temporal context in individual cells holds great promise for mapping the 
full spectrum of molecular changes that drive biological systems.  

The question remains whether single-cell sequencing will become the gold standard 
in the long term and fully replace bulk methods. While bulk sequencing remains far 
cheaper, which is particularly desirable for large-scale studies, it is still practical for 
routine clinical diagnostics, population studies, and longitudinal monitoring. 
Additionally, bulk sequencing excels in detecting low-frequency mutations by 
aggregating signals across all cells, which improves sensitivity in some cases. For 
the foreseeable future, both approaches will likely coexist and complement one 
another. Although single-cell methods are likely to become the backbone of research 
and precision medicine, particularly as costs decrease and scalability improves, both 
approaches will likely coexist for the foreseeable future, ultimately advancing 
cancer diagnostics, treatment approaches, and improved patient outcomes. 
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The present study 

Background 

Acute leukemia is a heterogeneous group of malignancies driven by genetic 
alterations that disrupt normal hematopoiesis, resulting in an accumulation of 
immature cells in the bone marrow and peripheral blood. Traditionally classified 
into AML and ALL based on their lineage, these diseases arise from a diverse set of 
genetic alterations arising in primitive cells, altering their self-renewal, growth, 
differentiation and survival properties. 

While genomic and transcriptomic profiling has provided important insights into 
leukemia classification and risk stratification, it has become increasingly clear that 
the disease is not solely dictated by mutational status. Instead, leukemia exists 
within a dynamic cellular ecosystem in which both malignant and normal 
hematopoietic cells interact, shaping disease evolution and treatment response. 

Despite advances in targeted therapies, such as the development of TKIs, FLT3, 
IDH1/2 and BCL2-inhibitors, the backbone of acute leukemia treatment has 
remained largely dependent on intensive chemotherapy and HSCT. A major 
challenge in AML and ALL therapy is the persistence of LSC, a subpopulation of 
malignant cells capable of self-renewal and sustaining the leukemic clone. These 
LSCs often evade current therapies and provide a reservoir for disease relapse. 
Therefore, identifying LSC-specific vulnerabilities and understanding how cellular 
heterogeneity contributes to disease initiation and progression is essential for 
improving patient outcomes. 

Recent advances in single-cell sequencing technologies have made it possible to 
dissect acute leukemia at a level of granularity that was previously unattainable. 
Advances in single-cell technologies, coupled with advanced bioinformatic 
analysis, now allows the identification of distinct subpopulations of normal and 
leukemic cells, detailed characterization of their molecular characteristics, 
maturation patterns, and the discovery of new therapeutic vulnerabilities. 
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Aims of the study  
The overall aim of this thesis has been to study the cellular and molecular 
characteristics of acute leukemia using single-cell sequencing technologies to 
improve disease understanding, refine diagnostic approaches, and identify novel 
therapeutic targets. Specifically, the aims of this thesis were to: 

1) Examine the genetic, epigenetic, transcriptomic and cell surface 
characteristics of childhood BCP-ALLs using multimodal single-cell 
sequencing (Article I). 
 

2) Delineate the cellular state space of defined subtypes of adult AML using 
scRNA-seq and develop methods allowing broad mutational calling within 
expressed genes (Article II and III). 
 

3) Investigate potential age-related differences and comprehensively 
characterize the cellular maturation patterns, immune cell landscape, and 
leukemic stem cell dynamics in adult and pediatric AML using single-cell 
analysis. (Article IV) 

Experimental outline of the study  
A central method used in the present study has been a diverse set of single-cell 
sequencing technologies, enabling the isolation and analysis of single cells from 
bulk samples. These techniques form the basis of the screening strategies utilized in 
this thesis and have been applied to investigate a wide range of acute leukemias in 
both children and adults. The experimental design for each article in the present 
study is summarized in Figure A. 
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Figure A | Overview of the experimental design in the present study. 
Schematic illustrations of the experimental design are presented for Article I (upper left), Article II 
(upper right), Article III (lower left), and Article IV (lower right). This summary provides details on age 
groups, the number of patients, and the techniques used to analyze the cellular and molecular 
characteristics within each patient sample. scRNA-seq; single-cell RNA sequencing, scBCR-seq; single-cell B 
cell receptor sequencing, scADT-seq; single-cell antibody-derived tag sequencing, scATAC-seq; single-cell assay for 
transposase-accessible chromatin sequencing, FACS; fluorescence-activated cell sorting, MP-WGS; mate-pair whole-
genome sequencing, WES; whole-exome sequencing, and scRNAmut-seq; single-cell RNA mutation sequencing. 



61 

Summary of articles  

Article I 
Single-cell genomics details the maturation block in BCP-ALL and identifies 
therapeutic vulnerabilities in DUX4-r cases  

To detail the maturation patterns of the malignant cells in BCP-ALL, we used a 
multimodal single-cell sequencing approach including transcriptional profiling 
through scRNA-seq and scBCR-seq, epigenetic profiling via scATAC-seq, and 
immunophenotyping using scADT-seq. In total, 23 childhood BCP-ALL cases were 
included representing the following genetic subtypes: BCR::ABL1-positive, 
ETV6::RUNX1-positive, HeH, and the recently discovered DUX4-r ALL subtype. 
ScRNA- and scATAC-seq data revealed expanded aberrant cell populations in each 
patient sample, which were confirmed as the blast cell populations of each case 
through immunophenotyping. 

Cell maturation patterns were elucidated by developing new algorithms, enabling 
projection of leukemic cells onto the normal B cell differentiation axis and by 
studying BCR-chain status. In addition, a scoring algorithm was developed to 
highlight gene expression differences between the leukemic cells and corresponding 
normal B cells. This combined approach revealed diversity in maturation patterns 
among different BCP-ALL subtypes. BCR::ABL1-positive, ETV6::RUNX1-
positive, and HeH ALL primarily resembled normal pro-B cells, as indicated by a 
distinct peak along the trajectory’s timeline corresponding to the pro-B cell 
developmental stage (Figure AI-1). Although a distinct pro-B cell profile was 
observed, subtype-specific patterns were also identified. In BCR::ABL1-positive 
ALL, cells with an identified immature profile were distributed across CLP and pro-
B cell stages. HeH ALL displayed a broader profile, extending from pro-B cells to 
immature B cells. However, the majority of DUX4-r ALL cases uniquely exhibited 
a high number of cells with transcriptional signatures resembling more mature B 
cells, visualized by a distinct second peak along the timeline (Figure AI-1). 
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Figure AI-1 | Projection of blast cells onto the normal B cell maturation trajectory. 
Single-cell projections of blast cells from ALL patients onto the normal B cell trajectories. Gene 
expression dissimilarity relative to the corresponding cells in the normal B cell trajectory is represented 
by a color gradient, with red indicating the highest level of dissimilarity. Cell density plots below the 
projection illustrate the number of cells along the trajectory and are color-coded by cell type. 

Analyzing the co-occurrence of expressed BCR chains allowed us to infer the clonal 
structure of leukemia. In each case, the leukemia was generally dominated by a 
major clone that expressed at least one rearranged IGH chain. Interestingly, the 
maturation patterns in BCP-ALL appeared to be related to the cell of origin. 
Leukemias with a pro-B cell phenotype were derived from cells with IGH 
rearrangements, as seen in the majority of ETV6::RUNX1-positive and HeH ALL 
cases. The clonal trees inferred for BCR::ABL1-positive ALL cases indicated that 
the cell of origin of these leukemias lacked IGH rearrangements, in contrast to the 
other cases studied, suggesting a cell of origin before B cell commitment (Figure 
AI-2).  
 

 
Figure AI-2 | Clonal tree of one BCR::ABL1-positive ALL case. 
Single-cell projections of an individual BCR::ABL1-positive ALL case onto the normal B cell trajectory 
with cells color-coded according to expressed clonal IG rearrangements (left). Clonal trees were 
constructed based on the co-occurrence and relative frequency of expressed IG rearrangements (clone 
size indicated within parentheses). The number of rearranged IGH alleles and their co-occurrence 
suggest that the cell of origin is an immature cell without a preexisting rearranged IGH allele. *The 
minor clone H₄ (4.6%) survived treatment and became the dominant clone at relapse. H; Heavy chain, 
and L; Light chain 



63 

 

Leukemias containing blast cells with a more mature appearance were likely derived 
from cells with both IGH and IGK/L rearrangements, as observed in approximately 
half of the DUX4-r ALL cases. In addition, four DUX4-r ALL cases exhibited a 
productive chain, i.e., an actual functional chain, suggesting a more advanced B cell 
developmental stage than other subtypes. Taken together, BCR::ABL1-positive, 
ETV6::RUNX1-positive, and HeH ALL cases preferentially displayed gene 
expression profiles and a BCR chain status consistent with the pro-B cell stage. In 
contrast, DUX4-r ALL exhibited substantial heterogeneity in both maturation 
patterns and BCR status (Figure AI-3). 

With the particular focus on DUX4-r ALL, profiling of non-leukemic cells 
unexpectedly identified a characteristic CD4+ T cell population that displayed 
transcriptional signs of dysfunction. However, these cells did not exhibit DUX4 
activity, suggesting that they were altered by external factors rather than originating 
from DUX4-r cells (Figure AI-3).  

Elucidating the gene expression signatures of the leukemic DUX4-r blasts revealed 
signs of multilineage priming toward non-hematopoietic, myeloid, and T cell 
lineages. An additional feature of multilineage priming was highlighted, where 
greater cellular heterogeneity correlated with the recently described DUX4-
a/DUX4-b subdivision.100 DUX4-b cases were found to particularly express CEBPA 
and FLT3, which have previously been described as overexpressed in patients who 
undergo a monocytic switch during treatment. Notably, we identified one DUX4-b 
case with monocytic cells expressing a clonal BCR chain, consistent with a B cell-
like leukemic cell undergoing a monocytic switch. To investigate the potential of 
DUX4-r ALL to undergo a monocytic switch, enforced expression of CEBPA in the 
DUX4-rearranged cell line NALM6 was shown to be sufficient to prime the cells 
toward a monocytic immunophenotype, as revealed by upregulation of the 
monocytic markers CD14, CD33, and CD371, while concurrently downregulating 
the B cell marker CD19. This multilineage priming suggests that DUX4-r blast cells, 
which express the embryonic transcription factor DUX4, activate pathways 
involved in non-lymphoid lineages, potentially deregulating the programs involved 
in lymphoid development. However, DUX4 expression in BCP-ALL is typically 
regulated by the IGH locus, active only in B cells, which may limit the plasticity of 
DUX4-r blast cells (Figure AI-3).  
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Figure AI-3 | Overview of DUX4-r ALL characteristics and therapeutic vulnerabilities. 
A summary of therapeutic vulnerabilities identified in DUX4-r ALL using multimodal single-cell 
sequencing and validation of therapeutic effects in pre-clinical murine models. 

 

Given the lineage infidelity in DUX4-r cases and their tendency to transition to a 
myeloid phenotype, effectively targeting the entire blast population would 
necessitate a marker present on cells both in the B cell and myeloid blast 
compartments. Notably, CD371 was the only marker identified as being expressed 
on both lymphoid and monocytic blast cells, offering a promising therapeutic target. 
In addition to high multilineage priming, activation of PI3K/AKT signaling was 
found to be significantly upregulated in DUX4-r ALL blast cells. The upregulation 
specifically involved the PI3K subunits encoded by PIK3CA (p110α) and PIK3R1 
(p85α), which are known to be targetable by existing FDA-approved PI3K 
inhibitors. Collectively, this study highlighted two main therapeutic vulnerabilities 
in DUX4-r ALL, which were further tested first ex vivo and then in vivo. PI3K/AKT 
signaling activation in DUX4-r cells was found to be susceptible to PI3K inhibitors, 
effectively depleting DUX4-r ALL cells in vivo. Secondly, the generation of CD371-
targeting second-generation 4-1BB-based (CAR) T cells targeting the aberrant 
myeloid marker CD371 showed effective elimination of DUX4-r ALL cells in vivo 
(Figure AI-3).  

In conclusion, detailed single-cell analysis provides crucial insights into BCP-ALL 
biology and highlights therapeutic vulnerabilities in the DUX4-r ALL, offering 
promising novel treatment strategies for this subtype. 

Article II 
The complement receptor C3AR constitutes a novel therapeutic target in 
NPM1-mutated AML 

Uncovering AML-specific surface proteins paves the way for precision-targeted 
therapies. In this study, a FACS-based screen directed at 362 cell surface markers 
was used to identify novel markers uniquely expressed in NPM1-mutated AML. 
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From this screen, the complement receptor C3AR was identified as being 
specifically expressed in NPM1-mutated AML. C3AR is a G protein-coupled 
receptor that functions within the complement system and plays a crucial role in 
immune regulation, inflammation, and cellular signaling.299–301 To study the 
cellular landscape of NPM1-mutated AML and the expression of C3AR, scRNA-
seq was performed on bone marrow samples from patients, along with bone 
marrow samples from healthy donors. Mutation calling of the single-cell reads 
covering the NPM1 mutation site allowed us to identify the leukemic cells. These 
leukemic cell populations exhibited notably high C3AR expression compared to 
residual normal hematopoiesis (Figure AII-1). Flow cytometry and scRNA-seq of 
normal hematopoietic stem and progenitor cells demonstrated that C3AR was not 
expressed in these primitive populations, providing an opportunity to develop 
antibody-based therapies specifically targeting this cell population, while sparing 
normal progenitor cells. 
 

 
Figure AII-1 | C3AR1 expression in NPM1-mutated AML blasts. 
ScRNA-seq confirms C3AR1 expression in NPM1-mutated AML blasts and normal monocytes. UMAP 
visualization shows cell types (left) and C3AR1 expression, with red indicating high expression (right). 
NBM; normal bone marrow, and MNC; mononuclear cells. 

 

The leukemia-initiating potential of C3AR-expressing cells was further confirmed 
through transplantation into immunodeficient mice. Notably, co-expression of 
C3AR and GPR56 identified a population with enhanced leukemia-initiating 
capacity, thereby defining LSCs in NPM1-mutated AML (Figure AII-2). To study 
a possible functional role of C3AR expression on NPM1-mutated cells, we 
stimulated C3AR-expressing cells with its ligand, C3a. This stimulation was found 
to enhance AML cell survival and specifically activate the MAPK pathway via 
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ERK1/2 signaling, highlighting a critical signaling axis in this AML subtype. 
Additionally, NPM1-mutated AML cells were shown to produce complement factor 
D (CFD), a crucial enzyme in the alternative complement pathway.302 Notably, CFD 
was the most upregulated gene in NPM1-mutated AML cells compared to normal 
bone marrow cells, as revealed by scRNA-seq. These findings imply that NPM1-
mutated AML cells exploit the complement system to their advantage, promoting 
survival and proliferation, while evading immune responses, through C3AR 
signaling (Figure AII-2). Targeting this pathway suggests a promising therapeutic 
strategy for treating NPM1-mutated AML. 
 

 
Figure AII-2 | The functional role and therapeutic potential of C3AR signaling. 
C3AR and GPR56 identify a population with enhanced leukemia-initiating capacity (left). C3AR 
activates the MAPK pathway via ERK1/2 signaling. CFD is upregulated in NPM1-mutated AML cells 
(center). C3AR antibody treatment of NPM1-mutated AML cells, followed by transplantation into 
immunodeficient mice shows therapeutic efficacy (right). 

 

The therapeutic potential of targeting C3AR was tested using antibodies directed 
against the receptor. These antibodies effectively elicited NK cell-mediated killing 
of primary NPM1-mutated AML cells ex vivo while sparing normal HSCs. 
Furthermore, when residual primary AML cells treated with C3AR antibodies were 
transplanted into immunodeficient mice, they engrafted at lower levels than control-
treated cells, underscoring the therapeutic efficacy of C3AR antibodies. In 
summary, these findings highlight C3AR as a therapeutic target in NPM1-mutated 
AML, the most common form of AML, offering the potential to develop antibody-
based therapies to target the LSC compartment in this subtype of AML. 
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Article III 
The cellular state space of AML unveils novel NPM1 subtypes with distinct 
clinical outcomes and immune evasion properties 

To identify novel subtypes of AML, a comprehensive integrative sequencing 
analysis was performed on 120 consecutive matched tumor-normal AML cases 
using whole exome sequencing, mate-pair whole genome sequencing, and RNA 
sequencing. The transcriptional profiles from the bulk RNA gene expression data 
did not cluster based on mutational patterns. They were instead primarily driven by 
cellular signatures, potentially masking the intrinsic features of the AML blast cells 
in each subtype. To delineate these cellular signatures, scRNA-seq was performed 
on samples from 38 AML cases from the original cohort, along with normal bone 
marrow samples. While RUNX1::RUNX1T1 and CBFB::MYH11 AML showed 
uniform cellular patterns, other subtypes exhibited cellular heterogeneity, even 
within the same genomic group, highlighting biological differences beyond the 
current genomic classifications. 

A novel mutation tracking method (scRNAmut-seq) was developed to determine 
which cells constituted the leukemic clone in each sample. All AML samples 
contained a distinct cluster of immature cells that were clearly distinguishable from 
immature cells in CD34-enriched normal bone marrow samples. Data from 
scRNAmut-seq analysis highlighted that close to 100% of these immature cells in 
each AML sample harbored AML mutations. Hierarchical clustering of the gene 
expression profiles of immature cell populations across samples provided a clearer 
representation of genetic subgroups compared to bulk profiles, grouping patients 
with shared genetic alterations into distinct clusters (Figure AIII-1). However, 
AML-MR and TP53-mutated AML were grouped together, highlighting shared 
molecular features between these subtypes. Intriguingly, the NPM1-mutated 
samples formed two distinct groups within the NPM1 group, with distinct 
expression profiles. These two groups were designated “NPM1 class I” and “NPM1 
class II”. 
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Figure AIII-1 | Identification of the most immature cells in AML. 
Single-cell projection of "AML immature" cells onto normal bone marrow highlights their similarity to 
immature normal bone marrow cells (left). Hierarchical clustering of average gene expression profiles 
from AML immature cells delineates the genetic subgroups better than bulk sequencing (right).  

The newly identified NPM1 classes were associated with differing cell distributions: 
NPM1 class I predominantly consisted of immature AML cells, while NPM1 class 
II included both immature and differentiated AML cells. By generating a gene list 
based on the differential expression in immature AML cells, NPM1 class I and 
NPM1 class II could be clearly distinguished in bulk gene expression data from our 
own dataset and external ones such as Beat AML and TCGA (Figure AIII-2). 
However, a third group of the samples in the external datasets could not be assigned 
to either of the two NPM1-mutated subtypes, most likely due to low content of 
immature AML cells.  

 
Figure AIII-2 | Identification of NPM1 class I and NPM1 class II. 
UMAP representation of cells from normal bone marrow samples (gray) and AML immature cells from 
individual NPM1-mutated samples, with cases from NPM1 class I indicated in blue and NPM1 class II 
cases indicated in red (left). Hierarchical clustering of bulk gene expression data from 174 NPM1-
mutated AML samples from the Beat-AML cohort shows NPM1 class I genes (indicated in blue) and 
NPM1 class II genes (indicated in red) (right). 
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Focusing on differences between NPM1 class I and NPM1 class II, mutations in 
IDH2, TET2, and SRSF2 were significantly associated with NPM1 class I, whereas 
mutations in FLT3, DNMT3A, NRAS, PTPN11, and WT1 were more common in 
NPM1 class II (Figure AIII-3). Notably, the NPM1 classification also correlated 
with clinical outcomes. While NPM1 class II was associated with dismal survival 
after hematopoietic stem cell transplantation, NPM1 class I, demonstrated 
significantly improved survival following hematopoietic stem cell transplantation. 
Additionally, NPM1 class I showed downregulation of genes encoding MHC Class 
II molecules as a potential immune evasion mechanism, whereas NPM1 class II was 
instead associated with increased resistance to allogeneic T cells. Thus, this 
difference in immune evasion mechanisms between the two NPM1-mutated 
subtypes could potentially explain the survival difference following hematopoietic 
stem cell transplantation. 
 

 
Figure AIII-3 | Summary of characteristics in NPM1-mutated AML subdivision. 
Differences in immune evasion mechanisms, mutational status, and cellular composition were 
observed between the two different NPM1-mutated AML subtypes. These NPM1 classes also 
correlated with clinical outcomes, with NPM1 class II cases not benefiting from HSCT (red), while 
NPM1 class I showed significantly improved survival (blue).  
 

In summary, this study demonstrates that bulk AML gene expression profiles are 
driven by a diverse set of cellular signatures. This was confirmed by scRNA-seq, 
which also revealed an unexpected degree of cellular heterogeneity that extends 
beyond current genomic classifications. Notably, NPM1-mutated AML could be 
stratified into two novel, clinically relevant subclasses, each associated with distinct 
immune evasion mechanisms and differences in survival following hematopoietic 
stem cell transplantation. These findings provide novel insights into the cellular 
landscape of AML, define new diagnostic entities, and highlight potential 
therapeutic intervention points. 
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Article IV  
Mapping the cellular state space of pediatric and adult AML unveils complex 
differentiation patterns and defines the subtype-specific maturation of the 
leukemia stem cell compartment 

Although age is a known prognostic factor in AML, the similarities and differences 
in the single cell landscapes of adult and pediatric AML remain poorly investigated. 
To address this, we used scRNA-seq data from 35 cases of adult AML (Article III) 
and collected data from two recently published studies including 20 adult and 48 
pediatric AML cases, respectively.175,187 After manual data curation, stringent 
quality control, and batch correction, the final dataset included 55 adult and 48 
pediatric AML cases, along with 18 healthy donor bone marrow samples. 

The cellular state space of both adult AML and pediatric AML was found to be 
extensively remodeled compared to normal bone marrow samples. Each AML 
sample was associated with a distinct cluster of abnormal cells that constituted the 
bulk of the AML samples, distinguishing them from all cell types observed in 
normal bone marrow. The abnormal cells were classified into ten distinct cell types, 
spanning a maturation axis from primitive to myeloid cells, along with two 
lymphoid cell types (Figure AIV-1). When classifying the abnormal AML cells into 
distinct cell types along the normal differentiation axis, no major differences were 
observed between adult and pediatric AML. Instead, these features were found to 
be associated with the genetic subtype. Most subtypes exhibited an enrichment of 
cells with primitive characteristics, resembling normal HSCs, LMPPs, and 
immature GMPs. However, two notable exceptions were observed: KMT2A-r AML 
displayed a notable enrichment of cells resembling differentiated GMPs, whereas 
AML-MR lacked cells resembling GMPs cells and displayed lymphoid 
transcriptional features (Figure AIV-1). In addition, AML-MR had a significant 
increase in apparently normal CLPs, suggesting either that LSC or other leukemia-
related immature cells retain the capacity to produce lymphoid cells. 
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Figure AIV-1 | The maturation characteristics of AML. 
Heatmap showing cell type-specific gene expression across various AML genetic subtypes, with red 
indicating high expression (upper). Cell composition is visualized by bar plots, and maturation 
characteristics are displayed in single-cell projections of AML cells onto a normal bone marrow 
reference for KMT2A-r AML (lower left) and AML-MR (lower right).  

 

Subtypes such as CBFB::MYH11 and NPM1-mutated AML, in addition to 
primitive cells, also displayed enlarged monocytic compartments, whereas TP53-
mutated AML showed a notably higher proportion of erythroid cells. Although the 
maturation characteristics of AML were primarily determined by genetic subtypes, 
differences within each subtype were also observed. Consistent with our findings 
in Article III, NPM1-mutated AML exhibited varying degrees of primitive cells 
and monocytes. Similar variations were seen in AML-MR and TP53-mutated 
AML. These differences within genetic subtypes of AML suggest biological 
differences that extend beyond current genomic classifications. 

By applying a stemness score, we could identify putative LSCs and determine their 
maturation (Figure AIV-2). This revealed substantial variability in LSC maturation 
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that was associated with genetic subtype but not with age, although a non-significant 
trend was observed for pediatric LSCs having a more differentiated profile. TP53-
mutated LSCs exhibited the most immature profile among all subtypes. 

Notably, most LSC populations resembled the LMPP compartment rather than the 
stem cell compartment, except for KMT2A-r AML, where the LSCs were positioned 
within the GMP compartment. Despite the absence of major differences in 
maturation characteristics of both LSCs and the more differentiated AML cells 
between adults and children, gene expression differences were observed within 
specific cell types when comparing the two age groups (Figure AIV-2). This 
suggests that molecular programs in these cell types vary across ages. Notably, 
pediatric AML LSCs exhibited increased inflammatory and chemokine signaling, 
along with the activation of non-hematopoietic characteristics such as epithelial-
mesenchymal transition (EMT) and angiogenesis. These findings suggest that LSCs 
in adult and pediatric AML may differ in how they interact with the bone marrow 
microenvironment. In line with this, the cell surface marker MSLN (mesothelin), 
which is thought to play a role in cell adhesion within the extracellular matrix, was 
identified as specifically upregulated in pediatric patients. This potential interaction 
may constitute a candidate for immunotherapy in children diagnosed with AML. 
 

 
Figure AIV-2 | Identification of putative LSC. 
Putative quiescent LSC populations were projected onto the normal bone marrow reference map (left), 
with each population colored by age group. The LSC maturation score across patients showed no 
significant difference between age groups when controlling for subtype (center). However, a significant 
gene expression difference was observed between LSCs in aAML and pAML (right). 

 

Collectively, this study provides valuable insights into cellular hierarchies and LSC 
features across ages, highlighting biological characteristics that are not fully 
captured for in today's genomic classification system. These findings may contribute 
to a more refined classification and treatment approach for both adult and pediatric 
AML. 
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Conclusions 
 

The main conclusions from the present study can be summarized as follows: 
 

Article I | Single-cell genomics details the maturation block in BCP-ALL and 
identifies therapeutic vulnerabilities in DUX4-r cases 

• BCP-ALL subtypes exhibit distinct maturation patterns: BCR::ABL1+, 
ETV6::RUNX1+, and HeH subtypes are primarily arrested at the pro-B cell 
stage, whereas DUX4-r ALL cells exhibit transcriptional signatures 
resembling mature B cells and display strong evidence of multilineage 
priming. 

• DUX4-r ALL is highly susceptible to targeted therapies: DUX4-r ALL 
cells demonstrate marked sensitivity to PI3K inhibitors and high 
susceptibility to CD371 CAR-T cell cytotoxicity in vivo. 

Article II | The complement receptor C3AR constitutes a novel therapeutic 
target in NPM1-mutated AML 

• C3AR+/GPR56+ cells define the LSC population in NPM1-mutated 
AML: C3AR is selectively expressed on the entire population of NPM1-
mutated AML cells and, when co-expressed with GPR56, defines the LSC 
population within this subtype. Functionally, C3AR plays a role in the 
complement system and can activate ERK1/2, while also contributing to the 
survival of AML cells. 

• C3AR constitutes a novel therapeutic target in NPM1-mutated 
AML: Targeting C3AR with antibodies effectively eliminates AML cells 
while sparing normal progenitor cells, making it a highly attractive 
therapeutic strategy. In contrast, GPR56 is also expressed on normal HSCs, 
which limits its therapeutic potential. 

Article III | The cellular state space of AML unveils novel NPM1 subtypes 
with distinct clinical outcomes and immune evasion properties 

• The bulk transcriptional profiles of AML are mainly driven by a 
diverse set of cellular signatures: Bulk AML gene expression profiles are 
influenced by cellular composition, which mask the intrinsic leukemic 
features. ScRNA-seq uncovers marked cellular heterogeneity, with 
immature AML cells exhibiting subtype-specific transcriptional patterns 
that extend beyond current genomic classifications. 
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• Identification of novel NPM1-mutated AML subclasses: NPM1-mutated 
AML can be classified into two novel, clinically relevant, subtypes (NPM1 
class I and NPM1 class II) that exhibit distinct immune evasion mechanisms 
and different survival outcomes after stem cell transplantation. 

 

Article IV | Mapping the cellular state space of pediatric and adult AML 
unveils complex differentiation patterns and defines the subtype-specific 
maturation of the leukemia stem cell compartment 

• AML maturation patterns are determined by genetic subtype rather 
than age: Analysis of over 500,000 single cells from 103 AML cases 
identified ten distinct AML cell types along the maturation axis. The 
cellular composition and maturation characteristics of AML are mainly 
determined by genetic subtype and not age. However, age-related 
transcriptional differences were observed within the same cell types. 

• LSC maturity is highly variable in pediatric and adult AML: LSC 
maturity as defined by stemness scores shows high variability but correlates 
with genetic subtype. Pediatric and adult LSCs show differences in their 
transcriptional programs, revealing potential therapeutic vulnerabilities. 

General discussion and future perspectives 
With the aim to improve disease understanding, refine diagnostic approaches, and 
identify novel therapeutic targets in acute leukemia, the present study applied 
multimodal single-cell sequencing technologies to dissect the cellular and molecular 
complexity of BCP-ALL and AML. Leveraging these techniques and developing 
novel bioinformatic approaches, the present study was able to infer the cellular 
composition, maturation patterns, and aberrant transcriptional programs of different 
cell populations. In addition, a specific focus was on studying the LSC compartment 
to delineate aberrant transcriptional programs and to identify new therapeutic 
targets. 

By studying the cellular composition and maturation patterns in BCP-ALL and 
AML (Articles I, III, and IV) using well-annotated reference data sets, known 
marker genes, and force-layout plots, in which the leukemic cells were projected 
onto either the normal B cell differentiation axis or the single-cell space of normal 
bone marrow samples, we were able to delineate the cellular composition and 
maturation patterns in great detail. This approach allowed for a detailed delineation 
of differentiation patterns. For example, in BCP-ALL, DUX4-r cases exhibited three 
main differentiation patterns and showed signs of multilineage priming. Similarly, 
in AML, the most common genetic subtypes demonstrated similarities in 
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differentiation patterns but also displayed marked heterogeneity (Article III and 
IV). This approach revealed patterns that associated with the genetic subtype but 
also findings extending beyond current genomic classification schemes. Within 
NPM1-mutated AML, single-cell analysis identified two novel subclasses (NPM1 
class I and II), each characterized by distinct gene expression signature within their 
immature cell compartments (Article III). Using defined gene expression 
signatures of these populations, it was possible to assess their prognostic impact in 
large bulk RNA-sequencing data sets, revealing differences in outcomes following 
stem cell transplantation. Functionally, NPM1 class I exhibited downregulation of 
MHC class II molecules as a possible immune evasion strategy, whereas NPM1 
class II displayed increased resistance to T cell-mediated cytotoxicity. These 
findings may explain the observed differences following stem cell transplantation. 
Thus, the novel NPM1-mutated subtypes may become important in the future 
clinical diagnostic work-up of AML. 

Despite advancements in the therapeutic development of BCP-ALL and AML, 
chemotherapy remains the backbone of current treatment and is associated with 
severe side effects, particularly in growing children. This urgently calls for more 
targeted therapies that are both more effective against the leukemic cells and 
associated with fewer side effects. In this context, single-cell analysis allows the 
study of aberrant transcriptional programs in any of the defined cell populations, 
facilitating the identification of new therapeutic targets. In this thesis several new 
targets were identified: For example, in DUX4-r BCP-ALL, dysregulation of the 
PI3K/AKT pathway was identified and marked sensitivity to PI3K inhibitors, both 
ex vivo and in vivo, was demonstrated (Article I). Additionally, the cell surface 
marker CD371 (CLL-1), a well-known marker of AML stem cells,158 was found to 
mark both lymphoid and monocytic blast cells in DUX4-r ALL. These findings were 
used to engineer CAR-T cells directed against CD371 and to demonstrate proof-of-
concept of a strong anti-leukemic activity in vivo using patient-derived xenograft 
models of DUX4-r ALL (Article I). Finally, in Article II, using an arrayed flow 
cytometry-based screen of 362 cell surface markers, combined with single-cell 
analysis, C3AR was identified as being specifically expressed on both bulk AML 
cells and the LSCs population in NPM1-mutated AML. Antibodies directed against 
C3AR efficiently elicited NK cell-mediated killing of primary AML cells ex vivo, 
highlighting C3AR as a promising therapeutic target in NPM1-mutated AML. 

A central focus of leukemia research remains the characterization and targeting of 
LSCs, which are pivotal in leukemia initiation, progression, and relapse. 
Understanding their nature and targeting them specifically remains the ultimate goal 
in leukemia research as this may result in a potential cure of these malignancies. In 
Articles IV, single-cell analysis was used to study their molecular properties. As 
LSCs are operationally defined by transplantation into immunodeficient mice, it was 
only possible to study this population indirectly using different bioinformatic 
approaches. A stemness score was developed to identify the LSCs, and their 
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maturation was inferred by projection onto normal bone marrow cells. While 
substantial heterogeneity was observed, the maturation of LSCs was mainly 
associated with the genetic subtype. Currently, work is on-going within the research 
group to further characterize the LSC compartments in the different subtypes of 
AML. While LSCs are defined by their ability to self-renew and sustain the bulk of 
more differentiated leukemic cells, their precise cellular origin also remains a 
subject of ongoing investigation. In this thesis, single-cell analysis provided direct 
insights into the cellular origin of LSCs in BCP-ALL by resolving IGH and IGL 
chain rearrangements that appear to be fixed at the time of leukemia development. 
The findings suggest that LSCs can arise from different progenitor stages depending 
on the genetic subtype. For example, in BCP-ALL, BCR::ABL1-positive cases 
appeared to originate from an early hematopoietic stage that lacked both IGH and 
IGL rearrangements, whereas DUX4-r ALL cases were more differentiated, where 
IGH and IGL chain rearrangements appeared to have been present in the cell of 
origin. In AML, instead, the maturation level of LSCs was studied, providing a more 
indirect indication of the maturation level also of the cell of origin. There, most 
LSCs displayed an LMPP-like phenotype, with some subtypes, such as KMT2A-r 
AML, showing LSCs at later differentiation stages, including the GMP 
compartment. However, in the latter instances, it is for example possible that the 
cell of origin is a more committed progenitor that through the oncogenic hits 
regained stem cell-like properties. 

Although age is a known prognostic factor in leukemia, the similarities and 
differences in the single-cell landscapes of adult and pediatric leukemia remain 
poorly studied. The frequency of defining genetic alterations differs greatly between 
children and adults, which may imply differences in disease initiation, progression, 
and treatment response. Additionally, targeted therapy approvals have historically 
benefited adult AML patients, while pediatric AML has lacked effective targeted 
treatment options. Comparing these age groups can reveal shared or unique 
therapeutic vulnerabilities and identifying age-related variations may help develop 
age-specific therapeutic strategies. In Article IV, we aimed to investigate age-
related characteristics by analyzing 103 samples spanning both adult and pediatric 
AML cases. This analysis revealed no marked differences in cellular composition 
or maturation characteristics between adult and pediatric AML, instead these 
features mainly correlated with the genetic subtype and not age. However, age-
related transcriptional differences were observed within the same cell types. For 
example, pediatric LSC populations exhibited higher levels of bone marrow 
remodeling and inflammatory signaling compared to adult AML. These findings 
suggest that molecular programs within specific cell types vary across ages, 
potentially influencing disease progression and treatment response. Although work 
is still ongoing, preliminary findings point to potential therapeutic intervention 
opportunities for both adult and pediatric patients. 
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The rapid development of single-cell technologies continues to revolutionize 
leukemia research by enabling a more precise characterization of cellular 
heterogeneity, disease evolution, and therapeutic vulnerabilities. While current 
scRNA-seq techniques provide high-resolution transcriptomic data, emerging 
technologies are pushing the boundaries further. Single-cell multiomics approaches, 
which integrate transcriptomic, epigenomic, and proteomic data in the same cell, 
will allow for a more comprehensive understanding of leukemia at multiple layers. 
In parallel, advances in spatial transcriptomics will enable researchers to study 
leukemic cells within their native bone marrow microenvironment, 
uncovering critical interactions between LSCs, immune cells, and stromal 
components that drive disease progression. As these technologies become more 
refined, they will likely be integrated into clinical workflows, allowing for real-time 
monitoring of leukemia evolution and treatment response. However, before clinical 
implementation, cost for single-cell analysis need to significantly decrease and more 
robust workflows need to be implemented to allow clinical grade diagnostics. 

Moreover, artificial intelligence (AI) and machine learning-driven data analysis are 
expected to play an increasingly pivotal role in interpreting the vast datasets 
generated by single-cell technologies; in this thesis alone, more than 800.000 single 
cells were analyzed. AI-powered algorithms have the potential to identify hidden 
patterns in large-scale patient datasets, predict treatment response, and uncover 
novel therapeutic targets that may have been overlooked using traditional 
bioinformatic approaches. In addition, AI-driven drug discovery platforms are 
already accelerating the identification of candidate compounds, potentially reducing 
the time required to bring new treatments to clinical trials. As AI continues to 
evolve, it is likely to further streamline biomarker discovery, optimize personalized 
treatment strategies, and enhance clinical decision-making in leukemia care. 

In conclusion, this thesis has demonstrated the power of single-cell sequencing 
technologies in dissecting the cellular and molecular landscape of acute leukemia, 
leading to the identification of novel leukemia subtypes, deeper insights into LSC 
biology, and the discovery of potential therapeutic targets. Undoubtedly, leukemia 
research is experiencing remarkable progress. Looking ahead, continued 
advancements will expand the therapeutic arsenal in the fight against leukemia, 
offering new hope for patients and their families affected by these diseases. 
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AI tools and software for illustrations 

 
In preparing this thesis, OpenAI's ChatGPT (GPT-4) was utilized to enhance the 
clarity, grammar, and style of the scientific writing. All AI-generated suggestions in 
scientific writing were critically reviewed and revised by the author to ensure that 
the final version fully preserved the original scientific content and integrity, while 
enhancing only the linguistic quality. 
 
Figures were created using BioRender (https://biorender.com), a tool for 
professional scientific illustrations. 



79 

Populärvetenskaplig sammanfattning 

Varje sekund pågår en livsviktig kamp i din kropp, en kamp för att hålla dig vid liv. 
Miljarder blodceller arbetar hårt, slits ut och dör, bara för att omedelbart ersättas av 
nya. Varje dag producerar människokroppen ofattbara 300 miljarder blodceller, en 
intensiv och välorkestrerad process som aldrig får stanna av. Hematopoesen, det vill 
säga blodbildningen, är ett finjusterat maskineri som snabbt anpassar sig till 
kroppens behov och är redo att reagera på allt från infektioner till plötslig 
blodförlust. Alla blodceller har sitt ursprung från en extraordinär stamcell, den 
hematopoetiska stamcellen. Denna kraftfulla cell besitter en förmåga att självförnya 
sig och mogna ut till en mångfald av blodceller. Dessa nybildade celler lämnar 
snabbt benmärgen och ger sig ut i blodomloppet för att påbörja sina livsviktiga 
uppdrag. Det finns en mängd olika typer av blodceller, var och en med sin unika roll 
för att säkerställa att kroppen fungerar som den ska. B-celler är exempelvis viktiga 
soldater i immunförsvaret, medan myeloiska celler fungerar som kroppens städare 
genom att bryta ner skadliga mikroorganismer och celler. Röda blodkroppar ser i 
sin tur till att syret når alla kroppens delar. 

Blodcellernas DNA bär på den genetiska koden som bestämmer dess funktion. 
Varje gång en cell delar sig kopieras den genetiska koden och förs vidare till nästa 
generation av celler. Med tanke på att kroppen producerar hisnande 300 miljarder 
blodceller varje dag är det kanske inte så förvånande att fel ibland smyger sig in vid 
kopieringen, vilket kan resultera i att skador i gener (mutationer) uppstår. De flesta 
mutationer är harmlösa, men om de sker i viktiga gener kan detta leda till att cellerna 
programmeras på fel sätt. Det kan leda till att de slutar fungera normalt och i värsta 
fall kan det leda till cancer och när cancer uppstår i blodet kallas det för leukemi.  

Att få en diagnos som blodcancer är utmanade, men vad händer egentligen i 
kroppen? Det hela börjar när en hematopoetisk cell i benmärgen drabbas av 
mutationer och börjar bete sig som en upprorsmakare. Den förvandlas till en 
leukemisk stamcell, som sedan skapar en armé av onormala blodceller. De normala 
blodcellerna som normalt skyddar kroppen och utför livsviktiga funktioner, förlorar 
sin ursprungliga funktion. Samtidigt delar sig dessa rebeller okontrollerat och 
tränger undan de friska blodcellerna, vilket försvårar kroppens förmåga att 
upprätthålla balans och hälsa. För att förstå cancerförloppet är det viktigt att studera 
enskilda celler och deras samspel med omgivande celler. 
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Det finns många olika varianter av leukemi, men vad avgör vilken typ som uppstår? 
Svaret ligger med stor sannolikhet i vilka mutation som inträffar och i vilken celltyp. 
Leukemi är en komplex sjukdom, där olika genetiska förändringar styr hur den 
utvecklas. Beroende på vilken celltyp som drabbats delas leukemi traditionellt sett 
in i två grupper, akut myeloisk leukemi (AML) och akut lymfatisk leukemi (ALL).  

Idag används genetiska avvikelser (mutationer) för att klassificera sjukdomen och 
bedöma risknivå, vilket hjälper läkaren att välja rätt behandling. Hos vuxna är AML 
den vanligaste formen av akut leukemi. Hos barn är det istället ALL som dominerar 
och denna sjukdom utgör den vanligaste cancerformen bland barn. Här kommer en 
twist: även om det är ovanligt, kan ALL i vissa fall övergå till AML. Det innebär att 
sjuka celler kan ändra skepnad, från B-celler till myeloiska celler, eller tvärtom. 
Föreställ dig att blodceller är som frukter i en fruktkorg. B-celler kan liknas vid 
äpplen, men under selektionstryck, som vid leukemi under behandling, kan ett äpple 
plötsligt förvandlas till ett päron. Dessa oväntade förändringar visar att 
cancercellerna har en egen överlevnadsstrategi och kan byta taktik när det behövs. 
Leukemi är långt mer komplext än vad många tror. Det handlar inte bara om 
mutationer, utan om ett dynamiskt cellulärt ekosystem där både friska och sjuka 
blodceller påverkar varandra. Detta ekosystem styr sjukdomens utveckling och kan 
även påverka hur den svarar på behandling. 

Ålder vid diagnos är en viktig prognostisk faktor vid leukemi. Även om 
överlevnaden är relativt god hos barn, sjunker den avsevärt med stigande ålder. Hos 
patienter över 65 år är överlevnaden endast cirka 10 procent. Trots årtionden av 
banbrytande forskning och stora framsteg inom leukemibehandling är intensiv 
cellgiftsterapi fortfarande den primära behandlingsmetoden. Syftet med cellgifterna 
är att eliminera cancerceller, men behandlingen är mycket krävande och förknippad 
med svåra biverkningar. Biverkningarna kan vara både kort- och långsiktiga. 
Exempel på akuta biverkningar är håravfall och nedsatt immunförsvar, medan 
långsiktiga effekter kan inkludera tillväxtrubbningar, koncentrationssvårigheter och 
infertilitet. Dessa biverkningar är särskilt förödande för växande barn, men 
behandlingen är också så aggressiv att den inte alltid kan användas på äldre 
patienter, vars kroppar helt enkelt inte tål behandlingen. Tyvärr är återfall vanligt 
eftersom cellgifterna inte alltid lyckas eliminera alla cancerceller. Leukemiska 
stamceller, som ligger till grund för sjukdomen, är svåra att döda. De överlevande 
cancercellerna kan dessutom utveckla resistens mot cellgifterna, vilket gör leukemin 
ännu svårare att behandla och kraftigt försämrar överlevnadsprognosen. En central 
del av leukemiforskningen idag är att förstå och rikta in sig på de leukemiska 
stamceller. Att kartlägga deras egenskaper och utveckla sätt att specifikt angripa 
dem är det ultimata målet eftersom detta kan vara nyckeln till ett möjligt botemedel 
för sjukdomen.  
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Att studera genetiska förändringar vid leukemi är avgörande för att kunna ställa en 
korrekt diagnos och ge rätt behandling. Fram tills nu har det bara varit möjligt att 
analysera den sammanslagna genetiska koden från en blandning av många olika 
celler. Som att analysera en smoothie, där alls frukter är mixade och sammanslagna, 
när målet egentligen är att studera varje enskild frukt. Nu har forskningen fått en 
kraftfull ny verktygslåda med en nyutvecklade teknik kallad singelcellsekvensering. 
Med singelcellsekvensering går det att isolera och studera enskilda celler från ett 
prov bestående av tusentals celler. Plötsligt kan de enskilda frukterna i smoothien 
plockas ut och granskas var för sig. Tekniken gör det möjligt att analysera akut 
leukemi på en detaljnivå som tidigare varit utom räckhåll. 

I denna avhandling användes singelcelltekniken för att studera celler i 
benmärgsprover från både vuxna och barn som insjuknat i leukemi. Totalt isolerades 
och karakteriserades omkring en miljon celler, en process som kräver både teknisk 
noggrannhet och avancerad databearbetning, så kallad bioinformatik. Genom att 
kartlägga cellernas genuttrycksmönster kunde olika cellpopulationer identifierats 
och deras mognadsgrad fastställas. Detta har lett till upptäckten av tydliga genetiska 
mönster, specifika för olika patientgrupper, och möjliggjort en mer exakt 
klassificering av leukemier som kan ligga till grund för framtida förbättrad 
diagnostik. Pusslet slutar inte där. Bland de upptäckta cellpopulationerna har även 
omogna celler undersökts, vilka sannolikt utgör de leukemiska stamcellerna, de 
celler som driver sjukdomen, gör den svårbehandlad och orsakar återfall efter given 
behandling. Undersökningarna i denna avhandling som baseras på fyra 
vetenskapliga arbeten (Artiklarna I-IV) har förutom nya biologiska insikter också 
avslöjat nya angreppspunkter för mer träffsäkra behandlingar. 

Sammanfattningsvis har denna avhandling identifierat nya leukemityper, gett 
fördjupad kunskap om leukemiska stamceller och lett till upptäckten av potentiella 
behandlingar för både vuxna och barn. Med den fortsatta tekniska utvecklingen och 
fördjupade biologiska insikter ser framtiden ljus ut. Förhoppningsvis kommer 
framtidens behandlingar att bli mer träffsäkra än någonsin och ge nytt hopp till 
patienter och deras familjer som drabbas av akuta leukemier. 
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