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‡Division of Theoretical Chemistry, Lund University, Sweden

ABSTRACT: A heuristic model based on dielectric continuum theory for the long-range solvation free energy of a dipolar system
possessing periodic boundary conditions (PBCs) is presented. The predictions of the model are compared to simulation results for
Stockmayer fluids simulated using three different cell geometries. The boundary effects induced by the PBCs are shown to lead to
anisotropies in the apparent dielectric constant and the long-range solvation free energy of as much as 50%. However, the sum of all
of the anisotropic energy contributions yields a value that is very close to the isotropic one derived from dielectric continuum theory,
leading to a total system energy close to the dielectric value. It is finally shown that the leading-order contribution to the energetic
and structural anisotropy is significantly smaller in the noncubic simulation cell geometries compared to when using a cubic
simulation cell.

1. INTRODUCTION

Molecular dynamics (MD) and Monte Carlo (MC) simula-
tions have grown to become a central tool in physics, chemistry,
and biology over the past three decades.1,2 However, in spite of
the huge advancement of both algorithms and hardware, there
are still some unresolved methodological issues. Arguably, the
most persistent of these is the question of how to handle long-
range electrostatic (Coulomb and dipole�dipole) interactions in
a simulation.3�5 The basic problem is that the integralZ ∞

rcut
vðrÞ4πr2dr ð1Þ

diverges for all finite values of the cutoff radius rcut as long as the
intermolecular potential v(r) does not decay faster than r�3.
Thus, applying a simple (spherical or cubic) cutoff to the
electrostatic potentials may often lead to serious artifacts in the
structure and thermodynamics of the system under study.

Although several solutions to the infinite-range interaction
problem have been proposed, the most common way to circum-
vent this problem is the use of lattice-based summation techni-
ques, or periodic boundary conditions (PBCs). These methods
compose a plethora of different algorithms that all rest on the
same basic assumption, namely that the (finitely sized) simula-
tion cell is duplicated in all directions to create an infinite lattice.
The original implementation of this idea was developed by
Ewald6 and is built upon a separation of the interaction into
short-range and long-range parts, where the former is summed
up in real space and the latter in reciprocal space. The original
Ewald method has since been developed inmany ways, and today
different mesh-based methods7�10 are numerically faster alter-
natives to the classical Ewald summation.

When simulating a fluid phase, the assumption of periodicity is
clearly not a correct description of the real system. This criticism
has been put forward several times in the literature but was
originally noted by Valleau and Whittington,11 who gave a
qualitative argument about the inability of lattice summation

methods to correctly reproduce long-range fluctuations in fluid
systems. Furthermore, several studies have addressed the issue of
periodicity effects on the properties of Lennard-Jones fluids,12,13

ionic solutions,14�17 and biomolecules.18�21 In the context of
dipolar systems, Boresch and Steinhauser22 conducted a careful
study of dipole fluctuations and correlations in SPC water
simulated using the Ewald summation technique. In particular,
they addressed the importance of the so-called surface term,23

which describes the solvation from the dielectric surroundings of
the infinite lattice on structural properties such as the dielectric
permittivity, dipole time correlation functions, and the Kirkwood
g factor. However, the total dipole moment of the simulation box
is a special property, in the sense that its total interaction with all
its periodic images is identically zero, as long as the contributions
are summed in spherical shells.24�27 Therefore, the periodicity
effects on the fluctuating dipole moment of the whole simulation
box (and related properties) are expected to be small. In a recent
contribution,28 we showed, however, that the fluctuations of
higher order electric multipole moments of the whole simulation
box are greatly influenced by the interaction between each
instantaneous multipole and all of its periodic images. This effect
is manifested through a difference of as much as 50% between the
dielectric permittivities calculated from different multipole com-
ponents, depending on whether the multipole component has an
attractive or a repulsive (or, in some cases, zero) interaction with
its neighbors. A schematic picture of the coupling of different
multipole components in a system under PBCs is given in
Figure 1.

In addition to the cubic simulation cell used in the majority of
computer simulations, some alternative simulation cell geome-
tries have been suggested and implemented,29�33 most notably
the rhombic dodecahedron (RD) and the truncated octahedron
(TO). These two bodies have the appealing property of more
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closely resembling the geometry of solvated spherical solutes, in
the sense that they have larger inscribed spheres than a cubic
simulation cell of the same volume. Even though these alternative
geometries are implemented in major simulation packages, there
are only a few studies29,34,35 probing the effect of changing the
cell geometry on the thermodynamic properties of the system
under study. Because these cells pack in lattice structures
different from that of the cube, it seems reasonable to expect
their periodicity effects to differ qualitatively from those of a
cubic cell.

In the present contribution, we will extend our previous
analysis28 of the periodicity effects on a dipolar model system
from the qualitative to the quantitative level, as well as from
cubic to noncubic simulation cells. We will develop a heuristic
model describing the solvation of and electrostatic fluctua-
tions in a spherical subvolume of a dielectric medium exhib-
ited to PBCs. This model will be compared to values of the
dielectric constant calculated from simulations of a simple
dipolar model system.

2. THEORY

2.1. General ansatz. In the following, the electrostatic fluctua-
tions in a spherical subvolume of a dipolar model system treated
using the Ewald summation technique will be described by
dividing the long-range solvation energy of this subvolume into
two contributions:
• An approximately isotropic part, coming from the interac-
tion between the instantaneous multipole Qlm of a spherical
volume in the central simulation cell and its noncorrelated
neighbors, i.e., Ql0m0 with l0 6¼ l and/or m0 6¼ m, in the other
cells. This interaction is, at least partly, Boltzmann-weighted
in a simulation, and we will thus attempt to describe it using
formulas valid for an isotropic dielectric medium.

• A strongly anisotropic part, coming from the “self-interac-
tion” between Qlm in the central cell and its fully correlated
replicas (Ql0m0 with l0 = l andm0 =m) in the rest of the lattice.
This part of the interaction is not Boltzmann-weighted,
because of the perfect periodicity imposed by the PBCs. We

will thus describe this interaction using the reduced lattice-
interaction tensors introduced previously.28

On the basis of this description, we will present a heuristic
derivation of the long-range solvation free energy of the spherical
subvolume. This will be compared to the behavior expected from
a spherical subvolume inside an infinite isotropic dielectric
medium and the analysis will thus enable us to directly probe
the magnitude of the periodicity effect introduced by the PBCs.
2.2. Periodic Boundary Conditions. In the present study, the

term “periodic boundary conditions” refers to a system with a
potential energy Upot of the form

Upot ¼ 1
2 ∑

N

i¼ 1
∑
N

j¼ 1
∑
n

0vðrij þ an,ωi,ωjÞ ð2Þ

where n = (nx, ny, nz) is a vector that runs over all lattice points in
the particular (unit length) lattice and a denotes the side length
of the unit cell. Furthermore, the primed sum indicates that the
term with i = j for n = 0 should be excluded, and v(rij, ωi, ωj)
denotes the intermolecular potential between particles i and j,
depending in general on their separation rij and orientations ωi

andωj. In practice, v(rij,ωi,ωj) is usually long-range in the sense
that it decays no faster than r�3, the two most important examples
being the Coulomb and dipole�dipole potentials.
Since the sum in eq 2 is slowly (and conditionally) convergent,

more elaborate methods to evaluate the potential energy in a
PBC system need to be used in practice. The by far most popular
technique to achieve a fast convergence of the potential energy is
the technique originally due to Ewald6 and different mesh-based
variants7�10 thereof. Within the Ewald-basedmethods, the short-
range (n = 0) part of Upot is screened through the addition of a
Gaussian charge (dipole) cloud and is thereafter summed within
a, usually spherical, cutoff after considering the nearest image con-
vention.1 The long-range (n 6¼ 0) part of the potential energy is
summed up in Fourier space, leading to a quickly (and absolutely)
convergent sum.
2.3. Simulation Cells with Noncubic Geometries. Although

cubic simulation cells are used for the majority of simula-
tion studies, the use of alternative simulation cell geometries

Figure 1. Schematic picture of the coupling of the total dipole (left) and higher multipoles (right) of a simulation cell subjected to PBCs. The dipole
does not “see” its neighbors since its self-interaction energy is zero but is solvated by the dielectric response from the surrounding medium through the
surface term. In contrast, higher multipoles (Qlm, l > 1) couple to its neighbors through their nonzero self-interaction but are not affected by the surface
term. In addition, the dipole as well as the highermultipoles interact with the set of “unconstrained”multipolesQl0m0, l0 6¼ l and/orm0 6¼m, (not depicted)
in the surrounding cells, giving an (approximately) isotropic contribution to the solvation.
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has started to become increasingly popular. In total, five classes of
geometrical bodies are translationally space-filling and can thus
be used for simulating a periodic system;31 however, due to their
relatively “sphere-like” symmetry, the two most useful alterna-
tives to the cube, at least for the simulation of bulk systems, are
the rhombic dodecahedron (RD) and truncated octahedron
(TO). While the cube, of course, packs in a simple cubic (SC)
lattice structure, the natural choice for the lattice structures of the
RD and TO are face-centered cubic (FCC) and body-centered
cubic (BCC), respectively.31 However, Smith and Fincham36

showed that the use of a body-centered tetragonal (BCT) lattice
structure for the RD, with one side of the unit cell elongated by
a factor

√
2 compared to the other two, greatly facilitates the

implementation of Ewald summation for this geometry, by
simply excluding k-space terms of certain parity. Thus, we will
use the BCC and BCT lattice structures as the basis of our
analysis. In Figure 2, the RD and the TO are shown, inscribed in
their respective unit cells.
2.4. Solvation in Dielectric Media. In the following subsec-

tions, we will treat relevant parts of the theory of solvation and
fluctuations in dielectric media. First, we will review the theory
for the solvation of a polarizable dipole in a dielectric medium
(section 2.4.1). Subsequently, in section 2.4.2, we will treat
electrostatic fluctuations and solvation in isotropic dielectric
media. Finally, in section 2.4.3, we will use tools from the two
preceding parts to develop a heuristic model for the solvation of a
dielectric subvolume in a PBC system.
Generally, the collective electrostatic fluctuations will be

quantified through the spherical multipolemomentsQlm, defined
through

Qlm �
Z
V
FðrÞrlClmðΩÞdr ð3Þ

where F(r) denotes the charge density in a point
r = (r, Ω) = (r, j, θ) ∈ V and Clm(Ω) represents Racah’s
unnormalized spherical harmonics. The index l denotes the order
of the multipole, whereas m describes its orientation in an
external coordinate frame. Just as for the spherical harmonics,
m takes on all integer values between �l and +l. However,

the �m and +m components are related according to

Q l�m ¼ ð� 1ÞmQ �
lm ð4Þ

where * denotes complex conjugation; thus, Qlm and Ql�m are
not independent degrees of freedom. Instead, we will adopt the
approach taken previously37,38 and treat separately the real and
imaginary parts of Qlm, denoted respectively by superscripts R
and I, for mg 0. Since Ql0 is real, these l + 1 real and l imaginary
multipole components form 2l + 1 linearly independent fluctua-
tion modes. Furthermore, we will use the bracketed superscripts
(R) and (I) to denote quantities that are somehow related to the
real and imaginary parts ofQlm, although not themselves complex
quantities.
2.4.1. A Polarizable Dipole in a Dielectric Medium. The

solvation energy Usolv of a polarizable point dipole of magnitude
μ, radius R, and polarizabilityα embedded in a dielectric medium
of dielectric permittivity ε is given by39

Usolv ¼ � 1
2

gμ2

1� gα
ð5Þ

where

g ¼ 1
R3

2ðε� 1Þ
2ε þ 1

ð6Þ

quantifies the reaction field, parallel to the dipole, coming from
the surrounding dielectric medium. A physical interpretation of
the expression for Usolv is facilitated by expanding eq 5 in a
geometric series, i.e.

Usolv ¼ � gμ2

2 ∑
∞

n¼ 0
ðgαÞn ð7Þ

From this expression, we can identify the prefactor � gμ2/2 as
the solvation energy of a permanent dipole immersed in a
dielectric medium, whereas the factor ∑n(gα)

n takes into account
the increase of the solvation energy due to the additional
polarization of the particle by the reaction field. The infinite
sum is due to the incremental nature of this process; the reaction
field increases the total dipole moment of the particle, which in

Figure 2. The rhombic dodecahedron (left) and truncated octahedron (right) inscribed in their BCT and BCC unit cells, respectively.
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turn polarizes the dielectric to yield a larger reaction field, etc. In
section 2.4.3, we will show how this partitioning of the solvation
energy can be mapped onto the solvation of a dielectric sub-
volume exhibited to PBCs.
2.4.2. Electrostatic Fluctuations in a Dielectric Medium. The

(unnormalized) probability distribution Pvac(Qlm) of the 2
l-pole

moment of a spherical dielectric volume with radius R and
dielectric permittivity ε in a vacuum is given by the Gaussian
function37,40

PvacðQX
lmÞ ¼ exp½ � βU†

vac� ð8Þ
where Uvac

† , given by

U†
vac ¼

ð2� δm0Þ½lðε þ 1Þ þ 1�
2lðε� 1Þ

ðQX
lmÞ2

R2l þ 1
ð9Þ

denotes the (free) energy cost for creating an instantaneous
multipole moment Qlm

X in the dielectric volume, β = (kBT)
�1 is

the inverse thermal energy, and X ∈ {R, I}. If the dielectric
volume is immersed in an infinite dielectric medium with the
same value of ε as the sphere itself, U† is decreased due to the
depolarizing reaction field from the surrounding medium, chang-
ing the probability distribution to37,40

PdielðQX
lmÞ ¼ exp½ � βU†

diel� ð10Þ
where

U†
diel ¼

ð2� δm0Þð2l þ 1Þ2ε
2ðε� 1Þl½ðl þ 1Þε þ l�

ðQX
lmÞ2

R2l þ 1

≈ð2� δm0Þ ð2l þ 1Þ2
2lðl þ 1Þε

ðQX
lmÞ2

R2l þ 1
� clm � ðQX

lmÞ2

ð11Þ
and the second equality is accurate for not too small values of ε.
The energy expression in eq 9 is roughly independent of ε for
high-dielectric media and thus not numerically useful for deter-
mining ε from a computer simulation. In contrast, the right-
hand-side of eq 11 shows that Udiel

† ∼ ε�1 for large and
intermediate values of ε, and thus determining the width of Pdiel
in a computer simulation can be used to determine the dielectric
permittivity of the system under study. More specifically, eq 10
can be transformed into a formula for the mean-square quantity
Æ(Qlm

X )2æ by noting that the Gaussian form implies that Æ(Qlm
X )2æ=

(2βclm)
�1. After some rearrangements, still using the simplified

form for high and intermediate ε, we get

ε ≈ ð2� δm0Þ ð2l þ 1Þ2
lðl þ 1Þ

βÆðQX
lmÞ2æ

R2l þ 1
ð12Þ

The l = 1 case of eq 12 applied to the total dipole moment has
been widely used to determine ε from computer simulations of
fluids, although care needs to be taken to use a form of the
formula proper for the particular boundary conditions being
used.41,42 In an infinite, isotropic dielectric medium, ε is by
definition independent of l, m, and R, but for a finite and/or
molecular system, this does not necessarily hold. In particular, as
we will show below, ε is not independent of l and m for a system
exposed to PBCs.
In addition to the dielectric permittivity, the above formulas

can be used to obtain the free energy change ΔAvacfdiel of

bringing the dielectric sphere from vacuum into its own medium.
To this end, we will employ the standard relationship43

βΔAvac f diel ¼ � ln
Zdiel

Zvac
¼ � ln

Z ∞

�∞
PdielðQX

lmÞ dQX
lmZ ∞

�∞
PvacðQX

lmÞ dQX
lm

ð13Þ
where Zdiel and Zvac denote the configuration integrals in the
solvated and nonsolvated states, respectively. Inserting eqs 8�11
and carrying out the integrations gives

βΔAvac f diel ¼ 1
2
ln

ð2l þ 1Þ2ε
½ðl þ 1Þε þ l�½lðε þ 1Þ þ 1�

" #

≈
1
2
ln

ð2l þ 1Þ2
lðl þ 1Þε

" #
ð14Þ

Thus,ΔAvacfdiel is (i) always negative, (ii) independent ofm and
R, and (iii) only weakly dependent on l, a dependence that
disappears quickly in the limit l f ∞ . Finally, we note that
ΔAvacfdiel diverges logarithmically as ε f ∞ for all l.
2.4.3. Electrostatic Fluctuations in a System Subjected to

PBCs.Wewill now propose amapping of the energy expression in
eq 7 for a polarizable dipole in a dielectric medium onto the
solvation of a dielectric subvolume in a system exposed to PBCs.
As a first assumption, we will describe the energy of creating an
instantaneous multipole moment Qlm

X in the spherical volume,
excluding the anisotropic part of the solvation, by the same
expression as in an infinite dielectric medium. Using eq 11 and
eq 7, we thus make the assignment

� gμ2

2
∼ U†

diel ¼ ð2� δm0Þ ð2l þ 1Þ2
2lðl þ 1Þε

ðQX
lmÞ2

R2l þ 1
ð15Þ

Obviously, Udiel
† is qualitatively different from the prefactor

� gμ2/2 of eq 7; most importantly, it has a positive rather than
a negative sign, since it also includes the energetic cost of creating
the multipole moment in the dielectric medium, whereas the
energy in eq 7 is valid for a permanent dipole, i.e., excluding the
self-energy of the charge distribution.
In addition to the isotropic solvation, the instantaneous

multipole moment induces a generalized reaction field coming
from its own replicas in all of the surrounding boxes, which in
turn polarizes the dielectric volume. This behavior is fully
analogous to the polarization of a polarizable dipole by its own
reaction field; however, in the case of PBCs the reaction field is
not proportional to the factor g of eq 6 but rather to the lattice
interaction tensor Slm

(X) quantifying the interaction between the
multipole component Qlm

X and all its replicas in the lattice. The
use of eqs 44 and 47 of ref 38 leads us to the following definition
of Slm

(X):

SðXÞlm � ð� 1Þl þ δXI f ðl, l,m,mÞ ∑
n 6¼0

CR
2l, 2mðΩÞ
janj2l þ 1

þ ð1� δm0Þð � 1Þl þ mf ðl, l,m, �mÞ ∑
n 6¼0

CR
2l, 0ðΩÞ

janj2l þ 1

ð16Þ
where a is the side length of the unit cell, δ is the Kronecker delta,
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and the function f is defined by

f ðl1, l2,m1,m2Þ � ð2ðl1 þ l2ÞÞ!
ð2l1Þ!ð2l2Þ!

� �1=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðl1 þ l2Þ þ 1

p l1 l2 l1 þ l2
m1 m2 �m1 �m2

 !
ð17Þ

with ( 3 3 3 ) representing the Wigner 3j symbol.44 The two terms
for m > 0 come from the interaction between Qlm

X in the central
unit cell and (i) Qlm

X and (ii) Ql�m
X in the surrounding cells. We

furthermore note that (see Appendix A)

∑
m, X

SðXÞlm ¼ 0, " l g 1 ð18Þ

where the sum runs over all multipole components with a given l.
Thus, the (unweighted) mean value of the lattice interaction for
any lg 1 is zero for all multipoles and lattices. It should finally be
clarified that, whereas g always yields an attractive coupling be-
tween the polarizable dipole and the reaction field, Slm

(X) can
represent attractive as well as repulsive couplings, depending on
the symmetry properties of each multipole. Finally, we make the
assumption that the polarizability α in eq 7 can be mapped
according to α ∼ kselfR

2l+1, where kself is a positive constant
related to the magnitude of the anisotropic solvation.
On the basis of the above discussion, we suggest that the (free)

energy for creating an instantaneous multipole moment in a
spherical subvolume of a dielectric exhibited to PBCs is given by

U†
PBC ¼ ð2� δm0Þ ð2l þ 1Þ2

2lðl þ 1Þε
ðQX

lmÞ2
R2l þ 1

1

1� kselfR2l þ 1SðXÞlm

ð19Þ
In accordance with eq 10, we also form the corresponding

probability distribution PPBC(Qlm
X ):

PPBCðQX
lmÞ ¼ exp½ � βU†

PBC� ð20Þ
We note that, just like in the case of isotropic dielectric solva-

tion, PPBC is Gaussian (as long as kself R
2l+1Slm

(X) < 1), but with the
important difference that its exponent is nowm-dependent through
the dependence on Slm

(X). The Gaussian form with respect to
Qlm
X implies that the mean-square multipole moment Æ(Qlm

X )2æPBC
can be expressed as

ÆðQX
lmÞ2æPBC ¼ R2l þ 1

ð2� δm0Þβ
lðl þ 1Þε
ð2l þ 1Þ2 ½1� kselfR

2l þ 1SðXÞlm �

ð21Þ
In analogy with eq 12, we now define the apparent dielectric

permittivity εPBC,lm
(X) as

εðXÞPBC, lm � ð2� δm0Þð2l þ 1Þ2
lðl þ 1Þ

βÆðQX
lmÞ2æPBC

R2l þ 1
ð22Þ

which from the above reasoning now becomes dependent on l
and m due to the anisotropic polarization induced by the PBCs.
Finally, inserting eq 21 into eq 22 gives the relation

εðXÞPBC, lm ¼ εdiel½1� kselfR
2l þ 1SðXÞlm � ð23Þ

where we have added the subscript “diel” to ε, to stress that it
represents the true (m-independent) dielectric permittivity that
the fluid would have if it behaved as an isotropic dielectric

medium. For a molecular system, εPBC,lm
(X) can be obtained by

sampling Æ(Qlm
X )2æPBC in a computer simulation. By plotting

εPBC,lm
(X) as a function of Slm

(X), the two constants εdiel and kself
appearing in eq 23 can be determined from the intercept and
slope of a linear fit to the data points.
Just as in the case of dielectric solvation, we may use the

analogy of eq 13 to define the free energy change ΔAvacfPBC of
bringing a dielectric sphere from a vacuum into a system under
PBCs. Using eqs 8, 9, and 19�20 gives, after performing the
integrations,

βΔAvac f PBC≈
1
2
ln

ð2l þ 1Þ2
lðl þ 1Þεdielð1� kselfR2l þ 1SðXÞlm Þ

" #

ð24Þ
Since ΔAvacfPBC describes the long-range part of the electro-

static free energy of the simulated system, it should ideally not
differ too much from ΔAvacfdiel, and therefore a comparison
between these two quantities may be a good way of assessing the
accuracy of the particular boundary conditions being used. In
particular, for Slm

(X) = 0 or kself = 0,ΔAvacfPBC reduces to eq 14 for
an isotropic dielectric medium.

3. COMPUTATIONAL DETAILS

The molecular model system is composed by particles posses-
sing a pairwise additive interparticle potential v(rij, ωi, ωj), com-
posed of a dipolar and a Lennard-Jones (LJ) part according to

vðrij, ωi, ωjÞ ¼ vdipðrij, ωi, ωjÞ þ vLJðrijÞ ð25Þ
where

νdipðrij, ωi, ωjÞ ¼ μi 3μj

r3ij
� 3ðμi 3 rijÞðμj 3 rijÞ

r5ij

" #
ð26Þ

and

νLJðrijÞ ¼ 4εLJ
σLJ

rij

 !12

� σLJ

rij

 !6
2
4

3
5 ð27Þ

In the above equations, μi represents the dipole of particle i, rij is
the vector pointing from particle i to particle j, rij = |rij|, and εLJ
and σLJ are the LJ parameters. Two different values of the
molecular dipole moment μ = |μ| were employed: μ = 0.45 atomic
units (0.23813e Å, μ* � μ/(4πε0εLJσLJ

3 )1/2 = 1.290) and
μ = 0.65 atomic units (0.34397e Å, μ* = 1.863). The LJ parameters
were set to σLJ = 2.8863 Å and εLJ = 1.97023 kJ mol�1.

The thermodynamic properties of the model system were
determined by performing MD simulations in the canonical
(constant N,V,T) ensemble, using N = 1000 particles in a cell
of volume V = 2.601 � 104 Å3 for all three simulation cell
geometries. The temperature was kept constant at T = 315.78 K
(T* t kBT/εLJ = 1.333). Toroidal boundaries for the noncubic
simulation cells were applied according to the procedures
devised by Smith,32 whereas Ewald summation with tinfoil
boundaries were implemented using the formulas due to Smith
and Fincham.36 A spherical cutoff in real space of rcut = 14 Å
was used in conjunction with the Ewald screening parameter
α = 3.2/rcut. The cutoff ncut in reciprocal space was set to 7, 10,
and 9 for the cube, RD, and TO geometries, respectively, to yield
a constant relative error in the k-space energy of ∼10�5. For all
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simulations, the integrated MC/MD/Brownian dynamics simu-
lation package Molsim45 was used. For further details about the
simulation parameters, the reader is referred to our previous
study.28

Themultipole momentsQlm, 1e le 4, of a sphere with radius
R were evaluated after every 100th time step. The contribution
Qlm,i from a molecular dipole Q1m,i located at r = (r, Ω) to the
total multipole moment Qlm = ∑iQlm,i was calculated according
to28

Qlm, i ¼ ∑
1

m0 ¼ � 1
ð � 1Þl þ m½lð2l� 1Þð2l þ 1Þ�1=2

� l� 1 l 1
m þ m0 �m �m0

 !

�Q1,�m0 rl � 1Cl�1,mþm0 ðΩÞ

ð28Þ

where all terms containing Clm with |m| > l should be excluded.
For each sampled configuration, Qlm was calculated with each
particle used as the origin, giving in totalN sampled values ofQlm

per configuration. In addition, reference values of εdiel for various
R values were calculated using eq 12 from a simulation in a cubic
simulation cell andN = 105 particles, i.e., 100 times as large as the
primary systems. This large (compared to R) system size was
used in order to ensure that the values of εdiel thus obtained are
unaffected by the boundary. This system is further described in
conjunction with our previous study.28

4. RESULTS AND DISCUSSION

In Figure 3, numerically calculated values of the reduced
interaction tensor R2l+1Slm

(X) for l = 2 and 3 are given for the
SC, BCT, and BCC lattices. We note that R2l+1Slm

(X) is highly
dependent on m, taking on both positive, corresponding to
repulsive net interaction energies, and negative, corresponding
to attractive net interactions, values. We also note that there is no
obvious correlation between either the sign or the magnitude of
R2l+1Slm

(X) obtained from the three different lattices. For l = 2, the
SC lattice yields significantly (≈ 100%) higher absolute values of
R2l+1Slm

(X) than the other two lattices; however, for l = 3, the
situation is the opposite. This means that the magnitude (and
sign) of the coupling of a certain multipole depends strongly on
its symmetry in relation to the symmetry of the particular lattice
where it resides. We furthermore note (results not shown)
that Slm

(X) = 0 for all m and all lattices, meaning that the total
dipole�dipole interaction is zero. This is a well-known fact for all

cubic lattices, as long as the lattice sum is carried out in spherical
shells.24�27

In Figure 4, the probability distribution PPBC(Qlm
X ) for two

different octupole components, obtained from a simulation of
the μ = 0.45 system in RD geometry, is shown. Clearly, there is a
significant difference between the widths of the two probability
distributions, although both distributions follow the predicted
Gaussian form very well. The width of PPBC(Qlm

X ) should be
compared to the corresponding values of Slm

(X) given in Figure 3.
Obviously, the narrower one of the two probability distributions
corresponds to a repulsive value of Slm

(X) (R2l+1S32
(R) = 0.88),

whereas the wider distribution corresponds to an attractive net
interaction (R2l+1S32

(I) =�0.66). Thus, there is at least qualitative
reason in our assumption that the width of PPBC(Qlm

X ), and thus
the magnitude of εPBC, can be described by the lattice interaction
tensor Slm

(X).
In order to quantitatively assess the dependence of PPBC(Qlm

X )
on Slm

(X), we evaluated the former quantity in terms of the
apparent (m-dependent) dielectric permittivity εPBC,lm

(X) , defined
through eq 22. In Figure 5, plots of εPBC,lm

(X) versus R2l+1Slm
(X)

obtained for both dipole strengths and all three simulation cell
geometries are presented. Clearly, the proposed linear relation-
ship between εPBC,lm

(X) and R2l+1Slm
(X) is very well reproduced by the

simulation data in all cases. Furthermore, the results obtained
from the μ = 0.45 systems exhibit slopes that are essentially
independent of geometry and l. The slopes of the μ = 0.65 data
show a larger variation, although no systematic dependence on

Figure 3. Values of the reduced interaction tensor R2l+1Slm
(X) for (a) l = 2 and (b) l = 3 relevant for the three different simulation cell geometries. The

values were obtained from eq 16 using a spherical cutoff of nmax = 50.

Figure 4. Probability distribution PPBC(Qlm
X ) of two octupole compo-

nents obtained from a simulation with μ = 0.45 in RD geometry. The
values of the corresponding reduced interaction tensors are R2l+1S32

(R) =
0.88 and R2l+1S32

(I) = �0.66.



4171 dx.doi.org/10.1021/ct200592k |J. Chem. Theory Comput. 2011, 7, 4165–4174

Journal of Chemical Theory and Computation ARTICLE

geometry and l is apparent. We also note the perhaps somewhat
nonintuitive fact that themagnitude of the self-interaction (quantified
through R2l+1Slm

(X)) does not decay with increasing l, at least not for
l e 4. Furthermore, the self-interaction magnitudes do not show
any clear trend between the different cell geometries. As an example,
we note that the cubic geometry exhibits the largest quadrupole
(l= 2) self-interactions, whereas the octupole (l = 3) self-interaction
has its largest magnitude in the RD and TO geometries.

Because of the good linearity of the data, eq 23 can be used to
obtain values of εdiel and kself from the intercept and slope,
respectively, of the data in Figure 5. In Table 1, fitted values of
εdiel and kself are given for both dipole strengths and all three cell
geometries, together with values of εdiel independently calculated
from a simulation withN= 105 using eq 12 and the same values of
the sampling radius R. From this data, we note that
1. The fitted values of εdiel are close (within 5%) to the ones

calculated from eq 12 for all fittings except those with

μ = 0.65 and l = 2, where the fittings generally yield too low
values of εdiel.

2. The fitted values of kself are slightly larger and exhibit larger
variations for μ = 0.65 than for μ = 0.45. Observation 1
shows that our assumption that the interaction between
noncorrelated multipoles (i.e. excluding the self-inter-
action) can be described using formulas for an isotropic
dielectric medium (eq 15) is reasonable, perhaps with the
exception for the l = 2 and μ = 0.65 case. Observation 2
indicates that there may be a slight variation of kself with εdiel
(or μ), although the source of this variation is not clear. The
larger variation in kself for μ = 0.65 we attribute to the larger
statistical noise present in the more strongly coupled system.

We furthermore note that εdiel decreases with increasing l, in
line with what we have observed before.28,46 The apparent
geometry dependence of εdiel is not due directly to the geometry
but rather to the slightly different radii of the inscribed spheres in
the three simulation cells; this behavior is also consistent with our
previous observation28,46 that εdiel increases with increasing
sampling sphere radius R for a given l.

In Figure 6, the data corresponding to Figure 5a, but obtained
using sampling radii half as large, are presented. In this case, it is
obvious that the magnitude of the self-interaction quickly
becomes less significant for increasing l, due to its R�(2l+1)

dependence. The linear fits are however still satisfactory, even

Figure 5. Apparent dielectric permittivity εPBC,lm
(X) obtained from simulations of dipoles with (a) μ = 0.45 and (b) μ = 0.65 versus R2l+1Slm

(X) for the
corresponding lattice types. The results for l = 3 (l = 4) have been shifted vertically by 5 (10) units for μ = 0.45 and 20 (40) units for μ = 0.65 to enhance
readability.

Table 1. Fitted Values (Figure 5 and eq 23) of kself and εdiel for
Dipoles with μ = 0.45 and 0.65 and Values of εdiel Obtained
(eq 12) from a Simulation in Cubic Geometry with N = 105

Particles

μ geometry R [Å] l kself εdiel
(fit) εdiel

(ref)

0.45 cube 14.80 2 0.67 13.1 13.4

3 0.75 12.6 12.5

4 0.83 11.5 11.7

RD 16.60 2 0.66 13.2 13.7

3 0.74 13.1 12.9

4 0.83 11.8 12.1

TO 16.16 2 0.67 13.2 13.6

3 0.76 12.9 12.8

4 0.89 11.8 12.0

0.65 cube 14.80 2 0.96 59 67

3 0.85 52 51

4 1.16 39 39

RD 16.60 2 0.87 59 73

3 0.92 59 56

4 1.15 43 44

TO 16.16 2 0.73 59 72

3 1.01 56 55

4 1.40 42 43

Figure 6. Data corresponding to Figure 5a but using sampling radii R
half as large. Note the different scale on both axes and that the data have
not been shifted in the y direction.
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though the very small variation in εPBC,lm
(X) over the range of

R2l+1Slm
(X) values leads to larger statistical errors in the fittings,

especially for l = 3 and 4. The apparent shift in the y direction
between curves obtained using different geometries is merely due
to the values used for the sampling radius R being geometry
dependent, leading to different values of the intrinsic dielectric
permittivity εdiel. In fact, the same shift is present in Figure 5,
although it is not visible due to the much wider range of the
ordinate axis. According to our theoretical assumptions, the value
of kself should be independent of R, meaning that the slope of the
lines in Figures 5a and 6 should be identical. In Table 2, the values
of εdiel and kself obtained from the smaller sampling radii are
presented. Although the variation in kself is larger than in Table 1
due to the larger statistical noise, our assumption for kself is not
obviously contradicted. Using the smaller sampling radii for the
μ = 0.65 system (data not shown), however, seems to yield
somewhat larger values of kself than in Table 1, although the
statistical significance of these values can be questioned.

Figure 7 gives the free energy ΔAvacfPBC for l = 3, μ = 0.65,
and RD geometry calculated using eq 24. Clearly, the anisotropy
in εPBC discussed in the previous paragraphs also corresponds to
a large anisotropy in the solvation free energy of the subvolume.
Quantitatively, βΔAvacfPBC varies between �1.6 and �0.5,
compared to the dielectric value βΔAvacfdiel ≈ �1.30 (eq 14,
red solid line in Figure 7). However, the average of βΔAvacfPBC

over all seven octupole components is βΔAvacfPBC
(avg) ≈ �1.26

(black dashed line in Figure 7), i.e., very close to the dielectric

value. Thus, the total solvation free energy (at least on the
octupolar level) of the simulation box is very close to that of an
isotropic system, even though it is distributed in a highly
anisotropic way. A possible key to understanding this behavior
is to be found in eq 18, namely, that the (unweighted) interaction
tensors for any given l g 1 cancel out when summed over all
multipole components. Thus, the suppression of some fluctua-
tion modes is exactly compensated by the enhancement of
others, leading to a reasonable “mean value” of the energy. This
behavior is reproduced for all multipole components and geo-
metries (results not shown), in the sense that βΔAvacfPBC

(avg) and
βΔAvacfdiel are always within 10% of each other.

5. CONCLUSIONS

In the present study, we have presented a quantitative analysis
of the periodicity effects induced in a dipolar system by the use of
PBCs. Using classical electrostatics and statistical thermody-
namics, we developed a heuristic model relating the apparent,
anisotropic dielectric permittivity εPBC,lm

(X) to the reduced lattice
interaction tensors Slm

(X). The theory exhibits excellent agreement
with results from MD simulations of Stockmayer fluids with two
different dipole strengths and three different simulation cell
geometries. Although the anisotropy in the electrostatic fluctua-
tions is independent of l on the length scale of the simulation box,
it is shown that the “range” of the boundary effects (i.e., the
minimum value of R needed to induce significant boundary
effects) decreases strongly with increasing l. Furthermore, it was
shown that the large (∼200%) anisotropy in the solvation free
energy on the length scale of the simulation box disappears when
averaged over all fluctuation modes, leading to the total solvation
free energy being practically identical to the value predicted for
an isotropic system.

Even though the simulation part of our study is based on a
Stockmayer model system, we argue that our use of a dielectric
continuum model as the theoretical basis means that the effects
are fully transferable to any polar system which may be described
as a dielectric medium, in particular the many popular water
models used in molecular simulations. We also expect that any
structural property, i.e., not only the dielectric permittivity,
evaluated on the length-scale of the full simulation box is equally
affected by the boundary effects.

One of the most important observations from this study is that
the total solvation free energy is, in spite of the large anisotropy of
the individual contributions, very close to the correct, isotropic
value. This observation is indeed closely analogous to the
corresponding averaging in the anisotropy of the radial distribu-
tion function for a Lennard-Jones fluid under PBCs observed by
Pratt and Haan.13 We argue that this property explains the
success of Ewald summation and related techniques, at least
when it comes to evaluating energies and relatively short-range
structural properties. Nevertheless, as we have also shown
previously,28 one should use caution when evaluating structural
properties on length scales larger than half the length of the
simulation box.

Another relevant question is whether there is any rationale
behind using a noncubic (RD or TO) simulation cell in order to
reduce periodicity effects, as has been suggested previously.29

First of all, it is clear that the periodicity effects when taking
the full simulation cell into account are as strong for all three cell
geometries (Figure 5), albeit not identical for a given l. We
note, however, that the influence from the periodicity on the

Figure 7. Solvation free energy ΔAvacfPBC for l = 3 (black solid line)
obtained from a μ = 0.65 system in RD geometry using eq 24 and values
of kself and εdiel

(fit) from Table 1. The red solid line gives ΔAvacfdiel

obtained from eq 14 using εdiel
(sim) from Table 1, and the black dashed line

gives the mean value of ΔAvacfPBC, averaged over all seven octupole
components (black symbols, two doubly degenerate values).

Table 2. Data As in Table 1 but Obtained Using Sampling
Radii Half As Large and Only for μ = 0.45

geometry R [Å] l kself εdiel
(fit) εdiel

(ref)

cube 7.40 2 0.94 10.8 10.8

3 1.84 9.4 9.4

4 1.34 8.4 8.4

RD 8.80 2 0.77 11.5 11.5

3 0.79 10.3 10.3

4 1.33 9.4 9.4

TO 8.08 2 0.86 11.2 11.2

3 0.59 10.0 10.0

4 0.06 9.1 9.1
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quadrupolar (l = 2) fluctuations is significantly lower in the RD
and TO geometries than for the cube. Since the magnitude of the
boundary effect for a given l decays as R�(2l+1), this means that
the “leading-order” contribution to the boundary effects is about
50% smaller (Figure 6) in the RD and TO geometries compared
to when using a cubic simulation cell. On the other hand, which
simulation cell to be used also depends on the specific system
under study. For example, if one wants to simulate a macro-
molecule (e.g., a protein) with a particularly large molecular
octupole moment, a cubic box may be the most appropriate one,
due to its lower lattice coupling for the system octupole moment.
Furthermore, it may also be advantageous, when using rotational
constraints, to orient the axis of the largest electrostatic moment
along the axis with the lowest value of Slm

(X); for example,
orienting the octupole moment in the S33

(R) or S33
(I) direction

gives a lattice interaction of less than 3% of the value obtained
when the octupole is oriented along the S32

(I) axis.
The present study provides a quantitative understanding of

the isotropic and anisotropic parts of the solvation in a polar
system under PBCs and puts them in relation to the behavior of
an isotropic system. This understanding is essential for the
possibility to remedy the periodicity effects, for example by
imposing suitable bias functions in an MC simulation in order
to remove the anisotropic self-interaction.

’APPENDIX A. DERIVATION OF EQ 18

Inserting the definition from eq 16 into the left-hand-side of
eq 18 and performing the straightforward summation over X
yields

∑
m, X

SðXÞlm ¼ ∑
l

m¼ 0
ð2� δm0Þð � 1Þl þ mf ðl, l,m, �mÞ

� ∑
n 6¼0

CR
2l, 0ðΩÞ

janj2l þ 1 ¼ ∑
l

m¼ � l
ð � 1Þl þ mf ðl, l,m, �mÞ ∑

n 6¼0

CR
2l, 0ðΩÞ

janj2l þ 1

ð29Þ
where we have used the fact that f(l, l,m,�m) = f(l, l,�m,m).

Inserting eq 17 and the expression for the 3j symbol44 gives after
some simplifications

∑
m, X

SðXÞlm ¼ ∑
n 6¼0

CR
2l, 0ðΩÞ

janj2l þ 1

 !
� ∑

l

m¼ � l
ð � 1Þl þ m

� ð2lÞ!
ðl þ mÞ!ðl�mÞ! ¼ ∑

n 6¼0

CR
2l, 0ðΩÞ

janj2l þ 1

 !

� ∑
l

m¼ � l
ð � 1Þl þ m 2l

l þ m

 !
ð30Þ

where we have used the combinatorial definition of the
binomial coefficients and the fact that the lattice sum is m-inde-
pendent. We now make the change of summation index
l + mfm0, leading to

∑
m, X

SðXÞlm ¼ ∑
n 6¼0

CR
2l, 0ðΩÞ

janj2l þ 1

 !
� ∑

2l

m0 ¼ 0
ð � 1Þm0 2l

m0

 !
¼ 0

ð31Þ
where we have used another standard relation for the binomial

coefficients.44 We finally note that eq 18 is valid regardless of the
lattice type.
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