
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Implementation of an Asymmetric Relay Autotuner in a Sequential Control Language

Theorin, Alfred; Berner, Josefin

Published in:
2015 IEEE International Conference on Automation Science and Engineering

DOI:
10.1109/CoASE.2015.7294191

2015

Document Version:
Peer reviewed version (aka post-print)

Link to publication

Citation for published version (APA):
Theorin, A., & Berner, J. (2015). Implementation of an Asymmetric Relay Autotuner in a Sequential Control
Language. In 2015 IEEE International Conference on Automation Science and Engineering (pp. 874 - 879).
(IEEE Xplore). IEEE - Institute of Electrical and Electronics Engineers Inc..
https://doi.org/10.1109/CoASE.2015.7294191

Total number of authors:
2

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

Download date: 19. Apr. 2024

https://doi.org/10.1109/CoASE.2015.7294191
https://portal.research.lu.se/en/publications/dd24dab2-fcad-4a86-9ccc-956da0af3fd7
https://doi.org/10.1109/CoASE.2015.7294191

Implementation of an Asymmetric Relay Autotuner
in a Sequential Control Language*

Alfred Theorin and Josefin Berner1

Abstract— Control applications contain both logic, sequenc-
ing, and control algorithms. A holistic view of this is seldom
presented in teaching and papers. One reason is the separation
of communities – automation groups typically come from the
Programmable Logic Controller (PLC) world while control
engineers primarily come from the Distributed Control System
(DCS) world. Both logic, sequencing, and control algorithms
are, however, well integrated in today’s control systems since
DCS systems now contain logic and sequencing and PLCs now
contain control algorithms. This paper shows that both logic,
sequencing, and control algorithms can be integrated seamlessly
in a sequential control language. The particular application
considered is a PID controller with a relay autotuner. The
presented autotuner implementation yields good controller
parameters and is freely available.

I. INTRODUCTION

The most common controller in the process and automa-
tion industry is the PID controller. Even though the PID
controller is simple, many controllers operating in industry
today are performing unsatisfactory due to bad tuning of
the controller parameters. An automatic method of finding
good controller parameters is therefore desirable. The relay
autotuner [1] has been widely used since its introduction
in the 1980s and it is included in many industrial control
systems, such as DeltaV [2] by Emerson and 800xA [3] by
ABB. The idea is to estimate the process dynamics from
a relay oscillation experiment and to use this to calculate
PID controller parameters using simple tuning rules. The
relay autotuner’s main advantages are that it does not need
any a priori information, it keeps the experiment time short,
and it does not disturb the process much. It also provides
information in the interesting frequency interval close to the
critical frequency, that is, where the phase is −180◦.

Many researchers have contributed with developments and
improvements of the original autotuner, see [4] for a thor-
ough review. In recent research [5], [6], an asymmetric relay
experiment is proposed, that finds and uses information about
the normalized time delay of the process in the autotuning
procedure. The asymmetry of the relay gives better process
excitation [5], which makes it possible to also estimate the
static gain of the process. Thus, low-order models can be
obtained, instead of just a single point on the Nyquist curve,
as is the case for the original relay autotuner.

*The authors are members of the LCCC Linnaeus Center and the ELLIIT
Excellence center at Lund University. Financial support from VINNOVA and
the Swedish Research Council through the LCCC Linnaeus Center grant and
the ELLIIT Excellence Center are gratefully acknowledged.

1Both authors are with Department of Automatic Control, Lund Univer-
sity, Lund, Sweden firstname.lastname@control.lth.se

The relay experiment is primarily sequential, and well
suited for implementation in a language especially developed
for sequential control. Sequential Function Charts (SFC) is
one of the IEC 61131-3 [7] PLC standard languages, which is
widely used in industry to implement the sequencing parts
of the control applications. Even though the IEC 61131-3
languages were originally developed for PLC systems, they
are also supported by DCS systems, such as 800xA by ABB
and SIMATIC PCS 7 [8] by Siemens.

A PID controller with a relay autotuner is a combination
of logic, sequencing, and control algorithms. In this paper,
an asymmetric relay autotuner is implemented in Grafchart
[9], a language based on SFC. Grafchart is introduced in
Section II. The asymmetric relay autotuner and how to
estimate low-order model parameters from the experiment
are described in Section III. The Grafchart implementation
of the autotuner is described in Section IV, and a brief
evaluation is presented in Section V.

II. GRAFCHART

Grafchart is a sequential control language that uses the
same graphical syntax as SFC. The basic building blocks are
steps and transitions. Steps represent the possible application
states and transitions represent the possible changes of state
[10]. Each transition has a Boolean guard condition, which
specifies when the application state may change, that is, the
condition for when to activate and deactivate steps. Each step
may have actions which specify what to do, for example,
when the step is activated or while the step is active.

A part of a running Grafchart application is shown in
Fig. 1. Here, two steps are connected by a transition and
there are two variables, var and cond. In the left part of the
figure, the upper step has just been activated, which involves
executing its S action, thus setting var to 7. A token, shown
as a black dot, indicates that the step is active. The upper
step remains active until the guard condition of the transition
becomes true, that is, until cond becomes 4. When the guard
condition becomes true, shown in the right part of the figure,
the upper step is deactivated and the lower step is activated,
which means that var is set to 12.

Steps also have additional properties, namely x, t, and
s. The x property is true if the step is active and false if
the step is inactive. The t property counts how many scan
cycles the step has been active since the previous activation.
For inactive steps t is 0. The s property works the same as
t, but counts seconds instead of scan cycles.

Grafchart supports basic SFC features such as alternative
and parallel paths. Additional constructs for hierarchical

S var = 7;

S var = 12;

cond == 4

var: 7

S var = 7;

S var = 12;

cond == 4

var: 12

cond: 1 cond: 4

Fig. 1. A piece of a running Grafchart application. The left part shows
one application state and the right part shows a later application state.

Procedure

ProcedureStep

ProcessStep

c

Procedure Calls

b

d

d

d

Fig. 2. A procedure can be called from procedure steps and process steps.
Each procedure step and process step specify which procedure to call.

structuring, code reuse, and exception handling have been
added to Grafchart to make it more convenient for large
applications. The macro step is a common non-standard
extension to SFC [11] which is also included in Grafchart.
A generalization of the macro step, the procedure, is also
included. A procedure is roughly a reusable macro step,
which can be called from several places. Procedures may be
parameterized with both input and output parameters. The
main advantage of procedures is to avoid code duplication.
Procedures can be called from procedure steps and process
steps, see Fig. 2. The difference is that procedure steps wait
for the call to complete, while process steps do not.

JGrafchart is a freely available integrated development
environment for the Grafchart language [9], and it was used
to implement the autotuner in this paper.

III. RELAY AUTOTUNING

The relay function used in this paper is defined as in [6],

u(t) =

 uon, y(t) < −h
u(t−), −h ≤ y(t) ≤ h
uoff, y(t) > h

(1)

−d2

0

d1

±h

ton toff

Fig. 3. An example of the signals from the asymmetric relay feedback
experiment. The relay output u is shown in blue and the process output
y is shown in red. The black dashed lines show the hysteresis levels, ±h.
The experiment is started when the system is in equilibrium at the point
(u0, y0), here (0, 0). The asymmetric oscillation is caused by the different
relay amplitudes d1 and d2. ton and toff are the durations that the relay
output has been uon and uoff respectively. Note that the relay output switches
between uon and uoff when the process output leaves the hysteresis band.

where h is the hysteresis of the relay and u(t−) is the value
u had the moment just before time t. The output signals of
the relay, uon and uoff, are defined as

uon = u0 + sign(Kp)d1, uoff = u0 − sign(Kp)d2, (2)

where the sign of the process gain Kp is determined during
the startup of the experiment, see [6] for more details. It
is assumed that the system is at equilibrium at the working
point (u0, y0) before the relay experiment is started.

The name asymmetric relay reflects that the amplitudes d1
and d2 are different. This will cause asymmetric oscillations.
The relay asymmetry level is denoted γ and is defined as

γ =
max(d1, d2)

min(d1, d2)
. (3)

An illustrative example of asymmetric relay feedback, when
the static gain of the process is positive, is shown in Fig. 3.
The half-periods ton and toff are defined as the duration of the
time intervals where u(t) = uon and u(t) = uoff respectively.

A. Model Estimation

The low-order model structures used are either the first
order time delayed (FOTD) model,

P (s) =
Kp

1 + sT
e−sL, (4)

or the integrating time delayed (ITD) model,

P (s) =
kv
s
e−sL. (5)

The choice of which model structure to use is based on the
normalized time delay, τ , defined as

τ =
L

L+ T
, 0 ≤ τ ≤ 1. (6)

A small τ implies that the time constant, T , is much larger
than the time delay, L. The process is then close to an
integrating process, and should therefore be modeled as an
ITD model. Otherwise an FOTD model is estimated.

The only measurements required from the experiment to
estimate these models are the half-periods ton and toff as well
as the integrals of the process output, Iy , and the relay output
(process input), Iu, defined as

Iy =

∫
tp

(y(t)− y0)dt, Iu =

∫
tp

(u(t)− u0)dt, (7)

where integration is performed over one period of the os-
cillation tp = ton + toff. All these measures are easily and
robustly determined from the experiment.

From an asymmetric relay experiment, τ is estimated as

τ(ρ, γ) =
γ − ρ

(γ − 1)(0.35ρ+ 0.65)
(8)

where γ is the asymmetry level and ρ is the half-period ratio,
that is, the largest ratio between ton and toff [6]. The FOTD
model parameters (Kp, T , L) are estimated as

Kp =
Iy
Iu
, (9)

T = ton

/
ln

(
h/|Kp| − d2 + (d1 + d2)e

τ/(1−τ)

d1 − h/|Kp|

)
, (10)

L = T
τ

1− τ
. (11)

The ITD model parameters (kv , L) are estimated as

kv =
2Iy

tontoff(uon + uoff)
+

2h

uonton
, (12)

L =
uonton − 2h/kv
uon − uoff

. (13)

For more details, see [6].

IV. THE GRAFCHART AUTOTUNER

The reusable PID procedure developed in [12] was used
as a base for the autotuner implementation. It is a full-
fledged PID controller implementation based on the velocity
(incremental) algorithm. It supports e.g. tracking, feedfor-
ward, set-point weighting, auto/manual mode, and bumpless
parameter and mode changes. In the base implementation,
the control algorithm is implemented in a single Grafchart
step. Even though this is not how PID controllers are
typically implemented, this implementation is both powerful
and concise. In this work, the base PID implementation was
extended with autotune functionality, namely the asymmetric
relay experiment and the AMIGO PID tuning rule [13].

The autotuner implementation supports features like au-
tomatic choice of hysteresis level and sign of process gain,
soft startup, and adaptive relay amplitude. One decision for
an asymmetric relay experiment is the direction of the large
relay amplitude. In this implementation, the large amplitude
is chosen to be directed towards the middle of the control
signal range, to make it possible to use the autotuner close
to either control signal saturation limit.

The autotuner functionality has been structured using
macro steps to enable a good overview. The top level of
the PID procedure is shown in Fig. 4. Compared to the base
implementation [12], the autotuner macro step has been

Real

TR

0.0Real

PV

0.0 Real

SP

0.0

Real

K

1.0

Signals

Real

MV

0.0

Real

Ti

20.0 Real

Td

0.0 Real

Nd

8.0

Real

Man

0.0

Controller Parameters
1

Interaction

Real

b

1.0

Real

FF

0.0

Bool

manualMode

0Bool

useFF

0

Int

execFreq

1

exec

stop1

Bool

stop

0

Real

PVMax

100.0Real

PVMin

0.0

Configuration

Bool

autotune

0

Autotuner

autotune2

Real

gamma

3.0 Real

eps_period

0.01

init

1

stop

Real

MVMaxAmp

0.0

Real

MVMin

0.0 Real

MVMax

100.0

Real

PVMaxAmp

0.0
autotuner

1

Fig. 4. The Grafchart PID procedure, extended with a relay autotuner.

added, and the initialization has been moved from the enter
step to a separate step, init, to make it possible to re-
initialize the PID algorithm when the autotuning is complete.
One of Grafchart’s exception handling features has been used
to make it possible to abort the PID procedure, even when
the autotuner is running, regardless of the current autotuner
state. All step actions have been hidden in the figures. For
example, the exec step contains the complete PID algo-
rithm. Some new parameters have been added, namely the
parameters in the Configuration and Autotuner boxes. The
configuration parameters define the ranges for the control
signal (Manipulated Variable, MV) and the measurement
value (Process Value, PV). The autotune parameter is
used to start and stop the autotuner, gamma is the asymmetry
level, eps period is used to determine when the relay
experiment is finished, MVMaxAmp is the maximum control
signal amplitude, and PVMaxAmp is the maximum allowed
variations in the measurement value.

The PID sample time that is used in the control algorithm
(given by execFreq), is not used by the autotuner. Instead,
the autotuner executes as often as possible, that is, it has the
same sample time as the PID procedure caller.

The next level of the autotuner is shown in Fig. 5. On this
level, the autotuner parameters are checked and the autotuner
is supervised and aborted if abnormal behavior is detected,
for example, if the process value saturates or if the tracking
signal differs too much from the requested control signal.

The next level, shown in Fig. 6, is the main imple-
mentation of the autotuner. It begins with an initialization,
which will be described later, and is followed by the part
which conducts the relay experiment. The two steps in this
part have several responsibilities: They update the control
signal, measure the half-period times, and integrate the
control signal and measurement values. They also perform
gain adaptation, prepare the graceful shutdown, and contain
logic to detect when the relay experiment is finished. The
graceful shutdown part is used to avoid a large process value
disturbance when the relay experiment finishes. This is done
by extending the experiment until the next process value
peak, instead of turning it off when crossing the hysteresis
band. In the next part, τ is estimated, and based on this, either

exit

init

mv_err

1 1

!autotune

1

1

2

pv_err

1

at

1

external_abort

1

param_err

1

Fig. 5. The top level of the relay autotuner. It mainly contains experiment
supervision and error detection.

exit

init

isLargeStepUp1

down

up

PV < y0 - hyst

PV > y0 + hyst 1

fotd

1

1

amigo

1

1

at_init

1

gUpgDown

init_est

11

fotd_i

1

amigo_i

1

setpoint_weighting

1

Relay experiment

Graceful shutdown

Estimate process

PID tuning

Initialization and soft start

Fig. 6. The main part of the relay autotuner.

update_parameters

estimate_noise

estimate_noise.t >= 40

1

init_parameters

soft_start

1 exp_t >= tf2

await_hyst

1

abs(PV - y0) > hyst1

abs(PV - y0) > hyst

soft_start_init

Fig. 7. The initialization part of the relay autotuner.

an FOTD model or ITD model is estimated according to (8)–
(11) and (12)–(13). The equations use math functions such as
exp and log, which were thus added to JGrafchart. Lastly,
the PID parameters are estimated according to the AMIGO
tuning method [13] and a fitted optimization formula for the
set-point weight [14].

The principle for the gain adaptation is as follows: A min-
imum, a maximum, and a desired process value amplitude
are calculated based on the noise estimate. The half-period
with the large process value amplitude, that is, the half-
period with the small control signal amplitude, is considered.
At the end of that half-period, the largest process value
deviation during the half-period is compared to the minimum
and maximum process value amplitudes. If it is outside that
range, the control signal amplitude is adapted to give the
desired process value amplitude. The gain is not adapted
if the half-period concludes the relay experiment, since the
process estimate would then use the wrong amplitude.

The autotuner initialization is shown in Fig. 7. First, the
noise level is estimated, then all autotuner parameters are
initialized. Next, soft start is used to avoid a potentially
large process value disturbance due to a control signal step
on a process with unknown gain. The soft start ramps up
the control signal exponentially to at most the maximum
allowed amplitude. The process value is monitored during
the ramp-up. When the hysteresis band is left, the relay
amplitude is re-initialized so that the large relay amplitude is
the current ramp-up amplitude. The sign of the process gain
is determined by the change of the process value.

V. EVALUATION

The autotuner has been run on several different processes,
both simulated and physical, with and without noise. This

section presents noise-free simulations for three processes
with different dynamics. The processes are the same as the
ones used in [5], that is,

P1(s) =
1

(s+ 1)(0.1s+ 1)(0.01s+ 1)(0.001s+ 1)
,

P2(s) =
1

(s+ 1)4
, (14)

P3(s) =
1

(0.05s+ 1)2
e−s,

where P1 is lag dominated, P2 is balanced, and P3 is delay
dominated. The reason to use the same processes is to make
it possible to verify the implementation. Note, however, that
the results should not be identical since there are some
significant differences between the implementations. First,
in [5], the autotuner is run in continuous time while the
autotuner presented in this paper runs in discrete time with
a sample time of 5 ms. Second, the autotuner in [5] uses
fixed relay experiment parameters, while the autotuner in this
paper derives some parameters. However, the non-derived
parameters have the same values, namely γ = 1.5 and
ε = 0.01. The method used to find the normalized time delay
also differs, since in [5] a fitted second order polynomial was
used instead of (8). Lastly, the algorithm in [5] does not have
an adaptive relay amplitude or soft startup.

The experiments presented in this section were run from
JGrafchart, using a newly written simulation library to sim-
ulate the processes. The simulation library includes stand-
alone procedure for basic building blocks such as first order
filters, time delays, additive white noise, and quantization.
Coding conventions and knowledge about the internal exe-
cution model were used to obtain the desired simulation data
flow in JGrafchart, which is not a data flow language. The ex-
periments were logged to a Matlab .m-file using JGrafchart’s
Socket I/O and a custom socket server application called
SockLog.

The relay experiment for P1 is shown in Fig. 8. The
experiment begins with a phase where the measurement noise
is estimated, which is then used to set the hysteresis level for
the experiment. Since there is no noise in these experiments,
the hysteresis is set to a default minimum value, which is
a fraction of the process value range. Next, at time 0.2, the
soft startup begins to slowly ramp up the control signal to
its maximum allowed amplitude. A default value, which is
a fraction of the control signal range, was used here, but it
could also be specified by the operator. Since P1 has slow
dynamics, the ramp-up completes before the process value
leaves the hysteresis band. The control signal then stays at
the maximum allowed relay amplitude until the process value
leaves the hysteresis band at time ≈ 0.5. At this time, it is
concluded that the process gain is positive, since the process
value moves in the same direction as the applied control
signal change. The relay then switches to uoff and waits
for the process value to cross the hysteresis band again,
which happens at time ≈ 1. This continues for a few half-
periods until time ≈ 1.9 where the algorithm concludes that
the oscillation has stabilized. The half-periods ton and toff

0 0.5 1 1.5 2 2.5

−0.5

0

0.5

1

Time [s]

PV
MV

Fig. 8. Relay experiment for P1(s).

0 5 10 15 20 25

−0.5

0

0.5

1

Time [s]

PV
MV

Fig. 9. Relay experiment for P2(s).

and the integrals Iy and Iu are then measured from the last
oscillation. A final step is then applied until the time when
the process value reaches its maximum amplitude. Finally,
the model is estimated, controller parameters are calculated,
and the PID procedure returns to normal control.

The relay experiment for P2 is shown in Fig. 9. It looks
similar to the experiment for P1, except that it is considerably
slower. The disturbance on the process value is also larger,
but not large enough to cause the gain adaption to act.

The relay experiment for P3 is shown in Fig. 10. The
disturbance on the process value is considerably larger than
for both P1 and P2. During the second half-period, the
process value amplitude is considered too large, and the relay
amplitude is decreased.

Table I shows the estimated model parameters for P1, P2,
and P3 for both the Matlab implementation in [5] and the
JGrafchart implementation presented in this paper. Since τ
is small for P1, it is close to an integrating process. Hence,
both an ITD and an FOTD model are presented.

Based on the process estimates in Table I, PI parameters
are calculated, see Table II. For each set of PI parameters,
a unit step load disturbance is applied in JGrafchart to
obtain the integrated absolute error (IAE) value, the classic

0 2 4 6 8 10 12

−0.5

0

0.5

1

Time [s]

PV
MV

Fig. 10. Relay experiment for P3(s).

TABLE I
THE ESTIMATED FOTD MODELS. FOR P1 , PARAMETERS FOR AN ITD

MODEL ARE ALSO PRESENTED.

Kp/kv T L τ
Matlab 0.999 1.115 0.073 0.062

P1 JGrafchart ITD 0.862 - 0.077 0.072
JGrafchart 0.994 1.132 0.088 0.072
Step 1.000 1.040 0.075 0.067
Matlab 0.996 2.993 1.770 0.372

P2 JGrafchart 0.976 3.148 1.899 0.376
Step 1.000 2.900 1.42 0.330
Matlab 1.006 0.078 1.030 0.929

P3 JGrafchart 1.000 0.115 0.980 0.895
Step 1.000 0.093 1.010 0.920

TABLE II
THE PID PARAMETERS AND CORRESPONDING UNIT STEP LOAD

DISTURBANCE IAE VALUES.

K Ti MST IAE
Matlab 4.590 0.549 1.398 0.120

P1 JGrafchart ITD 5.281 1.030 1.350 0.195
JGrafchart 3.835 0.609 1.325 0.159
Optimal 4.200 0.494 1.398 0.118
Matlab 0.360 2.769 1.252 7.690

P2 JGrafchart 0.349 2.953 1.230 8.452
Optimal 0.432 2.250 1.397 5.208
Matlab 0.170 0.370 1.410 2.177

P3 JGrafchart 0.180 0.364 1.453 2.020
Optimal 0.164 0.371 1.389 2.262

controller performance measure defined as

IAE =

∫ ∞
0

|e(t)| dt (15)

where e(t) is the control error during a step load disturbance
at the process input. Note that a lower IAE value means
better control performance. The optimal controller parame-
ters are obtained by minimizing the IAE value for the true
process model under the constraint that the maximum of the
sensitivity functions, MST = max(MS ,MT) ≤ 1.4.

The results of the JGrafchart implementation and the
Matlab implementation from [5] are comparable. The results
are also similar to the ones achieved from an open-loop
step response experiment. For P1 and P3, the IAE values
of the autotuners are about the same as the optimal values.
For P3 they are slightly better, which is possible since
their maximum sensitivity is greater than 1.4. For P2 on
the other hand, the results are considerably worse than the
optimal. This is due to the fact that this process is not
satisfactorily described by an FOTD model, because of its
multiple identical poles.

VI. SUMMARY

In this paper, an asymmetric relay autotuner has been inte-
grated to an existing PID controller in Grafchart. The relay
experiment is completely automatic, and includes features
such as soft startup, adaptive relay amplitude, and detection
of the sign of the process gain. The only requirement is
that the process is in steady-state when the experiment is
requested to start, a limitation shared with the original auto-
tuner. The use of an asymmetric relay has the disadvantage

that it disturbs the process more than a symmetric relay.
However, it gives better excitation, which makes it possible
to obtain a low-order model from a single relay experiment.
Hence, the process is disturbed for a shorter time than for
autotuners that must perform two or more experiments to
obtain comparable models.

The relay experiment is primarily sequential and this work
confirms that it is suitable to implement it in a language
dedicated to sequential control. Using the high level sequen-
tial programming language Grafchart gives a clear overview
and is still efficient for implementations. Grafchart’s support
for hierarchical structuring, exception handling, and code
reuse are all utilized. Without these features, the autotuner
implementation would be much more complicated.

Since the functions of the autotuner are independent of
the controller functions, it could be moved to a separate
procedure. The relay experiment would then become a stand-
alone, reusable, process estimation tool, which would be used
from the PID procedure.

The results of the implemented autotuner are comparable
to other tuning methods, and the autotuner will be included
in future public releases of JGrafchart.

REFERENCES

[1] K. J. Åström and T. Hägglund, “Automatic tuning of simple regulators
with specifications on phase and amplitude margins,” Automatica,
vol. 20, no. 5, pp. 645–651, Sept. 1984.

[2] Emerson, “Emerson process management – DeltaV
DCS.” [Online]. Available: http://www2.emersonprocess.com/en-
us/brands/deltav/pages/index.aspx

[3] ABB, “ABB 800xA DCS.” [Online]. Available:
http://new.abb.com/control-systems/system-800xa/800xa-dcs

[4] T. Liu, Q.-G. Wang, and H.-P. Huang, “A tutorial review on process
identification from step or relay feedback test,” Journal of Process
Control, vol. 23, no. 10, pp. 1597–1623, 2013.

[5] J. Berner, K. J. Åström, and T. Hägglund, “Towards a new generation
of relay autotuners,” in Proceedings of the 19th IFAC World Congress
(IFAC’14), Cape Town, South Africa, Aug. 2014.

[6] J. Berner, “Automatic Tuning of PID Controllers based on Asymmetric
Relay Feedback,” Dept. Automatic Control, Lund University, Sweden,
Licentiate Thesis ISRN LUTFD2/TFRT--3267--SE, May 2015.

[7] IEC, “IEC 61131-3: Programmable controllers – part 3: Programming
languages ed2.0,” International Electrotechnical Commission, Tech.
Rep., Jan. 2003.

[8] Siemens, “DCS SIMATIC PCS 7.” [Online]. Available:
http://w3.siemens.com/mcms/process-control-systems/en/distributed-
control-system-simatic-pcs-7/pages/distributed-control-system-
simatic-pcs-7.aspx

[9] Department of Automatic Control, Lund University, “Grafchart.”
[Online]. Available: http://control.lth.se/Research/tools/grafchart.html

[10] A. Theorin, “A sequential control language for industrial automation,”
Ph.D. dissertation, Department of Automatic Control, Lund University,
Sweden, Nov. 2014.

[11] R. W. Lewis, Programming Industrial Control Systems Using IEC
1131-1, 2nd ed. The Institution of Engineering and Technology,
Dec. 1998.

[12] A. Theorin and C. Johnsson, “An interactive PID learning module
for educational purposes,” in Proceedings of the 19th IFAC World
Congress (IFAC’14), Cape Town, South Africa, Aug. 2014.

[13] K. Åström and T. Hägglund, Advanced PID Control. ISA – The
Instrumentation, Systems, and Automation Society, 2006.

[14] M. Hast, “Design of low-order controllers using optimization tech-
niques,” Ph.D. dissertation, Department of Automatic Control, Lund
University, Sweden, June 2015.

