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Abstract

Stochastic differential equations (SDEs) are established tools to model physical phenomena
whose dynamics are affected by random noise. By estimating parameters of an SDE intrin-
sic randomness of a system around its drift can be identified and separated from the drift
itself. When it is of interest to model dynamics within a given population, i.e. to model
simultaneously the performance of several experiments or subjects, mixed-effects mod-
elling allows for the distinction of between and within experiment variability. A framework
to model dynamics within a population using SDEs is proposed, representing simultane-
ously several sources of variation: variability between experiments using a mixed-effects
approach and stochasticity in the individual dynamics using SDEs. These stochastic differ-
ential mixed-effects models have applications in e.g. pharmacokinetics/pharmacodynamics
and biomedical modelling. A parameter estimation method is proposed and computational
guidelines for an efficient implementation are given. Finally the method is evaluated using
simulations from standard models like the two-dimensional Ornstein-Uhlenbeck (OU) and
the square root models.

Keywords: automatic differentiation, closed-form transition density expansion,
maximum likelihood estimation, population estimation, stochastic differential equation,
Cox-Ingersoll-Ross process

1. INTRODUCTION

Models defined through stochastic differential equations (SDEs) allow for the represen-
tation of random variability in dynamical systems. This class of models is becoming more
and more important (e.g. Allen (2007) and Øksendal (2007)) and is a standard tool to
model financial, neuronal and population growth dynamics. However, much has still to be
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done, both from a theoretical and from a computational point of view, to make it applica-
ble in those statistical fields that are already well established for deterministic dynamical
models (ODE, DDE, PDE). For example, studies in which repeated measurements are
taken on a series of individuals or experimental units play an important role in biomedical
research: it is often reasonable to assume that responses follow the same model form for
all experimental subjects, but parameters vary randomly among individuals. The impor-
tance of these mixed-effects models (e.g. McCulloch and Searle (2001), Pinheiro and Bates
(2002)) lies in their ability to split the total variation into within- and between-individual
components.

The SDE approach has only recently been combined with mixed-effects models, because
of the difficulties arising both from the theoretical and the computational side when dealing
with SDEs. In Overgaard et al. (2005) and Tornøe et al. (2005) a stochastic differential
mixed-effects model (SDMEM) with log-normally distributed random parameters and a
constant diffusion term is estimated via (extended) Kalman filter. Donnet and Samson
(2008) developed an estimation method based on a stochastic EM algorithm for fitting
one-dimensional SDEs with mixed-effects. In Donnet et al. (2010) a Bayesian approach
is applied to a one-dimensional model for growth curve data. The methods presented in
the aforementioned references are computationally demanding when the dimension of the
model and/or parameter space grows. However, they are all able to handle data contami-
nated by measurement noise. In Ditlevsen and De Gaetano (2005) the likelihood function
for a simple SDMEM with normally distributed random parameters is calculated explic-
itly, but generally the likelihood function is unavailable. In Picchini et al. (2010) a com-
putationally efficient method for estimating SDMEMs with random parameters following
any sufficiently well-behaved continuous distribution was developed. First the conditional
transition density of the diffusion process given the random effects is approximated in
closed-form by a Hermite expansion, and then the obtained conditional likelihood is nu-
merically integrated with respect to the random effects using Gaussian quadrature. The
method resulted to be statistically accurate and computationally fast. However, in practice
it was limited to one random effect only (see Picchini et al. (2008) for an application in
neuroscience) since Gaussian quadrature is computationally inefficient when the number
of random effects grows.

Here the method presented in Picchini et al. (2010) is extended to handle SDMEMs with
multiple random effects. Furthermore, the application is extended in a second direction to
handle multidimensional SDMEMs. Computational guidelines for a practical implemen-
tation are given, using e.g. automatic differentiation (AD) tools. Results obtained from
simulation studies show that, at least for the examples discussed in the present work, the
methodology is flexible enough to accommodate complex models having different distribu-
tions for the random effects, not only the normal or log-normal distributions which are the
ones usually employed. Satisfactory estimates for the unknown parameters are obtained
even considering small populations of subjects (i.e. few repetitions of an experiment) and
few observations per subject/experiment, which is often relevant, especially in biomedicine
where large data sets are typically unavailable.

A drawback of our approach is that measurement error is not accounted for, and thus
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it is most useful in those situations where the variance of the measurement noise is small
compared to the system noise.

The paper is organized as follows. Section 2 introduces the SDMEMs, the observation
scheme and the necessary notation. Section 3 introduces the likelihood function. Section
4 considers approximate methods for when the expression of the exact likelihood function
cannot be obtained; computational guidelines and software tools are also discussed. Section
5 is devoted to the application on simulated datasets. Section 6 summarizes the results
and the advantages and limitations of the method are discussed. An Appendix containing
technical results closes the paper.

2. STOCHASTIC DIFFERENTIAL MIXED EFFECTS MODELS

In the following, bold characters are used to denote vectors and matrices. Consider
a d-dimensional (Itô) SDE model for some continuous process Xt evolving in M different
experimental units randomly chosen from a theoretical population:

dXi
t = µ(Xi

t,θ,b
i)dt+ σ(Xi

t,θ,b
i) dWi

t, Xi
0 = xi0, i = 1, . . . ,M (1)

where Xi
t is the value at time t ≥ ti0 of the ith unit, with Xi

0 = Xi
ti0
; θ ∈ Θ ⊆

Rp is a p-dimensional fixed effects parameter (the same for the entire population) and
bi ≡ bi(Ψ) ∈ B ⊆ Rq is a q-dimensional random effects parameter (unit specific) with
components (bi1, ..., b

i
q); each component bil may follow a different continuous distribution

(l = 1, ..., q). Let pB(bi|Ψ) denote the joint distribution of the vector bi, parametrized by
an r-dimensional parameter Ψ ∈ Υ ⊆ Rr. The Wi

t’s are d-dimensional standard Brownian
motions with components W (h)i

t (h = 1, ..., d). The W (h)i
t and bjl are assumed mutually

independent for all 1 ≤ i, j ≤ M , 1 ≤ h ≤ d, 1 ≤ l ≤ q. The initial condition Xi
0 is

assumed equal to a vector of constants xi0 ∈ Rd. The drift and the diffusion coefficient
functions µ(·) : E × Θ × B → Rd and σ(·) : E × Θ × B → S are assumed known up
to the parameters, and are assumed sufficiently regular to ensure a unique weak solution
(Øksendal (2007)), where E ⊆ Rd denotes the state space of Xi

t and S denotes the set
of d × d positive definite matrices. Model (1) assumes that in each of the M units the
evolution of X follows a common functional form, and therefore differences between units
are due to different realizations of the Brownian motion paths {Wi

t}t≥ti0 and of the random
parameters bi. Thus, the dynamics within a generic unit i are expressed via an SDE model
driven by Brownian motion, and the introduction of a vector parameter randomly varying
among units allows for the explanation of the variability between the M units.

Assume that the distribution of Xi
t given (bi,θ) and Xi

s = xs, s < t, has a strictly
positive density w.r.t. the Lebesgue measure on E, which is denoted by

x→ pX(x, t− s|xs, bi,θ) > 0, x ∈ E. (2)

Assume moreover that unit i is observed at the same set of ni + 1 discrete time points
{ti0, ti1, . . . , tini} for each coordinate X(h)i

t of the process Xi
t (h = 1, ..., d), whereas different
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units may be observed at different sets of time points. Let xi be the (ni + 1) × d matrix
of responses for unit i, with jth row given by xi(tij) = xij = (x

(1)i
j , ..., x

(d)i
j ), and let the

following be the N × d total response matrix, N =
∑M

i=1(ni + 1):

x = (x1T , ...,xM
T

)T =



x
(1)1
0 · · · x

(d)1
0

...
...

...
x

(1)1
n1 · · · x

(d)1
n1

...
...

...
x

(1)i
j · · · x

(d)i
j

...
...

...
x

(1)M
0 · · · x

(d)M
0

...
...

...
x

(1)M
nM · · · x

(d)M
nM


,

where T denotes transposition. Write ∆i
j = tij − tij−1 for the time distance between xij−1

and xij. Notice that this observation scheme implies that the matrix of data x must not
contain missing values.

The goal is to estimate (θ,Ψ) using simultaneously all the data in x. The specific
values of the bi’s are not of interest, but only the identification of the vector-parameter Ψ
characterizing their distribution. However, estimates of the random parameters bi are also
obtained, since it is necessary to estimate them when estimating (θ,Ψ).

3. MAXIMUM LIKELIHOOD ESTIMATION

To obtain the marginal density of xi, the conditional density of the data given the
non-observable random effects bi is integrated with respect to the marginal density of the
random effects, using thatW (h)i

t and bjl are independent. This yields the likelihood function

L(θ,Ψ) =
M∏
i=1

p(xi|θ,Ψ) =
M∏
i=1

∫
B

pX(xi|bi,θ) pB(bi|Ψ) dbi. (3)

Here p(·) is the density of xi given (θ,Ψ), pB(·) is the density of the random effects, and
pX(·) is the product of the transition densities pX(·) given in (2) for a given realization of
the random effects and for a given θ,

pX(xi|bi,θ) =

ni∏
j=1

pX(xij,∆
i
j|xij−1,b

i,θ). (4)

In applications the random effects are often assumed to be (multi)normally distributed,
but pB(·) could be any well-behaved density function. Solving the integral in (3) yields
the marginal likelihood of the parameters for unit i, independent of the random effects
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bi; by maximizing the resulting expression (3) with respect to θ and Ψ the corresponding
maximum likelihood estimators (MLE) θ̂ and Ψ̂ are obtained. Notice that it is possible to
consider random effects having discrete distributions: in that case the integral becomes a
sum and can be easily computed when the transition density pX is known. In this paper
only random effects having continuous distributions are considered.

In simple cases an explicit expression for the likelihood function, and even explicit
estimating equations for the MLEs can be found (Ditlevsen and De Gaetano (2005)).
However, in general it is not possible to find an explicit solution for the integral, and thus
exact MLEs are unavailable. This occurs when: (i) pX(xij, ·|xij−1, ·) is known but it is not
possible to analytically solve the integral, and (ii) pX(xij, ·|xij−1, ·) is unknown. In (i) the
integral must be evaluated numerically to obtain an approximation of the likelihood (3).
In (ii) first pX(xij, ·|xij−1, ·) is approximated, then the integral in (3) is solved numerically.

In situation (ii) there exist several strategies to approximate the density pX(xij, ·|xij−1, ·),
e.g. Monte Carlo approximations, direct solution of the Fokker-Planck equation, or Hermite
expansions, just to mention some of the possible approaches, see Hurn et al. (2007) for a
comprehensive review focused on one-dimensional diffusions. We propose to approximate
the transition density in closed-form using a Hermite expansion (Aït-Sahalia (2008)). It
often provides a good approximation to pX , and Jensen and Poulsen (2002) showed that the
method is computationally efficient. Using the obtained expression, the likelihood function
is approximated, thus deriving approximated MLEs of θ and Ψ.

4. CLOSED-FORM TRANSITION DENSITY EXPANSION AND LIKELI-
HOOD APPROXIMATION

4.1. Transition Density Expansion for Multidimensional SDEs
Here the transition density expansion of a d-dimensional time-homogeneous SDE as

suggested in Aït-Sahalia (2008) is reviewed; the same reference provides a method to
handle multi-dimensional time-inhomogeneous SDEs, but for ease of exposition attention
is focused on the former case. Also references on further extensions, e.g. Lévy processes,
are given in the paper. We will only consider SDEs reducible to unit diffusion, i.e. multi-
dimensional diffusions X for which there exists a one-to-one transformation to another
diffusion with diffusion matrix the identity matrix. It is possible to perform the density
expansion also for non-reducible SDEs (Aït-Sahalia (2008)). For the moment reference to
θ is dropped when not necessary, i.e. a function f(x,θ) is written f(x).

Consider the following d-dimensional, reducible, time-homogeneous SDE

dXt = µ(Xt)dt+ σ(Xt)dWt, X0 = x0 (5)

and a series of d-dimensional discrete observations x0,x1, ...,xn from X, all observed at
the same time points {t0, t1, ..., tn}; denote with E the state space of X. We want to
approximate pX(xj,∆j|xj−1), the conditional density of Xj given Xj−1 = xj−1, where
∆j = tj − tj−1 (j = 1, ..., n). Under regularity conditions (e.g. µ(x) and σ(x) are assumed
to be infinitely differentiable in x on E, v(x) := σ(x)σ(x)T is a d×d positive definite matrix
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for all x in the interior of E and all the drift and diffusion components satisfy linear growth
conditions, see Aït-Sahalia (2008) for details), the logarithm of the transition density can
be expanded in closed form using an order J = +∞ Hermite series, and approximated by
a Taylor expansion up to order K,

ln p
(K)
X (xj,∆j|xj−1) = −d

2
ln(2π∆j)−

1

2
ln(det(v(xj))) +

C
(−1)
Y (γ(xj)|γ(xj−1))

∆j

+
K∑
k=0

C
(k)
Y (γ(xj)|γ(xj−1))

∆k
j

k!
. (6)

Here ∆k
j denotes ∆j raised to the power of k. The coefficients C(k)

Y are given in the Appendix
and γ(x) = (γ(1)(x), ..., γ(d)(x))T is the Lamperti transform, which by definition exists
when the diffusion is reducible, and is such that Oγ(x) = σ−1(x). See the Appendix for a
sufficient and necessary condition for reducibility. Using Itô’s lemma, the transformation
Yt = γ(Xt) defines a new diffusion process Yt, solution of the following SDE

dYt = µY (Yt)dt+ dWt, Y0 = y0,

where the h-th element of µY is given by (h = 1, ..., d)

µ
(h)
Y (Yt) =

d∑
i=1

({
σ−1(γ−1(Yt))

}
hi
µ(i)(γ−1(Yt))

)

− 1

2

d∑
i,j,k

{
σ−1(γ−1(Yt))

∂σ

∂xj
(γ−1(Yt))σ

−1(γ−1(Yt))

}
hi

σik(γ
−1(Yt))σjk(γ

−1(Yt)).

For ease of interpretation the Lamperti transform and the drift term µY for a scalar (d = 1)
SDE are reported. Namely γ(·) is defined by

Yt ≡ γ(Xt) =

∫ Xt du

σ(u)
,

where the lower bound of integration is an arbitrary point in the interior of E. The drift
term is given by

µY (Yt) =
µ(γ−1(Yt))

σ(γ−1(Yt))
− 1

2

∂σ

∂x
(γ−1(Yt)).

The transformation of Xt into Yt is a necessary step to make the transition density
of the transformed process closer to a normal distribution, so that the Hermite expansion
gives reasonable results. However, the reader is warned that this is by no means an easy
task for many multivariate SDEs, and impossible for those having non-reducible diffusion
(see Aït-Sahalia (2008) for details). The use of a software with symbolic algebra capabilities
like e.g. Mathematica, Maple or Maxima is necessary to carry out the calculations.
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4.2. Likelihood Approximation and Parameter Estimation
For a reducible time-homogeneous SDMEM, the coefficients C(k)

Y are obtained as in
Section 4.1 by taking (θ,bi), ∆i

j and (xij,x
i
j−1) instead of θ, ∆j and (xj,xj−1), respec-

tively. Then p(K)
X is substituted for the unknown transition density in (4), thus obtaining

a sequence of approximations to the likelihood function

L(K)(θ,Ψ) =
M∏
i=1

∫
B

p
(K)
X (xi|bi,θ) pB(bi|Ψ) dbi, (7)

where

p
(K)
X (xi|bi,θ) =

ni∏
j=1

p
(K)
X (xij,∆

i
j|xij−1,b

i,θ) (8)

and p(K)
X is given by equation (6). By maximizing (7) with respect to (θ,Ψ), approximated

MLEs θ̂
(K)

and Ψ̂
(K)

are obtained.
In general, the integral in (7) does not have a closed form solution, and therefore

efficient numerical integration methods are needed; see Picchini et al. (2010) for the case of
a single random effect (q = 1). General purpose approximation methods for one- or multi-
dimensional integrals, irrespective of the random effects distribution, are available (e.g.
Krommer and Ueberhuber (1998)) and implemented in several software packages, though
the complexity of the problem grows fast when increasing the dimension of B. However,
since exact transition densities or a closed-form approximation to pX are supposed to be
available, analytic expressions for the integrands in (3) or (7) are known and the Laplace
method (e.g. Shun and McCullagh (1995)) may be used. Write bi = (bi1, ..., b

i
q) and define

f(bi|θ,Ψ) = log pX(xi|bi,θ) + log pB(bi|Ψ), (9)

where pX(xi|bi,θ) is given in (4). Then log
∫
B
ef(bi|θ,Ψ)dbi can be approximated using a

second order Taylor series expansion, known as Laplace approximation:

log

∫
B

ef(bi|θ,Ψ)dbi ' f(b̂i|θ,Ψ) +
q

2
log(2π)− 1

2
log
∣∣∣−H(b̂i|θ,Ψ)

∣∣∣
where b̂i = arg maxbi f(bi|θ,Ψ), and H(bi|θ,Ψ) = ∂2f(bi|θ,Ψ)/∂bi∂bi

T is the Hessian
of f w.r.t. bi. Thus, the log-likelihood function is approximately given by

logL(θ,Ψ) '
M∑
i=1

[
f(b̂i|θ,Ψ) +

q

2
log(2π)− 1

2
log
∣∣∣−H(b̂i|θ,Ψ)

∣∣∣] (10)

and the values of θ and Ψ maximizing (10) are approximated MLEs. For the special
case where −f(bi|θ,Ψ) is quadratic and convex in bi the Laplace approximation is ex-
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act (Joe (2008)) and (10) provides the exact likelihood function. An approximation of
logL(K)(θ,Ψ) can be derived in the same way, and we denote with

(θ̂
(K)
, Ψ̂

(K)
) = arg min

θ∈Θ,Ψ∈Υ
− logL(K)(θ,Ψ)

the corresponding approximated MLE of (θ,Ψ). Davidian and Giltinan (2003) recommend
to use the Laplace approximation only if ni is “large”; however Ko and Davidian (2000)
note that even if the ni’s are small, the inferences should still be valid if the magnitude of
intra-individual variation is small relative to the inter-individual variation. This happens
in many applications, e.g. in pharmacokinetics.

In general, computing (10) or logL(K)(θ,Ψ) is non-trivial, since M independent opti-
mization procedures must be run to obtain the b̂i’s and then the M Hessians H(b̂i|θ,Ψ)
must be computed. The latter problem can be solved using either (i) approximations based
on finite differences, (ii) computing the analytic expressions of the Hessians using a symbolic
calculus program or (iii) using automatic differentiation tools (AD, e.g. Griewank (2000)).
We recommend to avoid method (i) since it is computationally costly when the dimen-
sion of M and/or bi grows, whereas methods (ii)-(iii) are reliable choices, since symbolic
packages are becoming standard in most software and are anyway necessary to calculate
an approximation p(K)

X to the transition density. However, when a symbolic package is not
available to the user or is not of help in some specific situations, AD can be a convenient
(if not the only possible) choice, especially when the function to be differentiated is defined
via a complex software code; see the Conclusion for a discussion.

In order to derive the required Hessian automatically we used the AD tool ADiMat for
Matlab (Bischof et al. (2005)), see http://www.autodiff.org for a comprehensive list
of other AD software. For example, assume that a user defined Matlab function named
loglik_indiv computes the f function in (9) at a given value of the random effects bi

(named b_rand):

result = loglik_indiv(b_rand)

so result contains the value of f at bi. The following Matlab code then invokes ADiMat
and creates automatically a file named g_loglik_indiv containing the code necessary to
return the exact (to machine precision) Hessian of loglik_indiv w.r.t. b_rand:

addiff(@loglik_indiv, ’b_rand’,[], ’--2ndorderfwd’)

At this point we initialize the array and the matrix that will contain the gradient and the
Hessian of f w.r.t. the q-dimensional vector bi:

gradient = createFullGradients(b_rand); % inizialize the gradient
Hessian = createHessians([q q], b_rand); % inizialize the Hessian
[Hessian, gradient] = g_loglik_indiv(Hessian, gradient, b_rand);

The last line returns the desired Hessian and the gradient of f evaluated at b_rand. We
used the Hessian either to compute the Laplace approximation or in the trust region

8
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method used for the internal step optimization, read below. When it is possible to derive
the expression for the Hessian analytically we strongly recommend to avoid the use of AD
tools in order to speed up the estimation algorithm. For example, in Section 5.1 only two
random effects are considered and using the Matlab Symbolic Calculus Toolbox we have
obtained the analytic expression for the Hessian without much effort.

For the remainder of this Section the reference to the index K is dropped, except where
necessary, as the following apply irrespectively of whether pX or p(K)

X is used. The mini-
mization of − logL(θ,Ψ) is a nested optimization problem. First the internal optimization
step estimates the b̂i’s for every unit (the b̂i’s are sometimes known in the literature as em-
pirical Bayes estimators). Since both symbolic calculus and AD tools provide exact results
for the derivatives of f(bi), the values provided via AD being only limited by the computer
precision, the exact gradient and Hessian of f(bi) can be used to minimize −f(bi) w.r.t.
bi. We used the subspace trust-region method described in Coleman and Li (1996) and
implemented in the Matlab fminunc function. The external optimization step minimizes
− logL(θ,Ψ) w.r.t. (θ,Ψ), after plugging the b̂i’s into (10). This is a computationally
heavy task, especially for large M , because the M internal optimization steps must be
performed for each infinitesimal variation of the parameters (θ,Ψ). Therefore to perform
the external step we reverted to derivative-free optimization methods, namely the Nelder-
Mead simplex with additional checks on parameter bounds, as implemented by D’Errico
(2006) for Matlab. To speed up the algorithm convergence, b̂i(k) may be used as starting
value for bi in the (k+ 1)th iteration of the internal step, where b̂i(k) is the estimate of bi

at the end of the kth iteration of the internal step. This might not be an optimal strategy,
however it should improve over the choice made by some authors who use a vector of zeros
as starting value for bi each time the internal step is performed. The latter strategy may
be inefficient when dealing with highly time consuming problems, as it requires many more
iterations.

Once estimates for θ and Ψ are available, estimates of the random parameters bi are
automatically given by the values of the b̂i at the last iteration of the external optimization
step, see Section 5.2 for an example.

5. SIMULATION STUDIES

In this Section the efficacy of the method is assessed through Monte Carlo simulations
under different experimental designs. We always chooseM and n to be not very large, since
in most applications, e.g. in the biomedical context, large datasets are often unavailable.
However, see Picchini et al. (2008) for the application of a one-dimensional SDMEM on a
very large data set.

5.1. Orange Trees Growth Model
The following is as a toy example for growth models, where SDEs are used regularly,

especially to describe animal growth that allows for non-monotone growth and can model
unexpected changes in growth rates, see Donnet et al. (2010) for an application to chicken
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growth, Strathe et al. (2009) for an application to growth of pigs, and Filipe et al. (2010)
for an application to bovine data.

In Lindstrom and Bates (1990) and Pinheiro and Bates (2002, Sections 8.1.1-8.2.1),
data from a study on the growth of orange trees are studied by means of deterministic
nonlinear mixed-effects models using the method proposed in Lindstrom and Bates (1990).
The data are available in the Orange dataset provided in the nlme R package (Pinheiro et al.
(2007)). This is a balanced design consisting of seven measurements of the circumference
of each of five orange trees. In these references, a logistic model was considered to study
the relationship between the circumference X i,j (mm), measured on the ith tree at age tij
(days), and the age (i = 1, ..., 5 and j = 1, ..., 7):

X i,j =
φ1

1 + exp(−(tij − φ2)/φ3)
+ εij (11)

with φ1 (mm), φ2 (days) and φ3 (days) all positive, and εij ∼ N (0, σ2
ε) are i.i.d. mea-

surement error terms. The parameter φ1 represents the asymptotic value of X as time
goes to infinity, φ2 is the time value at which X = φ1/2 (the inflection point of the logis-
tic model) and φ3 is the time distance between the inflection point and the point where
X = φ1/(1 + e−1). In Picchini et al. (2010) a SDMEM was derived from model (11) with
a normally distributed random effect on φ1. The likelihood approximation described in
Section 4.2 was applied to estimate parameters, but using Gaussian quadrature instead of
the Laplace method to solve the one-dimensional integral. Now consider a SDMEM with
random effects on both φ1 and φ3. The dynamical model corresponding to (11) for the ith
tree and ignoring the error term is given by the following ODE

dX i
t

dt
=

1

(φ1 + φi1)(φ3 + φi3)
X i
t(φ1 + φi1 −X i

t), X i
0 = xi0, t ≥ ti0

with φi1 ∼ N (0, σ2
φ1

) independent of φi3 ∼ N (0, σ2
φ3

) and both independent of εij ∼ N (0, σ2
ε)

for all i and j. Now φ2 only appears in the deterministic initial condition X i
0 = X i

ti0
=

φ1/(1 + exp[(φ2 − ti0)/φ3]), where ti0 = 118 days for all the trees. In growth data it is
often observed that the variance is proportional to the level, which is obtained in an SDE
if the diffusion coefficient is proportional to the square root of the process itself. Consider
a state-dependent diffusion coefficient leading to the SDMEM:

dX i
t =

1

(φ1 + φi1)(φ3 + φi3)
X i
t(φ1 + φi1 −X i

t)dt+ σ
√
X i
tdW

i
t , X i

0 = xi0, (12)

φi1 ∼ N (0, σ2
φ1

), φi3 ∼ N (0, σ2
φ3

), (13)

where σ has units (mm/days)1/2. Thus, θ = (φ1, φ3, σ), bi = (φi1, φ
i
3) and Ψ = (σφ1 , σφ3).

Since the random effects are independent, the density pB in (9) is pB(bi|Ψ) = ϕ(φi1)ϕ(φi3),
where ϕ(φi1) and ϕ(φi3) are normal pdfs with means zero and standard deviations σφ1 and
σφ3 , respectively.
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Table 1: Orange trees growth: Monte Carlo maximum likelihood estimates and 95% confidence intervals
from 1000 simulations of model (12)-(13), using an order K = 2 for the closed form density expansion
(CFE) and the density approximation based on the Euler-Maruyama discretization (EuM). For the CFE
method measures of symmetry are also reported.

True parameter values
φ1 φ3 σ σφ1 σφ3 φ̂1 φ̂3 σ̂ σ̂φ1 σ̂φ3

M = 5, n+ 1 = 7
195 350 0.08 25 52.5 Mean CFE [95% CI] 197.40 [164.98, 236.97] 356.88 [281.74, 460.95] 0.079 [0.057, 0.102] 15.68 [1.7× 10−7, 44.33] 28.67 [5.8× 10−8, 112.28]

Skewness CFE 0.35 0.59 0.22 0.55 1.11
Kurtosis CFE 3.30 3.56 3.06 2.76 3.88

Mean EuM [95% CI] 183.35 [154.62, 217.93] 303.75 [236.57, 398.10] 0.089 [0.060, 0.123] 12.60 [1.5× 10−7, 39.56] 34.96 [5.9× 10−8, 112.48]
M = 5, n+ 1 = 20

195 350 0.08 25 52.5 Mean CFE [95% CI] 196.71 [164.48, 236.39] 352.16 [274.88, 461.84] 0.079 [0.067, 0.090] 15.73 [2× 10−7, 43.67] 30.77 [7× 10−8, 114.94]
Skewness CFE 0.33 0.63 -0.04 0.44 1.03
Kurtosis CFE 3.33 3.67 2.93 2.38 3.69

Mean EuM [95% CI] 192.50 [161.45, 230.09] 339.12 [264.82, 445.84] 0.080 [0.068, 0.091] 15.01 [1.9× 10−7, 41.48] 32.63 [6.4× 10−8, 114.79]
M = 30, n+ 1 = 7

195 350 0.08 25 52.5 Mean CFE [95% CI] 196.06 [183.41, 209.52] 354.55 [317.66, 395.48] 0.081 [0.072, 0.092] 22.71 [7.25, 33.45] 42.18 [1.5× 10−4, 73.84]
Skewness CFE 0.20 0.32 0.14 -0.89 -0.65
Kurtosis CFE 3.15 3.29 3.14 5.33 3.20

Mean EuM [95% CI] 182.89 [172.02, 194.68] 303.87 [273.18, 341.84] 0.093 [0.080, 0.106] 19.23 [0.05, 27.82] 48.54 [12.13, 75.81]
M = 30, n+ 1 = 20

195 350 0.08 25 52.5 Mean CFE [95% CI] 195.62 [183.33, 209.20] 351.18 [315.47, 389.21] 0.080 [0.075, 0.085] 23.04 [9.61, 34.03] 44.83 [2.2× 10−4, 74.65]
Skewness CFE 0.20 0.30 0.05 -0.73 -0.71
Kurtosis CFE 3.10 3.27 2.76 5.08 3.62

Mean EuM [95% CI] 191.51 [179.93, 204.40] 338.19 [304.38, 374.94] 0.081 [0.076, 0.086] 22.24 [8.93, 32.83] 46.34 [4.4× 10−4, 75.03]

We generated 1000 datasets of dimension (n + 1) ×M from (12)-(13) and estimated
(θ,Ψ) on each dataset, thus obtaining 1000 sets of parameter estimates. This was repeated
for (M,n + 1) = (5, 7), (5, 20), (30, 7) and (30, 20). Trajectories were generated using the
Milstein scheme (Kloeden and Platen (1992)) with unit step size in the same time interval
[118, 1582] as in the real data. The data were then extracted by linear interpolation from
the simulated trajectories at the linearly equally spaced sampling times {t0, t1, ..., tn} for
different values of n, where t0 = 118 and tn = 1582 for every n. An exception is the case
M = 7, ni = n = 5, where {t0, ..., tn} = {118, 484, 664, 1004, 1231, 1372, 1582}, the same as
in the data.

Parameters were fixed at (X0, φ1, φ3, σ, σφ1 , σφ3) = (30, 195, 350, 0.08, 25, 52.5). The
value for σφ3 is chosen such that the coefficient of variation for (φ3 + φi3) is 15%, i.e. φi3
has non-negligible influence. An order K = 2 approximation to the likelihood was used,
see the Appendix for the coefficients. The estimates (θ̂

(2)
, Ψ̂

(2)
) have been obtained as

described in Section 4.2 and are denoted as CFE in Table 1, where CFE stands for Closed
Form Expansion to denote that a closed-form transition density expansion technique has
been used.

The CFE estimates were used to produce the fit for (M,n+1) = (5, 20) given in Figure
1(a), reporting simulated data and empirical mean of 5000 simulated trajectories from (12)-
(13) generated with the Milstein scheme using a step-size of unit length. Empirical 95%
confidence bands of trajectory values and three example trajectories are also reported. For
each simulated trajectory independent realizations of φi1 and φi3 were produced by drawing
from the normal distributions N (0, (σ̂

(2)
φ1

)2) and N (0, (σ̂
(2)
φ3

)2). The corresponding fit for
(M,n) = (30, 20) is given in Figure 1(b). There is a positive linear correlation (r = 0.42,
p < 0.001) between the estimates of φ1 and φ3, see Figure 2 reporting also the least
squares fit line. Similar relations were found when using different combinations of M and
n. Histograms of the population parameter estimates φ̂(2)

1 , φ̂(2)
3 and σ̂(2) are given in Figure

11
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(a) (M,n+ 1) = (5, 20)
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(b) (M,n+ 1) = (30, 20)

Figure 1: Orange trees growth: simulated data (circles connected by straight lines) and fit of the SDMEM
(12)-(13) using an order K = 2 for the density expansion. In panel (a) is (M,n + 1) = (5, 20) and in
panel (b) is (M,n+ 1) = (30, 20). Each panel reports the empirical mean curve (smooth solid line), 95%
empirical confidence curves (dashed lines) and example simulated trajectories.
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Figure 2: Orange trees growth: scatterplot of φ̂(2)3 vs φ̂(2)1 and least squares fit for (M,n+ 1) = (30, 20).
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Figure 3: Orange trees growth: histogram of population parameter estimates obtained using an order
K = 2 for the density expansion, and fits of normal probability density functions for (M,n+1) = (30, 20).

3, with normal probability density functions fitted on top. The normal densities fit well
to the histograms with estimated means (standard deviations) equal to 195.6 (6.6), 351.2
(19.2) and 0.080 (0.003) for φ̂(2)

1 , φ̂(2)
3 and σ̂(2), respectively.

It is worthwhile to compare the methodology presented here, where a closed form expan-
sion to the transition density is used, with a more straightforward approach, namely the ap-
proximation to the transition density based on the so-called “one-step” Euler-Maruyama ap-
proximation. Consider for ease of exposition a scalar SDE dXt = µ(Xt)dt+σ(Xt)dWt start-
ing at X0 = x0. The SDE can be approximated by Xt+∆−Xt = µ(Xt)∆ + σ(Xt)∆

1/2εt+∆

for ∆ “small”, with {εt+∆} a sequence of independent draws from the standard normal
distribution. This leads to the following transition density approximation

pX(xt+∆,∆ | xt) ≈ ϕ(xt+∆;xt + µ(xt)∆, σ
2(xt)∆) (14)

where ϕ(·;m, v) is the pdf of the normal distribution with mean m and variance v. The
parameter estimates obtained using (14) instead of the closed-form approximation p(K)

X are
given in Table 1 and are denoted EuM (standing for Euler-Maruyama). The value for ∆
used in (14) is the time distance between the simulated data points. The comparisons
between CFE and EuM for the same values of M and n have been performed using the
same simulated datasets. The quality of the estimates obtained with the CFE method
compared to the simple EuM approximation is considerable improved for data sampled at
low frequency (∆ large), i.e. when n = 7, which is a common situation in applications. For
(M = 30, n = 7) the 95% confidence intervals for the EuM method even fail to contain the
true parameter values. The bad behavior of the EuM approximation when ∆ is not small
is well documented (e.g. Jensen and Poulsen (2002), Sørensen (2004)) and therefore our
results are not surprising. Several experiments with different SDE models (not SDMEMs)
have been conducted in Jensen and Poulsen (2002) where the conclusion is that although
the CFE technique does require tedious algebraic calculations, they seem to be worth the
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effort.

5.2. Two-Dimensional Ornstein-Uhlenbeck Process
The OU process has found numerous applications in biology, physics, engineering and

finance, see e.g. Picchini et al. (2008) and Ditlevsen and Lansky (2005) for applications in
neuroscience, or Favetto and Samson (2010) for a two-dimensional OU model describing
the tissue microvascularization in anti-cancer therapy.

Consider the following SDMEM of a two-dimensional OU process:

dX
(1)i
t = −

(
β11b

i
11(X

(1)i
t − α1) + β12b

i
12(X

(2)i
t − α2)

)
dt+ σ1dW

(1)i
t , (15)

dX
(2)i
t = −

(
β21b

i
21(X

(1)i
t − α1) + β22b

i
22(X

(2)i
t − α2)

)
dt+ σ2dW

(2)i
t , (16)

bi
ll′
∼ Γ(νll′ , ν

−1
ll′ ), l, l

′
= 1, 2; i = 1, ...,M (17)

with initial values X(k)i
0 = x

(k)i
0 , k = 1, 2. Here Γ(r, s) denotes the Gamma distribution

with positive parameters r and s and probability density function

pΓ(z) =
1

srΓ(r)
zr−1e−z/s, z ≥ 0,

with mean 1 when s = r−1. The parameters bill′ , βll′ , σl and νll′ are strictly positive
(l, l′ = 1, 2) whereas α1 and α2 are real. Let ∗ denote element-wise multiplication. Rewrite
the system in matrix notation as

dXi
t = β ∗ bi(α−Xi

t)dt+ σdWi
t, Xi

0 = xi0, i = 1, ...,M (18)

where

Xi
t =

(
X

(1)i
t

X
(2)i
t

)
, β =

(
β11 β12

β21 β22

)
, bi =

(
bi11 bi12

bi21 bi22

)
,

α =

(
α1

α2

)
, σ =

(
σ1 0
0 σ2

)
, Wi

t =

(
W

(1)i
t

W
(2)i
t

)
, Xi

0 =

(
X

(1)i
0

X
(2)i
0

)
.

The matrices β ∗ bi and σ are assumed to have full rank. Assume the random effects are
mutually independent and independent of Xi

0 and Wi
t. Because of (17) the random effects

have mean one and therefore E(β ∗bi) = β is the population mean. The set of parameters
to be estimated in the external optimization step is θ = (α1, α2, β11, β12, β21, β22, σ1, σ2)
and Ψ = (ν11, ν12, ν21, ν22). However, during the internal optimization step it is necessary
to estimate the bi’s also, that is 4M parameters. Thus, the total number of parameters in
the overall estimation algorithm with internal and external steps is 12 + 4M .

A stationary solution to (18) exists when the real parts of the eigenvalues of β ∗ bi are
strictly positive, i.e. β ∗ bi has to be positive definite. The OU process is one of the only
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multivariate models with a known transition density other than multivariate models which
reduce to the superposition of univariate processes. The transition density of model (18)
for a given realization of the random effects is the bivariate Normal

pX(xij,∆
i
j|xij−1,b

i,θ) = (2π)−1|Ω|−1/2 exp(−(xij −m)TΩ−1(xij −m)/2) (19)

with mean vector m = α + (xij−1 − α) exp(−(β ∗ bi)∆i
j) and covariance matrix Ω =

λ− exp(−(β ∗ bi)∆i
j)λ exp(−(β ∗ bi)T∆i

j), where

λ =
1

2tr(β ∗ bi)|β ∗ bi|
(
|β ∗ bi|σσT + (β ∗ bi − tr(β ∗ bi)I)σσT (β ∗ bi − tr(β ∗ bi)I)T

)
is the 2× 2 matrix solution of the Lyapunov equation (β ∗ bi)λ+ λ(β ∗ bi)T = σσT and
I is the 2 × 2 identity matrix (Gardiner (1985)). Here |A| denotes the determinant and
tr(A) denotes the trace of a square matrix A.

>From (18) we generated 1000 datasets of dimension 2(n + 1) × M and estimated
the parameters using the proposed approximated method, thus obtaining 1000 sets of
parameter estimates. A dataset consists of 2(n + 1) observations at the equally spaced
sampling times {0 = ti0 < ti1 < · · · < tin = 1} for each of the M experiments. The
observations are obtained by linear interpolation from simulated trajectories using the
Euler-Maruyama scheme with step size equal to 10−3 (Kloeden and Platen (1992)). We used
the following set-up: (X

(1)i
0 , X

(2)i
0 )=(3, 3), (α1, α2, β11, β12, β21, β22, σ1, σ2)=(1, 1.5, 3, 2.5,

1.8, 2, 0.3, 0.5,), and (ν11, ν12, ν21, ν22)=(45, 100, 100, 25). An order K = 2 approximation
to the likelihood was used, see the Appendix for the coefficients of the transition density
expansion. The estimates (θ̂

(2)
, Ψ̂

(2)
) are given in Table 2.

The fit for (M, 2(n + 1)) = (20, 40) is given in Figures 4(a)-4(b) for X(1)i
t and X

(2)i
t ,

respectively. Each figure reports the simulated data, the empirical mean of 5000 simulated
trajectories from (15)-(17), generated with the Euler-Maruyama scheme using a step size
of length 10−3, the empirical 95% confidence bands of trajectory values as well as five
example trajectories. For each simulated trajectory a realization of bi

ll′
was produced by

drawing from the Γ(ν
(2)
ll , (ν

(2)
ll′ )−1) distribution using the estimates given in Table 2. The

empirical correlations of the population parameter estimates is reported in Figure 5. There
is a strong negative correlation between the estimates of α1 and α2 (r = −0.97, p < 0.001),
which are the asymptotic means for X(1)i

t and X
(2)i
t . The sum α̂

(2)
1 + α̂

(2)
2 results always

almost exactly equal to 2.5 in each dataset (mean = 2.50, standard deviation = 0.04), so
the sum is more precisely determined than each mean parameter. This occurs because there
is a strong negative correlation between X(1)i

t and X(2)i
t equal to -0.898 in the stationary

distribution in this numerical example. The individual mean parameters are unbiased but
with standard deviations five times larger than the sum. There is a moderate negative
correlation between β21 and β22 (r = −0.53, p < 0.001).

The estimation method provides estimates for the bi’s also, given by the last values
returned by the internal optimization step in the last round of the overall algorithm. An
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Table 2: Ornstein-Uhlenbeck model: Monte Carlo maximum likelihood estimates and 95% confidence
intervals from 1000 simulations of model (18), using an order K = 2 density expansion.

True parameter values Estimates for M = 7, 2(n+ 1) = 40

α1 α2 β11 β12 α̂
(2)
1 α̂

(2)
2 β̂

(2)
11 β̂

(2)
12

1 1.5 3 2.5 Mean [95% CI] 1.00 [0.59, 1.40] 1.50 [1.00, 1.97] 3.03 [2.50, 3.59] 2.50 [2.49, 2.51]
Skewness 0.19 -0.32 0.21 3.17
Kurtosis 5.27 5.73 3.29 59.60

β21 β22 σ1 σ2 β̂
(2)
21 β̂

(2)
22 σ̂

(2)
1 σ̂

(2)
2

1.8 2 0.3 0.5 Mean [95% CI] 1.61 [0.80, 2.14] 2.30 [1.56, 3.63] 0.307 [0.274, 0.339] 0.500 [0.494, 0.508]
Skewness -1.13 1.17 0.15 -1.10
Kurtosis 5.45 4.77 3.05 46.62

ν11 ν12 ν21 ν22 ν̂
(2)
11 ν̂

(2)
12 ν̂

(2)
21 ν̂

(2)
22

45 100 100 25 Mean [95% CI] 104.79 [16.63, 171.62] 120.97 [5.90, 171.62] 105.97 [2.02, 171.62] 98.60 [4.92, 171.62]
Skewness -0.10 -0.72 -0.35 -0.17
Kurtosis 1.26 2.13 1.74 1.25

True parameter values Estimates for M = 20, 2(n+ 1) = 40

α1 α2 β11 β12 α̂
(2)
1 α̂

(2)
2 β̂

(2)
11 β̂

(2)
12

1 1.5 3 2.5 Mean [95% CI] 1.00 [0.72, 1.27] 1.50 [1.19, 1.83] 3.01 [2.71, 3.32] 2.50 [2.50, 2.50]
Skewness -0.13 -0.17 0.14 0.01
Kurtosis 7.01 6.84 3.32 34.66

β21 β22 σ1 σ2 β̂
(2)
21 β̂

(2)
22 σ̂

(2)
1 σ̂

(2)
2

1.8 2 0.3 0.5 Mean [95% CI] 1.71 [1.26, 2.03] 2.13 [1.72, 2.74] 0.307 [0.289, 0.327] 0.500 [0.495, 0.503]
Skewness -1.05 0.80 -0.01 1.69
Kurtosis 5.23 3.96 3.00 41.16

ν11 ν12 ν21 ν22 ν̂
(2)
11 ν̂

(2)
12 ν̂

(2)
21 ν̂

(2)
22

45 100 100 25 Mean [95% CI] 83.35 [22.15, 171.62] 114.16 [18.18, 171.62] 105.00 [6.04, 171.62] 84.61 [7.36, 171.62]
Skewness 0.66 -0.35 -0.26 0.24
Kurtosis 1.83 1.86 1.84 1.26
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Figure 4: Ornstein-Uhlenbeck: simulated data (circles connected by straight lines), fit of X(1)i
t (panel (a))

and of X(2)i
t (panel (b)) from the SDMEM (18) for (M, 2(n + 1)) = (7, 40). For each coordinate of the

system the panels report the empirical mean curve of the SDMEM (smooth solid line), 95% empirical
confidence curves (dashed lines) and five simulated trajectories.
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Figure 5: Ornstein-Uhlenbeck: scatterplot matrix of the estimates (α̂(2)
1 , α̂

(2)
2 , β̂

(2)
11 , β̂

(2)
12 , β̂

(2)
21 , β̂

(2)
22 , σ̂

(2)
1 , σ̂

(2)
2 )

for (M, 2(n+ 1)) = (20, 40).

equivalent strategy is to plug (θ̂
(2)
, Ψ̂

(2)
) into (9) and then minimize −f(bi) w.r.t. bi

and obtain b̂
i(2)

. The estimation of the random effects is fast because we make use of the
explicit Hessian, and for this example only 2-3 iterations of the internal step algorithm were
necessary. We estimated the bi’s by plugging each of the 1000 sets of estimates into (9),
thus obtaining the corresponding 1000 sets of estimates of bi. In Figure 6 boxplots of the
estimates of the four random effects are reported forM = 7, where estimates from different
units have been pooled together. For bothM = 7 andM = 20 the estimates of the random
effects have sample means equal to one, as it should be given the distributional hypothesis.
The standard deviations of the true random effects are given by 1/

√
νll and thus equal 0.15,

0.1, 0.1 and 0.2 for bi11, bi12, bi21 and bi22, respectively. The empirical standard deviations of
the estimated random effects for M = 7 are 0.09, 0.09, 0.12 and 0.11, whereas for M = 20
they are 0.09, 0.06, 0.08 and 0.09.

The parameters could be estimated by plugging the exact transition density (19) into
(4) to form (9) and then maximize (10). However, the effort required for the estimation
algorithm to converge is computationally costly, both using the analytic expression for the
Hessian of f in (10) or the one obtained using AD, since the Hessian has a huge expression
when using the exact transition density. This problem is not present when using the density
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Figure 6: Ornstein-Uhlenbeck: boxplots of the random effects estimates b̂
i(2)

for the SDMEM (18) for
(M, 2(n+ 1)) = (7, 40).

expansion because the expansion consists of polynomials of the parameters.

5.3. The square root SDMEM
The square root process is given by

dXt = −β(Xt − α)dt+ σ
√
XtdWt.

This process is ergodic and its stationary distribution is the Gamma distribution with
shape parameter 2βα/σ2 and scale parameter σ2/(2β) provided that β > 0, α > 0, σ > 0,
and 2βα ≥ σ2. The process has many applications: it is, for instance, used in mathematical
finance to model short term interest rates where it is called the CIR process, see Cox et al.
(1985). It is also a particular example of an integrate-and-fire model used to describe the
evolution of the membrane potential in a neuron between emission of electrical impulses,
see e.g. Ditlevsen and Lansky (2006) and references therein. In the neuronal literature it
is called the Feller process, because William Feller proposed it as a model for population
growth in 1951. Consider the SDMEM

dX i
t = −β̃i(X i

t − α− αi)dt+ σ̃i
√
X i
tdW

i
t , i = 1, ...,M. (20)
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Assume αi ∼ B(pα, pα), σ̃i ∼ LN (pσ1 , p
2
σ2

) and β̃i ∼ LN (pβ1 , p
2
β2

). Here LN (·, ·) denotes
the (standard or 2-parameter) log-normal distribution and B(pα, pα) denotes the (general-
ized symmetric) Beta distribution on the interval [a, b], with density function

pB(z) =
1

B(pα, pα)

(z − a)pα−1(b− z)pα−1

(b− a)2pα−1
, pα > 0, a ≤ z ≤ b,

where B(·, ·) is the beta function and a and b are known constants. For ease of inter-
pretation, assume the individual parameters β̃i and σ̃i to have unknown means β and σ
respectively, e.g. assume β̃i = β + βi and σ̃i = σ + σi, βi and σi being zero mean random
quantities. This implies that β and σ do not need to be estimated directly: in fact the
estimate for β results determined via the moment relation β = exp(pβ1 + p2

β2
/2) and can

be calculated once estimates for pβ1 and pβ2 are available. Similarly, an estimate for σ can
be determined via σ = exp(pσ1 + p2

σ2
/2) by plugging in the estimates for pσ1 and pσ2 .

The parameters to be estimated are θ = α, Ψ = (pα, pβ1 , pβ2 , pσ1 , pσ2) and bi =
(αi, β̃i, σ̃i). To ensure that X i

t stays positive it is required that 2(α + αi)β̃i/(σ̃i)2 ≥ 1.
This condition must be checked in each iteration of the estimation algorithm. The means
and variances of the population parameters added the random effects are

E(α + αi) = α + (a+ b)/2 ; Var(α + αi) = (b− a)2/(4(2pα + 1)),

E(σ̃i) = σ = exp(pσ1 + p2
σ2
/2) ; Var(σ̃i) = (exp(p2

σ2
)− 1) exp(2pσ1 + p2

σ2
),

E(β̃i) = β = exp(pβ1 + p2
β2
/2) ; Var(β̃i) = (exp(p2

β2
)− 1) exp(2pβ1 + p2

β2
).

For fixed values of the random effects, the asymptotic mean for the experimental unit i is
α+αi. In most applications this value should be bounded within physical realistic values,
and thus the Beta distribution was chosen for αi, since the support of the distribution of
α+αi is then [α+a, α+ b]. As in the previous examples, 1000 simulations were performed
by generating equidistant observations in the time interval [0, 1] with the following setup:
(X i

0, α, pα, pβ1 , pβ2 , pσ1 , pσ2) = (1, 3, 5, 0, 0.25, 0.1, 0.3) with fixed constants [a, b] = [0.1, 5].
The coefficient of variations for α + αi, β̃i and σ̃i are then 13.3%, 25.4% and 30.7%,
respectively. The estimates obtained using an order K = 2 density expansion are given
in Table 3. A positive bias for α̂(2) is noticeable, however results are overall satisfactory,
even using small sample sizes. Bias in estimates of drift parameters on finite observation
intervals is a well known problem, and especially the speed parameter β in mean reverting
diffusion models is known to be biased and highly variable. In Tang and Chen (2009) the
biases for β in the OU and the square root model are calculated to be on the order of T ,
where T is the length of the observation interval, and thus increasing n does not improve
the estimates unless the observation interval is also increased.

As described in the Ornstein-Uhlenbeck example, we have verified that the small sample
distributions for the estimates of αi, β̃i and σ̃i have the expected characteristics: e.g. in
the case (M,n + 1) = (5, 7), by pooling together estimates from different units we have
the following means (standard deviations) 2.61 (1.40), 0.95 (0.38) and 1.06 (0.29) for the
estimates of αi, β̃i and σ̃i, respectively. These values match well with the first moments
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Table 3: The square root model: Monte Carlo maximum likelihood estimates and 95% confidence intervals
from 1000 simulations of model (20), using an order K = 2 density expansion. Determined parameters
are denoted with (*), i.e. true values for β and σ are determined according to the moment relations
β = exp(pβ1

+ p2β2
/2) and σ = exp(pσ1

+ p2σ2
/2). Estimates for determined parameters are calculated by

plugging the estimates of pβ1,2
and pσ1,2

obtained from each of the 1000 Monte Carlo simulations into the
moment relations, then averaging over the 1000 determined values.

True parameter values Estimates for M = 5, n+ 1 = 7

α β (*) σ (*) pα α̂(2) β̂(2) (*) σ̂(2) (*) p̂
(2)
α

3 1.03 1.16 5 Mean [95% CI] 4.06 [1,52, 9.85] 1.14 [0.51, 1.69] 1.13 [0.76, 1.60] 8.80 [0.94, 112.84]
Skewness 1.23 0.49 0.60 4.37
Kurtosis 4.46 3.20 4.72 22.47

pβ1 pβ2 pσ1 pσ2 p̂
(2)
β1

p̂
(2)
β2

p̂
(2)
σ1 p̂

(2)
σ2

0 0.25 0.1 0.3 Mean [95% CI] -0.038 [-0.824, 0.177] 0.372 [0.001, 1.000] 0.082 [-0.278, 0.450] 0.173 [0.001, 0.561]
Skewness -2.92 0.79 -0.20 0.88
Kurtosis 16.67 2.10 4.16 4.00

True parameter values Estimates for M = 10, n+ 1 = 20

α β (*) σ (*) pα α̂(2) β̂(2) (*) σ̂(2) (*) p̂
(2)
α

3 1.03 1.16 5 Mean [95% CI] 4.43 [1.85, 9.63] 1.21 [0.44, 1.69] 1.15 [0.88, 1.48] 5.31 [0.99, 64.63]
Skewness 1.01 -0.04 0.44 6.35
Kurtosis 3.65 2.66 3.44 46.77

pβ1 pβ2 pσ1 pσ2 p̂
(2)
β1

p̂
(2)
β2

p̂
(2)
σ1 p̂

(2)
σ2

0 0.25 0.1 0.3 Mean [95% CI] -0.045 [-0.953, 0.154] 0.487 [0.001, 1] 0.108 [-0.166, 0.376] 0.153 [0.001, 0.447]
Skewness -3.04 0.16 -0.03 0.71
Kurtosis 14.65 1.40 3.29 2.84

True parameter values Estimates for M = 20, n+ 1 = 20

α β (*) σ (*) pα α̂(2) β̂(2) (*) σ̂(2) (*) p̂
(2)
α

3 1.03 1.16 5 Mean [95% CI] 4.00 [2.35, 6.78] 1.21 [0.97, 1.68] 1.15 [0.98, 1.35] 2.33 [1.00, 5.00]
Skewness 1.50 0.27 0.27 12.78
Kurtosis 6.74 2.98 3.38 174.05

pβ1 pβ2 pσ1 pσ2 p̂
(2)
β1

p̂
(2)
β2

p̂
(2)
σ1 p̂

(2)
σ2

0 0.25 0.1 0.3 Mean [95% CI] -0.011 [-0.069, 0.042] 0.498 [0.010, 1.000] 0.101 [-0.061, 0.256] 0.27 [0.13, 0.41]
Skewness -5.97 0.22 -0.02 -0.01
Kurtosis 47.98 1.59 3.17 3.17

of the true random effects E(αi) = (0.1 + 5)/2 = 2.55, E(β̃i) = 1.03 and E(σ̃i) = 1.16 and
less well with the standard deviations SDαi = 0.74, SDβ̃i = 0.26 and SDσ̃i = 0.35. Average
estimation time on a dataset of dimension (M,n + 1) = (10, 20) was around 95 seconds
and around 160 seconds when (M,n+ 1) = (20, 20), using a Matlab program on an Intel
Core 2 Quad CPU (3 GHz).

6. CONCLUSIONS

An estimation method for population models defined via SDEs, incorporating random
effects, has been proposed and evaluated through simulations. SDE models with ran-
dom effects have rarely been studied, as it is still non-trivial to estimate parameters in
SDEs, even on single/individual trajectories, due to difficulties in deriving analytically the
transition densities and the computational cost required to approximate the densities nu-
merically. Approximation methods for transition densities is an important research topic,
since a good approximation is necessary to carry out inferences based on the likelihood
function, which guarantees well known optimal properties for the resulting estimators. Of
the several approximate methods proposed in the last decades (see e.g. Sørensen (2004) and
Hurn et al. (2007) for reviews) here we have considered the one suggested by Aït-Sahalia
(2008) for the case of multidimensional SDEs, since it results in an accurate closed-form
approximation for pX (Jensen and Poulsen (2002)).

In this work SDEs with multiple random effects have been studied, moving a step
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forward with respect to the results presented in Picchini et al. (2010), where Gaussian
quadrature was used to solve the integrals for a single random effect. The latter approach
results unfeasible when there are several random effects because the dimension of the
integral grows. In fact, it may be difficult to numerically evaluate the integral in (3) and
(7) when bi ∈ B ⊆ Rq, with q much larger than 2, and efficient numerical algorithms are
needed. As noted by Booth et al. (2001), if e.g. q = 20 one cannot count on standard
statistical software to maximize the likelihood, and numerical integration quadrature is only
an option if the dimension of the integral is low, whereas it quickly becomes unreliable when
the dimension grows. Some references are the review paper by Cools (2002), Krommer and
Ueberhuber (1998) and references therein, or one of the several monographs on Monte Carlo
methods (e.g. Ripley (2006)). In the mixed-effects framework the amount of literature
devoted to the evaluation of q-dimensional integrals is large, see e.g. Davidian and Giltinan
(2003), Pinheiro and Bates (1995), McCulloch and Searle (2001) and Pinheiro and Chao
(2006). We decided to use the Laplace approximation because using a symbolic calculus
software it is relatively easy to obtain the Hessian matrix necessary for the calculations,
which results useful also to speed up the optimization algorithm.

Computing derivatives of long expressions can be a tedious and error prone task even
with the help of a software for symbolic calculus. In those cases we reverted to software
for automatic differentiation (AD, e.g. Griewank (2000)). Although the present work
does not necessarily rely on AD tools, it is worthwhile to spend a few words to describe
roughly what AD is, since it is relatively unknown in the statistical community even if
it has already been applied in the mixed-effects field (Skaug (2002); Skaug and Fournier
(2006)). AD should not be confused with symbolic calculus since it does not produce
analytic expressions for the derivatives/Hessians of a given function, i.e. it does not produce
expressions meant to be understood by the human eye. Instead, given a program computing
some function h(u), the application of AD on h(u) produces another program implementing
the calculations necessary to compute gradients, Hessians etc. of h(u) exactly (to machine
precision); furthermore, AD can differentiate programs including e.g. for loops or if-else
statements, which are outside the scope of symbolic differentiation. See http://www.
autodiff.org for a list of AD software tools. However, the possibility of easily deriving
gradients and Hessians using AD comes at a price. The code produced by AD to compute
the derivatives of h(u) may result so long and complex that it might affect negatively
the performance of the overall estimation procedure, when invoked into an optimization
procedure. Thus, we suggest to use analytic expressions whenever possible. However, at the
very least, an AD program can still be useful to check whether analytically obtained results
are correct or not. Modellers and practitioners might consider the software AD Model
Builder (ADMB Project (2009)), providing a framework integrating AD, model building
and data fitting tools, which comes with its own module for mixed-effects modelling.

This work has a number of limitations, mostly due to the difficulty in carrying out
the closed-form approximation to the likelihood for multidimensional SDEs (d ≥ 2). It is
even more difficult when the diffusion is not reducible, although mathematical methods to
treat this case are available (Aït-Sahalia (2008)). Another limitation is that measurement
error is not modelled, which is a problem if this noise source is not negligible relatively
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to the system noise. The R PSM package is capable of modelling measurement error
and uses the Extended Kalman Filter (EKF) to estimate SDMEMs (Klim et al. (2009)).
EKF provides approximations for the individual likelihoods which are exact only for linear
SDEs. The closed-form expansion considered in the present work can instead provide
an approximation as good as desired to the individual likelihood (8) by increasing the
order K of the expansion, though it can be a tedious task. Like in the present paper,
PSM considers a Laplace approximation to multidimensional integrals, but Hessians are
obtained using an approximation to the second order derivatives (first order conditional
estimation, FOCE); in our work Hessians are obtained exactly (to machine precision) using
automatic differentiation. Unfortunately, the structural differences between our method
and PSM make a rigorous comparison between the two methods impossible, even simply in
terms of computational times, since PSM requires the specification of a measurement error
factor and thus both the observations and the number of parameters considered in the
estimation are different. Finally, PSM assumes multivariate normally distributed effects
only, whereas in our method this restriction is not necessary.

We believe the class of SDMEMs to be useful in applications, especially in those
areas where mixed-effects theory is used routinely, e.g. in biomedical and pharmacoki-
netic/pharmacodynamic studies. From a theoretical point of view SDMEMs are necessary
when analyzing repeated measurements data if both the variability between experiments
to obtain more precise estimates of population characteristics, as well as stochasticity in
the individual dynamics should be taken into account.

AppendixA. REDUCIBILITY AND DENSITY EXPANSION COEFFICIENTS

AppendixA.1. Reducible diffusions
The following is a necessary and sufficient condition for the reducibility of a multivariate

diffusion process (Aït-Sahalia (2008)):

Proposition 1. The diffusion X is reducible if and only if

d∑
q=1

∂σik(x)

∂x(q)
σqj(x) =

d∑
q=1

∂σij(x)

∂x(q)
σqk(x)

for each x in E and triplet (i, j, k) = 1, ..., d. If σ is nonsingular, then the condition is

∂{σ−1}ij(x)

∂x(k)
=
∂{σ−1}ik(x)

∂x(j)

where {σ−1}ij(x) is the (i, j)-th element of σ−1(x).

AppendixA.2. General expressions for the density expansion coefficients
Here are reported the explicit expressions for the coefficients of the log-density expan-

sion (6) as given in Aït-Sahalia (2008). The use of a symbolic algebra program is advised
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for the practical calculation of the coefficients. For two given d-dimensional values y and
y0 of the process Yt = γ(Xt) the coefficients of the log-density expansion are given by

C
(−1)
Y (y|y0) = −1

2

d∑
h=1

(y(h) − y(h)
0 )2,

C
(0)
Y (y|y0) =

d∑
h=1

(y(h) − y(h)
0 )

∫ 1

0

µ
(h)
Y (y0 + u(y − y0))du

C
(k)
Y (y|y0) = k

∫ 1

0

G
(k)
Y (y0 + u(y − y0)|y0)uk−1du.

for k ≥ 1. The functions G(k)
Y are given by

G
(1)
Y (y|y0) = −

d∑
h=1

∂µY (h)(y)

∂y(h)
−

d∑
h=1

µY (h)(y)
∂C

(0)
Y (y|y0)

∂y(h)
+

1

2

d∑
h=1

{
∂2C

(0)
Y (y|y0)

∂y(h)2 +

(
∂C

(0)
Y (y|y0)

∂y(h)

)2}
and for k ≥ 2

G
(k)
Y (y|y0) = −

d∑
h=1

µY (h)(y)
∂C

(k−1)
Y (y|y0)

∂y(h)
+

1

2

d∑
h=1

∂2C
(k−1)
Y (y|y0)

∂y(h)2

+
1

2

d∑
h=1

k−1∑
h′=0

(
k − 1

h′

)
∂C

(h
′
)

Y (y|y0)

∂y(h)

∂C
(k−1−h′ )
Y (y|y0)

∂y(h)
.

AppendixA.3. Coefficients of the orange trees growth SDMEM
In model (12)-(13) is Y i

t = γ(X i
t) = 2

√
X i
t/σ so µY (Y i

t ) = Y i
t (φ1+φi1−σ2Y i

t
2
/4)/(2(φ3+

φi3)(φ1 + φi1))− 1/(2Y i
t ), and for given values yij and yij−1 of Y i

t , we have

C
(−1)
Y (yij|yij−1) = −1

2
(yij − yij−1)2

C
(0)
Y (yij|yij−1) = −

σ2(yij
4 − yij−1

4
)

32(φ3 + φi3)(φ1 + φi1)
+

(yij
2 − yij−1

2
)

4(φ3 + φi3)
− 1

2
log

(
yij
yij−1

)
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C
(1)
Y (yij|yij−1) = −

σ4
(
yij

6
+ yij

5
yij−1 + yij

4
yij−1

2
+ (yijy

i
j−1)3 + yij

2
yij−1

4
+ yijy

i
j−1

5
+ yij−1

6
)

896(φ3 + φi3)2(φ1 + φi1)2

+
σ2(10(φ3 + φi3)(yij

2
+ yijy

i
j−1 + yij−1

2
) + 3(yij

5
+ yij

2
yij−1 + yij−1

3
))

240(φ3 + φi3)2(φ1 + φi1)

−
9(φ3 + φi3)2 + yijy

i
j−1(yij

2
+ yijy

i
j−1 + yij−1

2
)

24yijy
i
j−1(φ3 + φi3)2

C
(2)
Y (yij|yij−1) = −

σ4(5(yij
4

+ yij−1
4
) + 8yijy

i
j−1(yij

2
+ yij−1

2
) + 9yij

2
yij−1

2
)

896(φ3 + φi3)2(φ1 + φi1)2

+
σ2
(

9(yij
2

+ yij−1
2
) + 12yijy

i
j−1 + 10(φ3 + φi3)

)
240(φ3 + φi3)2(φ1 + φi1)

−
(yij

2
yij−1

2
+ 9(φ3 + φi3)2)

24yij
2
yij−1

2
(φ3 + φi3)2

and

p
(2)
X (xij,∆

i
j|xij−1) =

1√
2πσ2∆i

jx
i
j

exp

(
−

2

(√
xij −

√
xij−1

)2

σ2∆i
j

+ C̃(0)(xij|xij−1)

+ C̃(1)(xij|xij−1)∆i
j +

∆i
j
2

2
C̃(2)(xij|xij−1)

)

where C̃(k)(xij|xij−1) = C
(k)
Y

(
2
√
xij
σ

∣∣∣2√xij−1

σ

)
, k = 0, 1, 2.

AppendixA.4. Coefficients of the two-dimensional OU SDMEM
The process (15)-(16) is reducible and γ(xi) = σ−1xi = (x(1)i/σ1, x

(2)i/σ2)T , so

dYi
t =

(
σ−1(β ∗ bi)α− σ−1(β ∗ bi)σYi

t

)
dt+ dWi

t := κi(η −Yi
t)dt+ dWi

t

where η = σ−1α = (η1, η2)T and κi = σ−1(β ∗ bi)σ = {κi
q,q′
}q,q′=1,2. If yij = (y

(1)i
j , y

(2)i
j )T

and yij−1 = (y
(1)i
j−1, y

(2)i
j−1)T are two values from Yi

t, the coefficients of the order K = 2 density
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expansion (6) for model (15)-(16) are given by:

C
(−1)
Y (yij|yij−1) = −1

2
(y

(1)i
j − y(1)i

j−1)2 − 1

2
(y

(2)i
j − y(2)i

j−1)2,

C
(0)
Y (yij|yij−1) = −1

2
(y

(1)i
j − y(1)i

j−1)((y
(1)i
j + y

(1)i
j−1 − 2η1)κi11 + (y

(2)i
j + y

(2)i
j−1 − 2η2)κi12)

−1

2
(y

(2)i
j − y(2)i
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(1)i
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(1)i
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(2)i
j + y

(2)i
j−1 − 2η2)κi22),

C
(1)
Y (yij|yij−1) =

1

2
(κi11 − ((y

(1)i
j−1 − η1)κi11 + (y

(2)i
j−1 − η2)κi12)2)

+
1

2
(κi22 − ((y

(1)i
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(2)i
j−1 − η2)κi22)2)

−1

2
(y

(1)i
j − y(1)i

j−1)((y
(1)i
j−1 − η1)(κi11

2
+ κi21

2
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(2)i
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i
12 + κi21κ

i
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+
1

24
(y

(1)i
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2
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i
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2
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(1)i
j−1 − η1)(κi11κ

i
12κ

i
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1

24
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AppendixA.5. Coefficients of the square root SDMEM
For model (20) we have

Y i
t =

2
√
X i
t

σ̃i
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and

µY (Y i
t ) =

2q + 1

2Y i
t

− β̃iY i
t

2
,

where q = 2β̃i(α+ αi)/(σ̃i)2 − 1. For given values yij−1 and yij of Y i
t the coefficients of the

order K = 2 density expansion are:

C
(−1)
Y (yij|yij−1) = −1

2
(yij − yij−1)2,

C
(0)
Y (yij|yij−1) = log

(
yij
yij−1

)(
q +

1

2

)
− 1

4
β̃i(yij

2 − yij−1

2
),

C
(1)
Y (yij|yij−1) = − 1

24yij−1y
i
j

[
−12β̃iyijy

i
j−1(q + 1) + (β̃i)2(yij

3
yj−1 + (yijy

i
j−1)2

+ yijy
i
j−1

3
) + 12q2 − 3

]
,

C
(2)
Y (yij|yij−1) = = − 1

24(yijy
i
j−1)2

[
(β̃i)2(yijy

i
j−1)2 + 12q2 − 3

]
.
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