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ABSTRACT

Static code checkers are tools that help software engineers by automatically finding
defects without executing the programs. These tools contain a set of detectors that rely
on static program analyses to find common programming defects or to enforce coding
guidelines.

While existing code checker frameworks package a rich collection of detectors,
aimed at common bug defects, the effort to adapt these detectors to specific project
needs is not trivial. In their definition, the detectors rely on checker-specific program
representations and auxiliary data structures, which incurs a high up-front cost for cus-
tomization attempts.

Being encoded in a general-purpose programming language, the detectors inherit
the evaluation model of the host programming language. This precludes the adoption of
evaluation schemes that fit the dynamics of the project, such as incremental evaluation
or caching of partial results.

In this thesis we address the hindrances to adaptability in current checker frame-
works by combining two declarative techniques: syntactic pattern matching and logic
programming in Datalog. We use syntactic pattern matching to identify the program
fragments that are of interest for a detector and Datalog logical rules to enable non-local
reasoning between these fragments of interest. Syntactic patterns allow us to decouple
the detector specification from the internal representations of programs, while the use
of Datalog-style rules enables the adoption of alternative evaluation modes, such as
incremental evaluation.

We materialize our techniques in declarative specification languages and runtimes
that facilitate the construction of declarative static code checking frameworks for the
C and Java languages. We show that these declarative specification languages enable
concise description of bug detectors, while achieving analysis quality and runtime per-
formance that is comparable with established frameworks.
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INTRODUCTION

Software is pervasive in our world. Almost any object that has a power source is
also running a piece of software. Objects that, two decades ago, were purely analog
are now software-controlled for improved usability and efficiency: light bulbs, stoves,
heating thermostats, etc. Other objects, such as medical journals, train tickets and
even currency have been almost completely replaced by their digital equivalents — all
controlled by software. This puts software in a central but invisible role in our everyday
lives and also in our society. To ensure that our everyday lives and our society function
smoothly we have to ensure that the software is reliable and that it behaves according
to our intentions.

The study of the behaviour of computer programs is called program analysis. We
study the behaviour of programs in two major ways. The first approach, dynamic pro-
gram analysis, is to run the program on some input and observe the runtime behaviour
of the program. While this approach can reveal some defects in the program, it cannot
guarantee the lack of defects on every possible input since it is infeasible to run any
non-trivial program on all possible inputs.

The other approach, static program analysis, is concerned with automatic reasoning
about a program’s behaviour without running the program. Static program analyses in-
fer the possible behaviours of a program from its source code or binary representation.
While dynamic program analyses report only programs that have defects, static anal-
yses may either under-approximate the behaviour of the program and let some defects
go unreported, or be conservative and safely over-approximate a program’s behaviour,
and thus report on all programs containing defects, but also on some defect-free pro-
grams. The latter, conservative static analyses have been embedded in compilers. Two
prominent uses of static analyses in compilers are type checking and optimization.
Type checkers ensure that any operation encountered during program execution is well-
defined (i.e. the program does not get stuck). In optimizers, we use program analysis
to prove that transforming the program does not change its observable behaviour.

Complementary to compilers, engineers have built stand-alone tools around pro-
gram analyses. These tools extract information from the program and combine it ac-
cording to a set of rules to detect common bug patterns. The choice for not embedding



2 Introduction

bug pattern detection in compilers has pragmatic reasons: some analyses are too slow
to run within the development loop, while others are domain-specific and would not
be relevant for other users of the same programming language. We call these tools
(static) program analyzers or, mundanely, (static) code checkers. Static code checkers
typically package hundreds of detectors, each aimed at finding a common bug pattern
for a given language or incorrect usage of a widely-adopted API.

While code checkers are gaining traction in companies and open-source projects,
their users still find pain-points that are not yet addressed. In a study from Mi-
crosoft [CB16], more than 80% of developers complain about the selection of detectors
that are enabled by default and about 15% complain about the lack of support for cus-
tom rules. This hints that customizability of code checkers is a concern for software
developers. Other issues with code checkers reported in the same study are the high
number of false-positive warnings, the lack of ranking between warnings and the speed
of the checker. Another report from Google [Sad+18] witnesses that customizability
of their Tricorder tool is a valuable feature: users contribute checks for generic bug
patterns and they also build project-specific detectors.

Traditionally, code checkers are built as opaque black boxes that parse the source
of the analyzed program or its binary encoding, build an internal representation in the
form of an abstract syntax tree or three address code, and then derive their results us-
ing this representation. The internal representation is tool-specific and the reasoning
is encoded in imperative code, where all the data structures are exposed and their con-
sistency is explicitly managed. This design of code checkers is at odds with the need
for customizability: there is a high up-front effort that the user of the checker needs to
make in order to customize the checker.

A majority of software engineers prefer that static code checkers present their re-
sults in the IDE or during the build process [CB16; Joh+13], which means that code
checkers should compute their results with low latency. This is hard to achieve for
complex checks that require precise heap modeling or inter-procedural flow informa-
tion, unless they reuse analyses results between the runs. Thus, being able to run a code
checker incrementally is a desirable feature. However, current code checkers manage
their internal state explicitly and their rules are encoded in imperative code, which
makes their incrementalization an impractical task.

Fortunately, declarative approaches have made strides in the space of program
analysis. These approaches focus on what the rules of the analysis are, rather then
how they are implemented, delegating the implementation details to an underlying
evaluation framework. In particular, researchers have been successfully employing
Datalog, a declarative logic programming language, to express sophisticated point-
to analyses [BS09; BS16], decompilation and analysis of smart contracts [Gre+20],
inter-procedural data-flow analyses [MYL16]. Besides being adopted as a language
for describing program analyses, researchers have been developing novel approaches
for evaluating Datalog programs incrementally [Sza+18], reducing false-positive rates
by ranking reports based on user feedback [Rag+18] or explaining the results of a
Datalog program [ZSS20]. This evolution has been supported by the advent of high-
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performance Datalog engines such as LogicBlox [Are+15a] and Soufflé [Sch+16].
In spite of significant progress and adoption of Datalog as a language for describing

program analyses, these analyses are still dependent on an additional software compo-
nent, the fact extractor, that parses the analyzed program, builds an internal repre-
sentation and extracts the relevant facts for client analyses. These fact extractors are
usually derived from traditional compiler front-ends and are written in an imperative
style, which is opaque to incrementalization or explainability.

Moreover, fact extractors are specific to the analysis that uses the facts, but dif-
ferent analyses refer to different fragments of the analyzed program, and thus they
require different facts. For example, when the client analysis is a pointer analysis, the
fact extractor may only provide information about the memory operations of the pro-
gram, discarding other information available in the source, so it is not possible to reuse
the same fact extractor for checking for unnecessary parentheses in arithmetic expres-
sions. Fact extractors identify relevant program fragments by pattern matching on the
internal representation, which requires that the patterns are expressed in terms of this
representation, making the fact extractors dependent on it. This dependency raises the
threshold for analysis customization, since modifying the set of available facts requires
familiarity with the internals of the fact extractor. But this dependency is avoidable. By
using syntactic patterns in the concrete syntax of the analyzed language, we are able
to decouple the fact extractors, and consequently the client analyses, from any internal
representation.

The aim of this thesis is to enable the construction of fully declarative program
checkers. We achieve this by combining two existing declarative approaches: syntactic
pattern matching and logic programming in Datalog. It is the combination of these
declarative approaches that enables us to build fully declarative code checkers that are
explainable, can be evaluated incrementally and with high performance by state-of-the-
art Datalog engines.

Thesis Statement Syntactic patterns and logic programming enable the construc-
tion of fully declarative static code checkers that are independent of any program repre-
sentation other than its source code. Our experiments show that these fully declarative
code checkers are comparable with well-established systems in regard to analysis qual-
ity and runtime performance.

Methodology The research in this thesis follows the systems development method-
ology, as proposed by Nunamaker et al. [NCP90]. To demonstrate that the combina-
tion of syntactic patterns and logic programming is a feasible approach for construct-
ing static code checkers from the perspective of analysis quality and performance, we
build three static code checker systems aimed at different programming languages:
METADL for Datalog, JAVADL for Java and CLOG for C.

In Figure 1, we present a design science view of the activities that contributed to this
thesis, using the framework described by Engström et al. [Eng+20]. The development
of the core of this work, the combination of Datalog and syntactic patterns, followed
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Figure 1: A map of the activities that contributed to this thesis from a design science
perspective

the solution-validation trajectory. In the problem construction phase, we identified a
limitation of existing approaches to declarative program analysis: they depend on the
internal representation of programs. In the design phase, we chose to combine Datalog
and syntactic patterns to solve the problem. We produced a solution, METADL and an
early variant of JAVADL, which we applied to a concrete problem: defining detectors
for static code checkers.

We evaluated the early variant of JAVADL on realistic workloads and established
the need of improved performance and scaling to large projects. These became, in
turn, new problems. Instead of deriving from limitations of previous work, we empir-
ically identified these problems, thus their development followed the problem-solution
trajectory. We have iterated this trajectory twice, once for developing the incremental
evaluation scheme demonstrated by JAVADL and once for the on-demand evaluation
scheme for CLOG.

Following good research practice, we submitted the system prototypes and the ac-
companying evaluation frameworks for peer review, through the artifact evaluation
process [KV15]. We released the evaluated artifacts under permissive open-source
licenses.



BACKGROUND AND RELATED
WORK

1 Static Program Analysis

Static program analysis is the branch of computer science concerned with automatic
reasoning about the behavior of computer programs without executing them. Given that
it is impossible to exhaustively test most programs on all possible inputs, the motivation
behind static program analysis is to ensure that programs are free of defects, in the sense
that the programs behave according to a given specification.

A program’s specification is the set of properties it must satisfy. All programs have
an extrinsic specification, which describes how the program should interact with the
environment, via hardware and software interfaces. This specification may be formal,
in natural language or just a thought in the mind of the developer. Departing from
this extrinsic specification leads to application-specific defects, such as API-misuse,
resource leaks or violation of timing constraints in real-time systems.

However, each program must also satisfy an intrinsic specification, stemming from
the programming language the program is written in, in the sense that the program
should not reach a state from which further execution is either impossible (the pro-
gram is stuck) or is nondeterministic (undefined behavior). Language-specific defects
arise when a program does not obey the specification of its language. An example of
language-specific defects are null dereferences.

To prevent defects, static analyses have been embedded in compilers and in static
code checkers. We refer to the analyses that compute general properties of programs as
(static) (program) analyses, while we use the terms (static) checks or (bug) detectors
for the analyses that aim at detecting concrete defects. Often, the latter are implemented
as clients of general program analyses.



6 Background and Related Work

1.1 Families of Program Analyses

From the perspective of their formal definition, the multitude of program analyses used
by the static code checkers discussed in this thesis can be cast in two broad classes:
type systems and abstract interpretations [CC77].1We do not aim to further refine this
classification, but rather describe the families of analyses that occur in code check-
ers from a functionality perspective, based on the information they compute. Thus
we identify four families of analyses, common to the code checkers we discuss: type
checking, data-flow analysis, control-flow analysis and pointer analysis. We describe
these analysis families in the following paragraphs.

Type Checking Type systems categorize program terms based on the values they
may take during evaluation, possibly including the side-effects of evaluating the term.
The type of a term can be computed either statically, at compile-time, or dynamically,
at run-time. Many compiled languages opt for a mixed strategy: they perform most
of type checks at compile-time, while leaving for run-time the cases for which type
checking is expensive or would otherwise reduce the modularity of the programming
language.2Knowing the types of program terms is relevant for code optimization and
machine code generation, thus static type checking is typically integrated in compilers,
but stand-alone code checking tools also make use of type information.

Data-Flow Analysis For programs in imperative languages, it is natural to encode
the problems of finding the properties of variables and expressions in monotone data
flow analysis frameworks [KU76]. In these frameworks, the analysis defines the prop-
erties of the variable that are of interest and the effect that each of the constructs in the
language has on them. Such properties may be the location where a variable was last
assigned (reaching definitions analysis), the location where it was last used (dead code
analysis), whether the variable always holds a constant value or not (constant propa-
gation), etc. Conservative results for monotone data flow problems can be computed
efficiently using fixpoint algorithms. These analyses, restricted to single procedures,
have been integrated into optimizing compilers for the purposes of register allocation,
dead code elimination, constant folding, etc.

Static code checkers employ inter-procedural variants of data-flow analy-
ses [RHS95; SRH96] for finding application-specific defects, such as taint analyses,
or programming language-specific defects, such as checking for nullness of references.

Control-Flow Analysis Control-flow analysis aims at establishing the order in
which the expressions or statements are evaluated. The control-flow graph (CFG) is
a conservative approximation of the control-flow of a procedure, which can be derived

1The classification is rather superficial, based on whether the formal definition of the analysis uses
Gentzen-style deduction rules or semantic brackets. The latter class even subsumes the former, as abstract
interpretations can express type systems [Cou97].

2An example is the run-time checking of down-casts in object-oriented languages such as C++ and Java.
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exclusively from the syntactic structure. The information from the CFG can be further
refined by using data-flow facts. In the example in Figure 1 we use a data-flow parity
analysis to prove that the variable m in the condition of the while statement is odd,
rendering the final print statement unreachable.

n = 2 * n ;

m = n + 1 ;

while (m != 0 ) {

m = m - 2 ;

print(m) ; }

print("done") ;

parity(m) parity(n)

{even, odd} {even}

{odd} {even}

{odd} {even}

{odd} {even}

{odd} {even}

{odd} {even}

Figure 1: Simple program and its CFG. Using parity information, the control-flow
analysis can refine the CFG by removing unreachable nodes and edges (marked in
red).

The call graph represents the flow of control between the procedures of the pro-
gram. For languages without indirect calls (e.g. the OpenGL Shading Language), the
call graph is an accurate representation of the inter-procedural control-flow. However,
for most other languages, which allow indirect calls (function pointers) or dynamic
dispatch, the precision of the call graph may be improved by accounting for data-flow,
types and pointer aliasing information.

Pointer Analysis Programs written in object-oriented languages such as Java and
C# hold most of their state in heap-allocated objects. Consequently, data-flow analy-
ses need to track the flow of values through memory locations and a single memory
location may be referenced by different program variables or fields of an object. The
analyses that map variables or fields to the (abstract) memory locations they may (or
must) refer to are collectively named pointer analyses.

Precise pointer analyses depend on tracking flow of pointer values between func-
tions, thus on control-flow and data-flow analyses. In turn, to resolve the call targets
of indirect function calls or dynamically-dispatched method calls and thus compute a
precise call graph, pointer information is required.

Common Themes All of the above analyses transform the program from a con-
crete domain to an abstract domain, where the changes to the program state by an
expression or statement are modeled by a transfer function between abstract domain
elements. When the analyses need to merge contradictory information from two paths,
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they choose a conservative approximation which is closest to the values being merged,
which makes a lattice structure well-suited for the values in the abstract domain. Iter-
ating the application of transfer functions and the merging operations until a fixpoint is
reached results in solution to the analysis; if the transfer functions are distributive over
the lattice join operation, then the solution computed by fixpoint iteration is also the
most precise [KU76]. Thus, computation of fixpoints is also a central element of these
analyses.

1.2 Limits of Program Analysis
Fundamental results [Ric53], stemming from the undecidability of the halting prob-
lem [Tur36], prevent the construction of a program analysis that reliably answers a
non-trivial semantic question for all possible programs.3 Hence, program analysis must
derive approximations of all possible behaviours of a program and to decide whether
the approximation satisfies a given property.

Since program analyses must approximate the behavior of a program, properties
that hold for the approximation may not necessarily hold for the actual program. A
sound analysis proves a given property only for programs that actually satisfy the given
property, while a complete analysis is able to prove a given property for all programs
that satisfy the property. Unfortunately, no useful analysis is both sound and complete.

1.3 Declarative Static Program Analysis
Program analyses are traditionally defined using a formal description, which is accom-
panied by proofs of their properties, such as soundness. Therefore, it is appealing to
use declarative programming languages to encode these formal definitions, such that
they stay close to their formal description rather than deal with low-level details, such
as the worklists or the data structures used for storing the partial results of an analysis.
Using declarative languages for specifying analyses leads to a decoupling between the
analysis specification and the supporting data structures and evaluation strategy. Three
strands of declarative approaches to program analysis are close to this thesis: attribute
grammars, code property graphs and logic programming.

Attribute Grammars Attribute grammars [Knu68] are a formalism for connecting
the semantics of a programming language to its syntax definition. Attribute grammar
associate to each terminal or non-terminal in the grammar a set of attributes. These
attributes are defined in terms of equations which use attributes of either descendant
nodes or ancestor nodes. 4

3Assume that there exists an analysis that is able to compute, for all C programs, whether it triggers a
segmentation fault. Then, to decide the halting problem about any program with entry point q(void), we
need to ask the analysis whether the program p(void){ q(); *(void*)0;} triggers a segmentation
fault. This means at least that it is impossible to build a null pointer analysis for C that detects all null pointer
dereferences and only them.

4For a concrete discussion on attribute grammars, see Section 4.
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Relevant extensions for program analysis are the introduction of circular attribute
grammars [Jon90], which allow for computing a fixpoint for the attribute values, ref-
erence attribute grammars [Hed00], which significantly increase the expressivity of
the attribute grammar formalism by allowing attribute values to be references to AST
nodes, and circular reference attribute grammars [MH07], which combines the bene-
fits of both circular and reference grammars. Attribute grammars are materialized in
meta-compiler systems, such as JastAdd [HM03], Silver [VW+10], Kiama [SKV13]
and RACR [Bür15].

Circular reference attribute grammars have been used to develop static code check-
ers, as demonstrated by IntraJ [Rio+21], a framework for intra-procedural analy-
ses for Java. Improvements in the underlying evaluation strategy for circular at-
tributes [Rio+24], lead to reduced running times for IntraJ, without modifying the anal-
yses, which witnesses the benefits of using a declarative approach to analysis specifi-
cation. In our JAVADL system, we extract semantic information from ExtendJ [EH07],
a compiler built using attribute grammars.

Code Property Graphs A code property graph [Yam+14], as first introduced in
the Joern code analysis platform [Joe], is a program representation in which the control-
flow graph and the program dependence graph [FOW87] are overlaid on the AST, re-
sulting in a multi-graph with the same nodes as the AST, but with three sorts of edges.
In a similar fashion, in the CLOG system, we overlay control-flow edges over the AST.

In addition, each node of a code property graph contains a set of key-value pairs,
which are specific to its syntactic category. Code property graphs are stored as graph
databases and thus they can be queried using graph query languages. Unlike attribute
grammars, which uniformly encode all the properties of a node as attributes, code
property graphs make a clear distinction between properties that are intrinsic to an
AST node, encoded as key-value pairs, and computed properties, which they express
as graph database queries. Program analyses are expressed as graph traversals. For
example, a taint analysis is encoded as a traversal from sinks towards sources.

Logic Programming Logic programming languages such as Prolog are a conve-
nient choice for defining recursive predicates and queries. This makes them a suitable
choice for exploring the deeply recursive structures used to represent programs, such as
the AST and the CFG. Often, these languages also allow for a straight-forward transla-
tion of the formal analysis specification. Consequently, the use of logic programming
for program analysis is well established [Rep95].

The goal oriented, top-down, evaluation model of Prolog limited the performance
of the analyses and did not allow for scaling beyond small programs. The adoption of
tabled Prolog [SW12] enabled scalability [BF07], by reusing goals and their computed
results between evaluations. This caching of intermediate results is an intrinsic feature
of the evaluation model of Datalog, a restricted version of Prolog. In addition to being
a syntactic subset of Prolog, Datalog further excludes negation through recursion and
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complex terms as predicate arguments. These restrictions allow for efficient bottom-up
evaluation of Datalog programs, where intermediate results are cached and reused.

The efficient evaluation model of Datalog enabled its adoption for expressing a
wide range of program analysis: context-sensitive pointer analyses [BS09], interproce-
dural data-flow analyses [MYL16], or general program analyses [DM+07]. We follow
these systems and also build our code checker specification languages on top of Data-
log.

2 Datalog

Datalog [CGT89] is a declarative logic programming language, originally aimed at
expressing recursive queries over databases. It emerged in the late 1970s as a restriction
of Prolog [AHV95]. While initially a database language, Datalog was adopted by the
program analysis community to describe analyses with complex interdependencies.
Being a declarative language, it separates the analysis description from its evaluation
strategy.

2.1 The Datalog Language
A Datalog program contains a set of rules that describe how to derive new relations
from existing relations. The rules have the shape of Horn clauses:

∀v0v1 . . . vn (P1 (v1) ∧ . . . ∧ Pn (vn) ⇒ P0 (v0))

where vi represents a sequence of variables and constants. These rules must be range-
restricted, in the sense that any variable occurring in the sequence v0, must occur at
least once in the sequence v1 . . . vn.

In the textual form of a Datalog program, we denote these rules as:

P0(v0) :- P1(v1), . . . , Pn(vn).

Pi are named predicates or relations and we will use these two names interchange-
ably, while the inhabitants of these relations are called tuples. Any Pi(vi) is an atom.
We call P0(v0) the head of the rule, and the conjunction P1(v1), . . . , Pn(vn), the body
of the rule. A fact is a rule with an empty body, and it follows from the range-restriction
requirement that its head must contain only constants.

A relation is intensional if it appears in the head of at least one rule. Conversely, an
extensional relation appears only in the rules’ body. The set of all intensional relations
is called the intensional database (IDB), while the set of the extensional relations is
called the extensional database (EDB). An instance of the EDB acts as the program’s
input, while some, but not necessarily all, relations from the IDB are the program’s
output.

To illustrate, consider the relation AUTHOR(name, paper) which con-
tains pairs of authors and their papers. To compute whether two persons have
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1 COAUTHOR(name1, name2) :- AUTHOR(name1, paper), AUTHOR(name2, paper).
2
3 AUTHORCHAIN(name1, name2) :- COAUTHOR(name1, name2).
4 AUTHORCHAIN(name1, name2) :- AUTHORCHAIN(name1, name),
5 COAUTHOR(name, name2).
6
7 FINITEERDŐSNUMBER(name) :- AUTHORCHAIN(name, "Erdős").

Figure 2: Datalog program for computing author relations

co-authored a paper, we introduce the rule in Figure 2, line 1, which defines the
COAUTHOR relation. Two authors are in the COAUTHOR relation if there exists
a paper for which both are authors. For example, if the AUTHOR relation con-
tains the tuples ⟨"Djikstra","On-the-Fly Garbage Collection"⟩
and ⟨"Lamport","On-the-Fly Garbage Collection"⟩, then the
program in Figure 2 computes the tuples ⟨"Djikstra","Lamport"⟩,
⟨"Lamport","Djikstra"⟩, ⟨"Djikstra","Djikstra"⟩ and
⟨"Lamport","Lamport"⟩ for the relation COAUTHOR (so this relation is
reflexive and symmetric by definition).

Assume now that we want to compute whether there exists a co-authorship chain
between two authors. To achieve this, we introduce in line 3 and line 4 the AUTHOR-
CHAIN relation, defined as the transitive closure of the COAUTHOR relation. Finally,
we may ask the question of whether an author has a finite Erdős number. To answer
this question, we introduce another relation, FINITEERDŐSNUMBER, defined in line 7
as containing all the authors for which there exists a co-authorship chain between them
and the mathematician Paul Erdős.

Semantics We can view the Datalog program as a set of constraints that the rela-
tions referred by the program must satisfy. Thus, the result of evaluating the Datalog
program is the smallest relations that satisfy these constraints, also called the minimal
model of the program.

While the minimal model approach gives a precise definition of what the result is, it
is not constructive and it does not hint at how to compute such a result. We thus resort
to an alternative, but equivalent semantics: fixpoint.

The intuition behind the fixpoint semantics of a Datalog program is that the evalu-
ation proceeds with the tuples from the EDB, and then repeatedly applies the program
rules until no new tuples can be derived. Since any tuple contains either constants ap-
pearing in the EDB or in the program text, the number of tuples that can be derived is
bounded, thus the evaluation of a Datalog program always terminates.

The minimal model semantics and the fixpoint semantics of Datalog, as well as
proofs of their equivalence are well covered in the literature, thus we refer the reader
to these sources [AHV95].
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AUTHOR COAUTHOR AUTHORCHAIN FINITEERDŐSNUMBER

Stratum 0 Stratum 1 Stratum 2 Stratum 3

Figure 3: Predicate dependency graph

Evaluation strategies Datalog programs are usually evaluated bottom-up, which
means that the evaluation derives the full relations of the program, starting from a
given EDB. This strategy is employed by state of the art Datalog engines such as Souf-
flé [Sch+16] or LogicBlox [Are+15b].

An alternative strategy is top-down evaluation which can answer whether a given
tuple exists in the result of the program. This is the same strategy used for evaluating
Prolog programs.

Stratification For the program in Figure 2, deriving new tuples to the relation AU-
THORCHAIN, does not influence the contents of the COAUTHOR relations. However,
deriving new tuples for the COAUTHOR relation, produces new tuples in the AUTHOR-
CHAIN relation. We capture this dependency relation between predicates by introduc-
ing a predicate dependency graph, as in Figure 3. We observe that the program contains
four strongly connected components and that we can split the original program into 4
sub-programs, each corresponding to a strongly connected component, and then use
the output of a sub-program as the EDB for the sub-programs that depend on it.

The process of splitting the original program into sub-programs that match the
strongly components of the predicate dependency graph is called stratification. The
resulting sub-programs are named strata (sg. stratum). Since all the cycles in the
predicate dependency graph are contained by their respective stratum, the dependencies
between strata form a directed acyclic graph (DAG). An evaluator can thus traverse this
DAG in topological order and evaluate each stratum once the strata it depends on have
been fully evaluated.

Negation Assume that in the earlier example in Figure 2, we would like to find unre-
lated authors. The immediate solution is to define a predicate UNRELATEDAUTHORS
as
UNRELATEDAUTHORS(name1, name2) :- ¬AUTHORCHAIN(name1, name2).

But the variables name1 and name2 are universally quantified, so the UNRELATEDAU-
THORS relation must contain all the objects in the universe, except the related author
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names. This is unlikely to be the intention of the programmer, so we require that vari-
ables used in a negated atom appear in positive atoms in the body of the same clause.
Thus, the query for unrelated authors becomes:
UNRELATEDAUTHORS(name1, name2) :- AUTHOR(name1, paper1),

AUTHOR(name2, paper2),
¬AUTHORCHAIN(name1, name2).

To correspond to our intuitions about proofs, we want to avoid rules such as
P(0) :- ¬P(0).
where we derive P(0) assuming ¬P(0). We achieve this by introducing a syntactic
restriction. If two predicates P and Q are from the same stratum, then P is not allowed
to appear negated in the body of any definition of Q. That is, we disallow rules of the
shape
P(. . .) :- . . . , ¬Q(. . .), . . . .

This restriction is named stratified negation and is one of the approaches to give sen-
sible semantics to Datalog programs in the presence of negation. All Datalog engines
used in this work implement stratified negation.

Arithmetic A common extension to Datalog is the introduction of arithmetic oper-
ations and arithmetic constraints. Arithmetic operations allow the construction of new
values, not existing in the EDB, which invalidates the termination property of plain
Datalog programs. The program in Figure 4 uses this extension to compute the dis-
tance between two points on the number line.

1 DISTANCE(x, y, d) :- POINT(x), POINT(y), x > y, d = x - y.
2 DISTANCE(x, y, d) :- POINT(x), POINT(y), x <= y, d = y - x.

Figure 4: Datalog program for computing the distance between two points

Order Going back to the authorship example in Figure 2, we may aim to compute the
distance between two authors. The program in Figure 5 computes the set of possible
distances between two authors and the Erdős number of authors. Because the COAU-
THOR relation is symmetric, the graph induced by it contains cycles if it contains more
than two authors. Then, the rule in line 4 produces AUTHORDISTANCE tuples with
ever increasing distance, leading to non-termination.

1 AUTHORDISTANCE(name1, name2, 1) :- COAUTHOR(name1, name2), name1 != name2.
2 AUTHORDISTANCE(name1, name2, d) :- AUTHORDISTANCE(name1, name3, d1),
3 AUTHORDISTANCE(name3, name2, d2),
4 d = d1 + d2.
5 ERDŐSNUMBER(name, d) :- AUTHORDISTANCE(name, "Erdős", d).

Figure 5: Program which computes the distance between two authors

The program in Figure 5 has the desired semantics if only the tuples of AUTHORDIS-
TANCE with smallest distance are added to the IDB. This requires that we introduce a
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partial ordering of the AUTHORDISTANCE relation,

AUTHORDISTANCE(m,n, d1) ⊑ AUTHORDISTANCE(m,n, d2) iff d1 ≤ d2

and only the least tuple with respect to the ⊑ partial order is preserved in the IDB. The
introduction of partial ordering between tuples is called subsumption [Kö+93].

An alternative approach to subsumption is to extend Datalog with lattice support,
thus allowing the introduction of a lattice structure over the tuples in the AUTHORDIS-
TANCE relation. The Flix language [MYL16] implements this approach and it demon-
strated capabilities of encoding complex inter-procedural program analysis frameworks
such as IFDS [RHS95] and IDE [SRH96].

The Datalog dialect we use in this work does not support lattices, but we consider
them an extension of Datalog orthogonal to our approach, which could be used to
enhance the expressiveness of our static code checker frameworks.

2.2 Program Analysis Systems Using Datalog
The Datalog language has been employed in describing program analyses both at high-
level, on the AST, and at low-level, on the intermediate representation. In the following
paragraphs we present a selection of systems that employ Datalog for program analysis
in similar ways with our work (CodeQuest, QL), demonstrate the scalability of Data-
log analyses (Doop) or explore language extensions and alternative evaluation modes
(IncA).

CodeQuest CodeQuest [HVM06] is one of the first systems that employed Datalog
for source code queries, arguing that the language provides the right balance between
expressivity and an efficient evaluation model. In particular, the authors of CodeQuest
identify Datalog’s ability to express recursive queries as crucial for exploring the graph
structures arising in source code queries, such as type hierarchies and call graphs. In-
stead of defining its own representation of the analyzed program, the system exposes
internal Eclipse [AIS] data structures as Datalog relations.

QL QL [Avg+16] is a declarative object-oriented programming language aimed at
implementing static analyses in the CodeQL program analysis system. In contrast to
CodeQuest, QL provides a high-level programming language, which includes classes,
subtyping and virtual dispatch. The AST of the analyzed program is directly exposed
as built-in types (entity types) in the QL language.

The CodeQL system provides a mechanism for populating the relations that repre-
sent the program (i.e., the entity types) together with a rich library of predicates and
static checks for multiple programming languages (C, C++, C#, Java, etc.).

Doop Doop [BS09] is a pointer analysis framework for Java programs. The frame-
work implements a suite of tightly-composed analyses,5with configurable object and

5For a discussion on analysis composition, see Section 3.1.
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call-site sensitivities. By specifying the analyses in Datalog, Doop demonstrates sig-
nificant performance improvements over previous work. The analyzed program is
represented as EDB facts, corresponding to the intermediate representation for Java
bytecode produced by the Soot program analysis framework [VR+10]. A system im-
plementing the ideas of Doop, but for LLVM-based languages, is CClyzer [BS16].
CClyzer represents as EDB facts only the subset of LLVM IR instructions which are
relevant to pointer analyses.

IncA IncA [Sza+18] is a Datalog system with support for lattices and an incremental
evaluation model. Although aimed at program analysis, the increments have fact gran-
ularity, thus the incremental scheme is independent of the domain. Without accounting
for the time to produce the EDB facts, the system is capable of incrementally running
inter-procedural lattice-based analyses such as constant propagation and interval anal-
ysis in time scales that do not prohibit the integration of such analyses inside an IDE
workflow [SEB21].

2.3 The MetaDL Datalog Dialect

The Datalog dialect we are using has evolved through its use in METADL, JAVADL and
CLOG. In this section we present its common core, which we refer to as the METADL
Datalog dialect. In Figure 6 we present its grammar, which mostly follows established
Datalog conventions.

Program ::= K
Clause K ::= R|F
Fact F ::= H .
Rule R ::= H:-B.
Head literal H ::= P

(
t
)

Body literal B ::= H| !H| v = e| e < e| e == e| etc.
Term t ::= e | _ | k | ′P
Expression e ::= v | f (e) | e+ e | etc.
Variable v ∈ Variables
Function f ∈ Functions
Predicate symbol P ∈ Predicates
Constant k ∈ Z ∪ Strings ∪ {undef}

Figure 6: The syntax of the Datalog language dialect

Names The namespace of predicates and functions is global, while each rule in-
troduces its local namespace for variables. Predicate names start with an uppercase
character, while the names of variables and functions start with a lowercase character.
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Types The METADL dialect is a statically typed language, without explicit type
declarations. We rely instead on monomorphic type inference. A METADL term
can have one of four types: INTEGER, STRING, ASTNODE and PREDREF. ASTN-
ODE is the type of AST nodes, while PREDREF is the type of predicate references,
′P . The type of a METADL predicate is a product type τ1 × . . . × τi, where τi ∈
{INTEGER, STRING, ASTNODE, PREDREF}. For convenience, the infinite predicates
==, ! = and = are polymorphic, with type τ × τ where τ ranges over all the term
types.

Infinite Predicates and Constructors Similar to other Datalog dialects, we in-
troduce a set of infinite predicates, which do not restrict the range of variables appear-
ing in them. We use these predicates for comparisons (e == e, e < e etc.) and for
constructing values (v = e).

Our Datalog dialect makes a syntactic distinction between the predicate for equality
testing e1 == e2 and the predicate v = e for assigning a value to a variable. The
predicate for equality testing requires that variables occurring in e1 and e2 are range-
restricted by other literals in the clause and does not itself restrict the range of the
variables. The predicate for assignment requires that only the variables occurring in
the expression e in its right-hand side are range-restricted.

Operators and Built-in Functions The language provides the usual arithmetic
operators and a set of built-in functions, such as cat, for concatenating two strings.
Particular implementations, such as CLOG, extend this set of built-in functions,
with functions aimed at accessing the source location of an AST node, such as
src_file : ASTNODE → STRING, or for querying properties of the control-flow
graph, cfg_entry : ASTNODE → ASTNODE.

I/O Instead of relying on special syntax for input and output, we assign two predicates
a special meaning. The predicate

EDB(predicate : PREDREF,file : STRING, format : STRING)

enumerates the EDB predicates, together with the file from which to load the facts and
the format of that file. The supported formats are "csv" and "sqlite", the latter
being intended for internal use. Symmetrically, the predicate

OUTPUT (predicate : PREDREF,file : STRING, format : STRING)

enumerates the output predicates and their destination file and format.

Legacy Syntax Through its evolution, the METADL dialect used a different con-
crete syntax for some of its terms, compared with the one described in Figure 6. In
Figure 7, we enumerate the relevant differences.
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Current Syntax Legacy Syntax
Negated body literal !H ≡ NOT(H)
Equality literal e1 == e2 ≡ EQ(e1, e2)
Comparison literal e1 < e2 ≡ LT(e1, e2)
Assignment literal v = e ≡ BIND(v, e)

Figure 7: Equivalent syntax for the METADL dialect

3 Static Code Checkers

Static code checkers are tools that automatically search for defects in a program, with-
out executing the program.

The defects reported by static code checkers include:

• execution of code with undefined behavior, such as reads of uninitialized vari-
ables or out-of-bounds array accesses;

• execution of code that leads to program termination: null pointer dereferences;

• misuse of APIs: memory leaks, double free of a pointer;

• partial definition of functions: missing cases in a switch;

• illegal data flow: data leaks;

• use of code constructs that hurt readability;

• infringement of project-specific coding guidelines.

Depending on their sophistication, static checkers may report defects to different
degrees. Some limit themselves at performing a syntactic check, while others rely
on sub-analyses such as data flow analysis to detect defects. For example, there are
multiple ways to prevent a double call to free error in C code:

1. enforce a syntactic rule: every call to free is immediately followed by a state-
ment which sets the freed pointer variable to NULL.

2. check that the freed pointer variable is not an argument to free on any subsequent
statements;

3. check that free is not called on any pointer pointing to the same memory as the
freed pointer;

All three approaches incur tradeoffs. The first one misses the cases when the freed
memory is referred by multiple pointers and requires source code modifications. How-
ever, it requires only syntactical information and thus static checking can be fast. The
second approach relies on analyses that a compiler performs, such as name analysis
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and CFG construction, thus it can have a low runtime cost and detect some instances
of the defect, without requiring any changes to the source code. The last approach is
the most demanding. Since pointers can themselves be stored on the heap, it requires
heap modeling and pointer analysis, analyses which are known to be expensive. Like
the second approach, it does not require any source code modification.

As illustrated in the previous example, choosing a static checking approach is a
tradeoff between the accuracy of the result and the available time and compute re-
sources. The less resources a checker uses, the more likely it is to be widely used in
practice. Resource-intensive checkers are reserved to use-cases where the cost of a
defect manifesting itself after deployment exceeds the cost of running the analysis.

3.1 Structure of Static Code Checkers

From an architectural perspective, static code checkers are composed from three main
components: a fact extraction component, an analysis component and a detector com-
ponent. The fact extraction component (or the fact extractor), parses the analyzed
program, builds an internal representation (an AST or a three address code) and then
translates this to the domain of the analysis, filtering out the irrelevant parts.

The analysis component implements the various static analyses relevant for a subset
of detectors implemented by the static code checker.

Finally, the detector component contains the set of detectors implemented by checker.
These detectors act as client analyses for the analysis component. The detector com-
ponent is responsible for filtering and interpreting the results of the analyses and pro-
ducing the reports.

Depending on the detectors supported by the static code checker, the analysis com-
ponent has varying complexity. To classify the structure of the analysis component,
we adopt the categories tight and loose composition, introduced by Bronevetsky et
al. [Bro+13], which we extend with another category, of detector-specific analyses.

For some checkers, the analysis is intertwined with the detector (Figure 8) and the
properties computed by the analysis are detector-specific. These checkers do not build
an AST of the analyzed program, but instead recover local syntax, name and type in-
formation by directly processing the stream of scanner tokens or bytecode instructions,
as in the case of CppCheck [Mar] and SpotBugs [Spo] respectively.

Many static code checkers reuse infrastructure from compilers, thus their analyses
mimic the pipelined architecture of compilers. The analyses are thus loosely composed,
and they are run either independently, or in a sequence, where analyses early in the
sequence inform later analyses (Figure 9).

For improved precision, static code checkers may rely on complex analysis setups,
where multiple analyses mutually share information to refine their results, thus being
tightly composed (Figure 10). An example is the combination of call graph construc-
tion, pointer analysis and data-flow analysis for object-oriented languages. To achieve
this tight composition, the analyses are integrated into a blackboard architecture, which
may be explicit, such in the case of the OPAL system [Hel+20], or implicit, such in
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Figure 8: Static code checker with detector-specific analyses
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Figure 9: Static code checker with analyses in loose composition

Datalog-based systems (Doop [BS09] for Java pointer analysis, MadMax [Gre+20] for
Ethereum smart contracts). Thus we distinguish three classes of analysis components:
detector-specific, loosely-composed and tightly-composed.

3.2 Detector Classes

A desirable property of a detector is to have a small number of false-positives. In
practice, this imposes a correlation between the classes of defects it can precisely detect
and the complexity of the analyses employed by the detector and available in the static
code checker framework. From this angle, we distinguish four categories of detectors:
style, semantic, local and global.

Style Detectors Style detectors are limited to mostly syntactic checks over the an-
alyzed program. Detectors in this category are aimed at enforcing good coding styles,
rather than finding defects that can manifest in some execution of the program. Detec-
tors for insufficient use of parentheses are an example of style detectors. Since style
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Figure 10: Static code checker with analyses in tight composition

detectors do not need any sophisticated analyses, all static code checkers discussed in
this section implement some detectors from this category.

Semantic Detectors In addition to structural information about the program, se-
mantic detectors rely on name and type information. As the style detectors, they are
employed at enforcing good coding practice (e.g. a detector for name shadowing), but
some are capable of detecting actual defects (a public method exposing a private field).

Local Detectors Local detectors report more complex defects than the ones in the
style category, but the reasoning for such reports is confined to a single procedure, thus
they rely only on intra-procedural analyses. Systems providing this sort of detectors
build at least one representation of the object program, an AST or other intermediate
representation such as three-address code.

Beside name and type analysis, local detectors rely on local pointer and data-flow
analyses to derive their results. An example of a code checker which supports this class
of detectors is Error Prone [Aft+12]. Another system implementing this style of detec-
tors is SpotBugs [HP04] (formerly known as FindBugs), which implements its checks
by recovering syntactic and semantic information from Java bytecode instructions.

Global Detectors Global detectors aim at finding defects that are not localized to a
single function, thus they require a set of inter-procedural analyses. Depending on the
system, these analyses might be loosely or tightly composed.

3.3 Selected Static Code Checkers

To assess the expressiveness and the performance of our static code checkers, we com-
pare the detector definition styles, the reports and the running times with a selection
of relevant static code checkers. We describe these code checkers in the following
paragraphs.
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SpotBugs SpotBugs [Spo] (previously FindBugs [HP04]) is a static code checker
for Java. In contrast to the other checkers discussed in this section, SpotBugs ingests
the analyzed program as Java bytecode, and not as source. This makes the definition
of checks particularly cumbersome, since the checks must be defined in terms of a
stack-based intermediate representation.

The program representation shared by all checks is the Java bytecode. The majority
of checks implemented by SpotBugs fall in the category of style checks. SpotBugs
also contains a small number of semantic and local detectors (mostly related to multi-
threading). The local detectors rely on CFG construction and an intra-procedural data-
flow analysis. SpotBugs provides a plug-in mechanism, allowing for extension with
custom checks.

Error Prone Another static code checker targeting Java is Error Prone [Aft+12].
Error Prone is not a stand-alone tool, but it is intended to be used as a plugin to the
Java compiler, thus having access to the compiler AST, which it uses as the common
internal representation.

As for SpotBugs, the majority of Error Prone checks are style and semantic checks.
Only the checks related to nullness propagation are local checks, relying on intra-
procedural dataflow information provided by the Checker Framework [Che].

One particular feature of Error Prone is that the a check can also define fixes, which
can be automatically applied. Besides a plugin mechanism which can be used for
adding custom checks, Error Prone also integrates with Refaster [Was13], which allows
for definition of patterns and fixes in compilable Java code.

Clang Static Analyzer Clang Static Analyzer [Cla] is a static code checker for C,
C++ and Objective-C programs, built on top of Clang compiler infrastructure.

The common representation used by the checks is the Clang AST, as well as a
control-flow graph. Clang Static Analyzer includes an inter-procedural data-flow frame-
work, in the style of IFDS [RHS95]. In addition, it uses constraint solving to rule out
infeasible CFG paths. This enables the Clang Static Analyzer to implement global
checks. However, the analyses are not tightly-composed, but rather compute their re-
sults independently. The detectors of Clang Static Analyzer are accessible through the
Clang-Tidy [Tea] tool, which provides its own style and semantic checks.

CodeQL CodeQL is a language independent program analysis framework. It con-
sists of an object-orient logic programming language, QL [DM+07], fact extractors
for multiple languages, which build a relational representation of the analyzed pro-
gram, and a runtime for evaluating QL programs. CodeQL provides a library of static
checks, aimed at multiple programming languages, including C, C++ and Java. The
core language of QL is Datalog, thus the CodeQL system is capable of supporting
tightly-composed analyses.
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3.4 A Mapping of Static Code Checkers

In Figure 11, we present a mapping of the discussed static code checkers, on two co-
ordinates: the detector category they support and the style of composition of their
analyses. For comparison, we also include our code checker frameworks, JAVADL and
CLOG.

Detector-specific Loose composition Tight composition
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Figure 11: A mapping of static code checkers

4 Syntax Trees

Context-free grammars and representations of programs as abstract syntax trees play
an important role in this thesis. Thus, we briefly illustrate the concepts by adapting
the classical repmin example [Bir84] and solve the problem of finding the node of
minimum value from a binary tree. We describe a solution to this problem using the
grammar description dialects used by the JastAdd metacompiler [HM03]. JastAdd
uses a dialect of extended Backus-Naur notation (EBNF) for the specification of the
grammars.

We start by describing the representation of the binary tree. We call this representa-
tion the abstract grammar, since it accounts for the logical structure of the tree, rather
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for its (textual) materialization. JastAdd uses an object-oriented grammar, which en-
forces a subtyping relation between its terminals and non-terminals. Thus, on line 1 in
Figure 12, we define the Tree type, to represent the binary trees. In lines 2 and 3, we
declare two of its subtypes: Fork to represent a node with two Tree children, and
Leaf to represent the leaves. Terminals and non-terminals on the right-hand side of
the production rule have names, for example Right, which result in accessor methods,
Fork::getRight().

1 abstract Tree;
2 Fork : Tree ::= Right:Tree Left:Tree;
3 Leaf : Tree ::= <Value:Integer>;

Figure 12: The abstract grammar of the binary tree language

Once the abstract grammar of the binary tree is in place, we define the concrete
grammar in Figure 13, using the JastAddParser [Jas] EBNF dialect. We also refer to
this grammar as the parsing grammar to reflect its purpose of transforming a sequence
of tokens to an abstract syntax tree (AST). Besides defining the production for each
non-terminal and its associated semantic actions, the grammar also defines the type of
each non-terminal, which constrains the type produced by the semantic action. In con-
trast to the abstract grammar, the parsing grammar contains tokens that help avoiding
ambiguities, but do not have any semantic value.

1 Tree node = leaf
2 | fork
3 ;
4 Leaf leaf = INT {: return new Leaf(INT) :};
5 ;
6 Fork fork = ( node.left node.right ) {:return new Fork(left, right);:}
7 ;

Figure 13: The concrete grammar of the binary tree language. Code between {: :}
represents semantic actions.

In Figure 14, we illustrate the concrete syntax tree (or parse tree) for the expression
((4 2) (3 1)). In general, parsers do not build this tree explicitly, but directly
apply the semantic actions and produce the abstract syntax tree. For parsing syntactic
patterns, our systems explicitly build the concrete syntax tree, transform it and only
then apply the semantic actions.
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( ( 4 2 ) ( 3 1 ) )

leaf leaf leaf leaf

fork fork

fork

Figure 14: Parsing tree for ((4 2) (3 1))

To find the node with the minimum value, we introduce equations for the attribute
minNode. In Figure 15, line 1, we define the minNode attribute for Tree AST
nodes. This a synthesized attribute, since it depends only on attributes of the current
node and its children, and it is also a reference attribute, since its values are themselves
AST nodes. For each of the concrete subtypes of Tree, we provide equations to
compute the minimum node. Thus, Leaf nodes are minimum nodes (line 2), while
for Fork nodes, we choose the minimum between the left and right subtrees (line 3).
We observe that in attribute grammar systems we describe the minNode attribute by
using equations and not directly by values, which is a distinguishing feature between
attribute grammars and code property graphs.

1 syn Tree Tree.minNode();
2 eq Leaf.minNode() = this;
3 eq Fork.minNode() = getLeft().minNode().getValue() <
4 getRight().minNode().getValue() ?
5 getLeft().minNode() : getRight().minNode();

Figure 15: Equations describing the node with minimum value

In Figure 16, we illustrate the AST for the tree ((4 2) (3 1)) together with
the values of the minNode attribute. The values of this attribute are references to nodes
in the same AST.
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Figure 16: Abstract syntax tree for ((4 2) (3 1)). Red arrows represent synthe-
sized reference attributes.

5 Syntactic Pattern Matching

In the wide context of program understanding, pattern matching is the process of
searching for a given program fragment, called pattern, in the source of a program.
Some parts of the pattern may be left unspecified, and thus substituted by wildcards.
Wildcard matches may be subsequently referred to by using metavariables.

The search may be lexical, where the matching is performed token by token, with-
out accounting for the grammar of the programming language. For example, function
calls in a C-like language can be found using the grep utility with the regular expres-
sion "[ _a-zA-Z][ _0-9a-zA-Z]*([ ^)]*)".

The above example illustrates the main limitations of the lexical approach: it con-
founds distinct syntactic categories — the example pattern matches both function calls
and function declarations — and it is brittle in regard to white space. Moreover, the
pattern does not distinguish between function calls and function-like macros.

These limitations hint to the alternative approach to pattern matching — syntactic
matching — which accounts for the context-free grammar of the programming lan-
guage, thus restricting the matches to subtrees obeying this grammar. The syntac-
tic patterns are also written in a superset of this grammar, extended with wildcards.
Thus, in an early syntactic pattern matching system, SCRUPLE [Pau92], the pattern
$f_call(#*) matches all function calls. Since programming languages are typically
described using both a concrete (parsing) grammar and an abstract grammar, syntactic
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pattern matchers can be built for any of these.
Pattern matching systems deal with at least two languages, so, to distinguish them,

we adopt existing terms from the literature [GAM96]. Thus, the object language is
the language of the program in which the pattern is searched for, while the pattern
language is the language used to describe the pattern. Some pattern matching systems
allow the matched program fragments to be further processed. The action language
describes this processing.

5.1 Syntactic Patterns in METADL, JAVADL and CLOG

While the pattern grammar varies with the programming language targeted by the static
code checker, the syntactic patterns used in this work share common features. In our
systems, syntactic patterns always occur in pattern literals, as part of a Datalog pro-
gram. The pattern literals have the general form

[@s] [r] ⟨..C..⟩

where the variables between [ ] are optional. If present, the variable r has type AST-
NODE and binds to the root of the subtree matched by the pattern ⟨..C..⟩. The s variable,
if present, restricts the match to strict sub-trees of the ASTNODE s. If left free, this
variable would produce a large number of matches, binding every node from the root
of the subtree matched by ⟨..C..⟩ to the root of the AST. We did not find any use of this
behavior, which is also detrimental to performance, thus the checker compiler require
that other literals in the rule bind this variable.

A syntactic pattern ⟨..C..⟩ is a code fragment that corresponds to a syntactic cate-
gory from the object language. To refer to parts of the matched pattern, we introduce
metavariables, a set of variables distinct from the tokens of the object language. De-
pending on the systems, we denote metavariables by $n in CLOG and METADL, or #m
in JAVADL. For example, the pattern ⟨..while ($cond) $body..⟩, matches all the
while loops in a program and, for each match, binds $cond to the subtree represent-
ing the loop condition and $body to the subtree representing the loop body.

For matching parts of a list that we do not further refer to, we introduce gaps,
denoted by ... in METADL and .. in CLOG and JAVADL. Thus, the pattern
⟨..while ($cond) {..}..⟩ matches all the while statements that have a com-
pound statement as their body. In Figure 17 we illustrate the matches produced by the
pattern ⟨..while ($cond) {.. $stmt ..}..⟩, where the metavariable $cond
ranges over all conditions of a while statements and, for any binding of $cond, the
metavariable $stmt ranges over all statements in the compound statement correspond-
ing to the loop body.

Semantically, pattern literals behave like predicates ranging over the entire object
program. Each match corresponds to a binding of all the metavariables occurring in
the syntactic pattern and of the optional root and subterm variables.
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1 while (i < n) {
2 if (i != n - 1)
3 puts(", ");
4 printf("%d", x[ i]);
5 }

$cond $stmt

ν1 ν2

ν1 ν3

Figure 17: Two matches of the pattern ⟨..while ($cond) {.. $stmt ..}..⟩.
νi are opaque values of type ASTNODE.

.

5.2 Related Systems

The idea of using concrete syntax for pattern matching is not new, hence we proceed by
describing a selection of systems that use syntactic patterns and discuss the similarities
and differences relative to our work.

Early Systems

An early program understanding system using syntactic pattern matching on the con-
crete syntax is SCRUPLE [Pau92], with C as the object language. The pattern gram-
mar is an extended version of the C grammar, with different wildcards corresponding
to the different syntactic categories: statements, types, expressions, function declara-
tions, etc. Unlike the pattern language of CLOG, the SCRUPLE pattern language also
contains wildcards to express arbitrary levels of nesting. In CLOG, the pattern lan-
guage can express only a fixed nesting depth, while arbitrary nesting can be expressed
by combining multiple patterns. SCRUPLE performs matching by transforming the
pattern to non-deterministic automata and simulating them.

Another early system is TAWK [GAM96], which, unlike SCRUPLE, performs pat-
tern matching on the abstract syntax tree, but it uses the same style of automaton for
pattern matching. In addition to the pattern language, TAWK uses C as the action
language, which enables the user to express a wide range of analyses.

Stratego

Stratego/XT [Vis04] is a framework for development of program transformation sys-
tems based on the term rewriting formalism. While it is not aimed at the development
of static code checkers, the framework supports the specification of transformation
rules using the concrete syntax of the object language [Vis02].

Combining the syntax of the object language and the syntax of the rewrite specifi-
cation language requires that the parser of the rewrite specification is able to parse both
languages. The parser for the combined language must accept general context-free
languages, since the non-trivial subclasses of context-free languages are not closed
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under composition. Stratego addresses this by using scannerless generalized LR pars-
ing, SGLR [Vis97b]. While the approach used in Stratego is general and robust to
changes to any of the combined languages, in CLOG and JAVADL we use a more prag-
matic approach: we use an LR parser for parsing the checker specification, while we
defer the parsing of the syntactic patterns to a general context-free parser (an Earley
parser [Sco08]). We use special tokens (⟨....⟩) to delimit the two languages.

Stratego/XT uses the syntax definition formalism (SDF) [Vis97a] to define the
formal syntax of the language. SDF was successfully used to define disambiguation
rules for the combined grammars of Java 5 and AspectJ [BTV06]. In this case, disam-
biguation is performed by the parser. In our tools, ambiguity arises when extending the
grammar of the object languages (C and Java), with metavariables and gaps. However,
in our case it is not possible to infer the intent of the user at parse-time, thus we defer
disambiguation to the checker developer. We report that a syntactic pattern is ambigu-
ous, and let the developer use predicates to disambiguate between the possible parse
trees of a pattern.

Coccinelle

Coccinelle [Pad+08] is a program transformation tool targeting the C and Rust lan-
guages. It has a rich pattern language, SmPL [PLM07], for describing semantic patches:
patterns over the source code and the transformations to apply when these patterns
match. A particular strength of Coccinelle is that it performs pattern matching over
paths in the CFG rather than on the AST.

Metavariables The Coccinelle SmPL uses metavariables to refer to matched pro-
gram terms. The metavariables are explicitly declared, together with the syntactic
category they can match, for example statements, expressions, identifiers. A special
category of metavariables, which does not exist in our systems, are position metavari-
ables that bind to a position in the matched source code. Instead, CLOG relies on the
src_file, src_line_start and src_col_start built-in functions to retrieve
source information for any AST node bound to a metavariable.

To illustrate, in Figure 18 we present a Coccinelle check6 which aims at preventing
the use of the address of a variable as a branch condition, since such a condition is
always true. This check detects the if statements in lines 4, 5 and 7 from Figure 19
and produces a report for the user. The first block of the check, in lines 1-5 introduces
the metavariables and their syntactic categories, used in the pattern in lines 7 and 8.
Finally, it uses inline Python code to output the warnings, between lines 10 and 15.

6Adapted from http://coccinellery.org

http://coccinellery.org
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1 @r@
2 expression x;
3 statement S1,S2;
4 position p;
5 @@
6
7 if@p (&x)
8 S1 else S2
9

10 @script:python@
11 p << r.p;
12 @@
13
14 msg = "ERROR: test of a variable/field address"
15 coccilib.report.print_report(p[0],msg)

Figure 18: Coccinelle check for test of variable/field address

1 int foo(void) {
2 int x = 5;
3 struct { int f; } s;
4 if (&x) { /* not OK */ }
5 if (&s.f) { /* not OK */ }
6 if (*&x) { /* OK */ } else { /* OK */ }
7 if (&x) { /* not OK */ } else { /* not OK */ }
8 }

Figure 19: Unintentional nullness tests of a variable’s address

In Figure 20, we present an equivalent CLOG check. We define the IFADDR pred-
icate in lines 1 and 2, with two syntactic patterns, one matching if statements with
an else branch and one, without. The IFADDR relation contains all the AST nodes
that represent the expresion whose address is used as condition. In lines 4 and 5, we
use the builtin function src_file, src_line_start and src_col_start to
collect the source locations in relation IFADDRREPORT — corresponding to the use
of position metavariables in Coccinelle. Finally, line 7 marks IFADDRREPORT as an
output relation.

1 IFADDR($e) :- ⟨..if (&$e) $t else $f..⟩.
2 IFADDR($e) :- ⟨..if (&$e) $t..⟩.
3
4 IFADDRREPORT(f, l, c) :- IFADDR($e), f = src_file($e),
5 l = src_line_start($e), c = src_col_start($e).
6
7 OUTPUT(’IFADDRREPORT, "IfAddrReport.csv", "csv").

Figure 20: CLOG check for test of variable/field address
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An essential difference between metavariables in Coccinelle and those in CLOG,
is that, in Coccinelle, metavariables bind program terms, while in CLOG they bind
AST nodes. In CLOG, a metavariable occurring twice in the same pattern results in
a matching failure, since all AST nodes have unique identities, even if the subtrees
they bind are structurally identical. This makes it cumbersome to test two expressions
for structural equality in CLOG, but it is necessary for the correctness of semantic
predicates, such as the typing relation, where two structurally identical expressions
may have different types in different scopes.

Isomorphisms The C language allows for multiple idiomatic ways of expressing
the same intent, which may differ depending on the adopted coding style. Coccinelle
provides a mechanism to declare such isomorphisms, allowing the analysis writer to use
only one of the idioms in the patterns. CLOG lacks an explicit mechanism of expressing
pattern isomorphisms, but it relies instead on the user to introduce a predicate to refer
to all equivalent terms, as on lines 1 and 2 in Figure 20.

The Coccinelle check in Figure 18 relies on an isomorphism defined in the stan-
dard library to match both variants of the if statement and report on lines 4 and 5 in
Figure 19. In Figure 21 we reproduce the relevant isomorphism.

1 Statement
2 @ drop_else @
3 expression E;
4 statement S1;
5 pure statement S2;
6 @@
7 if (E) S1 else S2 => if (E) S1

Figure 21: Isomorphism definition in Coccinelle

Sequences Coccinelle patterns match on CFG paths, which makes sequences es-
sential to specifying such patterns. CLOG patterns can also use sequences, but they
only match lists at the same level of nesting, for example arguments of a function or a
sequence of statements in a block.

Consider the code samples in Figure 22, which contain dereferences of a pointer
previously tested for nullness. Figure 23 contains a Coccinelle check7 that detects the
dereference of q in line 19, on a path on which it is known to be null, due to the test in
line 14. The same check does not report on the dereference of q at line 9, because it is
dominated by the assignment in line 7.

7Adapted from http://coccinellery.org

http://coccinellery.org
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1 struct S { int f;} s;
2 int g;
3
4 int good(struct S *q) {
5 if (q == NULL) {
6 do {
7 q = &s;
8 } while (g);
9 q->f = 0;

10 }
11 return 0;
12 }

13 int bad(struct S *q) {
14 if (q == NULL) {
15 while (g) {
16 q = &s;
17 }
18 q->f = 0;
19 }
20 return 0;
21 }

Figure 22: Dereference of null pointer

The Coccinelle check in Figure 23 introduces a pattern that matches dereferences of
a pointer previously tested for being null. Between lines 9 and 11, the check defines a
sequence, which matches any path on the CFG on which the variable tested for nullness
is not assigned (line 9) before being dereferenced (line 10). The ... symbol matches
any sequence of statements, but it can be qualified by a when clause which excludes a
pattern from the path (line 9).

1 @@
2 expression E, E1;
3 identifier f;
4 statement S;
5 @@
6
7 * if (E == NULL)
8 {
9 ...when != E = E1

10 * E->f
11 ...
12 }
13 else S

Figure 23: Coccinelle check for null dereferences

In Figure 24, we present an equivalent check, written in CLOG. In lines 4–7, it con-
tains patterns to match the if statements of interest. Since CLOG’s matching mecha-
nism acts after preprocessing, in lines 1 and 2 we also provide a definition of NULL.
Between lines 10 and 13, the check explicitly declares where the paths of interest begin
— at the entry in the then block of the if statement — and end — at the CFG suc-
cessor of the if statement (line 10) or at the first assignment to the pointer used in the
condition (line 15). In line 15 we introduce a rule which propagates nullness along the
CFG path. Finally, line 20 contains a rule which checks for dereference statements on
such paths.
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1 NULL(e) :- e ⟨..0..⟩.
2 NULL(e) :- e ⟨..($t) $f..⟩, NULL($f).
3 // null test if statements
4 IFNULLSTMT(loc, $p, $t) :- loc ⟨..if ($p == $null) $t else $f..⟩,
5 NULL($null).
6 IFNULLSTMT(loc, $p, $t) :- loc ⟨..if ($p == $null) $t..⟩,
7 NULL($null).
8 // Beginning and end of the CFG paths inside the if
9 NULLAT(p, b),

10 NULLPATHEND(d, e) :- IFNULLSTMT(loc, p, t),
11 d = decl(p), d != undef,
12 b = cfg_entry(t),
13 CFG_SUCC(loc, e).
14 // End Null paths at assignments
15 NULLPATHEND(p, s) :- s ⟨..$p = $_..⟩, p = decl($p).
16 // Propagate nullness until the end of the patth
17 NULLAT(p, s) :- NULLAT(p, t), CFG_SUCC(t, s),
18 !NULLPATHEND(p, s).
19 // Did the path reach a dereference
20 NULLDEREF(d) :- d ⟨..$p -> $f..⟩,
21 p = decl($p),
22 NULLAT(p, d).

Figure 24: CLOG check for null dereferences

Comparing the check written in Coccinelle with the one in CLOG, it is apparent that
the former expresses the intent of the check, while in the latter the intent is dissimulated
between rules about fact propagation along CFG edges. While for the check in the
example this is a disadvantage, it also gives the checker writer explicit control, for
example by being able to easily specify a flow-insensitive check.

SOUL

The SOUL tool suite for querying programs in symbiosis with Eclipse [DR+11] com-
bines syntactic patterns over the Java language and logic programming in Prolog. This
is similar to our approach in JAVADL.

In Figure 25, we illustrate a SOUL pattern8 intended to find methods that expose
the value of private fields. For each match, the pattern binds the metavariables (starting
with ?) to the matched AST nodes. Thus, the pattern matches the return statements
(lines 4 and 7) the source code in Figure 26.

8Example from [DR+11]
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1 if jtClassDeclaration(?classDeclaration) {
2 class ?className {
3 private ?fieldDeclarationType ?fieldName;
4 ?modifierList ?returnType ?methodName(?parameterList) {
5 return ?fieldName;
6 }
7 }
8 }

Figure 25: SOUL pattern to find methods that expose the value of a private field

1 class Test {
2 private Object field;
3 public Object getField1() {
4 return field;
5 }
6 public Object getField2() {
7 return this.field;
8 }
9 }

Figure 26: Java class exposing the value of a private field through getter methods

SOUL supports domain-specific unification, which enables a pattern to match terms
that deviate syntactically, but which are semantically equivalent. To achieve this,
SOUL makes use of facts computed by an alias analysis to establish that the terms
this.field and field should unify.

SOUL supports multiple matching strategies for pattern matching. The most strin-
gent strategy requires that the pattern precisely matches the AST — this is also the strat-
egy implemented by JAVADL. A lenient matching strategy requires only that control-
flow expressed by the pattern exists in the matched methods, which is similar to the
matching strategy adopted by Coccinelle.

In Figure 27 we present an equivalent JAVADL code for detecting return statements
that expose private fields. This highlights some differences between the syntactic pat-
terns of SOUL and those of JAVADL. First, in JAVADL, possibly empty lists must
be denoted by gaps (..). Otherwise, if two terms appear at consecutive positions in
the pattern, they must appear at consecutive position in the matched code. Thus, in
this example, the gaps in lines 2, 4 and 8 are essential at specifying that the matched
method and the field declaration may appear anywhere in the class. Second, in JAVADL
metavariables bind to AST nodes and no unification is performed. Hence, in line 10,
we explicitly use the DECL predicate to ensure that #field is bound to the decla-
ration of #ret. Third, the JAVADL pattern matching is exact and JAVADL does not
employ alias analysis to unify semantically equivalent expressions, which means that
the relation EXPOSEPREDICATE will not contain the returned expression in line 7 in
Figure 26, but only the one in line 4. Such alias analysis facts could be easily ex-
posed by a semantic predicate similar to DECL, provided they are made available by
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the underlying Java compiler, which is not the case for the current implementation of
JAVADL.

1 EXPOSEPRIVATE(#ret) :- ⟨.. class #c {
2 ..
3 .. private .. #fieldType #field;
4 ..
5 .. #t #method(..) {
6 return #ret;
7 }
8 ..
9 }..⟩,

10 DECL(#ret, #field).

Figure 27: JAVADL rule to find return statements exposing the value of a private field
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The goal of this thesis is to enable the construction of fully declarative static code
checkers. We incrementally explore the design space and first build a system to analyze
Datalog programs in Datalog — METADL. With METADL, we devise methods for
representing programs as Datalog relations and to perform syntactic pattern matching
in Datalog.

We extend this approach to the Java language and tackle the challenges arising from
dealing with a language that is more complex than Datalog and with programs that are
much larger than Datalog programs. In the process, we devise ways for automatically
generating pattern grammars and dealing with ambiguity arising in syntactic patterns.
We integrate with a compiler built using reference attribute grammars, ExtendJ [EH07],
which we use as a source of semantic relations that are not computable in Datalog.
Since running time is a crucial aspect for static code checkers, we devise an incremental
evaluation model for our analyses.

We further explore the design space by targeting another programming language,
C, and integrating with a traditional pass-based compiler. Here, we adopt an alternative
approach to pattern matching by delegating it to the compiler and computing the pattern
matches on-demand.

Along the way, we study qualitative properties of our systems by implementing
static checks specific to each of the analyzed languages, as well as quantitative proper-
ties, by evaluating the precision and running times of static code checkers implemented
using our frameworks.

We materialized the techniques we describe in this work in three static code checker
frameworks aimed at different programming languages: METADL for Datalog, JAVADL
for Java and CLOG for C. We have used these frameworks to build detectors aimed at
their respective languages and demonstrated their effectiveness, both in result quality
and in running time.

To enumerate, this thesis brings the following contributions:

1. A relational representation of analyzed programs in Datalog (Paper I);

2. A relational representation of syntactic patterns in Datalog (Paper I);
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3. A method for automatically synthesizing pattern grammars from concrete gram-
mars (Paper II);

4. An approach for dealing with ambiguity arising from the use of syntactic patterns
(Paper II);

5. An integration between Datalog, syntactic patterns and a RAG-based compiler
(Paper II);

6. An alternative integration with a traditional, pass-based, compiler (Paper III);

7. An incremental evaluation scheme for declarative static code checkers (Paper II);

8. Quality and performance evaluation of the code checker frameworks on realistic
workloads (Papers II and III).

1 Relational Representation of Programs and Syn-
tactic Patterns

The natural way to build a fully declarative system which combines syntactic pattern
matching and Datalog is to devise a method for performing syntactic pattern matching
directly in Datalog. To achieve this, we must represent in Datalog the syntactic patterns
and the analyzed program.

1.1 Program Representation
To be able to analyze a program in Datalog, we need to represent the program relation-
ally, as EDB relations. In both METADL (Paper I) and JAVADL (Paper II), we use a
parser specified using the JastAddParser specification (cf. Section 4) to build an AST
of the analyzed program.

For METADL, the parsing grammar is the METADL parsing grammar itself, while
for JAVADL we use the pre-existing grammar from ExtendJ [EH07]. In both cases, the
parsers build the ASTs of the analyzed program using nodes defined by the abstract
grammar using the JastAdd format (cf. Section 4). Collectively, the relations that en-
code the information about the analyzed program form the relational representation
of the program. Besides encoding the AST structure, the relational representation in-
cludes relations for encoding the source location of the AST nodes. In addition, the
JAVADL relational representation encodes semantic information, such as the type rela-
tion and the declaration relation. The latter relation contains pairs of named nodes and
their respective definitions.

The METADL Relational Representation The relational representation used in
METADL has the following schema:

• for non-terminals:

SyntacticCategory(n : INTEGER, i : INTEGER, c : INTEGER)
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where n represents an unique identifier of the node, i the index of its child and c
the unique identifier of its child node at index i.

• for terminals:

SyntacticCategory(n : INTEGER, t : STRING)

where n is the unique identifier of the node and t the token string.

• for source location:

SRC(n : INTEGER, l : INTEGER)

where n is the node identifier and l the start line of the AST node.

This relational representation is close to the one used by .QL [DM+07], with two
major differences. First, in METADL, the tuples representing AST nodes encode a
reference from a node to its children, in contrast with .QL, which encodes a reference
from a node to its parent. We opted for this encoding because it makes the encoding
of queries for incomplete AST fragments slightly more compact. Second, the source
location of AST nodes is encoded in a separate relation. We chose this encoding,
because the source location is rarely accessed by the analyses and it is only necessary
when presenting the results of the checker.

The JAVADL Relational Representation While METADL deals with a small
number of syntactic categories, this does not hold for the Java grammar. Moreover,
different versions of the Java language add new semantic categories, which goes against
our previous approach of encoding them in the database schema as predicate names.
Thus, in JAVADL we encode the AST structure in a uniform way, in the AST relation:

AST(k : STRING, n : ASTNODE, i : INTEGER, c : ASTNODE, t : STRING)

where k represents the syntactic category of the node, n the node, i the index of child
c. If the node is a name or a literal, then t represents its token. Since Java programs
contain multiple files and many of their AST nodes span multiple lines, we extended
the SRC relation accordingly

SRC(n : ASTNODE, ls : INTEGER, cs : INTEGER,
le : INTEGER, ce : INTEGER, f : STRING)

where n represents an AST node, ls and cs are its start line and column, le and ce are
its end line and column and f is the source file.

In addition to the encoding of the AST structure, the relational representation used
JAVADL also contains semantic information. This is computed by the ExtendJ com-
piler and encoded into the

ATTR(n : ASTNODE, a : STRING,m : ASTNODE)
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relation. Here, n represents a node, a indicates what semantic property is encoded and
m represents the value of that property a for node n. The possible values for a are
type or decl, so the only semantic relations encoded in the relational representation
are type and name information. There is a good reason for including these two relations
in the relational representation of the program: in Java, name and type analysis are
mutually dependent and type analysis is undecidable [Gri17] so there is no hope for
computing them in Datalog.

1.2 Syntactic Patterns
Detectors implemented by static code checkers rely on identifying specific constructs in
the source code and then testing their properties.The systems we introduce in this thesis
use syntactic patterns to identify constructs of interest in the analyzed program. In our
static code checker systems, we write syntactic patterns using a concrete grammar that
is a superset of the grammar of the analyzed language (Datalog, C or Java), but the
pattern matching is performed on the abstract grammar. The patterns generally match
over the entire program, but they may be explicitly restricted, such that the match is
performed on a given node or on a subtree of the AST rooted at a given node.

In Figure 1 we present a detector for expressions that use both && and || boolean
operators without explicit parentheses. This is a detector commonly implemented by
static code checkers, such as Error Prone for Java or clang-tidy for C and C++. In this
example, the syntactic pattern ⟨..$l || $r1 && $r2..⟩ matches all the problematic
expressions, where the && expression is the right operand of the || operator. The
metavariables $r1 and $r2 bind the operands of the && expression and can be referred
in other atoms in the same Datalog rule. In this case, we use the built-in SRC predicate
to extract the source range of these operands and to add the suggested locations of the
parentheses to the relation MISSINGPARENS. The second rule (on line 4) collects all
the locations in the program where the && operator occurs in the left operand of the
boolean || operator.

1 MISSINGPARENS(ls, cs, le, ce, f) :- ⟨..$l || $r1 && $r2..⟩,
2 SRC($r1, ls, cs, _, _, f),
3 SRC($r2, _, _, le, ce, _).
4 MISSINGPARENS(ls, cs, le, ce, f) :- ⟨..$l1 && $l2 || $r..⟩,
5 SRC($l1, ls, cs, _, _, f),
6 SRC($l2, _, _, le, ce, _).

Figure 1: Missing parentheses detector

In Figure 2 we present a detector, which looks for printf calls throughout the
program — maybe forgotten after a debugging session — and collects their locations
for reporting. Because the actual arguments of the printf function are irrelevant to
the analysis, we use the gap — denoted by .. — to match and ignore a possibly
empty sublist of terms. Along with metavariables, gaps extend the analyzed language
grammar to form the pattern grammar of CLOG and JAVADL.



1 Relational Representation of Programs and Syntactic Patterns 39

1 PRINTF(f, l, c) :- p ⟨..fprintf(stdout, ..)..⟩, SRC(p, l, c, _, _, f).
2 PRINTF(f, l, c) :- p ⟨..printf(..)..⟩, SRC(p, l, c, _, _, f).

Figure 2: Searching for printf calls

Grammar of Syntactic Patterns Formally, the pattern grammar extends the gram-
mar of the analyzed languages as follows. For each syntactic category, represented in
the grammar definition by N , we introduce two new non-terminals, Np and Nl, defined
as:

Np ::= N | MetaVar
Nl ::= Np | Gap

We replace all the right-hand-side occurrences of N by Np if the occurrence is not
in a list. If the occurrence is in a list, then we use Nl, to allow for gaps. We apply this
transformation both to the parsing grammar and to the abstract grammar. While the
transformation is conceptually straight-forward, the abstract grammar is typed, in the
following sense: there is a one-to-one mapping from non-terminals to types which are
in a subtyping relationship. Moreover, the non-terminals occurring on the right-hand-
side are also typed. For example, the Java abstract grammar we use in JAVADL defines
the logical operators as follows:

Binary ◁ Expr ::= left :Expr right :Expr
LogicalExpr ◁ Binary
AndLogicalExpr ◁ LogicalExpr
OrLogicalExpr ◁ LogicalExpr

where N1 ◁N2 denotes that N1 is a direct subtype of N2, corresponding to the sub-
classing mechanism in Java. The parsing grammar contains the corresponding parsing
rules and their semantic actions:

Expr cor ::= cand .e1 e1
| cor .e1 "||" cand .e2 new OrLogicalExpr(e1, e2)

Expr cand ::= ...

Figure 3: Fragment from the Java concrete grammar used by JAVADL

Thus, the type of the semantic action is constrained by the declared type of the
non-terminal, Expr, so when transforming the cand rule, we need to introduce a candp

non-terminal, that has type Expr.



40 Contributions

Expr corp ::= cor .e1 e1
| t new MetaVarExpr(t)

Expr candp ::= cand .e1 e1
| t new MetaVarExpr(t)

Expr cor ::= candp .e1 e1
| corp .e1 "||" candp .e2 new OrLogicalExpr(e1, e2)

Figure 4: Fragment from the concrete pattern grammar of JAVADL

To match the constraints introduced by having a typed abstract grammar, when de-
riving the abstract grammar for patterns, we need to conservatively introduce multiple
MetaVar syntactic categories, one corresponding to each non-terminal. In the partic-
ular case of Expr, we add the following rules to the definition of the abstract pattern
grammar:

MetaVarExpr ◁ Expr ::= t:Terminal
GapExpr ◁ Expr

To avoid the tedium of manually applying the transformations described above,
we have built tooling on top of the JastAdd meta-compiler and the JastAddParser to
automatically extend the language grammars to pattern grammars. This has enabled
us to integrate the transformation in the build process of JAVADL and CLOG, which
avoids the need to manually maintain pattern grammars for the Java and C languages.

Ambiguity of Syntactic Patterns With the introduction of metavariables, the
pattern grammars for C and Java become ambiguous. To deal with ambiguity, we
implement an Earley parsing algorithm, described by Scott [Sco08], which accepts
any context-free grammar and produces a compact representation of the parse result,
a shared packed parse forest (SPPF), which shares common subtrees between parse
results.

We identify two sources of ambiguity in the pattern grammar: constructs in the
original grammar that are ambiguous after the introduction of metavariables and trivial
production rules in the original grammar.

An example of constructs in the original grammar that become ambiguous after
extending the grammar with metavariables are constructor and method definitions —
the pattern ⟨..$m $name(..) {..}..⟩ matches both. For such cases, we opt for
emitting a warning and letting the analysis writer disambiguate by using other literals
in the same Datalog clause. In this particular case, the conjunction
⟨..$m $name(..) {..}..⟩, TYPE($m, _)

matches method definitions, while
⟨..$m $name(..) {..}..⟩, !TYPE($m, _)

matches constructor definitions.
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Figure 5: Parsing the pattern ⟨..$m || $n..⟩

The other source of ambiguity is the presence of trivial production rules in the origi-
nal grammar. Such a trivial production rule is the first rule in Figure 3, which produces
multiple parses for the pattern ⟨..$m || $n..⟩, shown in Figure 5a as an SPPF. The
circular nodes ( ) mark an alternative between two subparses. However, to construct
an AST, the parser must apply the semantic actions defined in the original grammar,
written in Java and thus opaque to any meta-analysis. Moreover, the abstract grammar
of the original language does not define any alternative nodes. Hence, to produce an
AST, the parser needs a tree and not an SPPF. The naive option to enumerate all the
trees from the SPPF leads to a number of trees exponential in the number of alterna-
tive nodes which is prohibitive and we observe that the only relevant parse is the tree
shown in Figure 5b. We exploit this observation and add a post-processing step, which
compresses all the paths that end in a metavariable and contain only trivial productions,
with pass-through semantic actions. Only after this step we proceed with enumerating
the parse trees and applying the semantic actions to build the pattern ASTs. We depict
the AST for the pattern discussed earlier in Figure 6.

Patterns as Datalog Rules To enable syntactic pattern matching using Datalog,
we translate patterns to a set of Datalog clauses as follows. The translation scheme
assigns a fresh predicate name to each syntactic pattern. For each of the ASTs pro-
duced by parsing the syntactic pattern, it assigns each AST node a fresh variable. The
metavariable nodes keep their declared variables. A traversal of the AST produces
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OrLogicalExpr ϕ

MetaVarExpr $m MetaVarExpr $n

0 1

Figure 6: AST for the pattern ⟨..$m || $n..⟩

atoms following the schema of the AST predicate, discussed in section 1.1. Concretely,
the rule generated for the pattern AST in Figure 6 is:
Pfresh($m, $n) :- AST("OrLogicalExpr", ϕ, 0, $m, _),

AST("OrLogicalExpr", ϕ, 1, $n, _).

Automatic Synthesis of Pattern Grammars The mechanism of extending a
language grammar to a pattern grammar is general. It is fully automated and we have
applied it to Datalog, Java and C grammars. The overhead of adapting our approach
of combining syntactic pattern matching and Datalog to a new language is small: it
only requires a description of the abstract grammar and of the concrete grammar in
the JastAdd format. In practice, this means that our framework can be repurposed
to generate at least style checkers for other languages. Indeed, achieving more than
style checking requires integration with other compilers, as presented in Paper II and
Paper III.

2 Integrations

Static code checkers are practical tools, generally aimed at programming languages
with a wide adoption. Thus, to validate our approach at building static code checkers
we targeted the Java and C languages. By the choice of compilers for these languages
we also explored the interactions of a Datalog system with a reference attribute gram-
mar system, ExtendJ [EH07], and with a pass-based compiler, Clang.

2.1 JAVADL: Static Code Checking for Java
To evaluate our approach on realistic workloads, we targeted the Java language and
built the JAVADL system, which integrates our Datalog system with fact extraction
from the ExtendJ compiler [EH07].

From the ExtendJ compiler we use the parser, the type analysis and the name anal-
ysis. We also import the abstract and concrete grammar definitions to derive the pattern
grammars in JAVADL.

Type and name analyses are crucial components to any analysis beyond simple
syntactic checks. However, in the presence of generics, these analyses are undecidable
for Java [Gri17]. On the other hand, the analyzed program is equivalent to an EDB
input to the Datalog program, and the Datalog language has a PTIME data complexity,
so it is not possible to implement name and type analyses in Datalog. To circumvent
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Figure 7: Compile- and run-time overview of JAVADL

this shortcoming, we import the results of these analyses from the ExtendJ compiler as
facts, using the schema described in section 1.1.

We have chosen to integrate with ExtendJ because it comes with explicit EBNF de-
scriptions of the concrete parsing grammar and of the abstract grammar, thus enabling
our framework to automatically derive the pattern grammars. Other Java compilers,
such as javac [Cor] or the Java Parser [Jav] lack these explicit definitions of the con-
crete and abstract grammars.

Because the relational representation of the program (i.e. the AST and the ATTR
relations) for a realistic Java program contain tuples in the order of millions, we inte-
grated a state-of-the-art Datalog engine, Soufflé [Sch+16], to synthesize an executable
version of the Datalog program. At checker run-time we use this synthesized exe-
cutable instead of interpreting the Datalog rules using the internal Datalog engine of
JAVADL.

In Figure 7a we depict the process of synthesizing a checker library. The JAVADL
compiler parses the checker definition, parses the patterns and represents them as plain
Datalog clauses, then translates the internal Datalog dialect to the Souffleé dialect.
Finally, it invokes the Soufflé compiler to synthesize executable code. At runtime (Fig-
ure 7b), JAVADL proceeds by invoking the ExtendJ compiler on the analyzed files, to
build the AST. In the Datalog projection phase it populates the relational representation
of the AST, then it evaluates the attributes that define type and name information on
the nodes for which these attributes are relevant, and then finally it executes the Soufflé
synthesized code, which produces the results. This approach enabled us to implement
common static detectors that produce comparable results and run in comparable time
with other widely deployed static code checkers, as we discuss in section 4.
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2.2 CLOG: Static Code Checking for C

To further explore the capabilities of our approach, we have built CLOG, a static code
checker system aimed at the C language.

In contrast to Java, the C language does not support modular compilation, but it
relies on preprocessor mechanisms to emulate it. The use of include files has one
undesired consequence: the AST of a C compilation unit is much larger than the one for
a comparable compilation unit for Java, the reason being that it contains AST nodes for
all the included files, transitively. This introduces wasteful duplication in the relational
representation which is hard to de-duplicate: preprocessor directives may change the
configuration of the included files, from compilation unit to compilation unit, thus the
AST fragments corresponding to includes cannot be shared between compilation units.

Since importing the AST from a compiler and performing pattern matching in Dat-
alog is not feasible, in CLOG we explore a complementary approach to the one in
JAVADL: we delegate pattern matching to the Clang compiler infrastructure and we
run only the rest of the analysis in Datalog. This approach comes with its challenges:
an abstract grammar built for syntactic pattern matching must be close to the parsing
grammar but the abstract grammar used by a compiler such as Clang is tuned towards
compiler analyses. We bridge this mismatch in representation by introducing a transla-
tion phase between the internal abstract pattern grammar used by CLOG and the Clang
abstract grammar used by its AST pattern matching mechanism. Despite the chal-
lenges, the choice of integrating with Clang also brings benefits, such as the access to
CFG information which facilitates the implementation of data-flow analyses in CLOG
The blend between syntactic patterns, logic programming and semantic information
(CFG, name and type analyses) enabled us to build checkers able to detect common
weaknesses found in C programs.

3 Alternative Evaluation Modes

The declarative specification of our static code checkers allows us to experiment with
different evaluation modes, with the aim of reducing running time. Besides the de-
fault exhaustive evaluation mode, we introduce two alternative evaluation strategies:
incremental and on-demand.

3.1 Incremental Evaluation

Static code checkers are usually integrated in the continuous integration infrastructure
of the project or run as pre-commit hooks, so it is important that their results are quickly
available. In both of these use-cases, it is only a limited part of the analyzed project
that changes between consecutive runs of the code checker, so there is an opportunity
to reuse the checker results for parts of the project that are not modified.

We use this observation to demonstrate one strength of our declarative approach to
static code checking: the underlying evaluation model of the code checker is not fixed.
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We exploit this by introducing an incremental evaluation scheme for JAVADL.
At the core of the incremental scheme lies the observation that some predicates in a

static code checker depend only on information from a single compilation unit. This is
the case of all predicates that represent syntactic patterns, but also of other predicates
representing local analyses. This means that the set of tuples in this local predicates
can be partitioned such that each partition is in a one-to-one correspondence with a
compilation unit and it needs to be recomputed only when its respective compilation
unit changes. To identify such predicates, we devise a meta-analysis over JAVADL
programs which we describe in Paper II. This analysis allows the JAVADL compiler
to split the original JAVADL program into a local part, which is evaluated only on the
set of modified compilation units and a global part, which combines information from
multiple compilation units and is evaluated on every run.

A complication to this incremental scheme is introduced by the use of semantic
predicates to represent the typing relation (TYPE) and the name use-declaration rela-
tion (DECL), corresponding to the type and decl attributes in ExtendJ. While these
predicates can be cached for each compilation unit, their computation depends on mul-
tiple compilation units, thus their provenance needs to be tracked and cached alongside
them. To compute provenance, we use the attribute evaluation tracing mechanism of
ExtendJ. This enables JAVADL to compute, for each compilation unit, the set of files,
that, when changed, require a re-run of the local phase on that respective compilation
unit.

3.2 On-Demand Evaluation

The scheme for relational representation of patterns introduced in JAVADL (cf. Sec-
tion 1.2) has a major performance drawback: it computes the pattern matches over
the whole program, independent on their actual use in Datalog clauses. While this
drawback is alleviated by the incremental evaluation scheme, because all predicates
corresponding to patterns are local and are cached between runs, in CLOG we compute
matches on-demand, for cases where the variable representing the root of the pattern is
bound by other predicates in the rule.

In the example below, the root variable $r of the pattern $r ⟨..$r1 && $r2..⟩
is bound by the previous pattern in the clause, ⟨..$l || $r..⟩. Thus, a local pattern
match at node $r is sufficient.

MISSINGPARENS(ls, cs, le, ce, f) :- ⟨..$l || $r..⟩, $r ⟨..$r1 && $r2..⟩,
SRC($r, ls, cs, le, ce, f).

In addition to performing on-demand pattern matching, CLOG computes the control-
flow graph on-demand, only for functions for which a CFG edge is traversed by the
analysis. The adoption of the on-demand model for evaluating pattern matches and
semantic relations enables CLOG to utilize only the internal Datalog engine, with a
performance comparable to Clang Static Analyzer.
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4 Evaluation

Since this work is aimed at building static code checkers, in our evaluation we demon-
strate that the tools we have built using declarative techniques are able to perform on
par with established static code checkers. Through our experiments, we aim to answer
the following over-arching question: can we express, using our tools, static code check-
ers that are comparable in precision and running time with the widely adopted static
code checkers in use today?

We answer this question in three stages, for JAVADL as well as for CLOG. First, we
select a set of common static bug checks, that we implement using our tools. Second,
we report on the precision and recall of these checks on realistic and synthetic work-
loads, by comparing with results from other tools or from a ground truth, where this
is available. Third, we compare the runtime performance of the implemented checks,
and discuss alternative evaluation strategies.

4.1 Expressiveness

To show that the language provided by our tools is expressive enough for detectors
commonly found in static code checkers, we implemented detectors also present in
other tools. Because exhaustively implementing all detectors found in a static checker
tool is beyond the scope of this thesis, we systematically selected several of these detec-
tors. In our evaluation, we also demonstrate that beyond being able to encode detectors
present in other tools, JAVADL and CLOG provide a concise notation for expressing
such detectors.

To avoid bias in our selection, we have relied on other sources for selecting the
most relevant detectors for the target language. In the case of JAVADL, we relied on a
study [HP18] on the report quality of static checkers for Java, which listed the first five
warnings reported by a set of widely used static code checkers. For CLOG, we relied
on the MITRE annual report listing the top software weaknesses [Mit].

4.2 Analysis Quality

The expressiveness question is not fully answered unless the detectors implemented by
JAVADL and CLOG are shown to be useful. We demonstrated this by comparing the
results produced by the checks implemented using our tools with results produced by
establishes static code checkers: SpotBugs [HP04], Error Prone [Aft+12] and Clang
Static Analyzer [Cla].

To select the projects on which to evaluate the tools without bias, we have again
resorted to other studies in literature. For JAVADL, we have used the Defects4J [JJE14]
suite, extended by Habib and Pradel in the same study we used for selecting the relevant
checks [HP18]. For evaluating CLOG, we followed previous work in using a synthetic
suite, Juliet [AS17], as well as reusing real-world programs from a program fuzzing
benchmark, Magma [HHP22], which contains ground truth information. To enable a
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quantitative comparison, we used the familiar metrics of

precision =
|W ∩WT |

|W |

and

recall =
|W ∩WT |

|WT |

where W is the set of reports produced by our tool, while WT is the set of reports
produced by the tool that we compare against. Where ground truth information is
available, WT represents the set of the reports in the ground truth.

4.3 Performance

It is essential that static code checkers produce their results in a timely fashion, since
these tools are often integrated in the continuous integration system or even in the build
system of a project.

In this thesis, we have evaluated the runtime performance of JAVADL and CLOG
and compared to Error Prone, SpotBugs, and Clang Static Analyzer respectively. Be-
cause JAVADL supports two evaluation modes — exhaustive and incremental — we
have built a test harness that runs JAVADL incrementally on a sequence of 500 con-
secutive commits from each project. For the incremental running mode of JAVADL
we provide a detailed analysis of the running time, as well as a discussion on how the
project structure (interdependencies between compilation units) influences the running
times.

In our performance evaluation, we demonstrate that JAVADL has a performance
comparable to the baseline tools we are comparing against. For a majority of the
projects it even exceeds the performance of the baseline tool, in at least one of the
evaluation modes. For CLOG, the performance picture is not as clear. On synthetic
benchmarks, we demonstrate running times about 2-3 times slower that the baseline,
while on realistic loads the running times are one order of magnitude faster than the
baseline. We believe that the latter result is due to our analyses being less precise than
the ones implemented by the baseline.

5 Summary

We developed the contributions of this thesis in multiple publications and we employed
them in multiple systems, thus in Table 1 we present a mapping of these contributions
to publications and show which of the code checker systems uses the respective contri-
bution.
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Datalog
A method for automatically synthesizing pattern
grammars from concrete grammars
An approach for dealing with ambiguity arising from the
use of syntactic patterns
An integration between Datalog, syntactic patterns and a
RAG-based compiler
An alternative integration with a traditional, pass-based,
compiler
An incremental evaluation scheme for declarative static
code checkers
Quality and performance evaluation of the code checker
frameworks on realistic workloads

Table 1: Summary of contributions by publication and tool
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The use of logic programming and syntactic patterns for static code checking has a
long history, as we have discussed in Chapter II. However, this thesis is the first to
demonstrate that combining syntactic pattern matching and logic programming is a
feasible method for building fully declarative static code checkers that are competitive
in running time and analysis quality with state-of-the-practice static code checkers.

A concern about declarative programming is that the resulting programs are slow.
On the contrary, we demonstrate the benefits of the declarative approach by introduc-
ing an incremental evaluation scheme, which does not require any modification to the
analysis specification. Incrementalization of existing static code checkers would be a
practically impossible task, due to their imperative style. In our evaluation, we dis-
cuss the performance characteristics of our incremental scheme and we show that it is
capable of reducing running times.

A major contribution is the underlying framework we developed for the code check-
ers described in this thesis. It includes tools for automatic generation of pattern gram-
mars, a parser implementation for general context-free grammars, components for rep-
resenting programs as Datalog facts and patterns as Datalog rules. Besides semantic
information, the system is language-agnostic and can be adapted to other languages,
given a formal description of their grammar. We proved the versatility of this frame-
work by integrating with two different styles of compilers, one attribute grammar-based
(ExtendJ) and one pass-based (Clang), to provide support for two of the most used pro-
gramming languages, Java and C.

1 Limitations

Evaluation We evaluated the systems presented in this thesis on a small set of soft-
ware projects, while the static code checkers we compare with are widely used. This
means that these checkers may have been tuned differently in regards to precision and
recall. The other static checkers we use in the evaluation of our tools contain hundreds
of detectors. Since building a set of detectors for JAVADL or CLOG that is comparable
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in size requires a significant effort, we have restricted our comparisons to a small selec-
tion of detectors. To avoid bias in our selection, we relied on third party studies and, to
ensure a fair comparison, we enabled only the detectors that had equivalents in our sys-
tems. Nevertheless, it is unclear what is the performance impact of analysis sharing in
other static checkers and what opportunities for analysis sharing arise when implement-
ing more detectors in our static checkers. Thus, extrapolating the performance results
of our static checkers to a comprehensive set of detectors is not straight-forward.

Completeness In the development of our analyses we have observed that the use
of syntactic patterns speeds up the initial phase of the development of a bug detector:
describing the program fragments that are relevant to analyses, independent of the ab-
stract grammar of the language. While the initial phase is fast, knowing when all the
cases with relevant semantics have been covered by patterns is hard. We illustrate this
issue in the C language, where the expressions base + offset, base[offset]
and even offset[base] are semantically equivalent, but syntactically distinct. This
limitation may be mitigated by the use of isomorphism declarations, in the style of
Coccinelle.

2 Future Work

Besides addressing the limitations enumerated in the previous paragraphs, we see two
possible directions of continuing the work presented in this thesis.

The first direction is to experimentally identify limitations in the expressivity of the
JAVADL and CLOG languages. A question to be explored from the user’s perspective
is whether the current combination of syntactic patterns and Datalog rules is accessible
for users without background in logic programming, or whether an alternative surface
syntax is desirable.

A possible use of the artifacts associated with this dissertation is to systematically
explore the feature-space for declarative code checkers and identify which language
features are required for implementing a broad set of detectors and what modularity
features are necessary for analysis sharing between these detectors. This exploration
is achievable by systematically encoding detectors from other tools in our analysis
specification languages.

The second direction is to explore the impact of alternative design decisions on
the current systems, such as pattern matching on the CFG rather than on the AST,
in the style of Coccinelle, or unification between name declarations and name uses,
as in the SOUL system. Besides understanding if it is feasible to implement these
alternative designs in our current Datalog-based frameworks, assessing their impact on
expressivity and performance are also valid research questions.

On a longer perspective, perhaps the most lucrative use of the declarative analysis
specification languages described in this dissertation is to act as a common representa-
tion between the user and the static code checker, a representation that is understand-
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able and explainable for both, but which is not necessarily produced directly by the
user. In light of this, we expect that automatic derivation of syntactic patterns from
code examples is the next step in overhauling the interface between the user and the
static code checker. In the same vein, we think it is feasible to exploit common struc-
tures in many of the analyses — such as information propagation along graph edges —
and infer the analysis rules from bug examples.
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METADL: ANALYSING
DATALOG IN DATALOG

Abstract

Datalog has emerged as a powerful tool for expressing static program analyses. Pro-
gram analysis researchers have built nontrivial code bases in Datalog, but tool support
for working with Datalog itself has been lacking. In this paper, we introduce METADL,
a language extension to Datalog that enables source-level Datalog program analysis
within Datalog. We describe several program analyses implemented in METADL and
report on initial experiences. Our findings show that the language is effective for real-
life Datalog analysis and can simplify working with Datalog source code.

1 Introduction

Declarative programming is a powerful approach for program analysis [HM03], and
Datalog is playing a key role in this development [HVM06], especially for points-to
analysis [BS09].

Datalog offers concise notation and eliminates the need for manual management
of worklists [VR+10], a common feature in imperative program analyses. In impera-
tive implementations, when multiple analyses are mutually supportive [Lun+09], each
component analysis must interact with other analyses’ worklists, which breaks modu-
larity and complicates development and experimentation. Datalog’s semi-naïve evalu-
ation strategy [Ull89] automates worklist management, freeing developers to focus on
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analysis logic.
Today, researchers have built Datalog-based analyses with thousands [Sch+16] or

even tens of thousands [BS09] of rules. Understanding and working with such code
bases can be challenging, as Datalog has no notion of data hiding or modularity: all
information is global by design.

To help developers manage Datalog code bases, we are developing METADL, a
program analysis tool for Datalog in Datalog. METADL programs can read other Data-
log programs-under-analysis into queryable Datalog relations and use syntactic pattern
matching to access these relations concisely. For example, we might compute a rela-
tion ARITY(pn, a), relating predicates pn to their parameter count (arity) a with rules
like the following (see Section 3 for the full example):

ARITY(pn, $i) :- [. . . , $p(. . . , $i : $x), . . . :- . . . .], ID($p, pn).

This rule matches metavariables ($p, $i, $x) to code from the program under anal-
ysis, for every instance of the syntactic pattern enclosed in square brackets. Here, $p
matches occurrences of Datalog head literals (predicates with arguments) in a program,
$x matches the right-most argument in each matching literal, and $i is the numeric in-
dex of $x in the argument list to $p. The gaps (. . . ) describe sequences whose content
we ignore. Outside the pattern, the literal ID($p, pn) extracts the name of the predicate
bound to $p into pn. Similar queries make it easy to e.g., find all locations in which a
predicate occurs on the left-hand side of a rule, identify all predicates that don’t con-
tribute to interesting output, or identify inefficient code or refactoring opportunities.

2 Background

METADL is an extension of Datalog, a declarative language that computes relations,
effectively database tables without duplicate rows (i.e., with set semantics), from other
relations. Each relation is bound to a predicate symbol that represents the relation in
the program, and in the following we will use the two terms interchangeably.

As an example, consider Figure 1, which shows a program that computes the table
of all subtypes given input data that describes a program in a Java 1.4-style language.
Line 1 loads a relation from the file direct-superclass.csv into a relation with
predicate symbol SUPERCLASS, and line 2 does the same for IMPLEMENTSINTER-
FACE.

Line 4 then specifies that any pair ⟨t,p⟩ that is in the relation SUPERCLASS must
also be in the relation SUPERTY. Such rules (or horn clauses) take the general form

P1(x1) :- P2(x2), . . . , Pk(xk).

where the Pi are predicate symbols and the xj are sequences of variables and constants.
Semantically, such rules are right-to-left implications: for all substitutions ρ from vari-
ables in x2 . . . xk to constants, if we can show that the body literals P2(ρ(x2)), . . . ,
Pk(ρ(xk)) are true, then the head literal P1(ρ(x1)) must also be true. To show that a
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1 EDB("direct-superclass.csv", ’SUPERCLASS).
2 EDB("direct-interface.csv", ’IMPLEMENTSINTERFACE).
3
4 SUPERTY(t, p) :- SUPERCLASS(t, p).
5 SUPERTY(t, p) :- IMPLEMENTSINTERFACE(t, p).
6 SUPERTY(t, a) :- SUPERTY(t, super), SUPERTY(super, a).
7
8 OUTPUT(’SUPERTY).

Figure 1: Datalog application code example: compute the transitive supertype relation
for a Java-like language.

literal is true, we either look it up in tables loaded from disk (as in lines 1 and 2) or
(recursively) derive it from any of the rules in the program. When k = 1, P1(x1) is
always true. In this case, we can omit the ‘:-’ symbol, as in lines 1 and 2.

Lines 4 and 5 therefore copy all tuples ⟨t,p⟩ from SUPERCLASS and IMPLE-
MENTSINTERFACE into SUPERTY, computing the union of these two relations. Line 6
then computes the transitive closure of the SUPERTY relation.

Finally, line 8 specifies that the computed SUPERTY relation should be written to
disk once computed.

Like most Datalog systems, METADL adds features for arithmetic, string opera-
tions, multiple head literals, and negation. Negation introduces a semantic compli-
cation, as it allows us to write self-contradictory rules such as A(x) :- NOT(A(x)).
Contradictions can also arise through longer chains of reasoning. We follow existing
tools (and mathematical tradition) in requiring negation to not be recursive, i.e., when-
ever predicate P depends on a negated predicate Q, we must be able to fully compute
Q before computing P . This process is called stratification (Section 4.3).

3 METADL

METADL adds a number of language features to simplify program analyses of Dat-
alog programs. Consider the program in Figure 2, which checks that all predicates
in the input program have the same arity and reports all disagreements in the relation
ARITYERROR.

Line 1 illustrates the IMPORT pseudopredicate, which loads an external Datalog
program into a single predicate (PROGRAM). Pseudopredicates, which also include
EDB and OUTPUT from Figure 1, follow the syntax of Datalog predicates but have
special semantics (Section 3.2). As a result of Line 1, the predicate PROGRAM repre-
sents a complex relation that encodes the structure of the input program (Section 3.3).

While it is possible to analyse Datalog programs by directly accessing this repre-
sentative relation, we provide a more concise syntax for program access in the form
of syntactic patterns. From the programmers’ perspective, a pattern describes the syn-
tax that they want to match; our system rewrites this pattern into relational Datalog
constraints.
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1 IMPORT("input-program.dl", ’PROGRAM).
2
3 analyze(’PROGRAM) {
4 ARITY(p_name, a, loc) :-
5 [ ...:- ..., $p(...,$i:$x), .... ],
6 BIND(a, $i+1), ID($p, p_name), SRC($p, loc).
7 ARITY(p_name, a, loc) :-
8 [ ...:- ..., NOT($p(...,$i:$x)), .... ],
9 BIND(a, $i+1), ID($p, p_name), SRC($p, loc).

10 ARITY(p_name, a, loc) :-
11 [ ..., $p(...,$i:$x), ...:- .... ],
12 BIND(a, $i+1), ID($p, p_name), SRC($p, loc).
13 ARITY(p_name, a, loc) :-
14 [ ..., $p(...,$i:$x), .... ],
15 BIND(a, $i+1), ID($p, p_name), SRC($p, loc).
16 }
17 ARITYERROR(p, loc_i) :- ARITY(p, i, loc_i),
18 ARITY(p, j, loc_j), NEQ(i, j).
19 OUTPUT(’ARITYERROR).

Figure 2: Program to check that the arities of predicates used within a program are
consistent.

For example, Line 5 uses the pattern

[ ...:- ..., $p(...,$i:$x), .... ]

This pattern will match any positive (non-negated) Datalog literal that occurs on the
right-hand side of a Datalog rule. Names preceded by dollar signs are metavariables. If
we apply this rule to the code in Figure 1, $p will match the four literals occurring on
the right hand side of rules, $xwill match their right-most argument, and $iwill match
the index of the right-most argument in the parameter list (always 1 in that example,
since our offsets start at 0 and all relations in Figure 1 are binary). For instance, in
Line 6 of Figure 1, the above pattern would match twice, once for each SUPERTY literal
on the right hand side, and $x would match the variables super (for SUPERTY(t,
super)) and a (for SUPERTY(super, a)).

Returning to the analysis in Figure 2, we now increment $i by one and assign
the result to a (BIND(a, $i+1)). Finally, we read the name of the predicate $p
into p_name. (using ID($p, p_name)) and its source location into $loc (using
SRC($p, loc)).

We provide three more rules that extract arity from the remaining sources of arity
information: negated literals (line 7), head literals (line 10; such literals cannot be
negated) and head literals in rules that omit the :- symbol (line 14).

We give a full overview of our pattern rules in Section 3.4.
METADL programs can process multiple input files at once (e.g., for code differ-

encing or dependency tracking). We provide analyze(’P) { ... } blocks (lines 3–
16), where P is a representative relation. Within the curly braces of such a block, the



I. MetaDL: Analysing Datalog in Datalog 67

scope of all patterns and related pseudopredicates (e.g., ID) is set to exactly the pro-
gram(s) represented by P .

3.1 Types
METADL has a simple static type system with type inference (Section 4.4). Each
predicate P must have a fixed arity, and each argument must be of exactly one type.
We support three types: Int for integers, String for strings, and PredRef for predicate
references of the form ’P (where P is a predicate).

We use such predicate references for input and output, but they can also com-
municate information between programs under analysis and METADL analyses (Sec-
tion 4.2).

We represent the AST nodes of programs under analysis as integers (Section 3.3).
Metavariables in patterns thus always bind to an integer, and developers can use pseu-
dopredicates to extract information from these node IDs.

3.2 Pseudopredicates
METADL provides several pseudopredicates. EDB, IMPORT, and OUTPUT, which
interface with the harddisk, require constant parameters. Several other pseudopredi-
cates (EQ, NEQ, GT, . . . ) test for (in)equalities. The special pseudopredicate BIND
allows evaluating expressions. For example, BIND(x, y + 2 * z) will compute y+(2·z)
and bind the result to x. The first argument to BIND must be a variable.

The remaining pseudopredicates function like regular Datalog predicates, but only
within analyze blocks:

• ID(n, name) relates AST nodes n to their names, for nodes with names (i.e.,
predicates and variables).

• SRC(n, loc) relates AST nodes n and their source locations loc.

• STR(v, s) and INT(v, i) relate arguments to their constant string or inte-
ger values.

• REF(v, n) extracts the predicate symbols from predicate references.

• EXPR(expr, i, subexpr) relates expressions expr, which can occur in
the BIND pseudopredicate, and their subexpressions subexpr at (zero-based)
index i. For instance, the expression ‘x + 7’ will have subexpression ‘x’ at
index 0 and ‘7’ at index 1.

3.3 Relational Representation of Datalog Programs
Figure 3 captures the in-memory representation of the AST produced by parsing the
following Datalog rule:
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SUPERTY(t, ancestor) :- SUPERTY(t, super), SUPERTY(super, ancestor).

When importing an AST, we assign every node in the AST a unique identifier and relate
these node IDs in predicates whose names reflect the METADL AST (e.g. RULE, LIST,
ATOM, VARIABLE, etc.). The relations for terminal nodes (e.g., VARIABLE) relate
node IDs to node contents (e.g., the variable name), while relations for nonterminal
nodes capture the AST structure. Our encoding scheme for AST nodes uses triples
⟨p, i, c⟩, where p is the parent node ID, i is the (zero-based) child index, and c is the
child node. With this scheme, the AST in Figure 3 is represented by the tables in
Figure 4.

SUPERTY ( t , ancestor ) :- SUPERTY ( t , super ), SUPERTY ( super , ancestor ).

4
PredicateSym

6
Variable

7
Variable

10
PredicateSym

12
Variable

13
Variable

15
PredicateSym

17
Variable

18
Variable

5
List

11
List

16
List

3
Atom

9
Atom

14
Atom

8
List

2
List

1
Rule

Figure 3: In-memory AST representation of a Datalog rule.

RULE

1 0 2
1 1 8

ATOM

3 0 4
3 1 5
9 0 10
9 1 11
14 0 15
14 1 16

LIST

2 0 3
5 0 6
5 1 7
8 0 9
8 0 14
11 0 12
11 1 13
16 0 17
16 1 18

PREDICATESYM

10 "Superty"
15 "Superty"
4 "Superty"

VARIABLE

12 "t"
13 "super"
17 "super"
18 "ancestor"
6 "t"
7 "ancestor"

Figure 4: Datalog table representation of the AST in Figure 3.

This representation uses a nontrivial number of relations. This in turn is at odds
with our desire to provide a simple interface to the IMPORT pseudopredicate, so we
currently compress all such relations into a single relation and decompress that relation
again for processing analyze blocks.

3.4 Pattern Matching for Analysing Datalog
We currently support two forms of patterns: one for matching rules with the ‘:-’ sym-
bol, and one for rules without. The language accepted inside the patterns is Datalog
extended with metavariables, index metavariables, and gaps.
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Metavariables bind to predicate symbols, variables, constants (including predicate
references), and expressions, and always start with the symbol ‘$’. Metavariables are
the sole mechanism for directly connecting information from a pattern to literals out-
side of the pattern, where they behave identically to regular variables.

When a metavariable $x is part of a sequence of literals or parameters, it has an
associated index that is accessible via an index metavariable, prefixed by ‘:’ (e.g.,
$i:$x).

Metavariables allow limited variability in our patterns; for instance, the partial pat-
tern $p($v, $w) will match any positive literal with two arguments of any kind. How-
ever, metavariables by themselves are insufficient to match literals with an unknown
number of arguments , or rules with an unknown number of literals. Therefore, we also
allow gaps.

In their simplest form (e.g., $p(...)), gaps specify that we permit any number of el-
ements in an argument list or a list of literals. When gaps are adjacent to metavariables
or literal Datalog code, they also relax positioning constraints.

If an element is adjacent to a gap on only one side, then the element’s position is
fixed relative to its neighbouring element. For example, [ $p($v, ..., $w).] matches
a single literal and binds $v to the first parameter and $w to the last parameter. If the
matched literal is unary, then $v = $w.

If an element has gaps both to its left and to its right, its position is unconstrained
in the list that it is a part of. This is a conscious design decision to allow patterns
such as [ ..., P(...), ..., Q(...), .... ] to match predicates P and Q in any order
(even if Q appears before P). If the order is significant, programmers can use index
metavariables (e.g., in [ ...,$i:P(...),..., $j:Q(...),....]) to enforce the order by
requiring the inequality LT($i, $j).

Relational Representation of Patterns

We implement pattern matching by rewriting patterns into conjunctions of Datalog
literals. The translation scheme is analogous to generating representative relations of
imported programs (Section 3.3), with the main differences being that we (a) preserve
metavariables throughout the translation and (b) introduce fresh variables for parts of
the patterns that we do not wish to match (as part of gaps).

For example, recall this pattern from Figure 2: [ ...:- ..., $p(...,$i:$x), .... ].
We translate this pattern to the following conjunction:

1 RULE(v0, 0, v1), LIST(v1, 0, v4),
2 RULE(v0, 1, v2), LIST(v2, vj, v6), ATOM(v6, 0, $p),
3 ATOM(v6, 1, v3), LIST(v3, $i, $x),
4 BIND(v8, $i + 1 ), NOT(LISTPROJ(v3, v8))
5 # Helper predicate:
6 LISTPROJ(n, i) :- LIST(n, i, ignore).

All the variables (excluding metavariables) in lines 1–4 are fresh. Line 1 binds v0
to a rule that has at least one predicate in its head. Line 2 asserts that the same rule v0
has a child at index vj, and that the child must be an atom v6 with predicate symbol
$p. Here, vj is an implicit index variable. Line 3 binds $x to a term at position $i in
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the list of terms in atom v6. Line 4 ensures that that term has no right sibling (at offset
$i + 1), as our example pattern requires $x to be in a rightmost position. LISTPROJ
is a helper predicate (line 6).

4 Applications

To examine the utility of our approach, we have built several program analyses in
METADL, of which we report on five: arity checking (Figure 2), Cartesian product
checking, deprecation checking, stratification, and type inference.

4.1 Checking for Cartesian Products

State-of-the-art Datalog engines like Soufflé [Sch+16] use an eager evaluation strategy.
This means that rules such as

P(x, y) :- Q(x), R(y).

can be wasteful: given j elements in Q and k elements in R, we must compute a table
of j × k elements. If we instead eliminate the above rule and replace P(x, y) on the
right-hand side of all remaining rules by Q(x), R(y), we can avoid this cost.

We have written a static checker that detects such projections, reporting any that
are consistent across all left-hand side occurrences of a given predicate symbol. Our
checker reports both light warnings (one projection) and serious warnings (two or more
projections), using a total of 22 rules and 5 syntactic patterns. To illustrate, its final rule
is:

1 CARTESIANPROJECTIONWARNING(p_name, $i, $j) :-
2 VARPROJECTEDN(p_name, $i, q_name),
3 VARPROJECTEDN(p_name, $j, q2_name),
4 NOT(PROJECTIONINDICESSHAREDN(p_name, $i, $j)).

with VARPROJECTED determining that in all rules with the predicate named p_name
on their left hand side, index $i (resp. $j) a projection from one fixed index of right-
hand-side relation q_name (resp. q2_name), further implying that the right-hand-
side relation is not filtered in any way. The last line ensures that $i and $j are not
only distinct but also always come from different predicates on the right-hand side;
this check is slightly more fine-grained than ensuring that q_name and q_name2 are
distinct and will also capture e.g. A(x, y) :- B(x), B(y).

We have tested this checker on a self-contained miniature version of DOOP (170
rules) but found no interesting issues. We expect that such static checkers will be most
useful during development of new Datalog code.

4.2 Deprecation Checking

Predicate references allow us to implement a light-weight Java-style deprecation checker:
1 DEPR(p) :- [ DEPRECATED($p). ], REF($p, p).
2 WARN(p, l) :- [ ...:- ..., $p(...), .... ],
3 ID($p, p), DEPR(p), SRC($p, l).
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If DEPRECATED(’P). occurs in a program, positive references to P in the body will
trigger a warning.

4.3 Stratification

Stratification is part of semi-naïve Datalog evaluation. The purpose of stratification
is to (i) ensure that no relation P depends on the negation of P , or the negation of a
predicate that depends on P , and (ii) construct an evaluation order over all predicates
that will produce the correct result.

Stratification computes a list of strata, where each stratum is a set of predicate sym-
bols that depend only on the same stratum and on all previous strata. A stratum contains
at least one predicate but may contain more, if the predicates have mutual dependen-
cies. Figure 5 gives a stratification algorithm for standard Datalog, in METADL.

In this figure, we first compute direct dependencies (both positive and negated)
between predicates, then the transitive closure of these dependencies, DEP. We then
compute which predicates must be evaluated in the same stratum due to circular de-
pendencies, SAMESTRATUM, and the set of predicates that need to be evaluated in the
parent stratum of the stratum represented by a predicate, PARENTSTRATUM. Finally,
we check that no stratum has a negated dependency on itself and report violations in
ERROR.

1 analyze(’Program) {
2 DIRECTDEP(p_name, q_name) :-
3 [ ...,$p(...),... :- ...,$q(...), ....],
4 ID($p, p_name), ID($q, q_name).
5
6 DIRECTDEPNEG(p_name, q_name),
7 DIRECTDEP(p_name, q_name) :-
8 [ ...,$p(...),... :- ...,NOT($q(...)), ....],
9 ID($p, p_name), ID($q, q_name).

10 }
11 DEP(p_name, q_name) :- DIRECTDEP(p_name, q_name).
12 DEP(p_name, q_name) :- DEP(p_name, rn),
13 DIRECTDEP(rn, q_name).
14
15 SAMESTRATUM(p_name, q_name) :- DEP(p_name, q_name),
16 DEP(q_name, p_name).
17 PARENTSTRATUM(p_name, q_name) :-
18 DIRECTDEP(p_name, q_name),
19 NOT(SAMESTRATUM(p_name, q_name)).
20
21 ERROR(p_name, q_name) :- DIRECTDEPNEG(p_name, q_name),
22 SAMESTRATUM(p_name, q_name).

Figure 5: Stratification of Datalog in METADL.
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4.4 Type Inference

A METADL predicate is well-typed iff each of its arguments is used consistently with
exactly one of the three METADL types (Int, String, PredRef ). A METADL program
is well-typed iff all predicates that occur in it are well-typed.

METADL does not have special syntax for type declarations, but developers can set
types via rules that never trigger:

P(0, "", ’P) :- NEQ(0, 0).

The above ensures that P is of type ⟨Int, String,PredRef⟩.

In Figure 6 we present part of an implementation of type inference.
PREDTYPE(p, i, τ) defines a relation between each predicate symbol p, argument in-
dex i, and type τ that may occur at this argument index. Lines 2–4 show how we
extract type information from string constants; the process is analogous for other con-
stants and other locations in which literals occur. Lines 7–11 show how we propagate
type information across body literals; the process for head literals is analogous. Finally,
predicate INCOMPLETETYPE(p, i) (lines 19–20) checks if predicate p at parameter in-
dex i lacks type information, and predicate INCONSISTENTTYPE (lines 21–22) checks
if it has contradictory type information.

Type inference in rules containing the BIND and EQ pseudopredicates and arith-
metic expressions can be described similarly, using the EXPR pseudopredicate.

1 analyze(’Program) {
2 # Infer types from ground terms in facts (strings)
3 PREDTYPE(p_n, $i, "String") :-
4 [...,$p(...,$i:$v,...),... .], ID($p, p_n), STR($v, x).
5 — analogous rules omitted —
6 # Propagate types through variables
7 PREDTYPE(q_name, $j, t) :-
8 [ ...:- ..., $p(...,$i:$v,...), ...,$q(...,$j:$w, ...), .... ],
9 ID($p, p_name), ID($q, q_name),

10 ID($v, v_name), ID($w, w_name),
11 EQ(v_name, w_name), PREDTYPE(p_name, $i, t).
12 — analogous rules omitted —
13 # Compute the term indices for each predicate
14 TERMINDEX(p_name, $i) :-
15 [ ..., $p(...,$i:$v,...), ....], ID($p, p_name).
16 — analogous rules omitted —
17 }
18 ISTYPED(p_name, i) :- PREDTYPE(p_name, i, x).
19 INCOMPLETETYPE(p_name, i) :- TERMINDEX(p_name, i),
20 NOT(ISTYPED(p_name, i)).
21 INCONSISTENTTYPE(p_name, i) :- PREDTYPE(p_name, i, t1),
22 PREDTYPE(p_name, i, t2), NEQ(t1, t2).

Figure 6: Highlights of Datalog type inference in METADL.
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5 Implementation

Our implementation of METADL is based on the Jast-Add [HM03] extensible compiler
generator. It consists of a ‘baseline’ Datalog implementation and a separate METADL
language extension module that relies on JastAdd’s rewriting and non-terminal attribute
features to transform analyze blocks and patterns to plain Datalog.

METADL Soufflé

analysis.mdl

target.dl

analysis-souffle.dl

target-facts.csv out.csv

Figure 7: Evaluation strategy for METADL when using Soufflé as external Datalog
engine.

Our system has its own Datalog backend, using the naïve evaluation strategy [Ull89].
We only use this mechanism for the pseudopredicate IMPORT, then defer to an exter-
nal Datalog backend (currently the Soufflé system [Sch+16]). We serialise the current
rule set and all internal facts (especially our representative relations) into a backend-
specific format, run the backend engine (Figure 7), then read back the results.

We have experimented with our analyses on our own code, on a self-contained
miniature version of DOOP (437 lines, 170 rules) that we have ported to METADL,
and on tests and synthetic benchmarks. For example, our checker from Section 4.1
can analyse the miniature DOOP in around two seconds; growing the target program
ten-fold (1700 rules) still allows us to finish in under ten seconds. Despite being in
an early stage of development, our tool is practical for analysing medium-sized code
bases.

6 Related Work

Program analysis in Datalog has been an area of active research at least since Wha-
ley and Lam [Wha+05], though their system required substantial manual representa-
tion tuning. Later systems based on LogicBlox [Are+15; BS09] and Soufflé [Sch+16]
scaled more easily. While program analysis in the latter systems has focussed on back-
end properties, the CodeQuest system [HVM06] demonstrated the formalism’s utility
for front-end analyses. Unlike ours, the above systems targeted Java or similar general-
purpose languages.

The use of pattern matching has a long tradition in the functional programming
community, though we are not aware of support for gaps and indices for program anal-
ysis in the same vein as our system. Coccinelle [Law+10] supports ranges (including
recursive nesting) for analysing C programs.
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Analysing programs of a given language within the same language was a central
topic in LISP and is also supported in other languages, primarily with the goal of
supporting meta-programming [LJ05; Swa+06]. While our goal is to support similar
facilities in METADL in the future, the need for stratification raises hurdles towards
offering full metacircularity.

7 Conclusions and Future Work

We have presented METADL, a Datalog extension for loading, analysing, and syntactic
pattern-matching over Datalog programs. Our initial results show that the system can
concisely express a variety of interesting program analyses and run them in a practi-
cally useful time frame. In future work, we plan to extend our pattern matching support
to allow metavariables to match more syntactic constructs (including entire rules) and
enable Datalog code transformation, using an extended version of our quotation syn-
tax.
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“On Fast Large-scale Program Analysis in Datalog”. In: Proceedings of
the 25th Int. Conf. on Compiler Construction. CC 2016. ACM, 2016.

[Swa+06] Kedar Swadi, Walid Taha, Oleg Kiselyov, and Emir Pasalic. “A Monadic
Approach for Avoiding Code Duplication when Staging Memoized
Functions”. In: Proceedings of the 2006 ACM SIGPLAN Symposium on
Partial Evaluation and Semantics-based Program Manipulation. PEPM
’06. ACM, 2006.

[Ull89] Jeffrey D. Ullman. “Bottom-up beats top-down for datalog”. In: Proc. of
the 8th ACM SIGACT-SIGMOD-SIGART symposium on Principles of
database systems. ACM Press, 1989.

[VR+10] Raja Vallée-Rai et al. “Soot: A Java Bytecode Optimization Framework”.
In: CASCON First Decade High Impact Papers. CASCON ’10. IBM
Corp., 2010.

[Wha+05] John Whaley, Dzintars Avots, Michael Carbin, and Monica S. Lam.
“Using Datalog and Binary Decision Diagrams for Program Analysis”.
In: Proc. of the 3rd Asian Symp. on Prog. Lang. and Systems. Vol. 3780.
Lecture Notes in Computer Science. Springer-Verlag, 2005.



76 I. MetaDL: Analysing Datalog in Datalog



II
.

JA
V

A
D

L

JAVADL: AUTOMATICALLY
INCREMENTALIZING JAVA BUG

PATTERN DETECTION

Abstract

Static checker frameworks support software developers by automatically discovering
bugs that fit general-purpose bug patterns. These frameworks ship with hundreds of
detectors for such patterns and allow developers to add custom detectors for their own
projects. However, existing frameworks generally encode detectors in imperative spec-
ifications, with extensive details of not only what to detect but also how. These details
complicate detector maintenance and evolution, and also interfere with the framework’s
ability to change how detection is done, for instance, to make the detectors incremental.

In this paper, we present JAVADL, a Datalog-based declarative specification lan-
guage for bug pattern detection in Java code. JAVADL seamlessly supports both ex-
haustive and incremental evaluation from the same detector specification. This spec-
ification allows developers to describe local detector components via syntactic pat-
tern matching, and nonlocal (e.g., interprocedural) reasoning via Datalog-style logi-
cal rules. We compare our approach against the well-established SpotBugs and Error
Prone tools by re-implementing several of their detectors in JAVADL. We find that our
implementations are substantially smaller and similarly effective at detecting bugs on
the Defects4J benchmark suite, and run with competitive runtime performance. In our
experiments, neither incremental nor exhaustive analysis can consistently outperform
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Java Bug Pattern Detection”. In: Proceedings of the ACM on Programming Languages, Volume 5, Issue
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the other, which highlights the value of our ability to transparently switch execution
modes. We argue that our approach showcases the potential of clear-box static checker
frameworks that constrain the bug detector specification language to enable the frame-
work to adapt and enhance the detectors.

1 Introduction

Static bug checkers have become an essential tool for many developers. For exam-
ple, Vassallo et al. [Vas+20] show that many Open Source developers run tools like
FindBugs [Aye+08] (now SpotBugs), Checkstyle [Bur+21], PMD [Cop05], Sonar-
Qube [Bra+14], and Error Prone [Aft+12] on a daily basis for quality assurance. More-
over, they found that 66% of the Open Source projects that they surveyed mandate that
contributors must use static checkers in some form. Checker frameworks typically offer
a selection of bug pattern detectors, and then provide extension mechanisms through
which developers can add more checks. Examples of such specialized checks include
project-specific language idioms and coding standards as well as bug patterns con-
nected to a specific API. Developers who build custom detectors mostly write plugins
in an imperative general-purpose language to examine some program representation
that is specific to the checker framework, e.g., an abstract syntax tree or a byte code
representation.

However, given the properties of imperative specifications, these checker imple-
mentations are black-box detectors in that the checker framework knows little about
the internal wiring of these detectors beyond how to run them. Thus, the framework
cannot examine the internals of each detector to e.g. analyze the version of the input
language that the checker can handle or the types of bugs that might report. It must in-
stead rely on static and manually curated meta-information or on dynamic (and incom-
plete) sampling. We argue that black-box bug checker architectures limit innovation
at the architectural level, and propose clear-box bug checker frameworks as an alterna-
tive. Clear-box architectures enable the checker framework to automatically enhance
detectors, e.g. by deriving confidence scores [Rag+18] to rank bug reports, tracing
the detector’s chain of reasoning to produce explanations [ZSS20], or incrementalizing
computations to speed up execution [Sza+18]. By contrast, a black-box checker frame-
work must ask each detector developer to manually integrate such features, requiring
O(n) effort over the number of detectors as opposed to O(1) for clear-box frameworks.
Notably, no established black-box checker framework (to the best of our knowledge)
supports any combination of the above features.

In this paper, we explore the value of clear-box bug detection in JAVADL, a novel
bug checker framework for Java that can process a wide range of user-specified bug
detectors and execute them both incrementally and exhaustively. Incremental evalua-
tion can often outperform exhaustive evaluation by re-using intermediate results, but
for larger changes, the cost of retaining intermediate results may be greater than the
benefits from re-use. JAVADL follows Raghothaman et al. [Rag+18] and Szabó et al.
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[Sza+18] in building on Datalog [CGT89], a declarative logic programming language
that has become a popular choice for implementing analyses over powerset lattices,
including complex points-to analyses [BS16]. Datalog-based analyses have two parts:
(1) fact extraction, which today is generally a black-box analysis that maps the input
program to a set of input facts (e.g., Def-Use edges [Heo+19]), and (2) fixpoint compu-
tation, which runs the actual Datalog program on the input facts. JAVADL minimizes
its dependency on black-box fact extractors by providing syntactic pattern matching on
the input abstract syntax tree (AST) for the full Java 8 syntax. This pattern matching
support eliminates much of the interoperability concern that Madsen, Yee, and Lhoták
[MYL16] observed for Datalog in program analysis, i.e., the need for “tedious map-
ping” and manual (de)serialization code in fact extraction.

For convenience, JAVADL additionally provides detectors with a small but exten-
sible set of facts (name and type analysis information) from the ExtendJ Java com-
piler [EH07].

We take JAVADL as one point in the design space for clear-box static checkers and
explore how it compares to contemporary static checker tools with regard to expres-
siveness and performance. Our experiments show that JAVADL offers performance
comparable to that of existing checkers and enables the concise implementation of dif-
ferent types of bug detectors, in the common, broad sense of the term [Rei21], i.e.
including both syntactic “bad smell” detectors and semantic, inter-procedural detec-
tors that reason across compilation units. Our results also show that JAVADL can ef-
fectively incrementalize these checkers, but that incremental analysis may not always
outperform exhaustive analysis. Our contributions in this paper are the following:

• the first (to the best of our knowledge) static checker framework with support for
syntactic pattern matching over the full Java grammar (up to Java 8),

• a Datalog language extension for syntactic pattern matching that extends over
our earlier work [DBR] by handling both syntactic ambiguity and semantic in-
formation,

• an incremental evaluator for inter-procedural Datalog-based program analysis,

• a prototype implementation of our approach, the JAVADL system,1

• a comparison of performance and quality between JAVADL, SpotBugs, and Er-
ror Prone, with a validated [DRS21b] and an improved artifact [DRS21c] for
reproducibility.

2 The JAVADL language

As an introduction, consider the Covariant equals() bug pattern, shared by
the FindBugs and Error Prone checkers. In Java, all objects inherit the method

1https://github.com/lu-cs-sde/metadl

https://github.com/lu-cs-sde/metadl
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equals(Object) for equality checking. If class C ̸= Object wants to provide
custom equality tests, it must override Object.equals(Object) with its own
C.equals(Object) method. Note that Java requires that C.equals must accept
any Object parameter. However, programmers may miss this requirement and in-
stead define a method that only accepts a subtype of Object, e.g. C.equals(C).
Since Java also supports overloading, this method may work as expected in some con-
texts but cause subtle bugs elsewhere.

Figure 1 shows a complete JAVADL specification that includes a detector for this
pattern. For now, we skip over the input and output handling and focus on the detector
itself, in lines 3–15.

Here, line 3 declares that the checker records a WARNING at source location
⟨ls,cs,le,ce,f⟩ (in order: start line & column, end line & column, source file)
whenever class c defines an equals(c) method (COVARIANTEQUALS, lines 5–10)
but no equals(Object) method (OBJECTEQUALS, lines 11–15).

The code in these lines is a standard Datalog Horn clause,

P0(x0) :- P1(x1), . . . , Pn(xn).

where Pi are predicate symbols and xi are sequences of variables and constants. The
semantics of these clauses are that for any assignment ρ that maps all variables in x0,
. . . , xn to constants, whenever for all i ∈ 1..n the relations Pi contain the tuple ρ (xi),
the tuple ρ (x0) must also be in the relation P0. We call P0(x0) the head literal and
the other Pi(xi) the body literals and follow most Datalog dialects in allowing body
literals to be negated (with the obvious semantics). When n ̸= 0, the clause is also
called a rule, and if n = 0, it is called a fact and usually omits the left arrow ‘:-’.

Lines 5–9 show how JAVADL extends clauses with pattern matching to define CO-
VARIANTEQUALS:
⟨.. class #_ { .. public boolean equals(#t #_) { .. } .. } ..⟩
This pattern captures all class declarations c that declare an equals method with
a single parameter. The pattern matching braces ⟨..· · ·..⟩ contain Java source code,
extended with syntactic metavariables such as #t, which here binds to the type name
of the formal parameter to equals, and wildcards (#_) that we here use to ignore
the name of that same parameter. The gaps (..) in the pattern ignore sequences of
program elements: here, they allow any number of declarations to precede or follow
the declaration of equals, and any sequence of statements inside the equalsmethod
body.

This pattern binds #t and c to AST nodes in the Java input program. To check
if c defines a method equals(c #_), we must also ensure that c and #t describe
the same type. JAVADL represents each type by the type’s declaration AST node, so c
already is a type, but #t is only a name and could resolve to different types in different
contexts. We resolve its type with the semantic predicate DECL and ensure that that
type is c by requiring that DECL(#t, c) must hold.

OBJECTEQUALS in lines 11–15 analogously captures all classes c that override
Object.equals(Object).
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1 EDB(’ANALYZEDFILES, "AnalyzedFiles.csv", "csv").
2 java (’ANALYZEDFILES) {
3 WARNING(ls, cs, le, ce, f) :- COVARIANTEQUALS(c), NOT(OBJECTEQUALS(c)),
4 SRC(c, ls, cs, le, ce, f).
5 COVARIANTEQUALS(c) :- c ⟨.. class #_ {
6 ..
7 public boolean equals(#t #_) { .. }
8 ..
9 } ..⟩,

10 DECL(#t, c).
11 OBJECTEQUALS(c) :- c ⟨.. class #_ {
12 ..
13 public boolean equals(Object #_) { .. }
14 ..
15 } ..⟩.
16 }
17 OUTPUT(’WARNING, "Warnings.csv", "csv").

Figure 1: Covariant equals check implemented in JAVADL

We have now seen the essence of how JAVADL combines Datalog, syntactic pat-
terns, and semantic predicates like DECL and SRC to analyze source code. JAVADL
provides some additional features for handling input and output, which we demonstrate
in the remaining parts of Figure 1.

Returning to the top of our example, line 1 specifies that the relation ANALYZED-
FILES contains all tuples from an external data source (a .csv file). Line 2 then starts
a java block over ANALYZEDFILES. This block sets the scope for pattern matching
and semantic predicates in lines 3–15: our bug detector will analyze all the source files
listed in the file AnalyzedFiles.csv. Finally, line 17 declares that all tuples in
the relation WARNING must be written to the file Warnings.csv.

2.1 Non-Local and Semantic Analyses
From the perspective of a typical imperative checker framework, the properties we

describe in Figure 1 amount to boolean checks on Java classes. To see how JAVADL
expresses more complex semantic properties, consider the Missing switch Default
bug pattern. Figure 2a shows a switch statement over int values that only captures
three cases; this code may indicate that the programmer forgot to handle other possible
cases. Both Error Prone and SpotBugs flag such code, and JAVADL can capture this
case with syntactic pattern matching and a small amount of logical reasoning.

However, relying purely on syntactic reasoning leads to a false positive for Fig-
ure 2b. This switch over an enumeration is exhaustive and therefore requires no
default. SpotBugs and Error Prone will not flag the switch in Figure 2b, but will
flag the nonexhaustive switch in Figure 2c.

To distinguish these three cases, we need to know that variable state is an enum
value and what values it can take. That means that we need state’s static type, and
find that type’s possible enum values (e.g., FAIL and OK), which can be non-local
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1 switch(getInt())) {
2 case 0: return "zero";
3 case 1: return "one";
4 case 2: return "two";
5 } (a)

1 enum State { OK, FAIL }
2 switch(state) {
3 case FAIL: return false;
4 case OK: return true;
5 } (b)

1 enum State { OK, FAIL, HALT }
2 switch(state) {
3 case FAIL:

return false;
4 case OK: return true;
5 } (c)

Figure 2: Examples for the Missing switch Default bug pattern. Code box (a) lacks
a default case. Box (b) does not, since it covers all possible enum cases explicitly.
Box (c) uses the same switch block as box (b) but extends the enum with (HALT),
meaning that the switch again lacks one case.

information if enum State resides in a different compilation unit. (More precise
analyses are also conceivable, cf. Section 5.2.)

Figure 3 shows how we can specify this bug pattern in JAVADL. Predicate SWITCH
(line 1) matches all switch statements, while SWITCHHASDEFAULT(s) (line 2) matches
only those who contain default clauses. Next, CASEONENUM(s, τ,m) (line 3) cap-
tures all case branches for enum member m, plus the surrounding switch statement
s and enum type τ . Here, DECL(#c,m) maps enum values from Figure 2 to their
declarations, while TYPE(#v, τ) relates the expression #v that we are discriminating
over to its type τ , which is an enum type iff τ⟨..enum #_ { .. }..⟩ holds.

CASEONENUM(s, τ,m) thus uses both semantic and non-local information:
DECL and TYPE provide the results of ExtendJ’s name and type analysis, respec-
tively. TYPE(e, τ) relates expressions e and their Java types τ , and we follow ExtendJ
in identifying τ with class, interface, or enum definitions for all types for which we can
find one in a source or .class/.jar file. In the latter case, we use ExtendJ’s par-
tial decompilation facilities to map the high-level bytecode class structure (excluding
method bodies) into an AST representation. For example, when applied to Figure 2b,
CASEONENUM would contain ⟨s,State,OK⟩ and ⟨s,State,FAIL⟩, where s is the
switch block in line 2, and State, OK, and FAIL are the declaration sites of enum
type State and its values OK and FAIL, respectively. These semantics are indepen-
dent of whether State is defined in the same source file as the switch statement, in
a different source file, or in Java bytecode.

Continuing our example, predicate ENUMMEMBER(τ,#m) in line 6 relates enum
types τ and their member values #m, while SWITCHWITHOUTENUMMEMBER(s, τ)
checks whether switch s over enum type τ is missing at least one
enum value (m, in line 7), SWITCHONALLENUMMEMBERS(s) checks
that SWITCHWITHOUTENUMMEMBER does not hold for s, and
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1 SWITCH(s) :- s ⟨..switch (#_) { .. }..⟩.
2 SWITCHHASDEFAULT(s) :- s ⟨..switch (#_) { .. default: .. }..⟩.
3 CASEONENUM(s, τ, m) :- s ⟨..switch (#v) { .. case #c: .. }..⟩,
4 DECL(#c, m), TYPE(#v, τ),
5 τ ⟨..enum #_ { .. }..⟩.
6 ENUMMEMBER(τ, #m) :- τ ⟨..enum #_ { .., #m , .. ; .. }..⟩, ID(#m, _).

// ID filters out declarations #m that are not identifiers, thus not enum values
7 SWITCHWITHOUTENUMMEMBER(s, τ) :-
8 CASEONENUM(s, τ, _), ENUMMEMBER(τ, m), NOT(CASEONENUM(s, τ, m)).
9 SWITCHONALLENUMMEMBERS(s) :-

10 CASEONENUM(s, τ, _), NOT(SWITCHWITHOUTENUMMEMBER(s, τ)).
11 SWITCHWITHOUTDEFAULT(s) :-
12 SWITCH(s), NOT(SWITCHHASDEFAULT(s)), NOT(SWITCHONALLENUMMEMBERS(s)).

Figure 3: JAVADL specification for the SwitchNoDefault bug pattern, excluding input
and output handling.

SWITCHWITHOUTDEFAULT(s) finally collects all switch statements that nei-
ther have a default nor cover all enum members.

Non-local bug patterns like SWITCHWITHOUTDEFAULT are the interesting cases
for incremental analysis: if the code changes in either the switch statement or in
the enum type, we must re-evaluate all potentially affected reports, ideally without
re-evaluating the unaffected ones (Section 4).

2.2 Language Definition

Figure 4 summarizes the JAVADL syntax. Our language is based on Datalog with nega-
tion, where literals in rule bodies may be negated NOT(P(. . .)), following the standard
(“stratification”) requirement that they must not transitively depend on their own nega-
tions (e.g., P(x) :- NOT(P(x)).). JAVADL extends Datalog with java blocks, syn-
tactic patterns, and predicate references to support syntactic pattern matching.

Syntactic patterns allow us to match terms in a given input program. JAVADL sur-
rounds syntactic patterns J by quotes ⟨..J..⟩ that we write <: J :> in the source
code. Here, J is any Java code fragment that can be rooted at a single AST node; these
can be statements, classes, types, import statements or any other syntactic production
from the Java grammar. For instance, the pattern ⟨..#e.toString()..⟩ will match
any calls to the method toString() in the input program and bind the expression
on which the call is made to the pattern metavariable #e. Pattern metavariables like
#e describe AST nodes, and we can use them outside of syntactic patterns as normal
Datalog variables. In some cases we are interested in reasoning about the root of a
syntactic pattern explicitly. JAVADL’s rooted matching syntax expresses e.g. the set of
occurrences of the literal 0 in the input program as z⟨..0..⟩; as usual in logic program-
ming, we can use this pattern both to test whether z is an AST node for a 0 and to find
all z with that property. Using pattern metavariables for rooted matching allows us to
recurse, e.g. to conservatively underapproximate the set of all expressions that evaluate
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Program ::= Di

Declaration D ::= C | java(r){Ci}
Clause C ::= Hi:-Bj .
Head literal H ::= P(ti)
Body literal B ::= H | NOT(H) | ⟨..J..⟩ | v⟨..J..⟩
Term t ::= v | _ | k | r | e
Predicate reference r ::= ’P
Expression e ::= v | to_number(e) | e+e | e*e | ...
Variable v ::= vb | vm
Predicate symbol P ∈ PredSym
Constant k ∈ Z ∪ String
Pattern language J ∈ JavaPatternLanguage
Basic variable vb ∈ Var
Pattern metavar. vm ∈ #vb

Figure 4: Syntax for the JAVADL language.

to 0:
1 ZERO(#z) :- #z⟨..0..⟩.
2 ZERO(#z) :- #z⟨..0 + #z2..⟩, ZERO(#z2). // And so on.

We can thus derive complex semantic properties directly from syntactic patterns.
When matching patterns, we often want to leave parts inside the pattern unspec-

ified; we can do so by using gaps (..). For example, in Figure 1 we used gaps
to ignore declarations inside class bodies, since these were irrelevant to our analy-
sis. We also allow gaps within sequences of elements. For instance, the pattern
⟨..new #T[] { #first , .. }..⟩, will match array initializers with at least one
(but possibly more) elements, and bind the first element to #first.

Meanwhile, predicate references quote a predicate, e.g. ’SRCS, and turns it into a
logical object, akin to a pointer to a C variable or a java.lang.Class object. We
use this mechanism to describe properties about predicates, and especially to expand
predicates that describe a set of source files into ASTs through a java block:

java(’SRCS) { ...body ...}

All syntactic patterns in the body of this block will reason about precisely the ASTs
of the programs whose sources are in SRCS. This design gives us a scope for syntac-
tic patterns without having to make AST roots explicit everywhere; we can think of
java blocks as “broadcasting” implicit parameters to all rules in the body. This de-
sign follows our earlier MetaDL analyze blocks [DBR], adding rooted patterns and
support for syntactic ambiguity (Section 3.3). While java blocks are not essential to
our approach and could be implicit, we include them to enable future use cases e.g. for
pre-analyses that grow the list of source files to handle dynamic class loading.
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2.3 Pseudopredicates

JAVADL incorporates a number of language constructs with the syntactic form of pred-
icates but special semantics. We categorize these pseudopredicates into three groups:
I/O pseudopredicates for accessing external data, infinite pseudopredicates for arith-
metic and comparison, and semantic predicates that expose precomputed semantic in-
formation. We have already introduced our two I/O pseudopredicates, which may only
occur as facts (i.e., not in rules):

• EDB(′P,"TabulatedP.csv","csv") imports an external database
(SQLite3 or CSV) into a relation (here: P). Like facts from java blocks, these
imported relations provide ground facts, rather than derived facts; the ‘E’ in
EDB (‘extensional’) alludes to this property.

• OUTPUT(′R,"TabulatedR.db","sqlite") exports the contents of the
R predicate to the database file "TabuletedR.db".

Our infinite pseudopredicates are the only predicates that allow (nested) arithmetic
expressions inside their literals. We only allow these pseudopredicates in rule bodies:

• EQ(e0, e1) holds iff the value of eo is equal to the value of e1.

• LT(e0, e1) holds iff the value of e0 is less than the value of e1.

• BIND(v, e) holds iff the variable v equals the value of expression e. Unlike EQ,
BIND can also bind variables.

Finally, semantic predicates provide additional information about programs under
analysis. They are only available inside java blocks:

• ID(n,m) relates the node n to its name m, if the node represents a named AST
fragment (e.g., a variable, class or method).

• SRC(n, ls, cs, le, ce, f) relates the AST node n to its source code location, where
the pairs ⟨ls, cs⟩ and ⟨le, ce⟩ represent its start and end positions in the source file
f .

• PARENT(n, c) relates the AST node c to its parent n.

• INT(n, s) relates the integer literal n to its value s, represented as a string. We
provide similar predicates for the numeric literals (FLOAT, LONG, etc.).

• STR(n, s) relates the string literal n to its string value s.

• MOD(n,m) relates a declaration n to its modifiers (public, static etc.).

• DECL(n, nd) relates the name n to its declaration nd.
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• TYPE(n, nt) relates an AST node that represents a name or expression n to the
AST node nt that represents the node’s type. Due to limitations in our frontend,
there are corner cases in Java 8 where this relation may be inaccurate.

We did not find it necessary to add a feature for referencing specific Java types. As
we show later in Figure 11 for java.lang.String, the existing JAVADL features
suffice for this task.

The TYPE and DECL relations allow JAVADL code to refer to code from external
jar files, though pattern matching support on such compiled code excludes statements
and expressions.

Types JAVADL is a statically typed language, without explicit type declarations.
Instead, it relies on monomorphic type inference. Currently, JAVADL supports four
types for variables: Int, String, ASTNode for AST nodes, and PredRef for predicate
references.

3 Implementation

JAVADL can run bug checkers either exhaustively (on the entire program) or incre-
mentally (only on the parts of a program that have changed). We first describe our
implementation for exhaustive evaluation, and discuss the refinements for incremental
evaluation in Section 4.

3.1 Architecture
Figure 5 and Figure 6 show an overview of our prototype implementation, with an
initial synthesis step illustrated in Figure 5 and the steps of the exhaustive evaluation
in Figure 6.

In Datalog synthesis, our prototype compiles JAVADL into efficient native checker
code with the help of the high-performance Datalog compiler Soufflé [Sch+16]. In
this step, our compiler first parses the Datalog fragment of the JAVADL program using
an LALR parser, but leaves syntactic patterns (⟨... . ...⟩) unprocessed. It calls a separate
parser to parse these (often highly ambiguous) patterns (Section 3.3) and then translates
them into Datalog queries (Section 3.3). The compiler then emits Datalog in Soufflé’s
Datalog dialect (adding explicit type annotations and input/output specifications), and
calls Soufflé to generate the native checker library. This library implements the Data-
log portion of the bug checker’s exhaustive variant and is independent of the program
under analysis, so we only need to re-synthesize it when we add, remove, or alter bug
detectors.

In exhaustive evaluation, the driver first determines the set of Java files for each
java block to analyze2, then passes these files to the Java compiler ExtendJ [EH07].

2If a P in a java (’P) block is not loaded directly, we additionally use partial interpretation (not
explored in this work).
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The driver then translates relevant parts of ExtendJ’s Java AST representation into in-
memory tables for our native checker binary (“Datalog projection”), by flattening the
AST structure (Section 3.2) and tabulating semantic information (e.g., the TYPE and
DECL) predicates. Finally, the driver passes these tables to the native library, which
completes Datalog evaluation and reports all detected bugs.

JAVADL
check

Datalog parsing

Pattern parsing

Pattern → Datalog

Soufflé
JAVADL

check
lib.so

Datalog Synthesis

Figure 5: Compilation of a JAVADL checker specification to a Datalog library

Source.java

JAVADL
check

Source
predicate
evaluation

Source
files

Datalog
projection

EDB

Program
repr.

JAVADL
check
lib.so

OUTPUT

ExtendJ

AST

JAVADL Exhaustive Evaluation

Figure 6: Exhaustive evaluation of a compiled JAVADL checker on a Java program

3.2 Program Representation
Our syntactic pattern matcher operates entirely on logical relations. Thus, we compile
syntactic Java patterns into special pattern-matching Horn clauses (Section 3.3) during
Datalog synthesis, and translate Java source code into logical facts. Since ExtendJ’s
AST faithfully preserves the concrete syntax, we do not distinguish between ASTs and
parse trees.

Our approach extends the relational representation of ASTs from our earlier
work [DBR] to compactly represent ExtendJ’s Java AST, together with terminal sym-
bols, source location information, and semantic attributes (TYPE, DECL etc.).
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We map AST nodes to 64-bit integers, and represent the connections between them
with the following three relations:

1. AST(k : String, n : ASTNode, i : Int, c : ASTNode, t : String) represents a node
n, of syntactic production k. If n has no children, we store the node information
as a single fact AST(k, n, -1, -1, t). If k represents a terminal name or literal,
then t is additionally the corresponding lexeme. Otherwise, if n is a nonterminal,
c represents the ith child node.

2. ATTR(n : ASTNode, a : String,m : ASTNode) holds if node n’s attribute a has
value m.

3. SRC(n : ASTNode, ls : Int, cs : Int, le : Int, ce : Int, f : String) relates node
n and its source location, represented as starting and ending line and column
information, and file name.

3.3 Syntactic Pattern Matching

Our JAVADL compiler translates syntactic patterns into logical literals. This delegates
the heavy lifting of syntactic pattern matching to the Datalog engine and allows us to
freely intersperse pattern matching and other forms of program analysis.

The Java Pattern Grammar

We construct our pattern grammar by transforming the ExtendJ Java grammar. For
each syntactic category, represented by a nonterminal N , we introduce two fresh non-
terminals Np, which adds metavariables (#v), and Nl, which also adds gaps (..):

Np ::= N | MetaVarID
Nl ::= Np | ".."

We then update all other rules in the BNF grammar to replace right-hand-side occur-
rences of N by Np, except for sequences of N (e.g., parameter lists), which we replace
by Nl. This process is fully automatic to support future changes to ExtendJ.

Our pattern grammar accepts any Java program but introduces ambiguities. For
example, the pattern ⟨..#t #n() { .. }..⟩ can be parsed both as a constructor
definition or as a method definition. The pattern compiler statically detects such am-
biguities and emits a warning, but defaults to allowing any of the possible parses. The
bug detector writer can then choose to disambiguate by using other predicates in the
same clause as the pattern. In the example above, the rule could e.g. test if #t is a
modifier or a type with the literal MOD(#t, _). If the bug detector writer instead
chooses to retain this ambiguity, #t will match both constructor and method defini-
tions. These ambiguities only affect syntactic patterns; when we later parse Java input
programs, we rely on ExtendJ and its unambiguous Java grammar.
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Relational Representation of Patterns

We transform syntactic patterns to Datalog clauses, following our earlier work [DBR]
and De Roover et al. [DR+07], except for encoding the semantic category of the
matched node in tuples rather than in predicates.

To illustrate, let us first consider how ExtendJ would parse the expression 1 +
1. Figure 7a shows the corresponding part of the ExtendJ Java grammar: ExtendJ
will represent the syntactic category add_expr by an AST node AddExpr with two
IntegerLiteral(1) child nodes.

We parse the pattern e⟨..#x + 1..⟩ similarly, except with the grammar in Fig-
ure 7b, which adds rules for gaps and metavariables.

We represent gaps and metavariables by custom AST nodes, and assign each node
a node identifier (Figure 8). For metavariables and the roots of rooted patterns, we
set these identifiers to be the corresponding (meta)variables. For all other nodes, we
introduce a fresh variable (e.g. ϕ1, ϕ2).

For each such pattern p, we then create a fresh Datalog predicate PATp, with its
arity equal to the number of free variables in the pattern, including the optional root.
We then replace all occurrences of p by PATp to desugar JAVADL to plain Datalog.

1 Expr add_expr ::= add_expr.e1 PLUS mul_expression.e2
2 {: return new AddExpr(e1, e2); :}
3 Expr mul_expression ::= ...
4 | literal
5 IntegerLiteral literal ::= LITERAL.l
6 {: return new IntegerLiteral(l); :}

(a) Pattern Rule

1 Expr add_expr ::= add_expr.e1 PLUS mul_expr.e2
2 {: return new AddExpr(e0, e2); :}
3 | METAVARID.id
4 {: return new ExprMetaVar(id); :}
5 | ...
6 Expr mul_expr ::= ...
7 | literal
8 | METAVARID.id
9 {: return new ExprMetaVar(id); :}

10 IntegerLiteral literal ::= LITERAL.l
11 {: return new IntegerLiteral(l); :}
12 | METAVARID.id
13 {: return new IntegerLiteralMetaVar(id); :}

(b) Extended Grammar Rule
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Figure 7: Pattern grammar generation and pattern parsing.
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In Figure 8, the MetaVarExpr node corresponds to the syntactic category Expr
in the abstract grammar. Since we tag our AST nodes with their syntactic production
(e.g., IntegerLiteral) rather than with nonterminal syntactic categories, we encode
their subtyping relationship in an internal predicate SUPERTYPE(String, String). We
generate this predicate statically, based on the analysis of the type hierarchy in the ab-
stract grammar, and use it to set a bound on the syntactic categories that a metavariable
can match. This transforms the pattern e⟨..#x + 1..⟩ into the Datalog rule in Figure 9.
We use the same approach to translate gaps and the constraints that they introduce as
in MetaDL [DBR].

e
AddExpr

#x
MetaVarExpr

ϕ1

IntegerLiteral

ϕ2

Terminal: 1

Figure 8: The abstract syntax tree for the pattern e⟨..#x + 1..⟩

1 PAT(e, #x) :- AST("AddExpr", e, 0, #x, _),
2 AST("AddExpr", e, 1, ϕ1, _),
3 SUPERTYPE(κ1, "Expr"),
4 AST(κ1, ϕ1, 0, ϕ2, _),
5 AST("Terminal", ϕ2, _, "1").

Figure 9: Expanded pattern

Parsing Ambiguous Patterns

Our automatically generated pattern grammar (Figure 7b) is highly ambiguous, and
unsuitable for most parsing algorithms. We therefore adapt Scott [Sco08]’s shared
packed parse forest (SPPF) variant of the Earley parser. This algorithm compresses
ambiguity effectively, but solves only part of the ambiguity in our case.

To illustrate, consider the pattern ⟨..#e1 + #e2 + #e3.
.⟩. Parsing this pattern

yields the SPPF in Figure 10a, which contains two SPPF alternative nodes. These are
not parse tree nodes but instead mark a choice in the tree: either child of an alternative
node will yield a correct parse tree.

While a purely syntactic system could match over these alternatives directly, JAVADL
must map syntactic categories to AST node names (Section 3.3). However, ExtendJ’s
parser uses a black-box specification of the mapping between concrete and abstract
syntax that only provides us with opaque ‘parser actions’ ({: . . . :} in Figure 7)
that we can call, but not inspect automatically.

To avoid having to produce all four ASTs for our example, or 2n in general, we sim-
plify the parse forests by shortening the path from each metavariable or gap terminal to
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the root. Concretely, we find all derivation chains of the form N → M → MetaVarID
and replace them with N → MetaVarID. We do this transformation recursively, start-
ing from the leaves towards the root, while also merging alternatives if they contain
the same derivation chain. We perform a similar transformation for gaps. For the
example in Figure 10a, we apply the transformation twice for N = MulExpr and
M = IntegerLiteral. The intuition behind this transformation is that instead of enu-
merating all the possible syntactic categories a metavariable could have, we provide an
upper bound for them.

Going back to the example in Figure 10a, the metavariable #e3 could match the
syntactic categories IntegerLiteral or Expr. After the transformation (Figure 10b),
#e3 matches all the nodes having the syntactic category Expr, which is more general
and includes IntegerLiteral.

AddExpr

AddExpr MulExpr

IntegerLiteral

AddExpr MulExpr

IntegerLiteral

#e1 + #e2 + #e3

MetaVarID PLUS MetaVarID PLUS MetaVarID

AddExpr

AddExpr MulExpr

AddExpr MulExpr

#e1 + #e2 + #e3

MetaVarID PLUS MetaVarID PLUS MetaVarID

(a) (b)

Figure 10: The original (a) and simplified (b) SPPFs for the expression #e1 + #e2 +
#e3. denotes alternatives.

In effect, the transformation merges multiple derivation chains that end up in a
MetaVarID (or a gap) and yields an SPPF with significantly fewer edges. In practice,
this enables us to quickly enumerate the parse trees. For the addition pattern discussed
above, this approach produces a single parse tree (Figure 10b).

3.4 Semantic Attribute Extraction

ExtendJ is a full-fledged Java compiler, and therefore performs a variety of program
analyses. Some of these are useful for writing bug detectors, so we export them for
easy access in JAVADL code.

ExtendJ is implemented in the Reference Attribute Grammar system Jas-
tAdd [HM03], meaning that its program analyses are computed as attributes over AST
nodes, and that these attributes may be references to other AST nodes. For example,
ExtendJ computes the declaration site of a variable or a method as a reference to the
AST node that contains the node’s declaration, and the type of a variable as a reference
to the AST node of the type’s class definition. Some of these AST nodes are not AST
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nodes in the classical sense. ExtendJ computes synthetic AST nodes (higher-order at-
tributes [VSK89]) on-demand to represent e.g. primitive types and classes loaded from
external jar files.

Since ExtendJ runs on the Java Virtual Machine and Soufflé is a native executable,
implementing on-the-fly attribute evaluation through callbacks to Java would require
considerable engineering effort. We instead opted to tabulate program representation
relations directly into Soufflé’s data structures, using Java Native Interface calls. While
tabulating the program’s original AST requires only a simple tree traversal, the evalu-
ation of attributes may produce new synthetic AST nodes that we must traverse, add
to the program representation relation, and recursively re-examine to extract their at-
tributes. We implement a fixed point algorithm here for exhaustive attribute evaluation.

JAVADL currently supports the evaluation of two attributes that may produce fresh
AST nodes:

• DECL, mapping a node to the AST node declaring it, and

• TYPE, mapping an AST node to the node declaring its type

In general, the attribute extraction mechanism is easy to extend. It takes no more than
10 lines of code to expose a new attribute as a Datalog relation. This property of our
implementation facilitates easy sharing of analyses between ExtendJ and JAVADL.

4 Incremental Evaluation

When developers integrate static checkers into their workflow, these checkers often
become part of continuous integration or code review [Sad+15; Cal+15]. In those
scenarios, the checker runs frequently, and each run sees largely the same source code,
meaning that exhaustive analysis can be wasteful.

Consider the analysis in Figure 11. This check, inspired by Spot-
Bugs’ DM_STRING_CTOR, looks for explicit String object constructions, new
String(#v), where #v is already a String. Since Java Strings are immutable,
this construction is inefficient. On line 1, the predicate NEWSTRING identifies source
locations ⟨f, l, c⟩ that explicitly call a String constructor with a single argument
of type τ . On line 3, STRINGCLASS finds the unique java.lang.String class.
Finally, on line 5 BADNEWSTRING filters NEWSTRING to only report string construc-
tions from existing string objects.

1 NEWSTRING(τ, f, l, c) :- n ⟨..new String(#v)..⟩,
2 TYPE(#v, τ), SRC(n, l, c, _, _, f).
3 STRINGCLASS(s) :- s ⟨.... class String { .. }..⟩,
4 SRC(s, _,_,_,_, "java/lang/String.class").
5 BADNEWSTRING(f, l, c) :- NEWSTRING(τ, f, l, c), STRINGCLASS(τ).

Figure 11: Check for wasteful String construction, split into three separate predicates
to simplify our exposition.
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We see that different parts of one bug detector may need to be updated at different
times: we only need to recompute STRINGCLASS if the standard library changes, but
must update NEWSTRING on changed parts of the source code. Finally, we must update
BADNEWSTRING if either of the other relations changes.

4.1 Incremental Architecture

Changes to source code can lead to the retraction of a previously true fact, e.g., when a
developer changes the superclass of some class C from A to something else. Retractions
can have consequences: if C inherited m from A, it will no longer do so. However, the
consequences of retractions may not be obvious: C might also have obtained m from a
second source, e.g., a Java default interface method.

The literature has proposed a number of different techniques for incremental up-
dates of Datalog-style analyses [GMS93; Sza+18]. However, we found these tech-
niques unsuitable for JAVADL: first, they assume that all ground facts are permanently
stored in a database. In JAVADL, the majority of ground facts are AST nodes that we
derive from source files (i.e., these facts are actually derived and “ground” only from
the perspective of Datalog), and serializing these facts to disk would incur nontrivial
storage cost. Second, we assign identities to these nodes based on their order in the
parsed file, which means that a small change at the beginning of a file would trigger
individual retractions for almost all AST nodes in that same file.

While we expect to be able to avoid the second problem through a suitably tuned
AST differencing algorithm [NRL18] analogously to CFG-based differencing [AB14],
this would not address the first problem. We aimed to keep the AST in-memory as
much as possible, so we use a conservative provenance tracking scheme that partitions
facts by compilation unit, tracks which compilation unit partition contributed to which
other partition, and propagates retractions along partition dependencies.

This partitioning scheme reflects both the level of granularity of the ASTs that we
obtain from ExtendJ and JAVADL’s use as a static checker: such tools typically run e.g.
in Continuous Integration environments, where the degree of incrementality that they
encounter is that of one or more revision control commits.

Our incremental evaluator first computes a set of stale files from a set of modified,
added, and deleted source files, to which it transitively adds all other source files that
transitively depend on stale files. It then discards data from these stale files and re-
analyzes them as needed. This adds several components over the exhaustive analysis
(Section 3), which we summarize in Figure 12:

1. Predicate Separation (Section 4.2) sorts JAVADL predicates into local predicates
(e.g., NEWSTRING and STRINGCLASS in Figure 11), which we can run on indi-
vidual source files, and global predicates which can depend on multiple source
files (e.g., BADNEWSTRING in Figure 11).

2. Attribute provenance tracking (Section 4.3) tracks source file dependencies.
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3. The Intermediate Result DataBase (IRDB) (Figure 12) caches local predicates,
tagged with the source file from which we have derived them, as well as attribute
provenance.

Moreover, we split evaluation into two phases:

1. Local predicate evaluation, whose results (PL) we cache in the IRDB, and which
we only re-run on stale files, and

2. Global predicate evaluation, which we always run once at the end, which de-
pends on all local predicates and obtains them either from the cache (PC) or
from in-memory data from the current run (PL) (Section 4.2).

JAVADL
check

Datalog parsing

Pattern parsing

Pattern → Datalog

Domain analysis

Soufflé

JAVADL
check

libIncr.so

Datalog Synthesis

Source.java
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JAVADL Incremental Evaluation

Figure 12: Incremental evaluation of a JAVADL analysis on a Java program.
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4.2 Separating Local and Global Rules
Consider again Figure 11: as we argued above, predicate NEWSTRING and the rule
defining it refer to information from a single source file. However, that claim is not
entirely obvious. While the syntactic pattern only connects nodes from the same com-
pilation unit (n and #v), the pair ⟨#v, τ⟩ from TYPE may refer to any type τ in any
compilation unit. However, we can still evaluate this rule locally: if we replace TYPE
with TYPEf , a subset of TYPE that only knows the type information of all AST
nodes in file f , and set f to be the file that contains n, then ⟨#v, τ⟩ ∈ TYPEf ⇐⇒
⟨#v, τ⟩ ∈ TYPE. We can apply the exact same reasoning to SRC in the rule for
NEWSTRING, and to the body of the STRINGCLASS rule.

However, BADNEWSTRING may combine tuples from distinct compilation units:
⟨τ,f,l,c⟩ from any compilation unit that called the String constructor, and ⟨τ⟩
from java/lang/String.class. Hence, we must compute BADNEWSTRING
during global evaluation.

We formalize these intuitions in the following, but first note that the separation be-
tween local and global predicates is only relevant for predicates with variables of type
ASTNode or predicates that depend on such rules. In practice, we have encountered
user-defined predicates without ASTNode variables only as (short) block- or passlist-
s/allowlists, so we do not consider them further here.

For our formalization, we introduce three concepts:

1. Domain separation signatures (DSS) (Section 4.2), which capture which of the
(ASTNode) variables of a predicate or a rule must always be in the same compi-
lation unit. For example, the DSS for the rule body of NEWSTRING partitions
the variables {n,#v, τ} must separate {n,#v} from and {τ}, since τ may come
from a different compilation unit.

2. The local variable set (Section 4.2), which is the set of variables in a rule or
parameters in a predicate that represent the compilation unit for which we can
evaluate the predicate or rule locally. For example, we can evaluate the rule for
NEWSTRING in the compilation unit represented by {n,#v}, but not the one
represented by {τ}.

3. AST predicates, which are predicates that (transitively) depend on AST facts.

Domain Separation Signatures

Domain Separation Signatures (DSS) describe, for both rules and predicates, which
(ASTNode) parameters to the head literal must come from the same compilation unit.
We denote DSS as partitions over the variables in each rule body:

R1 = n⟨..new String(#v)..⟩ DSS(R1) = {{n,#v}}
R2 = n⟨..new String(#v)..⟩, TYPE(#v, τ) DSS(R2) = {{n,#v}, {τ}}

and analogously for predicates, where we partition by parameter index (Figure 13).
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P(n,#v) :- n⟨..new String(#v)..⟩ DSS(P ) = {{1, 2}}
TYPE(n, τ) :- . . . . DSS(TY PE) = {{1}, {2}}
SRC(n, _, _, _, _) :- . . . . DSS(SRC) = {{1}}
NEWSTRING(τ, _, _, _) :- P(n,#v), TYPE(#v, τ), DSS(NewString) = {{1}}

SRC(n, _, _, _, _).
STRINGCLASS(s) :- s⟨.... class String {..} ....⟩ DSS(StringClass) = {{1}}

Figure 13: Domain Separation Signatures for predicates. 1 refers to the first parameter,
2 to the second etc.

Whenever the DSS separates two variables, we may need to defer their binding to
global predicate evaluation (with some exceptions, cf. Section 4.2). We thus want a
DSS that is as coarse as possible:

Definition 1. Let N be a finite set and σ1, σ2 two partitions of N . We say that the
partition σ1 is coarser than σ2 and we write σ2 ⊑ σ1 iff ∀x.∀y.xσ2y ⇒ xσ1y.

At the same time, we require that in each partition of a DSS, all variables in that
partition must always bind to AST nodes in same compilation unit. To find the coarsest
possible DSS that satisfies this requirement, we construct a DSS lattice:

Definition 2. We define the join (⊔) and meet (⊓) for partitions over N as follows, and
note the resultant top (coarsest and trivial) as well as bottom (most refined) partitions:

x(σ1 ⊔ σ2)y ⇔ ∃z.xσ1z ∧ zσ2y ⊤ = {N}
x(σ1 ⊓ σ2)y ⇔ xσ1y ∧ xσ2y ⊥ = {{n}|n ∈ N}}

Definition 3. Let P be a predicate of type (τ1, ..., τn) and N = {i|τi = ASTNode}.
The domain separation signature of predicate P is the coarsest partition σ of N such
that if iσj then for all tuples ⟨v1, . . . , vn⟩ ∈ P , vi and vj must be bound to AST nodes
from the same compilation unit.

For a predicate P we denote by σx
P the equivalence relation induced by DSS(P) on

all x = x1, . . . , xk. Let σP = DSS(P). Then iσPj implies that any values bound to xi

and xj must always come from the same compilation unit, so we define xiσ
x
Pxj ⇐⇒

iσPj
We now conjunctively combine induced constraints for Datalog rule bodies of the

form

R = P1(x1), . . . , Pn(xn),NOT(Pn+1(xn+1)), . . . ,NOT(Pn+m(xn+m))

Definition 4. The domain separation signature of a rule body R is the partition σR of
the set V of variables of type ASTNode in the rule such that

σR =
⊔

k=1,n

σxk

Pk
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Inferring Domain Separation Signatures

Since predicate definitions may have recursive dependencies, the above definitions are
not yet sufficient for inference. We begin inference by observing that the DSS for
syntactic patterns is always trivial (all variables are in the same compilation unit),
and similarly for semantic predicates, e.g. DSS(ID) = {{1}}. The exceptions are
DSS(TYPE) = DSS(DECL) = {{1}, {2}}.

As a converse to our earlier definition, the equivalence relation σR on the variables
in a rule induces an equivalence relation on the head literal, P(x), where we define
iσx

P[R]j ⇐⇒ xiσRxj with xi and xj in x. We compute the signatures of the predicates
as a fixpoint, starting with (σP)0 = ⊤:

(σP )k+1 = (σP )k ⊓
l

P(x):−R

σx
P[R]

The number of iterations is bounded by the height of our (finite) lattice.

Definition 5. We say that a DSS σP is sound iff after exhaustive evaluation of the
JAVADL program that contains P, whenever ⟨n1, . . . , nk⟩ ∈ P and iσPj with i, j ∈
{1, . . . , k}, we always have that ni and nj are from the same compilation unit. We
extend this definition to σR.

Theorem 4.1. For any JAVADL program, DSS inference is sound for all P.

Proof. Sketch: Assume that i σP j, but exhaustive evaluation derives n =
⟨n1, . . . , nk⟩ ∈ P s.th. ni and nj are AST nodes from different compilation units.
Considering the Datalog horn clauses as sequents, we show by coinduction that any
proof for P(n) must be infinite, which is a contradiction.

First note that P cannot be a built-in predicate, whose DSS are trivially sound. By
fixpoint construction of σP, we must then have for all rule bodies R with P(x) :- R
that xi σR xj . Let

R = P1(y1), . . . , Pn(yn+1),NOT(Pn+1(yn+1)), . . . ,NOT(Pn+m(yn+m))

We can ignore the negated literals, as they do not contribute to DSS and can at most
remove tuples. Observe that y σx

P z only holds if y and z are in x, so xi σR xj iff
there exists a positive literal Pk(yk) with xi σyk

Pk
xj . Since xi ̸= xj , that literal

cannot be built-in: if Pk = PARENT (or similar local AST traversal), ni and nj are
in the same compilation unit (contradiction), while for TYPE and DECL the DSS
does not allow xi σ

yk

Pk
xj . By elimination, Pk must be a user-defined predicate. Let

yk = y0, . . . , ym s.th. xi = ya and xj = yb. Then Pk is unsound, because there
exists v = ⟨v1, . . . , vm⟩ ∈ Pk with va = ni, vb = nj . Hence va and vb are from
different compilation units, but DSSPk) claims a σPk

b. By coinduction hypothesis,
the derivation of Pk(v) is infinite.
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Local Variable Set

While the DSS tells us which variables are always in the same compilation unit, that
information is not sufficient for telling whether we can evaluate a rule locally. For
instance, consider the following rules, both of which have the DSS {{1}, {2}}:

Q(#n, τ) :- TYPE(#n, τ), ⟨.... class C { .. #n .. }..⟩.
U(n, τ) :- TYPE(n, τ), τ⟨.... class C { .. }..⟩.

Q finds all fields and methods #n and their types τ in any class named C, while U finds
all expressions and declarations n whose type is any class named C. Q we can compute
locally, but not U: during incremental evaluation, TYPE only knows the data that we
extract from ExtendJ for the compilation unit under analysis, i.e., the types of local
nodes, but no external references to local nodes.

Definition 6. For a predicate P, we define the local variable set as LV(P) ∈ DSS(P)
such that we can evaluate P locally iff all variables in LV(P) are bound to local AST
nodes.

As we saw with predicates Q and U, we can evaluate TYPE locally only if param-
eter 1 is bound to a local AST node. Thus, the local variable set of TYPE is {1}, while
for P from Figure 13, the local variable set consists of all its variables, {1, 2}.

Analogously to domain separation signatures, each predicate induces a local vari-
able set. So if i ∈ LV(Pk) and L = Pk(. . . , xi, . . .) is a literal, then xi ∈ LV(L)
(analogously for negated literals).

Definition 7. For a rule R = L0 :- L1, . . . , Lk, we define the local variable set LV(R)
as the element of DSS(R) that contains at least one local variable from all literals that
have a local set, i.e.,

LV(R) = S ∈ DSS(R) s.t. for all Li ∈ {L1, . . . , Lk},LV(Li) = ∅ or LV(Li)∩S ̸= ∅.

If such an element exists, R is a local rule, otherwise we set LV(R) = ∅.

Corollary 4.1.1. If LV(R) = S is nonempty, then by construction, all literals in R
depend only on AST nodes from the same compilation unit.

Returning to our example in Figure 11 and labeling the rule bodies on lines 1–
3 as R1, R2, R3, respectively, we have the local variable sets: LV(R1) = {n,#v},
LV(NEWSTRING) = ∅, LV(R2) = {s}, LV(STRINGCLASS) = {s} and LV(R3) = ∅.
R1 and R2 are therefore local rules.

Incrementalizing by Rule Localization

If all rules R for a predicate P are local, we consider P a local predicate. All other
predicates are global predicates. For each local P, we introduce two helper predicates
PL and PC . PL contains the tuples of P that we compute in the current evaluation pass,
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NEWSTRINGL(τ, f, t, c,u) :-
⟨..new String(#v)..⟩,
TYPE(#v, τ), SRC(n, l, c, _, _, f),
BIND(u, cuidOf(n)).

OUTPUT(′NEWSTRINGL).
EDB(′NEWSTRINGC).
NEWSTRING(τ, f, l, c) :- NEWSTRINGL(τ, f, l, c, _).
NEWSTRING(τ, f, l, c) :- NEWSTRINGC(τ, f, l, c, _).

STRINGCLASSL(s,u) :-
s⟨.... class String {..}..⟩,
SRC(s, _, _, _, _, ”.../String.class”),
BIND(u, cuidOf(s)).

OUTPUT(′STRINGCLASSL).
EDB(′STRINGCLASSC).
STRINGCLASS(s) :- STRINGCLASSL(s, _).
STRINGCLASS(s) :- STRINGCLASSC(s, _).

BADNEWSTRING(f, l, c) :- NEWSTRING(τ, f, l, c) , STRINGCLASS(τ) . Global

Local

Figure 14: Global and local rules in the incrementalized version of Figure 11. The
shaded areas fuse the updated and cached results and thereby recover the same results
as if we had run an exhaustive analysis.

while PC contains the tuples from cached compilation units. We augment PC and PL

with an additional marker to store its source compilation unit.
JAVADL transforms our running example (Figure 11) into the program in Figure 14.

Here, u is the compilation unit marker, which we extract via the function cuidOf(n).
Since we encode all ASTNode objects as unique 64 bit integers that incorporate their
compilation unit identifier, cuidOf(n) has practically no overhead. The shaded areas
highlight how we fuse PL and PC .

4.3 Attribute Provenance

JAVADL rules can reference compilation units in two ways: through pattern-matching,
and through semantic predicates (DECL, TYPE). We tabulate the latter directly from
ExtendJ attributes. However, individual tuples in these relations can have nontrivial
provenance. Consider Figure 15. When we analyze class C, DECL for the call foo()
yields the definition of foo() in class A. However, the provenance of this information
also includes B.java, since ExtendJ must check that class B does not override that
method, i.e., changes to B can affect the DECL information in C.

To compute attribute provenance, we trace attribute evaluation with a tracing mech-
anism provided by JastAdd [SH11], the attribute grammar framework that underlies
ExtendJ. We have extended this tracing to report source file accesses in ExtendJ, and to
cache summaries for attributes that JastAdd itself caches. This technique allows us to
support provenance tracking for arbitrary attributes, including future extensions. Our
implementation does not yet track negative dependencies, which can arise with wild-
card import statements, e.g. import java.util.*;. Adding support for these
would require some engineering effort but no changes to our conceptual framework; in
our evaluation, we systematically verified that they had no impact on the bug reports.
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1 class A {
2 void foo() { }
3 }

1 class B extends A {
2 // void foo() {
}

3 }

1 class C extends B {
2 void bar() {
foo(); }

3 }
A.java

B.java C.java

Figure 15: Nontrivial provenance: The foo() call in class C references A, but also
depends on B.

5 Evaluation

To understand the value of JAVADL as a proof-of-concept clear-box bug checker frame-
work, we selected an experimental setup (Section 5.1) to explore the following ques-
tions:

• RQ1: To what degree can JAVADL be used to specify common static checks?
(Section 5.2)

– RQ1.1: How expressive is JAVADL compared to other tools?

– RQ1.2: How precise is JAVADL compared to other tools?

• RQ2: How does the execution time for JAVADL compare to the state of the art?
(Section 5.3)

– RQ2.1: How does the execution time of JAVADL compare to other tools?

– RQ2.2: How effective is the automatic file-level incrementalization that
JAVADL enables?

5.1 Experimental Setup
Selection of Tools and Bug Patterns Modern bug checkers come with hundreds
of bug patterns. To select representative patterns, we turned to a recent study by Habib
and Pradel [HP18], who compare the SpotBugs, Error Prone, and Infer checkers on
an extended version of the Defects4J [JJE14] data set3. The study identifies the five
most commonly triggered detectors (“top 5 warnings”) for each of the three selected
detectors. We selected these warnings for our analysis and compared our approach
against SpotBugs’ and Error Prone’s detector implementations. We excluded both Infer
and its Top-5 detectors from our comparison, since (a) Infer’s unique separation-logic
based approach [Rey02; O’H19] distinguishes it from the checkers that we listed in
the introduction to such a degree that it is unclear that a comparison would generalize,
and (b) its Top-5 detectors depend on flow-sensitive analyses, for which JAVADL does
not currently provide special support (Section 5.2), so that they would have required
substantial additional effort to add.

3https://github.com/rjust/defects4j/pull/112

https://github.com/rjust/defects4j/pull/112
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Table 1 summarizes these detectors and their implementations. The bug patterns
marked with ‘⋆’ are the Top-5 for SpotBugs (SB-Top-5) or Error Prone (EP-Top-5).
SB-Top-5 and EP-Top-5 overlap in one detector (Boxed Primitive Constructor),
for a total of nine bug detectors. For completeness, the table also lists the Covariant
equals() detector that we discuss in Section 2.

Selection of Java Benchmarks For our evaluation setup we adapted the frame-
work developed by Habib and Pradel [HP18] to JAVADL and updated the versions
of the Defects4J data set (v2.04) as well as of the checkers (SpotBugs v4.0.3, Error
Prone v2.4). We used all the projects from Defects4J, except Gson, for which we were
unable to retrieve the project properties, and Collections that we were not able
to compile with ExtendJ. For each Defects4J project, we chose the version tagged as
D4J_project_id_FIXED_VERSION, where id is the highest bug ID for project in the
Defects4J database. We implemented two JAVADL programs, one for SB-Top-5 and
one for EP-Top-5. Throughout the evaluation, we compare these two JAVADL pro-
grams directly against these recent, unaltered versions of SpotBugs and Error Prone.

Gathering Data on Analyzer Precision To assess precision, we compare the re-
ports of our JAVADL detectors on Defects4J against the reports produced by SpotBugs
and Error Prone. We followed Defects4J’s configuration in excluding the projects’ unit
tests from this analysis. To compare JAVADL, we utilize a notion of relative recall and
precision:

recallT =
|WJAVADL∩WT |

|WT | precisionT =
|WJAVADL∩WT |

|WJAVADL|

where WT is the set of warnings reported by T . These notions of precision and recall
are relative to a checker T , so they do not represent ground truth, but rather degree of
agreement with T .

5.2 RQ1: Expressiveness and Precision

RQ1.1: Expressiveness

We were able to express all detectors that we implemented in JAVADL purely with
Datalog-style logical rules, syntactic pattern matching, and our small set of carefully
selected semantic relations. We encountered no situation that we thought would be
simpler to implement imperatively, though we are of course biased.

Table 1 shows the sizes of the bug pattern implementations in Error Prone, Spot-
Bugs, and JAVADL, in lines of code. Some implementations additionally support sug-
gested fixes, the implementation of several bug checkers may be entangled in the same
implementation, and different tools may provide different library functionality (not
counted here), so this comparison is not precise. With that in mind, the ratio (tool LOC

4Commit eaebff11c
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Baseline Static Checker Framework JAVADL

⋆ Bug Pattern ID LOC Notes LOC RulesSem.Pred.

E
rr

or
Pr

on
e

⋆ Boxed Primitive Constructor BoxedPrimitiveConstructor 229 115 + 114 9 3 DECL

⋆ Missing @Override MissingOverride 84 82 + 2 48 30 DECL

⋆ Useless Type Parameter TypeParameterUnusedInFormals 108 27 18 DECL

⋆ Complex Operator
Precedence

OperatorPrecedence,
UnnecessaryParentheses

138 99 + 39 37 37

⋆ == on References ReferenceEquality 97 dataflow 88 48 DECL,TYPE

Covariant equals() NonOverridingEquals 132 116 + 16 15 9 DECL

Sp
ot

B
ug

s

⋆ Boxed Primitive Constructor DM_NUMBER_CTOR,
DM_STRING_CTOR

1415 share 52 9 3 DECL,TYPE

⋆ Expose Internal
Representation

EI_EXPOSE_REP,
MS_EXPOSE_REP,
EI_EXPOSE_REP2,
EI_EXPOSE_STATIC_REP2

138 29 20 DECL

⋆ Naming Convention Violation NM_METHOD_NAMING_CONVENTION,
NM_FIELD_NAMING_CONVENTION,
NM_CLASS_NAMING_CONVENTION

499 share 12 17 10

⋆ Missing switch Default SF_SWITCH_NO_DEFAULT 289 share 4 21 8 DECL,TYPE

⋆ Field Never Written To UWF_UNWRITTEN_FIELD,
UWF_UNWRITTEN_PUBLIC_OR
_PROTECTED_FIELD

1032 share 14
dataflow 51 47 DECL

Covariant equals() EQ_ABSTRACT_SELF 541 share 18 15 9 DECL

Table 1: Overview of selected bug patterns and their size in Error Prone, SpotBugs,
and JAVADL. Patterns marked with ⋆ are among the Top-5 (Section 5.1). In column
Notes, a+ b means that b of the lines implemented auto-fixups. share n means that the
detector(s) were sharing their implementation with n additional detectors. Except for
DM_NUMBER_CTOR and DM_STRING_CTOR, which were in two separate files
(sharing 1 and 51, respectively), all detectors listed above (for all tools) were in a single
source file each. dataflow means that the detector additionally used the Error Prone or
SpotBugs data flow analysis engine (not counted for LOC). Column Sem. Pred. lists
semantic predicates that the JavaDL implementations depended on (Section 5.2).
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/ JAVADL LOC) yields a range of 1.1–12.8 (mean: 4.9) for Error Prone (when ex-
cluding LOCs for fixes) and 4.8–157.2 (mean: 38.4) for SpotBugs. If we normalize for
implementation sharing across SpotBugs detectors, i.e., assume that any set of n shared
SpotBugs detectors with ℓ LOC could be refactored to precisely ℓ

n LOC each, the ra-
tio becomes 1.3–4.8 (mean 2.8), though we expect this to be an under-approximation.
Either interpretation indicates that JAVADL requires fewer LOC than the other tools.
Detector == on References stands out as being almost the same size for Error Prone
and JAVADL. However, Error Prone’s implementation utilizes a flow analysis frame-
work whose size we did not include in the measurements. Our implementation of this
detector otherwise follows Error Prone’s heuristics, including checking whether the
reference type defines or inherits a custom equals() method (28 LOC in JAVADL).

Based on manual inspection of the SpotBugs and Error Prone detectors, we believe
that the main reasons for why JAVADL specifications are more concise are that (a)
syntactic patterns can simplify many nested if statements in imperative code, and (b)
looping and filtering is implicit in Datalog.

Limitations in Syntactic Patterns When encoding bug patterns in JAVADL,
we sometimes found that relying directly on syntactic patterns led to code du-
plication. For example, matching declarations #d with the enclosing class
⟨..class #c {.. #d ..}..⟩, enum ⟨..enum #c {.. #d ..}..⟩, or interface
⟨..interface #i {.. #d ..}..⟩ requires three separate rules that we cannot
combine into one pattern ⟨..#td #c {.. #d ..}..⟩, since the keywords class, in-
terface, and enum do not themselves form a syntactic category for #td in the Java
grammar.

Semantic Reasoning The above limitation materializes especially when we ana-
lyze semantic properties that do not cleanly map to a single syntactic construct. For
example, the patterns ⟨..this.f..⟩ and ⟨..f..⟩ are syntactically distinct, but often se-
mantically identical. In those cases, syntactic patterns quickly become ineffective, and
we found that we instead relied on Datalog relations that captured semantic properties.

As the right-most column in Table 1 shows, all but two of our detectors rely on the
static name analysis information that we extract from ExtendJ, and three also rely on
type analysis information, while only two detectors did not include semantic informa-
tion from ExtendJ.

While we can export additional information from ExtendJ, detectors can also in-
troduce their own helper predicates and, in principle, share them. After implementing
the bug patterns, we surveyed our implementation and identified several helper predi-
cates that we consider potentially reusable (possibly with minor refactoring), such as
the subtyping relation, convenience extractors for type and membership information,
method signature equality checks, and relations to mark defining and using occurrences
of fields. While these observations show the importance of semantic information, all
of our detectors used multiple syntactic patterns, and the Complex Operator Prece-
dence detector demonstrated that semantic information is not always sufficient for



104 JavaDL: Automatically Incrementalizing Java Bug Pattern Detection

real-life bug detectors, as it relied heavily on syntactic information that is no longer
visible e.g. in Java bytecode.

Flow-Sensitive Analysis Some program analyses, such as null-pointer derefer-
ence analysis or taint analysis [Arz+14], rely on knowing the program execution order,
typically modeled as a control-flow graph (CFG). We have not added CFG informa-
tion to JAVADL due to the nontrivial engineering effort for building correct and precise
CFGs for a mature language like Java, but see no conceptual obstacle to building a
JAVADL CFG predicate library. Alternatively, we can import the CFGs that Riouak
et al. [Rio+21]’s recent IntraJ system superimposes over ExtendJ AST for Java 7.5

To better understand the importance of flow-sensitive analyses, we approximated
their prevalence among the SpotBugs and Error Prone detectors by instrumenting each
framework’s CFG construction code and running individual detectors to analyze the
SpotBugs core classes (967 files, 108kLOC) to see which detectors would trigger CFG
construction. For SpotBugs, which groups related detectors into 167 visitors, we found
that 35 of the 167 visitors (21%) triggered CFG construction, and 3 of Error Prone’s
500 checkers (0.6%). These numbers are likely under-approximations but indicate that
flow-sensitive analysis is important, but only for a minority of today’s bug detectors.

We observed that two of the detectors that we had previously implemented were
based on detectors that triggered CFG construction (Table 1, column Notes).

RQ1.2: Precision

Table 2 reports on checker precision and recall, comparing the Top-5 SpotBugs and
Error Prone detectors against our JAVADL re-implementations. Several of the patterns
contain subcategories (Table 1), and we report on the subcategories in cases where
our implementation computed them separately. Whenever JAVADL reported bugs that
Error Prone or SpotBugs did not report, we manually investigated 10 randomly sam-
pled cases (or all, if less than 10), and proceeded analogously when the baseline tools
reported a bug that JAVADL did not report.

For the EP-Top-5, most checkers have a high degree of agreement. Lowest (with
77% relative recall) is UnnecessaryParentheses. According to our sampling,
the mismatch is due to the JAVADL detector not reporting parentheses surrounding
unary operators, and Error Prone not reporting on parentheses surrounding case labels
and return values.

For Missing @Override, JAVADL fails to produce warnings when the overrid-
den method is a library method, since ExtendJ fails to evaluate attributes on some AST
nodes created from bytecode, which excludes those nodes from the TYPE relation.
The recall for OperatorPrecedence is due to differences in reporting: for in-
stance, for a && b || c && d, Error Prone produces two warnings, one per &&,
while JAVADL produces a single report for the entire expression, whose root is the ||.

5This framework was not yet available at the time of our experiments, while ExtendJ’s earlier data flow
framework [Söd+13] was unmaintained and incompatible with recent versions of ExtendJ.
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Turning to the bottom (SB-Top-5) half of the table, JAVADL is able to de-
tect all DM_STRING_CTOR and NM_METHOD_NAMING_CONVENTION warnings
reported by SpotBugs. The lower recall rates on Missing switch Default
due to over-reporting in SpotBugs, caused by its lack of access to AST data
(SpotBugs operates on Java bytecode [Spo]). For UWF_UNWRITTEN_FIELD,
JAVADL does report SpotBugs’ single warning, but at the field’s definition,
rather than the access location. The other two warnings are unwritten fields
that SpotBugs fails to detect. Similarly, we found that JAVADL’s warnings for
UWF_UNWRITTEN_PUBLIC_OR_PROTECTED_FIELD were correct.

The low precision of Expose Internal Representation is due to JAVADL assum-
ing that all reference types are mutable, while SpotBugs uses domain knowledge to
filter out known immutable classes like String.

For DM_NUMBER_CTOR, we observed that SpotBugs and JAVADL match on 20
additional reports, with SpotBugs reporting the bug one line off from its source loca-
tion. The remaining 4 reports that SpotBugs produces are constructor calls where the
argument is a cast to String. JAVADL produces 12 additional correct warnings.

Overall, none of the differences indicate systematic limitations and could be ad-
dressed by evolving the JAVADL bug patterns.

Static Checker Framework (Baseline Tool) Number of Results Precision

Name Bug Pattern JAVADL Tool Common Precision Recall

E
P

-T
op

-5

⋆ Boxed Primitive Constructor 429 425 423 98.60 99.53

⋆ Missing @Override 4533 5341 4393 96.91 82.25

OperatorPrecedence 84 100 82 97.62 82.00

⋆ == on References 1176 1235 1169 99.40 94.66

⋆ Useless Type Parameter 99 95 95 95.96 100.00

UnnecessaryParentheses 257 174 134 52.14 77.01

S
B

-T
op

-5

DM_NUMBER_CTOR 190 182 158 83.16 86.81

DM_STRING_CTOR 5 5 5 100.00 100.00

⋆ Expose Internal Representation 3546 161 108 3.05 67.08

NM_CLASS_NAMING_CONVENTION 0 0 0 N/A N/A

NM_FIELD_NAMING_CONVENTION 9 0 0 0.00 N/A

NM_METHOD_NAMING_CONVENTION 1120 38 38 3.39 100.00

⋆ Missing switch Default 223 87 81 36.32 93.10

UWF_UNWRITTEN_FIELD 3 1 0 0.00 0.00

UWF_UNWRITTEN_PUBLIC_OR_PROTECTED_FIELD 3 0 0 0.00 N/A

Table 2: Number of results reported by ErrorProne, SpotBugs, and JAVADL for the
selected bug patterns on the Defects4J repositories. “Precision” and “recall” are relative
to the baseline tool (cf. Section 5.1). We report on bug subcategories for detectors that
implement the subcategories separately.
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Project Touched files/commit Added lines/commit Deleted lines/commit Lines of code Files
Mean M. 90% Max. Mean M. 90% Max. Mean M. 90% Max. Start End Start End

Cli 5.30 2 8 149 211.09 16 216 17844 176.54 4 79 19167 0 7070 0 52
Codec 3.15 1 5 170 57.86 6 111 1835 34.13 3 57 1430 13492 19568 85 122

Compress 3.39 1 4 180 70.52 10 171 1969 35.23 3 52 1965 31478 41838 251 341
Csv 1.71 1 3 20 28.97 5 61 1139 20.35 2 29 1152 3597 6117 25 31

J...Core 3.15 2 6 66 93.39 42 235 2839 33.52 9 75 1513 22477 43803 146 256
J...Databind 3.92 2 7 95 71.44 39 169 967 35.33 9 95 800 102361 114590 816 925

Jsoup 2.91 2 6 28 52.44 16 104 5287 20.40 3 32 2168 8854 20403 58 117
Math 7.16 2 12 210 211.95 30 501 28873 143.60 10 173 28291 6122 22749 74 281

Mockito 5.80 3 13 201 130.39 18 123 38603 33.42 8 69 1412 11014 38868 204 532
Time 8.79 2 10 628 583.62 29 472 127673 164.89 3.5 92 43798 45238 176827 240 656

Table 3: Distribution of commit sizes (touched files, added lines, removed lines) and
the sizes of the projects at the start and at the end of the commit range. "M." stands for
median and "90%" stands for the 90th percentile.

5.3 RQ2: Execution Time Performance

Gathering Data on Run-Time Performance To assess the efficiency of JAVADL
for bug detection in a practical usage scenario, we iterated through a series of con-
secutive Git commits of Defects4J projects and measured the time that it took to run
JAVADL, Error Prone, and SpotBugs on each commit. For these measurements, we
included each projects’ unit tests, as we would in practice.

To ensure a fair comparison, we configured Error Prone and SpotBugs to only
run their respective Top-5 detectors, and ran JAVADL separately for our implemen-
tations of SB-Top-5 and EP-Top-5. Unlike Error Prone and SpotBugs, JAVADL
supports incremental evaluation, so we ran JAVADL with four configurations in total:
{SB-Top-5,EP-Top-5} × {exhaustive, incremental}, with incremental runs re-using
the IRDB from the previous incremental run (except for the first run).

For incremental analysis, we ran these experiments on 500 commits of the De-
fects4J benchmarks6, and for exhaustive analysis we ran them on 50 equidistant com-
mits from this range, including the first and the last commits. We selected these com-
mits to be the closest predecessors of the commit we used for precision analysis, count-
ing only commits that modified source files.

Table 3 shows the distributions of the number of touched files (modified, added
or removed) from the selected sequence, and project sizes in the last four columns.
We argue that these numbers show that the projects are realistic software projects at
different stages in their life time.

For our performance analysis, we excluded several benchmarks: Chart, since it
did not use Git (which our scripts required), and Closure, JxPath and Lang, because
some of the commits among the 500 that we examined crashed ExtendJ and corrupted
our IRDB. While recovering the IRDB from a backup would be trivial in a produc-
tion system, we argue that including such runs would impair the representativeness of

6Except for Cli where the Git history contains only 360 commits.
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EP-Top-5

SB-Top-5

Figure 16: Running time distribution on 500 consecutive commits for EP-Top-5
(above) and SB-Top-5 (below). The shaded boxes represent the mean.

the incremental measurements. For the remaining projects we made a best effort to
process them with all tools but found that SpotBugs and Error Prone’s dependence on
javac prevented many comparisons. We adjusted builds by tweaking compiler set-
tings, adding libraries, or excluding problematic files (without examining the impact on
our later measurements). Despite our efforts, some projects had a substantial number
of failing builds (Cli: 18, Time: 25, Math: 29, Databind: 35, JacksonXML: 42) for
the baseline checkers. We excluded all measurements for the affected revisions from
our analysis and removed JacksonXML entirely. For incremental runs, we also the
removed measurements for the 5 following/preceding revisions.

We ran our experiments on an Intel(R) Core(TM) i7-11700K CPU system, running
at a fixed 3.6 GHz with 128 GiB RAM on Ubuntu 18.04.5 with Linux 5.13.7-051307-
generic and OpenJDK 11.0.11+9-Ubuntu-0ubuntu2.18.04 inside a Docker container.
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RQ2.1: Performance Comparison

Figure 16 shows the distribution of the measured running times for the incremental
and exhaustive JAVADL analyses compared to the baseline detectors, i.e., Error Prone
(above) and SpotBugs (below).

We observe that overall JAVADL performs competitively to the existing checkers,
irrespective of code base size. Our incremental checker often but not universally out-
performs the exhaustive checker. The similarity between the performance for JAVADL
on the SB-Top-5 and EP-Top-5 suggests that JAVADL’s performance depends more
on the project structure than on the selection of checkers.

We further observe in the EP-Top-5 diagram that the Math, JacksonDatabind
and Time projects have peaks in running times that are more than four times higher
than the average. While similar in relative magnitude, the peaks have different
causes. For Math, the peak is caused by a merge commit from a release branch
(6ef3b2932f). For JacksonDatabind, the largest running time due to a merge
commit (33840a208b) that modifies a significant number of files, though we also
observed a set of high measurements caused by commits that modify files that are ref-
erenced by many other files (e.g., DeserializationContext.java in commit
5b8f0d9923). The maximum running time for the Time project is caused by a ma-
jor move/rename commit 53feb3fa56, affecting 176 out of the total of 656 files in
the project. Our brief analysis of the running time peaks also showed that for merge
commits and major move/rename commits, the running time is higher than the time
needed for the initial run of the analysis. A continuous integration system could use
this observation to attempt to predict when it is more efficient to delete the IRDB and
re-start from scratch, or to temporarily switch to exhaustive analysis.

Overall, our performance measurements suggest that our prototype framework of-
fers run-time performance comparable to that of state-of-the-practice systems, with
neither incremental nor exhaustive mode consistently outperforming the other.

RQ2.2: Incremental Performance

To explain the difference in incremental execution time between the projects, we turn
to Figure 17, which shows the average time spent by JAVADL in each phase for the
EP-Top-5 (a) and SB-Top-5 (b) detectors. While the running time of the analysis pro-
gram is overall shorter for the incremental runs (including IRDB read and write), it is
also clear that the incremental runs suffer from the overhead of the provenance tracking
mechanisms that increase the time spent generating the program representation (Dat-
alog projection). The Datalog projection phase grows with number of analyzed files,
which includes the number of modified files as well as the files that need to be revisited
because they contain an attribute whose value depends on modified files. On slower
hard disks, we have also observed a second overhead, for deleting stale IRDB facts
(not visible here).

We observed that it is mainly not commits that modify many files that contribute
most to high running times, but commits that modify files on which other files’ at-
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(a) EP-Top-5 detectors

(b) SB-Top-5 detectors

Figure 17: Average running time for exhaustive (E) and incremental (I) runs, split by
evaluation phases
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Figure 18: Cumulative distribution of the maximum relative degree in the analyzed
commits
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tributes depend. We characterize this property with the notion of the relative degree of
a file F , which is the fraction of the files in the project that contain an attribute whose
value was computed using F and whose analyses we must thus re-run when F changes.

Figure 18 shows the cumulative distribution function computed over all the com-
mits in each project. We can observe that for the Codec, Compress and Math
projects, 80% of the commits have a degree of at most 0.1 and a further 10% a max-
imum degree of 0.2. They are followed by JacksonDatabind, which also has about
70% of the commits with a maximum degree of 0.2. These are the same projects in
which our incremental analysis is most effective at outperforming the exhaustive anal-
ysis. Meanwhile, in Mockito 30% of the commits have a degree of less than 0.1 and
30% of the commits have a maximum degree of 0.4, which is also the maximum for
this project, in line with the pronounced bimodal distribution of the running times for
the project. These observations indicate that the commit history is correlated with the
running times of the incremental analysis, and thus can help inform which evaluation
mode to choose for JAVADL for a given commit in a given project.

Analyzing the average running times spent in each phase for SB-Top-5 (Fig-
ure 17(b)), we observe that the amount of time needed to read, write and delete facts
in the IRBD is more than twice that of the EP-Top-5 detectors. This indicates that the
number of facts that are produced in the local evaluation pass but used in the global
one is significantly higher in SB-Top-5.

The above observation reflects that we have not yet automated all locality opti-
mizations that we are aware of, and manually optimized only EP-Top-5 for locality.
Our main manual optimization was to split rules for locality. For instance, we could
compress our earlier example (Figure 11) into:

1 BADNEWSTRING(f, l, c) :- n ⟨..new String(#v)..⟩, TYPE(#v, τ),
2 SRC(n, l, c, _, _, f),
3 τ ⟨.... class String { .. }..⟩,
4 SRC(s, _, _, _, _, "java/lang/String.class").

However, this rule is global and uses local predicates, so the predicates’ tuples would
be stored in the IRDB without further optimization. SRC in particular contains one
tuple per AST node; materializing it on disk would be expensive. In Figure 11, we
avoided this problem by extracting only the source locations of interest into the NEW-
STRING predicate, analogously to the Magic Sets transformation [Ban+85]. We expect
to automate this process in future work.

5.4 Discussion and Limitations

One limitation of our language that we have so far omitted is that, unlike e.g. Prolog,
our Datalog dialect is not Turing-complete but effectively restricted to PTIME [Imm99].
While we did not find this restriction limiting in our experiments, it does bar JAVADL
from expressing EXPTIME-complete analyses (e.g., bounded symbolic execution) or
semi-decidable analyses (e.g., Java type analysis [Gri17]). Thus, JAVADL offers less
expressivity than afforded by e.g. general-purpose IDE/IFDS-based incrementalization
frameworks [AB14]; JAVADL is subject to the usual limitations of Datalog in this



112 JavaDL: Automatically Incrementalizing Java Bug Pattern Detection

space. We defer to Madsen, Yee, and Lhoták [MYL16] for a detailed discussion.
We emphasize that this restriction is a trade-off: the syntactic simplicity of JAVADL

ensures that JAVADL detectors are clear-box detectors and can be analyzed and trans-
formed to integrate confidence score computation [Rag+18], to explain their chains of
reasoning [ZSS20] or for incrementalization (as shown in this paper), or for integra-
tions of these techniques, e.g., to use knowledge of recent changes to adjust confidence
scores.

This restricted expressive power comes with more easily checkable correctness
guarantees. For comparison, existing free-form (or black-box) IDE/IFDS-based ap-
proaches place complex semantic constraints of distributivity on transfer/flow func-
tions [RHS95] to ensure consistent results. Analyses that fail to meet these constraints
may work correctly on some inputs but fail in corner cases or when run in different
evaluation modes. By contrast, JAVADL projects will (in principle — i.e., not account-
ing for implementation bugs) evaluate correctly whenever they type-check.

Summary Overall, our results show that our JAVADL implementation enables both
exhaustive and incremental evaluation, with performance comparable to state-of-the-
practice tools, and that the JAVADL language can concisely express a variety of both
syntactic and semantic checks, both intra- and inter-procedural. While we have only
analyzed the concepts that underlie JAVADL on one language (the subset of Java 8
supported by ExtendJ) and on a limited set of bug detectors, we argue that our results
yield data points to support the case for clear-box bug detectors as devices for enabling
architectural advances in bug checking.

6 Related Work

JAVADL combines four strands of work: domain-specific languages for program anal-
ysis, Datalog dialects, pattern matching languages, and systems with alternative but
equivalent execution models.

To the best of our knowledge, the first system to demonstrate the connection be-
tween DSLs for program analysis, logic programming, and pattern matching was the
SOUL system by De Roover et al. [DR+11]. While SOUL does not aim to support mul-
tiple execution models or report performance on par with contemporary bug checkers,
other aspects of its design are closely related to ours: SOUL provides syntactic pat-
terns in a similar style as JAVADL [DR+07; De 09], albeit restricted to five syntactic
categories. It performs logical reasoning through a SmallTalk-based Prolog implemen-
tation (rather than Datalog), connects to the Eclipse JDT framework (rather than to
ExtendJ), and provides data flow analysis support via Soot [VR+10]. SOUL’s use of
Prolog results in a top-down evaluation strategy, which permits incremental evalua-
tion and simplifies integration with traditional imperative analysis code, at the cost of
performance [Ull89], where Datalog has shown its strength in recent years [Sch+16;
BS09]. The SOUL pattern language also omits some language features such as gener-
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ics, but captures the majority of the Java syntax supported by Eclipse in 2011, whereas
our language is directly based on the grammar and AST of a Java compiler through
an automatic transformation (with minimal manual intervention) and thus faithfully
captures the entire Java syntax. Unlike SOUL, our work did not yet explore data flow
analysis (as we discuss in Section 5.2).

Beyond SOUL, Visser [Vis02] argues in favor of syntactic pattern matching, with
Fischer and Visser [FV04] opting for concrete syntax over AST matching by arguing
that “the simple abstract syntax approach quickly becomes cumbersome as the schemas
become larger”. Their AutoBayes system combines syntactic pattern matching with
Prolog, compared to which DeepWeaver [Fal+07] adds program rewriting for imple-
menting aspect weaving. Another related system with syntactic pattern matching is our
earlier MetaDL [DBR], which analyzes a Datalog dialect, in which it needs to match
only one syntactic category. MetaDL uses a different AST encoding that maps each
syntactic rule or AST node to a separate predicate (Section 3.3), which we found to be
less efficient for Java than our approach here. Like SOUL, MetaDL has not seen a sys-
tematic evaluation for bug patterns, unlike JAVADL. A final closely related system is
Cohen et al’s JTL [CGM06], which provides a Datalog-style language together with a
Java-like query syntax for querying Java class files for structural and dataflow informa-
tion. Similar to JAVADL and SOUL, JTL exposes a number of built-in pre-computed
predicates to aid program analysis, though it does not expose the AST and thus limits
the amount of reasoning that it allows.

There are many other systems that support syntactic pattern matching. Visser
[Vis02] uses GLR parsing for processing syntactic patterns, instead of Earley parsing
as in our work. GLR parsing may improve the performance of our JAVADL specifica-
tion frontend. To address possible bugs or inefficiencies from concrete syntax patterns,
Kats, Kalleberg, and Visser [KKV11] offer an interactive tool that suggests AST cat-
egories for concrete syntax tree patterns. Similarly, but on the concrete syntax level,
Huang, Zook, and Smaragdakis [HZS08] automatically infer the syntactic type of syn-
tactic patterns. We believe that this technique can enable optimizations and improve
static checking in our syntactic patterns.

Kats, Bravenboer, and Visser [KBV08] extend syntactic parsing in an extensible
compiler that allows language extensions to normalize to mixtures of source code and
bytecode, similarly to the Attribute Grammar system Silver [VW+10]. This style of
normalization allows specifying analyses and transformations at the concrete syntax
tree level while matching at a more abstract level, which (in effect) automatically gen-
eralizes analyses and transformations. The trade-off is that the effect of a match or
transformation becomes less obvious, and that it may become impossible to match
syntactic peculiarities that are not visible at the AST level. For example, JAVADL
can distinguish between (x) and ((x)), which is necessary for our Unnecessary-
Parentheses bug pattern, but a system that uses matching after normalization may lack
suitable information (e.g., in SpotBugs).

While not Datalog, two other closely related domain-specific languages are the pro-
gram query language PQL [MLL05] and the earlier commercial .QL [DM+07] system
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(now CodeQL). Neither system provides support for syntactic matching in the style
of JAVADL or SOUL. PQL provides a SQL-like interface that allows not only static
analysis, but also dynamic analysis and instrumentation, though it does not provide
fine-grained AST / parse tree matching or support for analyzing arithmetic or primitive
values. PQL is thus more useful for analyzing dynamic protocols, e.g., to check if a
test during execution releases an external resource (e.g., a file handle) exactly once,
while JAVADL is more useful for general-purpose static checking. Dynamic informa-
tion can also be critical for analyzing reflection [LTX19]. For static tools like JAVADL,
the lack of dynamic knowledge could be mitigated through ground facts from exter-
nal tools [Bod+11]. .QL, meanwhile, combines ideas from attribute grammars and
SQL, giving it powerful static analysis capabilities, but without JAVADL-style syntac-
tic matching capabilities.

While Datalog and its dialects have aided program analysis for over a decade,
most existing tools like DOOP [BS09] rely on a separate fact extraction mechanism.
DOOP’s Java fact extractors translate either a Soot- or WALA-specific IR [VR+10;
FD12] to a common representation, encoded as a set of predicates. This predicate-
based Datalog IR encodes enough information for DOOP’s points-to and call graph
analyses, but (1) lacks source locations (necessary for precise error reports), (2) repre-
sents the program under analysis linearly, without any notion of nesting of type defini-
tions, blocks or expressions (necessary for syntactic checks such as Complex Oper-
ator Precedence), and (3) hardcodes the set of predicates that it exposes to Datalog
and requires detail knowledge of DOOP internals and Soot or WALA IRs to evolve
or maintain this fact extraction code. By contrast, JAVADL provides the analysis code
with a full representation of the analyzed program, which enables a broad range of
static checks.

The literature has proposed several extensions to Datalog such as general-purpose
lattices in Flix [MYL16] and IncA [Sza+18]. These valuable extensions are orthogonal
to ours. While JAVADL automates fact extraction by directly exposing the program
AST, Basten and Klint [BK08] propose a language-parametric scheme for using AST
annotations to determine which facts to extract. We hypothesize that JAVADL could au-
tomate these AST annotations through bug pattern meta-analysis, to reduce the number
of facts that we project from ExtendJ to Soufflé.

Earlier Prolog-based approaches to program analysis include Janzen and De
Volder’s JQuery system [JDV03], based on Prolog extended with aspect pointcut-style
predicates and intended for Java code browsing, and a SOUL-like system Eichberg et
al. [Eic+07], without syntactic matching but with Eclipse IDE integration and Prolog-
based incrementalization. Due to the different (top-down vs. bottom-up) evaluation
modes, their techniques are not applicable to JAVADL. By using Prolog, both systems
are in principle Turing complete, which may enable them to express more powerful
analyses but loses the termination guarantee and bottom-up evaluation strategy (more
efficient for whole-program analysis) that Datalog provides. Overall, the perhaps earli-
est discussion of logic programming for program analysis is due to Reps [Rep95], who
focused on incrementalizing analysis through the Magic Sets transformation [Ban+85].
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Attribute Grammars [Knu68] are another declarative programming paradigm for
program analysis. Tools such as AbleC [Kam+17] for C and ExtendJ (formerly Jas-
taddJ) for Java [EH07; ÖH13], which underlies JAVADL, provide declarative features
for computing attributes of AST nodes by synthesizing information from other AST
nodes (including other attributes). Computations can be functional (in AbleC, based
on Silver [VW+10]) or imperative (in ExtendJ, based on JastAdd [HM03]). Unlike
Datalog, attribute grammar systems provide special support for reasoning over tree
structures. Silver provides support for syntactic pattern matching, but (to the best of our
knowledge) no support for computations over general-purpose relations, while JastAdd
does not provide syntactic pattern matching support, but can support general-purpose
relations [Mey+18] (a feature not yet explored for purposes of program analysis). At-
tribute grammars have been used for bug finding [Söd+13], and some analyses may
be easier to encode in attribute grammars. If so, JAVADL can import them through
ExtendJ attributes. Attribute Grammars support multiple alternative execution mod-
els, like Datalog. Reference attribute grammars, supported in JastAdd, are evaluated
on-demand [HM03] and can be evaluated both concurrently [ÖH17] and incremen-
tally [SH12].

Arzt and Bodden [AB14] have demonstrated incremental program analysis for (dis-
tributive) IFDS- and IDE-based analyses in their REVISER system, assuming the pres-
ence of a program differencing algorithm, and CHEETAH by Do et al. [Do+17] demon-
strates related techniques to prioritizing local bug detection during live editing. Their
approaches to granularity are more fine-grained than ours: REVISER operates on CFG
node differences, and CHEETAH’s notions of locality cover eight different layers, of
which our file level is only one. Neither system supports syntactic matching. They fo-
cus exclusively on semantic properties, and both assume existing facilities to map the
object language to graphs for flow analysis, whereas JAVADL only requires an AST.

Lhoták and Hendren [LH04]’s Jedd system takes a near-converse approach to ours:
they extend Java with special support for operations over relations and SAT solving,
and use it in the context of Soot [VR+10] for imperative program analyses. More
recently, Opal [Hel+20] demonstrated complex and high-performance program analy-
ses by combining imperative implementations of program analyses in a Datalog-like
blackboard architecture. While the analyses themselves are not clear-box specifica-
tions, Opal obtains some ability to alternate execution modes from hand-written meta-
information and manual incrementalization. Other program analysis systems such as
Soot [VR+10], WALA [FD12], or Spoon [Paw+16] provide program analysis facilities
as regular Java libraries.

7 Conclusion

We have introduced JAVADL, the first static checker framework (to the best of our
knowledge) that can run any PTIME-computable static bug detector on Java from a
single specification both exhaustively and incrementally, while automatically rewriting
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the specification to optimize it for incremental evaluation. Our tool combines syntac-
tic patterns for local reasoning with declarative, Datalog-style nonlocal reasoning. We
have demonstrated that the efficiency of our prototype implementation, based on an
existing high-performance Datalog engine, is competitive to state-of-the-practice sys-
tems, that our specification language can concisely express typical bug detectors, and
that its incremental and exhaustive evaluation are both able to outshine each other in
different usage scenarios. We argue that our results demonstrate the value and viability
of clear-box bug checker frameworks, which constrain the bug detector specification
language in order to obtain the ability to analyze and transform detector specifications
for different usage modes.
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Abstract

We present CLOG, a declarative language for describing static code checkers for C. Un-
like other extensible state-of-the-art checker frameworks, CLOG enables powerful in-
terprocedural checkers without exposing the underlying program representation: CLOG
checkers consist of Datalog-style recursive rules that access the program under analy-
sis via syntactic pattern matching and control flow edges only. We have implemented
CLOG on top of Clang, using a custom Datalog evaluation strategy that piggy-backs on
Clang’s AST matching facilities while working around Clang’s limitations to achieve
our design goal of representation independence.

Our experiments demonstrate that CLOG can concisely express a wide variety
of checkers for different security vulnerabilities, with performance that is similar to
Clang’s own analyses and highly competitive on real-world programs.

1 Introduction

While the C programming language enforces certain correctness properties that all C
programs must satisfy, C programmers have been utilizing supplementary static check-
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ers to enforce additional constraints for most of the language’s existence — the release
of C in 1973 [Rit93] was followed by the release of lint only 4 years later [Joh77].

Since then, static program analysis has made substantial advances. Modern soft-
ware engineers can draw from frameworks that offer interprocedural data flow analyses
(e.g., Phasar [SHB19]), complex call graph and points-to analyses with intricate inter-
dependencies (e.g., cclyzer [BS16]) and efficient memory models via separation logic
(Infer [O’H19]). In practical software development, developers may also adopt checker
frameworks that trade precision or soundness for speed, for easier integration into the
build workflow, such as the Clang Static Analyzer 1, clang-tidy2 and CppCheck.3

However, most of these tools (Phasar, Infer, Clang Static Analyzer, clang-tidy,
CppCheck) are not easily extensible: they only supply a fixed set of built-in general-
purpose checkers. Thus, they are not designed to tackle the increasing reliance of
modern software on external libraries, to support custom checks for internal APIs,
or to incorporate custom, project-specific tweaks to existing analyses. Adding a new
analysis or customizing an existing one depends on the internal representation of the
program used by the tool (usually an abstract syntax tree (AST) or a 3-address in-
termediate representation (IR)), and these internal representations often evolve as the
underlying tool itself evolves. For example, Clang offers a command-line interface for
AST pattern matching (clang-query) that can find program locations corresponding to
a user-defined pattern, but users must express these patterns in Clang’s idiosyncratic
pattern language.

Several recent tools, Coccinelle [LM18], CodeQL [Avg+16], and cclyzer, there-
fore explicitly offer domain-specific languages that enable software engineers to sup-
ply their own bug patterns or to tweak existing ones. We observe that these tools split
bug detection into two phases:

1. First phase: moving from the concrete domain (AST or IR) to an abstract domain

2. Second phase: combine information in the abstract domain to derive the conclu-
sions, computing fixpoints as needed

Both cclyzer and CodeQL provide a declarative, Datalog-style, analysis description
that facilitates the development of custom analyses, but only in the second phase of
the analyzer. The analyses are still dependent on the internal representation of the ana-
lyzed program, be it an AST or an IR. Coccinelle’s code pattern language, meanwhile,
allows developers to specify syntactic patterns that resemble C code, with various pat-
tern extensions e.g. for intraprocedural control flow dependencies between patterns.
More complex connections between patterns (e.g., those that require fixpoints) require
custom Python or OCaml code.

In this paper, we introduce CLOG, a declarative language that combines Datalog-
style reasoning with Coccinelle-style syntactic pattern matching over the C language.

1https://clang-analyzer.llvm.org/
2https://clang.llvm.org/extra/clang-tidy/
3https://cppcheck.sourceforge.io/

https://clang-analyzer.llvm.org/
https://clang.llvm.org/extra/clang-tidy/
https://cppcheck.sourceforge.io/
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For the first analysis phase, syntactic patterns allow us to describe C code patterns,
without exposing the internal representation, unlike cclyzer and CodeQL. For the sec-
ond analysis phase, Datalog-style reasoning allow us to freely combine syntactic pat-
terns across arbitrary flow and dependency edges, avoiding the need to escape to script-
ing languages, as in Coccinelle, and enabling integration with the existing body of work
on points-to analysis and context-sensitivity in Datalog.

To illustrate our approach, consider a common warning between static code check-
ers: the use of goto statement (Figure 1). Although there is variation in what the tools
consider an admissible use of gotos, both clang-tidy and CodeQL agree on discour-
aging back-jumps (Figure 1a).

1 void f(void) {
2 loop:
3 if (1)
4 goto loop;
5 } (a)

1 int g(int cond) {
2 int exit_code = 0;
3 if (cond) {
4 exit_code = 1;
5 goto error_exit;
6 }
7 return 0;
8 error_exit:
9 cleanup();

10 return exit_code;
11 } (b)

1 int h(int cond) {
2 if (cond)
3 return 0;
4 else
5 goto error_exit;
6 error_exit:
7 // cleanup();
8 return 1;
9 } (c)

Figure 1: Examples for the goto check. Case (a) is a back-jump. Case (b) is a forward
jump to the single label in the function. Case (c) is a forward jump to a label followed
by a return.

In Figure 2 we show a possible approach for implementing a back-jump checker
in CodeQL. The checker collects all goto statements in a relation GotoStmt and all
label statements in LabelStmt (line 1), from these relations selects the goto and
label statements that refer to the same label (line 3), compares their source locations
(line 4), and, if successful, generates a report (line 5). While this checker provides a
concise description of the check, it still relies on the GOTOSTMT and LABELSTMT
relations, which are defined externally. The checker writer must be aware about how
the goto and label statements are represented in the abstract syntax tree (AST) and
what their attributes are (e.g., .getTarget()).

In contrast to CodeQL, CLOG aims to hide implementation details internal to the
analysis system such as the AST nodes and their attributes and introduces syntactic
patterns to match arbitrary terms of the analyzed programs, including, but not limited
to, terms representing single AST nodes.
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1 from GotoStmt goto, LabelStmt label
2 where
3 goto.getTarget() = label and
4 label.getLocation().getStartLine() < goto.getLocation().getStartLine()
5 select goto, "Goto jumps to a label that appears before the goto."

Figure 2: Implementation of a goto check in CodeQL

1 WARNBACKWARDGOTO(g, l) :-
2 g ⟨..goto $label;..⟩,
3 l ⟨..$label : $s..⟩,
4 src_line_start(g) > src_line_start(l).

Figure 3: Implementation of a goto check in CLOG

Figure 3 depicts the CLOG implementation of the same goto check, where we
use syntactic patterns instead of built-in relations. Following Datalog notation, :-
represents logical right-to-left implication (⇐) and commas represents conjunction.
The syntactic pattern in line 2 matches all goto statements in the program, binds them
to variable g and their labels to $label. Analogously, the pattern in line 3 matches
all label statements l, with the same label, $label. To distinguish between program
names and Datalog variables, we prefix variables used inside patterns with the $ sign,
thus $label can bind to any label in the program and $s to any statement. Since
these are variables of the analysis program, we call them metavariables. On line 4, the
program compares source line numbers, and if, this succeeds, it adds the tuple (g,
l) to the WARNBACKWARDGOTO relation.

Syntactic patterns are not limited to single statements, but we can freely compose
them as long as the result is a statement, expression, declaration or definition. For
example, a program that detects labels before a return statement is:

1 LABELEDRETURN(l) :- l ⟨..$label : return $r;..⟩.
2 LABELEDRETURN(l) :- l ⟨..$label : return;..⟩.

Such a program may warn about missing cleanup code or hint that a return can be used
directly instead of a goto (Figure 1c).

To enable our framework to handle industrial-quality code, including large code
bases and C language extensions, we have implemented its frontend on top of Clang.
This allows us to combine state-of-the-art Datalog evaluation techniques with a cus-
tom pattern embedding strategy that offloads parts of syntactic pattern matching and
semantic analysis to Clang’s own pattern matching and analysis facilities, on demand.

To summarize, our contributions are:

1. CLOG, a declarative language that combines syntactic patterns and Datalog-style
reasoning for program analysis of C programs;

2. A prototype implementation of CLOG4;

4https://github.com/lu-cs-sde/clog

https://github.com/lu-cs-sde/clog
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3. An execution strategy that allows us to automatically offload parts of most CLOG
analyses to Clang;

4. A comparison of speed and quality between 5 analyses implemented in CLOG
and the Clang Static Analyzer, with a validated artifact [DR24].

2 The CLOG Language

We introduce the CLOG language through two examples that illustrate both the lan-
guage and the workflow that we use to develop static checkers in CLOG. We first show
how we can construct recursive inclusion-based analyses (Section 2.1) to catch misuses
of a typical internal API, and then show how CLOG’s built-in knowledge about con-
trol flow (Section 2.2) can help identify violations of an API protocol for an external
library. Sections 2.3-2.6 then give a full overview over the language.

2.1 Recursive Patterns: Arena Allocators

To illustrate how CLOG can help developers find bugs related to internal APIs, we look
at arena allocators [Cha+17]. These custom allocators can speed up memory allocation
and (bulk) deallocation. Since arenas can be used to store temporary data structures
that have a shorter lifetime than the program, pointers allocated in them may coexist
along pointers allocated using malloc. However, calling free on an arena-allocated
pointer is undefined behavior, so it is important that the two kinds of pointers are not
confused in the program. In Figure 4 we provide three examples of such API misuse.

1 void entry0(arena *ma) {
2 int *p = aalloc(ma, sizeof(int));
3 int *q = malloc(sizeof(int));
4 // do work
5 free(p);

6 free(q);
7 }
8 void cleanup1(int *x, int *y) {

9 free(x);

10 free(y);
11 }
12 void entry1(arena *ma) {
13 int *p = aalloc(ma, sizeof(int));
14 int *q = malloc(sizeof(int));
15 // do work
16 cleanup1(p, q);
17 }

18 int * alloc21(arena *ma) {
19 int *p = aalloc(ma, sizeof(int));
20 return p;
21 }
22 int * alloc22(arena *ma) {
23 int *p = malloc(sizeof(int));
24 return p;
25 }
26 void entry2(arena *ma) {
27 int *p = alloc21(ma);
28 int *q = alloc22(ma);
29 // do work
30 free(p);

31 free(q);
32 }

Figure 4: Wrong uses of an arena allocator API



128 Clog: A Declarative Language for C Static Code Checkers

1 EXPRPOINTSTOARENA(e) :- e ⟨..aalloc(..)..⟩.
2 EXPRPOINTSTOARENA(e) :- e ⟨..($t) $f..⟩, EXPRPOINTSTOARENA($f).
3 VARPOINTSTOARENA($p) :- ⟨..$t *$p = $e..⟩, EXPRPOINTSTOARENA($e).
4 VARPOINTSTOARENA(p) :- ⟨..$p = $e..⟩, p = decl($p), p != undef,
5 EXPRPOINTSTOARENA($e).
6 EXPRPOINTSTOARENA($p) :- ⟨..$p..⟩, p = decl($p), p != undef,
7 VARPOINTSTOARENA(p).
8 FREEOFARENAPTR($p) :- ⟨..free($p)..⟩, EXPRPOINTSTOARENA($p).

Figure 5: Intra-procedural check for free-ing arena-allocated memory.

In Figure 5, we give an analysis that can detect the first of these cases. Like all
CLOG programs, the analysis consists of a set of extended Horn clauses that conceptu-
ally take the form P0(x0) :- P1(x1), . . . , Pn(xn) where the Pi are the names of user-
defined or built-in relations (or, equivalently, predicates). These rules follow the usual
Datalog semantics: Let X be the set of all variables that occur in x0, . . . , xn. Whenever
we have a function ρ that maps each x ∈ X to a constant such that for all i ∈ 1, . . . n,
the relation Pi contains the tuple ρ(xi), then the relation P0 also contains the tuple
ρ(x0).

In CLOG, Pi(xi) may also represent a syntactic pattern (for i ̸= 0). For example,
in Figure 5, line 1 states that if e is a specific element of the program under analysis
that has the syntactic form ⟨..aalloc(..)..⟩ (where ‘..’ is a wildcard that matches
any sequence of elements), then we must conclude that EXPRPOINTSTOARENA(e)
is true. Syntactic patterns like e ⟨..aalloc(..)..⟩ behave like predicates quantified
over the entire program under analysis, that is: a syntactic pattern matches if there ex-
ists a substitution of the pattern’s metavariables with terms from the analyzed program
such that the resulting term is present in the analyzed program.

We follow most Datalog dialects in further extending the language with comparison
predicates, represented inline by the operators (e.g. >, ==, etc.), pure functions (e.g.
src_line_start which maps a program term to its source location) and stratified
negation (using the ‘!’ operator).

To catch the first misuse case (line 5), we describe an intra-procedural, flow-
insensitive analysis in Figure 5. In line 2, we also add the cast expressions to the same
relation. Line 3 introduces a new relation, VARPOINTSTOARENA, which contains
all the pointer variables pointing to arena-allocated memory. First, we add all variables
that are initialized by an expression that points to an arena. In line 4, we handle variable
assignments, which are matched by the ⟨..$p = $e..⟩ pattern, where $p is bound to an
identifier and we use the built-in function decl to look-up the corresponding declara-
tion, p. If the look-up is successful, and the right-hand side of the assignment points to
an arena, then we deduce that the variable p also points to an arena. Line 6 contains the
dual of the previous rule, stating that if variable points to an arena, then a reference to
that variable, ⟨..$p..⟩, is an expression pointing to an arena. We observe that there is a
circular dependency between the VARPOINTSTOARENA and EXPRPOINTSTOARENA
relations - this is handled by the fix-point semantics of Datalog. Finally, in line 8, we
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collect all the problematic calls to free on an arena-allocated pointer in the relation
FREEOFARENAPTR.

As hinted earlier, this checker does not catch cases where the allocation and the call
to free are happening in different functions. To catch the error on line 9, we need to
track the flow of values through function calls. We achieve this by appending two rules
to the program.

9 CALL(call, $actual, $formal) :- call ⟨.. $c(.., $actual, ..) ..⟩,
10 $callee = decl($c),
11 ⟨..$rt $callee(.., $pt $formal, ..) { .. }..⟩,
12 index($formal) == index($actual).
13 VARPOINTSTOARENA(f) :- CALL(_, e, f), EXPRPOINTSTOARENA(e).

The first rule (line 9) defines the CALL predicate which contains the formal and
actual argument pairs for each call expression. We use the index function to
retrieve the index of a term in a list, in this case the index of the actual and formal
argument. The second rule (line 13) states that if an actual argument is an expression
pointing to an arena, then the formal argument points to an arena.

To catch the error on line 30, we also have to track values through function returns.
Another two rules materialize this:

14 RETURN(call, $val) :- call ⟨..$c(..)..⟩,
15 $callee = decl($c),
16 @$callee ⟨..return $val;..⟩.
17 EXPRPOINTSTOARENA(call) :- RETURN(call, e), EXPRPOINTSTOARENA(e).

The rule on line 14 defines the RETURN predicate which maps all call expres-
sions to the expressions returned by the $callee. On line 16 we illustrate the use
of restricted syntactic patterns, where the pattern @$callee ⟨..return $val;..⟩
matches only the return statements from $callee.

We observe that we can develop the checker incrementally, by appending new rules,
to transform it into an inter-procedural analysis. Although the checker is far from
being sound or complete, it already covers interesting cases and it is a starting point for
incremental development, for example by adding call-site sensitivity. Adding various
flavors of context-sensitivity to Datalog analyses has already been demonstrated by
tools like Doop [BS09], thus we do not explore this direction as part of this work.

2.2 Control Flow: API Protocol for MPI

A common restriction is that the API functions need to be called in a certain order. For
example, the OpenMPI library expects that each call to the non-blocking send function
MPI_Isend is followed by a call to MPI_Wait (or similar). In Figure 6 we show 4
examples of API misuse, where the calls to MPI_Isend are not paired with calls to
MPI_Wait with the same request handle, req.
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1 void good(void) {
2 MPI_Request req;
3 MPI_Isend(ARGS, &req);
4 // do work
5 MPI_Wait(&req, 0);
6 }
7
8 void bad0(void) {
9 MPI_Request req;

10 MPI_Isend(ARGS, &req);

11 // do work
12 }
13
14 void bad1(void) {
15 MPI_Request req;
16 MPI_Isend(ARGS, &req);
17 // do work
18 MPI_Wait(&req, 0);

19 MPI_Isend(ARGS, &req);

20 // do work
21 }

22 void bad2(void) {
23 MPI_Request req;

24 MPI_Isend(ARGS, &req);

25 // do work
26 MPI_Isend(ARGS, &req);
27 // do work
28 MPI_Wait(&req, 0);
29 }
30
31 void bad3(void) {
32 MPI_Request req;

33 MPI_Isend(ARGS, &req);

34 if (cond) {
35 // do work
36 MPI_Wait(&req, 0);
37 }
38 }

Figure 6: Examples of non-blocking OpenMPI calls.

1 ISEND(c, req) :- c⟨..MPI_Isend($a0, $a1, $a2, $a3, $a4, $a5, &$req)..⟩,
2 req = decl($req), req != undef.
3 WAIT(c, req) :- c⟨..MPI_Wait(&$req, $a1)..⟩, req = decl($req),
4 req != undef.
5 ISENDCHAIN(c, c) :- ISEND(c, _).
6 ISENDCHAIN(c, t) :- ISENDCHAIN(c, s), ISEND(c, r), !WAIT(s, r),
7 CFG_SUCC(s, t).
8
9 WARNING(s) :- ISEND(s, r), ISENDCHAIN(s, s1), s != s1, ISEND(s1, r).

10 WARNING(s) :- ISENDCHAIN(s, c), f = enclosing_function(s),
11 CFG_EXIT(f, exit), exit == c, ISEND(s, r), !WAIT(c, r).

Figure 7: CLOG checker for mismatched OpenMPI calls.

In Figure 7 we implement a checker to detect these cases of API misuse. First, the
checker identifies the involved API calls using syntactic patterns (lines 1 and 3) and
defines two predicates, ISEND and WAIT which enumerate these call expressions (c)
together with the variable that stores the request handle (req). In the next two rules
(lines 5-7), we inductively define the ISENDCHAIN relation, which maps an Isend
call to its control-flow successors that are not Iwait instructions with the same request
handle. For defining the ISENDCHAIN relation we rely on the CFG_SUCC built-in
predicate, that maps s to all its control-flow successors t. On line 9, we emit a warning
whenever there exists a control-flow path on which two Isend instructions with the
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same handle occur without a Wait in between (Figure 6, bad2). On line 10 we emit
a warning if, starting from an ISend call, we can build a path that reaches a function
exit, but does not contain a matching Wait call. To identify the function exits we rely
on the enclosing_function built-in function, which maps a term to its enclosing
function definition, and on the CFG_EXIT predicate which maps a function definition
(f) to all its exits (exit).

2.3 Language Overview
As we have seen earlier, the CLOG language is an extension of standard Datalog. We
extend the syntax for body literals B to allow for pattern literals, T , and the syntax
for terms, where we allow for function application (f(e)) and for a special constant,
undef. In Figure 8 we give the full syntax of the language.

Program ::= K
Clause K ::= H:-B
Head literal H ::= P

(
t
)

Body literal B ::= H| !H| T | v = e| v > e| . . .
Pattern literal T ::= [@t] [t] ⟨..C..⟩
Term t ::= e | _ | k | ′P
Expression e ::= v | f (e) | e+ e | . . .
Variable v ::= vb | vm
Function f ∈ Functions
Predicate symbol P ∈ Predicates
Constant k ∈ Z ∪ String ∪ {undef}
Pattern C ∈ CPatternLanguage
Ordinary variable vb ∈ Var
Metavariable vm ::= $vb

Figure 8: The syntax of the CLOG language

The CLOG language lacks explicit type declarations, but its predicates are statically
typed. We rely instead on monomorphic type inference to deduce the type of predicates
and variables. The possible types for variables are: Integer, String, ASTNode and
PredRef. The ASTNode type represents program terms, thus all metavariables have this
type. The PredRef is the type of predicate references, ′P .

2.4 Pattern Literals
Pattern literals are predicates over the abstract syntax tree of the analyzed program.
A pattern literal @s r ⟨..C..⟩ consists of a syntactic pattern, ⟨..C..⟩, and two optional
nodes: the root, r, and the subterm restriction @s. The syntactic pattern matches terms
in the analyzed program. When a match occurs, the metavariables in the pattern are
bound and so is the optional root variable, r, which binds the whole matched term.



132 Clog: A Declarative Language for C Static Code Checkers

The optional subterm restriction, @s, restricts the matching to a strict subterm of
the term s. For example,
⟨..while ($cond) $body..⟩, @$body ret ⟨..return $e;..⟩

matches all return statements occurring in the body of a while loop, and binds them to
variable ret and their respective return expression to $e. The pattern, ⟨..C..⟩, can have
any of the following syntactic categories: expression, statement, declaration or function
definition. Terms in the pattern are either concrete, following the C grammar, or they
are left abstract and replaced with a metavariable. Metavariables can be used in place
of concrete terms from the following syntactic categories: identifier, init-declarator,
parameter-declaration, expression, statement. In places where a list of these is re-
quired, but the list elements are not relevant, a gap (..) can be used. For example,
⟨..printf(.., $e, ..)..⟩ matches any function call to printf, and binds its
arguments, in turn, to $e. The occurrence of the call expression printf("Hello
%s!", name) results in two pattern matches, one when $e binds the string literal
"Hello %s!" and another, when it binds the identifier name.

2.5 Built-in Predicates
Our implementation assigns special semantics to a set of predicates. These can be
grouped into three categories: control-flow predicates, I/O and infinite predicates.

Control-flow predicates expose the intra-procedural control-flow graph to the CLOG
program. While traversing the control-flow graph is achievable by using only syntactic
patterns, this increases the verbosity of the code, therefore we expose the following
predicates:

• CFG_SUCC (n, ns) maps the term n to its successors in the control-flow graph,
ns. Since the C language leaves unspecified the order of evaluation in some cases
(e.g. subexpressions, function arguments), the CFG_SUCC relation represents
only one of the possible orderings. The variable n must be bound by other literals
in the same clause.

• CFG_EXIT (f, ne) maps the function definition f to all its exits, ne. The vari-
able f must be bound by other literals in the same clause.

The I/O predicates enable the CLOG program to read or write relations to a tabular
format (CSV or SQLite3) and they are most frequently used to read analysis param-
eters or to output analysis results. As the I/O predicates, the infinite predicates are
identical to the ones used by JavaDL, and therefore we refer the reader to [DRS21].
As syntactic sugar, CLOG provides infix notations for comparison (==, <=, etc.) and
variable binding (=).

2.6 Built-in Functions
CLOG provides a set of predefined functions. These functions are free of side-effects
and their use is allowed inside the operands of the comparison predicates or as the
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right operand of the = predicate. CLOG requires that the arguments to the functions
are either other expressions (i.e. arithmetic or function application) or that they are
bound variables. The purpose of these functions is to expose properties of the analyzed
program that are not expressible through syntactic patterns.

Type and Name Analysis Functions

While type and name analysis for C can be expressed as a Datalog program, doing so
bloats the analysis program and hinders readability. Therefore, CLOG exposes these
semantic properties through predefined functions5.

• type(e) - the type of the expression e.

• decl(n) - the declaration of the the identifier n.

Because not all C constructs have a type and, for incomplete C programs, not all iden-
tifiers have a declaration, the type and name functions are partial. In such cases, they
evaluate to a special value, undef.

Program Structure Functions

CLOG provides convenience functions that enable the traversal of the program struc-
ture:

• parent(n) retrieves the parent term of n, if it exists.

• enclosing_function(n) retrieves the enclosing function of term n, if it
exists.

Names

The CLOG programs are general over the set of names, and thus identifiers can be
replaced with metavariables inside syntactic patterns. However, metavariables can bind
terms that may or may not have a name, for example the pattern ⟨..$l + $r..⟩ matches
the expression a + 1 and only the metavariable $l binds an identifier. To retrieve the
variable name, we introduce a function name(n) that maps the term n to its name if it
is an identifier or a named declaration, or to the empty string otherwise.

Control-Flow Functions

In addition to the control-flow predicates, CLOG defines the cfg_entry(f) function
that maps a term f to the entry node of its control-flow graph. Terms that have a CFG
are function definitions, statements and expressions.

5In the CLOG implementation, these functions are prefixed by c_, e.g. c_decl, c_name, etc.
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Source Location Functions

To support report generation, CLOG defines a set of functions that retrieve the
source location of a program term n: src_line_start(n), src_col_start(n),
src_file(n), etc. Since reports sometimes occur in macros, reporting the original
location can be confusing, so we provide another set of functions that retrieve the ex-
pansion location: src_exp_file(n), src_exp_line_start(n), etc.

3 Implementation

3.1 Overview

We built the CLOG prototype using two major components:

1. A Datalog implementation that we extended with support for syntactic patterns,
functions and built-in predicates.

2. A Clang library, (Clang-Clog), which provides support for pattern matching,
CFG predicates and built-in functions.

We chose to use Clang as the parser for the analyzed program over using our own C
parser because we wanted CLOG to be able to analyze real-world C programs that may
use language extensions beyond the standard C grammar used by our parser. Moreover,
by choosing a mature compiler such as Clang, we also gain access to other standard
compiler analyses, such as name and type analysis and CFG construction.

In its implementation, CLOG reuses infrastructure from previous systems that com-
bine syntactic pattern matching and Datalog: MetaDL [DBR] and JavaDL [DRS21].
Both these tools implement syntactic pattern matching in Datalog and translate the
AST of the entire analyzed program to Datalog relations. We have experimented with
the same approach in an early CLOG prototype, but it proved impractical, because for C
programs the AST contains nodes for all included files (transitively) and serializing the
AST into Datalog relations dominated the running time of CLOG. Instead, we opted
for using Clang’s own AST matching infrastructure, provided by the LibASTMatchers6

library. This way, CLOG could perform pattern matching directly on the Clang AST
and only serialize to relations the AST fragments that match.

The LibASTMatchers provides a domain-specific language (DSL) for building up a
tree of matchers from a predefined set of base matchers. For example, an exact matcher
for the int x; variable declaration is
varDecl(hasName("x"), hasType(qualType(isInteger())),

unless(hasInitializer(anything()))).bind("$m")

where varDecl matches a VarDecl AST node, hasName and hasType are pred-
icates on its name and type; unless is a matcher that succeeds when its inner matcher

6https://clang.llvm.org/docs/LibASTMatchers.html

https://clang.llvm.org/docs/LibASTMatchers.html
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fails (in this case, hasInitializer). The bind attribute specifies a name for the
matching AST nodes.

To use the LibASTMatchers library, CLOG translates the syntactic patterns to AST
matchers. However, the CLOG pattern grammar and the Clang abstract grammar have
been designed for different purposes. On one hand, the goal for the CLOG pattern
grammar is to be close to the C grammar even after adding metavariables. On the other
hand, the Clang grammar is optimized for compiler analyses.

To a C programmer, the pattern ⟨..$t $f, *$g.
.⟩ matches two variable declara-

tions, a variable $f with type $t and another variable, $g, with type pointer-to-$t,
without any initializer. In terms of the C grammar, this means that the type of $g is
split between two non-terminals: the type specifier $t and the declarator, *$g. How-
ever, the Clang AST represents this using two disjoint entities: a VarDecl which has
a QualType as its type attribute. This is reflected in the LibASTMatchers DSL as the
matcher:
varDecl(hasType(qualType(pointsTo(qualType().bind("$t")))),

unless(hasInitializer(anything()))).bind("$g")

In the AST matcher, as in the Clang abstract grammar, the qualType matcher is an
attribute of varDecl, while in the C grammar these nodes reside in different subtrees
of the declaration non-terminal. This means that building the Clang AST matcher
in the semantic actions is not feasible, thus CLOG uses three intermediate translation
steps. First, it parses the syntactic patterns to an internal AST, which contains the
same non-terminals as the C11 grammar extended with metavariables. Secondly, it
translates the internal AST to a pseudo-Clang AST, which contains the same AST
nodes as the Clang AST, but it also allows concrete nodes from abstract grammatical
categories such as expression (clang::Expr), statement (clang::Stmt) decla-
ration (clang::Decl) or qualified type (clang::QualType), which are marked
as being a metavariable or a gap. Thirdly, CLOG traverses the pseudo-Clang AST and
generates the AST matchers.

CLOG Extensions to Clang AST Matching

We have extended the set of AST matchers to cover all pseudo-Clang nodes generated
by CLOG.

In CLOG, the gap construct (..) in syntactic patterns allows for parts of a list
to remain unspecified, while still preserving the matching order of the list members
that are specified. To support the semantics of gaps, we implemented a family of
matchers that match a particular children list of a node against a list of sub-matchers.
The sub-matchers must match the list elements in order, but the matched elements are
not necessarily consecutive. For the pattern ⟨..$f($a, $b)..⟩, CLOG generates the
matcher
callExpr(callee(expr().bind("$f")), argumentCountIs(2),

hasArgument(0, expr().bind("$a")),
hasArgument(1, expr().bind("$b")))

which matches function call expressions with precisely two arguments, while for
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⟨..$f(..,$a,.., $b,..)..⟩, it generates:
callExpr(callee(expr().bind("$f")),

argumentDistinct(expr().bind("$a"), expr().bind("$b")))

The argumentDistinct matcher ensures that its inner matchers match distinct ar-
guments of the call expression.

Limitations

A fundamental limitation of CLOG is that it matches the syntactic patterns against
Clang ASTs, which means the metavariables always bind Clang AST nodes. Thus,
we configured the pattern grammar generation to allow metavariables only for the
terminals and non-terminals that have a corresponding Clang AST node. For ex-
ample, CLOG rejects patterns that have metavariables in place of qualifiers, such as
⟨..$q int *$f.

.⟩ because Clang represents qualifier as fields of the clang::QualType
node. However, the pattern ⟨..const int *$f.

.⟩ is valid, because CLOG can check
that the AST node bound by $f is a pointer to a const-qualified integer.

While the use of Clang AST can enable future extensions of CLOG to analyze
C++ programs, this comes with challenges. The most significant challenge is that the
language must introduce a distinction between terms existing in the source and terms
arising from template instantiation, auto type deduction and default methods.

3.2 CLOG at Runtime
Figure 9 provides a runtime view of the CLOG implementation. The evaluation of a
CLOG program proceeds with the parsing of the analysis code. The parsing of syntactic
patterns is deferred to the Pattern parser. Then the semantic analysis phase ensures that
the program is well formed. This is followed by a plan generation phase, where CLOG
generates an evaluation plan according to the semi-naive evaluation strategy [Ull89].
In the evaluation phase, CLOG executes the evaluation plan to produce the results.

Clang-CLOG Interface

CLOG interfaces with Clang through a library built using the Clang LibTooling support
library7. This Clang-CLOG library handles the parsing of the analyzed sources and
builds the ASTs for all sources. In addition to building the ASTs, it supports pattern
matching through Clang’s LibASTMatchers library, the evaluation of built-in functions
and CFG queries.

Pattern Parser

The CLOG parser defers the parsing of patterns to an Earley parser [Sco08], which is
capable of handling general context-free grammars and ambiguity. Support for ambigu-
ity is necessary, since the patterns lack context to disambiguate cases such as t * a;

7https://clang.llvm.org/docs/LibTooling.html

https://clang.llvm.org/docs/LibTooling.html
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Figure 9: Phases of a CLOG checker evaluation

or f(x);8. The pattern grammar follows the C grammar given in the Annex A of the
C11 language standard [Iso]. This grammar is automatically extended when CLOG is
built, to accept metavariables and gaps for a configurable set of non-terminals. The
result of the pattern parsing phase is an AST with nodes from the internal grammar.

Pattern Translation

During the pattern translation phase, CLOG translates the pattern ASTs from the inter-
nal grammar to a pseudo-Clang grammar.

Matcher Generation

In this phase, CLOG traverses the pseudo-Clang AST and generates matchers in the
LibASTMatchers DSL.

The translation from the pattern ASTs to the AST matchers is not always one-to-
one. Due to ambiguities in the C language, CLOG generates two AST matchers for the
pattern ⟨..$t *$p.

.⟩, one for the pointer declaration and another for the multiplication.
This is reflected in the evaluation plan as a disjunction of two literals.

8A variable x of typedefed type f or a function call?
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Matcher Registration

In this phase, CLOG registers the matchers with the Clang-CLOG library. The Clang-
CLOG library parses the matcher DSL, builds the AST matchers and returns a unique
identifier for each matcher, that the Datalog engine uses during the plan evaluation
phase for retrieving the results of the match. CLOG registers a matcher a single time to
avoid the cost of parsing the matcher DSL each time it evaluates a pattern literal.

The Clang-CLOG library supports three kinds of pattern matchers:

• node matcher - attempts to match one given node;

• subtree matcher - finds all matches in all descendants of one given node;

• global matcher - finds all matches across all ASTs.

All pattern literals without a subtree restriction or a root node, of the shape ⟨..C..⟩,
correspond to global matchers. For the ones that have a root literal, but not a subtree
restriction, r ⟨..C..⟩, CLOG generates a node matcher if the root variable r is bound by
other literals in the clause. Otherwise, it generates a global matcher. Patterns with a
subtree restriction, @s r ⟨..C..⟩, result in subtree matchers.

Plan Generation and Evaluation

In this phase, CLOG translates the Datalog rules to an evaluation plan. The operations
of this plan are similar to the Relational Algebra Machine used by the Soufflé Datalog
engine [Sch+16].

In contrast to the approach in [DRS21], where the entire AST of the analyzed
program is materialized as Datalog relations, in CLOG we have implemented an on-
demand approach, where we only materialize the AST nodes that are matched by the
syntactic patterns and the ones that are exposed through the CFG predicates and built-in
functions.

In addition, for pattern literals, we optimize for cases where the root variable of the
pattern is bound by a literal occurring earlier in the clause. In this case, CLOG runs a
node matcher on the root node, instead of a global matcher on the entire AST. In the
current implementation, the plan generator preserves the order of literals in the clause,
with the exception of the infinite and binding predicates, which it may reorder.

For the CFG_SUCC and CFG_EXIT predicates, the Clang-CLOG library lazily
computes the CFGs only for functions for which these predicates are queried. In effect,
this means that the CFG is computed only for functions relevant to the analysis.

The evaluation of the analysis proceeds with running the global matchers. This is
handled by the Clang-CLOG library using Clang’s AST matching API, which runs all
the global matchers in a single traversal over the whole AST. This stage is followed by
the execution of the Datalog plan. In the final stage, CLOG writes the output relations
to disk.
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4 Evaluation

In this section we ask the following questions:

1. RQ1 How capable is CLOG to express code checkers with good precision and
recall rates?

2. RQ2 How does the execution time of CLOG compare to other tools?

To answer these question we implemented several checkers in CLOG and ran them
on synthetic benchmarks and on real programs. We compared our results against the
Clang Static Analyzer (CSA). We chose CSA because both itself and CLOG have access
to the same underlying AST and we wanted to assess the analysis expressivity and
speed, without comparing the underlying AST representations. To compare with CSA9,
we ran the relevant checkers using the clang-tidy frontend. We used an AMD EPYC
7713P 64-Core Processor with 504 GB RAM for our evaluation.

4.1 Synthetic Benchmarks

In line with earlier work [WS14; Che16], we adopted the Juliet 1.310 test suite in our
evaluation. Juliet is a collection of synthetic tests aimed at assessing static analysis
tools.

Experimental Setup

To evaluate the expressivity of CLOG we attempted to implement checkers for the first
15 weaknesses listed in the 2023 CWE Top 25 Most Dangerous Software Weaknesses
published by MITRE 11 and run these checkers on Juliet. For the cases where the Juliet
suite did not contain tests for a specific weakness, we exploited the hierarchical organi-
zation of the CWE database and we used the tests for the weakness’ direct descendants.
We present our mapping from listed CWEs to Juliet test sets in Table 1.

For each Juliet test set corresponding to a CWE we implemented a checker in
CLOG. We explicitly list the enabled checkers in Table 2. In our analysis develop-
ment, we followed an iterative process in which we aimed for increasing the checker’s
recall, without having a precision that is lower than the precision of the Clang checker.

Discussion

In Table 2 we present a comparison regarding precision, recall and running times of the
CSA and CLOG checkers.

9Built from https://github.com/llvm/llvm-project@98acd74683
10https://samate.nist.gov/SARD/test-suites/112
11https://cwe.mitre.org/top25/archive/2023/2023_top25_list.html

https://github.com/llvm/llvm-project
https://samate.nist.gov/SARD/test-suites/112
https://cwe.mitre.org/top25/archive/2023/2023_top25_list.html
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# CWE Juliet tests

1 CWE-787 Out-of-bounds Write CWE121_Stack_Based_Buffer_Overflow
CWE122_Heap_Based_Buffer_Overflow
CWE123_Write_What_Where_Condition
CWE124_Buffer_Underwrite

4 CWE-416 Use After Free CWE416_Use_After_Free

5 CWE-78 Improper Neutralization of Special CWE78_OS_Command_Injection
Elements Used in an OS Command

6 CWE-20 Improper Input Validation CWE134_Uncontrolled_Format_String
CWE114_Process_Control
CWE190_Integer_Overflow
CWE785_Path_Manipulation_Function ...

7 CWE-125 Out-of-bounds Read CWE126_Buffer_Overread
CWE127_Buffer_Underread

8 CWE-22 Improper Limitation of a Pathname CWE23_Relative_Path_Traversal
to a Restricted Directory CWE36_Absolute_Path_Traversal

12 CWE-476 Null Pointer Dereference CWE476_NULL_Pointer_Dereference

14 CWE-190 Integer Overflow or Wraparound CWE190_Integer_Overflow

Table 1: A mapping from common weaknesses (CWEs) to Juliet test sets. We omit
CWEs that are not relevant to C programs.

CWE CSA checkers GT True positive False positive Precision Recall Time (s)

CSA CLOG CSA CLOG CSA CLOG CSA CLOG CSA CLOG
CWE-78 alpha.security.taint.* 1520 0 1008 0 0 100.00 0 66.31 35.82 119.39
CWE-121 ArrayBoundsConfig 4036 2132 240 6810 20 23.84 92.30 52.82 5.94 80.14 171.09
CWE-122 ArrayBoundsConfig 2606 1174 240 3542 20 24.89 92.30 45.04 9.20 50.84 128.46
CWE-124 ArrayBoundsConfig 1288 720 300 3593 0 16.69 100.00 55.90 23.29 27.22 73.01
CWE-126 ArrayBoundsConfig 972 449 160 3180 0 12.37 100.00 46.19 16.46 20.11 46.40
CWE-127 ArrayBoundsConfig 1288 720 300 3593 0 16.69 100.00 55.90 23.29 27.12 73.15
CWE-134 alpha.security.taint.* 1900 570 1278 780 0 42.22 100.00 30.00 67.26 48.98 312.61
CWE-416 unix.Malloc 138 36 108 0 0 100.00 100.00 26.08 78.26 2.27 2.65
CWE-476 core.NullDereference 270 174 150 16 0 91.57 100.00 64.44 55.55 4.73 6.27

Table 2: CSA and CLOG results on Juliet test sets. ArrayBoundsConfig rep-
resents the checkers: alpha.security.ArrayBound, alpha.security.ArrayBoundV2, al-
pha.security.taint.*, alpha.unix.cstring.OutOfBounds, security.insecureAPI.*. GT is
the number of ground-truth reports.
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To detect CWE-78 OS Command Injection we implemented an inter-procedural
data-flow analysis. CSA did not produce any warnings, even though we configured the
taint analysis to use the same propagation rules as CLOG. We adapted the same checker
for CWE-134 Uncontrolled Format String, with a different set of taint sources and
sinks.

To achieve high recall on the test sets CWE-121 Stack Based Buffer Overflow,
CWE-122 Heap Based Buffer Overflow, CWE-124 Buffer Underwrite, CWE-126
Buffer Overread, CWE-127 Buffer Underread the checkers need to perform constant
propagation or numerical domain analysis. Both these analyses are difficult to encode
in Datalog without general lattice support, which is a limitation of our implementation.

These checkers also brought to light a mismatch between the pattern grammar and
the Clang AST grammar. The pattern for matching array declarations ⟨..$t $a[$n]..⟩
allows an expression for the array length, $n. However, the Clang AST contains two
nodes for arrays: one for fixed-length and another for variable-length arrays. The fixed-
length array node does not have a child node for encoding the length, but it encodes
it explicitly, as an integer field. In effect, this means that there is no AST node that
the variable $n can bind, and this is not compatible with our assumption, that each
metavariable binds an AST node. Fortunately, this is not a fundamental limitation of
our translation scheme, since it can be circumvented by adding a custom AST matcher
which instantiates a constant integer AST node when matching the size of an array.

In the CWE-416 Use after Free checker we implemented an intra-procedural data-
flow analysis. An intra-procedural analysis proved sufficient, because freed pointers
are reported when passed as arguments or return values.

To detect CWE-476 Null Pointer Dereference we implemented an inter-procedural
data-flow analysis. To reduce false positives, we added rules that exclude paths domi-
nated by a null test of a variable. One of these rules is
NOTNULLPATH(s, d) :- ⟨..if ($v) $t else $f..⟩,

d = decl($v), d != undef, s = cfg_entry($t).

where we define a predicate, NOTNULLPATH, to mark that a variable d is not null on
paths starting from s.

To achieve good precision and recall on the CWE-190 Integer Overflow test set,
the analysis needs to perform numerical domain analysis, a CLOG limitation we have
also seen earlier, on the tests sets for CWE-121,122,124,126,127. Detecting cases of
CWE-123 Write What Where Condition requires heap modeling, which out of the
scope of this work. CSA also fails to report any warning on this test set. The test sets
CWE-114, CWE-785 use the Windows API, while CWE-23 and CWE-36 contain only
C++ sources. We did not implement checkers for these test sets.

In Table 3 we list the sizes of CLOG programs, counted as number of rules. We were
able to implement all checkers concisely, with no more than 35 rules and most of them
with 20-30 rules. We also note that, for all checkers, the number of syntactic patterns is
close to the number of rules, which shows that they are a well-utilized language feature.

Looking back at RQ1, we conclude that CLOG is expressive enough to encode high
precision checkers for typical data-flow analyses, even inter-procedural. However, we
encountered difficulties in achieving good recall on the checkers for buffer accesses.
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CWE Predicates Pattern literals Rules

CWE-78 19 18 24
CWE-121 8 23 25
CWE-122 8 23 25
CWE-124 7 18 19
CWE-126 8 22 24
CWE-127 9 17 20
CWE-134 20 18 25
CWE-416 13 23 28
CWE-476 14 31 35

Table 3: Predicate, rule and pattern literal counts for CLOG programs

This class of vulnerabilities highlighted a limitation of CLOG: it can’t express analyses
that use lattices other than the power set. Fortunately this is a known limitation of
Datalog and is addressed by approaches orthogonal to ours [Sza+18; MYL16].

In reply to RQ2, in Table 2, we observe that the running times of CLOG are about 2-
3 times slower than CSA, but this is not surprising if we consider that we implemented
CLOG partly as a Java application, partly as a native library and the two do not share a
heap, so all the results of pattern matching must be copied from a native heap to the Java
heap. In spite of this, the fact that CLOG is fully declarative enables other optimization
approaches, such as parallelizing the evaluation engine or incrementalization, in the
style of IncA [Sza+18] or JavaDL [DRS21].

4.2 Realistic Workloads

Inspired by a study on the effectiveness of static C code analyzers [LBP22], we have
reused programs from the Magma v1.1 fuzzing benchmark [HHP22] as targets for our
testing. Magma contains a set of programs with known vulnerabilities and their respec-
tive fixes. Conveniently, these fixes can be enabled or disabled through a preprocessor
symbol. To avoid assumptions about how the location of a fix corresponds to the loca-
tion of a report, we adopt a differential approach: we compare the reports between the
fixed and the faulty versions of a program.

From the checkers we have implemented for the Juliet benchmark, we selected the
ones with good recall and full precision that also have corresponding vulnerabilities in
the Magma programs: CWE-416 and CWE-476.

From the Magma programs, we selected openssl, sqlite, libxml2 and libpng. We
were not able to properly extract the compilation commands for libtiff and php and we
discarded poppler for being mostly a C++ project.

In Table 4 we present the results of running CLOG and CSA analyses on the selected
Magma programs. For CWE-476, both checkers discovered a real issue in sqlite, while
for openssl only CSA succeeded. For the sqlite issue, CSA generates one report, while
CLOG generates four. The difference is that CSA reports only the first dereference of a
null pointer, while CLOG reports all. In the openssl case, our implementation of the null
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CWE Program CSA CLOG Time (s)

Vuln. Fixed Vuln. Fixed CSA CLOG

CWE-476

libpng 0 0 0 0 29.87 3.73
openssl 25 24 217 217 452.78 191.14
sqlite3 18 17 387 383 1109.19 155.86
libxml2 33 33 425 425 349.69 23.47

CWE-416

libpng 0 0 0 0 31.80 1.31
openssl 0 0 0 0 492.01 61.55
sqlite3 0 0 0 0 1183.19 4.59
libxml2 0 0 0 0 372.68 3.40

Table 4: CSA and CLOG report numbers and running times on Magma test programs.
Vuln. columns refer to the vulnerable version.

pointer dereference checker does not handle uninitialized variables, while CSA does.
This is a limitation of our analysis set, but not of CLOG itself, since an uninitialized
variable checker is another instance of data-flow analysis, a class of analyses we have
showed that CLOG can express. For CWE-416, both CSA and CLOG fail to find any
cases of use-after-free vulnerabilities, even though one vulnerability is present in each
of the libxml2, sqlite3 and openssl programs. Contrary to results we have seen on the
Juliet test suite, the running times for CLOG are significantly better than for CSA.

5 Related Work

Declarative approaches to the static analysis of program semantics have a rich
history based on a variety of techniques, including attribute grammars [Knu68],
pattern-matching on algebraic data types [App98], term rewriting [KBV08], logical
queries [MLL05], flow-sensitive types [FTA02], and combinations such as Cobalt’s
use of integrated modal logic and term rewriting [LMC05].

Most approaches operate on some representation of the AST and/or CFG, often
involving intermediate code; custom extensions must then follow these (generally tool-
specific) abstractions [Avg+16; SHB19; NRL17]. This is a well-understood challenge
in the field of API protocol checking [BBA09; FTA02], which attempts to identify API-
specific bugs. Some tools try to address this challenge by encoding analysis rules in an
internal DSLs (e.g., embedding them inside API code via Java annotations [BBA09]).
However, these approaches are limited by the host language’s annotation facilities.

External DSLs based on syntactic pattern matching therefore offer an appealing
alternative. For C, Coccinelle [LM18] offers facilities for code matching and trans-
formation, based on syntactic patterns. In contrast to CLOG, the Coccinelle DSL that
describes the syntactic patterns requires the user to explicitly declare metavariables
and their syntactic categories. Coccinelle provides a scripting interface (Python and
OCaml) that the users can use to combine pattern matching with their custom analysis
and build bug finding tools [Law+09]. The scripting interface serves approximately the
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same purpose as the Datalog language in CLOG.
Other tools that combine syntactic pattern matching with logical queries include

SOUL [DR+11], which combines AST pattern matching with Prolog-style logic pro-
grams to analyze Java programs, though SOUL restricts patterns to five predefined
syntactic categories, and JavaDL [DRS21], which is closest to our work in spirit in
that it offers Datalog-style rules and syntactic pattern matching, on Java programs.
CLOG reuses parts of the JavaDL infrastructure, specifically the grammar transforma-
tion mechanism and JavaDL’s Datalog implementation. Unlike CLOG, JavaDL of-
fers no built-in predicates for CFG traversal, which limits its ability to express flow-
sensitive analyses. Internally, JavaDL performs pattern matching by encoding ASTs
as tables of Datalog facts and relying on an external Datalog engine, while CLOG
translates syntactic patterns to queries for the Clang AST matching mechanism and
materializes only the results of these queries as Datalog tuples.

CLOG is not the first Datalog-style tool for C: cclyzer [BS16] implements declar-
ative points-to analyses for C and C++ in Datalog. Compared to CLOG, which works
on the AST, the cclyzer analyses are implemented in terms of LLVM IR instructions.
Like JavaDL, cclyzer relies on the high-performance Datalog engine Soufflé [Sch+16].
Despite its wide adoption for program analysis tasks [BS16; BS09], Soufflé itself does
not extend the Datalog language with features particularly geared towards program
analysis.

6 Conclusions

We have shown that the CLOG language can express powerful custom checkers for C
code without exposing program representation internals. While our experiences sug-
gest that implementing a language like CLOG on top of Clang may require nontrivial
internal plumbing to align program structure and control flow, we find that the cost for
this abstraction is modest: CLOG-based checkers may even run faster than Clang’s own
checkers, despite delivering competitive results. Like most Datalog-based approaches,
CLOG is limited to boolean (product) lattices but scales to a wide variety of practi-
cal analyses, including interprocedural and data-flow analyses. Overall, we argue that
CLOG’s combination of language simplicity, expressivity, and performance make it
uniquely suited for building custom C code checkers.
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POPULAR SCIENCE SUMMARY

Static Program Analysis Software is gaining ground in our world and is running
in almost all objects that are connected to a power source. For objects that have a
power source and are not running a computer program, there exists a variant of them
that does. Likewise, processes central to our society — transportation systems, health
records, logistics — are software controlled. Thus, to have reliable everyday objects
and a functional society we need reliable software.

One way of achieving reliable software is by studying the behaviour of the com-
puter programs and trying to avoid the undesired behaviours. The branch of computer
science concerned with studying the behaviour of computer programs is called program
analysis. The first approach to program analysis, is dynamic: we run the program on
various inputs and observe their behaviour. While this approach can unveil some un-
desired behaviours, it will not exclude all possible undesired behaviours.

The second approach to program analysis considers the program as a description
of program’s behaviour and tries to restrict the description in order to restrict the be-
haviour. Since in this approach we do not run the program, we call it static program
analysis.

Static program analyses are already included in compilers, the tools that translate
programs from a human-readable format to machine code. But compilers can only in-
clude those analyses that do not limit the generality of the programming language —
for example they can ensure that we are not mixing values of different types. Static
analyses that are specific to an application domain, those that are considered too re-
strictive for the whole domain of the programming language, or those which take too
much time to run are delegated to specialized tools called static code checkers.

Static Code Checkers Static code checkers contain a set of detectors which aim
to identify common bug patterns in computer programs. Since the detectors that ship
with the static code checkers are aimed at general bug patterns, these checkers also
provide an extension mechanism to enable the definition of project-specific detectors
or for the customization of existing ones.
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In this thesis we identify limitations of the current static code checkers, that hinder
their adaptation to specific project needs:

Checker-specific representations In their definition, the detectors depend on a spe-
cific internal program representation and auxiliary data structures. These data
structures are checker-specific.

Fixed runtime behaviour The code checkers use a fixed evaluation model, which as-
sumes that for each run, the whole program needs to be re-checked. In practice,
this is rarely the case, since typical change sets are limited to a small number of
files from a project.

Declarative Code Checkers To address the limitations of current code checkers,
in this thesis we explore a novel method for building static code checkers. Instead of
specifying how the detectors are built in terms of handling the program representation
and the auxiliary data structures, we introduce a family of declarative specification lan-
guages, that move the focus to specifying what are the detectors looking for. To achieve
this, we combine two existing declarative techniques: syntactic pattern matching and
logic programming.

We use syntactic patterns of the same shape as the language we are checking to
break the dependency between the static checker and the checker-specific representa-
tions of the program. This eliminates the need to understand the internal representation
of the program, and should allow for ad-hoc definition of static code checkers, by soft-
ware engineers that are familiar with the project they want to check, but not necessarily
with the internals of a static code checker.

To combine information between multiple syntactic pattern matches and enable
non-local reasoning over a program, our declarative specification allows for the def-
inition of judgements of the shape if-condition-then-consequence, in the style of the
Datalog logic programming language.

The use of syntactic patterns and Datalog-style rules facilitates the complete de-
coupling of the detector specification from its implementation details. And once the
specification is decoupled from the implementation, we are free to vary the runtime
mode of the checker to address the evolving needs of a software project. Thus, we
introduce an incremental evaluation mode that recomputes only the reports which de-
pend on modified source files. Switching between incremental and exhaustive schemes
does not require changes to the detector specification. This enables the runtime mode
to match the project’s needs: use the exhaustive mode when changes are pervasive,
such in the early stages of a project’s lifetime and the incremental mode for localized
changes, suitable for mature projects.

The detector specification language is small: the syntactic patterns are essentially
fragments of the language targeted by the code checker and the logical rules are a
subset of first order logic. This allows for a concise specification of detectors. Besides
being concise, we show that the detectors implemented using our declarative language
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are also expressive. The quality of the reports produced by the detectors using our
specification language is comparable with established static code checkers.

Since code checkers are part of the development loop or of continuous integration,
it is important that computing the results of a detector does not take unnecessarily long.
For all its elegance, a declarative static code checker is useless if it takes too much time
to deliver the results. Our checkers are not an exception: we empirically demonstrate
that their runtime performance is comparable with widely used static checkers.

Hence, this thesis provides evidence that static code checkers that are concise and
expressive in their definition, accurate in their results and fast in their running time are
indeed feasible.
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