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Abstract—This article contains a study of how spatial errors
and receiver imperfections affect the angle of arrival estimation
accuracy for virtual antenna arrays. A virtual antenna array
consists of one receiver element whose location is tracked as
the element is moved and in this work, linear arrays are

studied. If the location of the receiver is tracked using an
inertial measurement unit, an interesting trade-off emerges. The
array should extend as far as possible but since the position
estimates from the unaided inertial measurement unit become
increasingly uncertain over time, the angle of arrival estimation
will deteriorate. Several algorithms are available for estimating
the angle of arrival in such a scenario but the one used for
evaluation here is a sparse enforcing least squares method.

I. INTRODUCTION

Estimation of the angle of arrival (AoA) is of interest for

many positioning algorithms. One way of determining AoA

is to use an antenna array [1]. By having several stationary

antenna elements at known locations, the phase difference of

the received signal between them can be used to estimate the

AoA. However, instead of using stationary antenna elements,

a single antenna element can just as well be used as long

as the position of the element is known when the received

signal is sampled and the channel remains stationary during the

movement. This configuration is known as a virtual antenna

array [1]. Such an array has different properties compared to a

real antenna array with respect to (w.r.t.) estimation accuracy

and imperfections in the receiver. Two fundamental problems

exist: tracking of the moving antenna with sufficient accuracy,

and frequency errors in the receiver. In this work the impact

of both is studied.

By using an inertial measurement unit (IMU) consisting of

accelerometers and gyroscopes, the position of the moving

antenna can be determined with dead reckoning, see Fig. 1

[2]. The gyroscope measures the angular velocity while the

accelerometer measures the acceleration of the device. Inte-

grating the gyroscope readings yields the orientation which

is then used for rotating the accelerometer readings. Gravity

can then be removed and the position is obtained by double

integration of the residual. This scheme will not give reliable

position estimates for any longer period of time [2]. Due to

noise and offsets in the sensor readings, the orientation will be

incorrectly estimated and thus gravity can never completely be

removed from the accelerometer readings. Also, the random
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Fig. 1. Dead reckoning approach using an IMU. The gyroscope signal
is integrated once to obtain orientation which is used for rotating the
accelerometer signal from body coordinates to world coordinates. Gravity g is
removed after rotation and the residual is integrated twice to obtain position.

noise from the sensors will be integrated leading to increasing

variance of the position estimates. A virtual array should,

similar to a real antenna array, cover a large area for reliable

AoA estimation [3]. However, since the position estimates of

the elements will be incorrect using dead reckoning, the AoA

estimates will be affected. When the position error becomes

too large, it becomes necessary to use other algorithms esti-

mating joint position and AoA, see e.g. [4] and [5], but the

unaided virtual array can potentially be used for initialization

of such algorithms. Also, if the receiver suffers from frequency

errors leading to growing phase errors, this will affect the AoA

estimation accuracy. It is therefore of interest to study if an

optimal length of the IMU based virtual array can be found

when these imperfections are taken into account.

II. MODELING

A. Signal Model

Let’s assume R narrowband sources, transmitting at the

same frequency, and a receiver element located in the far

field region. After downconversion and sampling, the received

baseband signal can be written as

y[n] =

R
∑

r=1

αre
−iγ〈u(φr),p[n]〉 + e[n], n = 1, . . . , N, (1)

where αr is the complex channel gain associated with source

r, u(φr) is a unit vector pointing in the azimuth direction of

φr, p[n] is the 2D position of the receiver element at time n,

e[n] is the noise, and γ = 2πλ−1, where λ is the wavelength



of the carrier frequency. By collecting the measurements into

a vector, the relationship can be written as

Y = ΦX + E, (2)

where Y = [y[1], . . . , y[N ]]T , X = [α1, . . . , αR]
T , and

Φ =







e−iγ〈u(φ1),p[1]〉 . . . e−iγ〈u(φR),p[1]〉

...
. . .

...

e−iγ〈u(φ1),p[N ]〉 . . . e−iγ〈u(φR),p[N ]〉






∈ C

N×R.

(3)

The column vectors in Φ are referred to as steering vectors.

Assume that there is a frequency offset between the local

oscillator of the receiver and the transmitted carrier frequency.

The difference between the two frequencies will be integrated

into a phase drift. If all impinging rays are subject to the same

drift, the frequency error can be added to the signal (1) as

y[n]=

R
∑

r=1

αre
−i(γ〈u(φr),p[n]〉+nδ) + e[n], n = 1, . . . , N,

(4)

where δ is the frequency error measured in radians per sample.

As can be seen in (4), the frequency error affects the

phase of the received signal in the same way as a movement

does. Assuming one impinging ray, the frequency error can be

interpreted as an offset in the AoA according to

〈u(φ), v〉 + δ = 〈u(φ̃), v〉, (5)

where φ̃−φ is the offset and v is the velocity of the receiver.

In a real scenario, the frequency error would be estimated

and removed. If the estimated value does not cancel the

frequency error fully, a residual will be left, corresponding to

the frequency error added here. For simplicity, the frequency

error is assumed to be constant throughout the measurement

period in this article.

B. Inertial Navigation System

IMUs are classified based on the noise levels of the sensors.

The cheapest ones are usually referred to as consumer grade

while more expensive ones are called industrial or tactical

grade [2]. IMUs of consumer grade can be built using MEMS

technology and are therefore suitable for integration in con-

sumer electronics. Typical values for the standard deviation

of the Gaussian noise processes on the accelerometer and

gyroscope are 0.2 m/s/
√

h and 2 ◦/
√

h respectively. More noise

sources can be modeled, e.g., random walk noise processes [6],

but these noise sources will not affect the position estimates

for the simulation times considered in this paper. Therefore,

these additional noise sources are left unmodeled.

If the dead reckoning scheme in Fig. 1 is implemented

and an IMU of consumer grade at rest is simulated, the

integrated noise leads to position errors as shown in Fig. 2.

For the simulation, a carrier wavelength of 16.7 cm is used.

In the figure, the mean deviation of the true position is shown

vs. time. The error bars indicates one standard deviation

confidence interval, using the typical noise values given earlier.

It is clear that the errors are small in the beginning and then
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Fig. 2. Simulated position error and standard deviation using dead reckoning
for a typical IMU of consumer grade. Note that the distance is presented in
the unit λ and after 5 seconds the estimated position error is approximately
0.6 λ with a standard deviation of 0.25 λ with λ = 16.7 cm.

grow rapidly, mostly due to errors in the orientation which

results in residuals after gravity has been subtracted.

III. ESTIMATING ANGLE OF ARRIVAL

Estimating the AoA using an antenna array is a well

researched area with many contributions. Classic algorithms

such as Capon’s beamformer [7], MUSIC [8], and SAGE [9]

are all well established. A simple, yet efficient way to estimate

the AoA is to divide the unit circle into grid points and then

solve the problem with a least squares approach together with

a regularization term to enforce a sparse solution [10]. If the

unit circle is gridded into M grid points, the problem can be

formulated as

minimize
X∈CM×1

‖Y − ΦMX‖22,+κ‖WX‖1 (6)

where ΦM ∈ CN×M contains the steering vectors for all M
grid points at the different positions of the elements, κ is a

design parameter, and W ∈ RM×M is a weighing matrix with

w = [w1, w2, . . . , wM ]T on its main diagonal. The weights

are initialized as ones and (6) is solved. The weights are then

recalculated according to

w′
m =

1

|xm|+ ǫ
, m = 1, . . . ,M, (7)

where w′
m are the weights used the second time (6) is solved,

and ǫ controls the maximum weight that can be set [10]. This

procedure can be repeated several times but here the problem

is solved twice. The regularization has the effect that small

elements in X will be weighted heavier than larger elements,

forcing the algorithm to find an even more sparse solution to

X compared to traditional ℓ1 regularization [10]. The problem

(6) is convex in X so convex optimization can efficiently be

used to solve it [11]. Note that the increasing uncertainty in

position embedded in the steering vectors is not taken into

account when (6) is solved.



IV. SIMULATION

A. Configuration

To evaluate the trade-off described before, the dead reck-

oning scheme from Fig. 1 is implemented and the so called

iterative re-weighted optimization problem (6) is solved. The

noise levels for the accelerometer and gyroscope signals are

chosen to match an IMU of consumer grade.

The radio environment is configured with two rays directed

towards the array at angle φ1 = 45◦ and φ2 = 125◦ with

amplitudes of |α1| = 2 and |α2| = 1 respectively. The

wavelength λ is set to 16.7 cm, corresponding to 1795 MHZ,

for all simulations. The signal to noise ratio (SNR) of the radio

signal is altered to investigate its effect on the AoA estimation.

The search set for possible AoA is chosen as [0, π] divided

into 200 equidistant grid points.

The virtual array is formed by moving the receiver antenna

at a constant velocity along a straight line. For every second,

12 new samples of the radio signal are added onto the data

vector Y and used for evaluating the AoA. The two largest

peaks in the solution to (6) are identified and denoted by φ̂1

and φ̂2 respectively. The two angles are used to calculate the

steering vectors in the matrix Φ̂ and then the least squares

solution of Y = Φ̂X is calculated to retrieve the complex

amplitudes |α̂1| and |α̂2|. The AoA estimation problem in

(6) is solved for 1000 different statistical realizations and the

root mean square error (RMSE) for the theta estimation is

calculated as

RMSE =

(

1

2M

2
∑

r=1

M
∑

m=1

|φ̂m
r − φr|2

)1/2

(8)

where φr is the true AoA and φ̂m
r is the solution of the m:th

Monte Carlo simulation. RMSE for the amplitude estimation

is calculated similarly.

V. RESULTS

The results from the simulations with the described model

and configuration are presented in Fig. 3 to Fig. 6. In Fig. 3,

RMSE for φ̂ and |α̂| is shown for three different levels

of constant frequency error when the device is moved with

a velocity of 5 λ/s. The result is good up to array sizes

of 25 λ, corresponding to 5 seconds of movement. From

Fig. 2, the error at that time is 0.6 λ. For longer arrays,

the performance deteriorates rapidly. Also, the phase drift is

clearly setting a limit, as discussed in Section II-A. From

(5), the contribution to RMSE in AoA for the different levels

of frequency error becomes 15◦, 7.5◦, and 1.5◦ for 72 ◦/λ,

36 ◦/λ, and 7.2 ◦/λ respectively which closely matches

the result in Fig. 3. Looking at RMSE for the amplitude,

there is not much difference between the three simulations.

The conclusion is that the frequency error does not affect

the amplitude estimation the same way as it does for AoA

estimation.

If the velocity of the device is increased to 10 λ/s, the

performance for both AoA and amplitude does not deteriorate

for sizes up to 50 λ. The reason is that the position errors do
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Fig. 3. The upper panel shows RMSE for AoA estimation w.r.t. array size
while the lower shows RMSE of amplitude estimation. The velocity of the
device is set to 5 λ/s and the SNR is 20 dB. The lines indicate the level of
frequency error in the simulation. Note that RMSE of AoA and amplitude
deteriorate at array lengths larger than 25 λ for all levels of frequency error.
Also, a smaller frequency error allows a longer array size considering AoA
RMSE, i.e., a similar RMSE is observed for an array length of 40 λ with a
frequency error of 7.2 ◦/λ as at a length of 30 λ with 72 ◦/λ error.
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Fig. 4. Same as Fig. 3 but with velocity of 10 λ/s. The AoA shows no signs
of deterioration with increasing length of the array. There is a small impact
on the amplitude.

not reach the same uncertainty as before since the movement

is completed in 5 seconds compared to 10 seconds before.

To study influence of SNR, two levels of frequency error
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Fig. 5. The upper panel shows RMSE for AoA estimation w.r.t. array size
while the lower shows amplitude estimation. The lines indicate the level of
SNR and phase drift in the simulation as [dB,◦/λ]. Note that RMSE of AoA
deteriorates at array lengths larger than 25 λ, independently of SNR.

are chosen, 7.2◦/λ and 72◦/λ, and scenarios with SNR of

0 dB, 10 dB, and 20 dB are simulated with velocity 5 λ/s.

From Fig. 5 it is clear that there is some impact from the

SNR of the radio signal. For SNR values of 10 dB and 20 dB,

the performance for AoA is similar. Once again, the frequency

error sets a lower limit of how well the AoA can be estimated.

However, at 0 dB the performance is much worse compared to

the scenarios with better SNR. There is a breakpoint where the

noise affects the estimation more than the frequency error. For

the amplitude estimation, there is a clear dependence between

accuracy and SNR for short arrays. For longer arrays, larger

than 25 λ, the difference becomes smaller and for long arrays

there is no difference.

To investigate the dependence of SNR for AoA estimation,

a frequency error of 7.2 λ/◦ is chosen and an array of fixed

length of 20 λ is used. The SNR is varied from 20 dB to

0 dB and presented in Fig. 6. RMSE for amplitude increases

smoothly as the SNR gets worse. For the AoA, there is a rapid

change at 5 dB where the performance becomes much worse.

VI. CONCLUSION

The article shows how a virtual antenna array, consisting

of a single receiver element and an unaided IMU can be used

to estimate angle of arrival. Imperfections in the IMU, such

as noise in the sensors are considered as well as noise and

frequency error in the radio receiver. As expected, there is a

clear trade-off between array length and estimation accuracy

which is dependent on noise levels, speed of the receiver, and

frequency error. The general conclusion is that the combination

of an unaided IMU and a single receiver element has the
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Fig. 6. The upper panel shows RMSE for AoA, the lower shows RMSE for
amplitude, both vs. SNR. The velocity of the receiver is chosen to 5 λ/s, the
array length is 20 λ, and frequency error is 7.2◦/λ. For AoA the performance
deteriorates rapidly for SNR below 5dB. For amplitude, the performance is
decreasing slowly with worsening SNR.

potential to deliver an initial estimate which can be used in

more advanced algorithms estimating joint pose and AoA, [5].
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(ELLIIT) Excellence Center, supported by the Swedish Gov-

ernment. Support from the LCCC Linnaeus Center, Swedish

Research Council, and Vetenskapsrådet project 2012-42391-
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