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Abstract 
Acute coronary syndrome (ACS), including acute myocardial infarction (AMI), are 
a leading cause of morbidity and mortality worldwide. Accurate risk evaluation in 
patients presenting with chest pain is essential for optimizing emergency department 
(ED) resource allocation and patient outcomes. Current clinical decision support 
tools rely on structured risk scores and biomarker measurements, such as high-
sensitivity cardiac troponin T (hs-cTnT), but they may not fully capture the 
complexity of ACS presentation.  

This thesis explores the potential of machine learning (ML) models as decision 
support tools to improve the early identification of AMI and reduce unnecessary 
diagnostic procedures.  

The research consists of four studies. Study I evaluates whether combining glucose 
measurements with hs-cTnT improves the 0/1h hs-cTnT protocol in ED patients. 
Study II investigates the use of prior electrocardiograms (ECGs) as inputs to ML-
models. Study III compares ML models combining demographics, ECG- and 
laboratory data against the 0-hour hs-cTnT rule-out protocol. Study IV examines 
the performance of a sequential ML approach that includes stepwise increasing 
patient information.  

Results indicate that ML models can improve early risk stratification, with 
convolutional neural networks (CNNs) outperforming traditional logistic regression 
and rule-based protocols in predicting AMI or death within 30 days. However, prior 
ECG data provided limited additional value to ML models, and the sequential use 
of models resulted in a decline in sensitivity. Feature importance analysis showed 
that troponin and ECG features remain the dominant predictors used by the ML 
models.  

These findings suggest that ML-based decision support could improve ED 
efficiency by safely reducing unnecessary testing and admissions, but further 
external validation and implementation research are required before clinical 
deployment. 
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Popular Science Summary 
Inom varje människa finns en muskel vars absoluta syfte är att kontinuerligt förse 
kroppen med näringsämnen, syre och mineraler. Samma maskin används också för 
att dra ut slaggprodukter för transport ut ur kroppen. Vi kallar denna apparat för 
hjärtat. Varje dag slår hjärtat runt hundra tusen slag, och under en livstid nästan 300 
miljoner slag. Det är alltså en muskel som ska hålla länge.  
Ibland tar hjärtat stryk. En tryckande känsla i bröstet, som strålar ut mot vänster arm 
är klassiska tecken på en hjärtinfarkt. Just hjärtinfarkter är för tillfället en av de 
vanligaste orsakerna till död och lidande i världen och i Sverige. Tekniskt sett kan 
en hjärtinfarkt drabba vem som helst, men vissa faktorer är starkt knutna till en ökad 
risk. Ålder och kön, tidigare sjukdomar som högt blodtryck och diabetes är viktig 
information att inhämta om en hjärtinfarkt misstänks.  

Under många år har vi varit mycket duktiga på att informera samhället om 
hjärtinfarktens klassiska kännetecken. Så duktiga att bröstsmärta nu är en av de 
vanligaste orsakerna till besök på landets akutmottagningar. Men lyckligtvis har de 
flesta med bröstsmärta inte en hjärtinfarkt. Här finns det ännu en utmaning. En 
komplett utredning för att utesluta en hjärtinfarkt innefattar mätning av hjärtats 
elektriska aktivitet med ett elektrokardiogram (EKG) och halten av troponiner i 
blodet. Troponiner är proteiner som finns i hjärtmuskeln och vars värde stiger 
kraftigt i blodet vid hjärtinfarkt.  

Utöver detta sker eventuellt en bedömning av hjärtat vid ansträngning eller en 
angiografi, en form av röntgen där hjärtats egna blodkärl kan undersökas för tecken 
på trånga förhållanden. Dessa undersökningar kan både göra ont och medföra 
komplikationer så som allergiska reaktioner eller skador på blodkärlen. Så helst vill 
vi undvika att undersöka i onödan.  

Med hjälp av provsvar, symptombeskrivning och kända riskfaktorer har läkare 
under lång tid skapat olika system för att kunna bedöma risk för allvarlig sjukdom. 
Kriterier och träddiagram har utarbetats för att lättare kunna sortera patienter i 
grupper som baserat på sannolikheten för hjärtinfarkt.  

Användandet av artificiell intelligens och maskininlärning har bokstavligen 
exploderat under det senaste årtiondet och används nu i allt fler branscher. Även 
inom sjukvården börjar sådana metoder få fäste, men implementeringen går 
långsamt. Detta beror sannolikt på flera faktorer, men viktigast är behovet av system 
som är både säkra, effektiva och pålitliga. 

 

Och det är just här denna forskning kommer in. I ett flertal arbeten har vi undersökt 
möjligheten att säkert utesluta hjärtinfarkt i olika skeden, helst så tidigt i processen 
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som möjligt. Tanken är att det kan finnas grupper av patienter där sannolikheten för 
hjärtinfarkt är så låg att det är större risk att utreda dem än att låta bli.  

I studie I undersökte vi om det finns ett tilläggsvärde av blodsocker till de 
regelbaserade system som används i den kliniska vardagen idag. Studien visade att 
en av fyra patienter kunde skickas hem med mycket låg risk för hjärtinfarkt om både 
troponinvärde och blodsocker var normala.  

I studie II introducerade vi flera ai-modeller och upptäckte att deras prestanda inte 
förbättrades när vi gav dem tillgång till patienters tidigare EKG, något kliniker ofta 
använder vid bedömning av huruvida EKG-förändringar är nya.  

Studie III bygger på resultaten från de två tidigare studierna. Här lät vi modeller lära 
sig sambandet mellan hjärtinfarkt och patienters ålder, kön, EKG och flertalet 
blodprovsvärden. Vi testade modeller med olika tillgång till data och komplexitet 
och såg att mer avancerade modeller med tillgång till mer data kunde överträffa 
resultaten från våra vanliga regelbaserade system. 

I Studie IV lade vi till en tidsmässig komponent. Vi utgick från att en del patienter 
från början hade mycket låg risk för hjärtinfarkt och att dessa potentiellt kunde 
undvika provtagning och EKG. Vi byggde därför modeller för flera steg i 
beslutsprocessen, där de första enbart hade tillgång till patenters ålder och kön, 
medan den sista modellen hade tillgång till all information om patienten upp till det 
första troponinvärdet. Resultaten från studien pekar på att patienter med låg risk för 
hjärtinfarkt kan identifieras väldigt tidigt, och att troponin och EKG är de klart 
dominerande komponenterna vid modellernas bedömning av risk för hjärtinfarkt. 

 

Sammantaget tyder resultaten från dessa studier på att det finns en betydande del av 
patienter med bröstsmärta där hjärtinfarkt kan uteslutas på ett säkert sätt i ett tidigt 
skede och att onödiga procedurer därmed kan undvikas.  
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Preface 
The seeds of this work were planted in 2015, during a traditional Swedish fika on a 
cold autumn afternoon. A dear friend of mine asked me: "Pontus, did you know that 
doctors are wrong in one out of ten cases? One day, computers will replace doctors. 
And patients will be better off for it." 

The implications of that statement were both startling and exhilarating. I knew he 
was onto something. As a systems engineer by training, he had extensive experience 
in decision-making and understood the power of automated systems.  
I asked him, "What would you do in my shoes?" 

The result of that question can be found in the pages of this thesis. With little to no 
knowledge of computer science, programming, or machine learning, I set out on a 
challenging path filled with frustration, setbacks, and the occasional precious Aha! 
moment. 

Machine learning is not an easy field to enter without prior knowledge or formal 
training. All the math I had learned in high school had long been forgotten. Even 
the simple act of dividing fractions seemed to have vanished from my memory. Say 
what you will about the medical profession, but mathematical prowess is not a 
decisive factor for success. 

When I finally began to grasp the fundamental mathematics behind these 
algorithms, I saw the beauty in their simultaneous simplicity and power. I fell in 
love with the idea that a simple derivative, the concept that high school students 
always question, asking “When will I ever need to know this?”, could be used to 
train a complex system in the same way one learns to ride a bicycle. Using a machine 
trained on examples, rather than painstakingly hardcoding rules, felt like steering a 
bike without using your hands, and it still amazes me to this day. 

The five years I’ve spent working on this project have been some of the most 
exciting and challenging of my life. Becoming a father twice during this time has 
only made life more interesting. This thesis stands as proof that it is possible to learn 
something entirely new, that life will sometimes get in the way, but that, with 
persistence, you can still reach the finish line. 
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AI Statement 
The author of this dissertation has used OpenAI’s ChatGPT-4o for translation 
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AI is not about replacing us,  
but making us better versions of ourselves. 

- Rana el Kaliouby 
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Introduction 

Part 1: The Problem 
Acute coronary syndrome (ACS) including acute myocardial infarction (AMI) is 
one of the leading causes of death worldwide. 1 Chest pain, the classic symptom of 
an AMI, has been widely publicized through information campaigns and is now well 
known among the general population. In Swedish emergency departments (EDs), 
chest pain is one of the most common presentations, second only to abdominal pain. 
2 However, most patients with chest pain do not have ACS. 

Diagnosing AMI often requires invasive tests such as coronary angiograms, which 
carry a risk of severe complications in approximately one in a thousand patients. 3  

Subjecting many patients to unnecessary diagnostics also risks using too many 
resources, leading to backlogs and crowding in the ED, a condition that is associated 
with increased mortality rates for patients. 4,5 

Selecting the correct patient for admission and invasive procedures thus becomes 
an optimization problem, both in terms of reducing unnecessary risks to patients, 
and for improving ED logistics.  

The search for methods to rapidly rule out ACS and AMI have been ongoing for 
decades. 6 Today, machine learning methods hold a potential to significantly 
improve the performance of ED decision makers, both in terms of correct 
diagnostics and in making decisions at earlier timepoints.  

This thesis explores the use of machine learning methods as decision support tools 
for the evaluation of chest pain patients in the ED. 

Cardiac anatomy and physiology 
The heart is in essence a set of two muscular pumps. It contains four chambers: two 
ventricles responsible for pumping blood throughout the body, and two atria 
responsible for pre-filling the ventricles before their contractions. The right side of 
the heart pumps deoxygenated blood into the pulmonary circulation for 
oxygenation. This blood subsequently returns to the left side of the heart, which 
delivers oxygenated blood to the aorta and the systemic circulation. This circulation 
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is completed when deoxygenated blood returns to the right atrium through the vena 
cava.  

The myocardium, responsible for cardiac contractions, receives oxygenated blood 
through the coronary arteries, which are the first arteries to branch off from the 
aorta.  

The contractile effort of the heart is governed by the sinoatrial (SA) and 
atrioventricular (AV) nodes, which along with the his-purkinje fibre system 
generate and transmit electrochemical impulses to the myocardial cells of the atria 
and ventricles, thus setting the pace of myocardial contractions. 7 

 
Figure 1: Anatomy of the human heart 

Examining the Heart: History, Biomarkers and Diagnostic Tests 

Patient history and symptoms 
A fundamental step in evaluating patients presenting with chest pain involves 
obtaining a thorough patient history and physical examination. Patients 
experiencing AMI are often diaphoretic, anxious and typically describe central, 
compressive chest pain radiating to the left arm, back, or neck, commonly known 
as angina pectoris. However, myocardial infarctions can also present atypically with 
symptoms such as shortness of breath or abdominal pain. 
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An assessment of the patient's medical history is crucial since certain demographic 
and health-related risk factors increase the likelihood of AMI. Notable risk factors 
include diabetes, hypertension, hypercholesterolemia, smoking, and a family history 
of myocardial infarction in a close relative, such as a parent or sibling, occurring 
before the age of 65. 

Physical evaluation includes palpation of the thorax and upper abdomen, with 
resulting pain indicating non-cardiac causes of chest pain.  

Despite the importance of patient history, physical and known risk factors, relying 
solely on these aspects is typically insufficient for conclusively identifying or ruling 
out myocardial infarction. Therefore, objective data regarding cardiac function is 
gathered through two essential diagnostic tests: the electrocardiogram (ECG) and 
measurement of cardiac troponins in the blood.  8–11 

ECG 
Invented by Einthoven in 1923, the electrocardiogram (ECG) is a non-invasive 
method to measure the electrical activity of the heart. This is done by placing 
electrodes on the skin and measuring the electrical potential between two points.  

Einthoven’s work led to the development of the 12-lead ECG, which is the standard 
ECG format used today. 12 

A normal ECG waveform has three distinct phases. The P-wave represents atrial 
depolarisation and the QRS-complex ventricular depolarisation while the T-wave 
represents ventricular repolarization. 7  

Typical ECG findings associated with AMI include ST-segment elevation 
(suggesting ST-elevation myocardial infarction, STEMI), ST-segment depression 
and/or T-wave inversions, and pathological q-waves (a sign of prior infarction). 13  

 
Figure 2: Electrode placement and typical ECG changes during an AMI 
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Cardiac biomarkers: Troponin 
Cardiac Troponins (cTn) are proteins found in high concentrations as an integral 
part of the myocardial cell contractile apparatus. Troponin I (cTnI) is the inhibitory 
subunit that prevents contraction in the absence of calcium while Troponin T (cTnT) 
is the tropomyosin-binding subunit that anchors the complex to the contractile 
apparatus. cTnI and cTnT have clinical value for the diagnosis of AMI. cTnT is the 
biomarker used in the studies included in this thesis. 14  

cTnT receives its diagnostic value by being released into the bloodstream when 
cardiomyocytes are injured, and elevated circulating levels of cTnT in the 
bloodstream can thus be used as a marker for damage to these cells.  

The first cTnT assay was developed in the 1980s by German researchers, and high 
sensitivity cardiac Troponin T (hs-cTnT) assays have later been introduced as a 
more sensitive method for detecting myocardial damage. 15  

Troponin levels typically rise within a few hours and peak around 10-50 hours after 
an infarction, depending on whether blood flow to the infarcted area was restored. 
16 Myocardial infarction is not the only reason for elevated troponin levels, however, 
with myocarditis, tachyarrhythmias, pulmonary embolism, heart failure and 
impaired kidney function as common differential diagnoses. 17 There are also 
situations where proteins released after skeletal musculature injury can be 
erroneously detected by hs-cTnT assays. 13  

 
Figure 3: The troponin complex 
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Point of care tests 

Creatinine 
Creatinine is a breakdown product of creatine phosphate, a compound used by 
muscles for energy. It is released into the bloodstream and filtered out by the 
kidneys. Measuring creatinine levels in the blood is commonly used to assess kidney 
function and elevated creatinine levels may indicate impaired renal function. In 
patients with kidney failure, elevated hs-cTnT levels has traditionally been thought 
secondary to impaired renal clearance but there is likely a multifactorial relationship 
between kidney function and cardiac injury. 18–20  

Glucose 
Glucose is a simple sugar (monosaccharide) and an essential source of energy. 
Blood glucose levels are tightly regulated by hormones such as insulin and 
glucagon. Elevated glucose levels may indicate diabetes mellitus, but some studies 
have also linked high glucose levels to an increased risk of myocardial infarction. 
21,22  

Hemoglobin 
Hemoglobin is a protein found in red blood cells, responsible for transporting 
oxygen from the lungs to the body's tissues and carrying carbon dioxide back to the 
lungs for exhalation. It has been suggested as a predictor for AMI with a potential 
rationale being that low hemoglobin levels reduce the amount of oxygen delivered 
to the myocardium. 23 

Defining acute coronary syndrome and myocardial infarction 
AMI occurs when cardiomyocytes perish as a result of lack of flow of oxygenated 
blood to the myocardium. By definition, there are five types of AMI of which type 
1 is the primary concern of this thesis.  

Type 1 AMI is caused by acute atherothrombotic plaque rupture or ulceration 
leading to coronary artery occlusion while type 2 AMI occurs due to an imbalance 
between myocardial oxygen supply and demand such as in patients with anemia.  

Type 3 AMI is sudden cardiac death with presumed AMI while types 4 and 5 are 
related to percutaneous coronary intervention (PCI) and coronary artery bypass 
grafting (CABG), respectively.  

According to the fourth international definition of myocardial infarction the 
diagnosis of type 1 AMI requires: 13  

1. Evidence of myocardial injury. This is detected as elevated levels of cardiac 
biomarkers such as hs-cTnT in the blood stream, with a rising or falling 
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pattern on serial testing. Myocardial damage takes time to develop, and the 
rise of hs-cTnT can be slow during the initial hours following an infarction. 

2. Clinical- or ECG signs consistent with ischemia, or imaging evidence of
infarction.

Acute coronary syndrome (ACS) includes three conditions related to reduced blood 
flow to the heart: ST-elevation myocardial infarction (STEMI), non-ST-elevation 
myocardial infarction (NSTEMI), and unstable angina (UA).  

The distinction between STEMI and NSTEMI is based on the characteristic ECG 
findings giving these conditions their names, while UA is diagnosed based on 
clinical presentation and the absence of significant troponin elevation. 

The distinction between STEMI and NSTEMI plays an important role when 
deciding optimal patient treatment, as patients with STEMI are directed to the 
angiography suite for immediate revascularization, while NSTEMI patients initially 
are given medical treatment. 13  

While STEMI and NSTEMI are well-established categories of ACS, the 
classification of unstable angina (UA) is more difficult. UA is defined as clinical 
signs of myocardial ischemia at rest or with little exertion combined with normal 
troponin levels. 24 Despite the introduction of high-sensitivity troponin assays, 
which have improved the detection of small myocardial injuries, UA continues to 
be a frequently assigned diagnosis. 25 This complicates evaluation as troponin values 
by definition have very little diagnostic value for this condition, and these patients 
are often admitted and undergo cardiac stress testing procedures.  

Simply ruling out ongoing AMI or ACS is seldom enough for clinicians. The term 
Major Adverse Cardiac Events (MACE) has been used in research to define a range 
of consequences of an AMI. Common components of MACE include, AMI, death, 
stroke, need for percutaneous coronary intervention (PCI) and heart failure. 26,27 

Studies I and II use MACE as the target outcome, while studies III and IV use 30-
day AMI or death.  

Treatment of ACS 
For patients with STEMI, the preferred treatment is primary percutaneous coronary 
intervention (PCI), which involves mechanically restoring blood flow through a 
catheter-based procedure. PCI should be performed as soon as possible, ideally 
within 90 minutes of first medical contact. 28  

Patients with ACS typically also receive antiplatelet medications to prevent clot 
formation and often statins, betablockers and ACE-inhibitors, in order to minimize 
risks of further infarctions and for complication reduction. 24  
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Past procedures and medications might therefore contain information about past 
diseases such as AMI and might possibly even be protective factors when 
determining the risk of future AMI. This is explored in study IV.  

Figure 4: Hans Olivecrona angiography, Lund 1969 

Part 2: The Setting 

Epidemiological features of chest pain in the ED 
In 2023, nearly two million patients visited Swedish EDs with a median length of 
stay exceeding four hours. Region Skåne reported some of the longest waiting times, 
with a median ED stay of almost five hours, and waiting times of more than 60 
minutes before a patient was being seen by a physician. 29 This is worrying, as AMI 
is a time-sensitive condition where prompt care can reduce the effects of the 
infarction, leading to vastly different outomes down the line.  

Chest pain has a wide variety of causes, from benign conditions such as 
musculoskeletal pain and gastroesophageal reflux to severe conditions such as AMI, 
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pulmonary emboli and acute aortic dissections. Data from 2006 in Lund showed that 
only 7.5% of patients presenting to the ED with chest pain had ACS. 30 This trend 
has been relatively stable despite changes in lab analyses and diagnostic criteria, 
known as diagnostic drift. In 2017, the prevalence of AMI in two hospitals in Skåne 
were 6-7%. 31 

A similar pattern can be seen internationally, with 12% of Norwegian chest pain 
patients and 11% of patients in a Spanish sample having ACS. 32,33 In a Tunisian 
sample, 22% had ACS 34 while a large systematic review by Fanaroff described a 
median rate of ACS around 13-14% across multiple studies. 9 

Admission rates of chest pain patients in Region Skåne have fallen from almost 50% 
in 2006 to 30-33% in 2018 while the proportion of admitted patients with AMI has 
increased slowly from 11% in 2008 to 15 - 20% in 2018. 30,31 

The diagnostic evaluation of ACS among chest pain patients can be a resource-
intensive process. An Australian study found that patients diagnosed with ACS had 
an average hospital stay of 8 days, with a mean cost of $13,509, whereas patients 
with non-cardiovascular conditions had a shorter average stay of 2 days and a lower 
cost of $3,331. Reducing unnecessary evaluations and associated costs can be 
important for optimization of healthcare resources. 35  

The anatomy of an ED 
Much like the heart, the ED has a distinct system of flow. Instead of transporting 
erythrocytes for oxygenation, the currency of an ED is the patient and the diseases 
the ED intends to manage. Patients with chest pain principally enter the ED in two 
ways, by walking in or by ambulance. In many places, ambulances with STEMI-
patients completely bypass the ED and set off for the angiography suite instead.  

Patients in the ED typically start out in the triage area, where a triage nurse or 
physician get the initial information and perform diagnostic testing including vital 
parameters, ECG recordings and blood tests. A decision then must be made whether 
the patient should be accepted into the ED or sent home or to another instance of 
care, such as a general practicioners office. To standardize this process, many EDs 
utilize structured triage systems as RETTs (Rapid emergency triage and treatment 
system). 36  

Critically ill patients are directed to the resuscitation room for stabilization and 
emergency treatments, while lower acuity patients who require further evaluation 
are directed to the main ED area for additional workup and finally a decision on 
whether to discharge them or to admit them to the hospital.  
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Figure 5: Flow through the ED. Patients with STEMI typically bypass the ED completely. 

Decisions in the ED 
The ED is often staffed by a combination of junior and senior physicians, as well as 
nurses with varying levels of experience. The decision-making process in this 
environment can be thought of as a layered decision network, where different 
clinicians act as interconnected decision nodes. 

Initially, junior doctors evaluate patients, gathering information on symptoms, 
medical history, and initial test results. This forms the first node of decision-making. 
Simultaneously, triage personnel contribute by recording vital signs such as blood 
pressure, heart rate, and oxygen saturation, along with a brief summary of the 
patient's condition representing another node in the decision network. 

If uncertainty remains, particularly in cases of suspected acute coronary syndrome 
(ACS), a more senior physician is consulted. The senior physician can be thought 
of as the second layer of decision-making, receiving filtered representations of the 
patient’s condition from the junior physician and triage personnel. Based on all this 
information, the senior physician determines whether the patient is experiencing a 
myocardial infarction. 

For complex cases, additional steps may be required in the decision-making process, 
necessitating deeper layers in the network. Specialist cardiologists may be 
consulted, and in certain cases, the decision might be deferred to a multidisciplinary 
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conference the following day. In this way, clinical decision-making can extend well 
beyond the ED and contain many layers. 

 
Figure 6: The ED decision network 

When new data becomes available, decisions might change. What seemed like a 
complex problem at the onset, might seem trivial at later stages. This is especially 
important in the triage area, where important decisions are made with very little 
information. 

Despite structured triage systems, human cognitive biases remain a significant 
challenge in emergency medicine. Studies suggest that clinicians often struggle with 
estimating pretest probability, leading to overtesting in some cases and missed 
diagnoses in others. Indeed, the low prevalence of ACS among admitted patients is 
a testament to this overestimation of risk. 37,38 Decision-making is further 
complicated by time constraints and cognitive overload, all of which are inherent to 
the high-pressure ED environment. 

Clinical decision support systems (CDSS) may help mitigate some of these 
challenges by providing more accurate risk stratification.  
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Part 3: The Tools 

Decision support tools and big data 
CDSS:es have long been in use for aiding clinicians make safe decisions.  

Interesting work on computerized pretest probability was done by Kline et al, who 
developed a tree-based protocol matching clinical attributes from a given patient to 
a database of almost 15 000 patient records with known outcomes and compared it 
to a logistic regression model. The attribute matching protocol attained a slightly 
higher AUROC than the logistic regression model and assigned 24% of patients into 
a low risk category. 39  

For chest pain patients, TIMI (Thrombolysis in Myocardial Infarction), EDACS 
(Emergency Department Assessment of Chest pain Score), and GRACE (Global 
Registry of Acute Coronary Events) scores are some of the best-known risk scores 
used today. All of these were developed using multiple logistic regression 
techniques on a subset of the ED chest pain population, namely ACS patients for 
TIMI and GRACE-scores, and patients where chest pain was not obviously non-
cardiac, for the EDACS-score. The HEART-score (History, Electrocardiogram, 
Age, Risk factors and Troponin) deserves a special mention, as it was developed on 
undifferentiated ED chest pain patients using clinical experience instead of 
statistical methods. 40–46  Updated protocols such as EDACS-ADP and the HEART 
pathway continue to improve the performance of these tools. 47–49  

A 0/1-hour combination algorithm using serial troponin testing at 0hrs and 1hrs has 
recently been developed to safely rule out AMI and cardiac death in the ED. This 
algorithm stratifies patients as low, intermediate or high risk depending on clinical 
factors, ECG patterns and serial troponin results, with a sensitivity of over 99% and 
a positive predictive value of over 70%. It has been validated in several studies, 
including a randomized controlled trial, and has received a class 1 recommendation 
in the European Society of Cardiology (ESC) guidelines for the management of 
acute coronary syndrome. The 0-hour arm of this ESC 0/1h algorithm served as the 
baseline we compared our models to in study III. 24,31,50–52  
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Figure 7: The ESC 0/1 hour algorithm 

In recent years, increasingly large datasets have allowed researchers to create new 
diagnostic tools with superior performance, but a common drawback of such 
datasets is that they seldom contain information on patient symptoms at 
presentation. This creates an issue for CDSS creators, as symptom description is a 
crucial component used by doctors in clinical practice. Nevertheless, important and 
hitherto unknown clinical patterns could possibly be hiding in these very large 
datasets. Finding such patterns could help clinicians further risk-stratify patients 
before important decisions such as invasive angiography. 53,54  

Machine learning tools 
Over the past decade, machine learning has exploded as a field, and is now used 
across a wide range of industries, including healthcare. The primary focus has often 
been on the diagnostic interpretation of imaging data, particularly radiology images, 
but automated ECG interpretation has also been studied extensively. 55 One of the 
strengths of these models is that they can operate in a data-driven manner, free from 
preconceived notions. Special attention has been given to a specific type of model, 
artificial neural networks, which have the capability to learn nonlinear  
relationships.  
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The first description of neural networks was introduced by Warren McCulloch and 
Walter Pitts in their 1943 paper A Logical Calculus of the Ideas Immanent in 
Nervous Activity. 56 Fifteen years later, psychologist Frank Rosenblatt successfully 
constructed a working model of such a network, which came to be known as the 
perceptron. 57 Rosenblatt's model demonstrated that neural networks could learn 
linearly separable patterns. A later publication however, Perceptrons (1969) by 
Marvin Minsky and Seymour Papert, showed that this type of model was incapable 
of learning non-linearly separable functions, such as the XOR function. 58 Many 
years later, researchers discovered that by using multiple perceptrons across several 
layers, these limitations could be overcome. It was eventually proven that such a 
multilayer perceptron could approximate any continuous function, given a sufficient 
number of nodes, an idea now known as the Universal Approximation Theorem. 59  

In 2024, Geoffrey Hinton and John Hopfield received the Nobel Prize “for 
foundational discoveries and inventions that enable machine learning with artificial 
neural networks”. 60 These breakthroughs, and others, laid the foundations for 
today’s deep neural networks, which feature architectures with hundreds of layers 
and trillions of parameters. 

This thesis has focused on a small subset of the machine learning field, namely the 
use of artificial neural networks for classification tasks using supervised learning 
principles. 

 
Figure 8: Solving the XOR problem. Consider a situation where we want to offer medical treatment to 
patients with ischaemic ECG changes or high troponin values (white areas). If a patient has both, we 
instead want to perform immediate angiography, and if the patient has none of these, we don’t want to 
do anything (black areas). The linear regression model cannot create a plane such that all cases above 
the plane correctly receive treatment, but a multilayer perceptron can. 

  



30 

Logistic Regression and the Multilayer Perceptron 
Logistic regression is a method of fitting data to a specific outcome. It can be split 
up into two parts, namely a linear regression and a logistic, nonlinear 
transformation. The linear regression procedure consists of adding a specific weight 
to each input feature, adding a bias term and summing these contributions to 
generate a final output. The weights and bias are selected such that the line produced 
by the regression model best fits the data. To create a classification system, the 
output needs to be transformed from a linear scale into a range between 0 and 1 for 
predicting the probabilities of the output classes. This is done using the logistic 
function. 61  

A fully connected multilayer perceptron (MLP) has the same structure as the ED 
decision network described above. Each node in a layer receives input from all 
nodes in the previous layer and propagates its output to all nodes in the next layer. 
Each node in a MLP is in essence a logistic regression model, but nodes in 
intermediate layers often use functions other than the logistic function, such as 
ReLU. 62 These activation functions are essential to the performance of the models, 
as stacking linear nodes on top of each other otherwise do not yield additional 
benefits. However, these activation functions also complicate the relationships 
between inputs and outputs, leading to difficulties understanding model predictions. 
These issues have made neural networks colloquially known as “black box 
models”.  

 
Figure 9: A Multilayer Perceptron. All inputs are fed into each neuron of layer 1. Each neuron then 
outputs a transformation of these inputs, a representation. All layer 1 representations are then fed into 
the nodes in the next layer, until the data reaches the output layer, where the classification procedure is 
performed.  
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Convolutional Neural Networks (CNN) 
Convolutional Neural Networks (CNNs) are inspired by the structure and function 
of the visual cortex in biological systems. In the human brain, neurons in the visual 
cortex respond to specific regions of an image, known as receptive fields, allowing 
for the hierarchical processing of visual information. Similarly, CNNs use 
convolutional layers composed of small, trainable filters that slide over an input 
image, detecting local patterns such as edges, textures, and shapes. These detected 
features are then passed through successive layers, progressively capturing more 
complex structures.  

Fundamental milestones in the development of CNN architecture was the 
Neocognitron developed by Fukushima and the usage of backpropagation in the 
LeNet developed by LeCun et al in the 1980s. 63,64 Arguably, the current boom in 
artificial intelligences can be credited to AlexNet, developed by Alex Krizhevsky et 
al. 65  

 
Figure 10: A Convolutional Neural Network 

Residual Neural Networks (ResNet) 
ResNets are a relatively recent architecture designed to overcome challenges in very 
deep networks, particularly the vanishing gradient problem. 66 This issue arises 
when a network has many layers, causing the signal to degrade as it propagates 
through the network. 

As an example, consider an ECG signal that contains noise. In a deep neural 
network, each layer modifies the input signal slightly, which can ultimately weaken 
the original signal and make it difficult for the model to distinguish relevant 
information from noise. ResNets solve this by focusing on learning the residual error 
rather than the entire output. The problem is essentially turned on its head. Instead 
of modifying the signal at each layer, the network preserves the original signal and 
learns only the necessary corrections, allowing deep networks to maintain strong 
predictive performance.  
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Figure 11: ResNet architecture. The output of each convolution layer group is combined with its input 
signal. 

How networks learn 
Supervised learning relies on models learning to map the relationship between a set 
of input features and a known target outcome or label. The standard approach to 
supervised learning of neural networks can be split into three concepts: the cost 
function, its reduction, and its propagation. 

As neural networks are created, their weights and biases are usually randomly 
initialized. The network is then presented with a number of cases and its total 
prediction error is calculated. The goal is to reduce this error by changing the 
individual weights and biases. The function describing the error is called a cost 
function. Cost functions can be calculated in different ways but are in essence a 
measurement of how far the models’ predictions diverge from the true label.  

Using the partial derivative of the cost function for a specific weight, we can 
calculate what direction we should change this weight in order to minimize this 
function. By moving a small step (termed the learning rate) in the direction opposite 
this gradient we will have reduced the cost function by a small amount. This is 
repeated many times until we have reached a bottom of the function, where the 
gradient is flat. This is the gradient descent algorithm.  

Backpropagation is a technique that propagates the error backwards through the 
network in order to efficiently compute the gradients and update the weights using 
the gradient descent algorithm. 67  
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Figure 12: Gradient descent. During each learning iteration the weight is adjusted slightly in the 
direction that reduces the model prediction error. When a minimum is found, the gradient approaches 
zero and the weight stops adjusting.  

Transfer learning 
Transfer learning is a way of using pretrained models in new ways, by retraining 
them on similar tasks and leveraging useful concepts already learned by the model. 
In this way we forgo using random weights and might find deeper local minima than 
those found using the standard approach.  

The earliest record of transfer learning is arguably that by Bozinowski in 1976. 68  
This method is increasingly being used for improving model training in the medical 
field. 69 One interesting study using this approach was performed by Bird et al and 
used transfer learning techniques for classifications based on electromyography 
(EMG) and electroencephalography (EEG) data. In this study transfer learning from 
EMG to EEG data yielded impressive performance increases compared to training 
models on EEG data alone. 70 Other studies have shown that age and sex can be 
predicted based on ECG data. In study IV, we used this knowledge to pretrain 
models to predict age and then retrained these models for AMI prediction. 71,72   
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Explainability 
As we have moved from linear, shallow models to more complex and deep 
architectures, the relationship between the input data and output labels have become 
increasingly hard to comprehend. In the European Union, AI explainability is 
regulated by the AI Act of 2021. 73 This act designates any AI system used in a 
medical setting as “high risk” and subjects these to three requirements according to 
Chapter 2 Articles 12 to 14: 

1. That the performance of the system is logged and records are kept. 

2. That the models are transparent and present information to users such that 
outputs can be interpreted and used correctly.  

3. There is a human in the decision-loop.  

 

Many systems have been developed to try to solve these issues. 74 A clear 
differentiation of such systems can be made between ante-hoc and post-hoc systems, 
where ante-hoc systems are explainable by design, by maintaining linear 
relationships between input features and the target. Examples include linear 
regression models and decision trees.  
Post-hoc systems are used when models do not lend themselves to easy 
interpretation. This is where neural networks fit in. Post-hoc systems try to make 
sense of the results of these black box models by different means, often 
implementing surrogate models that map the decision outputs of the network 
sufficiently well, or by other means such as Shapley additive explanations (SHAP) 
for input feature importance and  GRAD-CAM for image section importance. 75–77   

In study IV we used permutation feature importance, which is a comparatively 
simple technique for showing how much specific variables contributed to the output 
labels. 78  Initially developed for random forest models, this technique relies on 
randomly shuffling an input variable to break the relationship between the variable 
and the outcome. The reduction in model performance on shuffled data is then 
interpreted as the relative contribution of that variable to the model output.  

Related work 
Medical ai models are commonly used trying to predict the probability of a target 
disease. Once a model for prediction has been created, specific thresholds can be 
used for decision making, such as the rule out of AMI if the probability is below a 
certain threshold. Performance of these models is rapidly improving, deep neural 
networks trained on ECG data are already surpassing medical professionals on some 
diagnostic tasks such as arrhythmia detection. 79  
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Table 1: Related work 

Author (Year) Method Inclusion, n Ruled out % Sensitivity % 

Lin, 2018 XGBoost 4049 46 90 

Than, 2019 Gradient Boosting 11011 69 98 

Björkelund, 2020 ANN 5695 57 97 

Ibrahim, 2020 CNN 105758 61 93 

Zhang, 2020 Random Forest 85254 Not reported 92 

Duodensis, 2023 XGBoost 20324 72 98 

Neumann, 2023 Multiple 27674 41-68 99 - 100 

 

Using neural networks for predicting ACS goes back at least to the 90s, where Baxt 
et al used a neural network to diagnose AMI among 331 patients with chest pain. 
The model outperformed clinicians with a sensitivity of 97% compared to the 78% 
of the clinicians. 80 ACS prediction using ECG data is a well-researched topic and 
machine learning methods are reported to have higher sensitivity than clinicians for 
ACS prediction. 81 Simply using ECG data, however, does not take into 
consideration age, sex, risk factors and troponin test results. For model acceptance 
clinicians will likely require a holistic approach where all aspects of a patient’s 
condition are taken into consideration.  

Additionally, the choice of model architecture is important. With the drawback of 
reduced explainability, more complex models need to be significantly more 
performant to warrant their use. 

In a small study in 2005, Harrison et al compared multilayer perceptrons to logistic 
regression on patients with suspected ACS. Variables included patient symptoms, 
risk factors and ECG data. Results were excellent, with models attaining AUROC 
of 0.96-0.98. Interestingly, the logistic regression models performed on par with the 
neural networks. The impressive results in this study likely relates to a combination 
of using patient symptoms as input variables and the diagnostic criteria of ACS at 
the time. 82   

Lin et al developed an XGBoost model on clinical and demographic data but 
excluding troponin levels in 2018. This model could rule out almost half of all 
patients of myocardial infarction, but sensitivity was relatively low, 90%. 83  

The question of sensitivity is important. Ideally model sensitivity should not be 
inferior to current practice, and the risk of consequences of a missed infarction 
should be lower than the risks associated with clinical workup. A survey by Than et 
al on acceptable risk of MACE among discharged patients concluded that clinicians 
accepted a test sensitivity of 99%. 84  

More recently, Than et al developed a gradient boosting algorithm (MI3) 
incorporating age, sex and serial hs-cTnI samples. This model outperformed the 
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European Society of Cardiology 0/3-hour pathway in terms of sensitivity and could 
select 69% of patient as low risk with a sensitivity of 98%. These results were later 
validated on a larger cohort of 20 000 patients in Scotland. McCord et al further 
improved on the MI3 algorithm by shortening the timespan of serial testing to 30 
minutes, while maintaining similar performance. A study by Björkelund et al used 
a neural network trained on serial hs-cTnT samples showed similar results. 
Doudesis et al created a stepwise XGBoost-algorithm that could rule out 61% of 
patients using a single hs-cTnI sample, and an additional 11% using serial tests. This 
algorithm was later validated on a cohort from 5 countries. 85–90  

Zhang et al created a range of models for prediction of 30-day AMI or death. Input 
features included demographic factors, risk factors and troponin results but not ECG 
data. AUROC values for AMI reached 0.915 for the best performing model, a 
random forest classifier. 91 

In 2023, Neumann et al from the ARTEMIS (Artificial intelligence in suspected 
myocardial infarction study) group created super learner models using a 
combination of logistic regression, gradient boosting, elastic nets and random 
forests. Models were developed for a range of hs-cTn assays and had variable 
results, with the best model using serial hs-cTnI selecting 68% of patients for rule 
out with a sensitivity of almost 99%. 92 The strong performance of logistic 
regression and tree-based algorithms such as XGBoost suggests that simpler models 
may be just as effective when trained on tabular data.  

Hand-crafted ECG features have traditionally been used as inputs to ML models. 
This makes models susceptible to the choice of these features. Recently, large ECG-
datasets have allowed automated feature extraction techniques to be used. This is 
one area where neural networks shine. Model architectures such as CNNs and 
ResNets are able to find important features on their own and as such, are less 
susceptible to the biases of the model developer. In study II-IV we used such models 
to automate ECG feature selection, comparing performance to simpler models such 
as logistic regression in study II. Similar work by Xiao et al used a multimodal 
ResNet model incorporating ECG-data, age and sex. This model attained an 
AUROC of 92%. The study did not report numbers ruled out with high sensitivity 
values, but examination of the ROC-AUC curve reveals that few (if any) patients 
could be ruled out with a sensitivity above 95%. 93  

Another similar study was performed by Ibrahim et al, who created CNN, RNN, and 
XGBoost models trained on ECG data, age and sex as input features. Interestingly, 
the XGBoost model using selected ECG-features outperformed both CNN and RNN 
models in their work. Two potential flaws in study methodology could explain this. 
Firstly, minority oversampling was used before patients were split, potentially 
allocating copied patient cases to both train and test groups, a source of data-
leakage. Secondly, extracted ECG features were used for the CNN and RNN models 
instead of ECG signal data.  94 
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Aims 

Overall aims 

The overall aim of this thesis is to study the application of decision support systems 
and machine learning algorithms to improve the management of patients with chest 
pain in the ED.  

 

Study I aims 

The aim of this study was to evaluate whether the addition of glucose cutoffs to a 
rules-based system (ESC 0/1h hs-cTnT protocol) could identify more patients for 
safe rule out and rule in of MACE within 30 days.  

 

Study II aims 

To identify new ECG-changes, clinicians commonly compare the ECG with prior 
ECGs in the same patient. This study aimed to evaluate the value of prior ECGs to 
machine learning models predicting 30-day MACE. 

 

Study III aims 

In this study, we aimed to compare the performance of various machine learning 
algorithms against the 0-hour arm of the 0/1h ESC protocol. Our objective was to 
maximize the number of patients eligible for early rule-in or rule-out decisions for 
myocardial infarction when the first hs-cTnT result was available. 

 

Study IV aims 

Building on all previous work, in this study we aimed to explore if an even earlier 
rule-out was possible by investigating the predictive performance of machine 
learning models with stepwise increasing information up to the results of the first 
hs-cTnT blood test. 
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Methods 

Overview 
This thesis includes four diagnostic accuracy studies (I-IV). Study I and II explore 
the use of specific variables for prediction of AMI, while study III and IV examine 
more complex models with increasing amounts of inputs.  

Table 2 provides an overview of materials and methods for all studies included in 
the thesis.  

Table 2. Overview of studies 

Paper I II III IV 

Study design Prospective Retrospective Retrospective Retrospective 

Cohort SCORE ESC-Trop EXPECT SEM 

Study period 2013 - 2014 2017-2018 2013 - 2014 2017 - 2018 

Participants 1031 19499 9519 40312 

Split None Chronologic Chronologic Geographic 

Models Decision 
Rules 

LogReg, MLP, 
CNN, ResNet 

LogReg, ANN, 
CNN 

ANN, ResNet 

Outcome 30d MACE 30d MACE 30d AMI/Death 30d AMI/Death 

Metric N ruled out/in ROC-AUC N ruled out/in ROC-AUC, N ruled out 

Setting 
All studies were performed using registers of patient visits to hospitals in Region 
Skåne, southern Sweden. Four databases were used: SCORE, EXPECT, ESC-TROP 
and SEM.  

SCORE 
The SCORE-database is based on a prospective observational study performed in 
the ED of Skånes Universitetssjukhus Lund between february 2013 and april 2014. 
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Data was collected by research assistants between 9 am and 9 pm during weekdays. 
Adult patients with chest pain were included if troponins were analyzed as part of 
patient workup and the patient gave written informed consent to participate. Patients 
who did not speak Swedish or English and patients with dementia were not included 
in the study. All patients with ST-elevation myocardial infarctions were excluded.  

The database contains data on 1167 patients, including age, sex, previous diseases 
and medications, laboratory values such as troponin, glucose and creatinine, ECG-
data, patient symptoms and vital parameters and final diagnoses. 51 

EXPECT 
The EXPECT (Evaluation of Unknown Predictors of Electrocardiographic Changes 
– a Transnational Study) database consists of 300 826 records collected
retrospectively from patients visiting the EDs of Lund and Helsingborg from
January 1, 2010, to December 31, 2014, and patients visiting the ED in Odense and
Esbjerg between March 13, 2013 and April 30, 2014. 95,96

ESC-TROP 
This database includes the first visit for 26545 patients with chest pain presenting 
to one of five EDs (Lund, Malmö, Helsingborg, Kristianstad, Ystad) between 
February 1, 2017 and November 30, 2018. 97  

SEM 
The SEM (Skåne Emergency Medicine) database contains retrospective data from 
a cohort of 325539 unique patients with 630275 ED visits from January 1, 2017 to 
December 31, 2018. All EDs of eight hospitals in Region Skåne (SUS Malmö, 
Helsingborg, SUS Lund, Kristianstad, Ystad, Trelleborg, Landskrona, Hässleholm) 
were included in the database. 2  
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Figure 13: Study Hospitals 

Statistical Analysis 
Data analyses were performed with IBM SPSS Statistics version 23 (IBM SPSS 
Statistics, IBM Corp, Armonk, New York), Medcalc version 19.0.7 (MedCalc 
Software Ltd, Ostend, Belgium) and the python programming language (Python 
Software Foundation, Wilmington, Delaware, USA)  Models were created using 
Tensorflow (Google LLC, Mountain View, California, USA) and Pytorch. 98  

Categorical variables were compared using Pearson’s Chi-squared- or Fisher’s exact 
test, while continuous variables were compared using independent samples T-tests. 
Continuous variables were described using means and standard deviations, or 
median and interquartile range if distributions were skewed. Categorical variables 
were described using proportions.  

Bootstrapping with 1000 resamplings was used to obtain 95% confidence intervals 
for percentages of rule-in and rule-out (Studies III-IV).  

A p-value <0.05 was considered statistically significant. 

Sensitivity, specificity, positive- and negative predictive values were used as 
predefined performance metrics, while ROC-AUC, number of patients ruled in and 
out were used to evaluate and compare performances of the models. 



42 

Paper 1 

Introduction 
This work was initiated as a result of prior studies on dual testing using troponins 
and other readily available blood tests such as glucose. 99–102 The rationale was that 
glucose might be a marker of diabetes, a risk factor of AMI, or possibly that glucose 
levels rise with infarction as a result of the stress response related to the condition. 
21,22,103

Setting 
This was a secondary analysis based on the SCORE-database outlined previously. 
In addition to previously listed exclusion criteria, patients were excluded if 
troponin- or glucose blood samples were hemolyzed or missing.  

The study had two primary outcomes: 30-day MACE was the primary outcome, and 
30-day MACE without unstable angina was a secondary outcome. MACE was
defined as an adjudicated diagnosis of AMI, unstable angina, cardiogenic shock,
high-degree atrioventricular block requiring intervention, ventricular arrhythmias
requiring intervention, cardiac arrest, or death from a cardiac or unknown cause.

Adjudication was performed independently by two cardiologists, adding a third 
cardiologist if there was disagreement. 

The study was approved by the Regional Ethics Review Board in Lund, Sweden 
(Dnr 2013/5 and 2015/76) 

Index test 
Three rule-out strategies were analyzed with/without the addition of 
glucose <5.6mmol/L.  

Strategy 1: hs-cTnT <5 ng/L 
Strategy 2: hs-cTnT < 12ng/L with 1h change <3ng/L 
Strategy 3: hs-cTnT ≤ 14ng/L 

Three rule-in strategies were also analyzed with/without the addition of 
glucose ≥ 11 mmol/L. 

Strategy 1: hs-cTnT ≥ 52ng/L 
Strategy 2: 1h change ≥ 5ng/L 
Strategy 3: hs-cTnT > 14ng/L 
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Additionally, for each rule-out strategy, the optimal glucose cut-off was determined 
as the cut-off where the maximum number of patients could be ruled out while 
maintaining a sensitivity for 30-day MACE of 100%.  

Performance metrics 
Acceptable negative predictive value for any strategy was set to 98% for MACE 
and 99.5% for MACE without unstable angina. 

Paper 2 

Introduction 
To determine if ECG changes are new, guidelines recommend comparison of the 
current record with previous records, if available. Several studies have shown 
improved performance of machine learning algorithms when serial ECG data is 
used. 104–106 It is unclear whether more sophisticated machine learning algorithms 
are improved by using serial ECGs, which is what we wanted to explore in this 
study. We hypothesized that in some patients, prior ECG records might already 
show existing changes, making a new ECG finding less indicative of an acute 
myocardial infarction.  

Setting  
This retrospective study utilized data from the ESC-TROP study. This database 
included each patient’s first ED visit within this timeframe, including ECGs, hs-
cTnT measurements, and prior medical history up to five years before the ED visit. 
Patients were excluded if they had a STEMI diagnosis, no hs-cTnT data, or no 
quality ECG within two hours of arrival.  

The study was approved by the Regional Ethics Review Board in Lund, Sweden 
(Dnr 2017/831 and 2018/708) 

Input variables 
Ten seconds long ECG records with 12 leads, sampled at 500Hz. Index visit ECG 
was determined as any ECG of sufficient quality within 2 hours of ED arrival. 
Previous ECGs were the record closest in time but at least one week prior to the 
index visit 
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A set of 228 features were extracted from each ECG using the UNI-G algorithm 107 
Features used were Q, R, S, T+, T-, ST, ST2/8 and ST3/8 amplitudes, Q, R, S and 
QRS durations, QRS area and ST slope, STslope positive and STslope negative for 
each lead (19 features for 12 leads = 228 features). This feature selection was based 
on a previous study. 108  

Other features were patient age, sex, initial hs-cTnT values and time between ECGs. 
The last two features were logarithmized before use in order to normalize their 
skewed distributions.  

Models and training 
Models used included logistic regression, multilayer perceptron, convolutional 
neural networks, and residual neural networks pre-trained on large external datasets. 
109

Models were trained with four different input sets: (1) index ECG alone, (2) index 
and prior ECG, (3) index ECG plus clinical variables (age, sex, and hs-cTnT), and 
(4) both ECGs plus clinical variables (including time between ECGs).

Data was split chronologically into training (50%), validation (25%) and test groups 
(25%). Model hyperparameters were determined by random search.  

To aid the logistic regression model, principal component analysis (PCA) was used 
on the 228 Glasgow features for dimensionality reduction. Grid search was used to 
determine optimal output dimensions of the PCA. The MLP used the 228 Glasgow 
features without PCA.  

CNN and ResNet models used the ECG data rather than the Glasgow features. In 
order to fit the ResNet architecture, ECG data was resampled and rescaled and leads 
were reordered. The convolutional part of the ResNet model was fixed, while the 
last output layer was replaced by a small MLP.  

For each network, an ensemble of 10 identical models with different initial seeds, 
was used. The mean of all model outputs was used as the final output of the 
ensemble.  

Outcome Metrics 
The primary clinical outcome, 30-day MACE, was defined as unstable angina, 
atrioventricular block type 2 or 3, ventricular arrhythmia requiring acute 
intervention, cardiac arrest, pulmonary edema, cardiogenic shock, coronary artery 
bypass grafting, percutaneous coronary intervention, transvenous pacemaker 
insertion, temporary cardiac pacing or death from any cause.  
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The primary performance metric was the area under the receiver operating 
characteristic curve (AUROC), with a particular focus on the added value of prior 
ECGs in the four different input sets. Percentile bootstrapping with 10000 samples 
was used to obtain 95% confidence intervals for AUROCs.  

Subgroup analysis 
In routine care, prior ECGs are seldom reviewed if the index ECG is normal. A 
subgroup analysis was therefore done on all patients where index ECGs were 
flagged as pathological (AMI or myocardial ischemia) by the Uni-G algorithm 107  
Subgroup analysis was also done on the following age subsets 18-50, 51-64, 65-75 
and over 76 years. Analyses were also made on patients with/without prior AMI.  

Paper 3 

Introduction 
When conceiving this study, we wanted to build upon the results of study I, where 
dual testing with a single troponin value could be used to exclude AMI safely in a 
substantial proportion of patients. We hypothesized that by including several 
demographic factors, ECG data and blood samples, we should be able to find a 
subgroup of patients where the likelihood of AMI was very low. We did not include 
prior ECG records, as we could not see any additional benefit in study II. Using a 
combination of information sources in this manner would also mimic the way 
clinicians work and could possibly improve model acceptance upon  
implementation. 

Setting  
This study was a retrospective study of data using a subset of the EXPECT database. 
This subset included all visits to two EDs, Skåne University Hospital at Lund 
(serving 320.000 inhabitants) and Helsingborg Hospital (serving 250.000 
inhabitants) in Sweden between 2013 and 2014. 

Inclusion criteria were adult (≥18 years) patients presenting with chest pain, where 
a hs-cTnT sample and ECG were taken as part of the workup. Only the first ED visit 
for each patient was included in the study. Patients were then excluded if initial test 
results for hs-cTnT, glucose, hemoglobin, or creatinine were missing or hemolyzed, 
or if ECG data quality was insufficient.  

This study was approved by the Regional Ethics Review Board in Lund, Sweden 
(Dnr 2018-708) and the Swedish Ethics Review Authority (Dnr 2019-03523) 
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Input variables 
Any test results within four hours after ED arrival were considered. ECGs were 
sampled using 12 leads and samples were 10 seconds long with a sampling rate of 
1000 Hz. The Uni-G algorithm was used to filter out unusable ECG records and to 
obtain a 1.6 second long median ECG beat. 107  

Outcome Metrics 
The primary clinical outcome was AMI or all-cause death within 30 days, while 
index event myocardial infarction was used as a secondary outcome. The rule-out 
performance of each model required a sensitivity of at least 99% and a negative 
predictive value (NPV) above 99.5%. Rule-in performance was defined by 
specificity over 90% and positive predictive value (PPV) above 70%. Models were 
evaluated by AUROC, rule-out proportion, and rule-in proportion. 

Models and training 
Multiple machine learning (ML) models were developed to predict AMI or death 
within 30 days, with the following inputs: age, sex, initial ECG, and first blood test 
values (hs-cTnT, glucose, creatinine, and hemoglobin).  

Models varied by complexity: logistic regression, artificial neural network (ANN) 
which in this study used the MLP architecture described earlier, and convolutional 
neural networks (CNN) for raw and median ECG beats. The models’ performances 
were compared to the European Society of Cardiology’s 0-hour protocol, which 
uses a single hs-cTnT measurement (cutoffs <5 ng/L for rule-out and ≥52 ng/L for 
rule-in). 

Patients were split chronologically into training (50%), tuning (25%) and testing 
(25%) groups. The tuning group was used to find a cutoff for each model that would 
allow the maximum amount of patient to be either ruled in or out while maintaining 
prespecified performance metrics. 

All models used age, sex and blood sample results as inputs, while the CNN models 
additionally included ECG-data either as the raw ECG signal (CNN-raw) or the 
median beat (CNN-MB). 8 of the 12 ECG channels were used as inputs to these 
models, as the remaining four (III, aVL, aVR, aVF) are linear combinations of 
others and present no new information.  
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Paper 4 

Introduction 
In clinical practice, patient risk of AMI is continually evaluated, and some patients 
are sent home without hs-cTnT sampling. The decision to rule out AMI in these 
instances is primarily at the discretion of the clinician. We wanted to create a 
tool that could estimate the relative risk of AMI for patients with stepwise 
increasing information as in routine care, such that clinicians could make 
informed decisions to the benefit of patients. Building on the results of study III, 
we wanted to explore what decisions could be made at specific points in time.  

Setting 
This study was a retrospective multicenter analysis based on data from the 
SEM database described earlier.  

Patients were eligible for inclusion if they presented to the ED with chest pain 
and had a high-sensitivity cardiac troponin T (hs-cTnT) sample drawn within four 
hours of arrival. All patient visits were included in the study. Patients were 
excluded if initial test results for hs-cTnT, glucose, hemoglobin, or creatinine 
were missing or hemolyzed, or if ECG data quality was insufficient. 

This study was approved by the Swedish Ethical Review Authority (Dnr 2019–
05783) and Region Skåne (KVB 302−19). 

Data Splitting and Model Development 
Patient visits were split by location into a training-tuning (75%) and a test 
group (25%). Visits to Skåne University Hospital in Malmö were selected as the 
test group. If a patient had visits in both the training and testing groups, all that 
patient’s visits in the testing group were excluded to prevent data leakage. 

The training-tuning group was further divided into training (80%) and tuning 
(20%) groups by randomly splitting visits on the patient level. The tuning group 
was used to find a cutoff for each model that would allow the maximum number 
of patients to be either ruled in or out while maintaining prespecified sensitivity 
and negative predictive values. 
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Input Variables 
Models utilized a stepwise approach, adding new clinical information at each step 
to simulate the diagnostic process. A step was defined as a point in time when new 
information would be available. Input variables included: 

Step 1: Patient age and sex. 

Step 2: Past medical history and coronary angiography results (up to five years 
before the index visit), redeemed medications (up to one year prior). 

Step 3: ECG features extracted from 10-second, 500 Hz, 12-lead ECG 
recordings (excluding leads III, aVL, aVR, and aVF due to redundancy). 

Step 4: Laboratory results (glucose, hemoglobin, creatinine). 

Step 5: First hs-cTnT measurement. 

Any test results within four hours after ED arrival were considered. ECGs were 
sampled using 12 leads and samples were 10 seconds long with a sampling rate of 
500 Hz. Eight of the 12 ECG channels were used as inputs to these models, as the 
remaining four (III, aVL, aVR, aVF) are linear combinations of others and present 
no new information. 

Outcome Metrics 
The primary clinical outcome was AMI or all-cause death within 30 days, identified 
through the Swedish National Inpatient Register and Cause of Death Register. AMI 
was defined based on the Third Universal Definition of Myocardial Infarction. 

Model performance was assessed using the area under the receiver operating 
characteristic curve (AUROC), rule-out proportion, defined as the percentage of 
patients safely ruled out using predefined sensitivity and NPV constraints, and 
sequential rule-out performance, evaluating whether a stepwise ML approach could 
maintain high sensitivity when used in practice. 

Model Training and Validation 
A transfer-learning-based ResNet model was used for ECG feature extraction. 
Neural networks (NNs) were then developed for each step independently and 
combined into a sequential rule-out framework in a three-stage process: 

1. Models were created to evaluate whether the variables in a specific step
were informative. Variables were deemed informative if the model AUROC
had a lower bound of the 95% Confidence Interval (CI) above 0.5. All steps
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with informative variables were used for creating the final combined 
models. 

2. Combined models were created for each step, with all variables available 
up to that step. Model performance was evaluated using AUROC and the 
proportion of patients ruled out using that model. 

3. Models were evaluated sequentially, using all models available at a specific 
step, in order to test if the usage of multiple models could maintain the 
prespecified sensitivity and NPV thresholds. 

Feature Importance Analysis 
Feature permutation analysis was performed to determine the relative importance of 
input variables at each step. The AUROC changes from shuffling individual features 
were used to quantify variable contributions. 
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Results 

Demographics 
As table 3 shows, studies varied in number of participants, but the age and sex 
distributions remained similar. Percentages with the target outcome also remained 
similar, with more outcomes in studies I and II where the outcome was more broadly 
defined (MACE vs AMI/death).   

Table 3, Overview of study patient demographics 

Study I II III IV 
Participants, n 1031 19499 9519 40312 
Age (mean years) 60.7 62.6 59.1 60.4 
Female (%) 46.2 49.8 47.3 47.3 
With outcome (%) 11.6 10.6 8.4 6.9 
Previous AMI (%) 20.2 7.4 11.1 8.4 
hs-cTnT (median ng/L) 6 8 6 7 

Paper I 
1031 patients were left after exclusion according to the predefined exclusion criteria. 
Of these, 120 patients (11.6%) had MACE within 30 days.  

As seen in Table 4 below, sensitivity increased while the number of patients eligible 
for rule-out decreased when glucose was added as a diagnostic criterion.  

A combination of a single hs-cTnT value ≤14 ng/L and glucose < 5.6 mmol/L 
identified 252 (24.4%) of patients for rule-out with a 99.6% NPV for MACE 
excluding unstable angina. Using serial troponin samples, an initial value of hs-
cTnT ≤12 ng/L with a rise/fall below 3ng/L combined with a glucose < 5.6 mmol/L 
allowed the rule out of 240 (23.2%) of patients with a NPV of 100% for MACE 
excluding unstable angina.  

No dual rule-in strategy performed better than using hs-cTnT alone. 
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When searching for optimal glucose cutoff values, a combination of strategy 2 and 
3 was found to maximize the number of patients eligible for rule out of 30-day 
MACE (Table 5). This strategy identified 431 patients (41.8%) for rule-out with a 
sensitivity of 100% for MACE without unstable angina. 

Table 4: Rule-out strategies. 

30-day MACE Sensitivity Specificity NPV NLR N 

0h Hs-cTnT <5 96.7 33.5 98.7 0.10 309 

0h Hs-cTnT <5 + glucose < 5.6 99.2 15.6 99.3 0.05 143 

0h Hs-cTnT < 12 and 1h delta < 3 87.5 73.2 97.8 0.17 682 

0h Hs-cTnT <12 and 1h delta < 3 + 
glucose < 5.6 98.3 26.1 99.2 0.06 240 

0h Hs-cTnT ≤ 14 74.1 80.4 96.0 0.32 763 

0h Hs-cTnT ≤ 14 + glucose < 5.6 97.5 27.3 98.8 0.09 252 

30-day MACE without UA

0h Hs-cTnT <5 97.6 32.4 99.4 0.07 309 

0h Hs-cTnT <5 + glucose < 5.6 98.8 15.0 99.3 0.08 143 

0h Hs-cTnT < 12 and 1h delta < 3 98.8 71.9 99.9 0.02 682 

0h Hs-cTnT <12 and 1h delta < 3 + 
glucose < 5.6 100 25.3 100 0.0 240 

0h Hs-cTnT ≤ 14 85.7 79.3 98.4 0.18 763 

0h Hs-cTnT ≤ 14 + glucose < 5.6 98.8 26.5 99.6 0.04 252 

Table 5: Combined rule-out strategies. 

30-day MACE Sensitivity Specificity NPV NLR N 

 Hs-cTnT <5 or hs-cTnT < 12 + delta < 3 81 70.5 97.7 0.27 684 

Hs-cTnT ≤ 14 + glucose < 5.6 or hs-
cTnT < 12 + delta < 3 + glucose < 5.6 96.4 26.3 98.8 0.14 252 

Hs-cTnT ≤ 14 + glucose < 5.2 or hs-
cTnT < 12 + delta < 3 + glucose < 6.3 90.5 44.7 98.1 0.21 431 

30-day MACE without UA

Hs-cTnT <5 or hs-cTnT < 12 + delta < 3 97.6 72 99.7 0.03 684 

Hs-cTnT ≤ 14 + glucose < 5.6 or hs-
cTnT < 12 + delta < 3 + glucose < 5.6 98.8 26.5 99.6 0.05 252 

Hs-cTnT ≤ 14 + glucose < 5.2 or hs-
cTnT < 12 + delta < 3 + glucose < 6.3 100 45.5 100 0 431 
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Table 6: Rule-in strategies. 

30-day MACE Sensitivity Specificity PPV PLR N 

0h Hs-cTnT ≥ 52 38.3 97.9 70.8 18.4 65 

0h Hs-cTnT ≥ 52 + glucose ≥ 11 6.7 99.7 72.7 20.2 11 

1h delta ≥ 5 46.7 97.8 73.7 21.3 76 

1h delta ≥ 5 + glucose ≥ 11 11.9 99.7 76.9 37.6 13 

0h Hs-cTnT > 14 74.2 80.4 33.2 3.8 268 

0h Hs-cTnT > 14 + glucose ≥ 11 12.5 97.9 44.1 6.0 34 
 
30-day MACE without UA 
0h Hs-cTnT ≥ 52 53.6 97.9 69.2 25.4 65 

0h Hs-cTnT ≥ 52 + glucose ≥ 11 9.5 99.7 72.7 30.1 11 

1h delta ≥ 5 65.5 97.8 72.4 29.5 76 

1h delta ≥ 5 + glucose ≥ 11 10.7 99.6 69.2 25.4 13 

0h Hs-cTnT > 14 85.7 79.3 26.9 4.1 268 

0h Hs-cTnT > 14 + glucose ≥ 11 11.7 97.8 41.2 5.31 34 

Paper II 
19499 patients were included in the study. Of these, patients in the training group 
were more likely to have a prior history of AMI, congestive heart failure and 
pulmonary disease. Mean age was 62.6 years, 49.8% were female and 30-day 
MACE was observed in 10.6% of cases.  

While most models had a slightly higher AUROC when prior ECG data was added, 
there was no significant improvement, as the 95% confidence intervals overlapped.  

When models used only ECG data, the AUROC averaged around 0.77, with the best 
model being the MLP with a single ECG with AUROC 0.774 (95% CI: 0.754–
0.796). 

When all variables were used the AUROC improved drastically to around 0.87. In 
this group the MLP again performed the best, reaching an AUROC of 0.878 (95% 
CI: 0.864–0.893).  

These results were maintained in the subgroup with/without pathological index 
ECG. When different age groups were examined, a slight improvement in AUROC 
was seen for some models in younger age groups, while some models performed 
slightly worse for older patients when a previous ECG was added. These 
performance changes were not significant. Models performed better for patients 
without prior AMI.  
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When evaluating best model performance on subsets of the clinical outcome with 
only ECG data, unstable angina (AUROC 0.71) was harder to predict than AMI 
(AUROC 0.8) or death (AUROC 0.83). 

Figure 14: Main results, AUROC values for each model on the test set for predicting 30-day 
MACE. LR, Logistic Regression; MLP, Multilayer Perceptron; CNN, Convolutional Neural Network; RN, 
Residual Neural Network 

Paper III 
A total of 12381 patients were included, and patients were then excluded if 
exclusion criteria were met, leaving 9519 patients for the final analysis, of which 
2379 patients were selected as the test group. Among included patients the mean 
age was 59.1 years, 47.3% were female and 8.4% experienced AMI or died within 
30 days. Patients in the training group had a slightly higher prevalence of AMI 
(9.0%) compared to the testing group (7.8%). 

The CNN model using median ECG beats (CNN-MB) showed the best 
performance, ruling out 55% of patients with a sensitivity of 99.5% and NPV above 
99.9%, outperforming the ESC protocol, which ruled out 47.2% with a sensitivity 
of 98.9%. The 95% CI between the CNN-MB model (53.1-57) did not overlap with 
that of the ESC 0h model (45.1-49.3) which indicates that the difference in 
performance is significant. 

For rule-in, CNN-MB maintained a PPV above 70% and identified 5.3% of patients 
for rule-in, whereas the ESC protocol identified 6.6% but failed to reach the target 
PPV. 
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These results were consistent for the secondary outcome, index event AMI. 

Table 7: Rule out and rule in performance for all models. 

Rule Out 
 Sensitivity NPV Ruled out % Ruled out (n) Missed AMI or Death 

ESC 0h 98.9 99.8 47.2 1123 2 

LogReg 97.8 99.6 38.5 915 4 

ANN 99.5 99.9 46.6 1109 1 

CNN-MB 99.5 99.9 55 1309 1 

CNN-RAW 99.5 99.9 50.8 1208 1 
 
Rule In 
 Specificity PPV Ruled in % Ruled in (n) Incorrectly ruled in 

ESC 0h 97.4 63.9 6.6 158 57 

LogReg 98.4 65.1 4.3 103 36 

ANN 98.2 69.8 5.4 129 39 

CNN-MB 98.5 73.6 5.3 125 33 

CNN-RAW 98.2 70.5 5.5 132 39 

 
Figure 15: Comparisons between the baseline model (ESC 0h) and the best performing model (CNN-
MB).  
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Figure 16: Architecture of the CNN-MB model. 



57 

Paper IV 
After applying the predefined exclusion criteria, a total of 40,312 patient visits were 
included in the analysis. Among these, 2,797 (6.9%) experienced AMI or all-cause 
death within 30 days. 

As shown in Table 8, model performance improved at each step, with ECG (Step 3) 
and hs-cTnT (Step 5) providing the most significant AUROC gains. Sequential 
application of the models resulted in a cumulative rule-out of 51% of patients, but 
sensitivity dropped below the prespecified 99% threshold. 

Table 9 shows that the highest-performing individual model used all input features, 
achieving an AUROC of 0.928 and ruling out 49% of patients while maintaining an 
NPV above 99.5% but sensitivity was below 99% (97.8%). A combination of age 
and sex alone ruled out 15% of patients with an AUROC of 0.73. 

Feature importance analysis revealed that ECG and hs-cTnT were the dominant 
contributors to model performance, with medical history and other laboratory results 
providing minimal additional predictive value. 

Table 8: Model performance on test-set, AUROC values 

Step In isolation Combined 

1. Age + sex 0.730 0.730 

2. Medical History 0.608 0.732 

3. ECG 0.844 0.850 

4. Glucose, Hb, Creatinine 0.695 0.853 

5. hs-cTnT 0.909 0.928 

Table 9: Patients ruled out at each step vs sequentially 

 Rule out Sensitivity NPV 

Step Step (%) Sequential (%) Step Sequential Step Sequential 

1. Age+sex 1561 (16%)  0.991  0.996  

2. +Medical 
History 1589 (16%) 1816 (18%) 0.986 0.984 0.994 0.994 

3. +ECG 549 (6%) 1865 (19%) 0.999 0.984 0.998 0.994 
4. +Glucose, 
hb, creatinine 572 (6%) 1874 (19%) 0.999 0.984 0.998 0.994 

5. +hs-cTnT 4843 (49%) 5039 (51%) 0.978 0.963 0.997 0.995 
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Figure 17: Feature importance values 
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Discussion 

Studies 

Paper I 
There might be an additional value in a combination of high sensitivity troponins 
and glucose when evaluating patients for rule out of MACE. The results of this study 
should be seen as an indication that glucose could be an interesting candidate 
variable for more complex machine learning models.  

There is a range of other molecules currently being investigated for use in patients 
with suspected AMI. 110 Among these copeptin, a glycopeptide released during the 
first hours after an infarction, is an interesting candidate for dual testing with a single 
hs-cTnT value for early rule out of AMI. 111 However, copeptin is not routinely 
measured, while glucose is readily available at any ED.  

We also tested using past diabetes instead of glucose values, but this did not improve 
the performance of the troponin algorithms. Therefore, the improved performance 
of dual testing with glucose cannot be solely attributed to a past diagnosis of 
diabetes.  

Regrettably, we could not see improved performance for rule-in. This might be due 
to the high cutoff selected, 11 mmol/L. Most rule-in strategies already selected few 
patients for rule-out, but PPV remained high, around 70% for most strategies. The 
PPV did increase somewhat, but not significantly. This is due to the wide confidence 
intervals related to the small sample size. Very few patients were ruled in with the 
dual testing strategy, however, and it’s unlikely that significant improvements 
would be seen using a larger dataset. 

Paper II 
The results of this study suggest that prior ECGs may not significantly enhance ML 
models for 30-day MACE prediction in chest pain patients. This implies that models 
without prior ECGs could still achieve high accuracy and is surprising given that 
guidelines recommend consideration of prior ECGs, and the importance of ECG 
changes being new in the definition of AMI. It is important to remember that 
absence of a result is not a proof that there is no value to prior ECGs. There might 
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still be value in these, but results indicate that this is not easy to find. The additional 
complexity of getting access to prior ECG data, and the fact that some patients do 
not have prior ECG records suggests that focus should be on other model inputs 
than prior ECGs.  

Interestingly the results were consistent regardless of the use of other clinical 
variables such as age, sex and hs-cTnT values, and even in subgroups where one 
would expect prior ECGs to be important such as patients with pathological index 
ECGs.  

Another interesting aspect of this study was that simpler models such as the MLP 
performed on par or even better than more complex models such as the ResNet. We 
would expect the ResNet to be able to capture more complex representations than 
those learned by the MLP presented with engineered features. The likely reason this 
didn’t happen is that there was insufficient data. 20 000 records might seem like a 
lot, but for these models it’s barely scratching the surface of the problem. Large 
ECG datasets used today contain millions of records and this is probably what is 
needed for these complex architectures to show their worth. We did explore this in 
study IV where we could see significant model improvements when trained on more 
data. 

Paper III 
This study demonstrated that ML models could potentially replace serial hs-cTnT 
measurements, allowing for quicker patient management decisions with only one 
set of blood tests and ECG. Our CNN models showed promise in identifying patients 
for early rule-out and rule-in, potentially reducing ED crowding. Specifically, the 
CNN-MB model outperformed the baseline 0h-ESC protocol, although the 
difference in number of ruled-out patients was small. This could be an effect of the 
temporal data split, where a substantial proportion of patients had very low hs-cTnT 
values, exaggerating the performance of the baseline model. One issue with this 
study is that it’s hard to disentangle whether more complex models outperformed 
simpler models due to their architecture or if it’s simply that these models had access 
to more data.  

In this study we had access to more data than in study II, but it’s likely still not 
enough. The selected decision thresholds of the models were based on the patients 
with 30-day AMI or death in the tune set and a very high sensitivity threshold of 
99%. With these criteria, only one patient was allowed as a false negative in the tune 
group. This resulted in conservative rule-out decision thresholds. With access to 
more data the models could possibly select a larger proportion of patients for rule-
out.  

The results of our study are on par with similar work done by other research groups 
using other model architectures and input variables. 85–89  We did manage to achieve 
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a slightly higher sensitivity in our test group compared to these other studies, but 
this remains to be externally validated. Two strengths of the models in this study are 
the use of a single hs-cTnT value instead of serial tests, and that models do not 
require any patient history or physical examination, giving a probability score solely 
based on objective data. 

Paper IV 
This was a challenging study to perform, both in terms of collecting and 
preprocessing data and model creation. It’s hard to imagine that the initial scope of 
the study was even wider. In addition to the five diagnostic steps, I also wanted to 
explore different model architectures such as random forests, and different 
hyperparameter search techniques. The number of permutations would have been 
staggering. As it stands the paper is still quite complex and possibly a bit 
overreaching.  

A continuation of previous studies, study IV delved into the specific input features 
used when predicting AMI and death. We could see in study III that our models only 
had small performance improvements compared to the baseline, which only used a 
troponin cutoff. Therefore, I wanted to know exactly how much difference factors 
such as age and sex made when troponin results were introduced to the models. The 
intuition was that since troponins were a part of the diagnostic test while at the same 
time being a criterion for the target diagnosis, incorporation bias would play a 
significant part in the performance of the models.  

The models developed in this study did not reach the stringent predefined sensitivity 
threshold, but they can still be useful simply as tools for estimating the pretest 
probability of disease for a patient before a complete history is taken. This could be 
important in triage, where a decision must be made to take an ECG and blood tests 
or to send the patient home. By understanding the individual patient risk, informed 
decisions can be taken, and patients can be more involved in decisionmaking. 

Additionally, sequential model use led to deteriorating sensitivity. I have not seen 
this type of analysis done previously, but clinical risk scores are often used in 
sequence in this manner for various conditions. As these scores are tested in 
isolation of each other, this raises the question if our current risk scores are as 
performant as we think they are.  

Another theme I wanted to explore was explainability. Studies II - III did not contain 
any explainability measurement. To justify the use of these models, I had to be able 
to peek inside.  

Interestingly, feature importance analysis indicated that most other variables were 
not very informative once ECG data was introduced. This was surprising given that 
the clinical intuition is that a normal ECG does not rule out infarction, and that age 
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plays an important role for risk prediction. Troponin was still by far the most 
informative variable, but even when this was added, the model continued to use the 
ECG data.  

Using a wide range of input variables mimics clinical practice and might improve 
model acceptance if users see that the models consider all aspects of the workup. If 
models are simply using the hs-cTnT values “behind the scenes” however, users 
might loose confidence in model performance. Visualising what the model “sees” 
using explainability techniques such as feature importance could improve model 
transparency and ultimately improve user trust and adoption.  

General Discussion 

The data, the model and the noise 
In any form of modeling, we must consider that a perfect model requires either 
having a complete dataset or a perfect causal relationship between our features and 
the outcome. The first scenario is not realistic for clinical research, but we are 
getting closer by building increasingly large databases of patient cases. The second 
scenario is more interesting to discuss. 

The question, therefore, is: How close can we come to a perfect relationship between 
input features and the target?  

The first step is the selection of features. We could include everything we have and 
let the model find what’s important. This is an accepted method when constructing 
predictive models. However, this can lead to models having difficulties locating 
important relationships as data becomes increasingly sparse when the number of 
feature dimensions grow. This is known as the curse of dimensionality. 112 Models 
can be overfit on patterns related to the specific training data instead of learning 
meaningful representations.  

One example of overfitting can be seen in Study I. Reviewers wanted the optimal 
glucose cutoffs for all rule out decisions in addition to the prespecified cutoffs. 
Using the optimal values enabled a small increase in the proportion of patients ruled 
out, but these results would likely not generalize to other settings.  

When selecting features, we also face another question. Could we modify our 
features in some way to extract more information? Feature engineering has 
historically been an important method to help models learn. With the development 
of deep neural networks, we have moved away from this approach, assuming that 
models will generate these intermediate features, or representations, on their own. 
In study IV we did use some feature engineering and feature selection but generally 
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tried to include as many variables as possible, using feature importance analysis to 
see what actually did improve the models. 

Another crucial aspect to consider is noise. We are searching for a signal that 
represents the relationship between our features and the outcome, but multiple types 
of noise complicate this task.  

Firstly, how confident should we be regarding the outcome labels? With medical 
data (and in our studies), we typically look at ICD-codes as a surrogate for patient 
diagnoses. Mislabelling, i.e., that the recorded diagnoses do not match the patient's 
actual condition, could create significant issues by breaking the relationship 
between the input variables and the outcome. This is particularly true if different 
coding procedures at different locations lead to a discrepancy between the training 
and test group outcomes. 

Secondly, there is noise in our features. Specifically for lab data and ECGs, 
measurement errors can cause the data to deviate from the true values. Additionally, 
there is a risk that a patient may have been mistakenly assigned another patient's 
results. Other factors, such as the timing of patient presentation to the ED at different 
locations, could also affect results. 

In our Study IV, we observed that the test group more frequently had hs-cTnT < 5 
ng/L compared to the training-tuning group. It takes time for troponin levels to rise 
in the blood following a myocardial infarction. Could it be that some patients in the 
test group arrived at the hospital very quickly, and their initial troponin 
measurement was falsely low? 

All of this contributes to noise in the signal, which can hinder models from learning 
optimally. 

We may also encounter issues related to the model architecture and training. 
Traditional models, such as logistic regression, are linear and risk failing to capture 
nonlinear relationships. It remains an open question what the best model 
architecture is for a given problem. A common method, which we also employ, is 
to test a wide range of architectures and select the best performing one. However, 
this does not guarantee that the chosen architecture is truly optimal. On top of this, 
model training algorithms can get stuck in suboptimal minima. Had we chosen a 
different error minimization method or simply different initial weights for our 
networks, we might have been able to reduce errors further. 

One should also ask, is the model even using the data? This is an important point. 
In Study III, we had two models that received the same input data: CNN-RAW and 
CNN-MB. Interestingly, CNN-MB performed slightly better than CNN-RAW. Both 
models had access to the same information, with the only major difference being 
that one model received raw ECG data (CNN-RAW), while the other received 
processed data (CNN-MB), specifically median beats. 
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When we started studying sequential models in Study IV, our initial plan was to use 
one of these models to extract ECG features from our dataset. For some reason, we 
first chose CNN-RAW, but the results were unexpected: all patients ended up with 
identical values for their ECG features. 

After some investigation, we found an explanation: all feature weights were 
extremely small. The dominant factor in the network layers was the bias, meaning 
that in the end, the only thing being passed through was the bias term. In other 
words, CNN-RAW was not actually using the ECG data when making its 
predictions! This might explain why CNN-RAW did not perform as well as we had 
anticipated. When we analyzed the CNN-MB model, it became clear that this model 
was indeed using the ECG data.  

What can we learn from this? It highlights the importance of looking inside the 
models rather than just evaluating their overall performance. In Study IV, we 
specifically examined the relative contribution of each variable to the model’s final 
decisions. To do this, we used feature importance analysis to assess how different 
inputs influenced the model’s predictions. 

All this leads to the conclusion that creating good predictive models is a really 
difficult process. Often initial results are promising, but diminishing returns make it 
increasingly difficult to improve models as we move closer to perfect predictions.  

Random, chronological or geographic splits 
Throughout these studies, we have used different types of data splitting for model 
training and evaluation. Random splitting is probably the most common approach 
in machine learning applications, allowing for an even distribution of the target 
labels. 

A chronological split, on the other hand, can be used to test models in a way that 
more closely resembles real-world conditions. Diagnostic procedures and criteria 
evolve over time. This means that models developed on a specific patient dataset 
risk predicting outcomes that no longer fully align with the current reality. This 
introduces a challenge for models, as the problem they aim to solve has now 
changed. 

A geographic split, which was used in Study IV, confronts another common issue, 
namely that a model trained and tested in one location should perform equally well 
in another, where the patient population may differ. 

Random splitting may produce overly optimistic results, as the test group does not 
experience diagnostic or geographic drift. Ideally, a model should be developed and 
then tested in a different location and at a later time, which is typically done in 
external validation. 
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In our studies, we primarily used chronological splits (Studies II and III) and 
geographic splits (Study IV). Our demographic descriptions show that when using 
a chronological split, the training dataset contains patients with more pre-existing 
conditions than the test dataset. However, we do not see a clear trend in the 
distribution of outcome labels across our studies. It is statistically probable that 
patients that seek often for the same issue (frequent flyers) disproportionally end up 
in the training set.  

In Study II, the proportion of patients with MACE was slightly higher in the test 
group (11% vs 10%) than in the training group. In Study III, the proportion of 
AMI/death was slightly lower in the test group compared to the training group (8% 
vs 9%). However, in Study III, the test group contained significantly more patients 
with hs-cTnT < 5 ng/L than the tuning group (47% vs 36%). Interestingly, this trend 
also appears in the geographic split of Study IV, where 38% of patients in the test 
set had hs-cTnT < 5 ng/L, compared to 29% in the train-tune set. 

The reason for these differences is not entirely clear, but they pose a significant 
challenge for the models, as the patient population they were trained on differs 
noticeably from the one they are tested on. 

 
Figure 18: The distribution of troponin values in the dataset of study III. 

The Issues with Feature Importance 
In Study IV, we used feature importance to analyze our models and explore which 
variables they considered in their decision-making process. This procedure is not 
entirely unproblematic.  
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If a feature is not important to the model, it only means that this particular model is 
not using it, not that the feature itself is useless. As an example, we included 
diagnosis codes for previous diseases as input features. As soon as ECG data was 
introduced, the models barely used these diagnosis codes anymore. However, had 
we included additional details about past diagnoses such as the date of diagnosis or 
the number of times it was recorded, we might have obtained different results. 

When certain variables are strongly correlated, the model can still make predictions 
even when some variables are missing, because the missing information is encoded 
in the remaining correlated variables. As a result, it may appear that each individual 
correlated variable contributes less to the model than it actually does. The ECG-
features were developed using a transfer learning method based on predicting age. 
When these were added, age lost practically all its predictive power. Could this 
mean that this information now resides within the ECG features? During Study IV 
we first use the CNN-MB model from study III as an ECG feature extractor. When 
we compare the results of the feature importance analysis using the CNN-MB model 
and the final ResNet model, there is a striking difference in feature importances. 
Models trained with these new ResNet-based ECG features significantly 
outperformed the ones trained on CNN-MB-based features. More interestingly, age, 
sex, and previous diseases were barely used by the model anymore. 

Figure 19: ResNet vs CNN-MB feature importance 
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Finally, when we mix feature values in this way, we may create patient cases that 
cannot exist in the real world. Since the model learns from real patient patterns, it 
may make unusual decisions when these patterns are broken. For instance, we might 
pair ECG features from a very old patient with the age of a very young patient, a 
combination that never occurs in real-world data. This introduces a form of synthetic 
distribution bias, as we deviate from real-world cases in an artificial way. 

There still is some value in visualisation techniques such as feature importance. Had 
we used this in study III we would have immediately understood that the CNN-raw 
model did not use the ECG data, and reconfiguration of this model might have 
improved its performance.  

Obstacles to model implementation 
All the studies in this thesis have been based on register data. The real test of the 
capabilities of the models is introducing them to clinical practice. This presents yet 
another layer of issues. Firstly, lets consider current developments related to 
diagnostic drift.  

The traditional STEMI/NSTEMI distinction is based on ECG findings, but this 
classification does not always correlate with the presence of an occluded coronary 
artery. Studies have shown that some STEMI diagnoses do not correspond to an 
acute coronary occlusion, while some NSTEMIs do. The role of STEMI and 
NSTEMI definitions have recently been up for discussion, with a new definition, 
OMI vs NOMI gaining traction. This could mean changes to which patients are 
selected for direct reperfusion therapy in the future, changing the composition of 
chest pain patients that present to the ED. 113–115 Studies on machine learning 
methods using this outcome are already emerging. 116  

Even the definition of AMI is under debate, with proposals to change the types of 
AMI to spontaneous, secondary and procedural infarctions. 117  

Further, changes in diagnostic procedures and available assays might make 
developed models unusable. A pertinent example is that recently Region Skåne 
decided to change from hs-cTnT to hs-cTnI assays. As all our current registers and 
models are based on hs-cTnT, we now need to collect completely new data and train 
new models instead. What does this mean for models such as those developed in 
study III and IV? These could still be used by centers that use hs-cTnT assays, and 
such an external validation of the models is important, but these changes preclude 
their use in our own clinic.  

Lastly, a range of issues regarding the ethical use of models needs to be discussed. 
This is a big topic best left to its own section.  

  



68 

Computer says no. 

- Carol Beer, Little Britain
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Ethical issues 

Patient informed consent was only required for study I, while the other studies gave 
patients access to the possibility of opting out, i.e., erasing their data from the 
records upon request. This is in accordance with the General Data Protection 
Regulation (GDPR) and Patientdatalagen, which stipulates among other things the 
right of data erasure. 118,119  

When a model is created, however, it is not possible to disentangle certain data 
points from the underlying data distribution the model relies on. The model cannot 
unlearn the information gained from the person wishing to withdraw consent.  

We also need to consider where the responsibility of model predictions lies. Once a 
model makes a decision that is incorrect, who is to blame? Is it the developer who 
created the model? Or is it the clinician acting on the decision? When model 
predictions are correct and followed there is no issue, but what if the model is 
incorrect? Patients and their relatives will require somebody to take responsibility 
for incorrect diagnoses, workups and treatments. And what if the clinician chooses 
to go against the suggestion of the model? These are questions without a clear 
answer.  

Another issue is that models are currently being trained on data labeled by clinicians. 
Bias and discriminative behaviour during diagnostic procedures will propagate to 
the models, which will learn to pick up on the same biases.  

Additionally, models are trained using a specific subsample of the entire patient 
population. In this thesis we have chosen chest pain patients presenting to EDs in 
Skåne. If these models were to be deployed users might, and are probably likely to, 
apply them to completely different patient groups such as any patient where a 
troponin was taken, regardless of whether the patient experienced chest pain. 
Models might be applied on children or patients admitted to wards. The list goes on. 
None of these groups were the intended group for these models, and performance is 
not guaranteed.  

Finally, users might try to game the model into providing the answers they want by 
changing the inputs to figure out when a decision is changed. 

All these issues are still open problems, worthy of exploration in the future. 
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Conclusions 

This thesis demonstrates the potential of ML models to improve the early risk 
evaluation of patients with suspected AMI in the ED. By combining hs-cTnT, ECG 
data, and other clinical variables, ML-based decision support systems improved 
diagnostic accuracy and allowed for a reduction in unnecessary testing. However, 
the results also showed the limited added value of prior ECGs and the decline in 
sensitivity when using a sequential ML approach. 

ML models were also shown to outperform traditional rules-based systems in AMI 
prediction. These findings suggest that ML could improve ED flow and improve 
patient outcomes. Before clinical implementation, further external validation and 
evaluation of real-world usage are important. Future research should focus on 
optimizing ML models for reliability, interpretability, and usability in ED settings. 
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Future Perspective 

Artificial intelligence is currently progressing at a pace that at times is hard to keep 
up with. The release of ChatGPT 120,121 has seen incredible interest in the public 
space. In the medical field, Google recently published Med-Palm2 122,123, a large 
language model capable of answering USMLE questions on par with physicians. 
AMIE, another medical ai model, outperformed general practitioners not only in 
finding the correct diagnosis, but it also had better bedside manners. 124  

Where does this research fit into this larger narrative? One interesting research 
direction could be tool creation for these generalist systems. These models can work 
on many tasks, but they are not specialists, i.e., they do not know the local setting. 
Models such as the ones created in this thesis could possibly be used as tools by 
more general models to get access to information on the local patient distribution, 
without giving them direct access to sensitive patient data. 

Another interesting topic would be exploring the effects of releasing the models into 
the real world. Studies are needed not only for finding real barriers to successful 
implementation, but also to get a better understanding of how the models are used 
and misused.  
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