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Popular summary in English

Trial and error is a fundamental approach to problem-solving, evident in both
everyday life and industrial settings. When faced with an unknown, we often
begin by experimenting with different options, observing what works best, and
gradually refining our choices. For example, a chef might adjust the ingredients
in a recipe based on taste, or an engineer may test various parameters of a
machine to optimize its performance. Over time, this process becomes more
informed as we internalize what each adjustment achieves, allowing us to make
smarter choices with each iteration.

In industrial contexts, trial and error is particularly valuable but comes at a high
cost. Adjusting manufacturing parameters, for example, can improve product
quality, yet each test may consume significant time, materials, and labor. Unlike
a personal or small-scale trial-and-error process, the adjustments required in
an industrial setting are often too complex to intuitively internalize, making
it difficult to predict which changes will yield the best results. Thus, effective
trial and error in these contexts requires a systematic approach that learns from
each past attempt to guide future decisions, focusing resources on promising
adjustments while steering clear of less productive options. The ultimate goal is
to automate this learning process - to internalize it, algorithmically.

Bayesian Optimization (BO) is designed to tackle these challenges by finding
optimal solutions with minimal trials, using past observations to help inform
where to explore next. BO relies on a surrogate model that learns from prior
evaluations to estimate the most promising areas for subsequent testing, enabling
a systematic and efficient search for the best solution, whether in optimizing a
recipe or fine-tuning an industrial process.

However, traditional BO methods have limitations in that they primarily learn
from observed data while often overlooking insights from experts or other sources
of information. Practitioners frequently bring valuable knowledge to the process,
such as experience-based insights into likely successful parameter ranges or
system behaviors. Despite this, conventional BO frameworks are typically unable
to incorporate such prior knowledge, instead assuming that each scenario lacks
meaningful initial understanding of the objective function landscape. This
thesis addresses this limitation by developing methods that directly integrate
practitioner beliefs, prior information, and foundational assumptions into the
BO framework, thereby enhancing both its efficiency and effectiveness.

xvi



Populärvetenskaplig Sammanfattning p̊a Svenska

Att empiriskt testa sig fram (eng. ”trial-and-error”) är en grundläggande metod
för problemlösning, som uppkommer b̊ade i vardagen och i industriella samman-
hang. När vi ställs inför ett okänt problem börjar vi ofta med att experimentera
med olika alternativ, observerar vad som fungerar bäst och förfinar gradvis v̊ara
val därefter. Exempelvis kan en kock justera ingredienserna i ett recept utifr̊an
önskad smak, eller en ingenjör kan testa olika inställningar p̊a en maskin för att
optimera dess prestanda. Med tiden blir b̊ada dessa processer mer informerade
allt eftersom vi internaliserar vad varje justering åstadkommer, vilket gör att vi
kan fatta smartare beslut med varje nytt test.

I industriella sammanhang är trial-and-error särskilt relevant, men förknippat
med höga kostnader. Att justera parametrar i en tillverkningsprocess kan
förbättra produktens kvalitet, men kan kräva betydande resurser i form av tid,
material och arbetskraft. Dessutom är de justeringar som krävs i industrin ofta
för komplexa för att internaliseras, vilket gör det sv̊art att intuitivt och p̊alitligt
prediktera vilka förändringar som ger bäst resultat. Effektiv trial-and-error i dessa
sammanhang kräver därför en systematisk metod som lär av tidigare försök - som
styr framtida beslut med hjälp av en begränsad mängd historisk data. Resurser
bör fokuseras p̊a lovande konfigurationer medan mindre produktiva alternativ
undviks, med det övergripande m̊alet att automatisera inlärningsprocessen

Bayesiansk optimering (BO) är ett verktyg för att hantera dessa utmaning - att
hitta högpresterande lösningar med minimalt antal försök. Genom att använda
tidigare data informerar BO beslut om hur framtida tester ska ske. BO bygger
p̊a en modell som emulerar målfunktionen och lär sig fr̊an tidigare data för att
uppskatta de mest lovande omr̊adena för kommande tester. Detta möjliggör
en systematisk och effektiv sökning efter högkvalitativa lösningar, oavsett om
m̊alfunktionen är att optimera ett recept eller kalibrera en industriell process.

Dock har traditionella metoder inom BO begränsningar. Eftersom de främst
lär sig av observerade data, förbiser de insikter fr̊an andra informationskällor.
Utövare och ämnesexperter bidrar ofta med värdefull kunskap till processen,
s̊asom erfarenhetsbaserade insikter om högpresterande testparametrar eller sys-
tembeteenden. Trots detta saknar konventionella BO-ramverk förmågan att
integrera s̊adan förkunskap, och antar istället att man i varje ny situation saknar
en meningsfull initial först̊aelse av målfunktionens utformning och beteende.
Denna avhandling adresserar denna begränsning genom att utveckla metoder
som direkt integrerar användares först̊aelse, tidigare information och antaganden
i BO-ramverket, vilket förbättrar b̊ade dess effektivitet och funktionalitet.

xvii





Bayesian Optimization across
the Spectrum of Knowledge

Enhancing Efficiency through Beliefs, Infor-
mation and Assumptions

1 Motivation and Objectives

1.1 Motivation

Sample-efficient optimization is crucial in applications where each experiment
or trial comes with a high cost. Consider optimizing the fuel efficiency of an
industrial gas turbine [133], a process that depends on precise settings of air-to-
fuel ratios, combustion temperature, and compressor pressure. Engineers aim
to find ideal parameters to maximize efficiency while minimizing emissions, but
evaluating each potential setting involves running the turbine, consuming fuel,
and incurring wear on the equipment. Each trial requires hours of operation and
significant fuel costs, making it impractical to test parameters exhaustively.

In this scenario, the objective function — fuel efficiency — behaves like a black
box, revealing possibly noise-distorted outcomes only after each run, without
providing insights into gradients or precise parameter interactions. Moreover,
the measurements are likely to be imperfect, and corrupted by noise. This setup
calls for zeroth-order optimization, where decisions must be made based solely
on the observed outcomes of previous trials. Because each test is costly and
time-consuming, the optimization process must be sample-efficient, minimizing
the number of evaluations.

In the quest for optimizing these complex systems efficiently, Bayesian optimiza-
tion (BO) [104, 147, 43, 49] has emerged as a powerful paradigm, achieving
unparalleled sample efficiency in these contexts [35, 51, 102, 18]. Rooted in

1



Bayesian inference and sequential decision-making, Bayesian optimization offers
a principled framework for tackling optimization tasks where evaluating the
objective function is costly or impractical. From tuning hyperparameters of
machine learning models [? 136] to optimizing experimental parameters in scien-
tific research [73, 48], the relevance of Bayesian optimization pervades numerous
domains. Its ability to guide the search process intelligently, leveraging past
observations to inform future decisions, not only accelerates the convergence to
optimal solutions but also facilitates robustness against noise and uncertainty.

In the landscape of optimization methodologies, BO, coupled with Gaussian
Processes (GPs) [143, 132], stands out particularly in scenarios characterized by
limited data availability, commonly referred to as the small data regime. Unlike
conventional optimization techniques tailored for big data settings, where vast
amounts of data enable statistical inference and model training at scale [83, 164],
BO thrives in situations where data points are sparse and expensive to obtain.
GPs, serving as probabilistic surrogate models in BO, offer a flexible framework
for capturing uncertainty and modeling complex, nonlinear relationships with
minimal data requirements. In contrast to deep learning models [86], which often
demand large amounts of labeled data for effective training[83, 164], GPs excel
in interpolating from a modest number of observations, making them inherently
well-suited for small data regimes. Moreover, the Bayesian framework provides
a principled approach to incorporating prior knowledge and beliefs about the
optimization problem, further enhancing the efficiency and effectiveness of the
optimization process in data-limited scenarios.

However, it is important to distinguish between the types of priors that GPs can
naturally incorporate and the broader forms of knowledge that practitioners often
possess. GPs already allow the injection of priors in the form of assumptions
about smoothness, noise levels, and covariance structure through the kernel
function and its hyperparameters [132, 32, 37]. These priors reflect structural
properties of the objective function, such as expected continuity or periodicity,
and guide the surrogate model accordingly. By contrast, the multiple types of
user knowledge explored in this thesis extend beyond these existing GP priors.
Practitioners often have intuitive or empirical beliefs [16] about specific aspects of
the optimization problem, such as the likely region of the input space where the
optimum is located [153], an upper bound on achievable outcomes, or preference
relations between certain parameters. These are higher-level, application-specific
insights that are orthogonal to the structural priors traditionally captured by
GPs.

For example, a user might suspect, based on domain expertise, that the optimal
learning rate for a neural network lies within a specific range [166, 145, 127]
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or that a certain combination of hyperparameters is unlikely to yield desirable
results. Such beliefs can be framed as priors over the location of the optimum
or the optimal value, or even as relational preferences among input-output
pairs. These types of priors, which are informed by practical experience and
context, have the potential to accelerate convergence and reduce the number of
evaluations required. However, conventional BO frameworks lack mechanisms
to systematically incorporate these forms of knowledge, leading to suboptimal
utilization of the information available.

Thus, the first research question addresses how to effectively integrate intuitive
knowledge from users to improve BO’s time-to-performance. To address these
challenges, this thesis explores methods to effectively integrate practitioners’
intuitive knowledge into BO, bridging the gap between user-defined priors and
the traditional GP framework. By enabling BO to systematically leverage
these insights, the goal is to enhance its sample efficiency and improve time-to-
performance. This distinction between structural priors inherent to GPs and
user-defined beliefs highlights the unique focus of this work on expanding the
flexibility and utility of BO in real-world applications.

The second research question is motivated by the need to validate and exploit
model-level assumptions that underlie the BO process. In BO, GP models are
typically used to approximate the objective function. The success of these
models depends not only on the data collected but also on assumptions about the
model’s structure, such as smoothness, noise level, and function shape [32, 132].
While the primary objective of BO is to locate the optimum, acquiring auxiliary
information during the optimization process — such as insights into model
hyperparameters, the optimal value of the objective or the appropriateness of
structural assumptions — can significantly enhance this search. Such auxiliary
information provides additional context, enabling the algorithm to refine its
surrogate model, validate critical assumptions, or adapt to unknown complexities
in the objective function.

For example, accurately learning the hyperparameters of the Gaussian Process
model calibrates the uncertainty estimates in the posterior, leading to more
informed acquisition decisions. Similarly, identifying when assumptions about
the function’s smoothness or noisiness are misaligned with reality can help the
algorithm recalibrate its approach, improving sample efficiency. Therefore, the
second research question asks: how can BO best utilize auxiliary information
about model-level assumptions to improve optimization efficiency while still
maintaining focus on the primary objective of locating the optimum?

The third research question is driven by the demands of high-dimensional opti-
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mization tasks, where the “curse of dimensionality” creates substantial obstacles.
In high-dimensional spaces, conventional BO methods often perform poorly
due to sparse data coverage and increased model complexity, making it chal-
lenging to identify relevant patterns in the objective function. To address
this, simplifying assumptions—such as focusing on a lower-dimensional active
subspace [167, 125, 115] - are frequently introduced to make the optimization
problem more tractable. Importantly, these assumptions are not necessarily made
because they reflect true beliefs about the structure of the objective function, but
rather because high-dimensional problems are otherwise infeasible to optimize.
These assumptions are imposed to facilitate optimization by ensuring that the
problem can be effectively modeled and solved within the constraints of the BO
framework.

For instance, active subspace methods assume that the objective depends on
only a subset of dimensions, but such assumptions often remain unverified and
may misrepresent the actual structure of the problem. Developing strategies
that either validate or bypass these assumptions, depending on the context,
could greatly improve BO’s ability to handle high-dimensional tasks. Therefore,
the third research question seeks to understand how assumptions imposed on
the surrogate model can be leveraged or adapted to enhance high-dimensional
BO’s efficiency, where direct optimization without simplifying assumptions is
impractical.

These three areas — incorporating user knowledge, validating model assumptions,
and navigating high-dimensional spaces — each represent a critical and unique
challenge in the field of BO. Addressing these challenges not only pushes the
boundaries of sample-efficient optimization, but expands BO’s applicability across
complex, real-world scenarios where data is limited and evaluations are costly.

1.2 Research Objectives

The objective of this thesis is to advance Bayesian optimization methods by
incorporating auxiliary information to enhance its efficiency, either in terms of
accelerated time-to-performance or quality of the terminal solution found, as
measured on the objective function. Additional information may take various
forms, such as insights provided by practitioners, default assumptions tailored
to specific problem contexts, or data deduced dynamically throughout the
optimization process, that does not directly tie into the task of optimizing the
objective. By improve, we specifically mean achieving greater sample efficiency

— reducing the number of evaluations needed to reach a desirable level of
performance — and, ultimately, finding better parameters and outcomes for a
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given objective. This thesis aims to demonstrate how these auxiliary-informed
methods can outperform traditional Bayesian optimization by capitalizing on
previously underutilized information sources. In doing so, this thesis pushes the
boundaries of sample-efficient optimization, demonstrating new pathways for
achieving faster, more accurate solutions in challenging problem spaces. With
this in mind, the objective of enhancing Bayesian optimization through the
consideration of auxiliary information and objectives is subdivided into three
distinct research questions.

1.3 Research Questions

Given the motivation outlined in Sec. 1.1, three primary research questions are
identified:

RQ1. How can practitioners’ intuitive knowledge and empirical beliefs about the
objective function be systematically integrated into Bayesian optimization
to accelerate convergence and improve time-to-performance?

RQ2. How can auxiliary information about model hyperparameters or struc-
tural assumptions, be dynamically validated and exploited during the
optimization process to improve the efficiency and reliability of Bayesian
optimization?

RQ3. How can simplifying assumptions imposed on the surrogate model be
leveraged to facilitate efficient Bayesian optimization in high-dimensional
problem settings, where direct optimization is otherwise impractical?

1.4 Thesis Outline

The thesis is a compilation in which the first part serves as the Kappa, providing
an introduction to the research field and outlining the scope of the work conducted
in this thesis. The second part contain the individual papers that comprise the
thesis. The thesis is structured as follows:

• Section 1 motivates the topic of research, outlines the overarching objective
of the thesis, and presents three concrete research questions (RQs).

• Section 2 provides foundational material on probabilistic modeling, setting
the stage for the subsequent exploration of GP and BO.
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• Section 3 delves into Gaussian processes, explaining their role as priors
over functions, their formulation, and their practical implementation for
learning and hyperparameter optimization.

• Section 4 discusses Bayesian Optimal Experimental Design, highlighting
its relevance to Bayesian optimization and exploring the parameters of
interest, its relevance in Gaussian process hyperparameterization and
practical considerations in its implementation.

• Section 5 focuses on Bayesian optimization, detailing surrogate modeling
approaches, acquisition functions, and the iterative nature of the Bayesian
optimization process.

• Section 6 summarizes the key contributions of the thesis, organizing
them by the three research questions: user-guided Bayesian optimization,
leveraging auxiliary model-level objectives, and high-dimensional Bayesian
optimization.

• Section 7 concludes the thesis with final reflections, highlighting the
implications of the research, its limitations, and avenues for future work.

The second part of the thesis consists of six individual papers that represent
the core of the research contributions. Each paper is included in its entirety,
offering comprehensive details on the methodologies, experiments, results, and
discussions that align with the research objectives outlined in the first part of
the thesis.

• Paper I introduces πBO, a user-guided acquisition function that incorpo-
rates practitioner beliefs about the location of the optimum into the opti-
mization process. The method demonstrates improved time-to-performance
in hyperparameter optimization (HPO) tasks and provides theoretical con-
vergence guarantees, addressing RQ1.

• Paper II presents Joint Entropy Search (JES), an information-theoretic
acquisition function that reduces entropy over joint input-output spaces.
JES achieves strong performance when the surrogate model is accurate,
addressing RQ2.

• Paper III introduces Self-Correcting Bayesian Optimization (SCoreBO),
which integrates active learning into BO to dynamically refine model hyper-
parameters during optimization. It enhances model reliability and improves
optimization efficiency under model-level uncertainty, addressing RQ2.
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• Paper IV proposes Collaborative Bayesian Optimization (ColaBO), a
framework that incorporates diverse user-defined priors, such as preferences
and bounds, into the surrogate model. This method improves optimization
efficiency while increasing user control, addressing RQ1.

• Paper V introduces Group Testing Bayesian Optimization (GTBO), a
high-dimensional BO method that uses adaptive group testing to identify
relevant dimensions. This two-step approach combines feature selection
with efficient low-dimensional optimization, addressing RQ3.

• Paper VI presents a plug-and-play prior adjustment for Gaussian process
kernels, enabling efficient high-dimensional optimization without complex
structural assumptions. This simple approach demonstrates strong perfor-
mance across a range of challenging tasks, addressing RQ3.

7



2 Probabilistic Modeling

Probabilistic modeling [110] provides a framework for capturing uncertainty
in predictions by representing quantities of interest as random variables with
associated probability distributions. Instead of yielding a single, fixed outcome,
probabilistic models express uncertainty about outcomes, allowing predictions
that reflect the variability inherent in complex data. In probabilistic modeling,
we aim to find a model ppy|xq that describes the likelihood of observing y given
input x, where y represents an outcome we want to predict.

Bayesian modeling extends this framework by incorporating prior beliefs about
model parameters before observing any data. These prior beliefs, represented by
a prior distribution ppξq over the parameters ξ are updated in light of new data
through Bayes’ theorem. When given observed data D “ tpxi, yiquni“1, the goal
is to compute the posterior distribution ppξ|Dq, which represents our updated
belief about ξ after accounting for the evidence. Mathematically, Bayes’ theorem
defines the posterior as:

ppξ|Dq “
ppD|ξqppξq

ppDq
, (1)

where the

• Prior ppξq represents our initial beliefs about the parameters ξ before
seeing any data,

• Likelihood ppD|ξq represents the probability of observing the data D
given the parameters ξ, often derived from a probabilistic model ppy|x, ξq

applied across observed points,

• Posterior ppξ|Dq is the updated distribution of ξ after observing D, which
combines prior beliefs with information from the data.

• Evidence ppDq: is a normalization factor ensuring that ppξ|Dq integrates
to 1, computed as ppDq “

ş

ppD|ξqppξq dξ.

Bayesian modeling offers several advantages: the posterior ppξ|Dq not only
provides a point estimate of parameters but also quantifies the uncertainty
around these estimates. The ability to quantify uncertainty in its predictions
makes Bayesian modeling particularly useful in real-world applications, where
decision-making generally carries risk and environments are generally uncertain.
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3 Gaussian Processes

Gaussian processes (GPs) [143, 132] provide a flexible and powerful framework
for modeling a distribution over an unknown function [172], particularly in cases
where the underlying function is expensive to evaluate or difficult to model
analytically. GPs are a class of non-parametric models, meaning they can model
functions of varying complexity without relying on a fixed number of parameters.
This makes GPs especially useful in Bayesian optimization, where they serve
as surrogate models that approximate the unknown objective function based
on observed data. By defining a prior over functions, GPs make probabilistic
predictions, capturing both the mean and variance of the function at unobserved
locations.

3.1 Kernel Methods

Kernel methods [141, 146, 61] form the mathematical backbone of GPs by
specifying how inputs are related, allowing GPs to make smooth, correlated
predictions across the input space. A kernel kpx, x1q, also known as a covariance
function, measures the similarity between two inputs x and x1. This similarity,
defined through the kernel, determines how changes at one point influence values
at other points, effectively controlling the function’s smoothness, periodicity, and
other structural properties.

3.1.1 General Form of Kernels

A kernel is a symmetric, positive semi-definite function k : X ˆ X Ñ R which
computes a similarity measure between two D-dimensional inputs x and x1,
where x “ rx1, x2, . . . , xDs [132, 32] in the domain X . One of the simplest and
most commonly used kernels is the squared exponential (or radial basis function,
RBF) kernel:

kpx,x1q “ σ2f exp

ˆ

´
}x´ x1}2

2ℓ2

˙

(2)

which encodes assumptions about the function’s smoothness and correlation.
where σ2f is the variance (controlling the overall magnitude of the function) and
ℓ is the length-scale parameter (controlling the smoothness of the function).
The Squared Exponential, or RBF (Radial Basis Function) kernel assumes that

9



0.0 0.2 0.4 0.6 0.8 1.0
Input Location x

2

0

2

O
bj

ec
tiv

e 
Va

lu
e 

y

Observed data

a)

0.0 0.2 0.4 0.6 0.8 1.0
Input Location x

2

0

2

O
bj

ec
tiv

e 
Va

lu
e 

y

Observed data

b)

Fig. 1: Visual difference between an RBF and Matern kernel. a) Three sample functions (red, blue,
purple lines) drawn from a GP with an RBF Kernel. b) Sample functions drawn from a
GP with a Matern(ν “ 5{2) Kernel. Functions drawn from a Matern kernel exhibit a lower
degree of smoothness, as the samples are visually more jagged than those drawn from the
RBF kernel.

the function is infinitely differentiable, making it suitable for modeling smooth
functions.

Other common kernels include the Matérn [100] kernel,

kpx,x1q “ σ2
21´ν

Γpνq

ˆ

?
2ν}x´ x1}

ℓ

˙ν

Kν

ˆ

?
2ν}x´ x1}

ℓ

˙

, (3)

where ν controls the degree of smoothness of f , is the modified Bessel function,
and Γ is the Gamma function. Thus, the Matérn kernel can capture functions
that are more or less jagged, converging to the RBF kernel in the limit of ν “ 8.
Lastly, there exist more exotic kernels, such as the periodic kernel,

kpx,x1q “ σ2 exp

¨

˝´

2 sin2
´

π|x´x1|

p

¯

ℓ2

˛

‚, (4)

which is useful for modeling periodic functions, and the spectral mixture ker-
nel [173], which is useful for extrapolation.

3.1.2 Properties of Kernels

Each kernel has distinct properties that make it suitable for different types of
functions. Kernels can be combined [33, 32, 95] (e.g., summed or multiplied)
to create composite kernels that capture complex relationships in the objective,
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allowing the GP to model functions with multiple attributes, such as smooth
trends with periodic fluctuations. The choice of kernel is critical, as it defines
the structure of the GP prior and significantly impacts the GP’s ability to fit
observed data and make accurate predictions in unobserved regions. The kernel
function, kpx, x1q plays a central role in shaping the GP prior and influences
predictions on unobserved points based on observed data points.

3.1.3 Automatic Relevance Determination

Automatic Relevance Determination (ARD) is an extension of standard kernel
functions in GPs that enables the model to identify the impact of each input
dimension independently [172, 132]. With ARD, each input dimension is assigned
its own length-scale parameter, allowing the GP to vary the degree of influence
each dimension has on the predictions. For example, The ARD version of the
RBF kernel is given by:

kpx,x1q “ σ2f exp

˜

´
1

2

D
ÿ

d“1

pxd ´ x1
dq2

ℓ2d

¸

, (5)

where D is the dimensionality of the input space, ℓd represents the length-scale
for the d-th dimension, and σ2f is the signal variance.

The length-scale ℓd in ARD controls how much influence the d-th dimension has
on the function’s output. A large ℓd suggests that the function varies slowly
along that dimension, indicating that the dimension is less relevant to the model.
Conversely, a small ℓd implies that the function is more sensitive to variations
in that dimension, making it more influential in the model’s predictions. This
mechanism allows GPs to automatically adjust the importance of each input
dimension, improving model flexibility. Moreover, the ARD framework provides
a way to interpret the influence of each feature, offering insights into which
dimensions meaningfully impact the predictive performance.

3.2 Updating the GP with Data

When observations are available, GPs update their beliefs by conditioning on this
data to form a posterior distribution. Suppose we have observed n data points,
D “ tpxi, yiquni“1, where yi “ fpxiq ` ε with ε „ N p0, σ2nq representing Gaussian
noise. The GP posterior distribution for a new input x˚ is then computed based
on both the prior and the likelihood of the data, yielding the posterior mean
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Fig. 2: A Gaussian Process updating with data. a) Three samples (red, blue, purple lines) from a
GP with an RBF Kernel, conditioned on no data. Predictive mean is visualized as a dark
grey line. Predictive uncertainty is visualized as a light grey band. a) Predictive moments
(mean, variance) are updates according to Eq. (6) and Eq. (7), respectively, and three
samples from the resulting GP posterior are drawn. The space of plausible functions has
shrunk as a result of the acquisition of data.

µpx˚q and and variance σ2px˚q at x˚ as [132]:

µpx˚q “ kpx˚,XqrKpX,Xq ` σ2nIs´1y, (6)

σ2px˚q “ kpx˚,x˚q ´ kpx˚,XqrKpX,Xq ` σ2nIs´1kpX,x˚q, (7)

where

• X “ rx1, . . . ,xnsJ represents the observed input points,

• y “ ry1, . . . , ynsJ represents the observed outputs,

• KpX,Xq is the covariance matrix of the observed inputs,

• kpx˚,Xq is the covariance vector between x˚ and the observed inputs X,

• I is the identity matrix.

The GP posterior mean, µpx˚q provides a point estimate of fpx˚q, while σ2px˚q

gives an estimate of the uncertainty around µpx˚q.

3.3 A Prior over Functions

A Gaussian process (GP) defines a prior over functions, making it a powerful
tool for modeling unknown functions in a Bayesian framework. Formally, a
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GP is a collection of random variables, any finite subset of which follows a
multivariate Gaussian distribution [132]. This property allows a GP to represent
distributions over functions in a way that naturally incorporates uncertainty
about the function’s values at unobserved points.

A Gaussian process for a function fpxq is denoted as:

fpxq „ GP
`

mpxq, kpx,x1q
˘

, (8)

where wherempxq “ Erfpxqs is the mean function and kpx,x1q “ Covpfpxq, fpx1qq

is the covariance function., which defines the similarity between function values
at points x and x1.

The GP prior thus represents an infinite-dimensional distribution over functions.
Any set of points tx1,x2, . . . ,xMu corresponds to a multivariate Gaussian distri-
bution over the associated function values fpXq “ rfpx1q, fpx2q, . . . , fpxM qsJ,
where

fpXq „ N pmpXq,KpX,Xqq, (9)

withmpXq “ rmpx1q,mpx2q, . . . ,mpxnqsJ denoting the mean vector andKpX,Xq

denoting the covariance matrix where Kij “ kpxi,xjq @i, j P r1,M s. The multi-
variate Gaussian property allows the GP to model function values at observed
points as well as make predictions at unobserved points, since the joint distribu-
tion of fpXq and fpx˚q remains Gaussian:

„

fpXq

fpxq

ȷ

„ N
ˆ„

mpXq

mpxq

ȷ

,

„

KpX,Xq kpX,xq

kpx,Xq kpx,xq

ȷ˙

. (10)

3.3.1 A Multitude of Alternative Priors

While a Gaussian Process (GP) provides a prior over functions, it is important to
clarify what this entails and, equally, what it does not. A GP is a prior over the
values of a function fpxq defining the distribution of possible functions that could
describe the relationship between inputs x and outputs fpxq. Through the mean
function mpxq and the covariance function kpx,x1q, a GP encodes structural
assumptions about the function, such as smoothness, periodicity, or expected
variance. For instance Fig. 1, displays how the choice of kernel k dictates how
rapidly the function can change over the input space.

However, while GPs are a prior over functions, they are not inherently priors
over specific properties of the function, such as the location of the optimum [65]
x˚ “ arg maxxPX fpxq within a bounded domain X , the optimal value within
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the same domain f˚ “ fpx˚q, or relational preferences fpxiq ě fpxjq among
inputs xi,xj . These higher-level properties often arise from application-specific
requirements or practitioner insights, which are external to the GP’s intrinsic
representation. Moreover, these insights are arguably simpler to obtain and
reason about than properties of the kernel function, as these may be unintuitive
to non-GP experts [153]. Such attempts to encode such properties into the GP
have been explored by [153, 34] in the case of a distribution over the optimal
input, and [69, 135, 120] in the case of optimal value. Paper I proposes an
approach to consider distributions over the optimal input location in a BO
context, whereas Paper IV explores a general approach to encoding all the
aforementioned properties into the GP in a principled Bayesian manner, thereby
extending the GP’s ability to encode beliefs held by practitioners.

3.3.2 Sampling from the GP

To illustrate the concept of a GP as a prior over functions, we can sample
functions from the prior distribution defined by mpxq and kpx,x1q. For a dense
set of input points, we draw samples from the multivariate Gaussian in Eq. (10).
Each sample represents a possible realization of the function fpxq might look
like. Thus, these samples reflect the GP’s belief about what the function might
look like before observing any data, as well as after. By observing data, the
plausible set of functions shrinks, as functions that do not accurately interpolate
the data become increasingly less probable.

For a finite set of k query locations pX “ x1, . . . ,xkq, samples can be generated
using the classical location-scale transformation of Gaussian random variables,
fpXq “ µnpXq`Lε, where L is the Cholesky decomposition ofK and ε „ N p0, Iq.
However, this approach is inherently computationally intensive, as it incurs a
cost of Opk3q due to the matrix decomposition required.

3.3.3 Decoupled Posterior Sampling

To remedy the issue of scalability in posterior sampling, Opkq weight-space ap-
proximations based on Random Fourier Features (RFF) [130] obtain approximate
(continuous) function draws f̂pxq “

řm
i“1w

J
i ϕipxq, where ϕipxq “ 2

ℓ pψJ
i x` biq.

The random variables w „ N p0, Iq, bi „ Up0, 2πq, and ψi are sampled propor-
tional to the spectral density of k.

While achieving scalability, the seminal RFF approach by [130] suffers from the
issue of variance starvation [113, 170, 177]. As a remedy, [177] decouple the draw
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of functions from the approximate posterior ppf̂ |Dq into a more accurate draw
from the prior ppf̂q, followed by a deterministic data-dependent update:

pf̂ |Dqpxq
d
“ f̂pxq

loomoon

draw from prior

` knpxqJpK ` σ2εIq´1py ´ f̂pxq ´ εq
loooooooooooooooooooooomoooooooooooooooooooooon

deterministic update

(11)

Eq. 11 deviates from the distribution-first approach that is typically prevalent in
GPs in favor of a variable-first approach utilizing Matheron’s rule [74]. Paper
IV extends on the decoupled updating approach by filtering the function draws
from the prior through a user-defined belief πpfq over properties of the function
f :

pf̂ |D, πqpxq
d
“ pf̂ |πqpxq

looomooon

draw from prior

` knpxqJpKn ` σ2εIq´1py ´ pf̂ |πqpxq ´ εq
looooooooooooooooooooooooomooooooooooooooooooooooooon

deterministic update

, (12)

where π may encode any of the properties mentioned in Sec 3.3.1. Fig. 3 displays
the belief-weighted filtering in action: samples from the prior are drawn (top
right, light blue) and weighted against the prior πpxq (green). Sampled functions
are re-sampled using rejection sampling against πpxq to obtain belief-weighted
draws from the posterior[68].

3.4 Hyperparameter Learning

The kernel hyperparameters, such as σ2n and ℓ “ rℓ1, ℓ2, . . . , ℓDs in the RBF kernel
with ARD, play a crucial role in shaping the GP’s behavior [172]. Consequently,
it has a substantial impact on the performance and ultimate success of BO, as
explored in Paper III, which accelerates the hyperparameter learning to achieve
a more accurate GP, and in Paper VI, where a novel regularization scheme
for the GP in high dimensions yields a stable model that is more amenable to
optimization than previous alternatives.

3.4.1 Learning Hyperparameters by Maximizing the Marginal Likeli-
hood

Hyperparameters are typically learned by maximizing the marginal likelihood
of the observed data [132, 94]. The marginal likelihood ppy|X,θq, where θ
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Fig. 3: (Top left) Draws from the prior ppfq (light blue) and the belief-weighted prior ppf |πq whose
members are likely to have their optimum within the green region. (Top right) Decoupled
updated draws based on observed data. As the green region is distant from the observed
data, samples are almost unaffected by the data in this region. (Bottom left) Exact mean
and standard deviation µpxq, σpxq of ppfq and estimated mean and standard deviation of
ppf |πq. (Bottom right) Exact ppf |Dq and estimated ppf |π,Dq. As ppf |πq constitutes of
functions whose optimum is located within the green region the resulting model has a higher
mean and lower variance within this region. Moreover, ppf |πq globally displays lower upside
variance compared to the vanilla GP.

represents the hyperparameters θ “ tℓ, σ2f , σ
2
εu, is computed as:

log ppy|X,θq “ ´
1

2
yJrKpX,Xq ` σ2nIs´1y (13)

´
1

2
log |KpX,Xq ` σ2nI| ´

n

2
log 2π. (14)

This expression balances the model fit (via the term yJrKpX,Xq ` σ2nIs´1y)
against model complexity (via the log-determinant term (log |KpX,Xq ` σ2nI|).
The optimal model fit, the maximum likelihood estimator (MLE), under the
marginal (log) likelihood criterion is obtained through maximization,

θ˚
MLE “ arg max

θ
log ppy|X,θq. (15)

The MLE approach allows BO to adapt the GP model to observed data, im-
proving prediction accuracy. penalizing overly complex models. In practice, the
hyperparameter optimization is performed using gradient-based techniques.

3.4.2 Incorporating Hyperparameter Priors with Maximum a Poste-
riori Estimation

In cases where prior knowledge about the hyperparameters is available, Bayesian
methods can be used to incorporate this information, leading to a more informed
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Fig. 4: Marginal Likelihood surface (Eq. (13)) for a GP with two hyperparameters: noise level σ2
ε

and lengthscale ℓ. Red values indicate more plausible models (higher likelihood) and blue
indicates less plausible models (lower likelihood). The two hyperparameters provide different
explanations for the data with varying likelihoods. In Figs 5 a and b, a less plausible model
(a, green square) and the most plausible model (b, yellow star) under the MLE criterion are
visualized.

estimation of θ. The Maximum a Posteriori (MAP) estimation [110] approach
combines this prior knowledge with the observed data by maximizing the posterior
distribution over the hyperparameters:

ppθ|X,yq9ppy|X,θqppθq, (16)

where ppy|X, θq is the marginal likelihood, as described above, and ppθq represents
the prior distribution over the hyperparameters. By combining these terms,
MAP estimation seeks a balance between fitting the observed data well and
aligning with prior beliefs about the hyperparameters. The MAP estimate θ˚

MAP

is subsequently obtained by maximizing the log-posterior:

θ˚
MAP “ arg max

θ
plog ppy|X,θq ` log ppθqq . (17)

For example, if we have prior knowledge that the length scale ℓi should be within
a certain range (indicating a belief about the function’s smoothness), we could
place a prior on ℓ, such as a uniform prior:

ppℓiq “ Upa, bq, (18)

for some suitable parameters a and b, where 0 ă a ă b. Typical priors for these
parameters include log-normal or inverse-gamma distributions to ensure positive
values for the parameter estimates.

By incorporating priors, MAP estimation provides a more robust hyperparameter
estimation process, especially when data is limited or noisy. Unlike marginal
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Fig. 5: Two Gaussian processes with different marginal likelihoods and a different set of observed
data. a) A non-MLL-optimized GP under the MLE criterion, corresponding to the green
square in Fig. 4. Data points close to the center are improbable, as they are either on the
edge of, or outside, the confidence interval of the GP. b) The optimal GP posterior under
the MLE criterion, corresponding to the yellow star in Fig. 4. The model constitutes the
optimal trade-off between model fit and simplicity.

likelihood maximization, MAP estimation reflects a balance between observed
data and prior beliefs, potentially improving predictive performance and when
observations alone provide insufficient information to yield an accurate, generaliz-
able model. Paper VI introduces a prior on the GP lengthscales that significantly
enhances robustness in high-dimensional settings, enabling accurate predictions
even for dimensionalities reaching into the thousands [? ]. This prior operates
under the assumption that as dimensionality D increases, the complexity of each
individual dimension decreases. To formalize this, the lengthscales are scaled
proportionally as ℓi9

?
D, effectively counteracting the growing distances between

points in high-dimensional spaces [82]. Specifically, this scaling is implemented
by adjusting the mean µ term of a LogNormal (LN ) prior

ℓi „ LN
ˆ

µ0 `
logpDq

2
, σ0

˙

(19)

where pµ0, σ0q are parameters chosen to correspond to a one-dimensional ob-
jective. This adjustment ensures that the prior adapts naturally to increasing
dimensionality while maintaining the desired properties for lower dimensions.
The resulting GP hyperparameter learning is generally substantially more stable
than that of MLE, and provides vastly more informative out-of-sample predictions
than conventional, dimension-independent MAP [67].
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3.4.3 Fully Bayesian Hyperparameter Treatment

Hyperparameter learning is central to GPs, as the choice of kernel parame-
ters—such as length scale, signal variance, and noise level—significantly in-
fluences the model’s predictions. Beyond MLE and MAP estimation, a fully
Bayesian treatment [123, 112, 147, 13] provides a robust alternative by capturing
uncertainty in hyperparameters explicitly, instead of optimizing them to fixed
values. This approach can be particularly advantageous in BO [147, 48, 37],
where accurately modeling uncertainty can enhance the sample efficiency and
reliability of the GP surrogate model. Paper III exploits this fact by presenting
a BO algorithm which simultaneously reduces model-level uncertainty while
optimizing the objective function [66].

In a fully Bayesian approach to hyperparameter learning, we aim to capture the
entire posterior distribution over the hyperparameters θ, visualized in Fig. 4,
rather than finding a single, high-probability point estimate - the yellow star in
Fig. 4. This is achieved by integrating over all possible values of θ when making
predictions, which provides a more nuanced representation of the uncertainty in
the model. The posterior over the hyperparameters is given by Bayes’ theorem:

ppθ|X,yq “
ppy|X,θqppθq

ppy|Xq
, (20)

where

• ppy|X,θq is the marginal likelihood, or the likelihood of observing data y
given the inputs X and hyperparameters θ,

• ppθq is the prior distribution over the hyperparameters, representing any
initial beliefs,

• ppy|Xq is the marginal likelihood of the data, obtained by integrating over
θ:

ppy|Xq “

ż

ppy|X,θqppθq dθ. (21)

Rather than optimizing θ directly, this approach treats θ as a latent variable and
integrates over its possible values, thus incorporating all plausible parameters of
the GP’s parameters into predictions.

Directly computing the posterior distribution ppθ|X,yq and performing the
integrals for predictive inference is intractable for most non-trivial distributions.
As a result, approximate inference methods are typically used. One example of
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such approximate inference methods is Markov Chain Monte Carlo (MCMC) [116,
111, 59, 13]. MCMC sampling generates samples from the posterior distribution
ppθ|X,yq. Given a set of samples tθpsquSs“1, the approximate posterior is a
mixture of Gaussians with uniform mixture weights, where the mean and variance
are computed as [85]

µpx˚q «
1

S

S
ÿ

s“1

µpx˚;θpsqq, (22)

σ2px˚q «
1

S

S
ÿ

s“1

´

σ2px˚;θpsqq ` pµpx˚;θpsqq ´ µpx˚qq2
¯

(23)

where pµpx˚;θpsqq and σ2px˚;θpsqq denote the posterior moments of the GP with
hyperparameters θpsqq. MCMC provides accurate samples from the posterior,
but it can be computationally demanding, especially for high-dimensional hy-
perparameter spaces. As alternatives, one can resort to Variational Inference
(VI) [26, 163] which replaces the true posterior ppθ|X,yq with a simpler, tractable
distribution qpθq by minimizing the Kullback-Leibler (KL) divergence between
qpθq and the true posterior. While generally less computationally expensive, VI
restricts the form of the posterior, thereby foregoing asymptotic exactness.
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4 Bayesian Optimal Experimental Design

Bayesian Optimal Experimental Design (BOED) [19, 139, 131] provides a proba-
bilistic framework for sequential learning of the parameters of a model or process
through active sampling of new data. This approach is particularly valuable
when data collection is expensive or time-consuming, as it prioritizes observations
that will have the highest impact on reducing uncertainty about quantities of
interest. Observations are acquired sequentially, with each observation providing
insight that refines the model’s predictions or estimates. The methodology
leverages Bayes’ theorem to incorporate both prior beliefs and newly acquired
data, updating these beliefs to form a posterior distribution over the unknown
quantities, thereby enabling adaptive and efficient experimental selection [131].

4.1 Parameters of Interest

In the context of experimental design, parameters of interest are the unknown
variables or quantities that the experimenter seeks to estimate, understand, or
optimize. These could be parameters of a physical system in a scientific study,
model parameters in a statistical context (such as the slope parameters β of
a linear regression [36, 84]), or any quantities that influence the behavior or
predictions of a system under investigation [103, 124].

BOED aims to iteratively select data points that minimize uncertainty in these
parameters of interest. In the context of the linear regression example, we aim
to select the data that will best reveal what the slope parameters should be.
Formally, letting ξ represent the vector of some general parameters of interest,
the objective of the design process is to refine a posterior distribution ppξ|Dq.
As each new observation is added, the posterior distribution is updated through
Bayes’ rule.

In BOED, a central objective is to choose data that maximizes the knowledge
we expect to gain in the parameters of interest. This, in turn, allows us to
make more accurate estimates of the parameters of interest. This is done by
maximizing an acquisition function, most commonly the Expected Information
Gain [93, 142, 20, 78] (IG, or occasionally EIG), over the set of candidate inputs
X . Formally, the IG is expressed as

IGpx, ξq “ Hpppξ|Dqq ´ Eypxq rHpppξ|D Y tx, ypxquqqs , (24)
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where ypxq “ fpxq ` ε, ε „ N p0, σ2εq, and where H denotes the (differential)
Shannon entropy. Under the general formulation of BOED, learning procedures
can be derived for general types of models and objectives, such as the noise level
σ2n of a GP, the weight parameters w of a Bayesian neural network [77, 71, 46], or
the maximizer x˚ of an unknown function [55, 56]. In Paper II, BO is formulated
as a BOED objective, with the GP-induced joint distribution over the optimum
x˚ [56] and optimal value f˚ [168] as the parameter of interest.

Paper III expands further on this idea by including relevant hyperparameters θ
of the GP as additional parameters of the BOED objective to achieve a joint BO
and active learning loop. Moreover, a broader class of BOED and Bayesian Active
Learning (BAL) acquisition functions in the form of Statistical distance-based
Active Learning (SAL), is introuced. SAL acquires data by maximizing the
average disagreement between the conditional posteriors predictive distributions
and the marginal posterior,

SALpx; ξq “ Eξrdpppypxq|ξ,Dq, ppypxq|Dqqs (25)

which emphasizes consistent predictive performance across models rather than
agreement strictly in the parameters themselves. This is similar to other
prediction-oriented approaches for Bayesian active learning [12, 134], yet obtains
an emphasis on the model hyperparameters. Notably, the SAL objective is
equivalent to the EIG by setting d to be the forward KL divergence between the
conditional posteriors and the marginal.

In Paper V, BOED is applied within the context of adaptive Group Testing (GT)
to develop an algorithm tailored for feature selection in Gaussian Processes (GPs).
GT is a framework for optimizing the process of identifying specific items within
a set by testing groups of items rather than each one individually. In the context
of Bayesian Optimal Experimental Design (BOED), GT is applied adaptively to
high-dimensional feature selection, leveraging the prior and posterior distributions
of a Gaussian Process (GP) to iteratively identify relevant subsets of dimensions
while minimizing the number of required evaluations.

Let ξd denote the activeness of dimension d, where ξd “ 1 indicates that the
dimension is active and ξd “ 0 indicates inactivity. This formulation aligns with
approaches such as those in [22], which explore binary outcomes in a similar
context.

By defining a group as a subset of dimensions ablated from their default values,
and using the GP’s prior signal variance σ2f and noise variance σ2ε , the method
estimates group activeness based on the signal strength within that group. The
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probability of a group being active is given by:

ppg⊺t ξ ě 1q “
ÿ

ξPt0,1uD

δg⊺
t ξě1ppξq. (26)

where gt represents the group being evaluated, and δg⊺
t ξě1 is the indicator function

for the activeness condition. Groups are then adaptively selected to maximize
the information gain over the activeness variables ξ, to enable identification of
relevant dimensions in high-dimensional search spaces [53].

4.2 Practical Considerations in BOED

As evidenced by Eq. (24), the strategy by which data is acquired in BOED
is dependent on the parameters of interest in the problem at hand, and the
model itself. Thus, the specification of the model determines the data ac-
quisition strategy, and ultimately influences the efficiency and success of the
experimental design. Moreover, the information gain in Eq. (24) is typically not
computationally tractable. Practical considerations thus often entail improving
computational tractability [39, 40, 41], and the dimensionality of the problem
- the number of parameters of interest in the model. Calculating expected
information gain or mutual information can be computationally demanding,
particularly in high-dimensional settings, as it requires integration over possible
outcomes for multiple realizations of the model. To manage this complexity,
sampling-based techniques, such as Monte Carlo integration [140] or variational
approximations [39], are frequently employed to approximate the IG. Paper V
utilizes a variance-reducing Sequential Monte Carlo (SMC) approach, proposed
by [22], to efficiently approximate the IG in a high-dimensional space.
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5 Bayesian Optimization

Building on the general framework specified by BOED, Bayesian optimization
(BO) [104, 72, 147, 144, 43, 49] is an iterative framework that utilizes a probabilis-
tic surrogate model, typically a GP, to find the global optimum of a black-box
function. As such, BO can be viewed as a specific instantiation of BOED,
where the parameter of interest is the (unknown) optimum of the black-box
objective. Formally, the goal is to maximize an unknown, expensive-to-evaluate
D-dimensional objective function f : X Ñ R, X Ď RD conventionally assumed
to be r0, 1sD. Moreover, the objective may be noisy, so that f can only be
observed through its noise-perturbed output ypxiq, where ypxiq “ fpxiq ` εi and
εi „ N p0, σ2εq. In this setting, we seek the point x˚ P X such that

x˚ “ arg max
xPX

fpxq. (27)

Since fpxq is assumed to be costly to evaluate, we build a surrogate model f̂pxq

(conventionally a GP) that provides a probabilistic estimate of fpxq that can be
refined over time. Using this probabilistic surrogate, BO iteratively selects points
to evaluate based on an acquisition function; an expected utility criterion which
quantifies candidate points in terms of either its contribution to identifying x˚,
or a myopic measure of quality of the candidate.

5.1 Surrogate Models for Bayesian Optimization

In Bayesian Optimization (BO), the choice of surrogate model is crucial, as it
determines the ability of the optimization process to accurately approximate and
explore the objective function. Surrogate models provide a probabilistic estimate
of the unknown function, balancing exploration and exploitation in the search for
optimal solutions. This section discusses commonly used surrogate models for BO,
including Gaussian Processes (GPs) [148, 50, 7, 152, 31] and their adaptations,
as well as alternative models such as Random Forests [63, 92, 114, 157, 162, 151]
and Neural Networks [150, 154, 162, 151, 91, 109].

5.1.1 Gaussian Processes

There are multiple types of Gaussian processes which see frequent use in BO.
Below, some of the most common types are outlined, as well as the assumptions
that are associated with each type.
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Vanilla Gaussian Processes Standard GPs assume a stationary kernel
function and a constant-mean prior with a low level of noise. The squared
exponential (RBF) [7] or Matern-5/2 kernel [149, 152] are commonly used, as they
provide a degree of smoothness and is generally considered reasonable for most
tasks. In some circumstances, however, model with additional assumptions with
added or reduced complexity are employed, typically to enhance the performance
of BO on specific types of tasks. Paper VI extensively discusses the issues
related to the vanilla Gaussian process in Bayesian optimization. Specifically,
it uncovers the implicit assumption of exponential complexity increase as the
dimensionality of the objective is increased, and proposes a remedy in the form
of a modified GP prior, defined in Eq. (19).

Additive Models Additive GPs [33, 95] assume that the function fpxq can
be decomposed as a sum of functions over subsets of the input dimensions:

fpxq “

k
ÿ

i“1

fipxIiq, (28)

where xIi represents a subset of the input dimensions, and each component
function is modeled as a GP. Additive models are frequently employed for high-
dimensional objectives [75, 48, 181], as they reduce the overall model complexity
by breaking the problem down into smaller, simpler subspaces. By isolating the
influence of individual variables or groups of variables, additive models can model
correlations not typically governed by the standard model, thereby improving in
modeling accuracy [48] and efficiency of the optimization [75]. The fully Bayesian
additive model proposed by [48] is utilized in Paper III to actively learn additive
function groups in both synthetic tasks and a cosmological constant [160] learning
objective.

Subspace Models Subspace models [167, 88, 115, 125, 79] aim to address
the high-dimensional limitations of standard GPs by assuming that the function
of interest lies in a lower-dimensional (linear) subspace of the full input space.
Formally, for some De ! D and a projection matrix A,

fpxq « hpzq, z “ AJx (29)

where h : RDe Ñ R. The core idea is that only a subset of input dimensions,
referred to as the active dimensions of the problem, and the number of which de-
fines the effective dimensionality, significantly affect the objective. The remaining
dimensions are assumed to have negligible impact. Thus, only the active dimen-
sions require modeling. By reducing the dimensionality of the problem, subspace
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models make GP-based BO more feasible in high-dimensional settings [167, 14].
A common approach to constructing subspace models is to assume the existence
of an active subspace, a reduced set of dimensions that captures most of the vari-
ation in the objective function. Further refinements in subspace models include
axis-aligned subspaces [37], where only specific input dimensions are assumed
to be active, and random embedding approaches [167, 115, 125], where random
projections are used to select relevant subspaces. The fully Bayesian, sparse
axis-aligned model proposed by [37] is utilized in Paper III to systematically
learn active dimensions of noisy, high-dimensional objectives.

Warped Gaussian Processes Warped GPs [149, 21] introduce flexibility by
applying a transformation, or warping, to the input or output space, making it
possible to model functions with non-stationary or non-Gaussian behavior. One
common approach involves transforming the input space using a function gpxq

to map inputs onto a re-scaled representation that captures relevant features of
the function:

fpxq „ GPpµpgpxqq, kpgpxq, gpx1qqq. (30)

Input warping can capture complex patterns that standard GPs may miss,
such as varying smoothness across the input space or highly nonlinear behavior.
Warped models are particularly useful when prior knowledge suggests that
certain transformations (e.g., log or exponential scales) align with the underlying
behavior of the objective function. Commonly used input warpings include the
Beta warping [149], or the closely related Kumaraswamy warping [21], where
the normalized inputs are dimension-wise passed through the inverse CDF the
aforementioned distributions. The dimension-wise Kumaraswamy warping of [21]
is utilized in Paper III to better model the response surface during hyperparameter
optimization of deep neural networks.

In Fig. 6, the mean predictions of a Standard (Vanilla) GP, a warped GP, and
an additive GP are visualized for a 2D objective, highlighting the distinctive
characteristics of each model type. A Vanilla GP generally produces conservative
predictions, exhibiting smooth variation across the search space and avoiding
overestimation of the magnitude of predictions. In contrast, a warped GP intro-
duces sharper transitions and more rapid variations due to the non-stationary
behavior induced by the warping functions. Finally, the dimension-wise de-
compositions of the additive GP enable it to extrapolate in certain unobserved
regions of the search space, provided that similar values have been observed
independently in each dimension.
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Fig. 6: Comparison of the ground truth objective and predictive means for three Gaussian Process
(GP) models on a 2D synthetic function. The models include a Standard GP, a Kumaraswamy-
warped GP, and an Additive GP fit with maximum likelihood estimation (MLE) and an RBF
kernel. Training data points are shown in green. The color scale represents the predictive
mean values. The Additive GP effectively extrapolates the region in the top left corner but
slightly overestimates the magnitude of the predictions. The warped model captures steep
edges and maintains relatively flat predictions in smoother regions. The standard GP, while
conservative, delivers reasonably accurate predictions overall.

5.1.2 Non-Gaussian Process Models

Random Forests Random Forests (RFs)[58] offer an alternative to GPs in BO,
particularly for problems involving integer-valued, categorical, or hierarchical
data. An RF consists of an ensemble of decision trees, each trained on a different
subset of the data, with predictions generated by averaging the outputs of
the individual trees. To enable BO with RFs, modifications are introduced to
quantify uncertainty, such as leveraging the variance among tree predictions as
an uncertainty measure [63, 92]. This pseudo-probabilistic approach enables
RFs to approximate the uncertainty estimates typically provided by GPs, while
also accommodating discontinuities in the search space, which is not inherently
supported by GPs. Paper I employs RFs, among other models, for BO in
combination with prior-guided acquisition functions (Sec.5.2.5) to achieve efficient
hyperparameter optimization under a low budget for the number of BO iterations.
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Bayesian Neural Networks Bayesian Neural Networks (BNNs) [96, 117, 45]
are another flexible alternative to GPs for BO, particularly in large-scale problems,
where they scale more gracefully in the number of training data than GPs [150].
Unlike GPs, BNNs are parametric models, with fixed architectures that define
their function space. BNNs can capture complex, non-linear relationships, but
they require significant amounts of data for accurate training.

5.2 Acquisition Functions

An acquisition function is central to BO, determining the next point to evalu-
ate. Acquisition functions are evaluated over the surrogate model to identify
where sampling will most likely yield improved outcomes. Acquisition func-
tions generally balance exploration (querying points in uncertain regions) and
exploitation [49] (querying points likely to yield high objective values), and can
be categorized as either myopic or non-myopic [174] based on how utility is
quantified.

For a general acquisition function αpx;Dq acting on the surrogate model con-
ditioned on the data D observed so far, the strategy encoded by α is obtained
through its maximization over the search space [43]. Formally, we obtain the
next candidate xn to evaluate as

xn “ arg maxxPX αpx;Dq (31)

Thus, the point selected by any acquisition function is the one that yields the
highest expected utility.

5.2.1 Myopic Acquisition Functions

Myopic acquisition functions [174] make decisions based on expected immediate
utility of the queried candidate, without considering the impact of a sampling
decision beyond the current iteration.

Expected Improvement (EI) and its extended family of acquisition func-
tions [104, 72, 17, 47, 128, 87, 2] (EI) quantifies the nonnegative amount by
which the next observation improves upon a threshold value, commonly set to
the current best (either unobserved [87] or observed) value fpx`q. The standard
definition of EI is expressed as
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αEIpxq “ E
“

maxp0, fpxq ´ fpx`qq
‰

, (32)

and where fpx`q is the best observed value. For a Gaussian posterior, EI
can be computed closed-form, but is frequently approximated through Monte
Carlo [176, 174, 7] (MC) to allow for additional flexibility in non-standard
problem settings [89, 3, 24, 4].

Upper Confidence Bound is a simple, principled acquisition function with
extensive theoretical results, as it ha been shown to achieve sub-linear regret in
many settings [155, 75, 11, 80]. UCB selects the next query point by considering
both the predicted mean and the uncertainty. Specifically, UCB is defined as:

αUCBpxq “ µpxq ` κσpxq, (33)

where κ is a parameter that controls the balance between exploration (higher κ)
and exploitation (lower κ).

Thompson Sampling [161, 137, 138](TS) is a random acquisition function
which leverages the posterior distribution provided by the surrogate model to
obtain draws from the probability density over the location of the optimizer
x˚. At each iteration, Thompson Sampling draws a sample function fi from the
posterior:

fp¨|Dq „ GPpµp¨q, kp¨, ¨q|Dq (34)

and maximizes the sampled function

xn “ arg maxxPX fipx;Dq (35)

to obtain the next test point. As exact functions draws from the GP posterior are
unattainable, TS is typically approximated either by sampling from the posterior
at a finite set of input locations and taking the discrete arg max [76, 38, 101] or
by optimizing continous weight-space approximation [129, 177, 8] of the function
draw fi. TS is additionally used to support multiple information-theoretic
acquisition functions, outlined in Sec. 5.2.2

5.2.2 Non-myopic Acquisition Functions

Non-myopic acquisition functions take a long-term view, selecting points based
on their ability to help infer the optimum after having observed their outcome.
Non-myopic acquisition functions are typically more computationally demanding,
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and occasionally less robust, than myopic ones. However, they can yield better
optimization performance in many instances. Examples include the Entropy
Search (ES) [165, 54, 118, 119] class of acquisition functions, which addition-
ally include Predictive Entropy Search (PES) [56, 57] and Max-value Entropy
Search [60, 169, 107] (MES), and the Knowledge Gradient (KG) [42, 44].

Entropy Search Acquisition Functions In the spirit of BOED, ES [54]
focuses on reducing uncertainty about the location of the optimum x˚ by treating
it as a random variable. For each candidate point x, ES evaluates the reduction
in entropy over the distribution over x˚ after observing fpxq.

αESpxq “ Hpx˚|Dq ´ EypxqrHpx˚|D Y tpx, ypxqquqs, (36)

By selecting points that maximize this reduction in entropy, ES refines the search
in areas that are most informative about the optimum. Other information-
theoretic acquisition functions use similar criteria through re-formulation of the
IG. PES [56], for example, utilizes the symmetry of the information gain [62] to
express the acquisition function as a difference between entropies in the posterior
predictive distribution:

αPESpxq “ Hpypxq|Dq ´ Ex˚ rHpypxq|D,x˚qs . (37)

MES works along similar lines as PES, but substitutes the optimal location x˚ for
the optimal value f˚. Entropy search acquisition functions are frequently used
in multi-fidelity optimization [81, 10, 106, 107, 159] due to their fidelity-agnostic
measure of utility.

Introduced in Paper II, Joint Entropy Search (JES) extends the ES family by
targeting the joint information gain over both the optimal input x˚ and the
optimal output f˚:

αJESpxq “ Ippx, ypxqq; px˚, f˚q|Dq. (38)

By conditioning on hypothetical optimal input-output pairs, JES achieves a
holistic uncertainty reduction that is computationally efficient compared to ES
and PES. JES relies on standard GP conditioning, sidestepping the need for
costly approximations. Empirical results demonstrate that JES achieves strong
performance when the underlying surrogate model is well-specified, as well as in
high-noise problem settings [64].
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Knowledge Gradient [42] is designed to select the next point x that provides
the highest improvement in the belief about the expected maximal value of the
function. Given the current data D and a candidate point x, the KG acquisition
function is defined as:

αKGpx;Dq “ Eypxq

„

max
x1PX

fpx1q|D Y tpx, ypxqqu

ȷ

´ max
x1PX

fpx1q|D. (39)

Thus, the KG value at x reflects the expected increase in the maximum posterior
mean Erf s, which may be located anywhere in the search space, if we evaluate
the objective at x. Similarly to EI, KG is frequently adopted in non-standard
problem settings [178, 23] as a versatile look-ahead approach.

5.2.3 Monte Carlo Acquisition Functions

Monte Carlo (MC) acquisition functions [176] are a versatile and powerful class of
techniques for evaluating acquisition functions. Most acquisition functions, includ-
ing all the aforementioned ones, can be framed as an expectation Efpxqrupfpxqs or
Eypxqrupypxqqs, over a utility function upfpxqq. While some acquisition functions,
such as Expected Improvement (EI) and Upper Confidence Bound (UCB), allow
for closed-form solutions under Gaussian posteriors, MC acquisition functions
can accomodate complex settings such as large-batch evaluations, non-Gaussian
posteriors, and noisy, constrained optimization [89]. The generic formulation of
a Monte Carlo acquisition function is

αMCpx;Dq “ Efpxqrupfpxqqs «
1

N

N
ÿ

i“1

upf piqpxqq, (40)

where D represents the observed data, f piqpxq are N samples drawn from the
posterior predictive distribution of the surrogate model at x, and upfpxqq is the
utility function that encodes the value of evaluating x.

5.2.4 Model-aware Acquisition Functions

Presented in Paper III, Self-Correcting Bayesian Optimization (SCoreBO) is
the first acquisition function for BO which integrates a model hyperparameter
refinement criterion into the acquisition function. By dynamically learning hyper-
parameters during optimization, SCoreBO addresses GP inaccuracies and adapts
the model in real time, particularly in noisy or high-dimensional settings. In
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practice, this is done by considering the a joint optimization- and hyperparameter
learning objective building on SAL (introduced in Eq. (25)),

αSCpxq “ Eθrdpppypxq|D, ppypxq|θ, ˚,Dqqs, (41)

where ˚ is some quantity related to the optimizer - either the optimal location
x˚, optimal value f˚ or the tuple px˚, f˚q. This joint approach allows SCoreBO
to achieve faster convergence and superior reliability compared to standard
acquisition strategies for problems where accurate hyperparameter estimation
proves difficult, such as for noisy, high-dimensional objectives.

5.2.5 Prior-weighted Acquisition Functions

Prior-weighted acquisition functions [90, 153, 1, 99] aim to incorporate additional
user beliefs, such as a prior over the location over the optimal location, into the
acquisition procedure. Introduced in Paper I, πBO incorporates practitioner
knowledge into the acquisition process by encoding priors about promising regions
in the input space in the form of probability densities πpxq. This yields a simple
approach to bias a generic myopic acquisition function αpx;Dq towards a-priori
promising regions of the search space,

xn P arg maxxPXαpx;Dqπpxq. (42)

by weighting the two terms through standard multiplication. To guard against
misspecified priors, Paper I also proposes a decaying variant of the prior-weighted
acquisition function

απ,npx;Dq
∆
“ αpx,Dqπnpxq

∆
“ αpx,Dqπpxqβ{n (43)

which decreases the impact of the prior as iterations progress. In Eq. (43), β
controls the rate of decay of the prior. In Paper I, it is theoretically proven
that the BO strategy defined by Eq. (43) converges at standard rates when EI is
employed as the base acquisition function.

Belief-weighted Monte Carlo Acquisition Functions Presented in Paper
IV, belief-weighted MC acquisition functions utilize the user-specified belief over
functions π to obtain sample functions f |π, which can subsequently be used to
compute a π-biased MC estimate of the acquisition function:

αMCpx;Dq “ Epf |πqpxqruppf |πqpxqqs «
1

N

N
ÿ

i“1

uppf |πqpiqpxqq. (44)
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While this approach yields less refined MC estimates compared to state-of-the-
art MC acquisition function techniques [7], its ability to incorporate arbitrary
priors over functions offers significant practical advantages in terms of user
customization. By aligning the acquisition process with practitioner-defined
beliefs, belief-weighted MC acquisition functions enable greater flexibility and
adaptability to real-world optimization scenarios. Previous works, that have
incorporated various forms of user beliefs by adjusting the surrogate model can
be found in [120, 69].

5.3 The BO Loop: An Iterative Trial-and-Error Procedure

BO is inherently an iterative process, designed to refine its understanding of
an objective function through a cycle of informed experimentation. At each
iteration, the surrogate model f̂pxq is updated and re-fit based on the most
recent observations. This model adjustment provides an updated probabilistic
approximation of the objective function, giving a refined prediction of the
mean and variance across the search space, as well as a refined belief over the
hyperparameters of the model itself. Subsequently, the acquisition function can
be computed using the surrogate model’s updated predictions, so that the search
strategy with the most current information available.

With the model updated, the BO algorithm proceeds to identify the point that
maximizes the acquisition function across the search space. This selection process,
which determines where the next evaluation should occur. Once the point is
selected, it is evaluated on the true objective function. This evaluation, though
costly, serves as a new piece of knowledge in the BO loop. By observing the
outcome at this chosen point, BO effectively performs a controlled ”trial” within
the trial-and-error framework. The new data point, comprising the selected
input and its observed output, is then added to the dataset. With this updated
dataset, BO now has an enriched set of information that reflects both past and
newly acquired knowledge of the function.

The iterative process continues, each loop enhancing the model’s ability to make
informed decisions. BO stops iterating once a pre-defined criterion is satisfied.
This stopping criterion could be based on reaching a maximum number of evalua-
tions, detecting convergence in the observed objective values, or determining that
additional evaluations are unlikely to yield significant improvements. When the
process halts, BO returns the best solution found during the iterations, offering
an optimized result while maintaining a minimal number of evaluations.
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Fig. 7: Four iterations of BO using EI as the acquisition function, and a Gaussian Process with an
RBF kernel as the surrogate model. (Top) The GP surrogate model in grey, the observed
data in green, and the true, unobserved objective function in black. (bottom) The EI
acquisition function in navy blue, and its argmax, corresponding to the upcoming query, in
red. The optimization loop interleaves exploration and exploitation as iterations progress,
eventually testing points close to the global maximizer of the objective.

Algorithm 1 Bayesian Optimization Loop

Require: Objective function fpxq, search space X , acquisition function αpx;Dq,
initial data D “ tpxi, yiquni“1

1: while stopping criterion not met do
2: Fit surrogate model f̂ on data D
3: Define acquisition function apx;Dq based on surrogate model f̂
4: Select next point to evaluate: xt`1 “ arg maxxPX αpx;Dq

5: Evaluate objective function: yt`1 “ fpxt`1q ` εt`1

6: Update dataset: D “ D Y tpxt`1, yt`1qu

7: end while
8:

9: return Best point x˚
n “ arg maxxPD ypxq

34



5.3.1 The Interplay Between Model and Acquisition

A critical feature of BO is the intricate interplay between the surrogate model
and the acquisition function [98, 52]. This relationship forms a feedback loop
in which each component dynamically informs the other. The surrogate model
provides the probabilistic representation of the objective function, influencing
the acquisition function’s ability to prioritize candidate points. Conversely, the
acquisition function guides the selection of new data points, which directly shape
the subsequent updates to the model.

This mutual dependency is at the heart of BO’s iterative nature, and is one
where pathologies and inefficiencies may occur [121, 158]. The model’s predictive
accuracy governs the utility of the acquisition function, as poorly fit models may
misrepresent uncertainty by means of ill-chosen hyperparameters. This interplay
becomes particularly evident in challenging scenarios such as high-dimensional
optimization or when dealing with noisy objectives. For example, in Paper VI,
the proposed framework demonstrates how simplifying the model’s complexity -
by adjusting the kernel’s lengthscale prior - improves BO performance across
dimensionalities and stabilizes the GP fit. Here, the model’s reduced assumptions
facilitate an appropriately simple representation of the objective. Thus, the
model is less inclined to over-explore the boundary due to exceedingly long
lengthscales, or overly exploit due to a lack of correlation in the data.

Conversely, Paper III highlights how acquisition functions can explicitly con-
tribute to improving the model itself, thus acting synergistically in the interplay
between the two components. The SCoreBO framework integrates model hy-
perparameter learning into the acquisition process, dynamically refining the
surrogate model’s predictions during the optimization loop. Paper II proposes
a more lightweight γ-exploit approach to guard against model misspecification
in the acquisition function, where with probability γ P r0, 1s, the maximizer of
the posterior mean, arg maxxPX µpxq is chosen as the next query instead of the
regular maximizer of the acquisition function.

The interplay between model and acquisition function is, at large, a fairly
unexplored area of research. With few exceptions [180, 171], works on BO’s
theoretical convergence guarantees [155, 17, 27, 79, 80, 15, 11] generally presume
that the hyperparameters of the model are fixed, thus removing the complex
practical interplay between the two components from the analysis. Moreover,
non-standard models tailored towards specific problem settings [37, 21, 48], such
as those outlined in Sec. 5.1.1 implicitly assume that the data collected through
the BO procedure will suffice in order to obtain a model of acceptable accuracy.
While this assumption demonstrably holds on many relevant problems [37, 48],
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Paper III demonstrates that under particular circumstances, such as significant
observation noise, this assumption does not hold.
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6 Contributions

This thesis contributes to advancing Bayesian Optimization by addressing three
core challenges related to user knowledge and information: user-guided optimiza-
tion, auxiliary model-level objectives, and simplifying assumptions for efficient
high-dimensional optimization. Each paper targets a specific aspect of these
challenges, offering novel methods and practical tools that extend the utility of
BO across varied and complex problem domains. Together, the papers constitute
a substantial effort towards improving BO’s efficiency and adaptability to both
user-defined and algorithmic assumptions.

6.1 RQ1: User-Guided Bayesian Optimization

Two complementary approaches to this problem are presented in Paper I
and Paper IV, each offering distinct methods for embedding user knowledge
into the BO framework. Together, they demonstrate the benefits of leveraging
practitioner insights in diverse and flexible ways while maintaining theoretical
rigor and practical utility.

Paper I introduces πBO, a simple and intuitive method that allows practitioners
to define prior beliefs about promising regions of the input space in the form
of probability distributions. By incorporating these priors into the acquisition
function, πBO enables the optimizer to focus its search on regions that are
more likely to contain the optimum, based on the practitioner’s prior knowledge.
This approach is particularly effective in scenarios like hyperparameter tuning
for machine learning models, where practitioners often have prior intuition
about optimal ranges for parameters such as learning rates or regularization
strengths. The method is computationally lightweight, seamlessly integrates into
existing BO frameworks, and retains theoretical regret bounds when used with
the Expected Improvement (EI) [104] acquisition function. Empirical results
demonstrate that πBO significantly accelerates convergence in real-world tuning
tasks, reducing the number of evaluations needed to achieve high-performance
solutions.

While πBO focuses on spatial priors over the input space and their integration
into the acquisition function, Paper IV broadens the scope of user-guided BO
by introducing Collaborative Bayesian Optimization (ColaBO), a framework
designed to accommodate a wider variety of practitioner insights through inte-
gration with the surrogate model. Beyond spatial priors, ColaBO allows users to
encode more complex forms of prior knowledge, such as bounds on the optimal
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value, relational preferences between candidates, and specific constraints on
achievable outcomes. ColaBO achieves this by reshaping the GP surrogate model
itself to reflect these user-defined priors through sample-wise Bayesian posterior
updating in accordance with the aforementioned prior. This enables a more
comprehensive alignment between the optimization process and practitioner
expectations. Unlike πBO, which is exclusively suited for guiding the optimizer
within the input space, ColaBO provides a more flexible framework capable
of handling diverse prior information. This generality comes with increased
algorithmic complexity, but it allows ColaBO to address a broader range of
real-world scenarios where user insights extend beyond spatial expectations.

6.2 RQ2: Leveraging Auxiliary Model-Level Objectives

The efficiency and reliability of BO heavily depend on the accuracy of the surro-
gate model, which approximates the underlying objective function. Auxiliary
information or parameters, such as the maximal value or the model hyperparam-
eters, offer a critical pathway to enhance this accuracy during the optimization
process. However, traditional BO frameworks may disregard the active learning
of these parameters along with the optimizer, disregarding the potential benefit
that learning these quantities will have on the learning of the location of the
optimizer. Paper II and Paper III address this challenge by proposing methods
to dynamically validate and exploit auxiliary information, improving both the
model’s predictive performance and the overall optimization process.

Paper II introduces JES, an information-theoretic acquisition function that re-
duces uncertainty in both optimal input location and output value simultaneously.
Unlike traditional methods such as ES [54] or PES [56], which focus solely on
the uncertainty of the optimum’s location, JES models the joint probability
distribution of both the optimal input and output values. By conditioning on
hypothetical optimal input-output pairs, JES captures a holistic view of uncer-
tainty related to the optimizer. This joint modeling allows JES to bypass the
complex and computationally intensive approximations that are prominent in
both ES and PES, instead relying on standard GP conditioning techniques. The
result is a method that achieves state-of-the-art performance while remaining
computationally efficient, offering improvements in both sample efficiency and
practical usability across diverse optimization tasks. JES demonstrates how
auxiliary information about the output space, when combined with the input
space, can unlock additional efficiency in BO.

Expanding on this foundation, Paper III focuses on the reliability of the surrogate
model by addressing the uncertainty in GP hyperparameters. Hyperparameters
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such as lengthscales, signal variance, and noise level are generally estimated
through Maximum Likelihood, Maximum a Posteriori or fully Bayesian methods,
and are presumed to be estimated accurately. However, inaccuracies in these
estimates can lead to poor model predictions and suboptimal optimization per-
formance, as the objective function will not be faithfully modeled. To address
this, the paper introduces SAL, a method for refining GP hyperparameters
dynamically during the optimization process. SAL measures statistical distances
between candidate predictive posteriors to prioritize data acquisition that im-
proves hyperparameter learning, contributing to better model accuracy and
reliability.

Building on SAL, the paper proposes SCoreBO, a novel acquisition function
that integrates JES, and other information-theoretic BO approaches, with active
hyperparameter learning in the spirit of BOED. SCoreBO dynamically balances
the dual objectives of locating the optimizer and improving the surrogate model,
allowing the BO framework to adaptively refine its predictions over time. This
approach is particularly effective in challenging applications, such as those
involving noisy high-dimensional tasks, non-stationary objectives or additively
decomposable functions. By focusing on both the primary optimization objective
and the auxiliary task of hyperparameter refinement, SCoreBO achieves faster
convergence and higher reliability across a range of standard and complex tasks.
It enhances the performance of non-standard GP models, such as SAASBO [37]
and HEBO [21], and identifies relevant substructures in additively decomposable
objectives.

6.3 RQ3: High-Dimensional Bayesian Optimization

Paper V and Paper VI approach high-dimensional BO from complementary
perspectives, offering distinct strategies for managing high-dimensional prob-
lems. Together, they highlight the critical trade-offs between employing explicit
structural assumptions and reducing model complexity implicitly, without mak-
ing structural trade-offs in the form of additive decomposability or effective
subspaces.

Paper V emphasizes the approach of structural assumptions in the form of
effective subspaces: by assuming that only a subset of the input dimensions
significantly influences the optimization objective. This assumption is common
in high-dimensional BO but is rarely exploited to its full extent. The paper
leverages Group Testing (GT) theory to efficiently identify the active dimensions
in the input space. Originally developed to isolate key elements within a larger
set through grouped queries, GT is adapted here for noisy and continuous
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settings. The resulting Group Testing Bayesian Optimization (GTBO) algorithm
operates in two stages: a feature selection phase to identify the active subspace,
followed by a low-dimensional BO phase focused exclusively on the relevant
dimensions. This methodology, based on extreme structural assumptions, ensures
sample efficiency, given that these assumptions hold. Moreover, it preserves
interpretability, allowing practitioners to gain insights into which dimensions are
most impactful. Theoretical contributions include extending GT to continuous
feature selection, while empirical results demonstrate that GTBO performs
competitively with state-of-the-art high-dimensional methods across diverse
benchmarks.

Paper VI, on the other hand, challenges the reliance on structural assumptions
by proposing a fundamentally different approach. Rather than focusing on
subspaces or feature selection, this work examines the role of model complexity
in high-dimensional BO. The paper hypothesizes that the difficulties faced by
BO in high-dimensional settings arise not from the dimensionality itself but from
overly complex assumptions about the function’s behavior. By adjusting the GP
kernel’s length-scale prior to scale with dimensionality, the algorithm simplifies the
surrogate model while retaining its global applicability. This approach, referred
to as the Dimension-Scaled Prior (DSP) or Vanilla BO due to its similarity to the
standard algorithm, eliminates the need for predefined structural constraints or
active subspace assumptions. The lightweight modification transforms standard
BO into a competitive method for high-dimensional tasks, offering a plug-and-
play solution that performs effectively on a range of real-world problems. Results
show that this simplified approach often outperforms more specialized high-
dimensional methods, particularly in settings where structural assumptions
cannot be verified.

The two methods address distinct but complementary aspects of high-dimensional
BO. Paper VI demonstrates the power of structured assumptions when relevant
subspaces can be identified, offering high sample efficiency and actionable insights
about the problem’s structure. By contrast, Paper VI provides a general-purpose
solution that avoids relying on unverified assumptions, making it robust across a
broader range of problem settings. Together, these contributions underscore the
importance of low-complexity modeling assumptions, specifically related to the
complexity of the objective, in high-dimensional optimization and in BO generally.
Paper V tests the boundaries of structural assumptions on the surrogate for
high-dimensional optimization. Paper VI marks a significant step forward in
making Bayesian Optimization more reliable for high-dimensional problems,
enabling it to tackle increasingly complex and resource-intensive optimization
tasks without resorting to restrictive or complex assumptions. Moreover, the
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DSP has been adopted as the default hyperparameter prior by the BoTorch [7]
BO research framework, as well as the production-grade BO tools Ax [6] and
BoFire [31].
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7 Conclusions, Outlook and Future Work

As the prevalence of BO increases in applications across engineering, scientific
discovery, and machine learning, we require methods that are not only effi-
cient but also adaptable, robust and user-centric. This thesis addresses key
challenges in BO by advancing its adaptability to real-world demands through
user-guided insights, refined surrogate modeling, and innovative approaches
to high-dimensional problems. By integrating practitioner expertise - such as
spatial priors and relational preferences - BO is transformed into a collaborative,
intuitive tool that aligns closely with domain-specific needs. The research also
enhances the reliability of surrogate models by dynamically refining assump-
tions about complex, noisy, and high-dimensional objectives, ensuring greater
efficiency and robustness. Finally, it redefines high-dimensional optimization by
balancing structured methods like subspace identification with assumption-light
approaches, demonstrating how thoughtful modeling choices can enable BO to
tackle increasingly complex tasks with efficiency and precision.

Looking ahead, several promising directions for future research emerge:

User Knowledge Integration While both Paper I and Paper IV tackle the
integration of auxiliary knowledge in novel ways, they both share limitations
distinct to user-guided approaches. Firstly, the elicitation of suitable user knowl-
edge is seldom trivial. Whether providing an input distribution, an optimal
value or a collection of preference relations, practitioners are may face challenges
when asked to quantify their beliefs. As such, tools that assist in knowledge
elicitation [70] are pivotal towards BO with maximal knowledge integration. Sec-
ondly, the biasing of the search space that the injection of user knowledge entails
can substantially accelerate optimization if accurate, but will inherently risk a
worsening of finite-time performance if inaccurate. Future work should address
these challenges, as well as the integration of prior beliefs through amortized
approaches [108, 109] or by imposing structural model-level assumptions [120, 69],
that balance the simplicity of Paper I with the generality of Paper IV.

Balancing Auxiliary Objectives Paper II and Paper III, demonstrate that,
by going beyond the primary objective of locating the optimizer, efficiency gains
can be achieved through the acquisition of supplementary information. The
natural drawback of these approaches is apparent: when auxiliary information is
not helpful towards locating the optimizer, sample efficiency may deteriorate.
Moreover, there may be instances where, despite being helpful, the task of
obtaining relevant auxiliary information may be as challenging as the task of
locating the optimizer. Future research should explore how to appropriately
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determine how to properly balance the acquisition of auxiliary information
against the main task of locating the optimizer. Additionally, hyperparameter
uncertainty may serve as a higher-order criterion for early stopping [97, 175]
and for initialization strategies, to better encompass various types of uncertainty
through the entirety of the BO loop.

High-Complexity Optimization Paper VI demonstrates that sensible com-
plexity assumptions are pivotal for BO performance - even more so than any
given structural assumption. Future work should examine when various struc-
tural assumptions, such as additivity or an active subspace, are appropriate,
and how to adapt the methodology from Paper VI to non-conventional search
spaces. Potential areas for exploration include, but are not limited to, discrete
and combinatorial optimization problems [28, 122, 29, 25, 30, 126], as well as
domains with non-Euclidean and structured search spaces [51, 105, 156].

In summary, this thesis represents a significant step toward a robust and user-
aligned vision for BO. By enhancing its ability to incorporate user knowledge,
actively obtain and exploit auxilliary information, and adapt to complexity,
this work brings BO closer to becoming a universally reliable and efficient
framework for solving the most demanding practical optimization challenges -
both independently and in collaboration with human expertise.
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2575 Carl Hvarfner did most of the work
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Paper I CH, AS, FH, LN and ML designed the method. CH coded the
algorithm, developed the theory and ran the majority of experiments. DS set up
and ran the DNN experiments. CH, DS, FH and LN primarily wrote the paper,
with all authors participating. All figures were produced by CH. FH and LN
contributed the experimental setup.

Paper II CH designed the method through discussions with FH and LN. CH
coded the algorithm, ran experiments and produced figures for the paper. CH
produced a majority of the writing, with assistance from FH and LN. All figures
were produced by CH. FH provided the computational resources.

Paper III CH designed the method with input from EH, FH and LN. CH
coded the algorithm, ran experiments and produced figures for the paper. FH
and LN helped with writing, all figures were produced by CH. FH provided the
experimental setup.

Paper IV CH designed the concept, coded the algorithm and ran all experi-
ments in the paper. FH and LN assisted in algorithm development. LN and FH
contributed in writing the paper. FH contributed in experimental setup.

Paper V CH proposed the main concept. LP and EH designed the method
and coded the algorithm, with input from CH. LP and EH primarily wrote the
paper, with contributions from CH and LN.

Paper VI CH designed the method and coded the algorithm. EH primarily
developed the theoretical pieces, with input from CH. EH and LN participated
in discussions and assisted in writing the paper.
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Abstract

Bayesian optimization has become an established framework and popular tool
for hyperparameter optimization (HPO) of machine learning (ML) algorithms.

While known for its sample-efficiency, vanilla BO can not utilize readily
available prior beliefs the practitioner has on the potential location of the

optimum. Thus, BO disregards a valuable source of information, reducing its
appeal to ML practitioners. To address this issue, we propose πBO, an

acquisition function generalization which incorporates prior beliefs about the
location of the optimum in the form of a probability distribution, provided by
the user. In contrast to previous approaches, πBO is conceptually simple and
can easily be integrated with existing libraries and many acquisition functions.

We provide regret bounds when πBO is applied to the common Expected
Improvement acquisition function and prove convergence at regular rates

independently of the prior. Further, our experiments show that πBO
outperforms competing approaches across a wide suite of benchmarks and prior
characteristics. We also demonstrate that πBO improves on the state-of-the-art
performance for a popular deep learning task, with a 12.5ˆ time-to-accuracy

speedup over prominent BO approaches.
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1 Introduction

The optimization of expensive black-box functions is a prominent task, arising
across a wide range of applications. Bayesian optimization (BO) is a sample-
efficient approach to cope with this task, and has been successfully applied to
various problem settings, including hyperparameter optimization (HPO) [45],
neural architecture search (NAS) [40], joint NAS and HPO [61], algorithm
configuration [20], hardware design [33], robotics [9], and the game of Go [10].

Despite the demonstrated effectiveness of BO for HPO [5, 54], its adoption among
practitioners remains limited. In a survey covering NeurIPS 2019 and ICLR
2020 [6], manual search was shown to be the most prevalent tuning method,
with BO accounting for less than 7% of all tuning efforts. As the understanding
of hyperparameter settings in deep learning (DL) models increase [44], so too
does the tuning proficiency of practitioners [1]. As previously displayed [44, 1,
47, 58], this knowledge manifests in choosing single configurations or regions of
hyperparameters that presumably yield good results, demonstrating a belief over
the location of the optimum. BO’s deficit to properly incorporate said beliefs is a
reason why practitioners prefer manual search to BO [58], despite its documented
shortcomings [4]. To improve the usefulness of automated HPO approaches for
ML practictioners, the ability to incorporate such knowledge is pivotal.

Well-established BO frameworks [45, 20, 16, 23, 3] support user input to a
limited extent, such as by biasing the initial design, or by narrowing the search
space; however, this type of hard prior can lead to poor performance by missing
important regions. BO also supports a prior over functions ppfq via the Gaussian
Process kernel. However, this option for injecting knowledge is not aligned
with the knowledge that experts possess: they often know which ranges of
hyperparameter values tend to work best [35, 44, 58], and are able to specify a
probability distribution to quantify these priors. For example, many users of the
Adam optimizer [24] know that its best learning rate is often in the vicinity of
1 ˆ 10´3. In practice, DL experiments are typically conducted in a low-budget
setting of less than 50 full model trainings [6]. As such, practitioners want to
exploit their knowledge efficiently without wasting early model trainings on
configurations they expect to likely perform poorly. Unfortunately, this suits
standard BO poorly, as BO requires a moderate number of function evaluations
to learn about the response surface and make informed decisions that outperform
random search.

While there is a demand to increase knowledge injection possibilities to further
the adoption of BO, the concept of encoding prior beliefs over the location of
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an optimum is still rather novel: while there are some initial works [37, 29, 47],
no approach exists so far that allows the integration of arbitrary priors and
offers flexibility in the choice of acquisition function; theory is also lacking. We
close this gap by introducing a novel, remarkably simple, approach for injecting
arbitrary prior beliefs into BO that is easy to implement, agnostic to the surrogate
model used and converges at standard BO rates for any choice of prior.

Our contributions After discussing our problem setting, related work, and
background (Section 2), we make the following contributions:

1. We introduce πBO, a novel generalization of myopic acquisition functions
that accounts for user-specified prior distributions over possible optima,
is demonstrably simple-to-implement, and can be easily combined with
arbitrary surrogate models (Section 3.1 & 3.2);

2. We formally prove that πBO inherits the theoretical properties of the
well-established Expected Improvement acquisition function (Section 3.3);

3. We demonstrate on a broad range of established benchmarks and in DL case
studies that πBO can yield 12.5ˆ time-to-accuracy speedup over vanilla
BO (Section 4).

2 Background and Related Work

2.1 Black-box Optimization

We consider the problem of optimizing a black-box function f across a set of
feasible inputs X Ă Rd:

x˚ P arg min
xPX

fpxq. (1.1)

We assume that fpxq is expensive to evaluate, and can potentially only be
observed through a noisy estimate, y. In this setting, we wish to minimize f
in an efficient manner, typically adhering to a budget which sets a cap on the
number of points that can be evaluated.

Black-Box Optimization with Probabilistic User Beliefs In our work,
we consider an augmented version of the optimization problem in Eq. (1.1),
where we have access to user beliefs in the form of a probability distribution
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on the location of the optimum. Formally, we define the problem of black-
box optimization with probabilistic user beliefs as solving Eq. (1.1), given a
user-specified prior probability on the location of the optimum defined as

πpxq “ P
ˆ

fpxq “ min
x1PX

fpx1q

˙

, (1.2)

where regions that the user expects to likely to contain an optimum will have a
high value. We note that, without loss of generality, we require π to be strictly
positive on all of X , i.e., any point in the search space might be an optimum.
Since the user belief πpxq can be inaccurate or even misleading, optimizing
Eq. (1.1) given (1.2) is a challenging problem.

2.2 Bayesian Optimization

We outline Bayesian optimization [32, 7, 42].

Model BO aims to globally minimize f by an initial experimental design
D0 “ tpxi, yiquMi“1 and thereafter sequentially deciding on new points xn to form
the data Dn “ Dn´1 Y tpxn, ynqu for the n-th iteration with n P t1 . . . Nu. After
each new observation, BO constructs a probabilistic surrogate model of f and uses
that surrogate to evaluate an acquisition function αpx,Dnq. The combination
of surrogate model and acquisition function encodes the policy for selecting the
next point xn`1. When constructing the surrogate, the most common choice
is Gaussian processes [38], which model f as ppf |Dnq “ GPpm, kq, with prior
mean m (which is typically 0) and positive semi-definite covariance kernel k.
The posterior mean mn and the variance s2n are

mnpxq “ knpxqJpKn ` σ2nIqy (1.3)

s2npxq “ kpx,xq ´ knpxqJpKn ` σ2nIqknpxq, (1.4)

where pKnqij “ kpxi,xjq, knpxq “ rkpx,x1q, . . . , kpx,xnqsJ and σ2n is the es-
timation of the observation noise variance σ2. Alternative surrogate models
include Random forests [20] and Bayesian neural networks [48].

Acquisition Functions To obtain new candidates to evaluate, BO employs
a criterion, called an acquisition function, that encapsulates an explore-exploit
trade-off. By maximizing this criterion at each iteration, one or more candidate
point are obtained and added to observed data. Several acquisition functions
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are used in BO; the most common of these is Expected Improvement (EI) [21].
For a noiseless function, EI selects the next point xn`1, where f˚

n is the minimal
objective function value observed by iteration n, as

xn`1 P arg max
xPX

E
“

rpf˚
n ´ fpxqs`

‰

“ arg max
xPX

ZsnpxqΦpZq ` snpxqϕpZq, (1.5)

where Z “ pf˚
n ´ mnpxqq{snpxq. Thus, EI provides a myopic strategy for

determining promising points; it also comes with convergence guarantees [8].
Similar myopic acquisition functions are Upper Confidence Bound (UCB) [49],
Probability of Improvement (PI) [22, 26] and Thompson Sampling (TS) [53].
A different class of acquisition functions is based on non-myopic criteria, such
as Entropy Search [17], Predictive Entropy Search [18] and Max-value Entropy
Search [59], which select points to minimize the uncertainty about the optimum,
and the Knowledge Gradient [15], which aims to minimize the posterior mean of
the surrogate at the subsequent iteration. Our work applies to all acquisition
functions in the first class, and we leave its extension to those in the second class
for future work.

2.3 Related Work

There are two main categories of approaches that exploit prior knowledge in
BO: approaches that use records of previous experiments, and approaches that
incorporate assumptions on the black-box function provided either directly or
indirectly by the user. As πBO exploits prior knowledge from users, we briefly
discuss approaches which utilize previous experiments, and then comprehensively
discuss the literature on exploiting expert knowledge.

Learning from Previous Experiments Transfer learning for BO aims to
automatically extract and use knowledge from prior executions of BO. These
executions can come, for example, from learning and optimizing the hyperparam-
eters of a machine learning algorithm on different datasets [55, 51, 60, 35, 13, 14],
or from optimizing the hyperparameters at different development stages [50].
For a comprehensive overview of meta learning for hyperparameter optimization,
please see the survey from [56]. In contrast to these transfer learning approaches,
πBO and the related work discussed below does not hinge on the existence of
previous experiments, and can therefore be applied more generally.

Incorporating Expert Priors over Function Structure BO can leverage
structural priors on how the objective function is expected to behave. Tradition-
ally, this is done via the surrogate model’s prior over functions, e.g., the kernel
of the GP. However, there are lines of work that explore additional structural
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priors for BO to leverage. For instance, both SMAC [20] and iRace [30] support
structural priors in the form of log-transformations, [28] propose to use knowledge
about the monotonicity of the objective function as a prior for BO, and [46]
model non-stationary covariance between inputs by warping said inputs.

[34] and [43] both propose structural priors tailored to high-dimensional problems,
addressing the issue of over-exploring the boundary described by [52]. [34] propose
a cylindrical kernel that expands the center of the search space and shrinks
the edges, while [43] propose adding derivative signs to the edges of the search
space to steer BO towards the center. Lastly, [41] propose a BO algorithm
for unbounded search spaces which uses a regularizer to penalize points based
on their distance to the center of the user-defined search space. All of these
approaches incorporate prior information on specific properties of the function
or search space, and are thus not always applicable. Moreover, they do not
generally direct the search to desired regions of the search space, offering the
user little control over the selection of points to evaluate.

Incorporating Expert Priors over Function Optimum Few previous
works have proposed to inject explicit prior distributions over the location
of an optimum into BO. In these cases, users explicitly define a prior that
encodes their beliefs on where the optimum is more likely to be located. [5]
suggest an approach that supports prior beliefs from a fixed set of distributions.
However, this approach cannot be combined with standard acquisition functions.
BOPrO [47] employs a similar structure that combines the user-provided prior
distribution with a data-driven model into a pseudo-posterior. From the pseudo-
posterior, configurations are selected using the EI acquisition function, using the
formulation in [5]. While BOPrO is able to recover from misleading priors, its
design restricts it to only use EI. Moreover, it does not provide the convergence
guarantees of πBO.

[29] propose to infer a posterior conditioned on both the observed data and
the user prior through repeated Thompson sampling and maximization under
the prior. This method displays robustness against misleading priors but lacks
in empirical performance. Additionally, it is restricted to only one specific
acquisition function. [37] use the probability integral transform to warp the
search space, stretching high-probability regions and shrinking others. While
the approach is model- and acquisition function agnostic, it requires invertible
priors, and does not empirically display the ability to recover from misleading
priors. In Section 4, we demonstrate that πBO compares favorably for priors
over the function optimum, and shows improved empirical performance.

In summary, πBO sets itself apart from the methods above by being simpler
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(and thus easier to implement in different frameworks), flexible with regard to
different acquisition functions and different surrogate models, the availability of
theoretical guarantees, and, as we demonstrate in Section 4, better empirical
results.

3 Methodology

We now present πBO, which allows users to specify their belief about the location
of the optimum through any probability distribution. A conceptually simple
approach, πBO can be easily implemented in existing BO frameworks and can
be combined directly with the myopic acquisition functions listed above. πBO
augments an acquisition function to emphasize promising regions under the
prior, ensuring such regions are to be explored frequently. As optimization
progresses, the πBO strategy increasingly resembles that of vanilla BO, retaining
its standard convergence rates (see Section 3.3). πBO is publicly available as
part of the SMAC (https://github.com/automl/SMAC3) and HyperMapper
(https://github.com/luinardi/hypermapper) HPO frameworks.

3.1 Prior-weighted Acquisition Function

In πBO, we consider πpxq in Eq. (1.2) to be a weighting scheme on points
in X . The heuristic provided by an acquisition function αpx,Dnq, such as
EI in Eq. (2.2), can then be combined with said weighting scheme to form a
prior-weighted version of the acquisition function. The resulting strategy then
becomes:

xn P arg max
xPX

αpx,Dnqπpxq. (1.6)

This emphasizes good points under πpxq throughout the optimization. While
this property is suitable for well-located priors π, it risks incurring a substantial
slowdown for poorly-chosen priors; we will now show how to counter this by
decaying the prior over time.

3.2 Decaying Prior-weighted Acquisition Function

As the optimization progresses, we should increasingly trust the surrogate model
over the prior; the model improves with data while the user prior remains fixed.
This cannot be achieved with the formulation in Eq. (1.6), as poorly-chosen
priors would permanently slow down the optimization. Rather, to accomplish this
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desired behaviour, the influence of the prior needs to decay over time. Building
on the approaches of [27] and [47], we accomplish this by raising the prior to a
power γn P R`, which decays towards zero with growing n. Thus, the resulting
prior πnpxq “ πpxqγn reflects a belief on the location of an optimum that gets
weaker with time, converging towards a uniform distribution. We set γn “ β{n,
where β P R` is a hyperparameter set by the user, reflecting their confidence in
πpxq. For a given acquisition function αpx,Dnq and user-specified prior πpxq,
we define the decaying prior-weighted acquisition function at iteration n as

απ,npx,Dnq
∆
“ αpx,Dnqπnpxq

∆
“ αpx,Dnqπpxqβ{n (1.7)

and its accompanying strategy as the maximizer of απ,n. With the acquisition
function in Eq. (1.7), the prior will assume large importance initially, promoting
the selection of points close to the prior mode. With time, the exponent on
the prior will tend to zero, making the prior tend to uniform. Thus, with
increasing n, the point selection of απ,n becomes increasingly similar to that of
α. Algorithm 1.1 displays the simplicity of the new strategy, highlighting the
required one-line change (Line 6) in the main BO loop. In Line 3, the mode of
the prior is used as a first initial sample if available. Otherwise, only sampling is
used for initialization.

Algorithm 1.1 πBO Algorithm

1: Input: Input space X , prior distribution over optimum πpxq, prior confidence
parameter β, size M of the initial design, max number of optimization
iterations N .

2: Output: Optimized design x˚.
3: txiu

M
i“1 „ πpxq, tyi Ð fpxiq ` εiu

M
i“1, εi „ Np0, σ2q

4: D0 Ð tpxi, yiquMi“1

5: for {n “ 1, 2, . . . , N} do
6: xnew Ð arg maxxPX αpx,Dn´1qπpxqβ{n

7: ynew Ð fpxnewq ` εi
8: Dn Ð Dn´1 Y tpxnew, ynewqu

9: end for
10: return x˚ Ð arg minpxi,yiqPDN

yi

To illustrate the behaviour of πBO, we consider a toy problem with Gaussian
priors on three different locations of the 1D space (center, left and right) as
displayed in Figure 1.1. We define a 1D-Log-Branin toy problem by setting the
second dimension of the 2D Branin function to the global optimum x2 “ 2.275
and optimizing for the first dimension. Initially (iteration 4 in the top row),
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Fig. 1.1: Rescaled values of prior-weighted EI (purple), EI (blue) and πn (red) on a 1D-Branin
in logscale (grey) with global optimum in the center of the search space. Runs with
two different prior locations (“Well-located” slightly right of optimum, “Off-center”
significantly left of optimum) are shown in the two columns. Each row represents an
iteration (iteration 4, 6 and 8), for an optimization run with β “ 2. The current selection
can be seen as a vertical violet line, and all previous observations are marked as crosses.
πBO amplifies EI in a gradually increasing region around the prior, and moves away from
the prior as iterations progress. This is particularly evident in the Off-center example.

πBO amplifies the acquisition function α in high-probability regions, putting a
lot of trust in the prior. As the prior decays (iteration 6 and 8 in the middle
and bottom rows, respectively), the influence of the prior on the point selection
decreases. By later iterations, πBO has searched substantially around the prior
mode, and moves gradually towards other parts of the search space. This is of
particular importance for the scenarios in the right column, where πBO recovers
from a misleading prior.

3.3 Theoretical Analysis

We now study the πBO method from a theoretical standpoint when paired with
the EI acquisition function. To provide convergence rates, we rely on the set
of assumptions introduced by [8]. These assumptions are satisfied for popular
kernels like the [31] class and the Gaussian kernel, which is obtained in the limit
ν Ñ 8, where the rate ν controls the smoothness of functions from the GP prior.
Our theoretical results apply when both length scales ℓ and the global scale
of variation σ are fixed; these results can then be extended to the case where
the kernel hyperparameters are learned using Maximum Likelihood Estimation
(MLE) following the same procedure as in [8] (Theorem 5). We define the loss
over the ball BR for a function f of norm ||f ||HℓpX q ď R in the reproducing
kernel Hilbert space (RKHS) HℓpX q given a symmetric positive-definite kernel
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Kℓ as

Lnpu,Dn,HℓpX q, Rq
∆
“ sup

||f ||HℓpX qďR
Eu
f rfpx˚

nq ´ min f s, (1.8)

where n is the optimization iteration and u a strategy. We focus on the strategy
that maximizes EIπ, the prior-weighted EI, and show that the loss in Equation
(1.8) can, at any iteration n, be bounded by the vanilla EI loss function. We refer
to EIπ,n and EIn when we want to emphasize the iteration n for the acquisition
functions EIπ and EI, respectively.

Theorem 1. Given Dn, Kℓ, π, β, σ, ℓ, R and the compact set X Ă Rd as
defined above, the loss Ln incurred at iteration n by EIπ,n can be bounded from
above as

LnpEIπ,n,Dn,HℓpX q, Rq ď Cπ,nLnpEIn,Dn,HℓpX q, Rq, (1.9)

where

Cπ,n “

ˆ

maxxPX πpxq

minxPX πpxq

˙β{n

. (1.10)

Using Theorem 1, we obtain the convergence rate of EIπ. This trivially follows
when considering the fraction of the losses in the limit and inserting the original
convergence rate on EI as in [8]:

Corollary 1. The loss of a decaying prior-weighted Expected Improvement
strategy, EIπ, is asymptotically equal to the loss of an Expected Improvement
strategy, EI:

LnpEIπ,n,Dn,HℓpX q, Rq „ LnpEIn,Dn,HℓpX q, Rq, (1.11)

so we obtain a convergence rate for EIπ of

LnpEIπ,n,Dn,HℓpX q, Rq “ Opn´pν^1q{dplog nqγq. (1.12)

Thus, we determine that the weighting introduced by EIπ does not negatively
impact the worst-case convergence rate. The short-term performance is controlled
by the user in their choice of πpxq and β. This result is coherent with intuition,
as a weaker prior or quicker decay will yield a short-term performance closer
to that of EI. In contrast, a stronger prior or slower decay does not guarantee
the same short-term performance, but can produce better empirical results, as
shown in Section 4.
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4 Results

We empirically demonstrate the efficiency of πBO in three different settings. As
πBO is a general method to augment acquisition functions, it can be implemented
in different parent BO packages, and the implementation in any given package
inherits the pros and cons of that package. To minimize confounding factors
concerning this choice of parent package, we keep comparisons within the methods
in one package where possible. In Sec. 4.2, using Spearmint as a parent package,
we evaluate πBO against three intuitive baselines to assess its performance
and robustness on priors with different qualities, ranging from very accurate to
purposefully detrimental. To this end, we use toy functions and cheap surrogates,
where priors of known quality can be obtained. Next, in Sec. 4.3, we compare
πBO against two competitive approaches (BOPrO and BOWS) that integrate
priors over the optimum similarly to πBO, using HyperMapper [33] as a parent
framework, in which the most competitive baseline BOPrO is implemented.
For these experiments we adopt a Multilayer Perceptron (MLP) benchmark on
various datasets, using the interface provided by HPOBench [12], with priors
constructed around the defaults provided by the library. Lastly, in Sec. 4.4, we
apply πBO and other approaches to two deep learning tasks, also using priors
derived from publicly available defaults.

4.1 Experimental Setup

Priors For our surrogate and toy function tasks, we follow the prior construction
methodology in BOPrO [47] and create three main types of prior qualities, all
Gaussian: strong, weak and wrong. The strong and weak priors are located to
have a high and moderate density on the optimum, respectively. The wrong
prior is a narrow distribution located in the worst region of the search space.
For the OpenML MLP tuning benchmark, we utilize the defaults and search
spaces provided in HPOBench [12], and construct Gaussian priors for each
hyperparameter with their mean on the default value, and a standard deviation
of 25% of the hyperparameter’s domain. For the DL case studies, we utilize
defaults from each task’s repository and, for numerical hyperparameters, once
again set the standard deviation to 25% of the hyperparameter’s domain. For
categorical hyperparameters, we place a higher probability on the default. As
such, the quality of the prior is ultimately unknown, but serves as a proxy for
what a practitioner may choose and has shown to be a reasonable choice [2].
For all experiments, we run πBO with β “ N{10, where N is the total number
of iterations, in order to make the prior influence approximately equal in all
experiments, regardless of the number of allowed BO iterations.
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Baselines We empirically evaluate πBO against the most competitive ap-
proaches for priors over the optimum described in Section 2.3: BOPrO [47] and
BO in Warped Space (BOWS) [37]. To contextualize the performance of πBO,
we provide additional, simpler baselines: random sampling, sampling from the
prior and BO with prior-based initial design. The latter is initialized with the
mode of the prior in addition to its regular initial design. In our main results,
we choose Spearmint (with EI) [45] for this mode-initialized baseline, simply
referring to it as Spearmint.

4.2 Robustness of πBO

First, we study the robustness of πBO. To this end, we show that πBO benefits
from informative priors and can recover from wrong priors, being consistent with
our theoretical results in Section 3.3. To this end, we consider a well-known
black-box optimization function, Branin (2D), as well as two surrogate HPO
tasks from the Profet suite [25]: FC-Net (6D) and XGBoost (8D). For these tasks,
we exemplarily show results for πBO implemented in the Spearmint framework.
As Figure 1.2 shows, πBO is able to quickly improve over sampling from the prior.
Moreover, it improves substantially over Spearmint (with mode initialization) for
all informative priors, staying up to an order of magnitude ahead throughout the
optimization for both strong and weak priors. For wrong priors, πBO displays
desired robustness by recovering to approximately equal regret as Spearmint.
In contrast, Spearmint frequently fails to substantially improve from its initial
design on the strong and weak prior, which demonstrates the importance of
considering the prior throughout the optimization procedure. This effect is even
more pronounced on the higher-dimensional tasks FCNet and XGBoost, where
BO typically spends many iterations at the boundary [52]. Here, πBO rapidly
improves multiple orders of magnitude over the initial design, displaying its
ability to efficiently exploit the information provided by the prior.
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Fig. 1.2: Comparison of πBO, Spearmint, and two sampling approaches on Branin, FCNet and
XGBoost for various prior strengths. Mean and standard error of log simple regret is
displayed over 100 iterations, averaged over 20 runs. The vertical line represents the end
of the initial design phase.

4.3 Comparison of πBO against other Prior-Guided Approaches

Next, we study the performance of πBO against other state-of-the-art prior-
guided approaches. To this end, we consider optimizing 5 hyperparameters of
an MLP for classification [12] on 6 different OpenML datasets [57] and compare
against BOPrO [47] and BOWS [37]. For minimizing confounding factors, we
implement πBO and BOWS in HyperMapper [33], the same framework that
BOPrO runs on. Moreover, we let all approaches share πBO’s initialization
procedure. We consider a budget of 50 iterations as it is common with ML
practitioners [6]. In Figure 1.3, we see that πBO offers the best performance
on four out of six tasks, and displays the most consistent performance across
tasks. In contrast to them BOWS and BOPrO, πBO also comes with theoretical
guarantees and is flexible in the choice of framework and acquisition function.

4.4 Case Studies on Deep Learning Pipelines

Last, we study the impact of πBO on deep learning applications, which are
often fairly expensive, making efficiency even more important than in HPO for
traditional machine learning. To this end, we consider two deep learning case
studies: segmentation of neuronal processes in electron microscopy images with
a U-Net(6D) [39], with code provided from the NVIDIA deep learning examples
repository [36], and image classification on ImageNette-128 (6D), a light-weight
adaptation of ImageNet [11], with code from the repository of the popular FastAI
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Fig. 1.3: Comparison of πBO, BOPrO, BOWS, and prior sampling for 5D MLP tuning on various
OpenML datasets for a prior centered on default values. We show mean and standard
error of the accuracy across 20 runs. The vertical line represents the end of the initial
design phase.

library [19]. We mimic the setup from Section 4.3 by using the HyperMapper
framework and identical initialization procedures across approaches. Gaussian
priors are set on publicly available default values, which are results of previous
tuning efforts of the original authors. We again optimize for a practical budget
of 50 iterations [6]. As test splits for both tasks were not available to us, we
report validation scores.

As shown in Figure 1.4, πBO achieves a 2.5ˆ time-to-accuracy speedup over
Vanilla BO. For ImageNette, the performance of πBO at iteration 4 already
surpasses the performance of Vanilla BO at Iteration 50, demonstrating a 12.5ˆ

time-to-accuracy speedup. Ultimately, πBO’s final performance establishes a
new state-of-the-art validation performance on ImageNette with the provided
pipeline, with a final accuracy of 94.14% (vs. the previous state of the art with
93.55%1).

1https://github.com/fastai/imagenette#imagenette-leaderboard, 80 Epochs, 128 Res-
olution
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Fig. 1.4: Comparison of approaches for U-Net Medical and ImageNette-128 for a prior centered
on default values. We show mean and standard error of the accuracy across 20 runs for
U-Net Medical and 10 runs for ImageNette-128. The vertical line represents the end of
the initial design phase.

5 Conclusion and Future Work

We presented πBO, a conceptually very simple Bayesian optimization approach
for leveraging user beliefs about the location of an optimum, which relies on a
generalization of myopic acquisition functions. πBO modifies the selection of
design points through a decaying weighting scheme, promoting high-probability
regions under the prior. Contrary to previous approaches, πBO imposes only
minor restrictions on the type of priors, surrogates or frameworks that can
be used. πBO provably converges at regular rates, displays state-of-the art
performance across tasks, and effectively recovers from poorly specified priors.
Moreover, we have demonstrated that πBO can yield substantial performance
gains for practical low-budget settings, improving on the state-of-the-art for
a real-world CNN tuning tasks even with trivial choices for the prior. For
practitioners who have historically relied on manual or grid search for HPO, we
hope that πBO will serve as an intuitive and effective tool for bridging the gap
between traditional tuning methods and BO.

πBO sets the stage for several follow-up studies. Amongst others, we will examine
the extension of πBO to non-myopic acquisition functions, such as entropy-based
methods. Non-myopic acquisition functions do not fit well in the current πBO
framework, as they do not necessarily benefit from evaluating inputs expected to
perform well. We will also combine πBO with multi-fidelity optimization methods
to yield even higher speedups, and with multi-objective optimization to jointly
optimize performance and secondary objective functions, such as interpretability
or fairness of models.
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6 Ethics Statement

Our work proposes an acquisition function generalization which incorporates
prior beliefs about the location of the optimum into optimization. The approach
is foundational and thus will not bring direct societal or ethical consequences.
However, πBO will likely be used in the development of applications for a wide
range of areas and thus indirectly contribute to their impacts on society. In
particular, we envision that πBO will impact a multitude of fields by allowing
ML experts to inject their knowledge about the location of the optimum into
Bayesian Optimization.

We also note that we intend for πBO to be a tool that allows users to assist
Bayesian Optimization by providing reasonable prior knowledge and beliefs.
This process induces user bias into the optimization, as πBO will inevitably
start by optimizing around this prior. As some users may only be interested in
optimizing in the direct neighborhood of their prior, πBO could allow them to
do so if provided with a high β value in relation to the number of iterations.
Thus, if improperly specified, πBO could serve to reinforce user’s beliefs by
providing improved solutions only for the user’s region of interest. However, if
used properly, πBO will reduce the computational resources required to find
strong hyperparameter settings, contributing to the sustainability of machine
learning.

7 Reproducibility

In order to make the experiments run in πBO as reproducible as possible, we
have included links to repositories of our implementations in both Spearmint
and HyperMapper, with instructions on how to run our experiments. Moreover,
we have included in said repositories all of the exact priors that we have used
for our runs, which run out of the box. The priors we used were, in our opinion,
well motivated as to avoid subjectivity, which we hope serves as a good frame
of reference for similar works in the future. Our Spearmint implementation
of both πBO and BOWS is available at https://github.com/piboauthors/

PiBO-Spearmint, and our HyperMapper implementation is available at https:
//github.com/piboauthors/PiBO-Hypermapper.
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Abstract

Bayesian optimization has become an established framework and popular tool
for hyperparameter optimization (HPO) of machine learning (ML) algorithms.

While known for its sample-efficiency, vanilla BO can not utilize readily
available prior beliefs the practitioner has on the potential location of the

optimum. Thus, BO disregards a valuable source of information, reducing its
appeal to ML practitioners. To address this issue, we propose πBO, an

acquisition function generalization which incorporates prior beliefs about the
location of the optimum in the form of a probability distribution, provided by
the user. In contrast to previous approaches, πBO is conceptually simple and
can easily be integrated with existing libraries and many acquisition functions.

We provide regret bounds when πBO is applied to the common Expected
Improvement acquisition function and prove convergence at regular rates

independently of the prior. Further, our experiments show that πBO
outperforms competing approaches across a wide suite of benchmarks and prior
characteristics. We also demonstrate that πBO improves on the state-of-the-art
performance for a popular deep learning task, with a 12.5ˆ time-to-accuracy

speedup over prominent BO approaches.
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1 Introduction

The optimization of expensive black-box functions is a prominent task, arising
across a wide range of applications. Bayesian optimization (BO) [25, 35] is a
sample-efficient approach, and has been successfully applied to various prob-
lems, including machine learning hyperparameter optimization [37, 2, 20, 33],
robotics [6, 3, 23, 24], hardware design [27, 11], and tuning reinforcement learn-
ing agents like AlphaGo [7]. In BO, a probabilistic surrogate model is used for
modeling the (unknown) objective. The selection policy employed by the BO
algorithm is dictated by an acquisition function, which draws on the uncertainty
of the surrogate to guide the selection of the next query. The choice of acquisition
function is significant for the success of the BO algorithm.

A popular line of acquisition functions takes an information-theoretic angle, and
considers the expected information gain regarding the location of the optimum
that is obtained from an upcoming query. Entropy Search (ES) [15], Predictive
Entropy Search (PES) [16] and the earlier work of IAGO [46] select queries by
maximizing this quantity. While ES and PES are efficient in the number of queries
to optimize the objective, they both require significant computational effort and
complex approximations of the expected information gain, which impacts their
performance and practical use [16, 47].

A related information-theoretic family of approaches considers the information
gain on the optimal objective value [18, 47, 31]. Max-value Entropy Search
(MES) [47] was the first information-theoretic approach to have a proven conver-
gence rate, albeit only in a noiseless problem setting. Moreover, its consideration
of a one-dimensional density over the output space as opposed to a D-dimensional
input space and a reduction in intricate approximations yielded a computation-
ally efficient alternative to the ES/PES line of approaches. Despite its empirical
success, some crucial shortcomings of MES have been highlighted in recent works.
Its convergence rate has been disputed [42], and crucially, it does not differen-
tiate between the (unobserved) maximal objective value f˚ and the observed
noisy maximum ymax [41, 26, 28, 42]. As such, its assumption on the posterior
distribution of the output ppy|D,xq does not hold in any setting where noise is
present, and several follow-ups have been proposed to address the noisy problem
setting [41, 26, 28, 42].

We propose an approach which merges the ES/PES and MES lines of work, and
provides an all-encompassing perspective on information gain regarding optimal-
ity. We introduce Joint Entropy Search (JES), a novel acquisition function which
has the following advantages over existing infomation-theoretic approaches:
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1. It utilizes two sources of information, by considering the entropy over both
the optimum and the noiseless optimal value;

2. It utilizes the full optimal observation, allowing it to rely primarily on
exact computation through standard GP machinery instead of complex
approximations; and

3. It is computationally light-weight, requiring minimal pre-computation
relative to other information-theoretic approaches which consider the input
space.

Simultaneously to our work, a similar approach aimed at the multi-objective
setting, was proposed by [44]. The authors independently came up with the same
JES acquisition function, with a subtly different approximation scheme to the one
we present. We see our work as being complementary to theirs because we both
demonstrate the effectiveness of this new acquisition function in different settings
- theirs being multi-objective and batch evaluations, ours being single-objective
and large levels of output noise. Our code for reproducing the experiments is
available athttps://github.com/hvarfner/JointEntropySearch.

2 Background and related work

Bayesian optimization. We consider the problem of optimizing a black-box
function f across a set of feasible inputs X Ă Rd:

x˚ P arg max
xPX

fpxq. (2.1)

We assume that fpxq is expensive to evaluate, and can potentially only be
observed through a noise-corrupted estimate, y, where y “ fpxq`ε, ε „ N p0, σ2εq

for some noise level σ2ε . In this setting, we wish to maximize f in an efficient
manner, typically while adhering to a budget which sets a cap on the number
of points that can be evaluated. BO aims to globally maximize f by an initial
design and thereafter sequentially choosing new points xn for some iteration
n, creating the data Dn “ Dn´1 Y tpxn, ynqu. After each new observation, BO
constructs a probabilistic surrogate model ppf |Dnq and uses that surrogate to
build an acquisition function αpx,Dnq. The combination of surrogate model and
acquisition function encodes the strategy for selecting the next point xn`1. After
the full budget of N iterations is exhausted, a best configuration x˚

N is returned
as either the arg max of the observed values, or the optimum as predicted by the
surrogate model.
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Gaussian processes. When constructing the surrogate, the most common
choice is Gaussian processes (GPs) [30]. Formally, a GP is an infinite collection
of random variables, such that every finite subset of those variables follows
a multivariate Gaussian distribution. The GP utilizes a covariance function
k, which encodes a prior belief for the smoothness of f , and determines how
previous observations influence prediction. Given observations Dn at iteration n,
the posterior ppf |Dnq over the objective is characterized by the posterior mean
mn and variance sn of the GP:

mnpxq “ knpxqJpKn ` σ2εIq
´1y, (2.2)

snpxq “ kpx,xq ´ knpxqJpKn ` σ2εIq
´1knpxq, (2.3)

where pKnqij “ kpxi,xjq, knpxq “ rkpx,x1q, . . . , kpx,xnqsJ and σ2ε is the noise
variance. Alternative surrogate models include random forests [19] and Bayesian
neural networks [38, 39].

Acquisition functions. The acquisition function acts on the surrogate model
to quantify the attractiveness of a point in the search space. Acquisition functions
employ a trade-off between exploration and exploitation, typically using a greedy
heuristic to do so. Simple, computationally cheap heuristics are Expected
Improvement (EI) [21, 5]. For a noiseless function, EI selects the next point
xn`1 as

xn`1 P arg max
xPX

E
“

py˚
n ´ y˚

n`1q`
‰

“ arg max
xPX

ZsnpxqΦpZq ` snpxqϕpZq, (2.4)

where Z “ py˚
n ´mnpxqq{snpxq. Other acquisition functions which use similar

heuristics are the Upper Confidence Bound (UCB) [40], and Probability of Im-
provement (PI) [22]. A more sophisticated approach related to EI is Knowledge
Gradient (KG) [12].

Information-theoretic acquisition functions. Information-theoretic acqui-
sition functions [15, 16, 32, 47] and their various adaptations [34, 17, 1] seek to
maximize the expected information gain I from observing a subsequent query
px, yq regarding the optimum, x˚. This equates to reducing the uncertainty of
the density over the optimum, ppx˚|Dq “ Ppx “ arg maxx1PX fpx1q|Dq, using
the information obtained through px, yq. By quantifying uncertainty through the
differential entropy H, design points are selected based on the expected reduc-
tion in this quantity over ppx˚|Dq. Formally, this is expressed as the difference
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between the current entropy over ppx˚|Dq, and the expected entropy of that
density after observing the next query:

αESpxq “ Ippx, yq;x˚|Dq “ Hrppx˚|Dqs ´ Ey rHrppx˚|D Y px, yqss . (2.5)

By utilizing the symmetric property of the mutual information, one can arrive
at an equivalent expression, where the entropy is computed with regard to the
density over the output y,

α PESpxq “ Ipy; px,x˚q|Dq “ Hrppy|D,xqs ´ Ex˚ rHrppy|D,x,x˚qss . (2.6)

Eq. 2.5 is the original formulation used in ES [15] and Eq. 2.6 is the formulation
introduced with PES [16]. Both formulations require a series of approximations
and expensive computational steps to compute the entropy in the second term.
For PES specifically, with n data points of dimension d, the second term is
estimated through Monte Carlo (MC) methods by computing Cholesky decom-
positions of size Opn` d2{2q3, and approximating the Hessian at the optimum
for each MC sample.

MES [47] avoids this computational hurdle by considering the information gain
Ippx, yq; y˚|Dq regarding the optimal value y˚. As such, it computes the entropy
reduction for a one-dimensional density:

αMESpxq “ Ipy; px, y˚q|Dq “ Hrppy|D,xqs ´ Ey˚ rHrppy|D,x, y˚qss . (2.7)

Here, it is assumed that the posterior predictive distribution ppy|D,x, y˚q is a
truncated Gaussian distribution, for which the entropy can be computed in closed
form. However, ppy|D,x, y˚q takes this form only in a strictly noiseless setting [41,
28], where it holds true that f˚ “ ymax, i.e. when the maximal observation and
the optimal value of the objective function coincide. For noisy applications, this
assumption leads to an overestimation of the entropy reduction [28].

3 Joint Entropy Search

We now present Joint Entropy Search (JES), a novel information-theoretic ap-
proach for Bayesian optimization. As for other information-theoretic acquisition
functions, JES considers a mutual information quantity. However, unlike its
predecessors, JES adds an additional piece of information: compared to ES/PES,
it adds the density over the noiseless optimal value f˚, and compared to MES, it
adds the density over x˚. It utilizes a novel two-step reduction in the predic-
tive entropy from conditioning on sampled optima and their associated values.
Throughout the section, we will refer to a sampled optimum and its associated
value, px˚, f˚q, as an optimal pair.
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f(x)
Posterior mean
Posterior uncert., p(y| )
Observations
p(x * , f * | )

p(f * | )

Distribution over optimum and optimal value
p(x * | )

JES
PES
MES

Fig. 2.1: The densities considered by ES/PES (top), MES (right) and JES (center) on a one-
dimensional toy example. The multimodal density ppx˚, f˚

q is reduced to a heavy-tailed
density over f˚ for the density used by MES (right), which does not capture the multi-
modality of the density over the optimum. The density over x˚ used by PES (top) does
not capture the apparent exploration/exploitation trade-off that exists between the modes.
The acquisition functions and their next point selections are highlighted with dashed lines
(bottom).

3.1 Joint density over the optimum and optimal value

JES considers the joint probability density ppx˚, f˚q over both the optimum x˚

and the true, noiseless optimal value f˚. Fig. 2.1 visualizes the densities ppx˚q

and ppf˚q, considered by ES/PES and MES, respectively, and the joint density
ppx˚, f˚q, considered by JES. As highlighted by the vertical dashed lines for the
point selection of each strategy (bottom), PES chooses strictly to reduce the
uncertainty over x˚, and as such, considers a region where the uncertainty over
the optimal value is low. However, it can effectively determine that the right
side of the local optimum is more promising to query next. MES seeks to reduce
the tail of the probability density over f˚ (right), which in this case leads to
an exploratory query. JES’ joint probability density over optimum and optimal
value captures uncertainties over both “where” and “how large” the optimum
will be. As such, it selects a point which is uncertain under both measures. As
such, JES will learn about likely locations for the optimum, while simultaneously
learning probable lower and upper bounds for the optimal value, which by itself
yields an effective query strategy [47] and provides valuable knowledge for future
queries. For the selected query in Fig. 2.1, JES will learn substantially about
both x˚ and f˚ by querying it, whereas PES and MES learn only about one of
them.

102



3.2 The Joint Entropy Search acquisition function

We consider the mutual information between the random variables px˚, f˚q and
a future query px, yq:

αJESpxq “ Ippx, yq; px˚, f˚q|Dnq (2.8)

“ Hrppy|D,xqs ´ Epx˚,f˚q rHrppy|D,x,x˚, f˚qss (2.9)

“ Hrppy|D,xqs ´ Epx˚,f˚q rHrppy|D Y px˚, f˚q,x, f˚qss . (2.10)

Eq. 2.9 is similar to Eq. 2.7 but with the addition of x˚ and the replacement of
y˚ with f˚ in the conditioning of the second term. The expectation is computed
with respect to a D` 1-dimensional joint probability density over x˚ and f˚. In
Eq. 2.10, we make it explicit that the conditional density inside the expectation
is obtained after 1. conditioning the GP on the previous data D, plus one
additional noiseless optimal pair px˚, f˚q, and 2. knowing that the noiseless
optimal value is in fact f˚. By utilizing the complete observation px˚, f˚q, we
can treat it like any (noiseless) observation. As such, we quantify much of the
entropy reduction by utilizing standard GP conditioning functionality. For 2.,
we cannot globally condition on fpx1q ď f˚,@x1. As such, we follow previous
work [28, 47, 26, 42] and enforce the condition locally at the current query
x. The resulting effect is to truncate the GP’s posterior over f locally at x,
upper bounding it to f˚. Notably, utilizing the fantasized observation px˚, f˚q

guarantees that the conditioned optimal value f˚ in JES is actually obtained,
rather than serving as a possibly unattained upper bound, which is typical in the
MES family of acquisition functions. The expectation in Eq. 2.10 is approximated
through MC by sampling L optimal pairs tpx˚

ℓ , f
˚
ℓ quLℓ“1 from ppx˚, f˚q using an

approximate version of Thompson Sampling (TS) [43], as explained in Sec. 3.3.
In Fig. 2.2, the resulting posterior distribution of the two-step conditioning
is shown in greater detail. As pointed out in [41, 28], after conditioning on
f˚, the posterior predictive density over y is a sum of a truncated Gaussian
distribution over f and the Gaussian noise ε. The entropy reduction from the
two-step conditioning yields two separate variance reduction steps over ppy|D,xq:
a conditioning term and a truncation term. The former is computed exactly,
while the latter, generally smaller term, requires approximation, as shown in
Sec. 3.4.

Fig. 2.3 shows the difference in log variance over ppy|D,xq resulting from con-
ditioning (in blue) and truncation (in orange) for the scenario in Fig. 2.2. The
overall reduction is largest close to the point of conditioning, and the truncation
term mainly contributes at uncertain regions far away from the conditioned
point. Moreover, the magnitude of the conditioning term will rely on the prior
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Posterior distribution p(f| ) and p(y| ) Posterior after conditioning on (x * , f * ) Posterior after conditioning and truncation
Objective
Posterior Mean
Posterior Uncertainty, p(y| )
Posterior Uncertainty, p(f| )
Observations
Conditioning point
Conditioned true maximum

Fig. 2.2: Step-by-step modeling when conditioning on one optimal pair px˚, f˚
q. The posterior with

noise ppy|Dq and without noise ppf |Dq are illustrated in blue and yellow, respectively. The
GP after 5 (noisy) observations, before conditioning on px˚, f˚

q is shown on the left. In
the middle panel, we draw px˚, f˚

q and condition on it, making ppf |DYpx˚, f˚
qq a delta

distribution at the conditioning point as the fantasized observation f˚ is noiseless. Since f˚

is also the presumed noiseless maximum, we truncate its posterior ppf |D Y px˚, f˚
q, f˚

q

globally in the right panel. The observation noise allows for non-zero density on ppy ą

f˚
|D Y px˚, f˚

q, f˚
q. We note that, while the noise is homoscedastic, its relative

contribution to the total variance differs over the input space. As such, and since we’re
plotting standard deviations (not variances), the blue region is wider near observed data,
where ppf |Dq has lower variance.

variance at the conditioned point, as a larger prior variance will lead to a larger
reduction in entropy from conditioning. As we average over optimal pairs, many
such entropy reduction terms accumulate.

3.3 Incorporating optimal pairs

To obtain samples px˚, f˚q, we utilize an approximate variant of TS [43], originally
proposed in PES [16]. We utilize Bochner’s theorem [4], which, for any stationary
kernel k, asserts the existence of its Fourier dual spwq. By normalizing spwq, we
obtain the spectral density ppwq “ spwq{α, where α is a normalization constant.
We can then write the kernel as an expectation,

kpx,x1q “ αEwreiw
⊺px´x1qs “ 2αEw,brcospw⊺x` bq cospw⊺x1 ` bqs, (2.11)

where b „ Up0, 2πIq. Following [29], we sample b and w to obtain an unbiased
estimate of the kernel k. From this approximation, approximate sample paths
can be drawn as a weighted sum of basis functions. This form allows for fast
and dense querying of the sample paths – the arg max and max of which is
an approximate draw from ppx˚, f˚q. In PES, each sample x˚

ℓ along with its
inverted Hessian is required for computing the acquisition function. To obtain the
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Fig. 2.3: Reduction in log variance from the conditioning step and the truncation step as visualized in
Fig. 2.2. The local conditioning term (blue), and the globally variance-reducing truncation
term (orange).

Hessian, each sample needs to be thoroughly optimized through gradient-based
optimization. JES on the other hand, only requires px˚, f˚q. As such, it can rely
on cheap, approximate optimization of these samples, e.g., by densely querying
sample points on a non-uniform grid.

After obtaining a set of optimal pairs tpx˚
ℓ , y

˚
ℓ quLℓ“1, JES computes the conditional

entropy quantity over the output y. Concretely, we generate L GPs, each
modeling a posterior density tppy|DY px˚

ℓ , f
˚
ℓ q,xquLℓ“1 conditioned on an optimal

pair and previously observed data D. Since each optimal pair is drawn from the
current GP hyperparameter set, we know that the current hyperparameter set is
the correct one even after adding the optimal pair to the data. By consequence,
JES can compute the updated inverse Gram matrix, pK ` σ2εIq´1, through a
rank-1 update, instead of solving a linear system of equations. Utilizing the
Sherman–Morrison formula [36], we obtain updated Gram matrices in Opn2q for
each sample, as opposed to Opn3q for solving the linear system of equations.

3.4 Approximating the truncated entropy

As highlighted in the right panel of Fig. 2.2, conditioning on f˚ yields a
truncated normal distribution ppf |D Y px˚, f˚q,x, f˚q after having locally en-
forced the inequality fpxq ď f˚. The entropy, however, is computed with
regard to the density over noisy observations, y “ f ` ε, which follows an
Extended Skew distribution [28] and as such, does not have tractable en-
tropy. We approximate this quantity through moment matching [26] of the
truncated Gaussian distribution over f , which yields a valid lower bound
on the information gain [26]. Consequently, we obtain two Gaussian densi-
ties p̂pf |D Y px˚, f˚q,x, f˚q „ N pmf |f˚ , σ2f |f˚q and ppεq „ N p0, σ2εq, where

105



mf |f˚ and σ2f |f˚ are the mean and variance of the truncated Gaussian posterior

ppf |D Y px˚, f˚q,x, f˚q. Due to independence between f and ε and the linearity
of Gaussian distributions, we can then compute the entropy of the approximate
density p̂y exactly as Hrp̂py|DYpx˚, f˚q,x, f˚qs “ logp2πpσ2ε `σ2f |f˚qq. Moreover,

the variance of the truncated Gaussian σ2f |f˚ is computed as

σ2f |f˚px;D Y px˚
ℓ , f

˚
ℓ qq “ σ2T pf˚;mℓ

npxq, sℓnpxqq (2.12)

where σ2T pα;µ, σ2q is the variance of an upper truncated Gaussian distribution
with parameters pµ, σ2q, truncated at α, and mℓ

npxq and sℓnpxq are the mean and
covariance functions of the GP which is conditioned on the optimal pair px˚

ℓ , f
˚
ℓ q.

3.5 Exploitative selection to guard against model misspecifica-
tion

As with all information-theoretic approaches, JES aims to reduce the uncertainty
over the location of the optimum. With this strategy, the incentive to query
the perceived optimum is often lower than for heuristic approaches, such as
EI. In cases where the surrogate model is misspecified, information-theoretic
approaches risk reducing the entropy based on a faulty belief of the optimum,
which can drastically impact their performance. As a remedy, we utilize a γ-
exploit approach inspired by the parallel context of AEGIS [9]: with probability
γ, JES will query the arg max of the posterior mean to confirm its belief of the
location of the optimum. If the model is misspecified, these exploitative steps
enable the algorithm to reconsider its beliefs, rather than continuing to act based
on faulty ones. This approach can substantially improve performance in cases of
surrogate model misspecification, while having negligible impact on performance
in the worst case.

3.6 Putting it all together: The JES algorithm

For a sampled set of size L, containing optimal pairs tpx˚
ℓ , y

˚
ℓ quLℓ“1 and GPs with

mean and covariance functions tmℓ
npxq, sℓnpxquLℓ“1, the expression for the JES

acquisition function is

αpxqJES “ Hrppy|D,xqs ´ Epx˚,f˚q rHrppy|D Y px˚, f˚q,x, f˚qss (2.13)

« logp2πpsnpxq ` σ2εqq (2.14)

´
1

L

L
ÿ

ℓ“1

logp2πpσ2ε ` σ2f |f˚px;D Y px˚
ℓ , f

˚
ℓ qqq, (2.15)
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Algorithm 2.1 JES Algorithm

1: Input: Black-box function f , input space X , size M of the initial design,
max number of optimization iterations N , number of posterior MC samples
L, fraction of exploit samples γ.

2: Output: Optimized design x˚.
3: DM Ð tpxi, yiquMi“1 {initial design}
4: for {n “ M ` 1, . . . ,M `N} do
5: mpxq, s2pxq Ð FitGP(Dn´1)
6: if Rand(0, 1) ď γ then
7: xn Ð arg maxxPX mnpxq {as described in Sec. 3.5}
8: else
9: for {ℓ “ 1, . . . , L} do

10: px˚
ℓ , y

˚
ℓ q Ð TSpfq {as described in Sec. 3.3}

11: ppy|Dn´1 Y px˚
ℓ , f

˚
ℓ q,xq Ð UpdateGP px˚

ℓ , f
˚
ℓ q {as described in

Sec. 3.3}
12: end for
13: xn “ arg maxX αJESpxq {defined in Eq. 2.13}
14: end if
15: yn “ fpxnq ` ε, Dn Ð Dn´1 Y tpxn, ynqu {observe next query}
16: end for
17: return x˚ Ð arg maxxPX mnpxq

The first term in 2.15 is simply the entropy of a Gaussian that can be computed
in closed form. The second term contains both the conditioning term, which
is exact, and the truncation, which is approximated as described in Sec. 3.4.
Algorithm 2.1 outlines pseudocode for JES in its entirety.

4 Experimental evaluation

Benchmarks. We now evaluate JES on a suite of diverse tasks. We consider
three different types of benchmarks: samples drawn from a GP prior, commonly
used synthetic test functions [16], and a collection of classification tasks on
tabular data using an MLP, provided through HPOBench [10]. For the GP prior
tasks, the hyperparameters are known for all methods to evaluate the effect of
the acquisition function in isolation. Consequently, we do not use the γ-exploit
approach from Sec. 3.5 in this case (i.e., we set γ “ 0 in Algorithm 2.1). For the
synthetic and MLP tasks, we marginalize over the GP hyperparameters, and set
γ “ 0.1.
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Evaluation criteria. We use two types of evaluation criteria as in [47]:
simple regret and inference regret. The simple regret rn “ maxxPX fpxq ´

maxtPr1,ns fpxtq measures the value of the best queried point so far. After
a query, we may infer an arg max of the function, which is chosen as x˚

n “

arg maxxPX mnpxq [15, 47, 16]. We denote the inference regret as rn “ maxxPX fpxq´

fpx˚
nq. Since information-theoretic approaches do not necessarily seek to query

the optimum, but only to know its location, inference regret characterizes how
satisfying our belief of the arg max is. Notably, this metric is non-monotonic,
meaning that the best guess can worsen with time. We use this metric in the
ideal model benchmarking setting, when we sample tasks from a GP with known
hyperparameters. We use simple regret for the synthetic test functions, as it
constitutes a metric that is more robust to surrogate model misspecification.

The experimental setup. We compare against other state-of-the-art information-
theoretic approaches: PES [16] and MES [47], as well as EI [21]. The acquisition
functions are all run in the same framework written in MATLAB, created for
the original PES implementation by [16]. All synthetic experiments were run for
50D iterations. In the main paper, we fix the number of MC samples for MES,
PES and JES to 100 each.

4.1 GP prior samples

We consider samples from a GP prior for four different dimensionalities: 2D,
4D, 6D, and 12D, with a noise standard deviation of 0.1 for a range of outputs
spanning roughly r´10, 10s. These tasks constitute an optimal setting for each
algorithm, as the surrogate perfectly models the task at hand. In Fig. 2.4,
JES demonstrates empirically the value of the additional source of information,
substantially outperforming PES and MES on all tasks.

Fig. 2.5 compares JES (top left) against PES, MES and EI in terms of point
selection for one repetition on a two-dimensional sample task, where all runs
are initialized with D ` 1 identical random samples. We observe that JES

succeeds in finding all attractive regions of the search space, and queries the
region around the optimum densely, which is sensible in a noisy setting. We
further notice that EI (bottom right) fails to query the two circled local optima.
PES (bottom left) also ignores two local optima to various degrees, and tends to
circle the (perceived) optimum densely, which is expensive in terms of number
of evaluations. We believe this showcases a shortcoming of only considering the
density over the optimum: PES circles the optimum, but does not query its value.
Lastly, MES (top right) successfully queries all attractive regions of the space,
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Fig. 2.4: Comparison of JES, MES, PES and EI on GP prior samples. We run 1000 repetitions each
for 2, 4 and 6D, and 250 on 12D. Mean and 2 standard errors of log regret are displayed
for each acquisition function. The vertical dashed line shows the end of the initial design
phase.

but also samples regions that are evidently poor the most densely out of the
four approaches, despite information given by earlier (brighter) samples. Since
JES considers the information conveyed by both MES and PES, it successfully
excludes the apparent suboptimal regions of the space, finds all relevant optima,
and queries these optima in a desirable manner.

We additionally evaluate the performance of all approaches on GP sample
tasks that have a substantial amount of noise - its standard deviation roughly
accounting for 10% of the total output range. We run these tasks with the GP
hyperparameters fixed a priori for a larger number of iterations, 125D, to display
the stagnation of some approaches. While MES and PES slow down approximately
at the halfway point for both tasks, JES steadily improves for the entire length
of the run. This robustness to large noise magnitudes highlights the importance
of intrinsically handling noisy objectives in JES.

In Table 2.2, we display the runtime of each acquisition function on these tasks
when marginalizing over 10 sets hyperparameters, and sampling 10 optima per
set. We time each iteration from after hyperparameters have been sampled, up
until (but excluding) the query of the black-box function. Thus, acquisition
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Joint Entropy Search Max-value Entropy Search

Predictive Entropy Search Expected Improvement

Fig. 2.5: Comparison of queries for JES (top left), MES (top right), PES (bottom left) and EI

(bottom right) on a sample of a 2D GP after a 100 function evaluations. The global
optimum is circled in white, and four local optima in gray. Earlier queries are colored
yellow, and later queries red.

function pre-computation and optimization are included. The runtime of JES is
only marginally slower than that of MES with Gumbel sampling, while being at
least an order of magnitude faster than PES for all displayed dimensionalities.

4.2 Synthetic test functions

Next, in Fig. 2.7, we study the performance of JES on three optimization test
functions: Branin (2D), Hartmann (3D) and Hartmann (6D). For these tasks, we
follow convention [16, 31] and marginalize over GP hyperparameters. On Branin,
JES starts out slightly slower than MES but reaches the same performance in
100 iterations; and on the two Hartmann functions, JES performs amongst the
best in the beginning and clearly best in the end. We note that PES experienced
numerical issues on Branin, and as such, we acknowledge that its performance
should be better than what is reported.
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Fig. 2.6: Evaluation of JES, MES, PES and EI on noisy (σ2
ε “ 4, orangeq GP sample tasks across

100 repetitions. Mean and 2 standard errors of log regret are displayed for each acquisition
function.

4.3 MLP tasks

Lastly, we evaluate the performance of JES on the tuning an MLP model’s 4
hyperparameters for 20D iterations on six datasets. These tasks are part of
the OpenML2 library of tasks, and the HPO benchmark is provided through
the HPOBench [10] suite. We measure the best observed classification accuracy.
Notably, these tasks have a large amount of noise, which causes the performance
to fluctuate substantially between repetitions. We observe that JES performs
substantially better on two tasks, and is approximately equal in performance to
EI on three, with EI being superior in one task. JES displays superior or equal
performance to MES on all tasks, with PES lagging behind.

5 Conclusions

We have presented Joint Entropy Search, an information-theoretic acquisition
function that considers an entirely new quantity, namely the joint density over the
optimum and optimal value. By utilizing the entropy reduction from fantasized
optimal observations, JES obtains a simple form for the entropy reduction
regarding the joint distribution. As such, the additional information considered
comes with minimal computational overhead, avoids restrictive assumptions
on the objective, and yields state-of-the-art performance along with superior
decision-making. We believe JES to be a new go-to acquisition function for BO,
and to establish a new standard for subsequent information-theoretic techniques.

2https://www.openml.org/

111



Tab. 2.2: Runtime of JES, MES, PES and EI on GP sample tasks of varying dimensionalities. JES
is only marginally slower than MES, and orders of magnitude faster than PES.

Task JES-100 MES-100 PES-100 EI

2D 1.40 ˘ 0.32 1.03 ˘ 0.19 17.39 ˘ 4.95 0.23 ˘ 0.13
4D 1.50 ˘ 0.37 1.21 ˘ 0.3 34.53 ˘ 8.3 0.3 ˘ 0.17
6D 1.56 ˘ 0.39 1.26 ˘ 0.37 62.92 ˘ 13.54 0.35 ˘ 0.2

6 Limitations and Future Work

The main contribution of this paper is to provide a novel information-theoretic
acquisition function which, given a sufficiently accurate model, yields impressive
results. However, the non-myopic, speculative nature of information-theoretic
approaches lend them to be susceptible to model misspecification, such as a
poor choice of GP kernel or GP hyperparameters. In our view, information-
theoretic approaches are possibly more susceptible to this issue than their myopic
counterparts (EI, UCB, TS). While we propose a remedy to stabilize and improve
the acquisition function under model misspecification with the γ-exploit approach,
this technique only serves to discover misspecification and adjust accordingly,
but not to inherently fix the misspecification. We believe misspecification can
only be remedied by altering the surrogate model. It is thus very promising to
combine advanced modelling techniques with information-theoretic acquisition
functions, as already done with the additive GP approach utilized in conjunction
with MES by [47]; further promising additions would be to tackle heterogeneous
noise and input warping as done by HEBO [8].

We also note that, since JES computes the entropy reduction from conditioning
on the optimal pair, it relies on some level of noise in the objective. A surrogate
model with zero noise will result in an infinite information gain for every optimal
pair, which (by utilizing some random tie-breaking strategy) would make JES

equivalent to TS. However, if JES is to be used in a completely noiseless setting,
we argue that a small noise term should be added as a remedy. As this is done by
default in many prominent GP frameworks [14, 13, 45], we do not view this as a
major limitation of our approach. Nevertheless, improving upon this strategy
would be interesting in future work.

For future work, we also envision work on the adaptation of JES to various
different domains, such as multi-fidelity [48] and multi-objective optimization [1],
as well as the integration of user prior knowledge over the location of the
optimum [20] to accelerate optimization.
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repetitions. The vertical dashed line represents the end of the initial design phase.
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Abstract

Gaussian processes are the model of choice in Bayesian optimization and active
learning. Yet, they are highly dependent on cleverly chosen hyperparameters to

reach their full potential, and little effort is devoted to finding good
hyperparameters in the literature. We demonstrate the impact of selecting good
hyperparameters for GPs and present two acquisition functions that explicitly
prioritize hyperparameter learning. Statistical distance-based Active Learning

(SAL) considers the average disagreement between samples from the posterior, as
measured by a statistical distance. SAL outperforms the state-of-the-art in

Bayesian active learning on several test functions. We then introduce
Self-Correcting Bayesian Optimization (SCoreBO), which extends SAL to

perform Bayesian optimization and active learning simultaneously. SCoreBO
learns the model hyperparameters at improved rates compared to vanilla BO,
while outperforming the latest Bayesian optimization methods on traditional
benchmarks. Moreover, we demonstrate the importance of self-correction on

atypical Bayesian optimization tasks.
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1 Introduction

Bayesian Optimization (BO) is a powerful paradigm for black-box optimization
problems, i.e., problems that can only be accessed by pointwise queries. Such
problems arise in many applications, ranging from including drug discovery [19] to
configuration of combinatorial problem solvers [25, 26], hardware design [40, 13],
hyperparameter tuning [31, 28, 48, 10], and robotics [8, 4, 37, 38].

Gaussian processes (GPs) are a popular choice as surrogate models in BO applica-
tions. Given the data, the model hyperparameters are typically estimated using
either Maximum Likelihood or Maximum a Posteriori estimation (MAP) [45].
Alternatively, a fully Bayesian treatment of the hyperparameters [42, 50] removes
the need to choose any single set through Monte Carlo integration. This proce-
dure effectively considers all possible hyperparameter values under the current
posterior, thereby accounting for hyperparameter uncertainty. However, the
relationship between accurate GP hyperparameter estimation and BO perfor-
mance has received little attention [65, 63, 3, 6, 53], and active reduction of
hyperparameter uncertainty is not an integral part of any prevalent BO acquisi-
tion function. In contrast, the field of Bayesian Active Learning (BAL) contains
multiple acquisition functions based solely on reducing hyperparameter-induced
measures of uncertainty [24, 46, 32], and the broader field of Bayesian Experi-
mental Design [9, 44, 1] revolves around acquisition of data to best learns the
model parameters.

The importance of the GP hyperparameters in BO is illustrated in Fig. 3.1,
which shows average simple regret over 20 optimization runs of 8-dimensional
functions drawn from a Gaussian process prior. The curves correspond to the
performance of Expected Improvement with noisy experiments (EI) [34] acquisi-
tion function under a fully Bayesian hyperparameter treatment using NUTS [23].
Two prevalent hyperparameter priors, as well as the true model hyperparameters,
are used. Clearly, good model hyperparameters have substantial impact on
BO performance, and BO methods could greatly benefit from estimating the
model hyperparameters as accurately as possible. Furthermore, the hyperpa-
rameter estimation task can become daunting under complex problem setups,
such as non-stationary objectives (spatially varying lengthscales, heteroskedas-
ticity) [51, 12, 15, 5, 58], high-dimensional search spaces [14, 43], and additively
decomposable objectives [30, 17]. The complexity of such problems warrants
the use of more complex, task-specific surrogate models. In such settings, the
success of the optimization may increasingly hinge on the presumed accuracy of
the task-specific surrogate.
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Fig. 3.1: Simple regret of using true hyperparameters, BoTorch (v.0.8.4 default) and lognormal
hyperparameter priors with fully Bayesian hyperparameter treatment. The prior substan-
tially impacts final performance, and correct hyperparameters yield vastly better results.

We proceed in two steps. We first introduce Statistical distance-based Active
Learning (SAL), which improves Bayesian active learning by generalizing previous
work [46, 24] and introduces a holistic measure of disagreement between the
marginal posterior predictive distribution and each conditional posterior predic-
tive. We consider the hyperparameter-induced disagreement between models in
the acquisition function, thereby accelerating the learning of model hyperparam-
eters. We then propose Self-Correcting Bayesian Optimization (SCoreBO), which
builds upon SAL by explicitly learning the location of the optimizer in conjunction
with model hyperparameters. This achieves accelerated hyperparameter learning
and yields improved optimization performance on both conventional and exotic
BO tasks. Formally, we make the following contributions:

1. We introduce SAL, a novel and efficient acquisition function for hyperparameter-
oriented Bayesian active learning based on statistical distances (Sec. 3.1),

2. We introduce SCoreBO, the first acquisition function for joint BO and
hyperparameter learning (Sec. 3.2),

3. We display highly competitive performance on an array of conventional
AL (Sec. 4.1) and BO tasks (Sec. 4.2), and demonstrate SCoreBOs , ability
to enhance atypical models such as SAASBO [14] and HEBO [12], and
identify decompositions in AddGPs [30](Sec. 4.3).
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2 Background

2.1 Gaussian processes

Gaussian processes (GPs) have become the model class of choice in most BO
and active learning applications. They provide a distribution over functions
f „ GPpmp¨q, kp¨, ¨qq fully defined by the mean function mp¨q and the covariance
function kp¨, ¨q. Under this distribution, the value of the function fpxq, at a
given point x, is normally distributed with a closed-form solution for the mean
and variance. We assume that observations are perturbed by Gaussian noise,
such that yx “ fpxq ` ε, ε „ Np0, σ2εq. We also assume the mean function to be
constant, such that the dynamics are fully determined by the covariance function
kp¨, ¨q.

To account for differences in variable importance, each dimension is individually
scaled using lengthscale hyperparameters ℓi. For D-dimensional inputs x and
x1, the distance rpx,x1q is subsequently computed as r2 “

řD
i“1pxi ´ x1

iq
2{ℓ2i .

Along with the outputscale σf , the set θ “ tℓ, σε, σfu comprises the set of
hyperparameters that are conventionally learned. The likelihood surface for the
GP hyperparameters is typically highly multi-modal [45, 64], where different
modes represent different bias-variance trade-offs [45, 46]. To avoid having to
choose a single mode, one can define a prior ppθq and marginalize with respect
to the hyperparameters when performing predictions [33].

2.2 Bayesian Optimization

Bayesian Optimization (BO) seeks to maximize to a black-box function f over a
compact domain X ,

x˚ P arg max
xPX

fpxq, (3.1)

such that f can only be sampled point-wise through expensive, noisy evaluations
yx “ fpxq ` ε, where ε „ N p0, σ2εq. New configurations are chosen by optimizing
an acquisition function, which uses the surrogate model to quantify the utility
of evaluating new points in the search space. Examples of such heuristics are
Expected Improvement (EI) [29, 7] and Upper Confidence Bound (UCB) [52, 3,
55]. More sophisticated look-ahead approaches include Knowledge Gradient
(KG) [16, 62] as well as a class of particular importance for our approach - the
information-theoretic acquisition function class. These acquisition functions
consider a mutual information objective to select the next query,

αMIpxq “ Ipyx; ˚ |Dnq, (3.2)

126



where ˚ can entail either the optimum x˚ as in (Predictive) Entropy Search
(ES/PES) [21, 22], the optimal value f˚ as in Max-value Entropy Search (MES) [59,
54, 39] or the tuple px˚, f˚q, used in Joint Entropy Search (JES) [27, 56].
FITBO [47] shares similarities with our work, in that the optimal value is governed
by a hyperparameter, in their case of a transformed GP.

Within BO, the fully Bayesian hyperparameter treatment is conventionally
extended from the predictive posterior to the acquisition function such that for
M models with hyperparameters θm,m P t1, . . . ,Mu sampled from the posterior
over hyperparameters ppθ|Dq, the acquisition function α is computed as an
expectation over the hyperparameters [42, 50]

αpx|Dq “ Eθrαpx|θ,Dqs «
1

M

M
ÿ

m“1

αpx|θm,Dq θm „ ppθ|Dq. (3.3)

This is also the definition of fully Bayesian treatment considered in this work.

2.3 Bayesian Active Learning

In contrast to BO, which aims to find a maximizer to an unknown function,
Active Learning (AL) seeks to accurately learn the black-box function globally.
Thus, the objective is to minimize the expected prediction loss. AL acquisition
functions are classified as either decision-theoretic, which minimize the prediction
loss over a validation set, or information-theoretic, which minimize the space of
plausible models given the observed data [24, 35].

In the information-theoretic category, Active Learning McKay (ALM) [35] selects
the point with the highest Shannon Entropy, which for GPs amounts to selecting
the point with the highest variance. Under fully Bayesian hyperparameter
treatment, it is referred to as Bayesian ALM (BALM). Bayesian Active Learning by
Disagreement (BALD) [24] was among the first Bayesian active learning approaches
to explicitly focus on learning the model hyperparameters. It approximates the
reduction in entropy over the GP hyperparameters from observing a new data
point

αBALDpxq “ Ipyx;θ|Dq “ Hpppyx|Dqq ´ EθrHpppyx|θ,Dqqs (3.4)

and was later extended to deep Bayesian active learning [32] and active model
(kernel) selection [18]. Lastly, [46] propose a Bayesian Query-by-Committee
(BQBC) strategy. BQBC queries where the variance V of the GP mean is the
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largest, with respect to changing model hyperparameters:

αBQBCpxq “ Vθrµθpx|Dqs “ Eθrpµθpx|Dq ´ µpx|Dqq2s, (3.5)

where µpxq is the marginal posterior mean at x, and µθpxq is the posterior
mean conditioned on θ. As such, BQBC queries the location which maximizes the
average distance between the marginal posterior and the conditionals according
to some distance metric (here, the posterior mean), henceforth referred to as
hyperparameter-induced posterior disagreement. However, disagreement in mean
alone does not fully capture hyperparameter-induced disagreement. Thus, [46]
also presents Query-by-Mixture of Gaussian Processes (QBMGP), that adds the
BALM criterion to the BQBC acquisition function.

2.4 Statistical Distances

A statistical distance quantifies the distance between two statistical objects. We
focus on three (semi-)metrics, which have closed forms for Gaussian random
variables.

The Hellinger distance is a dissimilarity measure between two probability
distributions which has previously been employed in the context of BO-driven
automated model selection by [36]. For two probability distributions p and q, it
is defined as

H2pp, qq “
1

2

ż

X

´

a

ppxq ´
a

qpxq

¯2
λdx, (3.6)

for some auxiliary measure λ under which both p and q are absolutely continuous.

The Wasserstein distance is dissimilarity metric between two distributions
describing the average distance one distribution has to be moved to morph into
another. The Wasserstein-k distance is defined as

Wkpp, qq “

ˆ
ż 1

0
|Fqpxq ´ Fppxq|kdx

˙1{k

(3.7)

where, in this work, we focus on the case where k “ 2.

The KL divergence The KL divergence is a standard asymmetrical mea-
sure for dissimilarity between probability distributions. For two probability
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distributions P and Q, it is given by DKLpP || Qq “
ş

X P pxqlogpP pxq{Qpxqqdx.
The distances in Eq. (3.6), Eq. (3.7) and the KL divergence are used for the
acquisition functions presented in Sec. 3.

3 Methodology

In Sec. 3.1, we introduce SAL, a novel family of metrics for BAL. In Sec. 3.2,
we extend this to SCoreBO, the first acquisition function for joint BO and
hyperparameter-oriented active learning, inspired by information-theoretic BO
acquisition functions. In Sec. 3.3, we demonstrate how to efficiently approximate
different types of statistical distances within the SAL context.

3.1 Statistical distance-based Active Learning

In active learning for GPs, it is important to efficiently learn the correct model
hyperparameters. By measuring where the posterior hyperparameter uncertainty
causes high disagreement in model output, the search can be focused on where
this uncertainty has a high impact. However, considering only the posterior
disagreement in mean, as in BQBC, is overly restrictive as it does not fully utilize
the available distributions for the hyperparameters. For example, it ignores
uncertainty in the outputscale hyperparameter of the Gaussian process, which
disincentives exploration. As such, we propose to generalize the acquisition
function in Eq. (3.5) to instead consider the posterior disagreement as measured
by any statistical distance. Locations where the posterior distribution changes
significantly as a result of model uncertainty are good points to query, in order
to quickly learn the model hyperparameters. When an observation at such a
location is obtained, hyperparameters which predicted that observation poorly
will have a substantially smaller likelihood, which in turn aids hyperparameter
convergence. The resulting SAL acquisition function is as follows:

αSALpxq “ Eθrdpppyx|θ,Dq, ppyx|Dqqs «
1

M

M
ÿ

m“1

dpppyx|θm,Dq, ppyx|Dqq,

(3.8)

where M is the number of hyperparameter samples drawn from its associated
posterior, θm „ ppθ|Dq, θ “ tℓ, σf , σεu, and d is a statistical distance. Notably,
SAL generalizes both BQBC and BALD, which are exactly recovered by choos-
ing the semi-metric to the difference in mean or the forward KL divergence,
respectively.
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Fig. 3.2: Marginal posterior (top left, grey in other plots in top row), αSAL using the Hellinger
distance (bottom left, black), and the three conditional GPs (blue, orange, green) and
their marginal contribution to the total acquisition function (bottom row). The large
disagreement in noise level and lengthscale, primarily caused by the orange GP (large
noise, long lengthscale), makes αSAL query the lowest-valued point for a second time
(selected location as vertical dashed line in the leftmost plot) to determine the mean and
variance at that location.

Proposition 1. SAL equipped with the KL-divergence is equivalent to BALD.

Fig. 3.2 visualizes the SAL acquisition function. The marginal posterior (left) is
made up of three vastly different conditional posteriors with hyperparameters
sampled from ppθ|Dq - one with high outputscale (blue), one with very high noise
(orange), and one with short lengthscale (green). For each of the blue, orange and
green conditionals, the distance to the marginal posterior is computed. Intuitively,
disagreement in noise level σε can cause large posterior disagreement at already
queried locations. Similarly, uncertainty in outputscale σf between posteriors will
yield disagreement in large-variance regions, which will result in global variance
reduction. Compared to other active learning acquisition functions, SAL carries
distinct advantages: it has incentive to query the same location multiple times
to estimate noise levels, and accomplishes the typical active learning objectives
of predictive accuracy and global exploration by alleviating uncertainty over the
lengthscales and outputscale of the GP. As we show in our experiments (Sec. 4.1,
), SAL yields superior predictions and reduces hyperparameter uncertainty at
drastically improved rates.

3.2 Self-Correcting Bayesian Optimization

Equipped with the SAL objective from Eq. (3.8), we have an intuitive measure
for the hyperparameter-induced posterior disagreement, which incentivizes hy-
perparameter learning by querying locations where disagreement is the largest.
However, it does not inherently carry an incentive to optimize the function.
To inject an optimization objective into Eq. (3.8), we draw inspiration from
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information-theoretic BO and further condition on samples of the optimum.
Conditioning on potential optima yields an additional source of disagreement
reserved for promising regions of the search space.

We consider px˚, f˚q, representing the global optimum and optimal value con-
sidered in JES [27, 56], as hyperparameters. When conditioning on px˚, f˚q, we
condition on an additional observation, which displaces the mean and reduces
the variance at x˚. Moreover, the posterior over f becomes an upper truncated
Gaussian, reducing the variance and pushing the mean marginally downwards in
uncertain regions far away from the optimum as visualized in Fig. 3.3. Conse-
quently, sampling and conditioning on px˚, f˚q introduces an additional source
of disagreement between the marginal posterior and the conditionals globally.
The optimizer px˚, f˚q is obtained through posterior sampling [61]. For brevity,
we hereafter denote px˚, f˚q by ˚. The resulting SCoreBO acquisition function
is

αSCpxq “ Eθ,˚rdpppyx|Dq, ppyx|θ,˚,Dqqs. (3.9)

The joint posterior ppθ,˚ |Dq “ pp˚ |θ,Dqppθ|Dq used for the expectation in
Eq. (3.9) can be approximated by hierarchical sampling. We first draw M
hyperparameters θ and thereafter N optimizers ˚ |θ. As such, the expression
for the SCoreBO acquisition function is:

αpxq «
1

NM

M
ÿ

m“1

N
ÿ

n“1

d
`

ppyx|Dq, ppyx|θm,˚θm,n ,Dq
˘

, (3.10)

where N is the number of optimizers sampled per hyperparameter set. Notably,
while the acquisition function in (3.9) considers the optimizer px˚, f˚q, SCoreBO
is not restricted to employing that quantity alone. Drawing parallels to PES and
MES, we can also choose to condition on either x˚ or f˚ alone in place of px˚, f˚q.
Doing so introduces a smaller disagreement in the posterior at the conditioned
location x˚, thus decreasing the acquisition value there. This will in turn decrease
the emphasis that SCoreBO puts on optimization, relative to hyperparameter
learning. In Fig. 3.3, the SCoreBO acquisition function is displayed for the same
scenario as in Fig. 3.2. By conditioning on N “ 2 optimizers per GP, we obtain
N ˆ M posteriors (displaying the posterior for one out of two optimizers, i.e.
the left star in (blue), in Fig. 3.3). The mean is pushed upwards around the
extra observation and the posterior predictive distribution over f is truncated
as it is now upper bounded by f˚. While the preferred location under SAL is
still attractive, the best location to query is now one that is more likely to be
optimal, but still good under SAL.

Algorithm 3.1 displays how the involved densities are formed for one iteration
of SCoreBO. For each hyperparameter set, a number of optima are sampled and
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Fig. 3.3: Approximate marginal posterior after having conditioned on px˚, f˚
q (top left), αSC using

the Hellinger distance (bottom left), the three conditional truncated posteriors and their
marginal contribution to the total acquisition function for the same iteration as Fig. 3.2.
Conditioning on px˚, f˚

q (marked as ‹, drawn from function samples in dashed) inroduces
additional disagreement between the marginal posterior and the sampled GPs in promising
regions as a result of conditioning. In the figure, we marginalize over M “ 3 sets of
hyperparameters and N “ 2 optimizers per GP, where each optimizer’s contribution to
the acquisition function is visible under its corresponding GP. Note that, since function
draws are noiseless, the conditioned optimum does not need to surpass the best noisy
observation in value. This phenomenon is most notable in (orange).

individually conditioned on (CondGP) given the current data and hyperparameter
set. After this procedure is completed for all hyperparameter sets, the statistical
distance between each conditional posterior and the marginal is computed. The
conditioning on the fantasized data point involves a rank-1 update of Opn2q of
the GP for each draw. As such, the complexity of constructing the acquisition
functions is OpMNn2q for M models, N optima per model and n data points.
We utilize NUTS [23] for the MCMC involved with the fully Bayesian treatment,
at a cost of OpDn3q per sample.

3.3 Approximation of Statistical Distances

We consider two proper statistical distances, Wasserstein distance and Hellinger
distance. In contrast to BQBC, the statistical distance between the normally dis-
tributed conditionals and the marginal posterior predictive distribution (which is
a Gaussian mixture), is not available in closed-form. We propose two approaches:
estimating the distances using MC and estimation using moment matching (MM),
which we outline below.

Approximation through Moment Matching We propose to fully utilize the
closed-form expressions of the involved distances for Gaussians, and approximate
the full posterior mixture ppyx|Dq with a Gaussian distribution using moment
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Algorithm 3.1 SCoreBO iteration

1: Input: Number of hyperparameter sets M , number of sampled optima N ,
current data D

2: Output: Next query location x1.
3: for m P t1, . . . ,Mu do
4: θm „ ppθ|Dq

5: for n P t1, . . . , Nu do
6: ˚θm,n Ð max fθm,n,where fθm,n „ ppf |θm,Dq {Draw n optima for

each θm}
7: ppyx|θm,˚θm,n,Dq Ð CondGPp˚θm,n,θm,Dq {Condition GPs on each

optimum}
8: end for
9: end for

10: x1 “ arg maxαpxq {Defined in Eq. (3.10)}

matching (MM) for the first and second moment. While a Gaussian mixture is
not generally well approximated by a Normal distribution, the distance between
the conditionals and the approximate posterior is small. In the moment matching
approach, the conditional posterior ppyx|θ,˚,Dq utilizes a lower bound on the
change in the posterior induced by conditioning on ˚, as derived in GIBBON [39],
which conveniently involves a second moment matching step of the extended
skew Gaussian [41] ppyx|θ,˚,Dq. This naive approach circumvents a quadratic
cost OpN2M2q in the number of samples of each pass through the acquisition
function, and yields comparable performance to MC estimation.

4 Experiments

In this section we showcase the performance of the SAL and SCoreBO acquisition
functions on a variety of tasks. For active learning, SAL shows state-of-the-art
performance on a majority of benchmarks, and is more robust than the baselines.
For the optimization tasks, SCoreBO more efficiently learns the model hyperpa-
rameters, and outperforms prominent Bayesian optimization acquisition functions
on a variety of tasks. All experiments are implemented in BoTorch [2]3. We
use the same LN p0, 3q4 hyperparameter priors as [46] unless specified otherwise.
SCoreBO and all baselines utilize fully Bayesian treatment of the hyperparameters.
Our code is publicly available at https://github.com/hvarfner/scorebo.git.
We utilize the moment matching approximation of the statistical distance.

3https://botorch.org/ (v0.8.4)
4All Normal and LogNormal distributions are parametrized by the mean and variance.
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4.1 Active Learning Tasks

To evaluate the performance of SAL, we compare it with BALD, BQBC and QBMGP on
the same six functions used by [46]: Gramacy (1D) has a periodicity that is hard
to distinguish from noise, Higdon and Gramacy (2D) varies in characteristics
in different regions, whereas Branin, Hartmann-6 and Ishigami have a generally
nonlinear structure. We display both the Wasserstein and Hellinger distance
versions of SAL, denoted as SAL-WS and SAL-HR, respectively. We evaluate
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Fig. 3.4: Negative Marginal Log Likelihood (MLL) on six active learning functions and the
(smoothed) relative rankings throughout each run for QBMGP, BQBC, BALD and SAL using
Wasserstein and Hellinger distance. We plot mean and one standard error for 25 repetitions.
SAL-HR is the top performing method, placing first in relative rankings. On Ishigami, only
SAL-HR and BALD produces stable results.

each method on their predictive power, measured by the negative Marginal Log
Likelihood (MLL) of the model predictions over a large set of validation points.
MLL emphasizes calibration (accurate uncertainty estimates) in prediction over
an accurate predictive mean. In Fig. 3.4, we show how the average validation
set MLL changes with increasing training data. SAL-HR is the top-performing
acquisition function on three out of six tasks, and rivals BALD for stability in
predictive performance. This is particularly evident on the Ishigami function,
where most methods fluctuate in the quality of their predictions. This can be
attributed to emphasis on rapid hyperparameter learning In the rightmost plot,
the real-time average per-seed ranking of acquisition function performance is
displayed as a function of the fraction of budget expended. SAL-HR performs
best, followed by BQBC andBALD. SAL-WS, however, does not display similarly
consistent predictive quality as SAL-HR. The ability of SAL-HR to correctly
estimate hyperparameters ensures calibrated uncertainty estimates, which makes
it the better candidate for BO.
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4.2 Bayesian Optimization Tasks

For the BO tasks, we use the Hellinger distance for its proficiency in prediction
calibration and hyperparameter learning. We compare against several state-of-
the-art baselines from the BO literature: EI for noisy experiments [34], as well
as JES [27], the MES approach GIBBON [39] and PES [22]. As an additional
reference, we include EI for noisy experiments [34] using MAP estimation.

Efficiently learning the hyperparameters To showcase SCoreBO’s ability
to find the correct model hyperparameters, we run all relevant acquisition
functions on samples from the 8-dimensional GP in Fig. 3.1. We exploit that
for GP samples, the objectively true hyperparameters are known (in contrast to
typical synthetic test functions). We utilize the same priors as in Fig. 3.1 on all
the hyperparameters and compare SCoreBO to EI to assess the ability of each
acquisition function to work independently of the choice of prior. In Fig. 3.5,
for each acquisition function, we plot the average log regret over 20 dfifferent
8-dimensional instances of this task. The tasks at hand have lengthscales that
vary substantially between dimensions.
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Fig. 3.5: Regret for EI and SCoreBO on the 8-dimensional GP sample for two different types of
hyperparameter priors. Mean and standard deviation are plotted for all hyperparameter
samples across 20 repetitions.

Synthetic test functions We run SCoreBO on a number of commonly used
synthetic test functions for 25|θ| iterations, and present how the log inference
regret evolves over the iterations in Fig. 3.6. All benchmarks are perturbed
by Gaussian noise. We evaluate inference regret, i.e., the current best guess
of the optimal location arg maxx µpxq, which is conventional for non-myopic
acquisition functions [20, 22, 27]. SCoreBO yields the the best final regret on four
of the six tasks. In the relative rankings (rightmost plot), SCoreBO ranks poorly
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Fig. 3.6: Average log inference regret and (smoothed) relative ranking across 50 repetitions between
the acquisition functions for SCoreBO, JES, MES and EI on six synthetic test functions.
SCoreBO produces the best final regret on 4 out of 6 tasks, and has a substantially lower
average ranking by the end of each run.

initially, but once hyperparameters are learned approximately halfway through
the run, it substantially outperforms the competition. On Rosenbrock (4D),
the relatively poor performance can explained by the apparent non-stationarity
of the task , which makes hyperparameters diverge over time. This exposes a
weakness of SCoreBO: When the modeling assumptions (such as stationarity) do
not align with the task, optimization performance may suffer due to perpetual
disagreement in the posterior.

4.3 A Practical Need for Self-correction

Lastly, we evaluate the performance of SCoreBO on three atypical tasks with
increased emphasis on the surrogate model: (1) high-dimensional BO through
sparse adaptive axis-aligned priors (SAASBO) [14], (2) BO with additively de-
composable structure (AddGPs) [30, 17] and (3) non-stationary, heteroskedastic
modelling with HEBO [12]. [14] consider their proposed method for noiseless
tasks, where active variables easily distinguish from their non-active counter-
parts. However, SAASBO is not restricted to noiseless tasks. For AddGPs, data
cross-covariance, and lack thereof, is similarly difficult to infer on noisy tasks.

In Fig. 3.7, we visualize the performance of SCoreBO and competing acquisi-
tion functions with SAASBO priors on two noisy benchmarks, Ackley-4 and
Hartmann-6, with dummy dimensions added, as well as two real-world bench-
marks: fitting a weighted Lasso model in 180 dimensions [49], and the tuning of
all 385 lengthscales and three regularization parameters of an SVM [11], a task
also considered by [14]. On these benchmarks, where finding the correct hyper-
parameters is crucial for performance, SCoreBO clearly outperforms traditional
methods. To further exemplify how SCoreBO identifies the relevant dimensions,
in Fig. 3.8, we show how the hyperparameters evolve on the 25D-embedded
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Fig. 3.7: Final loss using SAASBO priors on the noisy embedded Ackley-4, embedded Hartmann-6,
the DNA classification and the SVM HPO task, mean and one standard error. SCoreBO
identifies the important dimensions rapidly, and successfully optimizes the tasks. The
optimal value is marked with a dashed line.

Ackley (4D) task. SCoreBO quickly finds the correct lengthscales and outputscale
with high certainty, whereas EI remains uncertain of which dimensions are active
throughout the optimization procedure. Impressively, SCoreBO finds accurate
hyperparameters even faster than BALD, despite the latter being a pure active
learning approach.

Secondly, we demonstrate the ability of SCoreBO to self-correct on uncertainty in
kernel design, by considering AddGP tasks. We utilize the approach of [17], where
additive decompositions are marginalized over. Ideally, a sufficiently accurate
decomposition is found quickly, which rapidly speeds up optimization through
accurate cross-correlation of data. Fig. 3.9 demonstrates SCoreBO’s performance
on two GP sample tasks and a real-world task estimating cosmological constants
(leftmost 3 plots) and its ability to find the correct additive decompositions
(right). We observe that SCoreBO identifies correct decompositions substantially
better than EI. Final performance, however, is only marginally better, as
substantial resources are expended finding the right decompositions. Notably, the
Cosmological Constants task does not display additive decomposability. As such,
SCoreBO unsuccessfully expends resources attempting to reduce disagreement
over additive structures, which hampers performance. This demonstrates that
while SCoreBO learns the problem structure at increased rates, improved BO
performance does not automatically follow.

Lastly, we apply SCoreBO to the HEBO [12] GP model, the winner of the NeurIPS
2020 Black-box optimization challenge [57]. The model employs input [51]
and output warpings, the former of which are learnable to account for the
heteroskedasticity that is prevalent in real-world optimization, and particularly
HPO [51, 12], tasks. The complex model provides additional degrees of freedom
in learning the objective. We evaluate SCoreBO and all baselines on three 4D
deep learning HPO tasks: two involving large language models, and one from
computer vision, from the PD1 [60] benchmarking suite. Fig. 3.10 displays that
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SCoreBO obtains the best final accuracy on 2 out of 3 tasks, suggesting that
self-correction is warranted for optimization of deep learning pipelines.

5 Conclusion and Future Work

The hyperparameters of Gaussian processes play an integral role in the efficiency
of both Bayesian optimization and active learning applications. In this paper,
we propose Statistical distance-based Active Learning (SAL) and Self-Correcting
Bayesian Optimization (SCoreBO), two acquisition functions that explicitly con-
sider hyperparameter-induced disagreement in the posterior distribution when
selecting which points to query. We achieve high-end performance on both active
learning and Bayesian optimization tasks, and successfully learn hyperparame-
ters and kernel designs at improved rates compared to conventional methods.
SCoreBO breaks ground for new methods in the space of joint active learning and
optimization of black-box functions, which allows it to excel in high-dimensional
BO, where learning important dimensions are vital. Moreover, the potential
downside of self-correction is displayed when the model structure does not sup-
port the task at hand, or when self-correction is not required to solve the task.
For future work, we will explore additional domains in which SAL and SCoreBO

can allow for increased model complexity in BO applications.

6 Limitations

SCoreBO displays the ability to increase optimization efficiency on complex tasks
that necessitate accurate modeling. However, SCoreBO’s efficiency is ultimately
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Fig. 3.9: Final value of using AddGPs on 6D and 10D GP sample functions, fully decomposable
in groups of two, and the Cosmological Constants tasks. SCoreBO achieves better
final performance (left, middle) with low uncertainty, and successfully finds the additive
components of the 6D task (right).

contingent on the intrinsic ability of the GP to model the task at hand. this is
demonstrated for the Rosenbrock (4D) function, where SCoreBO performs worse
relative to other acquisition functions. There, the hyperparameter values increase
over time instead of converge, which suggests that the objective is not part of
the class of functions defined by the kernel. Thus, the self-correction effort is less
helpful towards optimization. Moreover, increasing the model capacity, such as
in Sec. 4.3, comes with increasing resources allocated towards self-correction. In
highly constrained-budget applications, such resource allocation may not yield
the best result, especially if increased model complexity is unwarranted. This is
evident from the synthetic AddGP tasks, where despite accurately identifying the
additive components, SCoreBO does not provide substantial performance gains
over EI. Lastly, SCoreBO’s reliance on fully Bayesian hyperparameter treatment
makes it more computationally demanding than MAP-based alternatives, limiting
its use in high-throughput applications.
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Bayesian active learning for classification and preference learning. arXiv
preprint arXiv:1112.5745, 2011.

[25] F. Hutter, H. Hoos, and K. Leyton-Brown. Sequential model-based optimiza-
tion for general algorithm configuration. In C. Coello, editor, Proceedings
of the Fifth International Conference on Learning and Intelligent Optimiza-
tion (LION’11), volume 6683 of Lecture Notes in Computer Science, pages
507–523. Springer, 2011.

143

https://proceedings.neurips.cc/paper_files/paper/2015/file/d9731321ef4e063ebbee79298fa36f56-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2015/file/d9731321ef4e063ebbee79298fa36f56-Paper.pdf
https://proceedings.neurips.cc/paper/2014/file/069d3bb002acd8d7dd095917f9efe4cb-Paper.pdf
https://proceedings.neurips.cc/paper/2014/file/069d3bb002acd8d7dd095917f9efe4cb-Paper.pdf
http://jmlr.org/papers/v15/hoffman14a.html
http://jmlr.org/papers/v15/hoffman14a.html


[26] F. Hutter, M. Lindauer, A. Balint, S. Bayless, H. Hoos, and K. Leyton-Brown.
The configurable SAT solver challenge (CSSC). Artificial Intelligence, 243:
1–25, 2017.

[27] Carl Hvarfner, Frank Hutter, and Luigi Nardi. Joint entropy eearch for
maximally-informed bayesian optimization. In Proceedings of the 36th
International Conference on Neural Information Processing Systems, 2022.

[28] Carl Hvarfner, Danny Stoll, Artur Souza, Marius Lindauer, Frank Hutter,
and Luigi Nardi. PiBO: Augmenting Acquisition Functions with User
Beliefs for Bayesian Optimization. In International Conference on Learning
Representations, 2022.

[29] D. Jones, M. Schonlau, and W. Welch. Efficient global optimization of
expensive black box functions. Journal of Global Optimization, 13:455–492,
1998.

[30] K. Kandasamy, J. Schneider, and B. Póczos. High Dimensional Bayesian
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A General Framework for User-
Guided Bayesian Optimization

Carl Hvarfner
Lund University

Frank Hutter
University of Freiburg

Luigi Nardi
Lund University

Abstract

The optimization of expensive-to-evaluate black-box functions is prevalent in
various scientific disciplines. Bayesian optimization is an automatic, general and
sample-efficient method to solve these problems with minimal knowledge of the
underlying function dynamics. However, the ability of Bayesian optimization to
incorporate prior knowledge or beliefs about the function at hand in order to

accelerate the optimization is limited, which reduces its appeal for
knowledgeable practitioners with tight budgets. To allow domain experts to

customize the optimization routine, we propose ColaBO, the first
Bayesian-principled framework for incorporating prior beliefs beyond the typical
kernel structure, such as the likely location of the optimizer or the optimal value.

The generality of ColaBO makes it applicable across different Monte Carlo
acquisition functions and types of user beliefs. We empirically demonstrate
ColaBO’s ability to substantially accelerate optimization when the prior

information is accurate, and to retain approximately default performance when
it is misleading.
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Fig. 4.1: Three different ColaBO priors: (left) Prior over the optimum x˚, and the induced changed
in the GP for an optimum located in the green region. (middle) Prior over optimal value,
f˚

ă 0.8. (right) Prior over preference relations fpxq1 ě fpx2q for five preferences
(green arrows, e.g. fp0.0q ě fp0.1q ě fp0.2q.

1 Introduction

Bayesian Optimization (BO) [39, 27, 57] is a well-established methodology for
the optimization of expensive-to-evaluate black-box functions. Known for its
sample efficiency, BO has been successfully applied to a variety of domains where
laborious system tuning is prominent, such as hyperparameter optimization [57,
5, 36], neural architecture search [54, 70], robotics [8, 38], hardware design [44, 9],
and chemistry [17].

Typically employing a Gaussian Process [50] (GP) surrogate model, BO allows
the user to specify a prior over functions ppfq via the Gaussian Process kernel, as
well as an optional prior over its hyperparameters. Within the framework of the
prior, the user can specify expected smoothness, output range and possible noise
level of the function at hand, with the hopes of accelerating the optimization if
accurate. However, the prior beliefs that can be specified within the framework of
the kernel hyperparameters do not span the full range of beliefs that practitioners
may possess. For example, practitioners may know which parts of the input space
tend to work best [47, 48, 56, 66], know a range or upper bound on the optimal
output [26, 46] such as a maximal achievable accuracy of 100%, or other prop-
erties of the objective, such as preference relations between configurations [21].
The limited ability of practitioners to interact and collaborate with the BO
machinery [32] thus runs the risk of failing to use valuable domain expertise, or
alienating knowledgeable practitioners altogether. While knowledge injection
beyond what is natively supported by the GP kernel is crucial to further increase
the efficiency of Bayesian optimization, so far no current approach allows for
the integration of arbitrary types of user knowledge. To address this gap, we
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propose an intuitive framework that effectively allows the user to reshape the
Gaussian process at will to mimic their held beliefs.

Figure 4.1 illustrates how, for the three aforementioned priors, the GP is reshaped
to faithfully represent the belief held by the user - whether it be a prior over the
optimum (left), optimal value (middle), or preference relations between points
(right). Our novel framework for Collaborative Bayesian Optimization (ColaBO)
diverges from the typical assumption of Gaussian posteriors, and is applicable to
any Monte Carlo acquisition function [72, 71, 3]. Formally, we make the following
contributions:

1. We introduce ColaBO, a framework for incorporating user knowledge over
the optimizer, optimal value and preference relations into Bayesian opti-
mization in the form of an additional prior on the surrogate, orthogonal to
the conventional prior on the kernel hyperparameters,

2. We demonstrate that the proposed framework is generally applicable to
Monte Carlo acquisition functions, inheriting MC acquisiton function
utility,

3. We empirically show that ColaBO accelerates optimization when injected
with for priors over optimal location and optimal value.

2 Background

We outline Bayesian optimization, Gaussian Processes and Monte Carlo (MC)
acquisition functions, as well as the concept of a prior over the optimum.

2.1 Bayesian optimization

We consider the problem of optimizing a black-box function f across a set of
feasible inputs X Ă Rd:

x˚ P arg max
xPX

fpxq. (4.1)

We assume that fpxq is expensive to evaluate and can potentially only be observed
through a noise-corrupted estimate, yx, where yx “ fpxq ` ε, ε „ N p0, σ2εq for
some noise level σ2ε . In this setting, we wish to maximize f in an efficient manner.
Bayesian optimization (BO) aims to globally maximize f by an initial design
and thereafter sequentially choosing new points xn for some iteration n, creating
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the data Dn “ Dn´1 Y tpxn, ynqu [6, 55, 16]. After each new observation, BO
constructs a probabilistic surrogate model ppf |Dnq [57, 22, 4, 42] and uses that
surrogate to build an acquisition function αpx;Dnq which selects the next query.

2.2 Gaussian processes

When constructing the surrogate, the most common choice is a Gaussian process
(GP) [50]. The GP utilizes a covariance function k, which encodes a prior belief
for the smoothness of f , and determines how previous observations influence
prediction. Given observations Dn at iteration n, the Gaussian posterior ppf |Dnq

over the objective is characterized by the posterior mean µnpx,x1q and (co-
)variance Σnpx,x1q of the GP:

µnpxq “ knpxqJpKn ` σ2εIq
´1y

Σnpx,x1q “ kpx,x1q ´ knpxqJpK ` σ2εIq
´1knpx1q,

where pKnqij “ kpxi,xjq, knpxq “ rkpx,x1q, . . . , kpx,xnqsJ and σ2ε is the noise
variance.

For applications in BO and beyond, samples from the posterior are required
either directly for optimization [10] through Thompson sampling [63], or to
estimate auxiliary quantities of interest [20, 45, 25]. For a finite set of k query
locations pX “ x1, . . . ,xkq, the classical method of generating samples is via
a location-scale transform of Gaussian random variables, fpXq “ µnpXq `Lε,
where L is the Cholesky decomposition of K and ε „ N p0, Iq. Unfortunately,
the classic approach is intrinsically non-scalable, incurring a Opk3q cost due to
the aforementioned matrix decomposition.

2.3 Decoupled Posterior Sampling

To remedy the issue of scalability in posterior sampling, Opkq weight-space ap-
proximations based on Random Fourier Features (RFF) [49] obtain approximate
(continuous) function draws f̂pxq “

řm
i“1wiϕipxq, where ϕipxq “ 2

ℓ pψJ
i x` biq.

The random variables wi „ N p0, 1q, bi „ Up0, 2πq, and ψi are sampled propor-
tional to the spectral density of k.

While achieving scalability, the seminal RFF approach by [49] suffers from the
issue of variance starvation [43, 68, 73]. As a remedy, [73] decouple the draw
of functions from the approximate posterior ppf̂ |Dq into a more accurate draw
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from the prior ppf̂q, followed by a deterministic data-dependent update:

pf̂ |Dqpxq
d
“ f̂pxq

loomoon

draw from prior

` knpxqJpKn ` σ2εIq
´1py ´ f̂pxq ´ εq

looooooooooooooooooooooomooooooooooooooooooooooon

deterministic update

(4.2)

Eq. 4.2 deviates from the distribution-first approach that is typically prevalent
in GPs in favor of a variable-first approach utilizing Matheron’s rule [28].

2.4 Monte Carlo Acquisition Functions

Acquisition functions act on the surrogate model to quantify the utility of
a point in the search space. They encode a trade-off between exploration
and exploitation, typically using a greedy heuristic to do so. A simple and
computationally cheap heuristic is Expected Improvement (EI) [27, 7]. For a
noiseless function and a current best observation y˚

n, the EI acquisition function
is αEIpxq “ Eyx rpy˚

n ´ yxq`s. For noisy problem settings, a noise-adapted
variant of EI [34] is frequently considered, where both the incumbent y˚

n and the
upcoming query yx are substituted for the non-observable noiseless incumbent f˚

n

and noiseless upcoming query fx. Other frequently used acquisition functions are
the Upper Confidence Bound (UCB) [59], Probability of Improvement (PI) [33]
and Knowledge Gradient (KG) [14, 15]. Information-theoretic acquisition
functions consider the mutual information to select the next query αMIpxq “

Ippx, yxq; ˚|Dnq, where ˚ can entail either the optimum x˚ as in (Predictive)
Entropy Search (ES/PES) [18, 19], the optimal value f˚ as in Max-value Entropy
Search (MES) [67, 40] or the tuple px˚, f˚q for Joint Entropy Search (JES) [23, 65].

All the aforementioned acquisition functions compute expectations Efx (or
alternatively Eyx over some utility upfxq of the output [72, 71], which typically
have simple, or even closed-form, solutions for Gaussian posteriors. However,
approximating the expectation through Monte Carlo integration has proven
useful in the context of batch optimization [71], efficient acquisition function
approximation [3], and non-Gaussian posteriors [2]. By sampling over possible
outputs fx and utilizing the reparametrization trick [31, 51], utilities u can be
easily computed across a larger set of applications and be optimized to greater
accuracy.
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2.5 Prior over the Optimum

A prior over the optimum [58, 24, 37] is a user-specified belief π : X Ñ R of the
subjective likelihood that a given x is optimal. Formally,

πpxq “ P
ˆ

x “ arg max
x1

fpx1q

˙

. (4.3)

This prior is generally considered to be independent of observed data, but rather
a result of previous experimentation or anecdotal evidence. Regions that the
user expects to contain the optimum will typically have a high value, but this
does not exclude the chance of the user belief πpxq to be inaccurate, or even
misleading. Lastly, we require π to be strictly positive in all of X , which suggests
that any point included in the search space may be optimal.

3 Methodology

We now introduce ColaBO, the first Bayesian-principled BO framework that
flexibly allows users to collaborate with the optimizer by injecting prior knowledge
about the objective that substantially exceeds the type of prior knowledge
natively supported by GPs. In Sec. 3.1, we introduce and derive a novel prior
over function properties, which yields a surrogate model conditioned on the
user belief. Thereafter, in Sec. 3.2, we demonstrate how the hierarchical prior
integrates with MC acquisition functions. Lastly, in Sec. 3.3, we state practical
considerations to assure the performance of ColaBO.

3.1 Prior over Function Properties

We consider the typical GP prior over functions ppfq “ GPpµ,Σq, where the char-
acteristics of f , such as smoothness and output magnitude, are fully defined by
the kernel k (and its associated hyperparameters θ, which are omitted for brevity).
We seek to inject an additional, user-defined prior belief over f into the GP, such
as the prior over the optimum in Sec. 2.5, πpxq “ P px “ arg maxx1 fpx1qq. By
postulating that π is accurate, we wish to form a belief-weighted prior - a prior
over functions where the distribution over the optimum is exactly πpxq. We
start by considering the user belief π : X ÝÑ R from Eq. (4.3), and extend the
definition to involve the integration over f , similarly to the Thompson sampling
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definition of [30]. Formally,

πpxq “ P
ˆ

x “ arg max
x1

fpx1q

˙

“

ż

f
πpδ˚px|fqqppfqdf (4.4)

where δ˚px|fq “ 1, if x “ arg maxx1PX fpx1q, and zero otherwise. As such,
δ˚px|fq maps a function fi „ ppfq to its arg max, and evaluates whether this
arg max is equal to x.

However, a belief over the optimum, or any other property, of a function f is
implicitly a belief over the function f itself. As such, a non-uniform πpxq should
reasonably induce a change in the prior ppfq to reflect the non-uniform optimum.
To this end, we introduce an augmented user belief over the optimum ρ˚

x „ P˚
x,

where P˚
x is the prior over possible user beliefs, and draws are random functions

ρ˚
x : X Ñ R` which themselves take a function f as input, and output a positive

real number quantifying the likelihood of a sample fi under πpxq. Formally, we
define ρ˚

x as

ρ˚
xpfq “ P

ˆ

x “ arg max
x1

fpx1q

˙

“
1

Zρ˚
x

ż

X
δ˚px|fqπpxqdx (4.5)

where the intractible normalizing constant Zρ˚
x

arises from the fact that the
integrated density πpxq acts on a finite-dimensional property of f , and not f
itself. Under ρ˚

xpfq, functions whose arg max lies in a high-density region under
π will be assigned a higher probability. Notably, the definition in 4.5 can extend
to other properties of f as well: a user belief pf˚

over the optimal value f˚

analogously yields a belief over functions ρ˚
fx

pfq:

ρ˚
fxpfq “ P

ˆ

x “ max
x1

fpx1q

˙

“
1

Zρ˚
fx

ż

fx

δ˚px|fqpf˚pfxqdfx. (4.6)

Notably, we integrate over fx (and not yx) to signify that the optimal function
value does not involve observation noise [61, 62]. It is worthwhile to reflect on
the meaning of ρpfq, and how beliefs over function properties propagate to ppfq.
Concretely, if the user belief ρ˚

fx
pfq asserts that the maximal value lies within

C1 ă max f ă C2, the resulting distribution over f should only contain functions
whose max falls within this range. Using rejection sampling, functions which
disobey this criterion are filtered out, which yields the posterior ppf |ρq. Having
defined and exemplified how user beliefs impact the prior over functions ppfq,
the role of ρ as a likelihood should be apparent: given a prior over functions ppfq

and a user belief over functions ρpfq which places a probability on all possible
draws fi ppfq, we can form a belief-weighted prior ppf |ρq9ppfqρpfq. Thus, we
introduce the formal definition of a user belief over a function property:
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Fig. 4.2: (Top left) Draws from the prior ppfq (light blue) and the belief-weighted prior ppf |ρq

whose members are likely to have their optimum within the green region. (Top right)
Pathwise updated draws based on observed data. As the green region is distant from the
observed data, samples are almost unaffected by the data in this region. (Bottom left)
Exact mean and standard deviation (µx, σx) of ppfq and estimated mean and standard
deviation of ppf |ρq. (Bottom right) Exact ppf |Dq and estimated ppf |ρ,Dq. As ppf |ρq

constitutes of functions whose optimum is located within the green region the resulting
model has a higher mean and lower variance within this region. Moreover, ppf |ρq globally
displays lower upside variance compared to the vanilla GP.

Definition 1 (User Belief over Functions). The user belief over functions

ρpfq9
ppf |ρq

ppfq
.

As the subsequent derived methodology applies independently of the specific
property of f that a prior is placed on, we will henceforth consider a belief over
a general function property ρ. Having defined the role of ρ and the posterior
over functions it produces, a natural question arises: How is ppf |ρq updated once
observations D are obtained?

Since the data D is independent of the prior (the data generation process is
intrinsically unaffected by the belief held by the user), application of Bayes’ rule
yields the following posterior ppf |D, ρ),

ppf |D, ρq “
ppD, ρ|fqppfq

ppD, ρq
(4.7)

“
ppD|fqppρ|fqppfq

ppDqppρq
(4.8)

“
ppf |ρq

ppfq
ppf |Dq (4.9)

9 ρpfqppf |Dq, (4.10)

where the right side of the proportionality in Eq. 4.7 suggests an intuitive
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generation process for samples pf |D, ρq to approximate the density ppf |D, ρq.
Utilizing the pathwise update from Eq. 4.2, we note that given an approximate
draw f̂ from the prior, the subsequent data-dependent update is deterministic.
Recalling Eq. 4.2 and assuming independence between ρ and D, ρ only affects
the draw from the prior, whereas D only affects the update. Consequently, we
obtain

pf̂ |D, ρqpxq
d
“ pf̂ |ρqpxq

looomooon

draw from prior

` knpxqJpKn ` σ2εIq
´1py ´ pf̂ |ρqpxq ´ εq

loooooooooooooooooooooooooomoooooooooooooooooooooooooon

deterministic update

, (4.11)

where pf̂ |ρq „ ppfqρpf̂q are once again obtained using rejection sampling on
draws from ppf̂q. Figure 4.2 displays this in detail: given the typical GP prior
over functions and a user belief over the optimum, we obtain a distribution over
functions ppf̂ |ρ˚

xq before having observed any data (top right). Samples from
the approximate prior ppf̂q (light blue) are re-sampled proportionally to their
probability of occurring under the prior ρ˚

xpf̂q in green, leaving samples pf̂ |ρ˚
xq

in navy blue, which are highly probable under ρ˚
x. Once data is obtained, these

samples are updates according to Eq. 4.11, which preserves the shape of the
samples far away from observed data and yields the desired posterior.

3.2 Prior-weighted Monte Carlo Acquisition Functions

Naturally, neither the belief-weighted prior ppf |ρq nor the belief-weighted poste-
rior ppf |D, ρq have a closed-form expression. Both are inherently non-Gaussian
for non-uniform beliefs. As such, we resort to MC acquisition functions to
compute utilities that are amenable to BO. In the subsequent section, we focus
on the prevalent acquisition functions EI, and MES.

Expected Improvement The computation of the MC-EI within the ColaBO

framework requires only minor adaptations of the original MC acquisition func-
tion. By definition, MC-EI assigns utility u as uEIpfpxqq “ maxpf˚

n ´ fpxq, 0q,
which yields

αEIpx;Dq “ Efx|DruEIpfxqs « (4.12)
ÿ

ℓ

maxpf˚
n ´ f

pℓq
x , 0q, f

pℓq
x „ ppfpxq|Dq. (4.13)
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Utilizing rejection sampling, we can compute the MC-EI under the ColaBO

posterior accordingly,

αEIpx;D, ρq “ Efx|D,ρruEIpfxqs (4.14)

9

ż

f
uEIpfxqρpfqppf |Dqdf (4.15)

«
ÿ

ℓ

ρpf pℓqq maxpf˚
n ´ f

pℓq
x , 0q, (4.16)

where
f

pℓq
x „ ppfpxq|Dq, (4.17)

and wherein samples in Eq. 4.16 are drawn from the prior, retained with proba-
bility ρpf pℓqq{ max ρ, and pathwise updated. In Figure 4.3, we demonstrate how
ColaBO-EI differs from MC-EI for an identical posterior as in Figure 4.2. By
computing αEI from samples biased by ρ, ColaBO substantially directs the search
towards good regions under ρ. Derivations for PI and KG are analogous to that
of EI.

Max-Value Entropy Search We derive a ColaBO-MES acquisition function by
first considering the definition of the entropy, Hrppyx|Dqs “ Eyx|Dr´ log ppyx|Dqs.
When considering the belief-weighted posterior, we further condition the posterior
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Algorithm 4.1 ColaBO iteration

1: Input: User prior ρ, number of function samples L, current data D
2: Output: Next query location x1.
3: for ℓ P t1, . . . , Lu do

4: ρpℓq “ ρpf̂ pℓq;nq, f̂ pℓq „ ppf̂q {Sample functions and evaluate on π}
5: pf̂ pℓq|Dq “ PathwiseUpdatepf̂ pℓq,Dq {Per-sample update as in Eq. 4.11}
6: end for
7: ppf̂ |D, ρq «

ř

ℓ ρ
pℓqpf̂ pℓq|Dq{Form MC estimate of posterior}

8: x1 “ arg maxxPX Eppf̂ |D,ρq
rupf̂xqs {Maximize MC acquisition}

on ρ and obtain

αMESpxq “ Ef˚|D,ρ

“

Eyx|D,ρ,f˚rlog ppyx|D, ρ, f˚qs
‰

(4.18)

´ Eyx|D,ρrlog ppyx|D, ρqs (4.19)

9 Ef˚|D,ρ

“

Efx|D,ρrEyx|fxrlog ppyx|fx, ρ, f
˚qss

‰

(4.20)

´ Efx|D,ρrEyx|fxrlog ppyx|fx, ρqss (4.21)

«
1

ZJ

J
ÿ

j“1

L
ÿ

ℓ“1

K
ÿ

k“1

log ppy
pkq
x |f

pℓq
x , f

pjq
˚ qρpf pℓqqρpf pjqq (4.22)

´

L
ÿ

ℓ“1

K
ÿ

k“1

log ppy
pkq
x |f

pℓq
x qρpf pℓqq, (4.23)

where ZJ is a normalizing constant
ř

J ρpf pjqq brought on by sampling optimal
values, yx|fx can trivially be obtained by sampling Gaussian noise ε „ N p0, σ2εq

to a noiseless observation fx|D in the innermost expectation, and fx and f˚ are
obtained through the pathwise sampling procedure outlined in Eq. 4.11. The
samples are evaluated on pppyx|fxq,pyx|fx, f

˚qq. As evident by Eq. 4.23, ρ affects
the posterior distribution of both the observations yx and the optimal values
f˚. PES and JES are derived analogously. However, these acquisition function
require conditioning on additional, simulated data and consequently, additional
pathwise updates, to compute.

3.3 Practical Considerations

ColaBO introduces additional flexibility to MC-based BO acquisition functions.
The ColaBO framework deviates from vanilla (q-)MC acquisition functions [72, 3]
by utilizing approximate sample functions from the posterior, as opposed to
pointwise draws from the posterior predictive and the reparametrization trick [51].
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ColaBO holds three shortcomings not prevalent in vanilla MC acquisition func-
tions: (1) it cannot utilize Quasi-MC in the draws from the predictive posterior
(only in the RFF weights), (2) it cannot fix the base samples [3] drawn from
the posterior for acquisition function consistency across the search space, and
(3) the RFF approximation of ppfq introduces bias. This approximation error
is more pronounced for the Matérn 5/2-kernel than the squared exponential,
leaving ColaBO best suited for the latter. In Sec. 4.1, we display the impact of
these shortcomings. While acquisition function optimization no longer enjoys
the improved accuracy that stems from the reparametrization trick, the high
degree of smoothness of function samples still allow for efficient gradient-based
optimization.

4 Results

We evaluate the performance of ColaBO on various tasks, using priors over
the optimum ρx˚ obtained from known optima on synthetic tasks, as well as
from prior work [37] on realistic tasks. We consider two variants of ColaBO:
one using LogEI [1], a numerically stable, smoothed logsumexp transformation
of EI with analogous derivation, and one variant using MES. We benchmark
against the vanilla variants of each acquisition function, as well as πBO [24] and
decoupled Thompson sampling [63, 73]. All acquisition functions are implemented
in BoTorch [3] using a squared exponential kernel and MAP hyperparameter
estimation. Unless stated otherwise, all methods are initialized with the mode
of the prior followed by 2 Sobol samples. Our code is publicly available at
https://github.com/hvarfner/colabo.

4.1 Approximation Quality of the ColaBO Framework

Firstly, we demonstrate the approximation quality of ColaBO without user priors
to assert its accuracy compared to a vanilla MC acquisition function. To facilitate
comparison, we randomly sample 10 points on the Hartmann (3D) function, and
optimize LogEI with a large budget. We subsequently optimize ColaBO-LogEI
on the same set of points and compare the arg max to the solution found by
the gold standard. Figure 4.4 displays the (log10) Euclidian distance between
the arg max of LogEI and its ColaBO variant. We note that, for small amounts
(ď 256q of posterior samples, the error induced by RFF bias is relatively low,
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which is evidenced by all RFF variants being roughly equal in distance to the
true acquisition function optimizer.
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Fig. 4.4: Mean and 1{4 standard deviation of MC-induced errors of ColaBO-LogEI relative vanilla
LogEI as measured by the distance to the argmax of the acquisition function on Hartmann
(3D) on 10 randomly sampled points for 40 seeds.

4.2 Synthetic Functions with Known Priors

We adapt a similar evaluation protocol to [24], and evaluate ColaBO for two types
of user beliefs for synthetic tasks: well-located and poorly located priors over
the optimal location, designed to emulate a well-informed and poorly-informed
practitioner, respectively. The well-located prior is offset by a small (10%)
amount from the optimum, and the poorly located prior is maximally offset,
while retaining its mode inside the search space. On well-located priors, both
ColaBO-LogEI and ColaBO-MES demonstrate substantially improved performance
relative to their vanilla counterparts, comparable to πBO on all benchmarks. On
poorly located priors, ColaBO demonstrates superior robustness, recovering the
performance of the vanilla acquisition function within the maximal budget of
20D iterations and clearly outperforming πBO, which more frequently misled by
the poor prior.

4.3 Hyperparameter Tuning tasks

For the real-world HPO tasks, we consider two different benchmarking suites:
LCBench [76] and PD1 [69]. For LCBench, we evaluate all methods on five deep
learning tasks (6D). While the optima for these tasks are ultimately unknown,
we utilize the priors provided in MF-Prior-Bench 5 [37], which are intended
to provide a good starting point for further optimization. The chosen tasks

5https://github.com/automl/mf-prior-bench
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Fig. 4.5: Performance on synthetic functions with well-located priors. Both ColaBO-LogEI and
ColaBO-MES offer drastic speed-ups over their vanilla variants, and offer similar performance
to πBO. The ranking of ColaBO acquisition functions are generally consistent with their
respective vanilla variants. This is most prominent on Rosenbrock (6D), where ColaBO-MES
struggles similarly to vanilla MES.

were the five tasks with available priors of the best (good) strength, as per the
benchmark suite. To emulate a realistic HPO setting, we consider a smaller
optimization budget of 40 iterations, and initialize all methods that utilize user
beliefs with only one initial sample, that being the mode of the prior. Figure 4.7
shows the performance of all methods on the LCBench tasks. ColaBO improves
substantially on the baseline approaches for 3 out of 5 tasks. πBO is the overall
best-performing method, followed by ColaBO-LogEI.

Lastly, we evaluate ColaBO on three 4D deep learning HPO tasks from the
PD1 [69] benchmarking suite, once again using priors from MF-Prior-Bench.
The two ColaBO variants perform best in this evaluation, producing the best
terminal performance on two tasks (CIFAR, LM1B), with all methods being
tied on the third (CIFAR). ColaBO demonstrates consistent speed-ups compared
to its vanilla counterparts, surpassing the terminal performance of the baseline
within a third of the budget on CIFAR and LM1B.

5 Related Work

In BO, auxiliary prior information can be conveyed in multiple ways. We outline
meta learning/transfer learning for BO based on data from previous experiments,
and data-less approaches.

Learning from Previous Experiments Transfer learning and meta learning
for BO aims to automatically extract and use knowledge from prior executions of
BO by pre-training the model on data acquired from previous executions [60, 74,
48, 11, 12, 52, 53, 75, 13]. Typically, meta- and transfer learning exploit relevant
previous data for training the GP for the current task while retaining predictive
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Fig. 4.6: Performance on poorly located priors. ColaBO acquisition functions are more robust than
πBO, as it frequently recovers the performance of the vanilla acquisition function before
the total budget is depleted. ColaBO-LogEI struggles marginally on Hartmann (6D).
ColaBO-MES recovers the baseline on all tasks.

uncertainty to account for imperfect task correlation.

Expert Priors over Function Optimum Few previous works have proposed
to inject explicit prior distributions over the location of an optimum into BO. In
these cases, users explicitly define a prior that encodes their beliefs on where
the optimum is more likely to be located. [4] suggest an approach that supports
prior beliefs from a fixed set of distributions, which affects the very initial stage
of optimization. However, this approach cannot be combined with standard
acquisition functions. BOPrO [58] employs a similar structure that combines the
user-provided prior distribution with a data-driven model into a pseudo-posterior.
From the pseudo-posterior, configurations are selected using the EI acquisition
function, using the formulation in [4]. πBO [24] suggests a general-purpose prior-
weighted acquisition function, where the influence of the prior decreases over
time. They provide convergence guarantees for when the framework is applied
to the EI acquisition function. While effective, none of these approaches act on
the surrogate model in a Bayesian-principled fashion, but strictly as heuristics.
Moreover, they solely focus on priors over optimal inputs, thus offering less utility
than ColaBO.

Priors over Optimal Value Similarly few works have addressed the issue of
auxilliary knowledge of the optimal value. Both [26] and [46] propose altering
the GP and accompanying it with tailored acquisition functions. [26] employ
variational inference, proposing distinct variational families depending on the type
of knowledge pertaining to the optimal value. [46] use a parabolic transformation
of the output space to ensure an upper bound is preserved. Unlike ColaBO,
neither of these methods is general enough to accompany arbitrary user priors
to guide the optimization.
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Fig. 4.7: Performance on the 6D LCBench hyperparameter tuning tasks of various deep learning
pipelines. ColaBO substantially improves on the non-prior baselines for 3 out of five tasks.
πBO performs best on aggregate, and achieves the best acceleration in performance at
early iterations.

6 Conclusion, Limitations and Future Work

We presented ColaBO, a flexible BO framework that allows practitioners to inject
beliefs over function properties in a Bayesian-principled manner, allowing for
increased efficiency in the BO procedure. ColaBO works across a collection of MC
acquisition functions, inheriting their flexibility in batch optimization and ability
to work with non-Gaussian posteriors. It demonstrates competitive performance
for well-located priors, using them to substantially accelerate optimization. More-
over, it retains approximately baseline performance when applied to detrimental
priors, demonstrating greater robustness than πBO. ColaBO crucially relies on
multiple steps of MC. While flexible, this approach drives computational expense
in order to assert sufficient accuracy, requiring tens of seconds per evaluation to
achieve desired accuracy, depending on the size of the benchmark. Moreover,
obtaining draws from ρ˚

x scales exponentially in the dimensionality of the prior.
While practitioners are unlikely to specify priors over more than a handful of
variables, ColaBO may become impractical when priors of higher dimensionality
are employed. Paths for future work could involve more accurate and efficient
sampling procedures [35] from the belief-weighted prior, as well as variational [64]
or pre-trained [41, 42] approaches to obtain a representative belief-biased model
with an analytical posterior. This would likely bring down the runtime of ColaBO
and broaden its potential use. Lastly, applying ColaBO to multi-fidelity opti-
mization [29, 37] offers an additional avenue for increased efficiency which would
further increase its viability on costly deep learning pipelines.
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Fig. 4.8: Performance on the 4D PD1 hyperparameter tuning tasks of various deep learning pipelines.
ColaBO drastically accelerates optimization initially, finding configurations with close to
terminal performance quickly. πBO offers competitive performance, but lacks the rapid
initial progress of ColaBO on CIFAR and LM1B.
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Abstract

Bayesian optimization (BO) is an effective method for optimizing
expensive-to-evaluate black-box functions, but its susceptibility to the curse of

dimensionality limits its applicability to high-dimensional problems. The
assumption of an axis-aligned active subspace, where few dimensions have a

significant impact on the objective, motivated several algorithms for
high-dimensional BO. However, the validity of this assumption is rarely verified,
and the assumption is rarely exploited to its full extent. We propose a group

testing (GT) approach to identify active variables to facilitate efficient
optimization in these domains. The proposed algorithm, Group Testing
Bayesian Optimization (GTBO), first runs a testing phase where groups of

variables are systematically selected and tested on whether they influence the
objective. To that end, we extend the well-established GT theory to functions

over continuous domains. In the second phase, GTBO guides optimization by
placing more importance on the active dimensions. By leveraging the

axis-aligned subspace assumption, GTBO is competitive against state-of-the-art
methods on benchmarks satisfying the assumption of axis-aligned subspaces.
Furthermore, for a given application, GTBO helps discover the active variables,

enhancing practitioners’ understanding and explainability of the problem.
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1 Introduction

Noisy and expensive-to-evaluate black-box functions occur in many practical
optimization tasks, including material design [53], hardware design [33, 18],
hyperparameter tuning [26, 41, 11], and robotics [10, 6, 32]. BO is an estab-
lished framework that allows optimization of such problems in a sample-efficient
manner [45, 21]. Despite its many advantages, BO faces challenges with the
curse of dimensionality, limiting its effectiveness in high-dimensional domains
like robotics [10], joint neural architecture search and hyperparameter optimiza-
tion [5], drug discovery [35], chemical engineering [9], and vehicle design [25].

In recent years, efficient approaches have been proposed to tackle the limitations
of BO in high dimensions. Many of these approaches assume the existence of
a low-dimensional active subspace of the input domain that has a significantly
larger impact on the optimization objective than its complement [50, 28]. Often,
the active subspace is further assumed to be axis-aligned [34, 19, 47, 37, 38],
i.e., only a set of all considered variables impact the objective. The validity
of this simplifying assumption does not always hold in real-world applications,
and as a consequence, several approaches relax this assumption to reduce the
risk of failure [19, 37, 38]. Those relaxations, however, come at a cost: firstly,
they negatively affect sample efficiency for problems with axis-aligned subspaces,
and secondly, they dilute the insights into which variables are relevant to the
application at hand. Instead, we aim to leverage those assumptions more strongly,
yielding better performance and stronger insights when they hold.

Knowing the active dimensions of a problem yields additional insight into the
application, informing the user which problem parameters deserve more attention.
When the active subspace is axis-aligned, finding the active dimensions can be
framed as a feature selection problem. A straightforward approach is first to
learn the active dimensions using a dedicated feature selection approach and
subsequently optimize over the learned subspace. We propose to initially find
the active dimensions using an information-theoretic approach built around the
well-established theory of group testing [17]. Group testing is the problem of
finding several active elements within a larger set by iteratively testing groups of
elements. We develop the theory needed to transition noisy GT, which otherwise
only allows binary observations, to support evaluations of continuous black-
box functions. This enables GT in BO and other applications, such as feature
selection for regression problems. The contributions of this work are:

1. We extend the theory of group testing to feature importance analysis in a
continuous setting tailored towards Gaussian process (GP) modeling.
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2. We introduce Group Testing Bayesian Optimization (GTBO), a BO method
that, based on the assumption of axis-aligned active subspaces, leverages the
activeness information obtained from the preceding GT phase to guide the
optimization.

3. We demonstrate that GTBO is competitive against state-of-the-art high-dimensional
methods and reliably identifies active dimensions with high probability when
the underlying assumptions hold.

2 Background

2.1 High-dimensional Bayesian optimization

We aim to find a minimizer x˚ P arg minxPX fpxq of the black-box function
fpxq : X Ñ R, over the D-dimensional input space X “ r0, 1sD. We assume
that f can only be observed point-wise and that the observation is perturbed
by noise, ypxq “ fpxq ` ε with ε „ N p0, σ2nq, where σ2n is the noise variance.
We further assume f to be expensive to evaluate, so the number of function
evaluations is limited. In this work, we consider problems of high dimensionality
D, where only de dimensions are active, and the other D ´ de dimensions are
inactive. Here, inactive means that the function value changes only marginally
along the inactive dimensions compared to the active dimensions to the extent
that satisfactory optimization performance can be obtained by considering the
active dimensions alone. We refer the reader to [21] for an in-depth introduction
to BO.

A popular remedy to the curse of dimensionality is trust regions [39, 40], where,
instead of reducing the dimensionality, one optimizes over a hyper-rectangle
in input space. This makes the algorithm more local to counteract the over-
exploration exhibited by traditional BO in high dimensions. One successful
approach in this category is TuRBO [19]. Even though TuRBO operates in the full
input dimensionality and might not scale to arbitrarily high-dimensional problems,
it has shown remarkable performance in several applications. CASMOPOLITAN [49]
extends TuRBO to mixed and combinatorial spaces.

2.2 Low-dimensional subspace Bayesian optimization

Using linear embeddings is a common approach when optimizing high-dimensional
functions that contain a low-dimensional active subspace. REMBO [50] shows that
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a random embedded subspace with at least the same dimensionality as the active
subspace is guaranteed to contain an optimum if the subspace is unbounded.
However, BO usually requires a bounded search space, and REMBO suffers from
projecting outside of this search space. HeSBO [34] uses a sparse projection matrix
to avoid points outside the search space. BAxUS [37] and Bounce [38] use an
HeSBO-like embedding [34] but allow the dimensionality of the target space to
grow over time. This ensures that the optimum can eventually found but leads to
BAxUS and Bounce optimizing over high-dimensional spaces in later optimization
stages. Alebo [27] presents another remedy to shortcomings in the search space
design of REMBO. In particular, bounds from the original space are projected
into the embedded space, and the kernel in the embedded space is adjusted to
preserve distances from the original space. Notably, methods that rely on random
embeddings require the user to provide a guess on the effective dimensionality of
the problem, which might be challenging for real-world applications.

Axis-aligned active subspaces. One common assumption to tackle high-
dimensional problems is that the active subspace is axis-aligned, i.e., a subspace
that can be obtained by removing the inactive dimensions. This is equivalent to
the assumption of active and inactive dimensions. SAASBO [19] sets up on this
assumption by adding a strong sparsity-inducing prior to the hyperparameters
of the GP model, prioritizing fewer active dimensions unless the data strongly
suggests otherwise. VS-BO [46] actively identifies relevant variables in a problem,
similar to our approach. However, it relies on a heuristic tied to a specific
surrogate model (GP). It lacks a clear-cut decision on variable relevance due to
ongoing variable importance estimation during optimization. MCTS-VS [47] uses a
Monte Carlo tree search to select the active dimensions dynamically. It relies on
randomly chosen sets of active and inactive dimensions, which can make finding
the “correct” active dimensions difficult if the number of active dimensions is
high. Our work also leverages the axis-aligned assumption, but it differs in the
way we identify the active dimensions.

Active subspace learning. In this paper, we resolve to a more direct approach,
where we learn the active subspace explicitly. This is frequently denoted by
active subspace learning. A common approach is to divide the optimization into
two phases. The first phase involves selecting points and analyzing the structure
to find the subspace. An optimization phase then follows on the subspace that
was identified. The initial phase can also be used alone to gain insights into
the problem. One of the more straightforward approaches is to look for linear
trends using methods such as principal component analysis [48] or partial least
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squares [8]. [16] use low-rank matrix recovery with directional derivatives with
finite differences to find the active subspace. If gradients are available, the active
subspace is spanned by the eigenvectors of the matrix C :“

ş

X ∇fpxqp∇fpxqqTdx
with non-zero eigenvalues. This is used by [13] and [52] to show that C can be
estimated in closed form for GP regression. We refer to the survey by [7] for a
more in-depth introduction to active subspace learning. Notably, large parts of
the active subspace learning literature yield non-axis-aligned subspaces. This is
disadvantageous for problems with axis-aligned subspaces, as the information
about the active dimensions is diluted.

2.3 Group testing

Group testing (GT, [1]) is a methodology for identifying elements with some
low-probability characteristic of interest by jointly evaluating groups of elements.
GT was initially developed to test for infectious diseases in larger populations
but has later been applied in quality control [14], communications [51], molecular
biology [4, 36], pattern matching [31, 12], and machine learning [54].

Group testing can be subdivided into two paradigms: adaptive and non-adaptive.
In adaptive GT, tests are conducted sequentially, and previous results can
influence the selection of subsequent groups, whereas, in the non-adaptive setting,
the complete testing strategy is provided up-front. A second distinction is whether
test results are perturbed by evaluation noise. In the noisy setting, there is a risk
that testing a group with active elements would show a negative outcome and
vice versa. Our method presented in Section 3 can be considered an adaptation
of noisy adaptive GT [43].

[14] present a Bayesian Sequential Experimental Design approach for binary
outcomes, which at each iteration selects groups that maximize one of two criteria:
the first one is the mutual information between the elements’ probability of being
active, ξ, in the selected group and the observation. The second is the area
under the marginal encoder’s curve (AUC). As the distribution over the active
group ppξq is a 2n-dimensional vector, it quickly becomes impractical to store
and update. Consequently, they propose using a sequential Monte Carlo (SMC)
sampler [15], representing the posterior probabilities by a number of weighted
particles.
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3 Group testing for Bayesian optimization

Our proposed method, GTBO, leverages the assumption of axis-aligned active
subspaces by explicitly identifying the active dimensions. This gives the user
additional insight into the problem and improves sample efficiency by focusing
the optimization on the active dimensions. This section describes how we adapt
the GT methodology to find active dimensions in as few evaluations as possible.
Subsequently, we use the information to set strong priors for the GP length
scales, providing the surrogate model with the knowledge about which features
are active.

Noisy adaptive group testing. The underlying assumption is that a pop-
ulation of n elements exists, each of which either possesses or lacks a specific
characteristic. We refer to the subset of elements with this characteristic as the
active group, considering the elements belonging to this group as active. We let
the random variable (RV) ξi denote whether the element i is active (ξi “ 1), or
inactive (ξi “ 0), similar to [14] who studied binary outcomes. The state of the
whole population can be written as the random vector ξ “ tξ1, . . . , ξnu P t0, 1un.

We aim to uncover each element’s activeness by performing repeated group tests.
We write g as a binary vector g “ tg1, . . . , gnu P t0, 1un, such that gi “ 1 signifies
that element i belongs to the group. In noisy GT, the outcome of testing a group
is a random event described by the RV Apg, ξq P t0, 1u. A common assumption
is that the probability distribution of Apg, ξq only depends on whether group
g contains any active elements, i.e., g⊺ξ ě 1. In this case, one can define the
sensitivity ppApg, ξq “ 1 | g⊺ξ ě 1q and specificity ppApg, ξq “ 0 | g⊺ξ “ 0q of
the test setup.

As we assume the black-box function f to be expensive to evaluate, we select
groups gt to learn as much as possible about the distribution ξ while limiting
the number of iterations to t “ 1 . . . T , which subsequently limits the number of
function evaluations. We note that the group gi is not a RV, but is selected as
part of GT iteration i.

We can identify the active variables by modifying only a few variables in the
search space and observing how the objective changes. Intuitively, if the function
value remains approximately constant after perturbing a subset of variables
from the default configuration, it suggests that these variables are inactive. On
the contrary, if a specific dimension i is included in multiple subsets and the
output changes significantly upon perturbation of those subsets, this suggests
that dimension i is highly likely to be active.
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Unlike in the traditional GT problem, where outcomes are binary, we work
with continuous, real-valued function observations. To evaluate how a group of
variables affects the objective function, we first evaluate a default configuration
in the center of the search space, xdef, and then vary the variables in the group
and study the difference. We use the group notation gt P t0, 1uD as a binary
indicator denoting which variables we change in iteration t. Similarly, we reuse
the notation that the RV ξ denotes the active dimensions, and the true state is
denoted by ξ˚.

The new configuration to evaluate is selected as

xt “ xdef ‘ pgt b utq, (5.1)

where ut P r0, 1sD is drawn from Up0,1q until each active dimension has a
distance of at least 0.4 to xdef , ‘ is element-wise addition, and b is element-wise
multiplication. Note that a point xt is always associated with a group gt that
determines along which dimensions xt differs from the default configuration. For
the newly obtained configuration xt, we must assess whether |fpxtq´fpxdefq| " 0,
which would indicate that the group gt contains active dimensions, i.e., g⊺t ξ

˚ ě 1.
However, as we generally do not have access to the true values fpxdefq or fpxtq

due to observation noise, we use an estimate f̂pxq.

Since f can only be observed with Gaussian noise of unknown variance σ2n, there
is always a non-zero probability that a high difference in function value occurs
between x and xdef even if group g contains no active dimensions. Therefore,
we take a probabilistic approach, which relies on two key assumptions:

1. Zt :“ f̂pxtq ´ f̂pxdefq „ N p0, σ2nq if g⊺t ξ “ 0, i.e., function values follow the
noise distribution if the group gt contains no active dimensions.

2. Zt :“ f̂pxtq ´ f̂pxdefq „ N p0, σ2q if g⊺t ξ ě 1, i.e., function values are drawn
from a zero-mean Gaussian distribution with the function-value variance if
the group gt contains active dimensions.

The first assumption follows from the assumption of Gaussian observation noise
and an axis-aligned active subspace. The second assumption follows from a GP
prior assumption on f , under which f̂pxtq is normally distributed. As we are
only interested in the change from fpxdefq, we assume this distribution to have
mean zero.

We estimate the noise variance, σ2n, and function-value variance, σ2, based on an
assumption on the maximum number of active variables. First we evaluate f at
the default configuration xdef. We then split the dimensions into several roughly
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Fig. 5.1: GTBO assumes an axis-aligned subspace. A point x1 that only varies along inactive
dimensions (d2 and d4) obtains a similar function value as the default configuration pxdefq.
Points x2 and x3 that vary along active dimensions (d1 and d3) have a higher likelihood
under the signal distribution than under the noise distribution.

equally sized bins. For each bin, we evaluate f on the default configuration
perturbed along the direction of all variables in that bin and compare the result
with the default value. We then estimate the function variance as the empirical
variance among the max act largest such differences and the noise variance as
the empirical variance among the rest. Here, max act represents the assumed
maximum number of active dimensions. If the assumption holds, there can be
no active dimensions in the noise estimate, which is more sensitive to outliers.
It must be an upper bound, as the method is more sensitive to estimating the
noise from active dimensions than vice versa.

Under Assumptions 1 and 2, the distribution of Zt depends only on whether
gt contains active variables. Given the probability distribution over population
states ppξq, the probability that gt contains any active elements is

ppg⊺t ξ ě 1q “
ÿ

ξPt0,1uD

δg⊺
t ξě1ppξq. (5.2)

We exemplify this in Fig. 5.1. Here, three groups are tested sequentially, out of
which the second and third contain active variables. The three corresponding
configurations, x1, x2, and x3, give three function values shown on the right-hand
side. As observing fpx1q is more likely under the noise distribution, g1 has a
higher probability of being inactive. Similarly, as fpx2q and fpx3q are more likely
to be observed under the signal distribution, g2 and g3 are more likely to be
active.
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Estimating the group activeness probability. Equation (5.2) requires
summing over 2D possible activity states, which, for higher-dimensional functions,
becomes prohibitively expensive. Instead, we use an SMC sampler with M
particles tξ1, . . . , ξMu and particle weights tω1, . . . , ωMu. Each particle ξk P

t0, 1uD represents a possible ground truth. We follow the approach presented in
[14] and use a modified Gibbs kernel for discrete spaces [29]. We then estimate
the probability ppg⊺t ξ ě 1q of a group gt to be active by

p̂pg⊺t ξ ě 1q “

M
ÿ

k“1

ωkδg⊺
t ξkě1. (5.3)

Choice of new groups. We choose new groups to maximize the information
obtained about ξ when observing Zt. This can be achieved by maximizing their
mutual information (MI). Under Assumptions 1 and 2, we can write the MI as

Ipξ, Ztq “ HpZtq ´HpZt|ξq (5.4)

“ HpZtq ´
ÿ

ξ̄Pt0,1uD

ppξ̄qHpZt|ξ “ ξ̄q (5.5)

“ HpZtq ´ rppg⊺t ξ ě 1qHpZt|g
⊺
t ξ ě 1q

` ppg⊺t ξ “ 0qHpZt|g
⊺
t ξ “ 0qs (5.6)

“ HpZtq ´
1

2
rppg⊺t ξ “ 0q logp2σ2nπeq

` ppg⊺t ξ ě 1q logp2σ2πeqs. (5.7)

Since Zt is modeled as a Gaussian mixture model (GMM), its entropy HpZtq

has no known closed-form expression [24], but can be approximated using Monte
Carlo:

HpZtq “ Er´ log ppZtqs « ´
1

N

N
ÿ

i“1

log ppzitq, (5.8)

and zit „ N p0, σ2q with probability p̂pg⊺t ξ ě 1q and zit „ N p0, σ2nq with probability
p̂pg⊺t ξ “ 0q.

Maximizing the mutual information. GTBO optimizes the MI using a multi-
start forward-backward algorithm [42]. First, several initial groups are generated
by sampling from the prior and the posterior over ξ. Then, elements are greedily
added for each group in a forward phase and removed in a subsequent backward
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phase. In the forward phase, we incrementally include the element that results
in the greatest MI increase. Conversely, in the backward phase, we eliminate the
element that contributes the most to MI increase. Each phase is continued until
no further elements are added or removed from the group. Finally, the group
with the largest MI is returned.

Batch evaluations. If the black-box function can be run in parallel, we
greedily select additional groups by running the forward-backward algorithm
again, excluding already selected groups. For high-dimensional problems there
are frequently several distinct groups which each yields close to optimal MI. We
continue adding groups to evaluate until we have reached a user-specified upper
limit or until the MI of new groups drops below a threshold.

Updating the activeness probability. Once we have selected a new group
gt and observed the corresponding function value zt, we update our estimate of
p̂pξkq for each particle k:

p̂tpξkq9p̂t´1pξkqppzt|ξkq (5.9)

9p̂t´1pξkq

#

ppzt|g
⊺
t ξk ě 1q if g⊺t ξk ě 1

ppzt|g
⊺
t ξk “ 0q if g⊺t ξk “ 0,

(5.10)

where ppzt|g
⊺
t ξk “ 0q and ppzt|g

⊺
t ξk ě 1q are Gaussian likelihoods. Assuming

that the probabilities of dimensions to be active are independent, the prior

probability is given by p̂0pξkq “
śD

i“1 q
ξk,i
i p1 ´ qiq

1´ξk,i where qi is the prior
probability for the i-th dimension to be active. As we represent the probability
distribution p̂0pξq by a point cloud, any prior distribution can be used to insert
prior knowledge. We use the same SMC sampler as [14].

The GTBO algorithm. With the individual parts defined, we present the
complete procedure for GTBO. GTBO iteratively selects and evaluates groups for
T iterations or until convergence. We consider it to have converged when
the posterior marginal probability for each variable p̂tpξiq lies in r0, Clowers Y

rCupper, 1s, for some convergence thresholds Clower and Cupper.

Subsequently, their marginal posterior distribution decides which variables are
selected to be active. A variable i is considered active if its marginal is larger
than some threshold, p̂tipξq ě η. Once we have deduced which variables are
active, we perform BO using the remaining sample budget. To strongly focus on
the active subspace, we use short lengthscale priors for the active variables and
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long lengthscale priors for the inactive variables. We use a GP with a Matérn´5{2

kernel as the surrogate model and qLogNoisyExpectedImprovement [3] as the
acquisition function. The BO phase is initialized with data sampled during the
feature selection phase. Several points are sampled throughout the GT phase
that only differ marginally in the active subspace. Such duplicates are removed
to facilitate the fitting of the GP.

4 Computational experiments

In this section, we showcase the performance of the proposed methodology, both
for finding the relevant dimensions and for the subsequent optimization. We
compare state-of-the-art frameworks for high-dimensional BO on several synthetic
and real-life benchmarks. GTBO outperforms previous approaches on the tested
real-world and synthetic benchmarks. In Section 4.2, we study the sensitivity
of GTBO to external traits of the optimization problem, such as noise-to-signal
ratio and the number of active dimensions. The code for GTBO is available at
https://github.com/gtboauthors/gtbo.

4.1 Experimental setup

We test GTBO on four synthetic benchmark functions, Branin2, Levy in 4 di-
mensions, Hartmann6, and Griewank in 8 dimensions, which we extend with
inactive “dummy” dimensions [50, 19, 37] as well as two real-world benchmarks:
the 124D soft-constraint version of the Mopta08 benchmark [19], and the 180D
LassoDNA benchmark [44]. We add significant observation noise for the synthetic
benchmarks, but the inactive dimensions are truly inactive. In contrast, the
real-world benchmarks do not exhibit observation noise, but all dimensions
have at least a marginal impact on the objective function. Note that the noisy
synthetic benchmarks are considerably more challenging for GTBO than their
noiseless counterparts.

Since the search space center is a decent solution for LassoDNA, GTBO chooses a
default configuration for each GT repetition uniformly at random. To not give
BAxUS a similar advantage, we subtract a random offset from the search space
bounds, which we add again before evaluating the function. This ensures that
BAxUS cannot always represent the near-optimal origin.

To evaluate the BO performance, we benchmark against TuRBO [20] with one
and five trust regions, SAASBO [19], CMA-ES [22], HeSBO [34], and BAxUS [37]
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using the implementations and settings provided by the authors, unless stated
otherwise. We compare against random search, i.e., choose points in the search
space uniformly at random.

We use the pycma implementation for CMA-ES [23] and the Ax implementation
for Alebo [2]. To show the effect of different choices of the target dimensionality
d, we run Alebo with d “ 10 and d “ 20. We observed that Alebo and SAASBO

are constrained by their high runtime and memory consumption. The available
hardware allowed up to 100 evaluations for SAASBO and 300 evaluations for Alebo
for each run. Larger sampling budgets or higher target dimensions for Alebo

resulted in out-of-memory errors. We note that limited scalability was expected
for these two methods, whereas the other methods scaled to considerably larger
budgets, as required for scalable BO. We initialize each optimizer with ten
initial samples and BAxUS with b “ 3 and mD “ 1000 and run ten repeated
trials. Plots show the mean logarithmic regret for synthetic benchmarks and the
mean function value for real-world benchmarks. The shaded regions indicate one
standard error.

Unless stated otherwise, we run GTBO with 10 000 particles for the SMC sampler,
the prior probability of being active, q “ 0.05, and 3 initial groups for the
forward-backward algorithm. When estimating the function signal and noise
variance, we set the assumed maximum number of active dimensions, max act,
to

?
D. The threshold to be considered active after the GT phase, η, is set

to 0.5, and the lower and upper convergence thresholds, Clower and Cupper, are
5 ¨ 10´3 and 0.9. We run all experiments with a log-normal LN p7, 1q length scale
prior to the inactive dimensions. If a benchmark is known to have strictly active
and inactive parameters, this prior can be chosen more aggressively to “switch
off” the inactive dimensions. We use a LN p0, 1q prior for the active variables,
resulting in significantly shorter length scales. In the GT phase, we use batch
evaluation with a maximum of 5 groups in each batch and a maximum MI drop
of 1%. Note that we still count the number of evaluations, not the number of
batches, towards the budget. The experiments are run on Intel Xeon Gold 6130
machines using two cores.

4.2 Performance of the group testing

Before studying GTBO’s overall optimization performance in high-dimensional
settings, we analyze the performance of the GT procedure. In Fig. 5.2, we
show the evolution of the average marginal probability of being active over the
iterations for the different dimensions. The truly active dimensions are plotted
in green, and the inactive ones are in blue squares. For all the problems, GTBO
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Fig. 5.2: Evolution of the average marginal probability of being active across ten repetitions. Each
line represents one dimension; active dimensions are colored green, and inactive dimensions
are blue. In the few cases where GTBO finds inactive variables to be active, the lines are
emphasized in red. The last iteration marks the end of the longest GT phase across all
runs. All active dimensions are identified in all runs. 6 out of 1180 inactive dimensions
are incorrectly classified as active once in ten runs across the benchmarks, implying a
false positive rate of slightly above 0.05%.

correctly classifies all active dimensions during all runs within 39–112 iterations.
Across ten runs, GTBO misclassifies 6 out of 1180 inactive variables to be active
once each, for a false positive rate of 0.05%.

Sensitivity analysis. We explore the sensitivity of GTBO to the output noise
and problem size by evaluating it on the Levy4 synthetic benchmark extended
to 100 dimensions, with a noise standard deviation of 0.1, and varying the
properties of interest. In Fig. 5.3, we show how the percentage of correctly
predicted variables evolves with the number of tests t for different functional
properties. Correctly classified is defined here as having a probability of less than
1% if inactive or above 90% if active. GTBO shows to be robust to lower noise but
suffers from very high noise levels. As expected, higher function dimensionality
and number of active dimensions increases the time until convergence. Note
that the signal and noise variance estimates build on the assumption that there
are a maximum of

?
D active dimensions, which does not hold with 32 active

dimensions.

4.3 Optimization of real-world and synthetic benchmarks

We show that identifying the relevant variables can drastically improve optimiza-
tion performance. Fig. 5.5 shows the performance of GTBO and competitors on the
real-world benchmarks, Fig. 5.4 on the synthetic benchmarks. The results show
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Fig. 5.3: Sensitivity analysis for GTBO. The average percentage of correctly classified variables is
displayed for increasing GT iterations. The percentage is ablated for (left) various levels
of output noise, (middle) number of total dimensions, and (right) number of effective
dimensions. Each legend shows the configurations of the respective parameter.

the incumbent function value for each method, averaged over ten repeated trials.
We plot the true average incumbent function values on the noisy benchmarks
without observation noise.

Note that Griewank has its optimum in the center of the search space. To not
gain an unfair advantage, we run GTBO with a non-standard default away from
the optimum. However, the optimum being in the center means that all linear
projections will contain the optimum, which boosts the projection-based methods
Alebo and BAxUS as it allows them to represent the optimum regardless of the
embedding choice.

Figure 5.5 shows GTBO’s performance on the 124D Mopta08 and 180D LassoDNA

benchmarks. On Mopta08, GTBO performs like a random search during the GT
phase but quickly outperforms the other methods once the BO phase begins.
This behavior suggests that several dimensions of the Mopta08 benchmark have
negligible impact on the optimization objective and highlights GTBO’s ability to
leverage the activeness information for benchmarks with inactive dimensions
efficiently.

On LassoDNA, GTBO again reaches similar levels of performance as the random
search and improves significantly when the BO phase starts, outperforming
CMA-ES after 1 000 function evaluations. However, the overall performance is not
on par with other BO methods. Perhaps the fact that both variable selection
methods, MCTS-VS and GTBO, fail to reach the same levels of performance as
TuRBO and BAxUS suggests that most dimensions in LassoDNA are active. While
this benchmark is suspected to violate our axis-aligned assumptions, GTBO still
shows reasonable performance and outperforms MCTS-VS by a large margin.

Overall, GTBO first identifies relevant variables, followed by a sharp drop when
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Fig. 5.4: GTBO finds active dimensions and optimizes efficiently on synthetic noisy benchmarks
(Branin2, Levy4, Hartmann6, and Griewank8).

the optimization phase starts, indicating that knowing the active dimensions
drastically speeds up optimization. In the real-world Mopta08 application where
the dimensions detected as inactive have negligible impact on the objective, GTBO
outperforms state-of-the-art methods despite the delayed onset of the BO phase.
However, GTBO can suffer in cases where the axis-alignment assumption does not
hold, as shown by the LassoDNA results.

5 Discussion

Optimizing expensive-to-evaluate high-dimensional black-box functions is a
challenge for applications in industry and academia. We propose GTBO, a novel
algorithm that focuses the Bayesian optimization on variables found relevant
in a preceding group testing phase. GTBO explicitly exploits the structure of a
sparse axis-aligned subspace to reduce the complexity of an application in high
dimensions and is the first method to adapt group testing, in which it aims to
find infected individuals by conducting pooled tests, to Bayesian optimization. It
differs from SAASBO [19] in that it yields a clear-cut decision on which variables
are active or inactive and from Alebo [28] or BAxUS [37] in that it does not rely
on random projections to identify relevant variables. Similarly to MCTS-VS [47],
our method works by explicitly identifying the set of relevant variables; however,
GTBO is the first method to use a more principled approach to learn them by
employing Group Testing principles and theory.

GTBO quickly detects active and inactive variables and shows robust optimiza-
tion performance in synthetic and real-world settings. Furthermore, the GT
phase yields a set of relevant dimensions, which allows users to learn something
fundamental about their application. For example, on the Mopta08 benchmark,
the user learns which shape parameters minimize vehicle mass under some con-
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Fig. 5.5: GTBO outperforms competitors in real-world experiments. Notably, the performance on
Mopta08 increases significantly after the GT phase at iteration 300, suggesting that the
dimensions found during the GT phase are highly relevant. For LassoDNA, the performance
is worse for both GTBO and MCTS-VS, indicating that the assumption of an axis-aligned
subspace is violated.

straints [25] GTBO robustly uses the activeness information so that it can still
optimize efficiently even if the inactive dimensions have a marginal impact on
the objective function.

In future work, we will fuse the GT and BO phases so that the non-default values
in a group test guide the optimization. This will further increase the sample
efficiency of GTBO. For problems where inactive dimensions do not have any effect
on the objective function, GTBO can be used to identify the active dimensions
and then only optimize on those. This further improves sample efficiency and is
advantageous for applications where optimizing over a larger set of dimensions
incurs additional costs [30].

Limitations. GTBO relies on the assumption that an application has several
irrelevant parameters. If this assumption is unmet, the method might under-
perform or waste a fraction of the evaluation budget to identify all variables as
relevant. Furthermore, GTBO cannot exploit problems with a low-dimensional
subspace that is not axis-aligned, and it is unclear how many tests are required
for GTBO’s GT phase to converge as it is challenging to prove bounds in the
non-asymptotic regime [14].
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Broader impact

This paper presents basic research with the goal of advancing the fields of Machine
Learning and optimization. There are many potential societal impacts of our
work, none of which should be specifically highlighted here.
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Abstract

High-dimensional problems have long been considered the Achilles’ heel of
Bayesian optimization. Spurred by the curse of dimensionality, a large
collection of algorithms aim to make it more performant in this setting,
commonly by imposing various simplifying assumptions on the objective.
In this paper, we identify the degeneracies that make vanilla Bayesian
optimization poorly suited to high-dimensional tasks, and further show
how existing algorithms address these degeneracies through the lens of

lowering the model complexity. Moreover, we propose an enhancement to
the prior assumptions that are typical to vanilla Bayesian optimization,
which reduces the complexity to manageable levels without imposing

structural restrictions on the objective. Our modification - a simple scaling
of the Gaussian process lengthscale prior with the dimensionality - reveals

that standard Bayesian optimization works drastically better than
previously thought in high dimensions, clearly outperforming existing
state-of-the-art algorithms on multiple commonly considered real-world

high-dimensional tasks.
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1 Introduction

In Bayesian optimization, complexity and dimensionality are intrinsically inter-
linked — the higher the problem dimensionality, the harder it is to optimize.
The exuberance of space, and large distance between observations, makes the size
of high-variance regions along the boundary of the search space exponentially
large [35, 7]. Moreover, the growing number of parameters of the Gaussian
Process (GP) surrogate in relation to the number of observations makes accurate
modeling of the problem at hand exceedingly difficult. In recent years, the effort
to create methods that achieve efficient Bayesian optimization (BO) in high
dimensions has been substantial, making it one of the most frequently addressed
challenges in the BO research community [28, 65, 39, 16, 15, 45, 46, 70].

While approaches are plentiful and diverse, they all share a common characteristic:
they employ restrictions on the objective which reduces its a-priori assumed
complexity by contracting the search space. This in turn decreases distances
between data points and prospective queries, increasing their correlation, thus
making GP inference more informative. Assuming a degree of complexity which
enables meaningful correlation is essential to efficiently optimize problems of any
dimensionality. Nevertheless, the high-complexity, low-correlation issue presents
itself most clearly in the high-dimensional setting.

In this paper, we hypothesize that the shortcomings of vanilla BO in high di-
mensions are strictly a consequence of the complexity assumptions imposed on
the objective. To that end, we view existing high-dimensional BO (HDBO) ap-
proaches through the lens of model complexity, which arises from their structural
assumptions. Thereafter, we modify standard BO to follow a similarly com-
plexity reduced structure, simply by appropriately scaling the lengthscale prior
of the GP kernel. Consequently, we effectively circumvent the well-established
Curse of Dimensionality (CoD) without introducing any of the conventional
structural restrictions on the objective that are prevalent in HDBO. We demon-
strate that standard BO works drastically better than previously thought for
high-dimensional tasks, outclassing existing high-dimensional BO algorithms
on a wide range of real-world problems. Further, we aim to shed light on the
inner workings of the BO machinery and why minimal changes in assumptions
yield a dramatic increase in performance. The result is a performant vanilla BO
algorithm for dimensionalities well into the thousands.

Formally, we make the following contributions:

1. We demonstrate the crucial difference between dimensionality and com-
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plexity in BO, highlighting the failure modes related to high assumed
complexity and relate existing HDBO classes to a reduction in complexity.

2. We prove that when the model is uninformed, EI will not exihibit ex-
ploratory behavior along the boundary, contrasting claims of [60, 43].

3. We propose a plug-and-play enhancement to the vanilla BO algorithm that
reduces the assumed complexity to enable high-dimensional optimization,
and extensively validate it across a wide spectrum of dimensionalities.
Results show that vanilla BO works significantly better for high-dimensional
problems than previously imagined, substantially outperforming state-of-
the-art HDBO methods on a wide range of real-world tasks.

2 Background

In this section, we review the background related to Gaussian processes and
Bayesian optimization. We outline the maximal information gain (MIG) as a
measure of problem complexity, and the model-level choices that impact the
a-priori assumed problem complexity, to subsequently explore pitfalls of vanilla
BO for high-complexity tasks in Sec 4.

2.1 Gaussian Processes

The Gaussian process (GP) has become the model class of choice in most BO
applications. The GP provides a distribution over functions f̂ „ GPpmp¨q, kp¨, ¨qq

fully defined by the mean function mp¨q and the covariance function kp¨, ¨q. Under
this distribution, the value of the function f̂pxq, at a given location x, is normally
distributed with a closed-form solution for the mean µpxq and variance σ2pxq.
We model a constant mean, so that the dynamics are fully determined by the
covariance function kp¨, ¨q.

To account for differences in variable importance, each dimension is individually
scaled using lengthscale hyperparameters ℓi. This is commonly referred to as
Automatic Relevance Determination (ARD) [67]. For D-dimensional inputs
x and x1, the distance rpx,x1q is subsequently computed as r2 “

řD
i“1pxi ´

x1
iq
2{ℓ2i . Along with the signal variance σf and noise variance σ2ε , θ “ tℓ, σ2ε , σ

2
fu

comprise the set of hyperparameters that are conventionally learned, with a
possible addition of a learnable constant mean c [3, 54]. The likelihood surface
ppθ|Dq for the GP hyperparameters is typically highly multi-modal [48, 69] and
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desirable hyperparameters are conventionally found by MAP estimation, where
a hyperprior is set on the kernel hyperparameters θ. While often overlooked, the
choice of hyperprior can greatly impact the performance of a BO algorithm in
practice, particularly in non-conventional problem settings [15, 4, 50, 51, 25].

2.2 Bayesian Optimization

We aim to find a maximizer x˚ P arg maxxPX fpxq of the black-box function
fpxq : X Ñ R, over the D-dimensional input space X “ r0, 1sD. We assume that
f can only be observed point-wise and that the observations are perturbed by
Gaussian noise, ypxq “ fpxq ` εi with εi „ N p0, σ2εq.

The acquisition function uses the surrogate model to quantify the utility of a
point in the search space. Acquisition functions employ a trade-off between
exploration and exploitation, typically using a greedy heuristic to do so. Most
common is the Expected Improvement (EI) [26, 9] and its numerically stable,
easy-to-optimize adaptation LogEI [1]. Another acquisition function which uses
similar heuristics is the Upper Confidence Bound [59, 58].
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Fig. 6.1: Three models (green, blue, red) with varying lengthscales, and thus varying complexity,
attempting to model the same objective, acquiring data by greedily maximizing the IG. The
MIG is shown for the three models as well as an independent kernel (dashed black), where
the matrix K “ I. The MIG for the complex model closely follows the independent kernel
for 20 samples, suggesting that the complex model can acquire 20 data of approximately
maximal variance. The vertical line in the MIG-plot indicates the current iteration.

A Working Definition of ”Vanilla” BO
In addition to the two main components — the probabilistic surrogate model

and the acquisition function - BO entails multiple hidden design choices, that are
paramount to its efficiency. We consider the vanilla BO algorithm to standardize
the output values, and to use either a Squared Exponential (Radial Basis
Function, RBF) [27] or a 5

2 -Matérn [54, 56] Kernel, with ARD lengthscales, an
EI-family acquisition function and multi-start gradient-based acquisition function
optimization.
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While both MLE and MAP are commonly used for hyperparameter selection
in practical Bayesian optimization, prevalent BO frameworks [3, 19, 24] employ
MAP estimation, setting a prior on ppθq. While not included in our definition of
the vanilla algorithm, the prior ppℓq commonly places high density on low values
of ℓ. Furthermore, broad, uninformative priors are conventionally used on σ2ε
and σ2f . While fully Bayesian hyperparameter treatment [44, 54] may also be
used, we do not consider it part of the vanilla algorithm.

2.3 The Maximal Information Gain

Our work centers around the assumed complexity of a problem, which conceptu-
ally could be seen as the size of the space of functions that have non-negligible
probability under the GP prior. To quantify the assumed complexity, we use
the Maximal Information Gain (MIG) [58] measure, which is the maximum
obtainable information about the function from querying a fixed number of
points. Firstly, we recall the Information Gain (IG) for a GP model and a set of
points X is defined as

IpyX , fXq “
1

2
log |I ` σ´2

ε K|, (6.1)

where K “ kpX,Xq is the Gram matrix for X. Then, for a fixed number of
points |Xn| “ n, the MIG is the maximizer of this measure

γn “ max
XnĂX

IpyXn , fXnq. (6.2)

For fixed observation noise, the MIG is fully defined by the covariance matrix,
which in turn depends on the choice of kernel, the problem dimensionality and the
kernel hyperparameters. The MIG is maximal when the samples are independent,
i.e., K « I. The MIG lacks a closed form solution, but is approximated to
p1 ´ 1{eq-accuracy by sequentially querying the set of points with maximal
posterior variance [40, 32].

Since the MIG measures the assumed complexity of f , it effectively quantifies the
difficulty of optimizing a given task within a Bayesian optimization context [58,
59, 5], given that the assumptions on k are accurate. As long as the the MIG is
nearly linear in the number of observations, there are regions in the search space
that are almost independent of the collected data under the model. As such,
there are still locations that we know nothing about, which makes optimization
difficult. On the contrary, a small growth rate of the MIG suggests that the
model would learn little by querying an additional point.
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In Fig. 6.1, we provide an intuition for the MIG. We show a simpler model (left,
green), as well as increasingly complex models (blue, red) for six data points.
Their associated MIGs (right) are displayed for the current iteration (solid) and
subsequent iterations (dashed) up until iteration 40. For the simpler model,
there is little left to learn about the function, and as such, its subsequent MIG
growth is small. If the green model is accurate, subsequent optimization is
trivial due to efficient modelling that stems from large correlation in the data.
On the contrary, the almost-zero correlation displayed in the red model makes
its optimization vastly more difficult. This point is further emphasized by its
MIG, which starts to deviate substantially from an independent kernel first after
20 data points. This suggests that the model has capacity for 20 almost-maximal
variance data acquisitions, despite modelling only a one-dimensional objective.

3 Related Work

Multiple approaches have been proposed to tackle the limitations of BO in high
dimensions. These resort to structural assumptions on the objective, which we
outline by class.

Low-dimensional active subspace methods assume the existence of a lower-
dimensional space which is representative of the function in the full-dimensional
space. The active subspace can can be either axis-aligned [39, 15, 45, 46] or
non-axis-aligned [18, 65, 30, 8, 33]. Explicit variable selection approaches [12, 34,
64, 57, 23] employ the axis-aligned assumption to identify important variables
to optimize over.

Additive kernels [13, 28, 17, 66, 49, 21, 70] decompose the objective into
a sum of low-dimensional component functions, where by assumption each
component is only impacted by a small subset of all variables. As such, the
maximal dimensionality of each component is substantially lower than the full
dimensionality of f .

Local Bayesian optimization approaches [16, 38, 63, 41, 68] adaptively
restrict the search space to combat the CoD, limiting the optimization to a
subset of the search space. By focusing on a smaller portion of the search
space, the model exhibits less variation than a global model, which simplifies
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optimization. Moreover, enforcing local optimization decreases the susceptibility
of the optimizer to the model.

Non-Euclidean kernels are employed to escape the exponential growth of the
typical hypercube search space in the dimensionality of the problem. Cylindrical
kernels [61, 43] transform the geometry of the search space, which consequently
expands the center of the search space, shrinking the boundaries.

The three pieces of related work that are most similar to ours are Elastic
GPs [47], SAASBO [15] and BOCK [43], which all perform optimization in
the full-dimensional search space. Of these, [47] consider various lengthscales
of the GP when optimizing the acquisition function, but uniquely does not
impose simplifying assumptions on the model. [15] and BOCK [43] employ their
aforementioned assumptions to facilitate effective optimization. Contrary to
these works, we facilitate optimization in the ambient space without making any
of the specific structural assumptions outlined in Sec. 3.

4 Pitfalls of High-Complexity Assumptions

We now discuss the issues related to highly complex models and connect it to the
high-dimensional setting. Sec. 4.1 demonstrates the intuitive relation between
complexity and dimensionality. Building upon the intuitive understanding of
the MIG and the related model design choices gained in Sec. 2.3, we delve into
the BO-specific pathology that arises from an overly complex model in Sec. 4.2,
proving that it is distinct from the well-known boundary issue [60]. Thereafter,
we demonstrate how various HDBO methods circumvent the high-complexity-
issue by showing the how conventional structural assumptions reduce the model
complexity. In subsequent sections, we will use the terms MIG and complexity
interchangeably.

4.1 Complexity and Dimensionality

Increased model complexity most often becomes a critical issue for BO algorithms
in high-dimensional problems — with increasing dimensions, the maximal space
between points increases. Specifically, the expected distance between randomly
sampled points in a unit cube increases proportional to the square root of the
dimension [31]. For both the RBF and the Matern-52 kernels, this greatly impacts
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Fig. 6.2: Complexity scaling in the number of data points for varying dimensionalities of the problem
for vanilla BO with a lengthscale of ℓ “ 0.5. For D “ 18, the complexity visually differs
from an independent kernel after approximately 3000 data points. For D “ 24, 5000
data points are not sufficient to rid independence between observations. The MIG is
approximated by sampling evenly distributed data using a SOBOL sequence.

the covariance, which decreases exponentially with the ℓ-normalized squared
distance.

In Fig. 6.2, we display the scaling of the complexity in the number of data
points, considering an RBF-kernel with fixed lengthscales. The curves represent
increasing dimensionalities. As the dimensionality increases, the covariance
matrix increasingly resembles that of an independent kernel (black dashed line).
For D “ 18 (purple), this manifests in a visible difference first after 3000 samples,
whereas for D “ 24 (yellow), 5000 samples is insufficient to distinguish an RBF
kernel from an independent one, which implies that kpX5000,X5000q « I. This
strongly suggests that global modelling of the objective is uninformative, as the
model quickly reverts back to its prior mean and variance even after collecting
vast amounts of data, and meaningful inference between observed data points
becomes very difficult.

4.2 The Boundary Issue Revisited

As covered in Sec. 2.3, high complexity implies that k produces relatively low
correlation both between acquired data points and in prospective queries. Thus,
the GP will only be informative close to existing observations, and will quickly
revert back to the prior as we move away from this data, as demonstrated in
the rightmost model in Fig. 6.1. Under this regime, the BO data acquisition
will be highly dependent on the hyperparameters that dictate said GP prior,
namely the signal variance σ2f and the mean constant c. We note that, while
these parameters are not always learned [11], the choice to fix them to 1.0 and
0.0 respectively influences on the behavior of the BO algorithm as well.
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Introduced by [60], the boundary issue is the phenomenon that EI will, in high-
dimensional settings, repeatedly query uninformed, high-variance points along
the boundary of the search space to maximally explore in light of an uninformed
model. We contrast this claim by the following proposition, which demonstrates
that EI does not tend towards maximal variance when the model is uninformed,
namely when K « I (as in the D “ 24 example in Fig. 6.2). We denote by xinc

the location of the incumbent, its value by ymax, and the GP mean function by c.

Proposition 2 (Lower Bound on EI Correlation). Assume that ymax ą c,
K “ σ2fI and that the candidate query x˚ correlates with at most one ob-

servation. Then, the correlation ρ˚ “ σ´2
f kpx˚,xincq between the next query

x˚ “ arg maxxPX EIpxq and xinc satisfies

ρ˚

c

1 ` ρ˚

1 ´ ρ˚
ě
ymax ´ c

σf
. (6.3)

The proof parametrizes EI by the correlation ρ between a candidate x˚ and the
incumbent, and shows that BEI

Bρ is positive for all values of ρ below the bound
in Eq. 6.3. Thus, EI will prefer an observation that has substantial correlation
with xinc to one that does not.

Proposition 2 demonstrates that, when correlation in the model is low, EI does
not seek out high-variance regions as described by [60]. This contrasts the
common belief that HDBO intrinsically suffers from excessive exploration around
the borders [53, 43, 16, 15, 38, 7, 14]. As we will soon cover, uninformative
models frequently display the opposite behavior, where repeated queries are
made exceedingly close to the incumbent.

In Fig. 6.3a, we observe this query behavior in action for the high-complexity
model in Fig. 6.1 — despite many large-variance regions, the next query is very
close to the current best, and within our correlation bound. In Fig. 6.3b, we
display the numerical solution to BEI

Bρ “ 0 together with the analytical bound in
Proposition 2. We observe that for typical values of the GP mean and outputscale,
the candidate query has substantial correlation with the incumbent under the
aforementioned setting of an uninformed model.

With that said, the phenomenon of frequent querying of the boundary may
still occur in practice . Specifically, querying of the boundary may occur when
lengthscales are very long along one or more dimensions, which can occur when
fitting the model using MLE [67, 48, 29]. Then, candidates will be low-variance
and highly correlated with existing data, despite being located at the boundary
of one or multiple dimensions that are all deemed irrelevant.
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EI prefers to query close to the incumbent, well within the bound on ρ˚ from Prop. 2. b)
Tightness of the bound compared a numerical solve for optimal correlation for various
values of ymax.

Proposition 2 establishes that EI does not intrinsically pursue high-variance,
uninformed regions. Rather, queries preferentially have substantial correlation
with the incumbent. In a high-complexity setting, substantial correlation only
arises when a data point is close to existing data, which suggests that EI should
make queries in close proximity to the incumbent. As a result, the algorithm
tends to very seldom query far from the incumbent, resulting in an exploitative
behavior with similar qualities to local search. This phenomenon arises when
there is negligible correlation in the data, namely when model complexity is too
high to effectively model the objective function with existing data.

4.3 Complexity of Existing HDBO

Having established that high complexity can yield uninformative models, as well
as having discussed the link between complexity and dimensionality, it is evident
that complexity assumptions must be sensible to facilitate a calibrated GP in
HDBO. Notably, all the classes of HDBO algorithms outlined in Sec. 3 have such
complexity-lowering assumptions. In Fig. 6.4, we display the modeled complexity
of the most common classes of HDBO algorithms. Fig. 6.4 can be viewed as a cross
section of Fig. 6.2, where we fix the number of data points to 1000 and instead
vary the dimensionality of the problem to demonstrate how each HDBO class
lower the growth of the complexity in the dimensionality, relative to a common
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global GP model as well as an independent kernel. The methods presented are:
REMBO [65] with de “ 4, random AddGPs [70], BOCK [43], Local GPs [16]
after one round of shrinkage, the global GP with fixed lengthscales from Fig. 6.2,
and our proposed method — scaling the lengthscales in the dimensionality of
the problem, which is introduced later in Sec. 5. While each algorithm has
parameters that affect the MIG, we have set parameters to make the comparison
as fair as possible.

As we have observed previously, employing a full-dimensional GP without re-
strictions is far too complex, as we have approximate independence after 1000
observations already for an 18D-objective. As expected, random subspace meth-
ods have small complexity increase in the ambient dimensionality. The increase
stems from the fact that random, non-axis-aligned embeddings may slice the
ambient dimensions very narrowly, which results in shorter lengthscales on the
embedded model. The complexity increase for both our method (blue) and
cylindrical kernels (yellow) stagnates rapidly, effectively assuming only marginal
complexity increases after D “ 100. Local methods (red) scale at same rates
as global GPs (blue), but work on a drastically simplified model due to the
lengthscale-scaled trust regions.

We re-iterate that low complexity is not strictly a desirable property, but as
per Occam’s razor, the most desirable property is to have the lowest possible
complexity for a model that sufficiently aligns with the objective. This is
especially true in the context of small data optimization, where each new data
point acquired and employed to train the model is costly. We note, however, that
the almost-independence exhibited by the global GP in Fig. 6.4 (magenta) for
even moderate dimensionalities inevitably leads to the degeneracy highlighted in
Sec. 4.2. Moreover, the assumptions behind each HDBO method are all means
to the same end - reducing model complexity to manageable levels.

5 Low-complexity High-dimensional
Bayesian Optimization

Hypothesizing that the pitfalls of HDBO are strictly caused by assumptions of
insurmountable complexity, we present our main methodological contribution.
We design a simple, plug-and-play assumption that retains almost constant
complexity as the dimensionality increases. Similar to Fig. 6.1, we achieve this
by adjusting the prior on the lengthscales to the dimensionality of the problem
to the task at hand. Moreover, we ensure a calibrated signal variance by drawing
on previous findings on GPs in an over-parameterized regime.
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Fig. 6.4: We display the model complexity scaling in the dimensionality of the problem for 1000
data points for various HDBO algorithms. Vanilla BO with fixed lengthscales (magenta)
approaches independent complexity at approximately 20 dimensions. As expected, REMBO
random embeddings (brown) reduce complexity the most, followed by BOCK cylindrical
kernels (yellow). The MIG growth of our proposed modification of the global GP (blue)
flattens out at a rate similar to cylindrical kernels (yellow), despite modelling the original,
full-dimensional space.

5.1 Ensuring Meaningful Correlation

Since stationary kernels compute covariances based on distances between data
and both the diagonal and the distance between randomly sampled points in a
D-dimensional hypercube scales as

?
D [31], increasing the lengthscales at this

rate, ℓi9
?
D, counteracts the complexity increase that stems from the increased

distances. This change may, for example, be achieved by scaling the µ term of a
LogNormal (LN ) prior

ℓi „ LN
ˆ

µ0 `
logpDq

2
, σ0

˙

(6.4)

where pµ0, σ0q are suitable parameters of ppℓq for a one-dimensional objective.
This shifts both the mode and mean of the distribution by a factor of

?
D.

Notably, our method does not increase the number of hyperparameters in a MAP-
based BO setup. Furthermore, the proposed change may similarly be applied
the more commonly used Gamma prior, with a different parameterization [10].
Importantly, the change in complexity is not definitive, as we may still find some
variables to be more important than others and adjust on-the-fly through MAP
estimation of ℓ.

The proposed change suggests that the problem of large distances between points,
and thereby the insurmountable complexity, is one that arises by assumption.
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Specifically, the lengthscale priors ppℓq employed by conventional BO frame-
works [3, 55, 24] place substantial density on low values of ℓ. Assuming that all
dimensions are of major importance may appear like a conservative and sensible
choice. For moderately high dimensions, however, it practically guarantees that
the problem will be impossible to model globally, even with the largest of budgets.
Our method takes the opposite approach, and simply assumes that a problem is
simple enough to be modeled globally, for any dimensionality.

5.2 Calibrating Epistemic Uncertainty

Lastly, we consider the role of the signal variance parameter, whose impact
on data acquisition is evidenced by Prop. 2. Motivated by findings on on the
optimal value σ̂2f of σ2f generally in [37] and in the over-parameterized regime
by [42], we consider

σ̂2f “
1

n
yTK´1y (6.5)

which, in a BO context, has a different impact than in GPs generally. As
we are able to selectively acquire our data, a large number of parameters and
substantially correlated data will simplify data fit, driving down the optimal
value of σ2f . When data is repeatedly re-normalized, the issue will be reinforced,
as the signal variance is further decreased, and another highly correlated query
is selected. As such, we fix σ2f “ 1 to match the scale of the standardized

observations, and to ensure that σ2f does not diminish over time.

6 Results

We now compare our Vanilla Bayesian Optimization method with a dimensionality-
scaled lengthscale prior (we will refer to our method as D-scaled ppℓq or DSP for
clarity), against state-of-the-art HDBO methods. We will include various classes
of HDBO methods, such as the subspace-methods Bounce and SAASBO [46, 15],
the Local BO algorithms TuRBO [16] and Maximal Probability of Descent [41]
(MPD), the AddGP method RD-UCB [70], the variable selection method MCTS-
VS [57], and CMA-ES [22]. We use each method’s official repository, with the
exception of SAASBO which is run through Ax [2]. Our code is publicly available
at https://github.com/hvarfner/vanilla_bo_in_highdim.

We instantiate the DSP with µ0 “
?

2, σ0 “
?

3, which equates to ℓ « 0.50 for
D “ 6 under the mode of ppℓq. We initialize all methods with 30 samples, marked
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Fig. 6.5: Average log regret of all baselines on Levy (4D) and Hartmann (6D) synthetic test functions
of varying ambient dimensionality across 20 repetitions (10 for SAASBO). Vanilla BO
performs second best, beaten only by SAASBO on four tasks, whose axis-aligned subspace
assumption (along with MCTS-VS’ variable selection) aligns perfectly with the task at
hand. We omit SAASBO from the 1000D benchmarks due to the prohibitive runtime,
and RD-UCB and MPD due to a combination of runtime and numerical instability.

by a dashed vertical line. Bounce, CMA-ES and MPD deviate from conventional
initialization. On all benchmarks, we use LogEI [1], using a low acquisition
optimization budget of 512 initial (global) SOBOL samples and 512 Gaussian
samples around the incumbent, followed by L-BFGS on the 4 best candidates,
which is made possible by the low-complexity-high-smoothness model.

6.1 Sparse Synthetic Test Functions

We start by evaluating the DSP on a collection of commonly considered synthetic
test functions with varying total and effective dimensionality. We note that the
assumptions made in Sec. 5 diametrically oppose these test cases - each function
has a low number of highly important dimensions with the large remainder
being unimportant, whereas we assume that each dimension has relatively small
impact.
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Fig. 6.6: Best observed value for the DSP, conventional MAP, and TuRBO on Hartmann (6D)
and four mid-dimensional real-world optimization tasks. All methods perform comparably
on Hartmann, while the DSP outperforms or is on part with TuRBO on the other tasks.
Notably, the DSP performs at least equally well as the Γp3, 6q on all tasks, and substantially
better on 4 out of 5 tasks, which suggests that it is well-suited as a drop-in replacement
for conventional priors.

The DSP is highly performant, as it rapidly identifies the important dimensions
and subsequently optimizes the task. This is similar in to [15], whose assumptions,
represented through its sparse lengthscale prior, aligns perfectly with the task
at hand. As such, SAASBO should, and does, perform best on average, with
Vanilla BO being second. Notably, as Vanilla BO does not require the HMC [6]
fully Bayesian model fitting that SAASBO uses, it runs in a small fraction of
the time.

6.2 A Plug-in on Mid-Dimensional Tasks

Subsequently, we use the DSP as a plug-in for low- and mid-dimensional tasks,
primarily those considered in [16], to evaluate its ability to serve as a substitute
for conventional, non-adaptive hyperparameter priors. The Lunar Lander (12D)
and Robot Pushing (14D) tasks from [66], as well as the Swimmer (16D) and
Hopper (32D) reinforcement learning tasks from the MuJoCo suite [62], where
we aim to learn a linear policy for two objects with varying degrees of freedom.
We evaluate against a Γp3, 6q lengthscale prior with learnable σ2f , and against
TuRBO, commonly considered the state-of-the-art mid-dimensional BO method.
In Fig. 6.6, it is shown that the DSP is either competitive with, or outperforms,
TuRBO on all tasks. The DSP maintains a moderate distance between queries,
which indicates a calibrated trade-off throughout optimization, whereas the
conventional Γp3, 6q does not.
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Fig. 6.7: Best observed value of all baselines on five real-world tasks from of various domains across
20 repetitions (10 for SAASBO). Vanilla BO performs best across all tasks except for
MOPTA, where it is outperformed by SAASBO, and the MuJoCo Ant, where BAxUS gets
an advantage from performing the initialization phase in a lower-dimensional subspace,
which enables it to obtain initial samples close to the center of the search space. Vanilla
BO substantially outperforms all baselines on Lasso-DNA, SVM and Humanoid. Notably,
the extreme dimensionality of Humanoid does not have an apparent negative impact the
performance of Vanilla BO.

6.3 High-dimensional Optimization Tasks

We now benchmark Vanilla BO with the DSP against a collection of frequently
considered tasks in the high-dimensional literature [15, 16, 45, 46, 52]: Specifically,
we consider MOPTA08 (124D), SVM (388D), Lasso-DNA (180D), and the
MuJoCo [62] Ant (888D) and Humanoid (6392D) reinforcement learning tasks.
We stress that, for all benchmarks where applicable, (BAxUS on SVM, Lasso-
DNA and Humanoid, TuRBO on MOPTA and SVM, RD-UCB on Lasso-DNA),
baselines perform within the error bars of the original implementation [45, 70]
or in other papers by the same authors in the case of TuRBO [16, 15]. Fig. 6.7
shows that Vanilla BO with the DSP is highly competitive, performing the
best by a substantial margin on Lasso-DNA and Humanoid, and produces
top-two performance on the remaining tasks. On the MuJuCo Ant, Bounce’s
low-dimensional initialization allows it to obtain an average value of 800 after
DoE due to consistently sampling data points close to the center of the search
space. Notably, the DSP is very consistent between repetitions, as evident by the
small error bars. This can be attributed to the consistent modelling, as the DSP
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Fig. 6.8: Distribution of lengthscale values for the DSP on the 388D SVM task. Lengthscales are
sorted according to their mean log value. The three last indexed dimensions (385, 386,
387) are considered particularly active [15], but are not identified as such consistently in
our method. the black horizontal lines indicate upper and lower quartiles, and the orange
horizontal lines indicate the median.

is not dependent on randomness in subspace design, trust region initialization
or variable selection. Rather, it obtains a consistent, calibrated model through
meaningful correlation in the data, from which it can effectively infer promising
regions and improve upon the DoE.

Notably, the DSP does not heavily depend on identification of active variables.
In Fig. 6.8, we demonstrate for the distribution of lengthscale values for the
388D SVM after 250 iterations. The DSP does not consistently identify active
dimensions with large confidence. Instead, the calibrated complexity of the model
allows for meaningful inference along all dimensions, until particularly active
dimensions are potentially identified. As such, the DSP does not require the
identification of active variables to achieve calibrated BO, but its identification
helps optimization. As such, we attribute the superior performance of our
method to the calibrated complexity, and the effective inference and exploration-
exploitation trade-off that stems from it.

7 Conclusion and Future Work

The curse of dimensionality has long been assumed to hinder the application
of conventional Bayesian optimization in high dimensions. We show that the
hindrance is not driven by dimensionality, but by the assumed complexity of the
objective. We make minor modifications to the assumptions of the vanilla BO
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algorithm to make complexity scaling manageable with increasing dimensionality.
As a result, we demonstrate that vanilla BO is extremely effective for problems
of high dimensionality, outperforming the state-of-the-art for problems with
dimensions into the thousands.

Nevertheless, we do not believe that tailored high-dimensional BO algorithms
are unwarranted: if the problem at hand is known to adhere to the structural
assumptions that are conventionally made (effective subspace, additivity) or
where non-stationarity in the objective facilitates local modelling, we believe
these approaches will be superior to the vanilla algorithm. However, these
restrictive assumptions should not be made out of necessity, but when prior
knowledge supports them. For future work, we plan to investigate the topic of
complexity as it relates to modelling in Bayesian optimization more broadly, and
in the context of latent space GP models [20, 36].
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[20] Ryan-Rhys Griffiths and José Miguel Hernández-Lobato. Constrained
bayesian optimization for automatic chemical design. arXiv: Machine
Learning, 2017.

[21] Eric Han, Ishank Arora, and Jonathan Scarlett. High-dimensional bayesian
optimization via tree-structured additive models. Proceedings of the AAAI
Conference on Artificial Intelligence, 35(9):7630–7638, May 2021. URL
https://ojs.aaai.org/index.php/AAAI/article/view/16933.

[22] N. Hansen. The CMA evolution strategy: a comparing review. In J. Lozano,
P. Larranaga, I. Inza, and E. Bengoetxea, editors, Towards a new evolution-
ary computation. Advances on estimation of distribution algorithms, pages
75–102. Springer, 2006.

[23] Erik Orm Hellsten, Carl Hvarfner, Leonard Papenmeier, and Luigi Nardi.
High-dimensional bayesian optimization with group testing, 2023.

[24] F. Hutter, H. H. Hoos, and K. Leyton-Brown. Sequential model-based
optimization for general algorithm configuration. In Learning and Intelligent
Optimization, 2011.

225

https://proceedings.neurips.cc/paper/2019/file/6c990b7aca7bc7058f5e98ea909e924b-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/6c990b7aca7bc7058f5e98ea909e924b-Paper.pdf
http://github.com/SheffieldML/GPyOpt
https://ojs.aaai.org/index.php/AAAI/article/view/16933


[25] Carl Hvarfner, Erik Hellsten, Frank Hutter, and Luigi Nardi. Self-correcting
bayesian optimization through bayesian active learning. In Thirty-seventh
Conference on Neural Information Processing Systems, 2023. URL https:

//openreview.net/forum?id=dX9MjUtP1A.

[26] D. Jones, M. Schonlau, and W. Welch. Efficient global optimization of
expensive black box functions. Journal of Global Optimization, 13:455–492,
1998.

[27] D. R. Jones. A taxonomy of global optimization methods based on response
surfaces. Journal of Global Optimization, 21:345–383, 2001.

[28] K. Kandasamy, J. Schneider, and B. Póczos. High Dimensional Bayesian
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