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Abstract 

The human-environment connection in the mostly rural drylands of sub-Saharan 

Africa forms a complex, interlinked system that provides ecosystem services. This 

system is susceptible to climatic variability that impacts the supply of its products, 

and high population growth, which impacts the demand for these products. When 

plants remove carbon dioxide from the atmosphere through the process of 

photosynthesis, they use some of this carbon to maintain plant cellular structure. 

The rest is stored as plant tissue and forms plant biomass. The annual 

accumulation of this plant biomass is called net primary production (NPP). On an 

annual basis, NPP supplies the provision of crops, animal feed and pasture. The 

societal implications of reduced NPP can be severe, possibly leading to crop 

failure and eventual food insecurity. The trends in NPP supply over sub-Saharan 

Africa between 2000 and 2013 are significant over 32% of the area (4.7 million 

km2). However, they are concentrated in three distinct regions: the western Sahel 

(2 g C m-2 yr-1), central Africa (30 g C m-2 yr-1) and parts of Zambia, Malawi and 

Mozambique (-25 g C m-2 yr-1). In contrast, the mean overall trend in NPP demand 

is 3.5 g C m-2 yr-1, though in urban areas it averages approximately 50 g C m-2 yr-1. 

The tradeoffs between NPP supply and demand (i.e. change in one quantity 

relative to another) are locally constrained and linked to the prevailing climate, 

population growth and net migration. The demand-supply balance of NPP is 

influenced by climate, such as variability caused by the El Niño – Southern 

Oscillation. The greatest sensitivity to El Niño occurs in Southern Africa. Here, a 

+1oC shift in the Niño 3.4 index (as a measure of El Niño) causes a mean change 

in the NPP supply of -6.6 g C m-2 yr-1. Despite the fact that there were more La 

Niña events than El Niño events during the period of this study, the negative 

impact of El Niño on Southern Africa is strong enough to tip the balance toward 

the negative. Climatic variability influences the rate of carbon uptake and in sub-

Saharan drylands all plants undergo photosynthesis at the expense of losing 

moisture to the atmosphere. The two main moisture related biophysical 

limitations, plant available water and vapor pressure deficit, together limit plant 

carbon uptake by influencing the greening and browning phases of vegetation 

phenology. The combination of Earth observation data (Land Surface 

Temperature, Enhanced Vegetation Index, and shortwave infrared surface 
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reflectance) in a multiple regression model was able to explain 89% of the 

variability of in situ measured carbon uptake across three Sahelian sites. Testing 

the new Plant Phenology Index (PPI) to get better estimates of sub-Saharan carbon 

uptake showed that a PPI-based model was able to capture the magnitude of in situ 

carbon uptake relatively well (R2 = 0.75) compared to the other tested models. 

However, the performance of PPI in these semi-arid systems can be further 

improved through the inclusion of total chlorophyll content as it is a principal 

factor influencing carbon assimilation. 



13 

1. Introduction 

This is a place without one patch of ground 

Where the wild game herds could graze, 

It is a place where beasts must pluck 

Small mouthfuls here and there of scrub and straw, 

It is a place of no abiding use, 

A place where teeth will find no food to chew! 

“A Land of Drought” –Sayyid Maxamed Cabdille Xasan (1856 – 1920)  

1.1 The human-environment connection in African 

drylands  

The canto above, composed by a Somali pastoral leader in the Horn of Africa, 

exemplifies the relationship humans have with the land on which their livelihood 

depends. More than half of the African continent can be classified as a dryland 

system that is characterized by low rainfall and high evapotranspiration (Figure 1). 

Indeed, Africa contains some of the driest regions on Earth that constitute some of 

the oldest continually inhabited environments (Templeton, 2002). Understanding 

of these systems has changed over time. The Scottish philosopher Adam Smith 

posited in his 1776 work, “The Wealth of Nations”, that the natural progression of 

livelihoods was from hunter to pastoralist to farmer (Smith, 1776). However, it is 

now well-known that pastoralism evolved from agriculture as an alternative means 

of subsistence in arid and semi-arid regions during periods of drought (Lees and 

Bates, 1974). A considerable portion of the population of sub-Saharan Africa lives 

in rural drylands that form complex landscapes (Figure 2) where agriculture, 

pastoralism and agro-pastoralism are the principal livelihoods (Nicholson, 2011). 

Most of sub-Saharan Africa has one rainy season, except East Africa, which has 

two. Each rainy season lasts between one to three months and is the principal 

growing season for vegetation, both natural and farmed. The end of the rainy 

season heralds start of the dry season when drought conditions take hold and both 
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human and natural systems adopt measures that ensure their survival. In the 

natural system, herbaceous vegetation senesces, seeds remain dormant, and 

drought-deciduous trees shed leaves to minimize water loss (Nicholson, 2011). 

Some trees with deep roots and succulent shrubs with water storing mechanisms 

remain green during the dry season, and serve as forage for livestock and wild 

game. The people of sub-Saharan drylands have developed effective adaptation 

and mitigation strategies, rooted in indigenous knowledge, to cope with the high 

climatic variability. The dry season is the time for pastoralists and agro-

pastoralists to move their livestock herds to where there are pastures. Farmers, on 

the other hand, exploit market opportunities during the dry season by engaging in 

activities such as seasonal economic migration, trade in arts and crafts, and 

artisanal mining (Batterbury, 2001; de Haan et al., 2002; Dovie, 2003). For 

example, during the dry season in central Sudan it is common for the majority of 

young men from farming villages to undertake economic migration to the capital 

Khartoum or to the gold mines in the north of the country1. 

Droughts are common in sub-Saharan Africa, and in the event of one the dry 

season can be prolonged causing extended drought conditions. Between 1900 and 

2013, 642 droughts were reported across the world (Masih et al., 2014). Forty-five 

percent (291) of these droughts were in Africa and affected 362 million people, 

including 847,143 mortalities (Masih et al., 2014). That being said, it is important 

to note that mortalities coincident with periods of intense drought are not only a 

function of drought itself, but also the dominant political ecosystem (Sen, 1999). 

For example, the devastating drought of 1972-75 severely impacted the Horn of 

Africa and caused a minimum of 200,000 deaths2 in Ethiopia (Degefu, 1988; 

Seaman, 1993). In contrast, during the same drought neighboring Somalia 

experienced a distinctly lower casualty level (~20,000 deaths) due to a relatively 

proactive intervention by the government (Samatar, 1989; Ahmed and Green, 

1999). On the other hand, the rainy season can be intense, i.e. large amounts of 

rain falling over a relatively short period of time, and can cause widespread 

flooding as happened in 2007 when 45 heavy rainfall events displaced 2.5 million 

people across several sub-Saharan countries (Tschakert et al., 2010).  

The human-environment connection in the drylands of sub-Saharan Africa forms a 

complex, interlinked system that provides ecosystem services. The majority of 

food consumed in the region comes from domestic sources (Barrett and Upton, 

2013), making the natural system a crucial direct factor that acts both as a source 

                                                      
1  Based on group interviews conducted in the village of Naseem (13.351oN, 30.499oE), North 

Kordofan, Sudan on January, 25th 2014.  

2  This estimate has been challenged by several authors, see for example: Caldwell JC. (1977) 
Demographic aspects of drought: An examination of the African drought of 1970-74. African 
Environment Special Report 6: 93-100..  
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of livelihood and nutrition. However, this system is susceptible to climatic 

variability that impacts the supply of its products, and high population growth, 

which impacts the demand for these products.  

 

Figure 1: African dryland systems included in this dissertation. 

The aridity index (AI) values in the parentheses were computed as the ratio of precipitation to 

potential evapotranspiration as per Budyko (1974). The shaded arid (0.05<AI<0.20), semi-arid 

(0.20<AI<0.50), and dry sub-humid (0.50<AI<0.65) regions are the main aridity zones considered in 

this dissertation. Data on precipitation from Funk et al. (2015) and potential evapotranspiration from 

Mu et al. (2011b) averaged for the period 2000 – 2014 were used to produce this figure.  
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Figure 2: Population per land cover type in African drylands for the year 2010. 

An overview of (a) the population distribution per land cover type, (b) the population share of sub-

Saharan drylands, (c) spatial distribution of the different land cover classes within the dryland extent. 

These values are based on gridded data on population from Linard et al. (2012) and land cover from 

Arino et al. (2012).  
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1.2 The supply of vegetation productivity 

1.2.1 The role of climate 

In the drylands of Africa both temperature and water availability control critical 

biogeochemical processes that are important for vegetation growth. Water is 

particularly important as a limiting factor for vegetation growth in drylands 

systems (Tucker et al., 1983; Prince, 1991; Verhoef et al., 1996; Moncrieff et al., 

1997; Nicholson et al., 1998; Hickler et al., 2005; Sjöström et al., 2011). Merbold 

et al. (2009) found that mean annual rainfall is strongly correlated with maximum 

photosynthetic capacity and is the predominant factor driving the exchange of 

carbon dioxide (CO2) between the land and the atmosphere over African 

ecosystems. Rainfall replenishes plant available water and reduces land surface 

temperature through latent heat loss from surface soil moisture (Cook, 1999). 

Rainfall also causes higher humidity levels and allows leaf stomata to stay open 

for longer periods (Nicholson, 2011). When plants transpire, the mixture of air and 

water exiting the stomata is saturated at a relative humidity of ~100% (Dingman, 

2015). The difference between amount of water in the air and the maximum 

amount of water the air can hold when it is saturated at higher temperature is 

called the vapor pressure deficit (VPD) (Anderson, 1936). This deficit, along with 

plant available water, limits photosynthesis (and thereby plant growth) by causing 

extended closure of the stomata and prohibiting the flow of CO2 into the leaf.  

1.2.2 Gross and net primary production 

Gross primary production (GPP) is the total amount of CO2 plants extract from the 

atmosphere through the process of photosynthesis. Some of this carbon goes to 

maintain plant cellular structure and is thus lost through autotrophic respiration 

(Ra). The remaining carbon is stored as plant tissue, forming plant biomass 

(phytomass). The annual accumulation of phytomass is referred to as net primary 

production (NPP = GPP – Ra). On an annual basis, NPP supplies the provision of 

crops, animal feed and pasture. The societal implications of reduced NPP can be 

severe, possibly leading to crop failure and eventual food insecurity (Battisti and 

Naylor, 2009). The terms “primary production” and “primary productivity” are 

treated as synonymous in this dissertation3. 

                                                      
3  “Production” refers to the combination of inputs to create, or produce, an output during a given 

period of time, while “productivity” refers to the accretion of output in the production process. 
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Field estimation of terrestrial GPP can be done using infrared gas chambers (e.g. 

Johnson and Kelley (1970)) or leaf 14CO2 assimilation studies (e.g. Szarek and 

Woodhouse (1977)). These studies are not only time consuming, but require 

repetitive field visits and are based on small samples of the landscape. A particular 

difficulty in the measurement of GPP is that growth and maintenance respiration is 

a continuous process that consumes some of the assimilated carbon. 

Micrometeorological techniques such as the eddy covariance (EC) method 

(Baldocchi et al., 1988) facilitated continuous measurements of CO2 (and other) 

fluxes across larger areas. The EC method uses tower-mounted instruments to 

measure net ecosystem exchange (NEE), i.e. the exchange of CO2 between 

terrestrial ecosystems and the atmosphere. This is done using the covariance 

between the oscillations in the vertical wind velocity and the CO2 mixing ratio in 

the air above a vegetation canopy (Baldocchi et al., 1988).  

Measuring NPP in the field involves harvesting the vegetation and calculating the 

annual growth of wood and the mass of foliage at the peak of annual leaf display 

(Schlesinger, 1997). It also involves measuring the difference in the mass of tissue 

harvested at the beginning and end of the growing season (Schlesinger, 1997). 

Since vegetation productivity varies spatially due to environmental conditions and, 

because fieldwork is both labor and cost intensive, it is expensive to conduct 

productivity measurements over large spatial extents. Thus, there is a need to 

estimate NPP at large scales in a relatively efficient way. One of the earliest 

applied methods was the use of empirical relationships. The first global estimates 

of primary production using this method was made by Lieth (1964), who related 

NPP with temperature and precipitation as limiting factors. This work was 

subsequently the foundation for the first computer-generated map of NPP (Lieth, 

1972). Some of the latest methods of estimating observed primary production 

across large scales use Earth observation (EO) platforms, which is discussed in the 

next section.   

1.2.3 Observing primary production from space 

Rouse et al. (1973) introduced the normalized difference vegetation index (NDVI) 

using data from the newly launched ERTS-1 (later renamed Landsat-1) 

Multispectral Scanner System (MSS) satellite. The index is the difference between 

the near-infrared (700 – 1100 nm) and red surface (600 – 700 nm) reflectance 

divided by their sum, and is a measure of detecting live green vegetation using 

satellites. This early research was important on two levels: (1) it identified a 

configurable and broadly applicable satellite-driven concept that directly relates to 

biophysical properties of vegetation, and (2) it laid down the foundation for future 

research in NPP using EO data. Around the same time as the first applications of 

EO data, parallel research was being conducted on estimating terrestrial primary 
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production using the intrinsic properties of photosynthesis, i.e. the role of radiation 

(Monteith, 1972; Lieth, 1973; Lieth and Whittaker, 1975; Monteith and Moss, 

1977). Subsequently, Tucker et al. (1981) proposed the direct use of satellite data 

in order to “allow large-area assessment of net primary production or total dry 

matter accumulation.” The advantages of using EO include, but are not limited to, 

(1) large-scale coverage, (2) frequent revisit times, (3) variable spatial resolutions, 

and (4) multispectral sensors that capture different segments of the 

electromagnetic spectrum.  

The groundwork for production efficiency modeling (PEM) using EO data was 

laid by Running (1986) who refined the methodology to estimate NPP based on 

the light-use-efficiency (LUE) concept of Monteith (1981) and Monteith (1972). 

The basis of this concept is that GPP is the product of absorbed photosynthetically 

active radiation (APAR) (i.e. between 400 and 700 nm) and a factor that represents 

the efficiency (LUE) with which a plant converts this radiation into phytomass. 

The availability of EO data and flux measurements from EC towers paved the way 

for innovative methods that combine these two data sources. Running et al. (1994) 

outlined the derivation of vegetation products from the Moderate Resolution 

Imaging Spectroradiometer (MODIS) sensor onboard the Terra and Aqua satellites 

launched by the United States National Aeronautics and Space Administration 

(NASA). These products were included a biogeochemical model to produce GPP 

and NPP on a near-continuous basis, and validated at several EC flux tower sites 

representing different biomes (Running et al., 1999; Running et al., 2000; Turner 

et al., 2006). The MOD17 production efficiency model (Running et al., 2004) 

emerged out of these developments and provides near-real-time estimates of 

terrestrial carbon uptake. MOD17 uses MODIS spectral data, and climatic drivers 

in an LUE model (Heinsch et al., 2003).  

In this dissertation, MOD17 has been used to provide an overall estimate of the 

NPP in the Sahel region of Africa (Abdi et al., 2014) and assess the impact of the 

El Niño – Southern Oscillation (ENSO) on NPP in sub-Saharan drylands (Abdi et 

al., 2016). That being said, MOD17 has been found to underestimate GPP (and by 

extension NPP) in African ecosystems, primarily due to an underestimation of the 

biome-specific optimum LUE parameter and inadequate accounting of water stress 

conditions (Sjöström et al., 2011; Sjöström et al., 2013). Two further studies in 

this dissertation (Abdi et al., 2017a; Abdi et al., 2017b) will attempt to improve 

GPP estimates in African drylands.  
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1.3 The demand for food, feed and fuel  

1.3.1 Agricultural production 

African agriculture is predominantly rain-fed (Figure 3) indicating that rural 

livelihoods are almost completely dependent on prevailing climatic conditions. 

Domestic production of staple foods contributes approximately 90% of overall 

food consumption in sub-Saharan Africa (Shapouri and Rosen, 1999; Barrett and 

Upton, 2013). Consumption statistics vary by country, but the underlying pattern 

is that most of the national supplies of staple crops are used for either food or feed 

(Elbehri et al., 2013). A recent study of the calorie delivery fraction of various 

agricultural products found that 80% of the crop calories produced in the region 

are used for food, 10% as feed, and 10% for other uses (Cassidy et al., 2013). 

Although imported foods are becoming popular, mainly in upper class urban 

households (Fox, 2015), they do not contribute to the national economy as much 

as domestic foods do. For example, in West Africa, each US$ 1 spent on local 

produce boosts the local economy by US$ 1.96 – 2.88 (Halweil, 2002). 

Additionally, most of the smallholder farms in sub-Saharan Africa can be 

construed as closed systems with inadequate transportation networks and the 

consumption of much of what is locally produced (Obayelu, 2011). Sustainable 

long-term food security depends on the development of the agricultural sector by 

providing access to markets to increase the resilience of domestic production.  

 

Figure 3: A fallow agricultural field in North Kordofan, Sudan, during the dry season 
(January 2014). 

Photo: Abdulhakim M. Abdi 
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1.3.2 Livestock and pastoralism 

Livestock is an asset in sub-Saharan Africa, and is dependent upon on for their 

nutritional value and generation of economic growth (Jones and Thornton, 2009; 

Abdi et al., 2016). Pastoralists and agro-pastoralists across sub-Saharan rangelands 

depend on grassland and savanna productivity as forage for livestock production 

(Figure 4). The contribution of the livestock sector to the national gross domestic 

product (GDP) varies considerably depending on the country. In countries where 

livestock is an important commodity (e.g. Sudan, Somalia) its contribution ranges 

between 30 – 40% of GDP (Knips, 2004; Ickowicz et al., 2012). The high climatic 

variability, demonstrated by the succession of dry and wet periods, is characteristic 

for most of the continent. Pastoralists develop adaptations in response to climatic 

variability and persistent drought,  for example, switching to a livestock breed that 

can withstand drought (Sperling, 1987) or has greater ability to digest browse 

(Blench, 1994).  

 

 

Figure 4: A pastoralist from the Shanabla tribe with his herd of camels in North 
Kordofan, Sudan during the dry season (January 2014). 

Photo: Abdulhakim M. Abdi.  

Note: Permission was granted from the pastoralist for this photograph to be taken. 
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1.3.3 Household energy 

In most parts of sub-Saharan Africa energy demand is met by woodfuels and is 

usually harvested in the form of dry or dead wood (Figure 5) (Hiemstra-van der 

Horst and Hovorka, 2009). First, a note on the terminology: (1) “fuelwood” refers 

to unprocessed woody biomass and is synonymous with “firewood”, (2) 

“woodfuel” refers to an energy source that is derived from woody biomass, (3) 

“charcoal” is created by burning fuelwood in a low-oxygen environment, the 

resulting substance, consisting primarily of carbon, produces more energy per 

kilogram than the fuelwood from which it is derived. Woodfuels meet 55% of the 

energy needs in Senegal (Pires, 2003), 72% in Mali (Maiga et al., 2008), 80% in 

Sudan (Hassan et al., 2009) and more than 90% in Chad (van der Plas and Abdel-

Hamid, 2005). However, these resources are under pressure due to rising demand. 

In East Africa, the proportion of woody biomass harvested in excess of the mean 

annual growth exceeds 50% in 43 sub-national units where a quarter of the 

population lives (Bailis et al., 2015). In the southern parts of the Sahel, the average 

tree canopy cover decreased from 14% during the pre-drought 1960s to around 7% 

in the late 1980s, primarily due to the expansion of croplands (Breman and 

Kessler, 1995). 

 

Figure 5: A donkey owned by a resident of the village of Luwaib in North Kordofan, 
Sudan laden with harvested wood (January 2014). 

Photo: Abdulhakim M. Abdi.  
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1.4 The demand-supply balance of net primary 

production 

NPP supplies the annual provision of crops, animal feed and pasture, and adds to 

annual increments of woody biomass. The societal implications of reduced NPP 

can be severe and could lead to crop failure and eventual food insecurity (Battisti 

and Naylor, 2009). In this dissertation, the concepts of “supply” and “demand” are 

adopted to demonstrate the linkage between ecosystem productivity, human 

livelihood, and inter-annual climatic variability in sub-Saharan drylands. On the 

one hand, the sub-Saharan population will continue to experiences increase in 

demand for NPP, as a function of population growth and per capita consumption 

(Fetzel et al., 2015). On the other hand, forecasts of reduced productivity (up to -

41%) of major sub-Saharan crops due to increases in temperature have been 

consistent across different studies (Jones and Thornton, 2003; Schlenker and 

Lobell, 2010; Thornton et al., 2011; Knox et al., 2012).  

As demand for food, feed and fuel drives land use change, the proportion of NPP 

required by humans relative to climate-regulated supply (demand-supply ratio, 

DSR) (Figures 6 and 7) can serve as an integrated benchmark of human 

dependence on ecosystems. This is particularly essential for long-term trends in 

order to identify regions that are not vulnerable (e.g. Scenario 1 in Figure 6) and 

those that are vulnerable (e.g. Scenario 2 in Figure 6) to variations in NPP supply. 

A similar concept was used in North Kordofan, Sudan, by Olsson (1985) who 

found that the proximity to a population center influences the availability of 

biomass. This suggests that there is a direct locally-constrained connection 

between the supply of NPP and the demand for it. Olsson (1985) also found that 

overutilization of land is only evident during periods of drought, which means that 

during periods of restricted resource availability demand surpasses supply in those 

areas. The future effects of extreme climatic variability, and eventual shifts in the 

climate system, could have strong impacts on this balance, and intensified by the 

need to keep pace with an increasing population (Campbell et al., 2014).  
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Figure 6: A general overview of NPP supply and two scenarios of NPP demand. 

Scenario 1 shows a system where NPP demand is 60% of available supply. Scenario 2 

shows a system where NPP demand has increased to is 150% of available supply, which 

means that NPP supply has to enter this system from elsewhere in order to satisfy demand. 
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Figure 7: A spatial overview of the demand-supply balance of NPP 
(a) The supply of NPP (MgC in this example) is governed either by climatic and land use 
conditions, while (b) the demand for NPP (MgC in this example) is a function of population 
density and dietary composition. (c) When these two concepts are spatialized and 

compared, it results in the demand-supply balance of NPP.  
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1.5 Research objectives 

The principal aim of this dissertation is to understand the human-environment 

connection in the drylands of sub-Saharan Africa from the perspective of the 

provision and extraction of NPP. Accordingly, the two fundamental aspects of this 

connection, i.e. supply and demand, need to be analyzed, separately and together, 

in order to acquire a better understanding of their dynamics.  

Therefore, this dissertation has the following objectives: 

1. Assess the inter-annual variability of supply and demand of NPP in 

the greater Sahel as an example of a complex system where the 

balance between these two entities is in flux. (Paper I) 

2. Examine the trends in the supply and demand of NPP across sub-

Saharan drylands and evaluate the impact of the El Niño – Southern 

Oscillation on the demand-supply balance of NPP. (Paper II) 

3. Develop a long-term, spatially-explicit, population dataset for the 

African continent that takes into account radiative forcing and 

socioeconomic pathways. (Paper III) 

4. Evaluate the mechanisms that control GPP in sub-Saharan drylands 

and explore the potential of the new plant phenology index in 

estimating the GPP of these systems. (Papers IV and V) 
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2. Data and Methods 

2.1 Satellite-derived NPP supply (Papers I and II) 

The estimate of NPP supply used in this dissertation was acquired from the NASA 

Earth Observation System repository (www.ntsg.umt.edu/project/mod17). These 

data are based on the LUE approach as defined in Monteith (1972) and applied in 

the MOD17 algorithm of the MODIS sensor: 

RaTVPDFPARPARNPPSupply  )****( minmax  (1) 

where NPPSupply is the NPP available in the ecosystem regardless of land use type 

in grams of carbon per meter square per year (g C m-2 yr-1); PAR is incoming 

photosynthetically active radiation in megajoules per meter square per year (MJ m-

2 yr-1); FPAR is the fraction of incident PAR absorbed by the vegetation 

canopy; εmax represents maximum light use efficiency, in grams of carbon per 

megajoule of PAR (g C MJ-1), under hypothetical biome-specific ideal conditions; 

VPD and Tmin are simple linear ramp functions of vapor pressure deficit and 

minimum temperature, respectively, which constrain maximum light use 

efficiency; Ra (autotrophic respiration) represents the amount of carbon respired, 

in g C m-2 yr-1, during maintenance and growth respiration of leaves, fine roots and 

woody tissue. Further descriptions of the MOD17 algorithm are detailed in 

(Running and Zhao, 2015) and Zhao et al. (2011).  

2.2 Computation of NPP demand (Papers I and II) 

In this dissertation, the term “consumption” is defined as the actual amount of 

NPP extracted from the ecosystem as reported in the statistical database of the 

Food and Agriculture Organization of the United Nations (FAOSTAT, 

faostat3.fao.org/). The term “demand” is defined as the annual amount of NPP 

required by the sub-Saharan dryland population. A framework based on 

FAOSTAT was developed to calculate demand for NPP. The components of NPP 

http://www.ntsg.umt.edu/project/mod17
http://faostat3.fao.org/
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demand for each country were downloaded from the food balance sheets provided 

by FAOSTAT for 2000 – 2011. Abdi et al. (2014) used the total primary crop 

production for each country, which was modified in Abdi et al. (2016) by using 

domestic supply quantities to account NPP supply for domestic utilization.  

The first component of NPP demand is domestically consumed food (NPPfood). 

This category includes twenty-seven types of regionally important primary crops, 

which represent 95% of all those that are domestically consumed by most of the 

countries in the study area (FAOSTAT, 2015) (see Supplementary Information in 

Abdi et al. (2014) for a complete list of crops). Additionally, meats sourced from 

six types of domestic animals (cattle, goats, sheep, pigs, camels, and poultry) and 

two non-meat animal products (eggs and milk) were also included.  
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where, P, I and E are produced, imported and exported quantities of crop type p, in 

year y; S is the variation (positive or negative) in the stocks of crop type p, in year 

y; D and C are the crop-specific dry matter and carbon conversion coefficients, 

respectively; M is the wet carcass weight (i.e. without internal organs) of animal 

type a, in year y, and K is the dry matter intake required to produce that weight, in 

year y. Crop tonnage was converted to carbon units using the conversion factors 

provided in Abdi et al. (2014). 

Livestock are assets in sub-Saharan Africa. Pastoralists and agro-pastoralists 

depend on livestock for nutritional value and economic growth. NPPfeed represents 

the total amount of animal feed required to sustain the livestock population of the 

region. 

45.0,
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yafeed RTNPP  

where, T is the Tropical Livestock Unit (TLU) for livestock type a, in year y; R is 

the annual dry matter requirement as provided in Abdi et al. (2014). A ratio of 

0.45 was used to convert dry matter into carbon (Abdi et al., 2014).  

Crop residues (NPPresidues) refer to the parts of the crop that are left over in a field 

after harvest. Thus, they are not part of the crop yield (i.e. edible seeds, roots, 

fruits, leaves, or stalks) and vary according to crop type.  
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45.0
23

1

, 
p

ypresidues HNPP  

where, H is the residue factor (proportion of non-yield contributing crop 

phytomass) of crop type p, in year y. See the Supplementary Information in Abdi 

et al. (2016) for the residue factors that were used.  

In most parts of the sub-Saharan Africa household energy demand is met by 

woodfuels comprising fuel wood and wood charcoal (NPPfuel) extracted from the 

region’s dry woodlands. The demand for woodfuels across sub-Saharan Africa is 

variable and ranges from 55% in Senegal (Pires, 2003) to over 91% in Malawi 

(Zulu, 2010), but on average it is approximately 80% across the study area.  
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where, NC, CN and CH represent non-coniferous, coniferous and wood charcoal. 

Dry matter conversion ratios of 0.58 and 0.43 were applied to the non-coniferous 

and coniferous fuel wood, respectively, and a ratio of 0.45 to convert dry matter 

into carbon. Wood charcoal was directly converted to carbon content by applying 

a ratio of 0.75 (See the Supplementary Information in Abdi et al. (2016)). 

Landscape fires, both natural and anthropogenic, play an important role in sub-

Saharan dryland ecosystems. One of the anthropogenic applications of burning in 

sub-Saharan Africa is to expand cropland area (Andela and van der Werf, 2014). 

Consequently, the amount of NPP lost to support human demand for food is taken 

into account. NPPburned represents domestic human-driven NPP loss resulting from 

burning of both forest and savanna resources. 

45.0 yburned BNPP  

where, B is the total amount of dry matter burnt in year y. The data are presented 

as dry matter content, therefore a ratio of 0.45 was used to convert dry matter into 

carbon.  

A homogeneous per capita consumption within each country was not assumed due 

to variations in diet, lifestyle and wealth between urban and rural populations in 

sub-Saharan Africa. Rather, ratio factors for urban and rural consumption were 

applied to national sums of each group of products based on statistics from peer-



30 

reviewed literature and national household consumption surveys (See the 

Supplementary Information in Abdi et al. (2016)).  

   Urban

burnedfuelresiduesfeedfoodurbandemand NPPNPPNPPNPPNPPNPP _  

   Rural

burnedfuelresiduesfeedfoodruraldemand NPPNPPNPPNPPNPPNPP _  

ruraldemandurbandemanddemand NPPNPPNPP __   

Per capita NPP consumption was computed by dividing rural and urban 

consumption values by each country’s rural and urban population. Grids of urban 

and rural consumption were then merged to produce a single map of total per 

capita consumption. Gridded population data from the WorldPop project 

(www.worldpop.org.uk) (Linard et al., 2012) were used. These data came in three 

time slices: 2000, 2005, 2010, which were then interpolated using growth rates 

from the United Nations Population Division (esa.un.org/unpd/wpp), and an extra 

year (2011) added to coincide with the FAOSTAT data. Then, the gridded 

population data was used as a spatial surrogate to disaggregate per capita demand 

to grid cells for each year between 2000 and 2011. The years 2012 and 2013 were 

not included because domestic supply data on food, feed and fuel from FAOSTAT 

were limited to 2011 at the time of writing. Urban and rural areas were separated 

from one another by masking the urban extent in WorldPop grids based on the 

“Artificial Areas” category in the GlobCover 2009 land cover map by Arino et al. 

(2012) (doi.pangaea.de/10.1594/PANGAEA.787668). 

  

http://www.worldpop.org.uk/
http://esa.un.org/unpd/wpp/
https://doi.pangaea.de/10.1594/PANGAEA.787668
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2.3 Modeling current and future African populations 

(Paper III) 

One of the challenges that was encountered in mapping the demand for NPP in 

Papers I and II was the lack of annual gridded data on population distribution. The 

latest open-access gridded population product prior to the dataset presented here 

was the Gridded Population of the World, Version 4 (Doxsey-Whitfield et al., 

2015).  This product was published in 2015 and includes population data at 5-year 

intervals between 2000 and 2020, which means that the grids would still have to 

interpolated at each interval to produce annual estimates (Abdi et al., 2014; Abdi 

et al., 2016). To the best of our knowledge the combination of Representative 

Concentration Pathways (RCPs) and Shared Socioeconomic Pathways (SSPs) 

scenarios for gridded population projections has not been done before. The RCPs 

and SSPs supersedes the Special Report on Emissions Scenarios (SRES) and were 

adopted by the Intergovernmental Panel on Climate Change (IPCC) for its AR5 

(van Vuuren et al., 2011; IPCC, 2014). Unlike the SRES, the four RCPs are not 

based on socioeconomic scenarios but on radiative forcing (i.e. the ability of 

greenhouse gases to affect the Earth’s energy balance) and the simulated 

influences of land use, greenhouse gas and aerosol emissions. Therefore, a set of 

five SSPs were used in conjunction with the RCPs to develop future country level 

population distribution scenarios (O’Neill et al., 2014). Each SSP scenario is 

adjoined with a population projection and a proportion of the country population 

living in urban areas (Figure 8). The presented gridded population dataset can be 

useful when performing simulations dependent on gridded RCP land use and 

climate data, for example carbon flux studies, and assessments of supply and 

demand of NPP. The population distribution for Africa was modeled to follow the 

RCP-specific urban fraction dataset further described in Hurtt et al. (2011) and the 

country-specific SSP population and urban fraction scenarios from the SSP 

database of the International Institute for Applied Systems Analysis (IIASA). The 

urban fraction data is provided at a spatial resolution of 30 arc-minutes (0.5 

degrees or approximately 50 kilometers at the equator) and represents annual 

projected global land use and land cover patterns until the year 2100. It is 

developed with a Global Land-use Model (Hurtt et al., 2006), which estimates 

future land use transitions and patterns within each 30 arc-minute grid cell using 

an accounting-based method by considering a range of parameters (i.e. spatial 

patterns, residency time, and land conversions). The five SSPs and four RCPs 

produce a set of 20 SSP-RCP scenario combinations that deliver a basis for future 

scenarios. Consequently, the 15 most probable SSP-RCP combinations defined in 

Engström et al. (2016) were used. 
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Figure 8: Flowchart of the method used to distribute the population. 

The example shown here highlights the need to add inverse distance to population center 

of gravity (COG) and inverse distance to roads to the population data to be able to uniquely 

rank the pixels. The country SSP population is distributed for rural and urban separately 

based on an urban mask and the gridded population from the year before or unique 

population for the first year. The green boxes with rounded corners indicate input data.  
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2.4 Standardization of Niño-3.4 anomalies (Paper II) 

The Niño-3.4 sea surface temperature index was used as a representation of ENSO 

to understand its role in the demand-supply balance of NPP in African drylands. 

To differentiate between positive, negative and neutral ENSO years, the threshold 

set by the National Oceanic and Atmospheric Administration was applied. 

Accordingly, an ENSO year is characterized by a minimum of five consecutive 3-

month running mean of the Extended Reconstructed Sea Surface Temperature 

version 3b (ERSST.v3b) anomalies in the Niño 3.4 region based on a threshold of 

±0.5ºC. The base period for computing the anomalies in ERSST.v3b is 1971 – 

2000. To visualize differences in NPP between the three ENSO phases (El Niño, 

La Niña, Neutral), standardized anomalies (Z-scores) were calculated for NPP 

supply and DSR using equations 2 – 4. The ENSO cycle begins around July, peaks 

in December – February (of the following year), starts to decay in March – April, 

and enters the post-phase in May – June (Philippon et al., 2014). The monthly 

NPP supply anomalies reflect this July to June cycle and were summed to annual 

values spanning two calendar years. However, the data used to compute NPP 

demand are provided in calendar years. Therefore, NPP demand-supply anomalies 

correspond to the years in the second half of the ENSO cycle to account for the 

lagged effect of the peak and decay phases of ENSO.  
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where, OBSNPP,t, MNNPP,t, SDNPP,t are the observed, mean, and standard deviation, 

respectively, of NPP supply, demand or the demand-supply ratio at time t.   
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2.5 Calculation of water control variables (Paper IV) 

In this study, we used three eddy covariance sites located in Sudan, Niger and 

Senegal. All three sites were in the Sahelian zone between 13°N and 15°N. A 

crucial first step in improving NPP estimates is to first improve estimates of GPP 

and understand the environmental controls linked to it. Since vegetation in dryland 

systems are by definition limited by the availability of water, we investigated the 

role different field-collected drought stress metrics and their relationship with 

eddy covariance gross primary productivity (EC GPP). Plant available water 

(PAW) represents the amount of water in the soil that can be extracted by plants. 

PAW is limited by the soil type, soil water content at field capacity (moisture left 

over after percolation) and permanent wilting point (soil moisture that is 

unavailable to plants). It is an important parameter in the terrestrial water cycle 

and may have a considerable influence on primary productivity (Pappas et al., 

2013).  

Volumetric soil moisture was recorded using CS616 water content reflectometers 

(Campbell Scientific) in Demokeya and Wankama, and HH2 probe (Delta T 

Devices) in Dahra. These parameters were recorded every 10 – 30 seconds and 

averaged for every 30 minutes. Measurement depths varied with site and were 

dependent on the field campaign. Accordingly, volumetric soil moisture was 

summed from top of soil to 50 cm depth in Dahra and Wankama, and 60 cm depth 

in Demokeya. Then, PAW was calculated as:  

DPWPSWCPAW  )100(  

where PAW is plant available water (mm); SWC is volumetric soil water content 

at field capacity (m3 m-3); PWP is the soil texture-dependent permanent wilting 

point (%) from Table 2 in Abdi et al. (2017b); D (mm) is the depth at which the 

soil moisture measurements were made.  

Vapor pressure deficit (VPD) (Anderson, 1936), the difference between amount of 

water in the air and the maximum amount of water the air can hold when it is 

when it is saturated, is a potentially limiting factor for GPP (Maroco et al., 1997). 

VPD was calculated from field measured air temperature (Ta, °C) and relative 

humidity (RH, %) following Ward et al. (2015): 
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2.6 Formulating a GPP model based on PPI (Paper V) 

Leaf chemical processes are likely to be influenced by the feedback between 

canopy, near-surface air, and actual leaf temperature (Hashimoto et al., 2008; Sims 

et al., 2008). EO-derived LST has been found to correlate well with VPD, and has 

been used as an environmental scalar in modeling GPP (Hashimoto et al., 2008; 

Sims et al., 2008; Wu et al., 2010). VPD was derived from daytime LST using 

Equation 4. 

)06.1*57.2(74.2 DayLST

LSTVPD 
 

where VPDLST is the vapor pressure deficit derived from LST; LSTDay is the 8-day 

MOD11A2 product. In a previous study, Abdi et al. (2017b) showed that GPP is 

significantly reduced in Sahelian ecosystems when VPD is above 2 kPa. 

Therefore, following the approach described in Sims et al. (2008), we used VPD 

instead of LST as a direct control on GPP. This was done by scaling VPDLST so 

that GPP is reduced when VPD > 20 hPa: 

  









20
;14.022.5min LST

LSTScaled

VPD
VPDVPD

 

We define GPP as the product of PPI and VPDScaled: 

ScaledPPI VPDPPIGPP 
 

All the EO data were smoothed with a Savitzky-Golay filter (Savitzky and Golay, 

1964) in the software package TIMESAT (Jönsson and Eklundh, 2004) using: 

fitting method = 1, window size = 5, and seasonal parameter = 1. The full dataset 

containing all four sites was randomly split 50/50 into calibration (297 samples) 

and evaluation (297 samples) subsets. In order to compare the GPP models against 

EC GPP, we used the coefficient of determination (R2) in an ordinary least-squares 

regression analysis. We also computed the root-mean-square error (RMSE) to 

assess their accuracy in relation to EC GPP. 

We compared this model to two other vegetation index-based models: the 

“Temperature-Greenness” (T-G) model (Sims et al., 2008) and the “Greenness-

Radiation” (G-R) model (Gitelson et al., 2006). We also compared it to the 

MOD17A2 GPP product. The T-G model was originally developed for North 

American ecosystems and uses the product of scaled LST and EVI (scaledLST * 
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scaledEVI) to estimate GPP. It is based on the idea that GPP has generally strong 

correlation with EVI, and that LST accounts for temperature controls on GPP. The 

scaling factor reduces scaledLST to 1 when LST = 30oC and to 0 when LST = 0, 

or reaches 50oC, while the EVI scaling factor reduces GPP to zero when EVI ≈ 0.1 

(Sims et al., 2008). The G-R model is based on the idea that total chlorophyll 

content of a canopy is the primary factor influencing the amount of PAR absorbed 

by green vegetation (Gitelson et al., 2006). It originally formulated GPP as the 

product of total chlorophyll (Chl) and top-of-canopy PAR (PARTOC), but was 

modified by Wu et al. (2011) who replaced Chl with EVI for scalability using EO 

data.  
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3. Results and Discussion 

3.1 Patterns and trends in NPP supply and demand 

(Papers I and II) 

In the Sahel, around 41% of the NPP supply is consumed by humans. The low 

regional inter-annual variability of NPP in this region, at 1.7% (Figure 9), is 

representative of the global trend over the past 35 years (Running, 2012) 

suggesting that the supply of NPP is at a near constant level. That being said, parts 

of the western Sahel exhibited a modest positive trend in NPP supply between 

2000 and 2013 (µ = 2 g C m-2 yr-1, P < 0.05) (Figure 10), which could be due to 

sub-regional efforts to rehabilitate the land and increase productivity are may have 

a role (Kaboré and Reij, 2004). On the other hand, both population and NPP 

demand are increasing at similar annual rates of 2.8% and 2.2%, respectively. This 

supply-demand relationship is sensitive to systemic shocks such as droughts or 

pest infestations that might lower the regional NPP supply. 

 

Figure 9: Inter-annual variability of NPP supply and demand in the Sahel. 

Total NPP supply, NPP demand, and NPP supply anomalies in the greater Sahel region 

between 2000 and 2010. NPP supply anomalies were computed as differences of NPP 

supply from annual mean using the 11-year record.   
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There were two years that exhibited large negative NPP anomalies in Figure 9. 

The year 2002 was marked with a severe drought in Ethiopia and parts of Sudan 

that caused food and water deficit affecting 12 million people (Balogun et al., 

2013) as well as localized food shortages in West Africa. In 2004, the largest 

desert locust (Schistocerca gregaria) infestation in 17 years reduced the regional 

NPP supply until the 2005 growing season (Ceccato et al., 2006). This infestation 

resulted from heavy rains the preceding year that created ideal breeding conditions 

for the locusts (Ceccato et al., 2006). Apart from the Sahel, NPP supply trends 

over 2000 – 2013 were also significant in central Africa (µ = 30 g C m-2 yr-1, P < 

0.05) and parts of Zambia, Malawi and Mozambique (µ = -25 g C m-2 yr-1, P < 

0.05) (Figure 10 a). By contrast, trends of NPP demand over 2000 – 2011 are 

significant in 48% of the area and roughly evenly distributed (Figure 10 b).  

The mean overall trend in NPP demand is 3.5 g C m-2 yr-1, though in urban areas it 

averages approximately 50 g C m-2 yr-1. The tradeoffs between NPP supply and 

demand trends (i.e. change in one quantity relative to another) are locally 

constrained and linked to the prevailing climate, population growth and net 

migration. For instance, in the region of Sikasso in southern Mali, the trend of 

NPP supply averages 10 g C m-2 yr-1 (Figure 10 a-1) and that of demand is 1 g C 

m-2 yr-1 (Figure 10 b-1). This region is agriculturally productive and exhibits 

positive NPP supply anomalies (Figure 10 b). The low trend in NPP demand is 

surprising because the population of Sikasso grew 3.9% a year between 2000 and 

2011 (FAO, 2013). This paradox of high land productivity, rapid population 

growth and low demand for NPP could be a sign that the population is not 

consuming adequate amounts of food, feed and fuel.  

One of the fastest growing cities in sub-Saharan Africa is Addis Ababa, which 

grew by 40% between 2000 and 2010 due to economic migration from other parts 

of the country (Adugna and Hailemariam, 2011; Moller, 2012). Consequently, the 

observed average trend in demand for NPP in the Addis Ababa metropolitan area 

was 153 g C m-2 yr-1 for 2000 – 2011 (Figure 10 b-2), the highest in sub-Saharan 

Africa. The observed decrease in NPP supply in the vicinity of Addis Ababa over 

2000 – 2013 (Figure 10 a-2) could be linked to the rapid growth of the city. 

Itannam and Olsson (2004) found that urbanization and industrialization resulting 

from Addis Ababa’s rapid expansion contributed to land degradation in 

surrounding agricultural areas. This adversely affects the livelihoods of farmers 

prompting further economic migration into the city (Abdissa and Degefa, 2011). In 

Malawi, approximately 45% of the population lives in the southern part of the 

country (van Vuuren et al., 2011), where the vicinity of the country’s second-

largest city, Blantyre, has experienced an overall decrease in NPP supply (-11  g C 

m-2 yr-1, Figure 10 a-3) over 2000 – 2013 and an increase of NPP demand (0.80 g 
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C m-2 yr-1, Figure 10 b-3). The supply of NPP in this region is highly sensitive to 

ENSO events (Figure 11 a, b) with a net negative impact, this is discussed further 

in section 3.2.  

 

Figure 10: Trends in NPP supply (2000 – 2013) and demand (2000 – 2011). 

(a) NPP supply, and (b) NPP demand. Detail showing pixel-level supply and demand trends 

for different urban and rural areas in sub-Saharan Africa: (1) the agricultural region of 

Sikasso in southern Mali, (2) the Addis Ababa metropolitan area, and (3) southern Malawi 

within the vicinity of the city of Blantyre. Since the units of NPP supply are generally 

denoted as quantity per unit area per unit time, and demand generally represents NPP 

required by the inhabitants in each pixel, each NPP demand pixel in b was divided by its 

area to facilitate comparability. Grey areas indicate both statistically insignificant (P > 0.05) 

and areas outside the study region.  
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3.2 Role of ENSO in the demand-supply balance of 

NPP (Paper II) 

Demand for NPP is coupled with population growth and consumption patterns, but 

it is not linked to, not does it change with, ENSO phases. Consequently, when 

NPP supply is reduced by El Niño, NPP demand increases relative to it, causing 

positive demand-supply ratio (DSR) anomalies. This is clearly visible in the 

mainly arid region of Southern Africa. The region exhibited the largest contiguous 

region of negative NPP supply anomalies during El Niño (Figure 11 a), and 

consequently also shows the largest positive DSR anomalies (Figure 11 d). The 

opposite effect can be seen during La Niña, when NPP supply anomalies in 

Southern Africa are positive and DSR anomalies are negative. Negative NPP 

supply anomalies during La Niña are concentrated around equatorial East Africa 

resulting in positive DSR anomalies (Figure 11 b, e).  

The greatest sensitivity to El Niño occurs in Southern Africa. Here, a +1oC shift in 

the Niño 3.4 index causes a mean change in the NPP supply of -6.6 g C m-2 yr-1. El 

Niño events in Southern Africa are associated with dry conditions, while La Niña 

events are associated with wet conditions. Most land cover types in Southern 

Africa exhibit negative NPP supply values relative to changes in the Niño 3.4 

index. The exceptions, with either the median value or a large number of positive 

outliers, are the region’s forests and woodlands that are adapted to prolonged dry 

seasons or droughts, and possess physiological mechanisms such as extensive 

roots allowing efficient deep water access or are drought deciduous (i.e. the trees 

lose leaves to conserve water) (Nicholson, 2011).  

Despite the fact that there were more La Niña events than El Niño events between 

2000 and 2011, the negative impact of El Niño on Southern Africa is strong 

enough to tip the balance toward the negative. This sensitivity, coupled with a 1.3 

g C m-2 yr-1 trend in NPP demand, increases demand relative to available supply. 

This is troubling because the difference in NPP supply in Southern Africa between 

El Niño and La Niña years corresponds to what is required to feed  approximately 

15 million people for one year (Stige et al., 2006). Malawi exemplifies Southern 

Africa’s sensitivity to El Niño events. The net negative effect of ENSO as a whole 

means that the negative correlation the region has with El Niño outweighs its 

positive correlation with La Niña. The strong El Niño of 2015/16 reduced the 

October 2015 – February 2016 rainy season to its lowest level since 1981 

(FEWSNET, 2016). This severe drought condition caused below average crop 

production leading to low earnings from agricultural labor and high food prices 

(FEWSNET, 2016).  
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Figure 11: Standardized anomalies (2000 – 2011). 

Standardized anomalies for NPP supply (a, b, c) and demand-supply ratio (d, e, f). Means 

were calculated for El Niño (a, d), La Niña (b, e) and neutral years (c, f). For each panel, the 

anomaly indicates the number of standard deviations an observation is above or below the 

mean. The ENSO cycle typically straddles two calendar years, beginning around July, with 

a peak in December – February, and begins to decay in March – April of the following year. 

The monthly NPP supply anomalies reflect this cycle and were summed to annual values. 

Since the FAOSTAT data is provided in calendar years, the demand-supply ratio (DSR) 

data reflects that nomenclature. Accordingly, DSR anomalies shown here represent the 

latter half of the ENSO cycle, e.g. for the ENSO-neutral years of 2001/02 and 2003/04, the 

corresponding DSR anomalies are the years 2002 and 2003. Grey areas are outside the 

study region.  
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3.3 Validation of African population projections 

(Paper III) 

The technical validation of the dataset is performed by comparing the SSP 1 

country populations with the gridded population dataset (for SSP1/RCP 4.5) 

aggregated to country levels. This is done for year 2005 since both SSP population 

projections and RCP land use projections do not deviate until after that year. 

Accordingly, we performed the technical validation on only one RCP–SSP 

combination.  

To further evaluate the created dataset we compared the 2000 to 2005 population 

change for the created gridded dataset with the change for UN (2015) adjusted 

Gridded Population of the World version 4 (GPWv4) by Doxsey-Whitfield et al. 

(2015). This was done for a sample of six African countries (Benin, Madagascar, 

Morocco, Botswana, Ethiopia, and Tunisia) representing a wide variation in 

population density and spatial distribution. Then, the population was aggregated to 

level 2 administrative regions within each country. For most of the countries the 

change matches in general well but typically deviates more for a few of the level 2 

administrative regions. A summary of the comparison to GPWv4 for the validation 

countries and year 2005 can be seen in Table 2 were it can be observed that the 

total distributed SSP population figures are not exactly the same as the population 

for GPWv4. However, the coefficient of determination is high (R2 > 0.8) for most 

of the countries and administrative levels indicating that the spatial pattern is 

captured between the regions. This indicates that the method is well suited to 

capture the spatial variability in the population. However, due to considerable 

differences in the total population between GPWv4 and the SSP population data 

we do not expect the change to match perfectly for all regions. 

We used a deterministic method to produce the gridded population projections, 

which means that the level of uncertainty in the created dataset originates from 

uncertainty in the input data. We would like to point out the potential over-

influence of roads in the created dataset. This is due to the fact that WorldPop uses 

distance to roads and we further add the inverse distance to roads in order to create 

a unique population dataset as a starting point. However, since we rescale the 

distance to road to be between 1.0·10−5 and 1.1·10−5 we argue that this will only 

have an effect for pixels that were equal in the initial WorldPop dataset. Pixels (30 

arc-seconds) with unequal population values in the initial dataset will have a very 

low probability of being affected by this small addition based on the distance to 

roads. 
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Table 2: Summary of gridded data 

Select countries were aggregated to administrative region level 1 and 2 for year 2005 and 
compared with GPWv4. n indicates number of regions within each administrative level. R2 
is the coefficient of determination and RMSE is the root mean square error between 

GPWv4 and gridded population, aggregated to administrative level one or two.  

  
n R2 RMSE 

GPWv4 
average 

population 

Gridded 
average 

population 

GPWv4 
country 
totals 
(‘000) 

SSP 
country 
totals 
(‘000) 

Benin 
      

8 203  7 630 

 
Adm1 12 0.89 104 369 674 354 631 009   

 
Adm2 76 0.81 38 391 106 477 99 633   

Madagascar 
     

18 200 17 900 

 
Adm1 6 0.91 635 232 3 028 272 2 976 479   

 
Adm2 22 0.86 407 449 825 892 811 767   

Morocco 
      

29 920 30 400 

 
Adm1 15 0.79 587 860 1 988 823 2 015 600   

 
Adm2 54 0.91 312 416 552 451 559 889   

Botswana 
     

1 860 1 880 

 
Adm1 9 0.98 26 917 205 694 208 228   

 
Adm2 25 0.52 47 608 74 050 74 962   

Ethiopia 
      

76 536 74 300 

 
Adm1 11 0.99 1 162 510 6 953 130 6 749 082   

 
Adm2 72 0.94 229 176 1 062 284 1 031 110   

Tunisia 
      

9 757 10 000 

 
Adm1 24 0.83 174 471 404 435 414 169   

  Adm2 268 0.48 26 375 36 218 37 090   
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3.4 Water controls on Sahelian GPP (Paper IV) 

Hydrological processes generally control vegetation dynamics at multiple spatial 

and temporal scales. Apart from highly humid environments, all plants undergo 

photosynthesis at the expense of losing moisture to the atmosphere. This moisture 

loss is particularly an issue for dryland vegetation where an imbalance could occur 

between the amount of water plants require and the limited amount that is 

available in the ecosystem. In this study, we found that the two main moisture 

related biophysical limitations, plant available water (PAW) and vapor pressure 

deficit (VPD), are both critical factors that limit plant CO2 uptake by influencing 

the greening and browning phases of vegetation phenology. With the start of the 

dry season in November, low PAW is present in the drying soils of the Sahel, 

which leads to decreased availability of water for uptake by plant roots (Figure 

12). This in turn reduces evapotranspiration (latent heat) due to drier soils and the 

closure of the stomata commences to prevent moisture loss.  

 

Figure 12: Illustrating water controls on GPP using data from the site in Demokeya, 
Sudan.  

 

The start of the rainy season results in the replenishment of soil moisture and rapid 

growth of the herbaceous vegetation. The availability of PAW increases root water 

uptake and evapotranspiration along with reduction in VPD brought on by increase 

in humidity. An overview of the relationship between eddy covariance GPP (EC 

GPP), VPD and PAW across all sites is shown in Figure 13. The dry season is 

characterized by consistently high VPD (> 2 kPa), which is linked to the reduction 
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in evapotranspiration due to low PAW and the increase in land surface 

temperature (LST). Cross-site relationships of PAW and VPD with EC GPP were 

fairly moderate (R2 = 0.36 and 0.43, respectively). The relationships at the 

individual sites were varied with R2 values of VPD ranging between 0.59 and 0.75 

and those of PAW between 0.59 and 0.76. The combination of PAW and VPD 

explained the largest variance across all three sites (R2 = 0.47, RMSE = 2.06 g C 

m-2 d-1), with the highest R2 and lowest RMSE at Wankama Fallow (R2 = 0.83, 

RMSE = 0.77 g C m-2 d-1). With the reduction/closure of stomatal conductance, 

plants deactivate metabolic activity in the shoots to reduce consumption of water 

(and subsequent transpiration) while simultaneously enhancing uptake of water 

and nutrients by the roots to mitigate the effect of the dry season (Gargallo-Garriga 

et al., 2014).  

 

Figure 13: Drought stress metrics and eddy covariance gross primary productivity. 

Top: Comparison of VPD and EC GPP with coloring that indicates corresponding values of 

PAW for each site. Values to the left of the vertical dotted line (GPP < 1 g C m-2 d-1) and 

above the horizontal dotted line (VPD > 2kPa) represent the dry season. Bottom: 

Relationship between the VPD and PAW per corresponding GPP values during the dry and 

growing seasons. The solid black line is the regression line with 95% confidence interval in 

light gray.  
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3.5 Potential of PPI to estimate GPP (Paper V) 

. 

The calibration and evaluation output produced by the PPI GPP model were 

comparable with GPP modeled using other methods (Figure 14). The calibration 

and evaluation R2 results of the G-R model (Gitelson et al., 2006) underperformed 

in comparison to the PPI GPP model (Figure 14 b), leading to a lower overall 

performance of that model. Additionally, the slopes of the regression lines in 

Figure 14, show that the PPI GPP model displayed the closest value to the 1:1 line. 

This indicates that PPI GPP model exhibits a relatively strong ability to estimate 

the magnitude of EC GPP compared to the G-R model.  The PPI GPP model also 

outperformed the T-G model in both the calibration and evaluation datasets 

(Figure 14 c). The sites classified as “drought sites” in Sims et al. (2008) are 

considerably cooler than Sahelian sites (12oC vs 30oC), so the LST scaling factor 

in the T-G model cannot account for the environmental conditions in this warm 

region. However, the T-G model performed well at Skukuza (R2 = 0.74), which is 

probably because it has a lower mean LST (29oC) that is within the optimal 

threshold set in the T-G model (Sims et al., 2008). The full PPI GPP model is 

show below: 

  70.0
93.212.0 ScaledPPI VPDPPIGPP   

The PPI GPP model tracked the seasonal and inter-annual development of EC 

GPP well. Furthermore, it managed to capture the amplitude of EC GPP 

reasonable well, which is further confirmed by the slope close to the 1:1 line in 

Figure 14 a. At Demokeya, the PPI model over-estimated GPP during the dry 

season, but captured the start and end of the growing season for all sites in-line 

with EC GPP except at Mongu. The MOD17 model underestimated GPP at all 

sites but was able to follow the greening and browning phases of Skukuza (30% 

canopy cover) and Mongu (65% canopy cover), suggesting that this model does 

better in tree-dominated areas than savanna. The T-G model either underestimated 

or overestimated peak GPP at most sites.  

The Plant Phenology Index (PPI) was originally designed for boreal coniferous 

forests as a solution to suppressing the influence of snow in phenology metrics. In 

this study, we evaluated the performance of a PPI-based model in predicting the 

GPP at four semi-arid sites in sub-Saharan Africa with a wide canopy cover range 

(3 – 65%). We found that PPI is able to capture green canopy foliage reasonably 

well (R2 = 0.75, RMSE = 1.39 g C m-2 d-1) due to its sensitivity to green LAI. It 
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further managed to capture the magnitude of EC GPP relatively well compared to 

the other tested models. However, the performance of PPI can be further improved 

through the inclusion of total chlorophyll content as it is a principal factor 

influencing carbon assimilation. Canopy foliage remains green during the growing 

season despite considerable variability in total chlorophyll content between the 

beginning and end of the season. Accounting for total chlorophyll content, perhaps 

through the inclusion of chlorophyll-sensitive vegetation indices, could further 

enhance the ability of PPI to estimate GPP in semi-arid systems. 

 

 

Figure 14: Results of the calibration and evaluation datasets. 

Cross-site relationships between EC GPP and each of the four GPP models (a – d, see 

Table 4). The calibration and evaluation dataset each has the same quantity of data points 

(n = 297). The red and green lines are the regression line for calibration and evaluation, 

respectively, with 95% confidence interval in light gray shading.  
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4. Conclusions and Broader Impacts 

Humans rely directly on the supply of NPP through the consumption of crops and 

use of wood for fuel and construction, and indirectly through animal products. 

This reliance creates demand that drives many of the ecological changes occurring 

in sub-Saharan drylands. The integrated analysis of the supply and demand of NPP 

allows the identification of areas at risk of consuming more resources than are 

available, either presently or in future scenarios. Evaluating socio-ecological 

impacts through isolated disciplinary analysis provides monocular views of a 

complex system that requires an integrated approach. That being said, such an 

approach needs to be reasonably accurate to represent reality. But it also needs to 

follow Occam’s razor by being simple enough to be widely applicable and easily 

understood. It is a difficult balancing act.  

This dissertation adds to a series of studies on sub-Saharan vegetation dynamics 

with a focus on the relationship between anthropogenic demand and ecosystem 

supply of NPP. The demand-supply balance of NPP was 86%±9 across the 

drylands of sub-Saharan Africa during the first decade of the 21st century (Abdi et 

al., 2016). This balance was high in some regions.  For example, in the Sahel, a 

climatically sensitive region with high anthropogenic activity, average demand-

supply balance of NPP was 96%±7. Additionally, the annual increase in NPP 

demand in the Sahel was 2.2% over the same period (Abdi et al., 2014). This 

rapidly increasing demand for food, fuel and feed driven by population growth 

makes this sub-Saharan region in particular vulnerable to climatic variability that 

may alter the per capita availability of NPP. There is risk that ecosystems may not 

be able to provide for the region’s humans and livestock without a corresponding 

increase in NPP supply. In southern Africa, variability associated with the El Niño 

– Southern Oscillation causes a mean change in the NPP supply of -6.6 g C m-2 yr-1 

between 2000 and 2013 (Abdi et al., 2016). Couple this sensitivity to El Niño with 

an increasing trend in of NPP demand of 1.3 g C m-2 yr-1 indicates that demand for 

NPP has the potential to surpass supply during extreme El Niño events (Abdi et 

al., 2016). This underscores the importance of accounting for the balance between 

supply and demand of NPP because neither quantity provides a complete picture 

by itself. Overall, the combination of fluctuations in NPP supply and upsurges in 
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demand led to an average increase of 7.2% in the demand for NPP relative to its 

supply between 2000 and 2011.   

Understanding the environmental constraints on primary production in drylands is 

an important step to improve estimates of NPP supply and better assess the 

demand-supply balance. The supply of primary production in sub-Saharan 

drylands is primarily controlled by water availability. This important factor is 

regulated by two processes, plant available water and vapor pressure deficit, that 

work in unison (increase in one, decrease in the other) during the greening and 

browning phases (Abdi et al., 2017b). In this dissertation, GPP in Sahelian 

drylands was found to increase when the vapor pressure deficit is under 2 kPa and 

plant available water is above 50 mm. Furthermore, the inclusion of dry season 

dynamics of these two variables helped better explain the variance in observed 

GPP and outperformed MOD17 GPP. A similar improvement was observed using 

Earth observation data that served as surrogates for vapor pressure deficit and soil 

moisture variability. Although there is barely any carbon assimilation in drylands 

during periods of drought, recent research points to the ability of these ecosystems 

to retain “memory” of past rainfall (Schwinning et al., 2004). The applicability of 

the Plant Phenology Index (PPI) at four sub-Saharan sites was explored in Abdi et 

al. (2017a). PPI was designed to capture green leaf area index (LAI), as opposed to 

total LAI (Jin and Eklundh, 2014) and could potentially improve GPP estimates. It 

was found that a PPI-based GPP model is able to follow the seasonal phenology of 

eddy covariance reasonably well (R2 = 0.75, RMSE = 1.39 g C m-2 d-1). It further 

managed to capture the magnitude of EC GPP relatively well compared to the 

other tested models. However, the performance of PPI can be further improved 

through the inclusion of total chlorophyll content as it is a principal factor 

influencing carbon assimilation. Vegetation indices such as EVI are primarily 

sensitive to chlorophyll content. Thus, for the same LAI, plants with different 

amount of chlorophyll would exhibit different values of EVI. Nevertheless, there 

is potential in obtaining better estimates of GPP in sub-Saharan drylands by 

combining green LAI-sensitive PPI with chlorophyll-sensitive vegetation indices.  

The lack of annual spatial data on Africa population is a critical deficiency that 

hinders the estimation of NPP demand. Several of the large-scale gridded 

population data suffer from two fundamental problems: they are either too coarse 

(e.g. ~25 – 50 km pixel size) or they are provided as snapshots in time (e.g. 2000, 

2005, 2010, etc.). Both Abdi et al. (2014) and Abdi et al. (2016) used 1-km 

gridded population data that were available in 5-year time slices, which had to 

interpolated into annual intervals using United Nations data. In this dissertation, 

Boke-Olén et al. (2017) addresses this issue by creating a 1-km gridded population 

dataset for Africa that is (1) annual, to allow for temporal analysis, and (2) 
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accounts for radiative forcing and socioeconomic scenarios. The availability of 

gridded population data at annual time steps allows for monitoring inter-annual 

changes in the human landscape such as the expansion of settlements, prediction 

of fuelwood supply routes, access to markets etc.  

The NPP-based framework presented in this dissertation should not be construed 

as a famine early warning system. This is because the dynamics of famines 

invariably depend upon institutional involvement (or lack thereof). Instead, the 

demand-supply balance of NPP should be considered as a “long-term warning 

system” as it integrates processes that affect human well-being across longer time 

scales. For example, one of the factors that could lead to a famine is the lack of 

infrastructure which prevents food from flowing from areas of surplus to areas of 

deficit (Olsson, 1993). Thus, an important utility of the demand-supply balance 

lies in helping identify areas where, in the long-term, demand can surpass supply 

and which could require better investments, for instance, in infrastructure, 

transportation, assistance in land rehabilitation, etc. A second practicality of the 

demand-supply balance is its linkage to population-driven resource-use. An 

increasing human population is not necessarily something negative. Indeed, for 

some countries, particularly those with developed economies, a certain rate of 

positive population growth is essential for economic growth (Harper, 2014). 

However, when this growth is assessed from the perspective of resource-use and 

the demands exerted by humans on ecosystem supply, a different picture emerges 

that is linked to, among other things, the rate of increase in demand.  

An important limitation of the demand-supply balance of NPP is that it assumes 

NPP flows are constrained by the local population distribution and does not take 

into consideration NPP flows connected to international trade. This constraint is 

indeed applicable to several, if not most, rural communities in sub-Saharan Africa, 

however, the paradigm is shifting and human-environment systems on the 

continent are becoming increasingly telecoupled over large distances (Liu et al., 

2013). Thus, a comprehensive, integrated approach is essential to further assess 

the factors driving this complex balance, particularly in the wake of climate 

change. Only through transdisciplinary analysis involving enhanced synthesis of 

biophysical, socio-ecological and socioeconomic data can improved assessments 

of the impacts of humans on ecosystems be made.  
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5. Outlook 

Sociological data, such as surveys at the household (or even individual) level, 

which provide valuable information about fine-scale patterns of human-ecosystem 

interaction, are seldom integrated with biophysical datasets. An important factor 

that influences the balance between supply and demand is caloric requirement. In 

this sense, gridded population data, such as the one presented in this dissertation, 

will prove to be even more useful. High resolution gridded population data that 

accounts for different radiative forcing and socioeconomic scenarios will allow the 

linking the caloric requirement of a population with landscape availability. Data 

on average dietary energy requirement, e.g. 2,090 kcal per person per day in 

Southern Africa, could be further fine-tuned to local levels using census and 

survey data. Then, applied to time series gridded population data to get a better 

estimate of caloric demand across space and time. There are signs that the 

scientific community maybe heading in the direction of estimating caloric value of 

a landscape. For example, Cassidy et al. (2013) has shown that it is possible to 

spatialize the proportion of global agricultural yield that is used for food or feed on 

a per calorie basis. This allows for a direct comparison of how many people could 

be sustained in a particular area. Additionally, there is a need for spatially explicit 

network analysis, such as the type used in geographic information systems, to map 

NPP flows from producing areas to consuming areas through road networks. This 

is necessary to allow for flexible limits in the demand-supply framework so that 

factors such as market access and rural-urban flows could be taken into account.  

The importance of global drylands in the terrestrial carbon cycle has recently been 

identified (Poulter et al., 2014; Ahlström et al., 2015). However, knowledge about 

their magnitude, spatial, temporal variability and seasonal process (e.g. during dry 

season) is incomplete (D. Stock, 2017). This is a crucial knowledge gap, 

particularly in the wake of rising atmospheric CO2 concentrations and recurrent 

droughts (Dai, 2013). The quantification environmental controls on carbon 

assimilation is of particular importance because of a lack of gridded, high 

resolution time series of such data. Recently, Jägermeyr et al. (2014) found that 

MODIS land surface temperature the Enhanced Vegetation Index were able to 

explain 62% of the variability in ecosystem respiration across most global biomes. 



54 

In that sense, land surface temperature data, such as the 1-km daily 

MOD11A1/MYD11A1 product from MODIS holds considerable potential.  

Africa accounts for roughly 20% of global NPP (Williams et al., 2007). It is 

widely recognized that there is a chronic lack of field data on carbon fluxes to 

validate satellite-based models because Africa has the least number of eddy 

covariance flux towers relative to its size (Mu et al., 2011a). One potential solution 

to this problem lies in capacity building, which produces three favorable 

outcomes. First, it eliminates the need for scientists to only rely on data that was 

collected in the past as their sole sources of validation because of the availability 

of skilled local labor. Second, it allows for increased scientific understanding of 

the principles and processes involved in ecosystem ecology, and, in combination 

with local knowledge, sets the foundation for locally-led projects. Third, it creates 

a mutually beneficial ecosystem based on an exchange of ideas, and that fosters 

collaboration and innovation.  
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Abstract
Net primary production (NPP) is the principal source of energy for ecosystems and, by
extension, human populations that depend on them. The relationship between the supply and
demand of NPP is important for the assessment of socio-ecological vulnerability. We present an
analysis of the supply and demand of NPP in the Sahel using NPP estimates from the MODIS
sensor and agri-environmental data from FAOSTAT. This synergistic approach allows for a
spatially explicit estimation of human impact on ecosystems. We estimated the annual amount of
NPP required to derive food, fuel and feed between 2000 and 2010 for 22 countries in sub-
Saharan Africa. When comparing annual estimates of supply and demand of NPP, we found that
demand increased from 0.44 PgC to 1.13 PgC, representing 19% and 41%, respectively, of
available supply due to a 31% increase in the human population between 2000 and 2010. The
demand for NPP has been increasing at an annual rate of 2.2% but NPP supply was near-constant
with an inter-annual variability of approximately 1.7%. Overall, there were statistically
significant (p< 0.05) increases in the NPP of cropland (+6.0%), woodland (+6.1%) and
grassland/savanna (+9.4%), and a decrease in the NPP of forests (−0.7%). On the demand side,
the largest increase was for food (20.4%) followed by feed (16.7%) and fuel (5.5%). The supply-
demand balance of NPP is a potentially important tool from the standpoint of sustainable
development, and as an indicator of stresses on the environment stemming from increased
consumption of biomass.

S Online supplementary data available from stacks.iop.org/ERL/9/094003/mmedia

Keywords: Drylands, sustainability, NPP, Sahel, climate change, vulnerability

1. Introduction

Net primary production (NPP) represents the amount of
atmospheric carbon that is fixed by vegetation during pho-
tosynthesis and accumulates as biomass. It represents the
availability of carbon in the form of plant material for con-
sumption as food, fuel and feed. NPP has been linked to crop
yield (Tao et al 2005), biomass energy potential (Field
et al 2008), forest production (Baisden 2006), and grazing
resources (Leriche et al 2001). In sub-Saharan Africa NPP

resulting from extensive agriculture and dry woodlands plays
an important role in maintaining food security and providing
household energy. However, these resources are under pres-
sure from high population growth, which increases demand
for NPP, and climate change, which impacts supply
(IPCC 2014). The ‘supply’ of NPP is defined here as the
annual amount of carbon stored in the ecosystem as plant
tissue.

Semi-arid regions are particularly vulnerable to fluctua-
tions in the supply of NPP due to its natural scarcity. In these
regions, increased human activities are often driven by the
demand for food, fuel and feed, which brings about changes
that alter the spatial patterns of NPP such as cropland
expansion, pasture creation, and fuelwood extraction. For
example, large increases in demand for NPP lead to increased
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pasture stocking rates (Vargas et al 2009) resulting in soil
compaction and vegetation defoliation (Hiernaux et al 1999).
Additionally, crop yields, particularly in parts of sub-Saharan
Africa, have been declining (Aune et al 2005, Chianu
et al 2006) due to, among other things, reduction in soil
fertility caused by continuous cropping to meet demand
(Samaké et al 2005).

We use the terms ‘demand’ and ‘consumption’ to denote
two different, but closely related, things. Demand for NPP is
defined as the annual amount of carbon required to derive the
food, fuel and feed necessary for human survival, and which
also includes carbon lost during harvest and handling. The
term ‘consumption’ refers to the actual amount of NPP that is
extracted from the ecosystem as reported in the statistical
database of the Food and Agriculture Organization of the
United Nations (FAOSTAT).

Field estimation of NPP involves harvesting vegetation
and calculating the annual growth of wood, the mass of
foliage at peak leaf display, and the difference in the mass of
tissue harvested at the beginning and end of the growing
season (Schlesinger 1997). NPP varies spatially due to both
environmental and anthropogenic factors and, because field-
work is both labor and cost intensive, it would be exorbitantly
expensive to conduct measurements over large extents. In this
regard, data from satellite remote sensing platforms provide
useful tools for quantifying the availability of NPP at regional
scales.

We chose the Sahel region of Africa as an example of a
complex, semi-arid, human-environment system where the
supply-demand balance of NPP is in a constant flux. The
Sahel has been subject to numerous droughts in the late 20th
and early 21st centuries. Severe, region-wide, drought-
induced famines occurred in 1972–1973 and 1984–1985
(Sen 1983, Ibrahim 1988), and there were localized food
shortages in 1990, 2002 and 2004. Recently, food production

deficits were reported by several Sahelian countries in 2011/
2012 and it is presently estimated that over 11 million people
across the region are food insecure (United Nations 2013). A
combination of unfavorable climatic conditions (Gonzalez
et al 2012) and anthropogenic pressure (Sop and Olde-
land 2011, Hassan et al 2009) have caused declines in crop
yield (Thornton et al 2008) and the diversity of Sahelian
woody plant species (Wezel 2005).

The objectives of this paper are to quantify for the period
2000–2010: (1) the amount of NPP required to derive food,
fuel and feed, (2) the fluctuations in the supply NPP, and (3)
the percent of NPP demand relative to supply across the
region. The chosen study period coincides with the avail-
ability of two open-access datasets (1) a continuous, high-
resolution, satellite-derived NPP dataset, and (2) a high
resolution population distribution dataset covering three time
slices: 2000, 2005, and 2010.

2. Materials and methods

2.1. Study area

The study area covers the portion of the African continent
between 5° and 25° north latitude with a focus on the Sahel,
which is bounded by the 100 mm and 600 mm rainfall iso-
hyets (figure 1). Northern parts of the area that border the
Sahara Desert have a mean annual rainfall of less than
100 mm. To south of the Sahel are the humid savannas of the
Sudano-Guinean zone that receive ample rainfall, between
600–1000 mm, enabling high vegetation productivity. Most
of the region has one growing season, the start and length of
which varies with latitude. The growing season in northern
parts of the of the study area begins in July and ends in
October; in the southern parts (<10°N) the season starts
around April and lasts until November (Vrieling et al 2013).

Figure 1. IGBP classification of the study area according to the MODIS Land Cover Type Product (MCD12Q1). The dashed line represents
rainfall isohyets between 100 and 600 mm that delineate the Sahelian zone.
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2.2. NPP supply

We obtained the latest Collection 5.1 annual MODIS NPP
data from 2000 to 2010 from the NASA Earth Observation
System repository at the University of Montana (www.ntsg.
umt.edu/). The MOD17 light use efficiency model (Heinsch
et al 2003) calculates NPP as the difference between gross
primary production (parameters within parentheses in
equation (1)) and autotrophic respiration including growth
and maintenance components:

ε= −( )TNPP PAR*FPAR* *VPD* Ra (1)Supply max min

where NPPSupply is the NPP available in the ecosystem
regardless of land use type; PAR is incoming photo-
synthetically active radiation; FPAR is the fraction of incident
PAR absorbed by the vegetation canopy; εmax represents
maximum light use efficiency under hypothetical biome-
specific ideal conditions according to Monteith (1972); VPD
and Tmin are environmental scalars that constrain light use
efficiency and stand for vapor pressure deficit and minimum
temperature, respectively; Ra (autotrophic respiration) repre-
sents maintenance and growth respiration of leaves, fine roots
and woody tissue. Further descriptions of the MOD17 model
are detailed in Running et al (2004), Zhao et al (2005) and
Zhao and Running (2010).

In order to delineate the land cover classes that source
NPP for food, fuel, and feed, we obtained the latest Collection
5.1 of the MODIS Land Cover Type Product (MCD12C1)
(Friedl et al 2010) from NASA’s Land Processes Distributed
Active Archive (LPDAAC) (https://lpdaac.usgs.gov). We
used the International Geosphere Biosphere Program (IGBP)
classification system and aggregated the 14 land cover classes
within the study area into four land cover groupings (table 1S,
supplementary information) based on ecophysiological simi-
larities and their shared NPP sourcing capacity. For example,
grasslands (<10% tree cover) and savannas (10–30% tree
cover) were grouped together because both categories are
predominantly composed of herbaceous cover that serve as
grazing habitat for the region’s livestock population. Simi-
larly croplands and cropland/natural vegetation mosaics were
grouped together into one category. We calculated NPPSupply
trends for the region based on regression slopes resulting from
ordinary least squares versus time. We then isolated areas
that displayed significance (p< 0.05) and intersected them
with reclassified grids of the land cover groupings. This
procedure resulted in grids of statistically significant
NPPSupply change for each land cover grouping. We also
calculated annual NPPSupply anomalies for the 2000–2010
time period by subtracting the decadal average from each
yearly total.

2.3. Population density

Gridded population data for the years 2000, 2005 and 2010
were downloaded from the WorldPop Project (http://
worldpop.org.uk/). The dataset is derived by using high
resolution census data as a dependent variable in a Random
Forest model along with a suite of independent variables that

include land use and land cover, digital elevation, night-time
lights, mean annual precipitation and mean annual tempera-
ture. Detailed descriptions of the population model are pre-
sented in Tatem et al (2007) and Linard et al (2011). We
interpolated between 2000–2005 and 2005–2010 using
annual population growth data from United Nations Statistical
Database (UNSTAT 2014) to obtain continuous annual cov-
erage between 2000 and 2010.

2.4. NPP demand

The Sahelian growing season coincides with the summer
rains; crops are generally planted between May and July and
harvested from October to November (USDA 1994). The
NPP of croplands during the growing season represents the
annual provision crops that are produced in the region. Sor-
ghum, millet and maize, which together constitute 50% of
Sahelian crop distribution (Leff et al 2004) are important both
for human consumption and as fodder for livestock. Sahelian
pastoralists depend on grassland and savanna productivity as
forage for their livestock herds. Presently, 80% of the crop
calories produced in the region are used for food, 10% for
animal feed, and the remaining 10% for other uses (Cassidy
et al 2013). In most parts of the Sahel, energy demand is met
by woodfuels, and NPP provides biomass for energy in the
form of fuelwood and charcoal.

We calculate demand for NPP (NPPDemand) as the annual
amount (in grams of carbon) of terrestrial carbon necessary to
derive food, fuel and feed requirement in each country and
account for carbon lost due to burning and harvest losses.
Approximately 90% of the food produced in the region is
consumed domestically (Gollin 2009, Barrett 2013), leaving
10% for other use. Therefore we constrained NPPDemand

within each country in the region by using domestic pro-
duction data from FAOSTAT (http://faostat3.fao.org/)
(FAOSTAT 2013).

= + +
+ +

NPP NPP NPP NPP
NPP NPP (2)

Demand food fuel feed

burned residues

where NPPfood is the NPP required to produce domestically
consumed food items which includes meats sourced from six
types of domestic animals (cattle, goats, sheep, pigs, camels,
chickens) and two non-meat animal products (eggs and milk)
(table 2S, supplementary information). Also included were 27
types of regionally important primary crops (table 3S, sup-
plementary information). These crops represent 95% of all
those that are domestically consumed by most of the countries
in the study area (FAOSTAT 2013). A conceptual flowchart
of the demand module is depicted in figure 1S in the sup-
plementary information.

NPPfuel represents fuelwood and charcoal extracted from
the region’s dry woodlands. Woodfuel requirement ranges
from 55% in Senegal (Pires 2003) to over 90% in Chad (van
der Plas and Abdel-Hamid 2005), but on average it is around
80% across the study area. NPPfeed is the total amount of feed
required to sustain the region’s livestock population. This was
calculated by converting the total number of heads of the six
Sahelian domestic animal species to their equivalent Tropical
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Livestock Units (TLU), then multiplying by the annual feed
requirement for each TLU (table 4S, supplementary infor-
mation). Domestic human-driven NPP loss resulting from
biomass burning of forest resources for land clearing is
represented by NPPburned. Agricultural byproducts are repre-
sented by NPPresidues and were calculated by applying harvest
factors provided in literature (table 5S, supplementary
information).

Urban and rural consumption ratios vary due to differ-
ences in diet, lifestyle and wealth (Popkin 1999). We sepa-
rated urban and rural areas by masking the urban extent of the

WorldPop grids using data from the Global Rural-Urban
Mapping Project (CIESIN et al 2011). We derived per capita
NPPDemand by dividing total consumption with each country’s
population, and used the WorldPop data as a spatial surrogate
to apply the per capita NPPDemand to grid cells. Consumption
patterns of NPP in sub-Saharan Africa can differ considerably
and depend on several factors such as income and product
availability. We applied ratio factors for urban and rural
consumption to national sums of each component of
NPPDemand based on figures from the literature (Rear-
don 1993, Teklu 1996, Marufu et al 1997, Hartter and

Figure 2. (A) Coefficient of variation of NPP 2000–2010. The dashed line represents rainfall isohyets between 100 and 600 mm that delineate
the Sahelian zone. There are well-defined clusters of high NPP variability (>100%) in the Sahelian zone notably in southern Mauritania,
northeast Mali, central and eastern Chad and northeastern Sudan. The gray coloration within each countries national borders signify areas
with no data. (B) Significant trends (p< 0.05) in NPPSupply for the four land cover groupings in the study area between 2000 and 2010.
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Boston 2008) and national household consumption surveys
(ISTEEBU 2001, Maziya-Dixon et al 2004, Tafere and
Worku 2012, GSS 2008, Food Security Technical Secretar-
iat 2010, NSO 2012). Grids of urban and rural consumption
were then merged to produce a single grid of NPPDemand for
each year.

3. Results

3.1. NPP supply

Mean total NPPSupply based on 2000–2010 MODIS data is
2.41 PgC with an inter-annual variability of approximately
0.04 PgC (1.7%). The dry Sahelian zone exhibited high

Figure 3.Difference in population density (persons per km2) between 2000 and 2010 according to WorldPop data. There is a general increase
of 1–100 persons per sq. km across much of the region with large increases of up to, and greater than, 5000 persons per sq. km in and around
the major urban centers. Several countries exhibit large patches of decrease in population density, most notably in the Central African
Republic. Areas with difference values of less than 1 were masked out.

Table 1. Statistically significant (p < 0.05) NPPSupply trends based on regression slopes of ordinary least squares regression versus time (2000
and 2010).

Country Cropland NPP Woodland NPP Forest NPP Grassland/Savanna NPP Total NPP

Benin −0.37% 4.80% — 8.09% 4.17%
Burkina Faso 8.68% 8.17% — 8.47% 8.44%
Cameroon 7.57% 4.00% −0.98% 6.86% 4.36%
Central African Republic 8.50% 5.45% 4.15% 9.87% 6.99%
Chad 14.86% 12.85% — 17.87% 15.19%
Djibouti — — — 10.78% 10.78%
Eritrea 16.14% 10.05% — 10.69% 12.29%
Ethiopia 1.87% 5.13% −1.28% 5.32% 2.76%
Gambia 9.47% — — 10.37% 9.92%
Ghana 1.17% 12.42% −0.84% 8.27% 5.26%
Guinea 1.94% 3.48% −2.00% 4.59% 2.00%
Guinea Bissau 4.35% 14.18% — 19.87% 12.80%
Ivory Coast −1.93% 1.17% −1.80% 14.83% 3.07%
Liberia −1.84% — −1.97% — −1.90%
Mali 12.53% 9.96% — 9.05% 10.51%
Mauritania 17.54% 19.26% — 12.39% 16.40%
Niger −6.70% −20.82% — −6.97% −11.50%
Nigeria 3.36% −5.08% −0.16% 4.01 0.53%
Senegal 16.36% 17.84% — 14.44% 16.21%
Sierra Leone 0.61% 2.62% −1.47% — 0.59%
Sudan 11.74% 5.36% — 9.48% 8.86%
Togo 0.53% 5.46% — 9.70% 5.23%
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coefficients of variation values in south-central Mauritania,
northeast Mali, central Chad and around the Khartoum
metropolitan area in Sudan (red colors in figure 2(A)). The
years 2002 and 2005 had the lowest total regional NPPSupply
values with anomalies of −0.23 and −0.11 PgC, respectively
(figure 4(A)). The trend in NPPSupply between 2000 and 2010
for each of the 22 countries is given in table 1. There were
significant (p< 0.05) region-wide increases in the NPPSupply
of cropland (+6.0%), woodland (+6.1%) and grassland/
savanna (+9.4%) and a decrease in forest NPPSupply (−0.7%).
NPPSupply in individual countries varied considerably; some
such as Niger demonstrated large NPPSupply decreases in
cropland (−6.7%), woodland (−20.8%) and grassland/savanna
(−6.9%), while others such as Senegal had relatively sub-
stantial increases in the NPPSupply of cropland (+16.3%),
woodland (+17.8%) and grassland/savanna (+14.4%)
(figure 2(B)). In 2002, the total region-wide NPPSupply drop-
ped −9.7% below the decadal average due to droughts in

Ethiopia, Eritrea, parts of Sudan, Senegal, Mali and
Mauritania.

3.2. Population density

Between 2000 and 2010 the population of the region grew
from 367 million to 471 million at an average rate of 2.8% per
year, and is projected to increase to nearly one billion by 2050
(United Nations 2011). The increase was highest in Eritrea
(43.2%) and lowest in Central African Republic (18.9%).
Most of the growth took place around and between existing
settlements, creating networks that link different urban centers
(figure 3).

3.3. NPP demand

The total regional NPPDemand between 2000 and 2010 ranged
from 0.44 PgC to 1.13 PgC, representing between 19% and
41%, respectively, of NPPSupply (figure 4(A)). Overall,

Figure 4. (A) Total NPPSupply, NPPDemand, and NPPSupply anomalies in the study area between 2000 and 2010. NPPSupply anomalies were
computed as differences of NPPSupply from annual mean using the 11-year record. (B) Per capita NPP from 2000 to 2010. The total amount of
NPP that is available to the region’s population experienced abrupt declines in 2002 and 2005 (see section 3.1).
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NPPDemand increased 22% between 2000 and 2010 with the
highest increase being for food (20.4%) followed by feed
(16.7%) and fuel (5.5%) (table 2). We found large decreases
in demand for woodfuel in the Sahelian countries of Eritrea
(−23.1%) and Niger (−44%), which could be the result of
initiatives promoting alternative fuels such as liquefied pet-
roleum gas (LPG), provision of efficient cookstoves, and rural
fuelwood markets aimed at sustainable forest management
(Foley 1997, Habtetsion and Tsighe 2007, Rives et al 2013).
Per capita NPP dropped in 2002 and 2005 (figure 4(B)) due to
shortages in NPPSupply caused by climatic variability (see
section 4). The difference in NPPDemand between 2000 and
2010 (figure 5(A)) generally followed the difference in
population with the areas in and around urban centers dis-
playing the highest values. However, significant trends in
percent NPPDemand relative to NPPSupply (figure 5(B)) were
confined mostly to the south of the Sahelian zone. Sizeable
parts of the study area have experienced large increases
(>200%) of percent NPPDemand.

4. Discussion

At the present time around 41% of Sahelian NPPSupply is
consumed by humans. The low regional inter-annual
variability of NPP, at 1.7%, is representative of the global
trend over the past 35 years (Running 2012) suggesting that
the supply of NPP is at a near constant level. On the other
hand, both population and NPPDemand are increasing at

similar annual rates of 2.8% and 2.2%, respectively. This
supply-demand relationship is sensitive to systemic shocks
such as droughts or pest invasions that might lower the
regional NPPSupply. For example, there were two years,
2002 and 2005, that exhibited large negative NPPSupply
anomalies. The year 2002 was marked with a severe
drought in Ethiopia and parts of Sudan that caused food and
water deficit to over 12 million people (Balogun et al 2013)
as well as localized food shortages in West Africa. In 2004,
the largest desert locust (Schistocerca gregaria) invasion in
17 years, resulting from heavy rains the preceding year that
created ideal breeding conditions, reduced the regional
NPPSupply until the 2005 growing season (Ceccato
et al 2006). These incidents illustrate the vulnerability of
the regional NPPSupply to fluctuations in climate that can
lead to declines in the availability of NPP for human
consumption.

The spatial pattern of significant trends in the NPPSupply
of the four land cover groupings that source food, fuel and
feed to the region exhibited non-uniform patterns
(figure 2(B)): cropland exhibited modest increases just south
of the 600 mm rainfall isohyet; woodland exhibited increases
that were mostly confined to the Central African Republic
(CAR); grassland/savanna displayed no change in the Sahe-
lian zone but increases south of the 600 mm rainfall isohyet,
particularly in CAR, southern Chad and Sudan; forest dis-
played decreases everywhere except in CAR.

The overall increase in the demand for NPPfuel (table 2)
generally triggers more fuelwood extraction unless there is a

Table 2. Variability in the demand for food, fuel, feed and total demand between 2000 and 2010. Food includes crop- and meat-derived
products; fuel is the household energy requirement in the form of woodfuel and charcoal; feed is the amount of NPP required to sustain the
region’s livestock population. Total demand includes the above as well as crop residues and burnt biomass. Total population refers to the
percent change in a country’s aggregated population (i.e. total persons) between 2000 and 2010 according to the WorldPop data.

Country Food Fuel Feed Total demand Total population

Benin 9.81% 2.68% 12.79% 8.61% 35.78%
Burkina Faso 34.43% 27.03% 22.03% 28.04% 33.96%
Cameroon 34.27% 12.32% −2.63% 24.84% 25.01%
Central African Republic 13.92% 11.11% 21.85% 18.92% 18.88%
Chad 16.76% 13.62% 18.57% 19.88% 36.55%
Djibouti −1.49% 5.92% −3.63% −1.24% 19.03%
Eritrea 19.62% −23.16% 1.72% 1.37% 21.45%
Ethiopia 39.59% 9.67% 28.64% 27.22% 43.24%
Gambia 18.04% 9.06% 14.09% 18.19% 26.49%
Ghana 19.93% 19.42% 18.62% 20.57% 33.23%
Guinea 14.81% 5.06% 29.16% 17.70% 27.27%
Guinea Bissau 9.13% 4.66% 10.54% 9.66% 19.63%
Ivory Coast 2.14% 4.26% 13.32% 2.07% 22.08%
Liberia 2.65% 20.81% 23.18% 12.93% 40.29%
Mali 38.77% 7.45% 26.02% 31.34% 36.08%
Mauritania 13.52% 14.54% 5.03% 6.73% 30.91%
Niger 46.03% −44.03% 22.37% 28.41% 42.03%
Nigeria 11.67% 6.68% 13.22% 11.42% 28.08%
Senegal 17.78% 4.76% 8.60% 12.30% 30.80%
Sierra Leone 54.34% 2.15% 48.50% 25.41% 41.64%
Sudan 18.35% 13.50% 14.44% 15.07% 27.39%
Togo 14.50% −7.64% 21.14% 11.01% 25.74%
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major shift towards efficient cooking stoves or alternative
household fuels such as LPG. For example, in Eritrea, a
combination of factors, all taking place during the study
period, may have contributed to the decrease in the demand
for woodfuel. By the end of 2004, the country’s Ministry of
Energy and Mines had installed 27 000 efficient stoves in
rural households through its Improved Stove Dissemination
Program (Habtetsion and Tsighe 2007). An additional 10 120
stoves were planned for 2005 and 5000 stoves every year
thereafter (Bode 2005, Habtetsion and Tsighe 2007), though
statistics about the implementation of those plans are not
available. Additionally, the Eritrean government had invested
heavily in promotion of LPG as an alternative household
energy source to the extent that LPG became cheaper than
woodfuels for the purposes of cooking (Habtetsion and
Tsighe 2007).

This paper revealed that the Sahelian NPP supply and
demand nexus is driven by the geographic distribution of
population density and climatic variability, and projections

for the future are alarming. A combination of increasing
temperatures and changes in the precipitation regime will
likely decrease the NPPSupply of important crops in the region
as well as increase the prevalence of pest infestations
(IPCC 2014). Forecasts of Sahelian rainfall for the next four
decades are inconsistent (Ben Mohamed 2011), and the best-
case scenarios predict that the region will receive more rain-
fall, which should cause an increase in NPPSupply. However,
the impact of higher temperatures may counteract this effect,
producing a net reduction in NPPSupply across the region
(Delire et al 2008). Similarly, forecasts of reduced crop yields
of up to −41% due to increased temperature have been con-
sistent across various studies despite projected increases in
rainfall (Jones and Thornton 2003, Wolfram and David 2010,
Sultan et al 2013). These factors point to a complex system in
a delicate balance between human requirement on the one
hand, and the ecosystem’s capacity to satisfy it on the other.

Figure 5. (A) Difference in NPPDemand over the region between 2000 and 2010 in areas that exhibited changes in population density of
greater than one person per km2 during the same time frame. (B) Percent of NPPDemand relative to NPPSupply between 2000–2010. Only areas
with a statistical significance of p< 0.05 are shown here. Large areas, most notably in West Africa and Ethiopia, experience NPPDemand that is
much larger than available supply.
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4.1. Uncertainties and limitations

Uncertainties in the estimates of NPPSupply stem from
MOD17’s implementation of water stress control through
atmospheric VPD. Mu et al (2007) demonstrated that VPD
underestimates water stress and overestimates NPPSupply in
Sahelian conditions. Pan et al (2006) have shown that cor-
recting for soil water content improves MOD17 NPP esti-
mates. Another source of uncertainty in NPPSupply stems from
the static biome-specific values of the maximum light use
efficiency (εmax, see section 2.2) that MODIS implements,
which have been found to be considerably lower than field
estimated values (Sjöström et al 2013).

We acknowledge the limitations presented by using data
from FAOSTAT, which is sometimes challenged either due to
shortage of resources to perform meticulous surveys or over-/
under-reporting of national statistics by certain countries
(Krausmann et al 2008). Despite these shortcomings, FAO-
STAT represents the only available, widely used, resource
that compiles, cross-checks and standardizes global agri-
cultural data (Goudriaan et al 2001, Ciais et al 2005,
Ramankutty et al 2008, Ma et al 2012). We, therefore, con-
sider it acceptable for the purposes of this study.

A drawback to employing annual land cover groupings to
represent exploitable resources is the complete dependence on
the MODIS Land Cover Type Product. Although the latest
version of the product (Collection 5.1) has undergone several
refinements and possesses an overall accuracy of 75% (Friedl
et al 2010), the amount of training data from the Sahel that the
algorithm employs is considerably small (n= 58) and for one
class (woody savanna) it is as low as a single site.

5. Conclusion

In this paper, we quantified the spatiotemporal variation of
supply of NPP in relation to anthropogenic demand for a
portion of sub-Saharan Africa using a combination of satellite
remote sensing and socioeconomic data. We identified
region-wide spatial patterns of annual NPP extraction to
derive food, fuel and feed from the available supply.

This research adds to a series of studies on Sahelian
vegetation dynamics with a focus on the relationship between
anthropogenic exploitation and supply of NPP. The combi-
nation of rapidly increasing demand for food, fuel and feed
driven by population growth makes the region vulnerable to
climatic changes that may alter the per capita availability of
NPP. Additionally, the region’s location in a geographic
transition zone between the arid Sahara desert and the high
NPP Sudano-Guinean zone increases its sensitivity to fluc-
tuations in rainfall. Investigating inter-annual variations of
NPP supply and demand could help explain patterns of eco-
system change by identifying areas under anthropogenic
pressure. Considering the current 2.2% annual increase in
NPPDemand, there is a risk that ecosystems may not be able to
provide food, fuel and feed for the region’s humans and
livestock without a corresponding increase in NPPSupply. If
future droughts occur at similar climatic magnitudes as the

ones that took place in the 1970s and 1980s the Sahel will be
at risk of mega famines.

The integrated analysis of the supply and demand of NPP
allows the identification of areas where demand for carbon
exceeds available supply, either presently or in future sce-
narios. Hence, the methodology presented in this paper can be
applied to other human-environment systems where the sup-
ply-demand balance of NPP approaches critical levels.
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SUPPLEMENTARY INFORMATION 

Table 1S: Original IGBP classification and land cover groupings.  

Class IGBP Class Merged Class 

1 Evergreen Needleleaf forest 

Forest 

 

2 Evergreen Broadleaf forest 

3 Deciduous Needleleaf forest 

4 Deciduous Broadleaf forest 

5 Mixed forest 

6 Closed shrublands 

Woodland 7 Open shrublands 

8 Woody savannas 

9 Savannas 
Grassland/Savanna 

10 Grasslands 

11 Permanent wetlands Not Included 

12 Croplands 

Cropland 
14 

Cropland/Natural vegetation 

mosaic 

13 Urban and built-up 

Not Included 
15 Snow and ice 

16 Barren or sparsely vegetated 

255 Fill Value/Unclassified 

 

Table 2S: Conversion rates of products derived from food-producing animals. 

Type Dry Matter 
Intake (Kg) Reference 

Beef 6.5 Bradford (1999) 
Camel 12 Eltahir et al. (2011) 
Eggs 4 Haberl et al. (2007) 
Milk, whole 1.5 Hutjens (2005) 
Mutton/Goat 6.3 Karim et al. (2002) 
Pigmeat 8.5 Wirsenius (2000) 
Chicken 5.5 " 
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Table 3S: Dry matter and carbon content of the 27 types of crops selected for inclusion into the 
consumption module. 

Crop Dry Matter 
Content (%) 

Carbon  
Content 

(%) 
Reference 

Bananas 35 45 IIASA/FAO (2012) 
Barley 88 47 Pradhan et al. (2013) 
Beans, dry 90 47 “ 
Cassava 38 44 “ 
Cereals, other 85 47 “ 
Dates 15 45 “ 
Fruits 15 45 Goudriaan et al. (2001) 
Grapes 15 45 Pradhan et al. (2013) 
Groundnuts 95 60 IIASA/FAO (2012) 
Maize 85 49 Goudriaan et al. (2001) 
Millet 88 48 “ 
Onions, dry 15 45 Pradhan et al. (2013) 
Oranges 15 45 “ 
Plantains 35 45 “ 
Potatoes 25 44 Goudriaan et al. (2001) 
Pulses 90 47 “ 
Rice 88 48 “ 
Roots and tubers 30 44 Pradhan et al. (2013) 
Sorghum 88 48 Goudriaan et al. (2001) 
Soybeans 92 52 “ 
Sugar beet 21 44 “ 
Sugar cane 27 48 “ 
Sweet potatoes 30 44 IIASA/FAO (2012) 
Tomatoes 15 45 Pradhan et al. (2013) 
Vegetables 13 46 Goudriaan et al. (2001) 
Wheat 87 47 IIASA/FAO (2012) 
Yams 35 44 Pradhan et al. (2013) 
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Table 4S: Conversion factors for each livestock type to its equivalent tropical livestock unit and the 
annual amount of dry matter feed each type requires for maintenance. 

Animal 
Type 

Tropical Livestock 
Unit 

Equivalent 

Annual Dry 
Mattter 

Requirement (Kg) 
Reference 

Camels 1.0 2372 Houerou and Hoste (1977); 
Jahnke (1982); FAOSTAT (2013) 

Cattle 0.70 1660 “ 
Chickens 0.01 23.72 “ 
Goats 0.10 237 “ 
Pigs 0.20 474 “ 
Sheep 0.10 237 “ 

 

 

Table 5S: Harvest factors for the selected crops. 

Crop Harvest Factor Reference 
Bananas 2.50 Wirsenius (2000); Haberl et al. (2007) 
Barley 1.20 “ 
Cassava 0.80 “ 
Cereals, other 2.30 “ 
Dates 2.50 “ 
Fruits 2.50 “ 
Grapes 2.50 “ 
Groundnuts 1.50 “ 
Maize 3.50 “ 
Millet 3.50 “ 
Oranges 2.50 “ 
Plantains 2.50 “ 
Potatoes 1.00 “ 
Pulses 0.40 “ 
Rice 1.50 “ 
Roots and tubers 1.00 “ 
Sorghum 3.50 “ 
Soybeans 1.50 “ 
Sugar beet 0.70 “ 
Sugar cane 0.50 “ 
Sweet potatoes 1.00 “ 
Wheat 2.30 “ 
Yams 1.00 “ 
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Figure 1S: Flowchart of the demand module.  
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The El Niño – La Niña cycle and recent trends in supply
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Abstract Inter-annual climatic variability over a large portion of sub-Saharan Africa is under
the influence of the El Niño-Southern Oscillation (ENSO). Extreme variability in climate is a
threat to rural livelihoods in sub-Saharan Africa, yet the role of ENSO in the balance between
supply and demand of net primary productivity (NPP) over this region is unclear. Here, we
analyze the impact of ENSO on this balance in a spatially explicit framework using gridded
population data from the WorldPop project, satellite-derived data on NPP supply, and statistical
data from the United Nations. Our analyses demonstrate that between 2000 and 2013 fluctua-
tions in the supply of NPP associated with moderate ENSO events average ± 2.8 g C m−2 yr.−1

across sub-Saharan drylands. The greatest sensitivity is in arid Southern Africa where a + 1 °C
change in the Niño-3.4 sea surface temperature index is associated with a mean change in NPP
supply of −6.6 g Cm−2 yr.−1. Concurrently, the population-driven trend in NPP demand averages
3.5 g Cm−2 yr.−1 over the entire region with densely populated urban areas exhibiting the highest
mean demand for NPP. Our findings highlight the importance of accounting for the role ENSO
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plays in modulating the balance between supply and demand of NPP in sub-Saharan drylands.
An important implication of these findings is that increase in NPP demand for socio-economic
metabolism must be taken into account within the context of climate-modulated supply.

Keywords Sub-Saharan Africa . Drylands . El Niño-southern oscillation . Net primary
productivity . Climate variability

1 Introduction

Drylands cover more than half of sub-Saharan Africa and are characterized by a combination
of low rainfall and high potential evapotranspiration that leads to low levels of soil moisture
and net primary productivity (NPP) (Nicholson 2011). In these regions, climatic variability is
one of the most acute and widespread threats to the agro-pastoral systems that are inhabited by
60 % of the population (IPCC 2014). Most of sub-Saharan Africa has one rainy season (East
Africa has two) that is modulated by large-scale ocean-atmosphere teleconnections. The largest
of these, the El Niño-Southern Oscillation (ENSO), has been identified as a dominant factor
that regulates inter-annual photosynthetic activity in global drylands (Ahlström et al. 2015).
The two extreme phases of ENSO, El Niño and La Niña, represent positive and negative
departures, respectively, from long term mean sea surface temperatures in the central and
eastern equatorial Pacific Ocean. El Niño generally brings dry conditions to parts of the Sahel
and most of Southern Africa, and wet conditions to Eastern Africa, while La Niña is associated
with approximately opposite conditions (Giannini et al. 2008). These dry or wet conditions are
exacerbated in severe El Niño or La Niña events, causing droughts or floods that reduce the
amount of NPP in a given area. The most recent example of the impact of a severe El Niño is
the 2015/16 drought in Southern Africa, where the October 2015 – March 2016 rainfall was
75 % below the 1982–2011 average (FEWSNET 2016). The 2011/12 famine in the Horn of
Africa exemplifies a confluence of risk factors, such as political instability, armed conflict and
inaccessibility, exacerbated by La Niña. The strong La Niña of 2010/11 (Supplementary
Fig. 2) induced the failure of both the short rains in late 2010 and the long rains in
mid-2011, causing collapses in both agricultural production and the associated labor market
in Somalia (Maxwell and Fitzpatrick 2012).

NPP supplies the annual provision of crops, animal feed and pasture, and adds to annual
increments of woody biomass (Running 2012). The societal implications of reduced NPP can
be severe and could lead to crop failure and eventual food insecurity (Battisti and Naylor
2009). Sub-Saharan Africa has experienced a steep increase in demand for NPP in the
twentieth century, which is likely to continue rising as a function of population growth and
per capita consumption (Fetzel et al. 2016). Furthermore, recent studies predict an 11.7 %
decrease in the productivity of major sub-Saharan crops (wheat, maize, sorghum and millet) by
the 2050s (Knox et al. 2012), expansion of drylands, particularly in the Sahel, East and
Southern Africa (Greve et al. 2014), and an increased frequency of severe ENSO events
(Cai et al. 2015). Thus, the effects of extreme climatic variability could have drastic impacts on
NPP supply and intensified by the need to keep pace with an increasing population (Campbell
et al. 2014).

Here, we adopt the concepts of Bsupply^ and Bdemand^ to demonstrate the linkage between
ecosystem productivity, human livelihood, and inter-annual climatic variability in sub-Saharan
drylands. As demand for food, feed and fuel drives land use change, the proportion of NPP
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required by humans relative to its supply (demand-supply ratio, DSR) could serve as an
integrative benchmark of human dependence on ecosystems. We focus on ENSO and inves-
tigate its role in the balance between supply and demand of NPP in sub-Saharan drylands
using a spatially explicit framework. We focus on the time period between 2000 and 2013 for
NPP supply and 2000–2011 for NPP demand and DSR. The shorter time period for NPP
demand and DSR is due to the fact that data on domestic supply quantities for several items,
such as crops and woodfuel, were limited to 2011 at the time of writing. Our specific aims are
to (1) quantify trends in NPP supply and demand in sub-Saharan drylands for 2000–2011; (2)
map the spatial variability of NPP and DSR anomalies during ENSO years for 2000–2011; (3)
assess the relationship between ENSO and NPP supply for 2000–2013.

2 Data and methods

2.1 Derivation of NPP supply

The estimation of NPP supply was performed using the light use efficiency approach as
defined in Monteith (1972) and applied in the MOD17 algorithm of the moderate-resolution
imaging spectroradiometer (MODIS) sensor on board the Terra and Aqua satellites:

NPPSupply ¼ PAR*FPAR*εmax*VPD*Tminð Þ−Ra ð1Þ

where NPPSupply is the NPP available in the ecosystem regardless of land use type in grams of
carbon per meter square per year (g C m−2 yr.−1); PAR is incoming photosynthetically active
radiation in megajoules per meter square per year (MJ m−2 yr.−1); FPAR is the fraction of
incident PAR absorbed by the vegetation canopy; εmax represents maximum light use efficiency,
in grams of carbon per megajoule of PAR (g C MJ−1), under hypothetical biome-specific ideal
conditions; VPD and Tmin are simple linear ramp functions of vapor pressure deficit andminimum
temperature, respectively, which constrain maximum light use efficiency; Ra (autotrophic respi-
ration) represents the amount of carbon respired, in g Cm−2 yr.−1, during maintenance and growth
respiration of leaves, fine roots and woody tissue. Further descriptions of the MOD17 algorithm
are detailed in Zhao et al. (2011) and the dataset is available from the NASA Earth Observation
System repository at the University of Montana (http://www.ntsg.umt.edu/project/mod17). NPP
supply estimates were restricted to sub-Saharan Africa’s arid, semi-arid and dry sub-humid areas
(Supplementary Fig. 1).

2.2 Niño-3.4 index and standardized anomalies

We used the Niño-3.4 sea surface temperature index as a representation of ENSO. To
differentiate between positive, negative and neutral ENSO years, we applied the threshold set
by the National Oceanic and Atmospheric Administration. Accordingly, an ENSO year is
characterized by a minimum of five consecutive 3-month running mean of the Extended
Reconstructed Sea Surface Temperature version 3b (ERSST.v3b) anomalies in the Niño 3.4
region based on a threshold of ±0.5 °C (Supplementary Fig. 2). The base period for computing
the anomalies in ERSST.v3b is 1971–2000. To visualize differences in NPP between the three
ENSO phases (El Niño, La Niña, Neutral), standardized anomalies (Z-scores) were calculated for
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NPP supply and DSR using Eqs. 2–4. The ENSO cycle begins around July, peaks in December –
February (of the following year), starts to decay in March – April, and enters the post-phase in
May – June (Philippon et al. 2014). The monthly NPP supply anomalies reflect this July to June
cycle and were summed to annual values spanning two calendar years (1999/00, 2000/01,
2001/02, etc.). However, the data used to compute NPP demand are provided in single calendar
years (2000, 2001, 2002, etc.). Therefore, DSR anomalies correspond to the years in the second
half of the ENSO cycle to account for the lagged effect of the peak and decay phases of ENSO.

ZEl Ni o ¼
X2010=11

t¼1999=00

OBSNPP;t−MNNPP;t

SDNPP;t
; if Nino3:4t ≥ þ 0:5 ð2Þ

ZLa Nia ¼
X2010=11

t¼1999=00

OBSNPP;t−MNNPP;t

SDNPP;t
; if Nino3:4 t ≤−0:5 ð3Þ

ZNeutral ¼
X2010=11

t¼1999=00

OBSNPP;t−MNNPP;t

SDNPP;t
; if −0:5 < Nino3:4 t < þ0:5 ð4Þ

where, OBSNPP,t, MNNPP,t, SDNPP,t are the observed, mean, and standard deviation, respectively,
of NPP supply, demand or DSR at time t.

2.3 Derivation of NPP demand

We define the term “consumption” as the actual amount of NPP extracted from the ecosystem
as reported in the statistical database of the Food and Agriculture Organization of the United
Nations (FAOSTAT, http://faostat3.fao.org/). The term Bdemand^ is defined as the annual
amount of NPP required by the sub-Saharan dryland population. Building on earlier work
(Abdi et al. 2014), we developed a framework based on FAOSTAT to calculate demand for NPP
(Supplementary Fig. 3). We downloaded data from 2000 to 2011 for the components of NPP
demand for each country from the food balance sheets provided by FAOSTAT. However,
contrary to Abdi et al. (2014), who used the total primary crop production of each country, we
used domestic supply quantities to account NPP supply for domestic utilization.

The first component of NPP demand is domestically consumed food (NPPfood). This
category includes twenty-seven types of regionally important primary crops, which represent
95 % of all those that are domestically consumed by most of the countries in the study area
(Supplementary Table 2) (FAOSTAT 2015). Additionally, meats sourced from six types of
domestic animals (cattle, goats, sheep, pigs, camels, poultry) and two non-meat animal products
(eggs and milk) (Supplementary Table 1) were also included.

ð5Þ

where, P, I and E are produced, imported and exported quantities of crop type p, in year y; S is
the variation (positive or negative) in the stocks of crop type p, in year y; D and C are the crop-
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specific dry matter and carbon conversion coefficients, respectively; M is the wet carcass
weight (i.e. without internal organs) of animal type a, in year y, and K is the dry matter intake
required to produce that weight, in year y. We converted crop tonnage to carbon units using the
conversion factors provided in Supplementary Tables 1 and 2.

Livestock are assets in sub-Saharan Africa. Pastoralists and agro-pastoralists depend on
livestock for nutritional value and economic growth. NPPfeed represents the total amount of
animal feed required to sustain the livestock population of the region.

NPPfeed ¼
X6
a¼1

Ta;y

 !
� Ra;y � 0:45 ð6Þ

where, T is the Tropical Livestock Unit (TLU) for livestock type a, in year y; R is the annual
dry matter requirement as provided in Supplementary Table 3. A ratio of 0.45 was used to
convert dry matter into carbon.

Crop residues (NPPresidues) refer to the parts of the crop that are left over in a field after
harvest. Thus, they are not part of the crop yield (i.e. edible seeds, roots, fruits, leaves, or stalks)
and vary according to crop type.

NPPresidues ¼
X23
p¼1

Hp;y � 0:45 ð7Þ

where, H is the residue factor (proportion of non-yield contributing crop phytomass) of crop
type p, in year y. The residue factors applied in Eq. 7 are detailed in Supplementary Table 4.

In most parts of the sub-Saharan Africa household energy demand is met by woodfuels
comprising fuel wood and wood charcoal (NPPfuel) extracted from the region’s dry woodlands.
The demand for woodfuels across sub-Saharan Africa is variable and ranges from 55 % in
Senegal (Pires 2003) to over 91 % in Malawi (Zulu 2010), but on average it is approximately
80 % across the study area.

ð8Þ

where, NC, CN and CH represent non-coniferous, coniferous and wood charcoal. Dry matter
conversion ratios of 0.58 and 0.43 were applied to the non-coniferous and coniferous fuel
wood, respectively, and a ratio of 0.45 to convert dry matter into carbon (Supplementary
Table 5). Wood charcoal was directly converted to carbon content by applying a ratio of 0.75
(Supplementary Table 5).

Landscape fires, both natural and anthropogenic, play an important role in sub-Saharan
dryland ecosystems. One of the anthropogenic applications of burning in sub-Saharan Africa is
to expand cropland area (Andela and van der Werf 2014). Consequently, the amount of NPP
lost to support human demand for food is taken into account. NPPburned represents domestic
human-driven NPP loss resulting from burning of both forest and savanna resources.

NPPburned ¼
X

By � 0:45 ð9Þ

where, B is the total amount of dry matter burnt in year y. The data are presented as dry matter
content, therefore a ratio of 0.45 was used to convert dry matter into carbon.
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We did not assume a homogeneous per capita consumption within each country due to
variations in diet, lifestyle and wealth between urban and rural populations in sub-Saharan
Africa. Rather, we applied ratio factors for urban and rural consumption to national sums of
each group of products based on statistics from peer-reviewed literature and national house-
hold consumption surveys (Supplementary Table 6).

ð10Þ

ð11Þ

NPPdemand ¼ NPPdemand urban þ NPPdemand rural ð12Þ

We derived per capita NPP consumption by dividing rural and urban consumption values
by each country’s rural and urban population. Grids of urban and rural consumption were then
merged to produce a single map of total per capita consumption. We used gridded population
data from the WorldPop project (http://www.worldpop.org.uk/) (Linard et al. 2012), which
came in three time slices: 2000, 2005, 2010. We interpolated between these time slices using
growth rates from the United Nations Population Division (http://esa.un.org/unpd/wpp/) and
added an extra year, 2011, to coincide with the FAOSTAT data. We then used the gridded
population data as a spatial surrogate to disaggregate per capita demand to grid cells for each
year between 2000 and 2011. The years 2012 and 2013 were not included because domestic
supply data on food, feed and fuel from FAOSTATwere limited to 2011 at the time of writing.
We distinguished urban and rural areas by masking urban extent on the WorldPop grids based
on the BArtificial Areas^ category in the European Space Agency’s GlobCover 2009 land
cover map (https://doi.pangaea.de/10.1594/PANGAEA.787668).

2.4 Statistical analysis

We tested the data (NPP supply, NPP demand) for temporal autocorrelation before identifying
the presence or absence of trends because significant first order autocorrelation can inflate
trend significance, leading to a Type I error. A two-sided Mann-Kendall trend test was then
applied to evaluate the significance of monotonic trends in the supply and demand of NPP
(Mann 1945). The null hypothesis is that our supply or demand data are independent and
randomly ordered; the alternative hypothesis is that the data possess a monotonic trend in one
or more years in the time series. To account for non-normal distributions of the supply and
demand of NPP, the nonparametric Theil-Sen estimate of slope was used to measure the
magnitude of the linear trend (Wilcox 2012). The null hypothesis is rejected if the test statistic
is different from zero at the 5 % level. Mean (μ) trends in supply and demand of NPP were
calculated to facilitate comparison between different areas across the continent. To quantify the
lagged response of NPP to ENSO forcing, we applied a lagged ordinary least squares
regression to monthly NPP and Niño 3.4 index time series. This was done by shifting the
time series one month at each lag to a maximum of 12 months over the July – June ENSO
lifecycle. For the resultant monthly lags, we combined all significant pixels (P < 0.05) using
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absolute maximum value compositing (i.e. the highest absolute value is retained for each pixel
location).We then partitioned the final image according to the GlobCover 2009 land cover types.
Pearson’s product-moment correlation was used to quantify the strength of the linear relationship
between cropland NPP and FAOSTAT crop production data between 2000 and 2013.

3 Results and discussion

3.1 Trends of NPP supply and demand

The linear trends of NPP supply and demand are presented in Fig. 1. NPP supply trends over
2000–2013 are significant in 32 % of the area (4.7 million km2). However, the trends are
concentrated in three distinct areas: the western Sahel (μ = 2 g C m−2 yr.−1, P < 0.05), central
Africa (μ = 30 g C m−2 yr.−1, P < 0.05) and parts of Zambia, Malawi and Mozambique
(μ = −25 g C m−2 yr.−1, P < 0.05) (Fig. 1a). By contrast, trends of NPP demand over 2000–
2011 are significant in 48 % of the area and roughly evenly distributed (Fig. 1b). The mean
overall trend of NPP demand is 3.5 g C m−2 yr.−1, though in urban areas it averages
approximately 50 g C m−2 yr.−1. The tradeoffs between NPP supply and demand trends
(i.e. change in one quantity relative to another) are locally constrained and linked to the

Fig. 1 Linear trends in NPP
supply (2000–2013) and demand
(2000–2011). NPP supply (a) and
NPP demand (b). Detail showing
pixel-level supply and demand
trends for different urban and rural
areas in sub-Saharan Africa: (1)
the agricultural region of Sikasso
in southern Mali, (2) the Addis
Ababa metropolitan area, and (3)
southern Malawi within the vicin-
ity of the city of Blantyre. Since
the units of NPP supply are gen-
erally denoted as quantity per unit
area per unit time, and demand
generally represents NPP required
by the inhabitants in each pixel, we
divided each NPP demand pixel in
b by its area to facilitate compara-
bility. Grey areas indicate both
statistically insignificant (P > 0.05)
and areas outside the study region
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prevailing climate, population growth and net migration. For instance, in the region of Sikasso
in southern Mali, the trend of NPP supply averages 10 g C m−2 yr.−1 (Fig. 1a-1) and that of
demand is 1 g C m−2 yr.−1 (Fig. 1b-1). This region is agriculturally productive and exhibits
positive NPP supply anomalies during La Niña (Fig. 2b). The low trend in NPP demand is
surprising because the population of Sikasso grew 3.9 % a year between 2000 and 2011 (FAO
2013). This paradox of high land productivity, rapid population growth and low demand for
NPP could be a sign that the population is not consuming adequate amounts of food, feed and
fuel. Indeed, Eozenou et al. (2013) found that 45 % of the population of Sikasso is classified as
Bfood poor^ (i.e. per capita consumption is below the food poverty line) and 19 % are
chronically malnourished. Therefore, it is apparent that, despite favorable climatic conditions,
agricultural revenues from cotton, the main export crop grown in Sikasso, are insufficient to
remove a majority of the region’s population out of poverty.

In recent years, major urban areas in sub-Saharan Africa have experienced influxes of
economic migrants due to increased investment in infrastructure development (Cheung et al.
2012). Perhaps the best example of this phenomenon is Addis Ababa, Ethiopia. Here, population
grew by 40 % between 2000 and 2010 driven by economic migration from other parts of the
country (Adugna and Hailemariam 2011; Moller 2012). Consequently, the observed average
trend in demand for NPP in the Addis Ababa metropolitan area was 153 g Cm−2 yr.−1 for 2000–
2011 (Fig. 1b-2), the highest in sub-Saharan Africa. The observed decrease in NPP supply in the
vicinity of Addis Ababa over 2000–2013 (Fig. 1a-2) could be linked to the rapid growth of the
city. Itannam and Olsson (2004) found that urbanization and industrialization resulting from
Addis Ababa’s rapid expansion contributed to land degradation in surrounding agricultural areas.
This adversely affects the livelihoods of farmers prompting further economic migration into the
city (Abdissa and Degefa 2011). Several La Niña events in the latter half of the analysis period
(2007/08, 2008/09, 2010/11) could have further contributed to the observed decrease in NPP
supply around Addis Ababa. The impact of ENSO on seasonal rainfall in Ethiopia, and natural
hazards associated with strong ENSO, particularly La Niña events, are well documented
(Korecha and Sorteberg 2013). La Niña years are correlated with decreased rainfall during the
February –May rainy season, potentially extending the November – January dry season through
to June (Korecha and Sorteberg 2013; Reda et al. 2015). Furthermore, strong La Niña events
induce intense rainfall during the main June – September rainy season, causing floods and
subsequent loss in agricultural productivity (Korecha and Barnston 2007; Wolde-Georgis 2002).

In Malawi, approximately 45 % of the population lives in the southern part of the country
(van Vuuren et al. 2011), where the vicinity of the country’s second-largest city, Blantyre, has
experienced an overall decrease in NPP supply (−11 g C m−2 yr.−1, Fig. 1a-3) over 2000–2013
and an increase of NPP demand (0.80 g C m−2 yr.−1, Fig. 1b-3). The supply of NPP in this
region is highly sensitive to ENSO events (Fig. 2a, b) with a net negative impact. This means
that the negative correlation the region has with El Niño outweighs its positive correlation with
La Niña (Supplementary Fig. 4). The strong El Niño of 2015/16 reduced the October 2015 –
February 2016 rainy season to its lowest level since 1981 (FEWSNET 2016). This severe
drought condition caused below average crop production leading to low earnings from
agricultural labor and high food prices (FEWSNET 2016).

3.2 ENSO in relation to NPP supply and DSR

The standardized anomalies of NPP supply and DSR in El Niño (2002/03, 2004/05, 2006/07,
2009/10), La Niña (1999/00, 2000/01, 2005/06, 2007/08, 2008/09, 2010/11) and neutral
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(2001/02, 2003/04) phases are presented in Fig. 2. Southern Africa shows the largest contig-
uous region of negative NPP supply anomalies during El Niño (Fig 2a), and consequently also
shows the largest positive DSR anomalies (Fig 2d). Demand for NPP is coupled to population
growth and consumption patterns, but it is not linked to, not does it change with, ENSO
phases. Consequently, when NPP supply is reduced by El Niño, NPP demand increases
relative to it, causing positive DSR anomalies. The opposite effect can be seen during La
Niña, when NPP supply anomalies in southern Africa are positive and DSR anomalies are
negative. Negative NPP supply anomalies during La Niña are concentrated around equatorial
East Africa resulting in positive DSR anomalies (Fig. 2b, e).

The response of NPP supply to ENSO in the Sahel, East and Southern Africa is shown in
Fig. 3. The greatest sensitivity occurs in the mainly arid region of Southern Africa
(Supplementary Fig. 1). Here, a + 1 °C shift in the Niño 3.4 index causes a mean change in
the NPP supply of −6.6 g C m−2 yr.−1. El Niño events in Southern Africa are associated with
dry conditions, while La Niña events are associated with wet conditions. Most land cover types
in Southern Africa exhibit negative NPP supply values relative to changes in the Niño 3.4
index (Fig. 3). The exceptions, with either the median value or a large number of positive
outliers, are the region’s forests and woodlands that are adapted to prolonged dry seasons or
droughts, and possess physiological mechanisms such as extensive roots allowing efficient
deep water access or are drought deciduous (i.e. the trees lose leaves to conserve water)

Fig. 2 Standardized anomalies (2000–2011). Standardized anomalies for NPP supply (a, b, c) and demand-
supply ratio (d, e, f). Means were calculated for El Niño (a, d), La Niña (b, e) and neutral years (c, f). For each
panel, the anomaly indicates the number of standard deviations an observation is above or below the mean. The
ENSO cycle typically straddles two calendar years, beginning around July, with a peak in December – February,
and begins to decay in March – April of the following year. The monthly NPP supply anomalies reflect this cycle
and were summed to annual values. Since the FAOSTAT data is provided in calendar years, the DSR data reflects
that nomenclature. Accordingly, DSR anomalies shown here represent the latter half of the ENSO cycle, e.g. for
the ENSO-neutral years of 2001/02 and 2003/04, the corresponding DSR anomalies are the years 2002 and 2003.
Grey areas are outside the study region
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(Nicholson 2011). Despite the fact that there were more La Niña events than El Niño events
between 2000 and 2011, the negative impact of El Niño on Southern Africa is strong enough
to tip the balance toward the negative (Supplementary Fig. 4). This sensitivity, coupled with a
1.3 g C m−2 yr.−1 trend in NPP demand, increases demand relative to available supply (Fig. 4a
and b). This is troubling because the difference in NPP supply in Southern Africa between El
Niño and La Niña years corresponds to what is required to feed approximately 15 million
people for one year (Stige et al. 2006).

3.3 Demand-supply balance of NPP in food producing regions

Food production in sub-Saharan drylands is almost entirely dependent on rain-fed agriculture
(You et al. 2011). The median response of NPP supply in rain-fed croplands to a + 1 °C change
in the Niño 3.4 region is −2 g C m−2 yr.−1 in the Sahel, 3 g C m−2 yr.−1 in East Africa, and −7 g
C m−2 yr.−1 in Southern Africa (Fig. 3). Average DSR within rain-fed croplands is high
(μ = 0.9 ± 0.1), with a large spatial variability (Fig. 5a). In Sahel, East and Southern Africa
NPP, demand in croplands, which also includes associated villages and settlements, has been
increasing at a rate of 1.35 % per year (P < 0.001), while supply has been marginally
decreasing at a rate of 0.2 % per year (P = 0.65) (Fig. 5b).

These observations reinforce reports of persistent undernourishment in sub-Saharan Africa
as approximately 90 % of consumption comes from domestic production (Barrett and Upton
2013). Rain-fed croplands occupy most of the agricultural landscape in sub-Saharan drylands
and domestic crop production is strongly linked to cropland NPP (Supplementary Fig. 5). In
sub-Saharan drylands, increases in crop production are generally achieved by expanding
agricultural land through savanna burning, the spatial patterns of which are determined by the

Fig. 3 Relationship between ENSO and NPP supply (2000–2013). Change in NPP supply per GlobCover land
cover class relative to a + 1 °C change in the Niño 3.4 index anomaly for 2000–2013 (n = 7927). Despite the
general response of each region to change in the Niño 3.4 anomaly, the presence of a large number of outliers in
certain land cover classes could mean that there are underlying physiological adaptations (e.g. water-storing and/
or deep roots systems, drought deciduous, etc.) that surmount the impact of climate
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ENSO-controlled rainfall regime (Andela and van der Werf 2014). However, despite observed
increases in cropland extent in several parts of the continent, yields per unit area for major food
crops remain low (Bekunda et al. 2010). Additionally, variability of crop yields in several parts
of sub-Saharan Africa can be attributed to ENSO. For example, 64 % of the yield variability of
maize in Zimbabwe could be accounted for by ENSO with yield predictions up to a full year
before harvest (Cane et al. 1994). Considering these challenges, increasing crop yield means
increasing resilience of croplands to the impact of ENSO and other stressors through accurate
forecasting and improved land and water management strategies. Water management in partic-
ular is vital for crop production and is one of the most important factors required to improve
livelihoods in sub-Saharan dryland agro-ecosystems (Sissoko et al. 2011).

Fig. 4 Trend in DSR and its correlation with ENSO (2000–2011). a Annual trend of the demand-supply ratio
expressed as percent across sub-Saharan drylands; (b) Spatial pattern of the correlation between DSR and the
Niño-3.4 sea surface temperature index. A positive DSR-Niño 3.4 index correlation signifies decreasing NPP
supply relative to demand as Niño 3.4 index values increase (i.e. anomalously warm conditions in the central
equatorial Pacific). Negative DSR–Niño 3.4 index correlation means increasing NPP supply relative to demand
as Niño 3.4 index values increase. Demand for NPP is always increasing and parallels the rate of population
growth. The error bars represent standard error of the mean

Fig. 5 NPP supply and demand trends in food-producing areas (2000–2011). a Spatial pattern of cropland
demand-supply ratio expressed as percent. The dashed boxes denote the high aridity regions of the Sahel (a1),
East Africa (a2) and Southern Africa (a3). See Supplementary Fig. 1 for the regional aridity map; (b) Mean
annual trend in NPP supply and demand over cropland areas in the Sahel, East and Southern Africa. The error
bars represent standard error of the mean
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NPP supply deficiency is exacerbated in sub-Saharan drylands by large-scale, trans-national
land acquisitions, whereby investors from countries rich in financial capital purchase or lease
land from developing countries for the production of goods (Seaquist et al. 2014). These deals
often involve projects that maximize crop yield in purchased land using expensive technolo-
gies providing crops, biofuel feedstock and wood charcoal to markets outside the region of
production (Seaquist et al. 2014). The 1.3 million km2 of reported deals deplete household
income from agricultural production and lead to the displacement of communities (Zetland and
Möller-Gulland 2013). Consequently, DSR increases as the consumable supply of NPP is
reduced and local resources are depleted to satisfy demand elsewhere (Yengoh and Armah
2015). This external demand for productive land is also an important driver of land degrada-
tion and deforestation. Land is acquired to provide maximum return on investment, and thus it
is often intensively managed through year-round planting, and excessive use of pesticides and
inorganic fertilizers, all factors that contribute to land degradation (Robertson and Pinstrup-
Andersen 2010). The negative effects of deforestation are particularly pronounced in East
Africa, where 91 % of the region exhibits an increasing DSR trend (μ = 0.12 ± 0.10). Rural
household energy in East Africa is largely satisfied by wood fuels with around 90 million
people living in areas where demand is high and wood harvest unsustainable (Bailis et al.
2015). In countries where there is little or no government regulation the exploitation of local
NPP supply to meet external demand is unrestricted. For example, demand for wood charcoal
in the Persian Gulf countries drives a 1.4 % annual loss of tree cover in Somalia (Bolognesi
et al. 2015).

3.4 Limitations

Although DSR provides an indicator of pressures exerted on ecosystem services at large
scales, it must be used in combination with other data. This is particularly important at local
scales where coarse resolution data cannot capture critical biophysical and socio-ecological
processes that occur at higher resolutions. A possible limitation in our approach is the reliance
on FAOSTAT data to estimate NPP demand. FAO has traditionally relied on the quality of data
provided by national statistical institutions with minimal quality control. However, in recent
years the agency has been taking steps through its regional offices to intensify data control and
harmonize collection, processing and dissemination with various national partner agencies
(FAO 2011). The quantification of human vulnerability to food insecurity is complex and
metrics such as those provided by FAOSTAT have been criticized for being poor predictors
(Barrett 2010). We addressed this critique by: (1) using household consumption surveys to
apply appropriate ratios distinguishing between per capita urban and rural consumption for
each component of NPP demand, and (2) spatially constraining these ratios to gridded
population data.

4 Conclusions

In this paper we focused on the El Niño-Southern Oscillation (ENSO) and its impact on the
balance between supply and demand of net primary productivity (NPP) in African drylands.
Our analyses demonstrated that fluctuations in the supply of NPP associated with a + 1 °C
change in the Niño 3.4 region average − 2.8 g C m−2 yr.−1 and population and socioeconomic-
driven trend in NPP demand averages 3.5 g C m−2 yr.−1. The combination of reductions in
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supply and increases in demand lead to a 7.2 % increase in the demand for NPP relative to its
supply. Our findings highlight the role played by ENSO and population growth in modulating
the balance between supply and demand of NPP in sub-Saharan drylands. Our findings also
emphasize the importance of accounting for this balance, which has so far been overlooked in
climate impact studies.

Humans rely directly on the supply of NPP through the consumption of crops and use of
wood for fuel and construction, and indirectly through animal products. This reliance creates
demand that drives many of the ecological changes occurring in sub-Saharan drylands.
Evaluating the socio-ecological impact of ENSO and other large-scale ocean-atmosphere
teleconnections through isolated disciplinary analysis provides monocular views of a complex
system that requires an integrated approach. Moreover, several of the factors that influence the
balance between supply and demand, such as population density and consumption patterns, are
dependent on scale. Sociological data, such as surveys at the household (or even individual)
level, which provide valuable information about fine-scale patterns of human-ecosystem
interaction, are seldom integrated with biophysical datasets. Thus, a comprehensive, interdis-
ciplinary approach is required to further assess the factors driving this complex balance in the
wake of climate change. Only through interdisciplinary analysis involving enhanced synthesis
of both biophysical and socio-ecological data can we make improved assessments of the
impacts of climatic variability on human livelihood and wellbeing.

Acknowledgments We thank Dan Metcalfe, Lina Eklund, A.J. (Han) Dolman, and Katharina Waha for their
insight and comments during early stages of the manuscript. We also thank the programming assistance provided
by the volunteers at the Stack Overflow and Cross Validated online communities. Funding for this project was
provided by the Swedish National Space Board (contract no. 100/11 to J.A.). A.M.A. received support from the
Royal Physiographic Society in Lund and the Lund University Center for Studies of Carbon Cycle and Climate
Interactions (LUCCI). C.C.U. was supported by NSF grant OCE-1203892.

References

Abdi AM, Seaquist J, Tenenbaum DE, Eklundh L, Ardo J (2014) The supply and demand of net primary
production in the Sahel. Environ Res Lett 9:094003

Abdissa F, Degefa T (2011) Urbanization and changing livelihoods: the case of farmers’ displacement in the
expansion of Addis Ababa. In: Teller C (ed) The demographic transition and development in Africa: the
unique case of Ethiopia. Springer Netherlands, Dordrecht, pp. 215–235

Adugna A, Hailemariam A (2011) Rural–urban linkages in ethiopia: insuring rural livelihoods and development
of urban centers. In: Teller C (ed) The demographic transition and development in Africa. Springer,
Netherlands, pp. 167–186

Ahlström A, Raupach MR, Schurgers G, Smith B, Arneth A, Jung M, Reichstein M, Canadell JG, Friedlingstein
P, Jain AK, Kato E, Poulter B, Sitch S, Stocker BD, Viovy N, Wang YP, Wiltshire A, Zaehle S, Zeng N
(2015) The dominant role of semi-arid ecosystems in the trend and variability of the land CO2 sink. Science
348:895–899

Andela N, van der Werf GR (2014) Recent trends in African fires driven by cropland expansion and el Nino to La
Nina transition. Nat Clim Chang 4:791–795

Bailis R, Drigo R, Ghilardi A, Masera O (2015) The carbon footprint of traditional woodfuels. Nat Clim Chang
5:266–272

Barrett CB (2010) Measuring food insecurity. Science 327:825–828
Barrett CB, Upton JB (2013) Food security and sociopolitical stability in sub-Saharan Africa. Food security and

sociopolitical stability. Oxford University Press, New York
Battisti DS, Naylor RL (2009) Historical warnings of future food insecurity with unprecedented seasonal heat.

Science 323:240–244
Bekunda M, Sanginga N, Woomer PL (2010) Restoring soil fertility in sub-Sahara Africa. In Donald LS (ed.)

Advances in agronomy. Academic Press, pp. 183–236

Climatic Change



Bolognesi M, Vrieling A, Rembold F, Gadain H (2015) Rapid mapping and impact estimation of illegal charcoal
production in southern Somalia based on WorldView-1 imagery. Energy Sustain Dev 25:40–49

Cai W, Santoso A, Wang G, Yeh S-W, An S-I, Cobb KM, Collins M, Guilyardi E, Jin F-F, Kug J-S, Lengaigne
M, McPhaden MJ, Takahashi K, Timmermann A, Vecchi G, Watanabe M, Wu L (2015) ENSO and
greenhouse warming. Nat Clim Chang 5:849–859

Campbell MM, Casterline J, Castillo F, Graves A, Hall TL, May JF, Perlman D, Potts M, Speidel JJ, Walsh J,
Wehner MF, Zulu EM (2014) Population and climate change: who will the grand convergence leave behind?
The Lancet Global Health 2:e253–e254

Cane MA, Eshel G, Buckland RW (1994) Forecasting Zimbabwean maize yield using eastern equatorial Pacific
Sea surface temperature. Nature 370:204–205

Cheung Y-W, de Haan J, Qian X, Yu S (2012) China's outward direct investment in Africa. Rev Int Econ
20:201–220

Eozenou PH-V, Madani D, Swinkels R (2013) Poverty, malnutrition and vulnerability in Mali. World Bank
Policy Research Working Paper No. 6561. The World Bank, Washington, DC

FAO (2011) Review of the availability and quality of official data from African commission on agricultural
statistics member countries. Food and agriculture Organization of the United Nations, Addis Ababa, Ethiopia

FAO (2013) CountrySTAT Mali. Statistics Division, Food and Agriculture Organization of the United Nations
Rome, Italy

FAOSTAT (2015) FAO statistical databases. Food and agriculture Organization of the United Nations, Rome,
Italy

Fetzel T, Niedertscheider M, Haberl H, Krausmann F, Erb K-H (2016) Patterns and changes of land use and land-
use efficiency in Africa 1980–2005: an analysis based on the human appropriation of net primary production
framework. Reg Environ Change 16:1507–1520

FEWSNET (2016) Southern Africa: illustrating the extent and severity of the 2015–16 drought. Famine Early
Warning Systems Network/USAID

Giannini A, Biasutti M, Held IM, Sobel AH (2008) A global perspective on African climate. Clim Chang 90:
359–383

Greve P, Orlowsky B, Mueller B, Sheffield J, Reichstein M, Seneviratne SI (2014) Global assessment of trends in
wetting and drying over land. Nat Geosci 7:716–721

IPCC (2014) Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part B: Regional Aspects.
Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on
Climate Change. Cambridge, United Kingdom and New York, NY, USA

Itannam F, Olsson M (2004) Land degradation in Addis Ababa due to industrial and urban development.
Ethiopian J Dev Res 26:77–100

Knox J, Hess T, Daccache A, Wheeler T (2012) Climate change impacts on crop productivity in Africa and South
Asia. Environ Res Lett 7:034032

Korecha D, Barnston AG (2007) Predictability of June–September rainfall in Ethiopia. Mon Weather Rev 135:
628–650

Korecha D, Sorteberg A (2013) Validation of operational seasonal rainfall forecast in Ethiopia. Water Resour Res
49:7681–7697

Linard C, Gilbert M, Snow RW, Noor AM, Tatem AJ (2012) Population distribution, settlement patterns and
accessibility across Africa in 2010. PLoS One 7:e31743

Mann HB (1945) Nonparametric tests against trend. Econometrica: Journal of the Econometric Society:245–259
Maxwell D, Fitzpatrick M (2012) The 2011 Somalia famine: context, causes, and complications. Global Food

Security 1:5–12
Moller LC (2012) The Ethiopian urban migration study 2008: the characteristics, motives and outcomes to

immigrants to Addis Ababa. The World Bank, Washington, DC
Monteith JL (1972) Solar radiation and productivity in tropical ecosystems. J Appl Ecol 9:747–766
Nicholson SE (2011) Dryland climatology. Cambridge University Press
Philippon N, Martiny N, Camberlin P, Hoffman MT, Gond V (2014) Timing and patterns of the ENSO

signal in Africa over the last 30 Years: insights from normalized difference vegetation index data. J Clim
27:2509–2532

Pires M (2003) The spatial polarization of woodfuel supply and demand in Senegal. African Geographical
Review 22:29–47

Reda DT, Engida AN, Asfaw DH, Hamdi R (2015) Analysis of precipitation based on ensembles of regional
climate model simulations and observational databases over Ethiopia for the period 1989–2008. Int J
Climatol 35:948–971

Robertson B, Pinstrup-Andersen P (2010) Global land acquisition: neo-colonialism or development opportunity?
Food Sec 2:271–283

Running SW (2012) A measurable planetary boundary for the biosphere. Science 337:1458–1459

Climatic Change



Seaquist JW, Johansson EL, Nicholas KA (2014) Architecture of the global land acquisition system: applying the
tools of network science to identify key vulnerabilities. Environ Res Lett 9:114006

Sissoko K, van Keulen H, Verhagen J, Tekken V, Battaglini A (2011) Agriculture, livelihoods and climate change
in the west African Sahel. Reg Environ Chang 11:119–125

Stige LC, Stave J, Chan K-S, Ciannelli L, Pettorelli N, Glantz M, Herren HR, Stenseth NC (2006) The effect of
climate variation on agro-pastoral production in Africa. Proc Natl Acad Sci U S A 103:3049–3053

van Vuuren DP, Edmonds J, Kainuma M, Riahi K, Thomson A, Hibbard K, Hurtt GC, Kram T, Krey V,
Lamarque J-F, Masui T, Meinshausen M, Nakicenovic N, Smith SJ, Rose SK (2011) The representative
concentration pathways: an overview. Clim Chang 109:5–31

Wilcox R (2012) Chapter 10 - robust regression. Introduction to robust estimation and hypothesis testing, Third
edn. Academic Press, Boston, pp. 471–532

Wolde-Georgis T (ed) (2002) The impact of cold events on Ethiopia. UnitedNationsUniversity Press, NewYork, NY
Yengoh G, Armah F (2015) Effects of large-scale acquisition on food insecurity in Sierra Leone. Sustainability 7:

9505
You L, Ringler C, Wood-Sichra U, Robertson R, Wood S, Zhu T, Nelson G, Guo Z, Sun Y (2011) What is the

irrigation potential for Africa? A combined biophysical and socioeconomic approach. Food Policy 36:770–782
Zetland D, Möller-Gulland J (2013) The political economy of land and water grabs. In: Allan JA, Keulertz M,

Sojamo S, Warner J (eds) Handbook of land and water grabs in Africa: foreign direct investment and food
and water security. Routledge, New York, NY

Zhao M, Running S, Heinsch FA, Nemani R (2011) MODIS-derived terrestrial primary production. In:
Ramachandran B, Justice CO, Abrams MJ (eds) Land remote sensing and global environmental change.
Springer, New York, pp. 635–660

Zulu LC (2010) The forbidden fuel: charcoal, urban woodfuel demand and supply dynamics, community forest
management and woodfuel policy in Malawi. Energ Policy 38:3717–3730

Climatic Change



SUPPLEMENTARY INFORMATION 

1 
 

The El Niño – La Niña cycle and recent trends in supply and demand of net primary 

productivity in African drylands 

 

A. M. Abdi 1,*, A. Vrieling 2, G. T. Yengoh 3, A. Anyamba 4, J. W. Seaquist 1, C. C. 

Ummenhofer 5, J. Ardö 1 

1 Department of Physical Geography and Ecosystem Science, Lund University, Sölvegatan 12, 

22362 Lund, Sweden  

2 University of Twente, Faculty of Geo-information Science and Earth Observation, P.O. Box 

217, 7500 AE Enschede, The Netherlands 

3 Lund University Center for Sustainability Studies, 22362 Lund, Sweden  

4 National Aeronautics and Space Administration, Goddard Space Flight Center, Biospheric 

Sciences Laboratory, Greenbelt, Maryland, United States of America 

5 Department of Physical Oceanography, Woods Hole Oceanographic Institution, Woods Hole, 

Massachusetts, United States of America  

  

* Corresponding author. E-mail: hakim.abdi@gmail.com. Tel: +46462223132. Fax: 

+46462220321 

  
 

  



SUPPLEMENTARY INFORMATION 

2 
 

 

Derivation of the aridity index  

For each year between 2000 and 2013 we calculated an aridity index (AI) from the ratio between 

annual rainfall data from the Climate Hazards Group InfraRed Precipitation with Station data 

(Funk et al., 2014) (http://chg.geog.ucsb.edu/data/chirps/) and satellite-derived potential 

evapotranspiration from the MOD16 project (Mu et al., 2011) 

(http://www.ntsg.umt.edu/project/mod16). Arid (ARD, 0.05<AI<0.20), semi-arid (SARD, 

0.20<AI<0.50), and dry sub-humid (DSH, 0.50<AI<0.65) areas were delineated. Altogether, 

drylands cover 14.7 million km2 of Africa (Supplementary Fig. 1).  

 

Disaggregation of annual NPP supply to monthly intervals 

The MODIS data used are provided as monthly satellite-derived GPP (MOD17A2) and annual 

NPP (MOD17A3) at the same spatial resolution. We multiplied monthly GPP with the 14-year 

(2000 – 2013) mean NPP/GPP ratio to get an estimate of monthly NPP: 

20132000−




×=
GPP
NPPGPPNPP monthlymonthly    (1) 

To test whether our derived monthly NPP supply data were within reasonable values, we 

aggregated them into annual sums, and compared them against the MOD17A3 product using root 

mean square error (RMSE) and mean absolute error (MAE). The monthly NPP derived using this 

approach had mean RMSE and MAE of 32 gCm-2yr-1 and 27 gCm-2yr-1, respectively 

(Supplementary Fig. 6). Since the purpose of temporally disaggregating annual MOD17A3 data 

to monthly time steps was to compare it to the monthly Niño-3.4 index, we find these error 

estimates to be acceptable as they are lower than errors associated with other large-scale primary 

productivity estimates e.g. Jung et al. (2011) and Maselli et al. (2006). 

http://chg.geog.ucsb.edu/data/chirps/
http://www.ntsg.umt.edu/project/mod16
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Calculation of cropland NPP and crop production statistics  

A detailed cropland mask (ftp://mars.jrc.ec.europa.eu/Public/cropmask) developed at the Joint 

Research Centre of the European Commission (Vancutsem et al., 2012) was used to quantify 

NPP anomalies within rain-fed croplands in sub-Saharan drylands. Compared to existing crop 

maps, this dataset has a larger agreement with a high-resolution validation sample in areas where 

cropland represents more than 30% of a pixel. Pearson’s product-moment correlation exhibited a 

strong relationship between log-transformed cropland NPP and primary crop production between 

2000 and 2013 (Pearson’s r = 0.54, P < 0.01) (Supplementary Fig. 5). Only cropland found in the 

arid, semiarid and dry subhumid areas were considered (Supplementary Table 7).  

 

 

 

  

ftp://mars.jrc.ec.europa.eu/Public/cropmask
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Supplementary Table 1. Conversion rates of products derived from food-producing animals. A 

ratio of 0.45 was used to convert dry matter requirement into carbon.  

 

Type 
Dry Matter 

Requirement  
(Kg) 

Reference 

Beef 6.5 Bradford (1999) 
Camel 12 Eltahir et al. (2011) 
Eggs 4 Haberl et al. (2007) 
Milk, whole 1.5 Hutjens (2005) 
Mutton/Goat 6.3 Karim et al. (2002) 
Pigmeat 8.5 Wirsenius (2000) 
Poultry 5.5 " 
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Supplementary Table 2. Dry matter and carbon content of the 27 types of crops selected for 

inclusion into the consumption module. 

 

Crop 
Dry Matter 

Content  
(%) 

Carbon  
Content 

(%) 
Reference 

Bananas 35 45 IIASA/FAO (2012) 
Barley 88 47 Pradhan et al. (2013) 
Beans, dry 90 47 “ 
Cassava 38 44 “ 
Cereals, other 85 47 “ 
Dates 15 45 “ 
Fruits 15 45 Goudriaan et al. (2001) 
Grapes 15 45 Pradhan et al. (2013) 
Groundnuts 95 60 IIASA/FAO (2012) 
Maize 85 49 Goudriaan et al. (2001) 
Millet 88 48 “ 
Onions, dry 15 45 Pradhan et al. (2013) 
Oranges 15 45 “ 
Plantains 35 45 “ 
Potatoes 25 44 Goudriaan et al. (2001) 
Pulses 90 47 “ 
Rice 88 48 “ 
Roots/tubers 30 44 Pradhan et al. (2013) 
Sorghum 88 48 Goudriaan et al. (2001) 
Soybeans 92 52 “ 
Sugar beet 21 44 “ 
Sugar cane 27 48 “ 
Sweet potatoes 30 44 IIASA/FAO (2012) 
Tomatoes 15 45 Pradhan et al. (2013) 
Vegetables 13 46 Goudriaan et al. (2001) 
Wheat 87 47 IIASA/FAO (2012) 
Yams 35 44 Pradhan et al. (2013) 
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Supplementary Table 3. Conversion factors derived from FAOSTAT (2015); Houerou and 

Hoste (1977); Jahnke (1982). For each livestock type to its equivalent tropical livestock unit and 

the annual amount of dry matter feed each type requires for maintenance.  

 

Livestock 
Type 

Tropical Livestock 
Unit Equivalent 

Annual Dry 
Matter 

Requirement  
(Kg) 

Camels 1.00 2372 
Cattle 0.70 1660 

Chickens 0.01 23.72 
Goats 0.10 237 
Pigs 0.20 474 

Sheep 0.10 237 
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Supplementary Table 4. Residue factors for selected crops derived using data from Haberl et al. 

(2007) and Wirsenius (2000). Residue factors are the proportion of total crop phytomass that 

does not contribute to the crop yield. The inverse of the residue factor is the harvest index.  

 

Crop Residue Factor 

Bananas 0.45 
Barley 0.65 
Cassava 0.80 
Cereals, other 0.60 
Dates 0.85 
Fruits 0.85 
Grapes 0.85 
Groundnuts 0.60 
Maize 0.78 
Millet 0.80 
Oranges 0.85 
Plantains 0.45 
Potatoes 0.50 
Pulses 0.40 
Rice 0.60 
Roots and tubers 0.50 
Sorghum 0.78 
Soybeans 0.60 
Sugar beet 0.70 
Sugar cane 0.40 
Sweet potatoes 0.50 
Wheat 0.70 
Yams 0.50 
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Supplementary Table 5. Conversion factors for different types of woodfuels. FAOSTAT 

provides non-coniferous and coniferous fuel wood in cubic meters, while wood charcoal is given 

in tonnes of dry matter.  

 

Wood fuel 
Type Conversion Type Conversion 

Factor Reference 

Non-coniferous 
fuel wood m3  dry matter 0.58 Brown (1997), Penman 

et al. (2003) 

Coniferous  
fuel wood  m3  dry matter 0.43 Brown (1997), Penman 

et al. (2003) 

Wood charcoal dry matter  carbon 0.75 Girard (2002) 
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Supplementary Table 6. Sources of the ratio factors for urban and rural consumption of the 

components of NPP demand. 

 

Urban/Rural 
Consumption Reference 

Peer-reviewed 
Literature  

Hartter and Boston 
(2008), Marufu et 

al. (1997), 
Reardon (1993), 

Teklu (1996) 

National Household Consumption 
Surveys 

Burundi INSEE (2001) 

Ethiopia Tafere and Worku 
(2012) 

Ghana Ghana Statistical 
Service (2008) 

Malawi NSO (2012) 

Nigeria Maziya-Dixon et 
al. (2004) 

Sudan 
Food Security 

Technical 
Secretariat (2010) 

Zambia CSO (2012) 
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Supplementary Table 7. Annual dry cropland NPP and FAOSTAT crop production for 2000 – 

2013 in the descending order of cropland area. Annual NPP was extracted from croplands within 

arid, semi-arid and dry subhumid zones. 

 

Country Dry Cropland NPP, 
(TgC) 

Crop Production, 
(Mt) 

Dry Cropland area,  
(km2) 

Congo, DRC 250 49 305,755 
Tanzania 210 58 288,980 

Sudan 44 45 286,990 
Nigeria 28 340 190,815 
Ethiopia 116 76 185,481 
Zambia 115 14 161,100 

South Africa 100 117 158,365 
Mali 18 21 146,057 
Niger 8 21 128,857 
Chad 18 11 124,077 

Mozambique 82 29 115,060 
Burkina Faso 16 19 111,952 

Zimbabwe 57 12 111,441 
Botswana 39 0 105,597 

Angola 64 31 90,359 
Uganda 96 55 87,863 
Kenya 63 39 85,870 
Malawi 36 30 57,776 
Somalia 11 3 56,633 
Senegal 9 10 42,616 
Namibia 16 1 39,378 

Cameroon 7 36 37,942 
Ghana 10 57 32,735 

Ivory Coast 10 34 21,263 
Burundi 18 10 19,580 
Rwanda 17 17 17,312 
Eritrea 1 1 16,559 
Guinea 4 17 16,473 

Central African Republic 7 4 14,818 
Benin 3 19 14,685 

Lesotho 3 1 7,037 
Gambia 1 1 5,385 

Togo 1 8 5,031 
Swaziland 5 6 4,727 

Guinea Bissau 1 2 4,506 
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Supplementary Fig. 1. Aridity zones delineated from the ratio between annual rainfall and 

potential evapotranspiration. The boxes represent the three main high-aridity regions of the Sahel 

(1), East Africa (2) and Southern Africa (3).  
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Supplementary Fig. 2. Classification of ENSO years according to the NOAA the specification 

of  a minimum of five consecutive 3-month running mean of the Extended Reconstructed Sea 

Surface Temperature version 3b (ERSST.v3b) anomalies in the Niño 3.4 region based on a 

threshold of ±0.5ºC. Red and blue lines denote El Niño and La Niña thresholds, respectively. 

Each yellow dot symbolizes a 3-month running mean. Note that, though included in the analysis, 

the 2005-2006 and 2008-2009 La Niña events were comparatively weak and short-lived, thus 

some definitions may not characterize them as an ENSO events. In both years negative sea 

surface temperature (SST) anomalies across the central and east-central equatorial Pacific Ocean 

met the threshold of -0.5ºC for exactly five consecutive 3-month periods (October-November-

December to February-March-April).  

Data source: http://www.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ensoyears_ERSSTv3b.shtml  

  

http://www.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ensoyears_ERSSTv3b.shtml
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Supplementary Fig. 3. A visual representation of the framework for estimating demand for 

NPP.  
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Supplementary Fig. 4. The output of maximum value compositing showing positive (a) and 

negative (b) correlations of ENSO and NPP supply. This represents change in NPP supply 

relative to a +1oC change in the Nino3.4 anomaly for 2000 – 2013.  

 

Supplementary Fig. 5. Correlation between log-transformed dry cropland NPP and FAOSTAT 

annual crop production for 2000 – 2013. Each data point represents a country listed in Extended 

Table 2 and the crop data is an aggregate of the 27 crop types listed in Supplementary Table 1S.  
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Supplementary Fig. 6. Mean RMSE (a) and MAE (b) of annual aggregates of monthly NPP 

estimates compared to the MOD17A3 annual NPP product. The mean RMSE and MAE for all 

dryland regions were 32 gCm-2yr-1 and 27 gCm-2yr-1, respectively.  
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For its fifth assessment report, the Intergovernmental Panel on Climate Change divided future scenario
projections (2005–2100) into two groups: Socio-Economic Pathways (SSPs) and Representative
Concentration Pathways (RCPs). Each SSP has country-level urban and rural population projections, while
the RCPs are based on radiative forcing caused by greenhouse gases, aerosols and associated land-use
change. In order for these projections to be applicable in earth system models, SSP and RCP population
projections must be at the same spatial scale. Thus, a gridded population dataset that takes into account
both RCP-based urban fractions and SSP-based population projection is needed. To support this need, an
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Background & Summary
The size and future trend of the human population on Earth has been a topic of scientific enquiry at least
since Thomas R. Malthus wrote An Essay on the Principle of Population in 1798. Presently, the Population
Division of the United Nations (UN) is one of several agencies or institutions that publish global
population projections on a country-by-country basis at predefined intervals. The UN’s projections are
published in a biennial report called the World Population Prospects (WPP) with the 2015 revision
projecting a remarkable 270% increase in the African population between 2015 and 2100 (ref. 1). This
rapid population growth has a number of potentially associated effects that could fundamentally alter the
continent’s landscape. These include high rates of urbanization leading to unplanned expansion of cities,
the spread of informal settlements that lack basic services and degradation of natural resources as a result
of over-exploitation to meet rising food demand2,3. Furthermore, a projected 4 °C global warming by
2100 could have severe negative impacts on the rain-fed agro-ecosystems that are a main source
of livelihood and nutrition in sub-Saharan Africa (SSA)3,4. Altogether, this will lead to a reallocation of
population from rural to urban areas, and create strong incentives for landscape transformation.

Population data has traditionally taken the form of estimates per administrative unit per unit time.
The administrative units are often in the form of regional, national, or sub-national counts with temporal
units at best at annual intervals but more commonly 5–10 years. From an analytical perspective this
is troublesome. Since administrative units vary in size, shape, and usually are arbitrarily defined any study
that uses administrative borders will obtain a very heterogeneous set of observations. Since the 1990s,
there have been growing attempts to disaggregate population data into spatially explicit estimates
distributed across a regular grid. Tobler, et al.5 produced a smoothed continuous map-grid of total
population at a global scale for the year 1994. This work was later labeled as the first version of the
Gridded Population of the World (GPWv1) by the Center for International Earth Science Information
Network (CIESIN). The fourth, and latest, version, GPWv4, was published in 2015 (ref. 6) and includes
population data at 5-year intervals between 2000 and 2020. As part of the AfriPop project, Linard et al.7

built a unique spatial database that combined census data across the continent with satellite-imagery and
land cover data in a dasymetric model. The AfriPop project was transformed into an open access archive
and re-labeled WorldPop. Within this new framework, Sorichetta et al.8 developed a gridded population
distribution dataset for the Caribbean and Latin America for 2000, 2015 and 2020. However, due to
the coarse temporal resolution and limited time period available for these datasets none of them can be
completely used as an accompanying dataset for analyses using projected 21th century data within
Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (AR5) framework which is
based on gridded climate projection data.

Here, we present a 30 arc-second, gridded population distribution projection for every year between
2000 and 2100 for the African continent conforming to both the Representative Concentration Pathways
(RCPs) urban fractions9 and Shared Socio-Economic Pathways (SSPs) population (major characteristics
presented in Table 1). To our knowledge the combination of RCPs and SSPs scenarios for gridded
population projections is something that has not been done before. The RCPs and SSPs supersedes
the Special Report on Emissions Scenarios (SRES) and were adopted by the IPCC for its AR5 (refs 3,10).
Unlike the SRES, the four RCPs are not based on socio-economic scenarios but on radiative forcing and
the simulated influences of land use, greenhouse gas and aerosol emissions. Therefore, a set of five SSPs
were used in conjunction with the RCPs to develop future country level population distribution
scenarios11. The development of society and the natural environment in SSPs are not explicitly taking
climate change or the implementation of climate policies at the global scale during the 21st century into
account. Each SSP scenario is adjoined with a population projection and a proportion of the country
population living in urban areas. The presented gridded population dataset can be useful when
performing future simulations dependent on gridded RCP land use and climate data, for example carbon
flux studies or assessments of supply and demand of food.

Methods
The method can be summarized as a distribution of country level SSP urban and rural population
projections onto a 30 arc seconds grid conforming to the urban fraction grid at 30 arc minutes. For this
we used the African population for year 2000 at 30 arc-second spatial resolution from the WorldPop
Project12 as a starting dataset. Distance to road and to population centers of gravity were used to allow
each pixel to be ranked uniquely into urban or no-urban (see below). A complete list of the included data
sources can be found in Table 2.

SSP-RCP coupling in the baseline year 2000
The population distribution for Africa was modeled to follow the RCP-specific urban fraction dataset13

further described in Hurtt et al.9 and the country-specific SSP population and urban fraction scenarios
from the SSP database14. The urban fraction data is provided at a spatial resolution of 30 arc-minutes
(0.5 degrees or approximately 50 kilometers at the equator) and represents annual projected global land
use and land cover patterns until the year 2100. It is developed with a Global Land-use Model (GLM)15

which estimates future land use transitions and patterns within each 30 arc-minute grid cell using an
accounting based method by considering a range of parameters (i.e. spatial patterns, residency time, and
land conversions)9. The five SSPs and four RCPs produce a set of 20 SSP-RCP scenario combinations that
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deliver a reasonable basis for future scenarios. However, some combination (e.g., SSP1-RCP8.5) are very
unlikely to occur in the future16 (po0.01). Consequently, we used the 15 most probable SSP-RCP
combinations according to Engström et al.17.

The gridded population dataset for Africa for the year 2000 (ver. 3.020) from the WorldPop Project12

was used as the starting point. The estimates of total number of people per grid cell across Africa are
adjusted to match UN population division estimates. The national administrative boundaries dataset
from GRUMPv1 (refs 18,19) were used to remove water bodies from the WorldPop data. This was done
by converting the national boundaries to raster using ArcGIS 10 raster to polygon tool with 30 arc-
seconds as the output resolution. The created raster was reclassified to include only ones and zeros for
land and water bodies, respectively. Finally, it was matched to the spatial origin of WorldPop by using the
resample (nearest neighbor) function within the raster package in R (R: A Language and Environment for
Statistical Computing, https://www.r-project.org/). To classify each 30 arc-second pixel within each
0.5 degree pixel as urban or non-urban based on their population value the inverse distance to roads and
inverse distance to center of gravity (COG) were each rescaled to lie between 1.0·10− 5 and 1.1·10− 5 and

Pathway Key characteristics

RCP2.6 -Radiative forcing 2.6Wm− 2 by 2100

-Low GHG emissions

-Medium-low air pollution

RCP4.5 -Radiative forcing 4.5Wm− 2 by 2100

-Very low baseline GHG emission with medium-low mitigation

-Medium air pollution

RCP6.0 -Radiative forcing 6.0Wm− 2 by 2100

-Medium baseline GHG emission with high mitigation

-Medium air pollution

RCP8.5 -Radiative forcing 8.5Wm− 2 by 2100

-High baseline GHG emission

-Medium-High air pollution

SSP1 -Low population

-High urbanization

-High-Medium Economy

SSP2 -Medium population

-Medium urbanization

-Medium uneven economy

SSP3 -High population

-Low urbanization

-Slow economy

SSP4 -Medium-High population

-High-Medium urbanization

-Low-Medium economy

SSP5 -Low-Medium Population

-High Urbanization

-High Economy

Table 1. Main characteristics of RCP and SSP assumptions. RCP characteristics from Van Vuuren
et al.10 and SSP characteristics from O’Neill et al.24 and Kc & Lutz25.

Name Spatial domain Temporal domain Type Source

SSP population scenarios Country 2000–2100 Continuous SSP Database14

RCP Urban fraction 0.5 degree 2000–2100 Raster Chini et al.13

WorldPop Africa 30 arc-second 2000 Raster http://www.worldpop.org/

Roads Global 1980–2010 Polylines gROADSv123

Water bodies mask Global 2000 Polygons GRUMPv1:National-Administrative-Boundaries18,19

Country Borders Global 2008 Polygons http://www.thematicmapping.org/downloads/

Table 2. Input datasets used to grid future populations.
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added to the initial dataset (Fig. 1). Distance to roads and distance to population centers (COG) were
chosen since their effect on the population distribution within an area have been demonstrated
repeatedly8,20–22. The distance to roads was calculated using Euclidian distance on the global roads open
access data set23. The COG was calculated on the WorldPop dataset for each 0.5 degree urban fraction
pixel using the COGravity tool included in the R (R: A Language and Environment for Statistical
Computing, https://www.r-project.org/) package SDMTools (https://cran.r-project.org/web/packages/
SDMTools/). These operations are done to be able to more accurately classify pixels as urban or
non-urban based on their unique population value and also to ensure that urban growth will be favored
in proximity to population centers or roads. Our procedure requires ranking the pixels as non-urban
or urban based on their population values. Hence a maximum of two arc-second pixels within each
30 arc-minute urban fraction grid cell were allowed to have the exact same value. This was achieved by
addition of the rescaled inverse distance to road and COG, the result of that is from now on referred to as
unique population dataset.

Population allotment per grid cell
The unique population dataset for year 2000 is used together with the RCP specific urban fraction for
year 2000 to create the urban mask (Fig. 1). This is done by sorting the pixel values within each urban

Figure 1. Flowchart and example of the method used to distribute the population. Example made with

artificial numbers for visualization purposes. For simplicity the smaller grid cells each corresponds to one

30 arc second pixel and the full grid (9 ´ 9) represent one urban fraction grid cell (0.5 degree) and the full grid

9x9 corresponds to one country. The example highlights the need to add inverse distance to population center

of gravity (COG) and inverse distance to roads to the population data to be able to uniquely rank the pixels.

The country SSP population is distributed for rural and urban separately based on the urban mask and the

gridded population from the year before or unique population for the first year. The green boxes with rounded

corners indicate input data. Inverse distance to center of gravity and inverse distance to roads are for the small

example not rescaled to the same range as done when processing the dataset.
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fraction 0.5 degree grid cell and selecting the highest ones as urban until the urban fraction value is
fulfilled (rounding the number of urban pixels within each 0.5 degree grid cell to the nearest integer). This
is repeated for all 0.5 degree grid cells. Subsequently, the urban mask is used on a per country basis to
distribute the urban and rural SSP population data and assuring that the unique population relationship
is still valid. This means, for example, that a pixel with an initial value twice as large as another pixel will
still have the same ratio under the condition that they are both located in the same country and are both
either urban or rural pixels. The gridded population of the previous year is used as input to create the
urban mask of the next year and to distribute the population thus creating a loop (Fig. 1). This ensures
that the unique population for year 2000 will only be used once to create the dataset for year 2001 and
thereafter the population from the year before will be used as the unique data set (Fig. 1). This meaning
that the population from the previous year will be used to create a new urban mask based on the
RCP urban fraction for that year. Hence the spatial distribution of the urban areas is based on the yearly
RCP urban fraction and the gridded population from the year before using the ranking technique as
shown in Fig. 1.

The population re-distributions are carried out for the 15 likely combinations of RCP and
SSP scenarios from Engström et al.17 (Table 3). Hence, in total 15 different datasets with yearly
population projections between 2000 and 2100 are created. An example of the population re-distribution
for SSP 2 and RCP 4.5 for year 2050 can be seen in Fig. 2.

Code availability
The gridded population datasets were created using R3.3.0 (R: A Language and Environment
for Statistical Computing, https://www.r-project.org/) and the scripts can be found on GitHub
(https://github.com/niklasbokeolen/african_population/).

Data Records
The high resolution population projections for the RCP and SSP scenario combinations described here
can be freely and publicly accessed at the DataGURU web site (Data citation 1) which also allows basic
conversion/spatial and temporal cropping, thus enhancing the accessibility. The original data are stored
as one geotiff (.tif) for each scenario combination and year with the datatype FLT4S and NA-value as
-9999. They are in a longitude latitude projection with WGS84 as the datum and are created with the
function writeRaster within the raster package (v2.5-2, https://cran.r-project.org/web/packages/raster/) in
R 3.3.0 (R: A Language and Environment for Statistical Computing, https://www.r-project.org/).

To get an overview of the created dataset, parts of it can be explored with a shiny web
application which provides an interactive visualization. It can be found in the below location:
https://niklasbokeolen.shinyapps.io/Shiny_population/.

Note that the tool uses a re-projected version of the data to match the projection of
the OpenStreetMap. For the official version of the gridded population dataset, the user is advised
to download the original files via the DataGURU service which also provides the long term storage.

Technical Validation
The technical validation of the dataset is performed by comparing the SSP 1 country populations with
the gridded population dataset (for SSP1/RCP 4.5) aggregated to country levels. This is done for
year 2005 since both SSP population projections and RCP land use projections do not deviate until after
that year. Accordingly, we performed the technical validation on only one RCP–SSP combination.
We show that all the population is accounted for and every country lies on the one to one line (Fig. 3)
with a coefficient of determination (r2) of 1.0.

To further evaluate the created dataset we compared the 2000 to 2005 population change for
the created gridded dataset with the change for UN (2015) adjusted Gridded Population of the
World version 4 (GPWv4). This was done for a sample of six African countries (Benin, Madagascar,
Morocco, Botswana, Ethiopia, and Tunisia) representing a wide variation in population density
and spatial distribution. The population was aggregated to level 2 administrative regions within
each country and only one SSP/RCP combination was used since the projections do not deviate until
after year 2005. The result of the comparison to GPWv4 can be seen in Fig. 4. For most of
the countries the change matches in general well but typically deviates more for a few of the level

RCP 2.6 RCP 4.5 RCP 6 RCP 8.5

SSP 1 0.09 0.45 0.45 0.00

SSP 2 0.00 0.09 0.68 0.23

SSP 3 0.00 0.17 0.50 0.33

SSP 4 0.00 0.37 0.56 0.07

SSP 5 0.00 0.07 0.37 0.56

Table 3. RCP–SSP probability matrix as described by Engström et al.17
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2 administrative regions. A summary of the comparison to GPWv4 for the validation countries and
year 2005 can be seen in Table 4 were it can be observed that the total distributed populations
(SSP countries population) are not exactly the same as the population for GPWv4. However,
the coefficient of determination is high (r2>0.8) for most of the countries and administrative
levels indicating that the spatial pattern is captured between the regions. This indicates that the method
is well suited to capture the spatially pattern. However, due to considerable differences in the
total population between GPWv4 and the SSP population data we do not expect the change to match
perfectly for all regions.

Figure 2. Map of year 2050 of the gridded population datasets for SSP 2 and RCP 4.5. Countries presented

with bold borders are the countries used for a more in depth comparison (see technical validation section).
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Figure 3. Country level validation of gridded dataset for year 2005. Gridded population aggregated to

country totals and compared against SSP country population.

Figure 4. Validation result on administrative region at level 2. Plots show population change between year

2000 and 2005 for data set created in this paper (gridded change) and gridded population of the world v4

(GPWv4 change). A zoom of the Botswana and Tunisia data is included as an inset.
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Uncertainty
We used a deterministic method to produce the gridded population projections which means that
the level of uncertainty in the created dataset is originating from uncertainty in the input data (Table 2).
We would like to point out a possibly over-influence of roads in the created dataset. This is due to that
WorldPop uses distance to roads and we further add the inverse distance to roads in order to create a
unique population dataset as a starting point. However, since we rescale the distance to road to be
between 1.0·10− 5 and 1.1·10− 5 we argue that this will only have an effect for pixels that were equal in the
initial WorldPop dataset. Pixels (30 arc-seconds) with unequal population values in the initial dataset will
have a very low probability of being affected by this small addition based on the distance to road.
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Abstract 

Water loss is a crucial factor for vegetation in the semi-arid Sahel region of Africa. Global satellite-

driven estimates of plant CO2 uptake (gross primary productivity, GPP) have been found to not 

accurately account for Sahelian conditions, particularly the impact of canopy water stress. Here, we 

identify the main biophysical limitations that induce canopy water stress in Sahelian vegetation, and 

evaluate the relationships between field data and Earth observation-derived spectral products for up-

scaling GPP. We find that plant available water and vapor pressure deficit together limit the GPP of 

Sahelian vegetation. Our results show that a multiple linear regression (MLR) GPP model that 

combines the Enhanced Vegetation Index, Land Surface Temperature, and the short-wave infrared 

reflectance (2105 – 2155 nm) of the Moderate Resolution Imaging Spectroradiometer satellite sensor 

was able to explain between 88% and 96% of the variability of eddy covariance flux tower GPP at 

three Sahelian sites (mean = 89%). The MLR GPP model presented here is scalable with estimates of 

GPP at a relatively high spatial resolution. Given the scarcity of field data on CO2 fluxes in the Sahel, 

this scalability is important due to the low number of flux towers in the region.  

 

1. Introduction 

The Sahel is an arid and semi-arid region that stretches from the Atlantic Ocean in the west to the Red 

Sea in the east and separates the hyper-arid Sahara desert from the sub-humid and humid regions to the 

south (Figure 1). The Sahel has experienced a prolonged dry period from the mid-1960s through the 

late 1980s in which there were severe droughts that resulted in humanitarian crises (Ellis and Galvin, 

1994). Recovery from this dry period was reported by Eklundh and Olsson (2003) who observed 

strong increases in seasonal satellite-derived NDVI (Normalized Difference Vegetation Index) from 

the mid-1980s onwards. This increase in vegetation greenness began to be referred to as the “greening 

of the Sahel” (Olsson et al., 2005), and is the result of increases in both herbaceous (Dardel et al., 
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2014) and tree cover (Brandt et al., 2015). Seaquist et al. (2006) translated this greening into 

sequestered carbon (C) and found that 51 megatonnes of C (MtC) per year where taken up by Sahelian 

vegetation between 1982 and 1999 resulting in a net increase of 918 MtC over the 18-year period. The 

key suggested mechanism behind the greening is increased rainfall (Hickler et al., 2005), and, to a 

lesser extent, improved land use and migration-induced land abandonment (Olsson et al., 2005).  

 

 
Figure 1. The location of the sites and the dominant land cover classes in Sahel. The Sahelian borders are 

based on the 150 and 700 mm annual rainfall isohyets. Dominant land cover types are according the Food and 
Agriculture Organization’s 2014 Global Land Cover-SHARE database. Grassland and croplands together cover 
more than 67% of the total surface area of the Sahel. 

 

Gross primary productivity (GPP) is the total amount of C plants extract from the atmosphere 

through photosynthesis. Some of this C goes to maintenance, and is thus lost through autotrophic 

respiration (Ra). The remaining C is stored as phytomass (net primary productivity, NPP = GPP – Ra). 

The capacity of Sahelian ecosystems to provide essential food, fuel and feed is a function of available 

NPP (Abdi et al., 2014). Since these ecosystem services are essential, evaluating the environmental 

controls that modulate GPP dynamics is essential for accurate accounting of primary productivity. The 

Sahel has a single growing season that starts in July and ends in October (Vrieling et al., 2013) with 

considerable inter-annual variability in the spatial distribution and quantity of rainfall (Nicholson, 

2011; Philippon et al., 2014). The driest parts of the northern Sahel receive an annual average of 150 

mm of rain, while the southern parts receive an annual average of ~750 mm (Le Houérou, 1989) 

(Figure 1).  

 

The Sahel (Figure 1) is dominated by plants that have the C4 photosynthetic pathway (Tagesson et 

al., 2016b), which are adapted to warm, arid environments and are composed mainly of grasses, herbs 

and crops. The mean tree canopy cover is approximately 7.3% and comprises trees that use the C3 

photosynthetic pathway (Hiernaux and Le Houérou, 2006; Brandt et al., 2016). It is well known that 

moisture availability controls C fluxes in drylands such as the Sahel, and several studies have 

attempted to explain the underlying mechanisms of its modulation of primary productivity in these 
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regions (Tucker et al., 1983; Prince, 1991; Verhoef et al., 1996; Moncrieff et al., 1997; Nicholson et 

al., 1998; Hickler et al., 2005; Sjöström et al., 2011). Merbold et al. (2009) found that mean annual 

rainfall is strongly correlated with maximum photosynthetic capacity and is the predominant factor 

driving C fluxes across Africa. With rainfall, the greening phase commences (Figure 2), soil moisture 

is replenished, which impacts the amount of energy partitioned into evapotranspiration (Sjöström et al., 

2011; Nutini et al., 2014; Velluet et al., 2014). Rainfall also increases humidity, which lowers the 

difference between the vapor pressure deficit inside the leaf and that of the air. This difference in vapor 

pressure deficit was found to be a key factor affecting stomatal conductance of Sahelian plants (Boegh 

et al., 1999; Ago et al., 2015). The browning phase (Figure 2) begins with a decrease in soil moisture 

and increase in both surface temperature and vapor pressure deficit, which triggers the closure of the 

stomata to prevent water loss through transpiration. The closure of the stomata prohibits the flow of 

CO2 into the leaf and thus reduces GPP.  

 

 
Figure 2. Conceptual diagram of the greening and browning processes present in the Sahel. The two peaks 

represent the uptake of CO2 and the increase in GPP. The greening phase begins with the start of the rainy 
season and the increase in plant available water (PAW, section 3.3.1). During the greening phase vapor 
pressure deficit (VPD, section 3.3.2) decreases and so does land surface temperature (LST). The beginning of 
the browning phase starts with a reduction in PAW and increase in VPD and LST.  

 

Most studies covering the Sahel base their results on a handful of sites, due to the scarcity of data on 

C fluxes over the region’s 3.3 million km2 of surface area (Ardö, 2016). Thus, Earth observation is an 

important tool for large-scale studies of the GPP of Sahelian ecosystems. The only global model of 

satellite-driven GPP estimates is the MOD17 production efficiency model (Running et al., 2000), 

which is based on the light-use efficiency concept (Monteith, 1972). However, this dataset has been 

shown to considerably underestimate GPP over semi-arid Sahelian ecosystems (Sjöström et al., 2011; 

Sjöström et al., 2013). Recent work by Sadeghi et al. (2015) found that the shortwave infrared spectral 

range of 2105 – 2155 nm provides optimal sensitivity to variations in soil moisture. Furthermore, 

aerosol effects are negligible because most aerosol particulates are smaller than that wavelength range 

(Liang et al., 2006). The drying and wetting processes that influence vegetative growth could be 

captured by satellite sensors that cover this spectral range because soil moisture at the top 1 – 2 cm of 
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soil significantly influences soil surface reflectance at these wavelengths (Lobell and Asner, 2002; 

Weidong et al., 2002). Another recent study by Tian and Philpot (2015) found that shortwave infrared 

radiation within the spectral range of 1850 – 2130 nm was sensitive to soil volumetric water content. 

Consequently, there is potential utility of this spectral range in C cycle studies that focus on Sahelian 

settings. This study has two objectives: (1) Identify the relative strengths of biophysical limitations that 

reduce CO2 uptake in the Sahel, and (2) evaluate empirical relationships between Earth observation-

derived spectral products that can account for these limitations to better explain the variability in EC 

GPP using Earth observation data.  

2. Field Sites   

 We used three eddy covariance sites located in Sudan, Niger and Senegal. All three sites are within 

a narrow latitudinal band between 13°N and 15°N (Figure 1). A summary of the sites is presented 

below and summarized in Table 1.  

  

2.1. Demokeya, Sudan  

 

Demokeya (13.282°N, 30.478°E) is located in North Kordofan state. Mean annual air temperature is 

30°C and mean annual precipitation is 320 mm. The landscape around the site is a typical Sahelian 

savanna, comprised of sparse trees, mainly Acacia senegal and Acacia nilotica, with a canopy cover of 

approximately 7%. The ground cover comprises annual grasses, primarily Cenchrus biflorus, 

Eragrostis tremula, and Aristida pallida. The sandy soils are poor in nutrients, have low soil organic 

C, and low cation exchange capacity (Olsson and Ardö, 2002). A complete description of Demokeya is 

provided in Ardö et al. (2008).  

 

2.2. Wankama, Niger 

 

The Wankama site is divided into two sub-sites, Wankama Millet (13.644°N, 2.629°E) and 

Wankama Fallow (13.647°N, 2.633°E), both of which are located in southwest Niger and within close 

proximity to each other. Mean annual air temperature is 30°C and mean annual precipitation is 479 

mm. Only the fallow site has been used in this study. This site is composed of shrub and herbaceous 

layers; the shrub layer is primarily composed of Guiera senegalensis and the herbaceous layer is 

dominated by Zornia glochidiata (Boulain et al., 2009). The soils are mostly sandy with low nitrogen 

and phosphate content. A complete description of Wankama is provided in Cappelaere et al. (2009).  

  

2.3. Dahra, Senegal 

 

Dahra (15.402°N, 15.432°W) is located in the Louga province of northern Senegal. Long term mean 

annual air temperature is 29°C and mean annual precipitation is 416 mm. The vegetation around the 

site is grazed by livestock and dominated by annual grasses, particularly Aristida adscensionis, Zornia 

latifolia, Eragrostis tremula, Dactyloctenium aegyptium, and Cenchrus biflorus. The canopy cover is 

approximately 3% and comprises Acacia Senegal, Acacia tortilis, and Balanites aegyptiaca. The soils 
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are sandy with low water holding capacity and organic matter content. A complete description of 

Dahra is provided in Tagesson et al. (2015b).  

 
Table 1. Basic site characteristics including location in decimal degrees (DD), vegetation and soil types, mean 
annual precipitation (MAP), and mean annual air temperature at 2 meters height (MAT). The DS and GS in the 
relative humidity column refer to Dry Season (Nov – Jun) and Growing Season (Jul – Oct), respectively. 
 

Site Country 

Lon 

Lat 

(DD) 

Vegetation 

Type 
Soil Type 

MAP 

(mm) 

MAT 

(°C) 

Rel. 

Hum. 

DS/GS 

(%) 

Ref. 

Demokeya Sudan 
30.47, 

13.28 

Sparse 

acacia 

savanna 

Cambic 

Arenosols 
320 30 16 / 57 

Ardö et al. 

(2008) 

Wankama 

Fallow 
Niger 

2.63, 

13.64 

Fallow 

shrubland 

Sandy 

Ferruginous 

Arenosols 

479 30 28 / 75 

Cappelaere 

et al. 

(2009) 

Dahra Senegal 
-15.43, 

15.40 

Open 

woody 

savanna 

Luvic 

Arenosols 
416 29 9 / 63 

Tagesson 

et al. 

(2015b) 

         

 

3. Data and Methods 

3.1. Field Data 

 

3.1.1. Eddy Covariance Gross Primary Productivity  

 

The eddy covariance (EC) systems at all three sites are equipped with LI7500 open path infrared 

CO2/H2O analyzers (LI–COR Inc., Nebraska, USA) and GILL R3 triple-axis sonic anemometers 

(GILL Instruments, Lymington, UK). Eddy covariance data were recorded at 20 Hz and averaged over 

30-minute periods. The EC method measures net ecosystem exchange of CO2 (NEE) and following the 

approach in Tagesson et al. (2015a), NEE was partitioned into GPP and ecosystem respiration (Reco) 

using a non-linear asymptotic regression with incoming photosynthetically active radiation and vapor 

pressure deficit as independent variables. Gaps in the time series of NEE, GPP and Reco were 

consequently gap-filled, again following the method outlined in Tagesson et al. (2015a).  

 

3.1.2. Climatic Variables, Soil Moisture and Temperature  

 

Air temperature (°C) and relative humidity (%) at 2 m were monitored using MP100A Temperature 

and Relative Humidity Probe (Rotronic) in Demokeya, with Vaisala HMP45C probes (Vaisala Oyj, 

Helsinki, Finland) in Wankama, and Campbell CS215 (Campbell Scientific, Utah, USA) in Dahra. 
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Precipitation (mm) was recorded using ARG100 tipping buckets (Campbell Scientific, Utah, USA) at 

all three sites. Volumetric soil moisture was recorded using CS616 water content reflectometers 

(Campbell Scientific) in Demokeya and Wankama, and HH2 probe (Delta T Devices) in Dahra. These 

parameters were recorded every 10 – 30 seconds and averaged for every 30 minutes. Measurement 

depths varied with site and were dependent on the field campaign. Volumetric soil moisture was 

summed from top of soil to 50 cm depth in Dahra and Wankama, and to 60 cm depth in Demokeya in 

order to compute plant available water (see section 3.3.1). 

 

3.2. Earth Observation Data 

 

The Moderate Resolution Imaging Spectroradiometer (MODIS) sensor on board NASA’s Terra and 

Aqua satellites has a viewing swath width of 2,330 km and images the entire surface of the Earth every 

one to two days. The MCD43A4 Nadir Bidirectional Reflectance Distribution Function Adjusted 

Reflectance (NBAR) product is preferable over the other surface reflectance products 

(MOD09A1/MYD09A1) because it is adjusted using a bidirectional reflectance distribution function to 

model at-nadir values (Schaaf et al., 2002). The Collection 5.1 MCD43A4 NBAR Level 3 and MOD17 

8-day GPP product (MOD17A2) products were downloaded for each site from the Oak Ridge National 

Laboratory Distributed Active Archive Center (ORNL-DAAC, daac.ornl.gov/modisglobal). These data 

are provided as ASCII files containing observations within a specified radius around a particular point 

of interest. We selected a 3 x 3 km radius around each flux tower site based on footprint analysis 

conducted in Demokeya by Sjöström et al. (2009) and in Dahra by Tagesson et al. (2015c). Land 

surface temperature (LST) has been found to strongly influence ecosystem respiration (Vancutsem et 

al., 2010; Jägermeyr et al., 2014) and has been used estimate vapor pressure deficit (Hashimoto et al., 

2008). Sims et al. (2008) used LST to characterize temperature and drought stress in a modeling 

framework that used MODIS enhanced vegetation index (EVI) as a predictor of GPP. In order to test 

the applicability of LST for improving GPP modeling, we downloaded the MOD11A2/MYD11A2 

Level 3 LST product (Collection 5.1) from the ORNL-DAAC database (daac.ornl.gov/modisglobal).  

 
Table 2. Field capacity, soil texture and permanent wilting point (PWP) at the three sites. Soil texture data 

was included with the soil moisture data provided by the International Soil Monitoring Network (ISMN) (Dorigo et 
al., 2011). This information was verified against site descriptions provided by the principal investigator at each 
site. Field capacity and PWP was derived from the Africa Soil Profiles Database (v1.2) (Leenaars et al., 2014) 
based on the soil texture configuration at each site.   

 

Site 
Field 

Capacity, % 

Soil Texture, % 
(Sand / Silt / Clay) 

Permanent Wilting 
Point, % 

0 – 30 cm 30 – 100 cm 
0 – 30 

cm 
30 – 100 

cm 

Demokeya 15 89 / 6 / 5 90 / 5 / 5 2 3 

Wankama Fallow 16 90 / 5 / 5 88 / 5 / 7 3 3 

Dahra 7 89 / 6 / 5 89 / 5 / 6 2 4 

      

 

http://daac.ornl.gov/modisglobal/
http://daac.ornl.gov/modisglobal/
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3.3. Methods 

 

3.3.1. Plant Available Water  

 

Plant available water (PAW) is the amount of water present in the soil that can be extracted by 

roots. PAW is a function of soil type, soil water content at field capacity (moisture left over after 

percolation) and permanent wilting point (soil moisture that is unavailable to plants). It is an important 

parameter in the terrestrial water cycle and may have a considerable influence on GPP (Pappas et al., 

2013). PAW was calculated as:  

 

DPWPSWCPAW  )100(  (1)  

where PAW is plant available water (mm); SWC is volumetric soil water content at field capacity 

(m3 m-3); PWP is the soil texture-dependent permanent wilting point (%) from Table 2; D (mm) is the 

depth at which the soil moisture measurements were made. The PWP is a biophysical parameter that 

quantifies the condition where the force exerted by a plant to remove water from the soil (-1500 kPa) is 

countered by the forces binding the water to the soil (Zotarelli et al., 2010). At this point plant roots 

cannot extract further water from the soil and sustain growth leading to wilting.  

 

3.3.2. Vapor Pressure Deficit 

 

When plants transpire, the mixture of air and water exiting the stomata is saturated at a relative 

humidity of ~100% (Dingman, 2015). The maximum amount of water vapor the air can hold at a 

particular temperature is a function of temperature, so there is potential for higher transpiration at 

higher temperatures. The climate of the Sahel is generally hot with a mean annual air temperature of 

30°C across the three sites. The average relative humidity (RH) across the three sites is 18% in the dry 

season and 65% in the growing season according to the field measurements. Vapor pressure deficit 

(VPD) (Anderson, 1936) is the difference between the amount of water in the air and the maximum 

amount of water the air can hold when it is saturated, and is a limiting factor for Sahelian GPP 

(Maroco et al., 1997; Boegh et al., 1999; Ago et al., 2015). VPD was calculated from field-measured 

air temperature (Ta, °C) and relative humidity (RH, %) following the approach described in Ward et al. 

(2015): 













3.237
27.17exp611.0

a

a
s

T

T
e  (2)  

where es is the saturation vapor pressure (kPa) at a certain Ta. Then, the actual vapor pressure (ea, 

kPa) is calculated from RH and es: 

 

sa e
RH

e 









100
 (3)  

Finally, VPD (kPa) is estimated as the difference between the two: 
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as eeVPD   (4)  

 

 3.3.3. Antecedent Precipitation Index 

 

The timing, quantity and effects of previous rainfall on vegetation are important because it takes 

time for water to percolate through soil and become available for plants. When precipitation occurs, 

soil moisture conditions evolve as a function of its current degree of saturation. Antecedent 

precipitation index (API) (Kohler and Linsley, 1951) has been previously used to characterize the 

influence of past rainfall events on vegetation (Choudhury and Golus, 1988). The formulation of API 

used here follows Heggen (2001): 
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1

n

P

a

tkPAPI  (5)  

where API is the antecedent precipitation index in mm per 8 days; Pt is the observed precipitation 

amount on period t; the decay constant, k, ranges between 0.80 and 0.98 (Hong et al., 2007) and a 

value of 0.90 has been applied in this study; a is the number of antecedent days.  

 

3.3.4. Enhanced Vegetation Index 

 

The Enhanced Vegetation Index (EVI) (Gao et al., 2000; Huete et al., 2002) utilizes three spectral 

bands that summarize radiometric and biophysical vegetation characteristics. EVI includes the blue 

band in addition to the vegetation-sensitive red and near-infrared bands. A set of coefficients and the 

blue band enhances the vegetation signal by reducing the influence of soil reflectance and atmospheric 

scattering. Sjöström et al. (2011) and Ma et al. (2013) found that EVI follows the seasonal dynamics of 

EC GPP better than the MODIS-derived GPP in Sahelian and Australian xeric savannas, respectively.  

 

15.76
5.2

312

12






BBB

BB

BLUEREDNIR

REDNIR
EVI  (6)  

where RED, NIR and BLUE represent MCD43A4 NBAR Level 3 surface reflectance acquired in 

the red, near infrared and blue portions of the electromagnetic spectrum, respectively. The subscripts 

denote MODIS NBAR Band 1 (B1), Band 2 (B2), and Band 3 (B3).  

 

3.3.5. Statistical Analysis 

 

Data processing, statistical analysis and visualization were performed in R 3.1.1 (www.r-

project.org). Both linear and multiple linear regression (MLR) were used to examine the relationships 

between VPD, PAW, LST, EVI, NBAR Band 7, and EC GPP. The relationships were used to build 

GPP models composed of field metrics of water stress and vegetation indices as input data. 

Additionally partial correlations were performed on both the field and Earth-observation variables 

http://www.r-project.org/
http://www.r-project.org/
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during the greening and browning phases using Spearman’s rank order correlation (Spearman, 1904). 

This was done to assess the relationship of each variable with EC GPP while keeping the influence of 

the other variables constant. Within each year, the greening phase was delineated as the period from 

the lowest to the highest GPP value, and the browning was delineated as the following period from 

maximum GPP to its lowest value. The coefficient of determination (R2) was calculated as a measure 

of the amount of EC GPP variance explained by each set of predictor variables. Bayesian information 

criterion (BIC) (Schwarz, 1978) was chosen to identify the model which best describes the EC GPP 

data. BIC considers both the goodness of fit and the number of parameters that achieve a certain 

degree of fit by levying a penalty term qlog(n) on increasing the number of parameters to prevent over-

fitting: 

)log()log(2 nqLBIC   (7)  

where L is the maximum value log likelihood function, q is the total number of parameters and n is 

the number of sample points. Root-mean-square error (RMSE) was calculated to evaluate the 

performance of each model output to EC GPP. RMSE calculates the square root of the variance and 

smaller values denote better model performance. An RMSE of 0.0 indicates perfect simulation of the 

EC GPP data.  

n

PREDOBS
RMSE

n

t 


 1

2)(
 (8)  

where PRED is the model-estimated GPP (g C m-2 day-1), OBS is the EC GPP (g C m-2 day-1), and n 

is the number of sample points. 
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4. Results and Discussion 

4.1. Seasonal dynamics and inter-annual variability of field data 

Mean 8-day rainfall across all three sites was 12 mm in the growing season and 1 mm in the dry 

season (Figure 3). Growing season average EC GPP was highest in Dahra at 8.6 g C m-2 d-1, followed 

by Demokeya at 3.9 g C m-2 d-1 and Wankama Fallow with 3.5 g C m-2 d-1. EC GPP was tightly 

coupled with the unimodal rains and soil moisture. The greening phase was dominated by a rapid 

decrease in VPD and an increase in the amount of PAW. Growing season EC GPP was attained across 

all sites when PAW was generally above 25 mm (~0.04 m3 m-3) and when VPD was below 2 kPa, 

which is comparable to studies conducted in similar environments (Merbold et al., 2009; Zhao and Ji, 

2016). The decline in PAW and the onset of high VPD during times of drought reduces plant 

photosynthetic capacity by causing closure of stomata to prevent moisture loss (Kutsch et al., 2008). 

Thus, a decrease in moisture during the growing season, as happened in Dahra in 2011, where there 

was 42% decrease in rainfall and 46% decrease in soil moisture from the previous year, could cause a 

reduction in GPP. Indeed, EC GPP in Dahra during the 2011 growing season was 72% less than the 

previous year. A similar pattern of decline was observed in Demokeya during the 2009 growing season 

when there was a 25% decrease in rainfall, 14% decrease in soil moisture, and a 9% decrease in GPP 

from the previous year (Figure 3 a). When rainfall resumes to previous levels, as happened in 2012 in 

Dahra (Figure 3 c), the herbaceous vegetation respond rapidly to changes in the soil water regime 

resulting in increased C uptake (Tagesson et al., 2016b). The speed of vegetation response to the 

resumption in rainfall could be due to land memory effects (Schwinning et al., 2004). 

 

The seasonal variability of the field parameters, PAW, VPD and EC GPP, was fairly consistent 

across all sites (Figure 3). However, Dahra had the highest average EC GPP during the growing season 

(8.6 g C m-2 d-1) despite having similar climatic and subsurface conditions as the other two sites (Table 

1). A recent study by Tagesson et al. (2016a) provided two plausible reasons for the higher 

photosynthetic capacity at Dahra: (1) 80% of the vegetative cover at Dahra is comprised of herbaceous 

C4 plants, signifying a higher concentration of plants that are more productive under optimal climatic 

conditions (i.e. during the growing season), and (2) intense grazing disturbance causes plants to 

develop strategies that allocate more C to leaves thereby increasing their leaf area index and leading to 

increase in absorbed photosynthetically active radiation and C assimilation. A third plausible reason 

for the high EC GPP at Dahra is linked to the increase in relative humidity which ranges from 9% in 

the dry season to 63% in the growing season (Table 1). This is connected to the movement of the inter-

tropical convergence zone (ITCZ) and the West African Monsoon, which transports moist air from the 

Gulf of Guinea to West Africa (Steiner et al., 2009; Tagesson et al., 2015b; Tagesson et al., 2016b). 

This large influx of humid air could allow the stomata to remain open longer during the growing 

season, thus enabling enhanced C uptake without increased water loss through transpiration. Growing 

season (July – October) API in Dahra was 153% higher than Demokeya and 57% higher than 

Wankama Fallow, and had higher intra-seasonal variability (standard deviation = 171%). This is also 

probably due to West African Monsoon, which causes higher amounts of rainfall at Dahra (Sultan et 

al., 2003; Messager et al., 2004; Steiner et al., 2009; Browne and Sylla, 2012).  
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Table 3. Summary of the regression analysis between EC GPP and three field-measured water stress 

controls: plant available water (PAW), vapor pressure deficit (VPD) and antecedent precipitation index (API) for 
each site.  

 

Response = EC GPP 
 

Statistics 

     

Demokeya RMSE R2 n BIC 

API 1.61 0.28 97 382.04 

VPD 1.22 0.59 95 321.88 

PAW 1.19 0.62 89 298.27 

     

VPD + API 1.22 0.59 95 326.36 

API + PAW 1.19 0.62 89 301.82 

PAW + VPD 1.12 0.66 89 291.87 

 
   

 
Wankama Fallow RMSE R2 n BIC 

API 1.54 0.33 159 605.44 

VPD 0.96 0.74 157 448.70 

PAW 0.91 0.76 132 365.07 

     

VPD + API 0.94 0.75 156 445.64 

API + PAW 0.91 0.77 131 366.92 

PAW + VPD 0.77 0.83 129 318.23 

 
   

 
Dahra RMSE R2 n BIC 

API 2.91 0.38 161 815.93 

PAW 2.51 0.59 154 736.34 

VPD 1.99 0.75 146 631.43 

     

API + PAW 2.28 0.64 147 680.49 

VPD + API 1.92 0.77 146 624.80 

VPD + PAW 1.88 0.77 139 590.21 

     

All Sites RMSE R2 n BIC 

API 2.37 0.33 417 1888.05 

PAW 2.27 0.36 375 1780.69 

VPD 2.21 0.43 398 1779.50 

     

VPD + API 2.22 0.44 390 1697.36 

API + PAW 2.18 0.45 367 1652.43 

PAW + VPD 2.06 0.47 364 1624.53 
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Table 4. Summary of the partial correlation analysis between EC GPP and field and Earth observation 

variables during the greening and browning phases. rs is Spearman’s Rho, ts is the test statistic, and P is the 
significance of the test statistic 

 

Response = EC GPP 
Greening Phase 

n = 106 
Browning Phase 

n = 75 

 
rs ts P rs ts P 

PAW 0.44 4.950 < 0.01 0.16 0.156 0.18 

VPD -0.24 -2.525 0.01 -0.52 -0.523 < 0.01 

       

EVI 0.61 7.776 < 0.05 0.60 6.289 < 0.01 

LST -0.28 -2.957 < 0.05 -0.34 -3.074 < 0.01 

BAND 7 0.32 3.426 < 0.05 0.22 1.920 0.06 

       

 

 

 
Figure 3. Site-level 8-day data for surface and subsurface conditions in (a) Demokeya, (b) Wankama Fallow, 

(c) Dahra. The shading indicates the growing season (July – October). 
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Table 5. Summary of the regression analysis between EC GPP, land surface temperature (LST), Enhanced 

Vegetation Index (EVI), and MODIS NBAR bands. 

 

Response = EC GPP 
 

Statistics 

     

Demokeya RMSE R2 n BIC 

BAND 7 1.70 0.20 97 392.13 

LST 1.44 0.40 94 349.51 

EVI 0.60 0.89 97 184.09 

     

MOD17 GPP 0.89 0.77 95 262.10 

EVI + LST 0.58 0.89 94 180.95 

EVI + BAND 7 0.51 0.93 97 161.24 

EVI + BAND7 + LST 0.48 0.93 94 155.54 

     

Wankama Fallow RMSE R2 n BIC 

LST 1.55 0.33 155 592.58 

BAND 7 1.36 0.50 158 559.78 

EVI 0.96 0.74 158 450.78 

     

MOD17 GPP 1.43 0.44 123 452.12 

EVI + LST 0.94 0.76 154 444.33 

EVI + BAND 7 0.90 0.78 158 435.56 

EVI + BAND7 + LST 0.67 0.88 154 344.91 

     

Dahra RMSE R2 n BIC 

BAND 7 2.73 0.38 156 772.01 

LST 2.35 0.58 163 747.90 

EVI 1.00 0.91 156 459.54 

     

MOD17 GPP 1.35 0.86 166 587.48 

EVI + LST 0.96 0.92 153 442.79 

EVI + BAND 7 0.93 0.93 156 440.53 

EVI + BAND7 + LST 0.85 0.96 153 414.90 

All Sites RMSE R2 n BIC 

BAND 7 2.18 0.32 411 1826.60 

LST 2.03 0.42 412 1767.47 

EVI 1.04 0.83 411 1220.91 

     

MOD17 GPP 1.39 0.76 384 1362.45 

EVI + LST 0.96 0.86 401 1131.69 

EVI + BAND 7 0.91 0.88 411 1112.77 

EVI + BAND7 + LST 0.84 0.89 401 1023.90 
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4.2. Relationship between field data and eddy covariance gross primary productivity 

Cross-site relationships of PAW and VPD with EC GPP were fairly moderate (R2 = 0.36 and 0.43, 

respectively). The relationships at the individual sites were varied with R2 values of VPD ranging 

between 0.59 and 0.75 and those of PAW between 0.59 and 0.76 (Table 3). API was the worst 

performing variable averaging a cross-site R2 of 0.33. The combination of PAW and VPD explained 

the largest variance across all three sites (R2 = 0.47, RMSE = 2.06 g C m-2 d-1), with the highest R2 and 

lowest RMSE at Wankama Fallow (R2 = 0.83, RMSE = 0.77 g C m-2 d-1) (Table 3). 

 

 
Figure 4. Top: Comparison of VPD and EC GPP, with coloring that indicates corresponding values of PAW 

for each site. Values to the left of the vertical dotted line (GPP < 1 g C m-2 d-1) and above the horizontal dotted 
line (VPD > 2 kPa) represent the dry season. Bottom: Relationship between the VPD and PAW per 
corresponding GPP values during the dry and growing seasons. The solid black line is the regression line with 
95% confidence interval in light gray shading.  

 

An overview of the relationship between EC GPP, VPD and PAW across all sites is shown in 

Figure 4. The dry season is characterized by high VPD (> 2 kPa), which is linked to the reduction in 

evapotranspiration due to low PAW. With the reduction/closure of stomatal conductance, plants 

deactivate metabolic activity in the shoots to reduce consumption of water (and subsequent 

transpiration) while simultaneously enhancing uptake of water and nutrients by the roots to mitigate 

the effect of the dry season (Gargallo-Garriga et al., 2014). In the wetter savanna systems of the humid 

region (> 750 mm MAP), it has been shown that a considerable amount of C is stored in the roots at 

the start of the dry season and is subsequently used by the herbaceous vegetation to re-sprout at the 

start of the next growing season (Otieno et al., 2010). If the dry season is intense, prolonged, or both, 

this memory effect allows vegetation to tap into these C reserves and maintain root respiration 

(Hasibeder et al., 2015). A recent global study by Murray-Tortarolo et al. (2016) lends support to this, 

finding that the intensity and duration of the dry season has a larger impact on annual primary 

productivity than increased rainfall in the rainy season. Thus, a similar mechanism may take place in 
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the poorer soils of the Sahel, where the herbaceous species are specialized to grow quickly at the 

beginning of the rainy season (Tagesson et al., 2016b). These subsurface mechanisms can in turn be 

influenced by anthropogenic activity as soil moisture amount and availability are influenced by land 

management practices (Ardö and Olsson, 2004; Ardö et al., 2008).  

 

 
Figure 5. Scatterplots of the relationships between the field variables EC GPP, PAW and VPD (top row) and 
MODIS-derived variables (bottom row) during the greening (green color) and browning (brown color) on a per-
site basis. (DAH = Dahra, DEM = Demokeya, WAF = Wankama Fallow). 

 

When the rainy season commences, not only is soil water replenished and root water uptake 

increased, but VPD is reduced due to humid air masses from the northward movement of the ITCZ. In 

Wankama Fallow, maximum EC GPP is reached when PAW is greater than 125 mm and VPD is 

below 1.5 kPa, while in Demokeya maximum EC GPP occurs when PAW is above 90 mm and VPD is 

below 2 kPa. At Dahra maximum EC GPP was reached at VPD levels similar to Demokeya and 

Wankama Fallow, however, PAW was relatively low compared to the other two sites at ~60 mm. The 

partial correlation analysis revealed that the increase in C uptake during the greening phase, shortly 

after the onset of the first rains, is governed by the availability of PAW and a reduction in VPD (Table 

4). The increase in soil moisture also decreases LST (rs = -0.28) due to evaporative cooling. These are 

further illustrated by scatterplot in Figure 5. The browning phase is characterized by a steep decrease 

in GPP and a reduction in PAW due to a cessation of the rains. The relationship of EC GPP, VPD and 

PAW were generally strong during both the greening and browning phases (Figure 5). The mechanism 

by which VPD and PAW interact is further illustrated in Figure 6, which uses the 2009 growing season 

in Demokeya as an example. The first rains occurred on July 4th, however, the relative humidity began 

to increase from a mean of 15% in April and May, which is typical of the dry season, to 32% in June. 

Between July 4th and September 1st (the larger shaded area in Figure 6), the mean relative humidity 

was 64%. The effect of the increase in relative humidity, and decrease in VPD, a full month before the 
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first rains is particularly interesting. This can play the role of an anticipatory mechanism for vegetation 

that enables it to begin photosynthesis rapidly at, or shortly before, the onset of rain (De Bie et al., 

1998). The second GPP peak (smaller shaded area in Figure 6) can be explained by the second, 

smaller, rainfall event of that year, which was not sufficient enough to replenish PAW to previous 

levels. However, it created enough reduction in VPD that stimulated the vegetation to resume C 

assimilation (Figure 6).  

 

 
Figure 6. A narrowed-down example of a typical Sahelian growing season exemplified here by the 2009 
growing season in Demokeya. Relative humidity (RH) begins to increase and vapor pressure deficit (VPD) 
begins to decrease a full month before the onset of the rainy season. Once the rains fall, plant available water 
(PAW) is replenished and GPP begins to increase commencing the greening phase. Although PAW has been 
gradually decreasing during the growing season, the decrease in rainfall prompts a decrease in RH and an 
increase in VPD, which sharply reduced GPP due to stomatal closure. All variables have been normalized to 
between zero and one for visual purposes. 

 

4.3. Eddy covariance gross primary productivity and MODIS-derived data  

 

EVI was strongly correlated with EC GPP across all sites (R2 = 0.83, RMSE = 1.04 g C m-2 d-1) 

(Table 5). The partial correlation of the MODIS data showed that the EVI was closely coupled with 

EC GPP during both greening and browning phases (Table 4). The decline in PAW during the 

browning phase leads to a reduction in transpiration and latent heat flux and an increase in sensible 

heat flux and LST (rs = -0.34) (Table 4, Figure 5). MODIS NBAR Band 7 exhibits a positive response 

during the greening (rs = 0.32) and browning phases (rs = 0.22), probably due to the band’s sensitivity 

to changes in soil moisture during the wetting and drying phases. The relationship between EVI, LST, 

and MODIS NBAR Band 7 is shown in Figure 7. The slope of the regression line during the dry 

season (β1 = -0.24) shows a rapid increase MODIS NBAR Band 7 for each unit decrease in EVI, 

whereas the change is more gradual during the growing season (Figure 7). Both MODIS NBAR Band 

7 (0.20 < R2 < 0.50) and LST (0.33 < R2 < 0.58) had generally moderate relationships with EC GPP. 

However, when LST and MODIS NBAR Band 7 were included in an MLR model together with EVI, 

the combination was able to consistently explain higher variance (R2 ≥ 0.88) across all sites (Figure 8). 
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Figure 7. Comparison of EVI and MODIS NBAR Band 7, with coloring that indicates corresponding values of 

LST for each site during the growing (July – October) and dry season (November – June). The solid black line is 
the regression line with 95% confidence interval in light gray shading.  

 

 

 
 
Figure 8. Cross-site relationship between the MLR GPP model (~EVI+Band7+LST) and 8-day EC GPP. The 

solid black line is the regression line with 95% confidence interval in light gray shading.  

 

 

Both EVI and MLR GPP follow the seasonal progression of EC GPP well, but the MLR GPP model 

tracks the dry season EC GPP better than EVI (Figure 9). The inclusion of LST and MODIS NBAR 

Band 7 improves the variance explained by 6.7% from 0.83 for EVI to 0.89 for the MLR model 

comprising EVI, LST and MODIS NBAR Band 7 while decreasing the BIC from 1221 to 1024 (Table 

5). When the data is split into the individual sites, a similar pattern emerges with the explained 
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variance of MLR model over EVI increasing between 4.3% in Demokeya to 15.9% in Wankama 

(Table 5). The MLR GPP model for all the sites is shown in Equation 6: 

 

      781.706.051.3428.4 BANDLSTEVIGPP   (6)  

 

The ability of the MLR model to explain cross-site variability in EC GPP was improved (from 85% 

to 89%) when data from both the growing and dry seasons were included in the model. Although, there 

is no green herbaceous vegetation during the dry season, the small C fluxes that were observed could 

be due to the sparse tree cover (Ardö et al., 2008). It is reasonable to assume that the dry season signal 

contains information about land memory effects (Fontaine et al., 2007; Dirmeyer et al., 2009). 

However, it is unlikely that such effects would be passed on through soil moisture since upper layer 

dries out within two months of the start of the dry season (Shinoda and Yamaguchi, 2003). Thus, such 

a memory could be retained in the dormant seeds, roots and foliage (Hiernaux et al., 1994; Schwinning 

et al., 2004). 

 

The spectral range of MODIS NBAR Band 7 is most sensitive to surface soil water content in 

general, and the rate of evaporation during the dry season in particular (Tian and Philpot, 2015). This 

is discernible in the relatively rapid increase of the surface reflectance of MODIS NBAR Band 7 

compared to the decrease in EVI in response to the decline of the vegetative cover during the dry 

season (Figure 7). On the other hand, LST is linked to VPD due to the feedback between land 

(vegetated or bare) and near-surface air (Hashimoto et al., 2008). This is clearly shown in the 

relationship between EVI and LST during both the greening and browning phases in Figure 5. There 

have been other recent attempts to model GPP in water limited regions using EVI combined with other 

variables. For example, in a tropical xeric savanna ecosystem, Ma et al. (2014) were able to explain 

88% of the variability in EC GPP by parameterizing ecosystem light use efficiency using MODIS EVI 

and top-of-atmosphere photosynthetically active radiation. In another study, Sjöström et al. (2011) 

found that the combination of MODIS EVI with flux tower-derived evaporative fraction, as a proxy of 

water availability, and photosynthetically active radiation significantly improved the modeling of EC 

GPP for seven African sites, including Demokeya and Wankama Fallow, with up to 73% of the 

variance explained. Using only Earth observation data, our model is able to explain 89% of the 

variance in EC GPP across the three Sahelian sites.  
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Figure 9. Cross-site comparison of 8-day EC GPP, EVI, the MLR GPP model, and MOD17 GPP for (a) 

Demokeya, (b) Wankama Fallow and (c) Dahra. The shading indicates the growing season (July – October). 

 

5. Conclusions 

Hydrological processes generally control vegetation dynamics at multiple spatial and temporal 

scales. This is particularly true for the Sahel, where the short unimodal rainy season induces a net CO2 

uptake that is driven mainly by the herbaceous canopy (Tagesson et al., 2016b). Except in highly 

humid environments, all plants undergo photosynthesis at the expense of losing moisture to the 

atmosphere. This moisture loss is particularly significant for dryland vegetation where an imbalance 

can occur between the amount of water plants require and the limited amount that is available in the 

ecosystem. In this study, we found that the two main moisture-related biophysical limitations, PAW 

and VPD together control plant CO2 uptake in the semi-arid conditions. With the start of the dry 

season in November, low PAW is present in the drying soils of the Sahel, which leads to decreased 

availability of water for uptake by plant roots (Figures 3 and 4). This, in turn, reduces 

evapotranspiration (latent heat) due to drier soils and plants close their stomata to prevent moisture 

loss.  
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Considering both the importance of drylands in the global C cycle (Ahlström et al., 2015) and the 

dependence of human livelihoods on the products of photosynthesis (Abdi et al., 2014), it is essential 

account for water stress controls in order to better model primary productivity in this region. This is 

particularly important considering the fact that there is a chronic lack of field data on C fluxes in the 

Sahel. We found that the combination of MODIS NBAR Band 7 as a proxy for soil moisture 

variability, LST as a proxy for VPD, and EVI as a proxy of photosynthetic activity in an MLR model 

was able to explain 89% of the variability of EC GPP across the three Sahelian sites (Figures 8 and 9). 

Since EVI, LST, and MODIS NBAR Band 7 are based on Earth observation data, the MLR model 

presented here is potentially scalable with repeatable estimates of GPP at relatively high spatial and 

temporal resolutions. Moreover, the availability of standardized EC flux measurements, such as the 

recently released FLUXNET2015 database, can potentially eliminate variability in systematic and 

processing-induced uncertainties between sites. This can further improve model estimates when 

relating EC GPP with Earth observation data. Studies of the C cycle often focus on the growing season 

as it is the principal period where C assimilation takes place, however, the inclusion of dry season 

dynamics can potentially improve the explanatory capacity of GPP models by accounting for land 

memory effects. Further evaluation of this approach using more dryland sites from the FLUXNET2015 

database as well as other types of in-situ validation data is required to test its efficiency in modeling 

GPP in water-limited areas. 
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Abstract 

The importance of drylands in the global carbon cycle as a sink for CO2 emissions has recently 

been highlighted. Thus, accurate estimation of the spatiotemporal dynamics of carbon 

assimilation in drylands is necessary. In this letter, the efficacy Plant Phenology Index (PPI) is 

examined and compared against three Earth observation-based models of gross primary 

productivity (GPP). PPI which was originally designed for boreal coniferous forests and provides 

improved estimates for seasonality metrics in those ecosystems. Since PPI was designed to 

capture green leaf area index, it could potentially be used in estimating GPP. Results show that a 

PPI-based GPP model was able to capture the magnitude of in situ GPP relatively well (R2 = 

0.75, RMSE = 1.39 g C m-2 d-1) compared to the other tested models. However, this correlation 

could be further improved by accounting for total chlorophyll content to estimate GPP in semi-

arid systems. 
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Introduction 

The uptake of CO2 by terrestrial vegetation through photosynthesis, termed gross primary 

productivity (GPP), is the largest flux of the global carbon cycle (Le Quere et al., 2009). 

Globally, GPP accounts for 120 petagrams of carbon (PgC) and its spatiotemporal variability is 

not fully understood owing to the complexity of processes related to plant physiology and 

environmental controls on photosynthesis (Xia et al., 2015). Several modeling approaches 

attempted to describe the process whereby solar radiation is converted into carbon (McCallum et 

al., 2009; Anav et al., 2015). One of the most common approaches, called light use efficiency 

(LUE), was first described by Monteith (1972). The concept is based on the premise that GPP is 

proportional to the absorbed photosynthetically active radiation (APAR), which equals incoming 

PAR multiplied by the fraction of absorbed PAR (fPAR), and an LUE factor (ε) that translates 

absorbed energy into assimilated carbon (Equations 1).  

 APARGPP  (1) 

Presently, the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard the Terra and 

Aqua satellites is the only Earth observation (EO) platform that provides near-real-time estimates 

of terrestrial carbon uptake. At the core is the MOD17 algorithm (Running et al., 2004) that uses 

MODIS spectral data and climatic drivers in an LUE model (Heinsch et al., 2003). In sub-

Saharan Africa, Sjöström et al. (2013) found that, of the 12 eddy covariance savanna sites in 

their study, MOD17 underestimated ε for 10 of them by an average of 1.2 g C MJ-1. Thus, 

MOD17 primary productivity over African drylands may not be fully representative of field 

conditions. The potential of the Enhanced Vegetation Index (EVI) to model GPP in African 

ecosystems and its comparison to MOD17 GPP (v. 5.0) was further explored by Sjöström et al. 

(2011). They found that a GPP model based on EVI and factors related to water availability and 

PAR to be an improvement over MOD17 GPP in African ecosystems. However, in a recent 

review, Tang et al. (2016) expressed concern whether spectral vegetation indices can really 

capture the primary productivity cycle since they represent the endpoint of plant physiological 

process such as assimilation, respiration and phytomass accretion. These concerns underscore the 

notion that vegetation indices are not reduced to zero during periods of drought and thus do not 

explicitly show when photosynthesis ends (Walther et al., 2016). Considering these 
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shortcomings, Jin and Eklundh (2014) developed a physically-based vegetation index in an effort 

to achieve a higher consistency of EO-based vegetation indices that better explain the 

relationship between canopy development and GPP. This index, called the Plant Phenology 

Index (PPI), is linear to the green leaf area of the vegetation canopy and thus may be able to 

better represent carbon assimilation (Jin and Eklundh, 2014).  PPI was originally designed for 

boreal coniferous forests as a solution to the influence of snow in phenology metrics that affect 

EVI, and the saturation that affects the Normalized Difference Vegetation Index (NDVI) at high 

LAI values. The efficacy of PPI has not been tested in the semi-arid ecosystems of sub-Saharan 

Africa. Therefore, the principal objective of this letter is to provide a first assessment on the 

performance of PPI in estimating the GPP of these drylands.  

 

Figure 1: Location of the study sites and the aridity zones in the study region. Data on precipitation from 

Funk et al. (2015) and potential evapotranspiration from Mu et al. (2011) averaged for the period 2000 – 

2014 were used to produce this figure 
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Data and Methods 

 

Study Sites 

This study focused on four eddy covariance flux tower sites in semi-arid Africa, two in the Sahel 

and two in southern Africa (Figure 1). The sites have mean annual precipitation (MAP) ranging 

between 320 – 879 mm and mean annual temperature (MAT) between 22 – 30 °C (Table 1).  

 

Table 1: Descriptions and physical characteristics of the sites included in this study including the location 

in decimal degree (D), mean annual precipitation (MAP),  and mean annual temperature (MAT). 

Site, 

Country 

Lon, Lat  

(DD) 

Ecosystem 

Type 

MAP 

(mm) 

MAT 

(°C) 

Measurement 

Years 
Reference 

Demokeya, 

Sudan 
30.47, 13.28 

Sparse acacia 

savanna 
320 30 2007 – 2009  

Ardö et al. 

(2008) 

Dahra, 

Senegal 
-15.43, 15.40 

Open woody 

savanna 
416 29 2010 – 2013  

Tagesson et 

al. (2015) 

Skukuza, 

South Africa 
31.49, -25.01 

Wooded 

grassland 
547 22 2001 – 2005  

Kutsch et al. 

(2008) 

Mongu, 

Zambia 
23.25, -15.43 

Kataba  

forest 
879 25 2008 – 2009  

Scanlon and 

Albertson 

(2004) 

       

 

Eddy Covariance Flux Tower Data 

The field data for each site are part of FLUXNET2015 (fluxnet.fluxdata.org/data/fluxnet2015-

dataset), which is a harmonized global dataset of micrometeorological, energy, net ecosystem 

exchange of CO2 between the atmosphere and terrestrial biosphere. The data processing pipeline 

in the FLUXNET2015 dataset ensures intercomparability and quality assurance and control 

http://fluxnet.fluxdata.org/data/fluxnet2015-dataset/
http://fluxnet.fluxdata.org/data/fluxnet2015-dataset/
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across multiple sites. Daily data of two parameters were extracted for each site (Table 2). These 

data are all Tier-1 level under the fair-use data policy of the FLUXNET2015 Dataset, meaning 

that the data are open and free for scientific purposes (fluxnet.fluxdata.org/data/data-policy). 

Vapor pressure deficit (VPD) (Anderson, 1936), the difference between the amount of moisture 

in the air and the maximum amount of moisture the air can hold when it is saturated, has been 

found to be a limiting factor for GPP (Maroco et al., 1997; Ago et al., 2015). Therefore, we 

selected VPD along with daytime-partitioned GPP from the FLUXNET2015 database. 

 

Table 2: Parameters extracted from the FLUXNET2015 dataset for each site.  

Variable Description Units 

GPP_DT_CUT_MEAN 

Gross primary production using the 

daytime partitioning method (Lasslop et 

al., 2010), average of GPP versions. 

g C m-2 d-1 

VPD_F 
Vapor Pressure Deficit consolidated from 

VPD_F_MDS and VPD_ERA methods 
hPa 

   

 

Earth Observation Data 

The MOD17 8-day GPP product (MOD17A2) within a 3 x 3 km radius around each flux tower 

site was downloaded for each of the four sites from the Oak Ridge National Laboratory 

Distributed Active Archive Center (ORNL-DAAC, daac.ornl.gov/modisglobal) (ORNL DAAC, 

2008). The Collection 5 daytime Land Surface Temperature (LST) (MOD11A2), Leaf Area 

Index (LAI) and Fraction of Photosynthetically Active Radiation (FPAR) (MOD15A2) were also 

downloaded from ORNL-DAAC. The Plant Phenology Index (PPI) for each site was acquired 

from the DataGURU (dataguru.lu.se). Then, PPI values were averaged over a 3 x 3 km radius 

around each flux tower to facilitate comparability with the MOD17A2 data.  

http://fluxnet.fluxdata.org/data/data-policy/
http://daac.ornl.gov/modisglobal/
https://dataguru.lu.se/
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Plant Phenology Index 

Leaf area index (LAI), the one-sided leaf area per unit ground surface area (m2 m-2), represents 

the total leaf surface area that intercepts incoming photosynthetically active radiation (PAR). 

Additionally, LAI describes the potential leaf surface area that is available for gas exchange 

between the terrestrial biosphere and the atmosphere (Cowling and Field, 2003). LAI can also be 

subdivided into photosynthetic (green) and non-photosynthetic (brown) LAI, the latter being the 

LAI of dry or senescent vegetation (Pinter et al., 1983). PPI is able to capture green LAI and was 

expressed by Jin and Eklundh (2014) as: 















SDVIM

DVIM
KPPI ln  

(2) 

where PPI is in LAI units (m2 m-2); K is a gain factor that is dependent on sun zenith angle, the 

geometry of leaf angular distribution, and the instantaneous diffuse fraction of solar radiation 

(Jin and Eklundh, 2014); DVI is the difference between the near infrared and red bands resulting 

in the Difference Vegetation Index (DVI = NIR – Red) (Richardson and Wiegand, 1977); M is 

pixel-specific canopy maximum DVI; DVIS is the DVI of the soil based on 41 soil samples from 

the ASTER spectral library (Baldridge et al., 2009). See Jin and Eklundh (2014) for a detailed 

description of PPI.  

Model Formulation 

Leaf chemical processes are likely to be influenced by the feedback between canopy and near-

surface air, and actual leaf temperature (Hashimoto et al., 2008; Sims et al., 2008). EO-derived 

LST has been found to correlate well with VPD and has been used as an environmental scalar in 

modeling GPP (Hashimoto et al., 2008; Sims et al., 2008; Wu et al., 2010). VPD was derived 

from daytime LST using Equation 3: 

)06.1*57.2(74.2 DayLST

LSTVPD 
 

(3) 

where VPDLST is the vapor pressure deficit derived from LST; LSTDay is the 8-day MOD11A2 

product. In previous study, Abdi et al. (2017) showed that GPP is significantly reduced in 
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Sahelian ecosystems when it is above 2 kPa. Therefore, following the approach described in 

Sims et al. (2008), we used VPD instead of LST as a direct control on GPP. This was done by 

scaling VPDLST so that GPP is reduced when VPD > 20 hPa: 

  









20
;14.022.5min LST

LSTScaled

VPD
VPDVPD  

(4) 

We define GPP as the product of PPI and VPDScaled: 

ScaledPPI VPDPPIGPP   
(5) 

We compared this model to two other vegetation index-based models: the “Temperature-

Greenness” (T-G) model (Sims et al., 2008) and the “Greenness-Radiation” (G-R) model 

(Gitelson et al., 2006). We also compared it to the MOD17A2 GPP product. The T-G model was 

originally developed for North America and uses the product of scaled LST and EVI (scaledLST 

* scaledEVI) to estimate GPP. It is based on the idea that GPP has generally strong correlation 

with EVI, and that LST accounts for temperature controls on GPP. The LST scaling factor 

reduces scaledLST to 1 when LST = 30oC and to 0 when LST = 0, or reaches 50oC, while the 

EVI scaling factor reduces GPP to zero when EVI ≈ 0.1 (Sims et al., 2008). The G-R model is 

based on the idea that total chlorophyll content of a canopy is the primary factor influencing the 

amount of PAR absorbed by green vegetation (Gitelson et al., 2006). It originally formulated 

GPP as the product of total chlorophyll (Chl) and top-of-canopy PAR (PARTOC), but was 

modified by Wu et al. (2011) who replaced Chl with EVI for scalability using EO data.  

Statistical analysis  

All the EO data were smoothed with a Savitzky-Golay filter (Savitzky and Golay, 1964)  in the 

software package TIMESAT (Jönsson and Eklundh, 2004) using: fitting method = 1, window 

size = 5, and seasonal parameter = 1. The full dataset containing all four sites was randomly split 

50/50 into calibration (297 samples) and evaluation (297 samples) subsets. In order to compare 

the GPP models against EC GPP, we used the coefficient of determination (R2) in an ordinary 

least-squares regression analysis. We also computed the root-mean-square error (RMSE) to 

assess their accuracy in relation to EC GPP.  
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Results and Discussion 

Inter-annual and seasonal variations in the eddy covariance-derived variables  

EC GPP was seasonal with distinct growing and non-growing periods (Figure 2). This 

seasonality corresponded well with the seasonal and inter-annual pattern of VPD, which is high 

during the dry season and low during the growing season. The LST seasonality matched that of 

VPD at all sites except at the southernmost site, Skukuza (Figure 2 c), where VPD was 

somewhat erratic.  

 
 

Figure 2: Seasonality and inter-annual variability of 8-day averaged PPI and MOD11A2 LST, and the 

FLUXNET2015 derived EC GPP and VPD for (a) Demokeya, (b) Dahra, (c) Skukuza, (d) Mongu. Note 

the differences in scaling of the y-axes. 
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PPI followed the seasonal progression of EC GPP generally well across all sites. Though, at the 

forested site, Mongu, the green-up and brown-down phases had a distinct offset (Figure 2 d). 

Maximum EC GPP during the growing season was between 7.5 – 9.5 g C m-2 d-1 at most sites 

except Dahra, which had a maximum of 14 g C m-2 d-1, despite possessing considerably less tree 

canopy cover (~3%) than either Skukuza (30%) or Mongu (65%). The reasons for the high GPP 

at Dahra are caused by higher photosynthetic capacity at the site due to site characteristics 

(higher fraction of C4 plants), anthropogenic influence (grazing-induced compensatory growth) 

and climatic factors (West African Monsoon) (Tagesson et al., 2016a; Tagesson et al., 2016b).  

 

Figure 3: Scatterplots of individual site-based relationships between the 8-day EO-derived data and 8-

day EC GPP. The solid red line is the regression line.  
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Relationship between field and EO data  

Comparison between EC GPP, PPI and the different MODIS vegetation products are shown in 

Figure 3. PPI performed well across all the sites with the highest correlation with EC GPP in 

Demokeya (R2 = 0.90), and the lowest in Mongu (R2 = 0.67). Although MOD17 GPP performed 

fairly well across the four sites, with an average R2 of 0.77 it consistently underestimated EC 

GPP by an average of 1.12 g C m-2 d-1. The probably reason for this is the low LUE specification 

in biome properties look-up table, as specified in Sjöström et al. (2013). The correlation between 

EC GPP and MOD15 fPAR and LAI products was generally high for most sites (0.62 < R2 < 

0.93) except at Mongu where the R2 was 0.33 and 0.44, respectively. The sites with higher 

percent canopy cover, Skukuza and Mongu, displayed some hysteresis in the relationship 

between EC GPP and PPI, EVI, fPAR and APAR. Hysteresis is a disproportionate increase-

decrease pattern that creates the appearance of a loop in the scatterplot caused when the greening 

and browning phases have a distinctly different behavior. In dryland systems this behavior could 

be due to the coupled action of plant available water and vapor pressure deficit during the two 

phases (Abdi et al., 2017).  The scatterplot of EC GPP and VPD shows the seasonal peak EC 

GPP corresponds with VPD < 2 hPa.   

 

Figure 4: Individual and cross-site (inset) relationships between 8-day VPD and LST. 
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EC GPP had low correlations with LAI (R2 = 0.44) and fPAR (R2 = 0.33) at Mongu (Figure 3). 

VPD and LST had a generally strong relationship across all the sites (R2 = 0.67) (Figure 4), due 

to the connection of LST with VPD, surface moisture conditions and the partitioning of latent 

and sensible heat fluxes. Generally, the rainy season in African drylands has a lower LST than 

the dry season due to increased vegetative cover, and the incoming energy is rapidly utilized by 

evapotranspiration (Nutini et al., 2014).  

  

Figure 5:  Cross-site relationships between EC GPP and each of the four GPP models (a – d, see Table 

4). The calibration and evaluation dataset each has the same quantity of data points (n = 297). The red 

and green lines are the regression line for calibration and evaluation, respectively, with 95% confidence 

interval in light gray shading. 
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Figure 6:  Time series comparison between the four GPP models (see Table 3) at each site: (a) 

Demokeya, (b) Dahra, (c) Skukuza, and (d) Mongu. 

 

Table 3: A full dataset (n = 594) summary of the regression coefficients between EC GPP and four 

models across the four sites. F is the F-statistic, DF is the degrees of freedom, S.E. is the standard error, 

and RMSE is the root-mean-square error in g C m-2 d-1. 

 β0 β1 R2 F DF S.E. RMSE 

PPI GPP 0.1248 2.9330 0.75 1867 611 0.067 1.39 

T-G Model - 0.4744 18.0335 0.64 1107 618 0.5420 1.70 

G-R Model - 1.4524 1.2311 0.70 1481 622 0.0319 1.54 

MOD17 
0.4277 1.4291 0.43 471 629 0.0658 2.14 
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Comparison of GPP models 

The calibration and evaluation output produced by the PPI GPP model were comparable with 

GPP modeled using other methods (Figure 5 a). MOD17 GPP underestimated EC GPP and 

displayed two distinct slopes, a higher slope (β1 = 4.5) and lower slope (β1 = 1.74) (Figure 5 d). 

The data points within the higher slope belong to the two Sahelian sites, and the lower slope 

includes the two southern African sites. This split could be attributed to MOD17’s reliance on 

the MOD12Q1 land cover product (Friedl et al., 2010). MOD12Q1 classifies Mongu as 

“Savanna”, a class that has a maximum possible tree canopy cover of 30% according to Hansen 

et al. (2000), which is roughly half of the canopy cover at Mongu. The calibration and evaluation 

R2 results of the G-R model (Gitelson et al., 2006) underperformed in comparison to the PPI 

GPP model (Figure 5 a b), leading to a lower overall performance of that model (RMSE = 1.54 

vs. 1.39 g C m-2 d-1)  (Table 3). Additionally, the slopes of the regression lines in Figure 5, show 

that the PPI GPP model displayed the closest value to the 1:1 line. This suggests that PPI GPP 

model exhibits a relatively strong ability to estimate the magnitude of EC GPP compared to the 

G-R model.  The PPI GPP model also outperformed the T-G model in both the calibration 

(RMSE = 1.30 vs. 1.60 g C m-2 d-1) and evaluation (RMSE = 1.47 vs. 1.76 g C m-2 d-1) datasets 

(Figure 5 c). The sites classified as “drought sites” in Sims et al. (2008) are considerably cooler 

than Sahelian sites (12oC vs 30oC), so the LST scaling factor in the T-G model cannot account 

for the environmental conditions in this warm region. However, the T-G model performed well 

at Skukuza (R2 = 0.74), which is probably because it has a lower mean LST (29oC) that is within 

the optimal threshold set in the T-G model (Sims et al., 2008). The full PPI GPP model used 

was: 

  70.0
93.212.0 ScaledPPI VPDPPIGPP   

(6) 

A time series comparison of the four GPP models (PPI, G-R, T-G, and MOD17) and EC GPP for 

each site is shown in Figure 6. The PPI GPP model tracked the seasonal and inter-annual 

development of EC GPP well. Furthermore, it managed to capture the amplitude of EC GPP 

reasonable well, which is further confirmed by the slope close to the 1:1 line in Figure 5 a. At 

Demokeya, the PPI model over-estimated GPP during the dry season, but captured the start and 

end of the growing season for all sites in-line with EC GPP except at Mongu (Figure 6 d). The 
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MOD17 model underestimated GPP at all sites but was able to follow the greening and browning 

phases of Skukuza (30% canopy cover) and Mongu (65% canopy cover), suggesting that this 

model does better in tree-dominated areas than savanna. The T-G model either excessively 

underestimated (Figure 6 a b) or overestimated (Figure 6 c) peak GPP at most sites.  

Conclusions 

The Plant Phenology Index (PPI) was originally designed for boreal coniferous forests as a 

solution to suppressing the influence of snow in phenology metrics that affect the EVI, and the 

saturation that affects the Normalized Difference Vegetation Index (NDVI) at high LAI values. 

In this study, we evaluated the performance of a PPI-based model in predicting the GPP at four 

semi-arid sites in sub-Saharan Africa with a wide canopy cover range (3 – 65%). We found that 

PPI is able to capture EC GPP reasonably well (R2 = 0.75, RMSE = 1.39 g C m-2 d-1) due to its 

sensitivity to green LAI. It further managed to capture the magnitude of EC GPP relatively well 

compared to the other tested models. However, the performance of PPI can be further improved 

through the inclusion of total chlorophyll content as it is a principal factor influencing carbon 

assimilation. Canopy foliage remains green during the growing season despite considerable 

variability in total chlorophyll content between the beginning and end of the season. Accounting 

for total chlorophyll content, perhaps through the inclusion of chlorophyll-sensitive vegetation 

indices, could further enhance the ability of PPI to estimate GPP in semi-arid systems. 
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