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Diffusion MRI is remarkably sensitive to tissue microstructure but generally 
lacks specificity. This thesis presents advanced time-dependent diffusion MRI 
techniques using free gradient waveforms to address this limitation and ena-
ble more reliable estimation of microstructural parameters—particularly water 
exchange. The methods developed here separate exchange from the effects of 
restricted diffusion, anisotropy, and intra-compartmental kurtosis. Initial appli-
cations in intracranial tumours demonstrate potential for clinical use. This work 
also opens exciting avenues for in vivo mapping of dendritic spine density using 
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Populärvetenskaplig sammanfattning 

Diffusions-magnetresonanstomografi (dMRI) är en kraftfull bildgivande teknik som är 
mycket känslig för mikroskopiska förändringar i vävnaden och kan upptäcka sjukdomar 
som stroke i ett mycket tidigt skede. Känsligheten kommer från att tekniken använder 
extremt starka magnetfält för att följa vattenmolekylers rörelser på mikroskopisk nivå. 
Trots denna höga känslighet är metoden tyvärr ganska ospecifik, vilket innebär att flera 
olika förändringar i vävnaden kan ge upphov till samma signal i dMRI-bilden. Det gör 
tolkningen svår och begränsar metodens diagnostiska potential, eftersom olika 
sjukdomstillstånd kan vara svåra att särskilja. 

Denna avhandling syftar till att lösa detta problem genom att utveckla nya och mer 
avancerade dMRI-tekniker. De nya metoderna bygger på så kallad “tidsberoende 
dMRI”, där vi istället för att ta en enda bild med en fast mättid, samlar in en serie bilder 
med varierande mättider. Dessutom använder vi så kallade “fria vågformer”, vilket 
innebär att magnetfälten formas mer flexibelt för att maximera mängden information i 
varje mätning. För att tolka dessa mer komplexa data utvecklar vi nya teoretiska 
modeller som kopplar mätningarna till vävnadens mikroskopiska struktur.  

Med detta verktyg, som är en kombination av nya mätmetoder och modeller, lyckas vi 
särskilja olika egenskaper i den friska hjärnan, som till exempel cellstorlek och 
genomsläpplighet. Dessa har tidigare varit svåra eller omöjliga att separera med 
traditionella tekniker. Vi tillämpar även våra nya metoder på hjärntumörer där de visar 
lovande resultat. Metoderna kan potentiellt särskilja både olika typer av tumörer och 
olika sjukdomsgrad inom en och samma tumör, vilket kan få betydelse för framtida 
diagnos och behandling. Avhandlingen visar också att de nya metoderna potentiellt kan 
användas för att mäta så kallade “dendritiska taggar”, vilka är små utskott på nervceller 
som spelar en viktig roll i hjärnans funktion. Dessa strukturer påverkas vid många 
hjärnsjukdomar, som schizofreni och Alzheimers, men det finns idag inga pålitliga 
metoder för att studera dem utan att exponera patienten för joniserande strålning. Att 
kunna avbilda dendritiska taggar hos levande människor utan att använda joniserande 
strålning vore ett stort genombrott. 

Sammanfattningsvis bidrar avhandlingen med både teoretiska och praktiska verktyg för 
att göra dMRI till en mer specifik och pålitlig metod. Resultaten pekar på att avancerad 
dMRI – särskilt i kombination med starka magnetsystem – är ett lovande sätt att 
studera hjärnans mikrostruktur, både i forskningssammanhang och i sjukvården. 
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1 Introduction 

Diffusion magnetic resonance imaging (dMRI) is a non-invasive imaging modality that 
is remarkably sensitive to the microstructure of biological tissue. This sensitivity is 
achieved by applying spatial magnetic field gradients that encode the random 
displacements of water molecules at the micrometre scale—far below the millimetre 
resolution of MRI voxels (Hahn 1950; Torrey 1956; Stejskal and Tanner 1965; Le 
Bihan et al. 1986; Callaghan 1991; Jones 2010). Conventional dMRI acquires signal 
as a function of diffusion encoding strength. The initial slope of this signal, known as 
the apparent diffusion coefficient (ADC), is highly sensitive to microstructural changes 
such as variations in cell density (Chenevert et al. 2000; Le Bihan 2003; Chen et al. 
2013). In anisotropic tissue, diffusion tensor imaging (DTI) (Basser et al. 1994) extends 
the scalar ADC to a tensor, enabling quantification of anisotropy and facilitating the 
reconstruction of fibre pathways in the brain (Mori and Barker 1999; Le Bihan et al. 
2001; Beaulieu 2002; Catani et al. 2002; Jespersen et al. 2007). Diffusional kurtosis 
imaging (DKI), an extension of DTI, captures deviations from Gaussian diffusion, 
yielding additional sensitivity to tissue heterogeneity (Jensen et al. 2005). These 
methods have enabled widespread clinical applications, including early detection of 
ischemic stroke (Moseley et al. 1990; Albers 1999), cancer characterisation (Sundgren 
et al. 2004; Mabray and Cha 2016) and white matter connectivity mapping for 
neurosurgical planning (Mori and Barker 1999; Romano et al. 2009). They also play a 
key role in neuroscience and clinical research, providing insights into pathology, ageing, 
and neuroplasticity (Fieremans et al. 2011; Sagi et al. 2012; Hui et al. 2012; Goveas et 
al. 2015). However, while sensitive to microstructural tissue alterations, dMRI lacks 
specificity. Changes in the ADC and kurtosis reflect a plurality of underlying features, 
such as cell density, membrane permeability, myelination or relaxation rates, leading to 
ambiguous interpretations (Jespersen et al. 2010; Szczepankiewicz et al. 2016; 
Lampinen et al. 2017a; Ning et al. 2020; Brabec et al. 2023).  

The limited specificity of dMRI largely stems from the limited information content of 
the signal. Fundamentally, the dMRI signal as a function of diffusion encoding strength 
is relatively featureless, rightfully described as “remarkably unremarkable” (Yablonskiy 
and Sukstanskii 2010). However, the problem is exacerbated by the experimental setup 
on which most dMRI applications are based: the single diffusion encoding (SDE) 
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developed by Stejskal and Tanner (1965) and named as such by Shemesh et al. (2016). 
While SDE is the main workhorse of the field, it is a poor probe of tissue because it 
conflates multiple microstructural features such as microscopic anisotropy, orientation 
dispersion and isotropic heterogeneity, leading to unreliable characterisation (Westin 
et al. 2016; Szczepankiewicz et al. 2021b). As a remedy for the shortcomings of SDE, 
the double diffusion encoding sequence, DDE, (Shemesh et al. 2016) was introduced 
in a pioneering work by Cory (1990). DDE acquisitions with parallel and orthogonal 
gradients were shown capable of measuring the local eccentricity of a sample 
macroscopically isotropic due to orientation dispersion (Cory 1990; Mitra 1995; 
Callaghan and Komlosh 2002; Özarslan and Basser 2008; Lawrenz et al. 2010; 
Shemesh et al. 2010; Koch and Finsterbusch 2011; Jespersen et al. 2013). The concept 
was later extended to tensor-valued encoding using free gradient waveforms (FWF) 
(Westin et al. 2014, 2016). Another avenue for improving the information content of 
the signal is time-dependent dMRI, which varies both the diffusion encoding strength 
and the diffusion time (Tanner 1978; Mitra et al. 1992; Horsfield et al. 1994; Price 
1997; Does et al. 2003; Sen 2004; Nilsson et al. 2009; Burcaw et al. 2015; Fieremans 
et al. 2016; Reynaud 2017; Jespersen et al. 2018; Lee et al. 2018). Combined with 
biophysical modelling, time-dependent dMRI provides access to far more intricate 
information about tissue microstructure such as cell sizes (restricted diffusion) and 
membrane permeability (water exchange) (Pfeuffer et al. 1998; Assaf and Basser 2005; 
Assaf et al. 2008; Lätt et al. 2009; Alexander et al. 2010; Nilsson et al. 2013; Kiselev 
2017; Novikov et al. 2018; Alexander et al. 2019; Novikov et al. 2019; Palombo et al. 
2020b; Jelescu et al. 2020). Reliable in vivo estimation of these parameters advances 
dMRI towards being a “virtual microscope”, capable of revealing cellular-scale 
information that was once only accessible through microscopy. 

While time-dependent dMRI evidently brings benefits, it still faces challenges due to 
suboptimal acquisition strategies, model inaccuracy and degeneracy (Jelescu et al. 
2016a; Novikov et al. 2018; Coelho et al. 2019; Lampinen et al. 2020a; Jelescu et al. 
2020). A major limitation is the inability to disentangle competing contrast 
mechanisms, which reduces specificity and causes potential misinterpretation. A key 
example is the interplay between restricted diffusion and exchange, which have 
opposing effects on the diffusion-weighted signal: as the diffusion time increases, 
restriction elevates the signal, whereas exchange reduces it (Nilsson et al. 2009; Olesen 
et al. 2022). SDE-based approaches that rely solely on varying the diffusion time may 
conflate these effects, potentially biasing parameter estimates. Most methods for 
probing restricted diffusion with dMRI use SDE with variable diffusion times or 
oscillating gradients while neglecting exchange (Panagiotaki et al. 2014; Nilsson et al. 
2017; Jiang et al. 2017; Veraart et al. 2020). Conversely, exchange measurements are 

17
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typically performed using SDE and the Kärger model, which neglects restricted 
diffusion (Kärger 1985). The interplay between restriction and exchange has been 
recognised for decades (Stanisz et al. 1997; Price et al. 1998; Meier et al. 2003; Nilsson 
et al. 2009), but only recently regained attention in modelling efforts (Jiang et al. 2022; 
Olesen et al. 2022; Jelescu et al. 2022; Lee et al. 2025). These newer methods, all based 
on SDE with varying diffusion time, either explicitly model both restriction and 
exchange (using the modified Kärger model) or strategically sample diffusion times to 
separate exchange-driven signal decrease from restriction-driven signal increase. 
However, a unified framework that explicitly integrates both effects into experimental 
design and modelling would further enhance specificity and improve the reliability of 
microstructural parameter estimates. 

Exchange can be probed independently of restricted diffusion under some conditions 
using filter exchanging imaging (FEXI) (Lasič et al. 2011; Nilsson et al. 2013) which 
employs DDE acquisitions with variable mixing times. In FEXI, the first diffusion 
encoding block selectively attenuates the signal from fast-diffusing spins, after which 
the recovery toward equilibrium is monitored and occurs at a rate known as the 
apparent exchange rate (AXR). The AXR has been applied to measure exchange in the 
healthy human brain (Bai et al. 2020), in brain tumours (Lampinen et al. 2017b) and 
in breast cancer (Lasič et al. 2016). However, FEXI is susceptible to bias due to 
interactions with imaging gradients (Lasič et al. 2018). A solution to this problem was 
proposed in the case of free diffusion (Ohene et al. 2023), but not for restricted 
diffusion. It should be noted that this limitation is not unique to FEXI but also applies 
to related methods such as Diffusion Exchange Spectroscopy (DEXSY), which can also 
be used to isolate exchange from restriction effects (Cai et al. 2018, 2022). 

Another important confounder for reliable and reproducible exchange estimation with 
dMRI is anisotropy. While the original Kärger model—the mainstay of all exchange 
estimation with dMRI—assumes exchange between isotropic Gaussian components, it 
was extended to account for anisotropy (Fieremans et al. 2010) and applied in recent 
grey matter microstructure models (Olesen et al. 2022; Jelescu et al. 2022). While these 
approaches exploit linear tensor encoding with SDE, recent work suggests that adding 
planar tensor encoding may have benefits (Ghazi et al. 2024). It has been shown 
previously that AXR from FEXI depends on measurement direction in systems 
featuring more than two orientationally dispersed compartments (Lasic et al. 2016). 
Previous studies applying FEXI have shown that AXR is directionally dependent in the 
monkey brain (Sønderby et al. 2014), in the human brain (Li et al. 2022; Shin et al. 
2024) and in numerical simulations (Ludwig et al. 2021). These findings point towards 
the need for an exchange measurement framework incorporating anisotropy in both 
theory and experimental design. 
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All current methods for estimating exchange with dMRI neglect intra-compartmental 
diffusional kurtosis. Recent work has demonstrated that this kurtosis source can be 
measured using correlation tensor imaging (CTI) (Henriques et al. 2020, 2021). 
Studies applying CTI have shown that intra-compartmental kurtosis is non-negligible 
in both healthy and ischemic brain tissue (Alves et al. 2022; Novello et al. 2022). As 
noted in these studies, intra-compartmental kurtosis arises from multiple sources 
including restricted diffusion or cross-sectional variance. The signal contrast enabling 
estimation of intra-compartmental kurtosis is the difference between an SDE and a 
parallel DDE acquisition in the long-mixing time limit and at the same diffusion 
encoding strength (Henriques et al. 2021). Notably, this same contrast also gives 
maximal sensitivity to exchange (Ning et al. 2018). As such, CTI estimates of intra-
compartmental kurtosis are inherently intertwined with intercompartmental exchange. 
Similarly, exchange estimation may be biased by the presence of intra-compartmental 
kurtosis. This underscores the need for a dMRI analysis framework that jointly 
considers both intercompartmental exchange and intra-compartmental kurtosis to 
disentangle their contributions and improve specificity. 

Yet another challenge with time-dependent dMRI is the interpretation of what we 
measure in the living brain. While cell size estimates can be verified against histology, 
exchange is an active process that is severely disrupted by tissue extraction and 
histological preparation. Most studies interpret in vivo exchange estimates in terms of 
membrane permeability (Bai et al. 2020; Olesen et al. 2022; Jelescu et al. 2022), and 
this view aligns well with measurements in white matter, where there is consensus that 
exchange is slow and negligible at clinically accessible diffusion times. This notion is 
supported by the presence of myelin sheaths which impede water transport between the 
intra- and extra-axonal spaces (Badaut et al. 2011; Bai et al. 2018; Veraart et al. 2019; 
Brusini et al. 2019; Jelescu et al. 2020). In grey matter, there is strong evidence that 
exchange is non-negligible (Veraart et al. 2020; Jelescu et al. 2020; Olesen et al. 2022). 
However, literature values vary greatly, ranging from a few to hundreds of milliseconds 
(Olesen et al. 2022; Jelescu et al. 2022). Some studies have indicated that structural 
disorder along neurites (beading, irregularities) has a similar signature on the dMRI 
signal as permeative exchange (Novikov et al. 2014; Lee et al. 2020; Jelescu et al. 2022; 
Mougel et al. 2024). Additionally, non-permeative, geometric exchange has been 
highlighted recently in a simulation study using FEXI, showing that both permeative 
and non-permeative exchange bear a similar imprint (Khateri et al. 2022). Previous 
work has also shown that time-dependent dMRI is sensitive to dendritic spines, and 
that the geometric exchange between dendritic shafts and spines manifests in the same 
way as permeative exchange (Palombo et al. 2018, 2020a; Chakwizira et al. 2024; 
Palombo and Şimşek 2024; Şimşek and Palombo 2024). Understanding the dominant 
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mechanism of exchange in grey matter is important because it informs modelling and 
experimental design leading to more reliable estimation.  

Insights on the processes driving exchange in grey matter could also unlock new dMRI 
applications in pathology. Take dendritic spines—small protrusions on dendrites that 
connect to axons and play a central role in information transfer in the brain (Cajal 
1924). They are implicated in numerous neuropsychiatric and neurodegenerative 
diseases (Penzes et al. 2011), yet their in vivo estimation remains highly challenging 
(Howes et al. 2023). The current state-of-the-art method, positron emission 
tomography, requires exposure to ionising radiation. If dendritic spines drive exchange 
in grey matter, dMRI exchange measurements could serve as a non-invasive proxy for 
dendritic spine density, which would bring tremendous value to both neuroscience and 
clinical care. More broadly, accurate mapping of brain microstructure could also benefit 
other neuropathologies, such as high-grade gliomas, which remain among the deadliest 
brain tumours (Ostrom et al. 2014; Nayak and Reardon 2017). Diagnosis still hinges 
on morphological MRI and invasive biopsies (Jackson et al. 2001; Scott et al. 2002) 
but dMRI offers a path towards non-invasive histology, with sensitivity to cellularity, 
heterogeneity, and membrane permeability (Nilsson et al. 2018; Jelescu et al. 2020). 
Conventional dMRI has shown promise in tumour differentiation and treatment 
monitoring (Szczepankiewicz et al. 2016; Galbán et al. 2017; Nilsson et al. 2018), while 
microstructure models have been explored for cell size (Assaf et al. 2008; Alexander et 
al. 2010) and exchange (Lampinen et al. 2017b) estimation. However, inconsistencies 
remain, and a lack of clinical studies prevents these model-based approaches from 
becoming standard. 

This thesis aims to address several key gaps in knowledge in dMRI as outlined above. 
Operating around the central theme of dissociating entangled contrasts, it strives to 
improve the reliability and interpretation of microstructural measurements with dMRI. 
The general strategy involves leveraging free gradient waveforms to design 
multidimensional experiments that elevate the information content of the signal, 
enabling the inversion of otherwise degenerate signal models. The methods are 
validated using extensive numerical simulations and their utility is demonstrated in 
both the healthy human brain and in intracranial tumours.  

Finally, it is worth noting that the field of dMRI is currently in a transformative period. 
The emergence of MRI scanners with ultra-strong gradients marks the beginning of a 
new era, enabling experiments that were previously impossible (Setsompop et al. 2013; 
Fan et al. 2014, 2022; Foo et al. 2020; Huang et al. 2021). The methods developed in 
this thesis stand to benefit greatly from these advancements, paving the way for more 
reliable and biologically meaningful dMRI studies. 
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2 Aims 

The overarching goal of this thesis was to develop novel MRI contrasts using time-
dependent dMRI. It describes a journey starting from theory development to dissociate 
entangled contrast mechanisms, through experimental design to support the theory and 
ending with initial applications in both the healthy human brain and in gliomas. The 
specific aims of the work were to: 

1. Disentangle restricted diffusion and exchange, by developing theory and an
optimised experimental design accounting for both effects, and test this
restriction-exchange framework with Monte Carlo simulations and in the
healthy human brain (Paper I, Paper II)

2. Correct crusher gradient-induced bias in FEXI using the restriction-exchange
framework above (Paper III)

3. Separate exchange and anisotropy by developing theory and an experimental
approach for measurement of both effects (Paper IV)

4. Disentangle exchange from intra-compartmental kurtosis by developing
theory and an experimental approach for measurement of both (Paper IV)

5. Investigate the impact of dendritic spines on exchange estimation with dMRI
(Paper V)

6. Explore the utility of exchange estimation with free waveforms in gliomas
(Paper VI)
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3 The microstructure of brain tissue 

An understanding of the cellular architecture of neural tissue is essential for interpreting 
dMRI contrasts. This chapter provides an overview of brain tissue microstructure with 
a focus on the key components of neurons and glial cells, the organization of grey and 
white matter, the cerebellar anatomy, and cell membrane permeability to water—all of 
which contribute to the diffusion-weighted signal and inform the interpretations 
presented in this thesis. 

3.1 Brain tissue composition 

Neural tissue comprises two main constituents: neurons which are responsible for 
information transfer and glia which provide support and protection for the neurons 
(Purves et al. 2001; Clark et al. 2010; Allen and Lyons 2018). This section provides an 
overview of both. 

3.1.1 The neuron 

The neuron is the fundamental signalling unit of the nervous system (Purves et al. 2001; 
Clark et al. 2010). It is highly specialised for receiving and transmitting electrical and 
chemical signals. A typical neuron (illustrated in Fig. 1) comprises three main parts: a 
cell body (soma) which contains the cell nucleus, dendrites (membranous processes that 
receive input from other neurons) and an axon (a long nerve fibre which conducts nerve 
impulses to other neurons) (Purves et al. 2001). Neurons occur in two varieties: stellate 
(bearing short axons for short-range connections) and pyramidal (featuring long axons 
for long-range connections).  

Somas have varying diameters ranging from a few to one hundred micrometres 
(Braitenberg and Schüz 1998). Dendrites have diameters ranging from 10 µm at the 
origin, tapering down to 0.5 µm at the distal end. Axons have variable diameters, with 
the majority in the human brain falling in the range 0.5–2 µm (Aboitiz et al. 1992; 
Liewald et al. 2014). They are usually covered in myelin sheaths that wrap around the  
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Figure 1. Constituents of neuronal tissue. Grey matter consists primarily of neuronal cell bodies (somas), unmyelinated 
axons, and glial cells such as protoplasmic astrocytes. Dendrites extend from somas and are studded with dendritic 
spines that form synaptic contacts with other neurons. White matter is composed mainly of myelinated axons and 
supporting glial cells, including oligodendrocytes (which produce myelin) and fibrous astrocytes (which provide support 
for the neurons). Myelin comprises lipid layers separated by water-filled spaces and occurs in internodes separated by 
nodes of Ranvier. 

axon more than a hundred times and function as electric insulators that increase the 
signal conduction speed by over ten-fold for axons of similar diameter (Trapp and Kidd 
2004). Myelin sheaths occur in intervals (internodes) of up to nearly 2 mm, separated 
by nodes of Ranvier which are up to 5 µm in length (Hildebrand et al. 1993; Trapp 
and Kidd 2004). Myelin sheaths are made up of membranous lipid concentric layers 
separated by narrow water-filled spaces.  

Glial cells (glia) are non-neuronal cells whose function is to maintain homeostasis and 
support neuron function (Purves et al. 2001; Allen and Lyons 2018). They provide 
structural support, nutrition, insulation and other regulatory functions necessary for 
neural activity. Glia are extremely abundant, making up about half of all cells in the 
human central nervous system. The most common glial cells are oligodendrocytes and 
astrocytes (Purves et al. 2001). Oligodendrocytes are responsible for producing myelin 
and have cell body diameters of between 6 and 8 µm (Edgar and Griffiths 2009). 
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Astrocytes are star-shaped cells that provide metabolic and structural support to 
neurons and have cell body diameters of about 10–12 µm (Edgar and Griffiths 2009).  

3.1.2 Synaptic terminals 

Dendrites feature many small protrusions on their surfaces, called dendritic spines (Fig. 
1), whose function is to form functional contacts with the axons of other neurons 
(Purves et al. 2001). Spines connect to the synaptic boutons found at the distal end of 
axons, forming the synaptic terminal where information transfer occurs. They were first 
observed in 1888 by Ramon y Cajal (Cajal 1924) and are now recognised as the primary 
site of excitatory synapses in the mammalian brain (Runge et al. 2020). Spines exhibit 
high plasticity and occur in a variety of shapes depending on their level of maturity, 
where bulbous, mushroom-shaped variants are the most stable (Bączyńska et al. 2021). 
They have head diameters ranging from 0.5 to 1.2 µm, neck diameters of 0.05–0.5 µm 
and neck lengths of 0.5–2 µm (Li et al. 2023b).  

3.1.3 Grey and white matter constituents 

Grey matter consists mainly of somas (the nuclei of which give it its characteristic dark 
hue), dendrites, unmyelinated axons and glial cells (Kandel 2013). It is found 
predominantly near the surface of the brain where it forms the cerebral cortex whose 
thickness varies between 2 and 5 mm (Kandel 2013). It is also found more sparsely in 
regions such as thalamus and basal ganglia. Human cortical grey matter is primarily 
made up of neurites (dendrites and unmyelinated axons, 60%). The remainder of the 
volume is taken up by somas (8%) and extracellular space (18%) while glia, synapses 
and capillaries occupy the rest (Howes et al. 2023).  

White matter consists primarily of myelinated axons and supporting glial cells. The 
axons are arranged in bundles known as tracts. By volume, white matter comprises 68% 
intra-axonal space and myelin, and the rest is taken up by cell bodies of glia, intra-
axonal space of unmyelinated axons, extracellular space and blood vessels (Perge et al. 
2009; Jelescu et al. 2016b). The abundance of myelin, and its high lipid content, give 
white matter its characteristic pale appearance. 

3.1.4 Cerebellar anatomy 

The cerebellar grey matter has a highly complex microstructure when compared to the 
cerebral cortex. It features three layers (molecular, Purkinje and granular) overlying a 
central white matter core (Voogd and Glickstein 1998; Tax et al. 2020; Consalez et al. 
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2021; Nguyen et al. 2021). The granular layer is densely packed with granule cells—
the most abundant neuron in the central nervous system—with somas about 7 µm in 
diameter. Axons of the granule cells are unmyelinated, and they ascend towards the 
molecular layer where they bifurcate into two branches, forming parallel fibres (Voogd 
and Glickstein 1998). The Purkinje layer is narrow (single-cell-thick) and contains the 
large cell bodies of Purkinje cells, with diameters of 25–40 µm. Purkinje cells have 
elaborate dendritic trees that fan out into the molecular layer. Their axons—the only 
output from the cerebellar cortex—are myelinated and descend towards the cerebellar 
nuclei in the white matter core (Voogd and Glickstein 1998).  

3.2 The cell membrane 

Cell membranes are the biological component responsible for confining molecules to 
the intracellular space. They are semipermeable and selectively admit water molecules. 
The permeability of the cell membrane to water molecules is a crucial property for 
regulation of cell function and maintenance of homeostasis (Phillips et al. 2012). Water 
transport across the bilipid layer of the cell membrane can either be passive or facilitated 
by membrane channel proteins. 

Passive permeability refers to the direct diffusion of water molecules through the lipid 
bilayer and is typically much slower than facilitated transport (Verkman et al. 2008). 
Cells overcome the limited rate of passive transport by expressing aquaporins, which 
are a family of membrane proteins that function as water-selective channels (Borgnia et 
al. 1999; Agre and Kozono 2003; Reuss 2012). Aquaporins are remarkably selective, 
allowing a very high throughput of water molecules while blocking out other solutes. 
Their dramatic effectiveness at transporting water across the membrane has been 
observed in red blood cells, which exhibit high permeability due to abundant expression 
of the aquaporin AQP1 (Preston et al. 1992). In brain tissue, AQP4 is the predominant 
water channel (Verkman et al. 2008), primarily localised to astrocytic endfeet at the 
blood–brain and CSF–brain interfaces. In conditions such as stroke, cerebral oedema 
and hydrocephalus, AQP4 is responsible for moving water into and out of brain tissue. 
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4 Diffusion: principles and encoding 

This chapter provides a summarised description of the basic principles of diffusion and 
how they relate to the MRI signal. Concretely, it delves into the diffusion equation and 
propagator formalism and provides solutions in simple environments where the 
problem is tractable. 

4.1 Principles of diffusion 

4.1.1 The diffusion equation and the propagator formalism 

Diffusion refers to the random translational motion of particles driven by thermal 
fluctuations in the medium (Price 2009). The physics of diffusion is encapsulated by 
the diffusion equation, which reads (Fick 1855; Duffy 2001; Price 2009; Callaghan 
2011a) 1 

𝜕𝑃(𝐫଴, 𝐫ଵ, 𝑡)

𝜕𝑡
= 𝐷∇ଶ𝑃(𝐫଴, 𝐫ଵ, 𝑡), (1) 

with the initial condition 𝑃(𝐫଴, 𝐫ଵ, 0) = 𝛿(𝐫ଵ − 𝐫଴), where 𝛿 is the Dirac delta 
function, 𝐷 is the diffusion coefficient and 𝑃(𝐫଴, 𝐫ଵ, 𝑡) is the so-called diffusion 
propagator, which describes the probability that a particle initially at position 𝐫଴ is 
found at position 𝐫ଵ after time 𝑡.  

For free diffusion, Eq. 1 is readily solved, yielding the Gaussian 

𝑃(𝐫଴, 𝐫ଵ, 𝑡) =  
1

(4𝜋𝐷𝑡)
ଷ
ଶ

exp ቆ−
(𝐫ଵ − 𝐫଴)ଶ

4𝐷𝑡
ቇ.                 (2) 

 
1 This equation comes from combining Fick’s first law 𝐉(𝐫, 𝑡) =  −𝐷∇𝑐(𝐫, 𝑡) with the continuity 

equation ∂𝑐(𝒓, 𝑡)/𝜕𝑡 = − ∇ ∙ 𝐉(𝐫, 𝑡) and replacing the concentration 𝑐 with the propagator. 
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For cases other than free diffusion, this local propagator is rich in information about 
the diffusion process, and thus the diffusion environment, around 𝐫଴. However, it is 
inaccessible in practical experiments. A more useful quantity is the ensemble-averaged 
or mean propagator, 𝑃ത(𝐑, 𝑡) where 𝐑 = 𝐫ଵ − 𝐫଴, which is obtained by integrating over 
all starting positions 𝐫଴.2  

4.1.2 Anisotropic diffusion 

Worth noting is that the notion of a scalar diffusion coefficient as used above is only 
meaningful when diffusion is isotropic. In anisotropic media, the diffusion coefficient 
has dependence on direction and is more appropriately treated as a tensor with the 
matrix representation (Crank 1975; Basser et al. 1994; Price 2009; Jones 2010) 

𝐃 =  ቌ

𝐷୶୶ 𝐷୶୷ 𝐷୶୸

𝐷୷୶ 𝐷୷୷ 𝐷୷୸

𝐷୸୶ 𝐷୸୷ 𝐷୸୸

ቍ . (3) 

The matrix 𝐃 is symmetric and positive definite and therefore has six independent 
elements. In the principal axis system, off-diagonal elements are zero and the diagonal 
elements give the eigenvalues of the tensor corresponding to three eigenvectors.  

4.1.3 Correlation functions and time-dependent diffusion 

The propagator formalism allows the definition of useful statistical metrics such as the 
mean squared displacement (MSD) given by the second moment of the propagator 
(Price 2009; Callaghan 2011a). A hallmark of Gaussian diffusion is that the MSD 
grows linearly with time  

〈[𝐫(𝑡) − 𝐫(0)]⨂ ଶ〉 = 2𝐃𝑡, (4) 

where “⊗” denotes the outer tensor product. Non-Gaussian diffusion is associated with 
time-dependent diffusion coefficients, which can be defined via the MSD as 

𝐃(𝑡) =  
〈[𝐫(𝑡) − 𝐫(0)]⨂ ଶ〉 

2𝑡
. (5) 

 
2 The medium averaged propagator is given by 𝑃ത(𝐑, 𝑡) = ∫ 𝜌(𝐫଴)𝑃(𝐫଴, 𝐫଴ + 𝐑, 𝑡) d𝐫଴, where 𝜌(𝐫଴) is 

the equilibrium particle density that depends on the diffusion environment.  
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4.2 Diffusion encoding in MRI 

4.2.1 The Stejskal-Tanner experiment 

The focus now turns to the interaction between the diffusion process described in the 
previous section and the MRI experiment. This coupling was described by Torrey who 
combined the Bloch equations with the diffusion equation to yield the Bloch-Torrey 
equation (Torrey 1956)  

𝜕𝐌

𝜕𝑡
= γ𝐌 × 𝐁 −

𝑀௫𝐢 + 𝑀௬𝐣

𝑇ଶ
−

𝑀௭ − 𝑀଴

𝑇ଵ
𝐤 − ∇ ⋅ (𝐷∇𝐌), (6) 

where 𝐌 is the magnetisation with three orthogonal components (𝑀௫, 𝑀௬ and 𝑀௭), 
𝑀଴ is the equilibrium magnetisation due to a static magnetic field along z, 𝐁 is an 
inhomogeneous magnetic field and 𝑇ଶ and 𝑇ଵ are the transverse and longitudinal 
relaxation times, respectively. Equation 6 describes a source-sink process, where the 
magnetisation created by the field dissipates due to both relaxation and diffusion.  

The classic way of sensitising the MRI signal to diffusion is the Stejskal-Tanner 
experiment (Stejskal and Tanner 1965) which adds a gradient pulse on either side of 
the refocusing pulse in a spin-echo pulse sequence (Fig. 2). The essence of the 
experiment is that incoherent motion between the first and second gradient pulses leads 
to a net phase change and a consequent signal decrease. 

 

Figure 2. The Stejskal-Tanner experiment. The diffusion encoding gradient pulses (blue blocks of amplitude G) are 
applied on either side of the 180° refocusing pulse in a spin-echo sequence. The times δ and Δ denote the duration and 
spacing of the diffusion-encoding gradients and TE is the echo time. Incoherent spin motion between the two gradients 
results in a net phase change and a consequent signal attenuation.  
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The accumulated phase due to the application of the diffusion-sensitising gradients is 
given by (Callaghan 2011a)  

𝜙 = 𝛾 න 𝐠(𝑡) ∙ 𝐫(𝑡)d𝑡
்

଴

(7) 

where “∙” denotes the scalar product, 𝛾 is the gyromagnetic ratio, 𝐠(𝑡) is the diffusion-
encoding gradient waveform with total duration 𝑇 and 𝐫(𝑡) is the spin trajectory. 
Already at this stage, the coupling between the dMRI experiment, 𝐠(𝑡), and the 
microstructure, 𝐫(𝑡), is evident. In fact, much of the work presented in this thesis can 
be summarised as efforts to design 𝐠(𝑡) to extract as much independent information as 
possible from correlations of 𝐫(𝑡).  

Since 𝐫(𝑡) is stochastic, 𝜙 is described by a probability distribution 𝑃(𝜙), and the 
diffusion-weighted signal is obtained by averaging over the phase factors of all 
contributing spins  

𝑆(𝐪, 𝑇)/𝑆଴ = න 𝑒ି௜థ 𝑃(𝜙)d𝜙 = 〈 𝑒  ି௜థ 〉 , (8) 

where 𝑆଴ is the signal in the absence of diffusion-sensitising gradients. Given any 
gradient waveform, Eq. (8) predicts the diffusion-weighted signal provided 𝐫(𝑡) is also 
known. However, since 𝐫(𝑡) is inaccessible, it is instructive to consider simplifying cases 
to gain insight into what information about the diffusion process can be accessed with 
MRI. One such simplifying case is the narrow-pulse regime discussed in the following. 

4.2.2 Diffusion-weighted signal with narrow pulses 

Assuming that the gradient pulses in Fig. 2 are narrow, the accumulated phase evaluates 
to (Callaghan 2011a) 

𝜙 = 𝛾𝛿𝐠 ∙ 𝐑 =  𝐪 ∙ 𝐑 , (9) 

where 𝛿 is the pulse duration, 𝐑 = [𝐫(∆) − 𝐫(0)] is the displacement over the 
diffusion time (∆) and 𝐪 =  𝛾𝛿𝐠 is the dephasing q-vector.  The signal equation can 
then be expressed 

𝑆(𝐪, 𝑇)/𝑆଴ = 〈e௜𝐪∙𝐑〉 =   න 𝑃ത(𝐑, ∆) e௜𝐪∙𝐑d𝐑 , (10) 
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where 𝑃ത(𝐑, ∆) is the medium-averaged propagator introduced earlier. Notice that, in 
the narrow-pulse regime, the dMRI experiment accesses the average propagator via the 
Fourier transform (Callaghan 1991; Grebenkov 2007). This is an important result since 
it reveals the link between the dMRI experiment and measurable parameters that 
quantify or characterise the diffusion process. To clarify this point, consider again the 
simple case of a Gaussian propagator, where Eq. 11 evaluates to 

𝑆(𝐪, 𝑇)/𝑆଴ = exp൫−𝐪⨂ ଶΔ: 𝐃൯ = exp(−𝐁: 𝐃) , (12) 

where “:” denotes the Frobenius inner product, 𝐁 = 𝐪⨂ ଶΔ is called the b-tensor (or b-
matrix) (Mattiello et al. 1997; Westin et al. 2014, 2016) and its trace (𝑏 = |𝐪|ଶ∆) is 
called the b-value and measures the strength of the diffusion weighting . A more general 
definition of the b-value incorporating pulses of finite duration is (Stejskal and Tanner 
1965)  

𝑏 = 𝑞ଶ𝑡ௗ = 𝑞ଶ ൬∆ −
𝛿

3
൰ , (13) 

where 𝑞 = |𝐪| and 𝑡ௗ = ∆ −
ఋ

ଷ
 is the diffusion time. Equation (12) presents the well-

known result that, given a Gaussian propagator, dMRI probes diffusivity via the b-
value. 

4.2.3 Beyond narrow pulses: multiple propagator formalism 

Although the narrow pulse approximation simplifies modelling, it is rarely achievable 
in practice due to hardware constraints. Diffusion encoding with gradient pulses of 
finite duration or, generally, gradients for which 𝐪 is a non-constant function of time, 
cannot be described by Eq. 10. One solution to the problem is the multiple propagator 
approach (Caprihan et al. 1996; Callaghan 1997) which involves approximating the 
gradient waveform with a series of impulses and applying the narrow pulse 
approximation (Eq. 10) in each time interval. However, in practice, this approach often 
results in a time-consuming signal evaluation that is also prone to errors due to 
discretisation.  

4.2.4 The cumulant expansion 

An alternative, and appreciably more convenient, approach for describing the diffusion-
weighted signal under realistic gradients is to restrict the measurement to low b-values 
and adopt the cumulant expansion of the phase distribution (van Kampen 2007; Price 
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2009; Kiselev 2010). This expansion expresses the logarithm of the signal (Eq. 8) as a 
Taylor series, where each term corresponds to a statistical cumulant of the phase 
distribution 

ln〈 eି௜థ〉 = −𝑖𝑐ଵ −
1

2!
𝑐ଶ +

𝑖

3!
𝑐ଷ +

1

4!
𝑐ସ + ⋯ , (14) 

where the cumulants 𝑐௜ are related to the moments of 𝑃(𝜙) via 

𝑐ଵ = 〈𝜙〉 

𝑐ଶ = 〈𝜙ଶ〉 − 〈𝜙〉ଶ 

𝑐ଷ = 〈𝜙ଷ〉 − 3〈𝜙〉〈𝜙ଶ〉 + 2〈𝜙〉ଷ 

𝑐ସ = 〈𝜙ସ〉 − 4〈𝜙〉〈𝜙ଷ〉 + 12〈𝜙〉ଶ〈𝜙〉ଶ − 3〈𝜙ଶ〉ଶ − 6〈𝜙〉ସ 

⋮. (15) 

In the absence of bulk flow (an assumption made throughout this thesis), all odd-order 
moments are zero, and thus, to fourth order, Eq. 14 can be written 

ln 𝑆/𝑆଴ ≈ −
1

2
〈𝜙ଶ〉 +  

1

24
(〈𝜙ସ〉 − 3〈𝜙ଶ〉ଶ) .  (16) 

It is worth noting that diffusion in a single Gaussian environment is fully described by 
the second cumulant and all cumulants of order higher than 2 are zero.  

4.2.5 Correlation functions and encoding properties 

The cumulant expansion introduced in the preceding section is a powerful tool for 
understanding how different diffusion processes are encoded into the MRI signal. To 
demonstrate, recall the definition of the phase given in Eq. 7, which allows the second 
moment in Eq. 16 to be written 

〈𝜙ଶ〉 = 𝛾ଶ න න 𝐠(𝑡ଵ)⨂𝐠(𝑡ଶ) ∶ 〈𝐫(𝑡ଵ)⨂𝐫(𝑡ଶ)〉
்

଴

d𝑡ଵd𝑡ଶ

்

଴

. (17) 

Eq. 17 shows that the position autocorrelation function is weighted by the gradient 
autocorrelation 𝐆෡(𝑡) = ∫ 𝐠(𝜏)⨂𝐠(𝑡 + 𝜏)

்

଴
𝑑𝜏. It is, however, often more convenient 
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to describe diffusion in terms of particle velocities instead of positions. Integration by 
parts can be used to redefine the phase in terms of spin velocities, 𝐯(𝑡),  

𝜙 = − න 𝐪(𝑡) ∙ 𝐯(𝑡)d𝑡
்

଴

, (18) 

leading to the following expression for the second moment 

〈𝜙ଶ〉 = න න 𝐪(𝑡ଵ)⨂𝐪(𝑡ଶ) ∶ 〈𝐯(𝑡ଵ)⨂𝐯(𝑡ଶ)〉
்

଴

d𝑡ଵd𝑡ଶ

்

଴

, (19) 

illustrating that the velocity autocorrelation function (VAF) is weighted by the 
autocorrelation function of the q-vector, 𝐐෡(𝑡) = ∫ 𝐪(𝜏)⨂𝐪(𝑡 + 𝜏)

்

଴
𝑑𝜏. The second-

order VAF contains information about the time-dependence of the diffusivity, and this 
is made apparent by highlighting its relation to the diffusion spectrum via the inverse 
Fourier transform (Callaghan 2011b) 

〈𝐯(𝑡ଵ)⨂𝐯(𝑡ଶ)〉 =
1

𝜋
න 𝐃(𝜔)e௜ఠ|௧మି௧భ|𝑑𝜔

ஶ

ିஶ

. (20) 

Note that the second-order VAF does not depend on the absolute values of 𝑡ଵ or 𝑡ଶ, 
but rather the difference between them, much like the MSD. In fact, the second order 
VAF, the MSD and the diffusion spectrum all contain the same information as they 
can be computed from each other. However, as later chapters will illustrate, targeting 
the diffusion spectrum in the frequency domain provides a convenient way to 
understand what part of this information is accessible. In terms of the diffusion 
spectrum, the second moment can be written 

〈𝜙ଶ〉 =
1

𝜋
න |𝐐(ω)|⨂ ଶ ∶  𝐃(ω)d𝜔

ஶ

ିஶ

 , (21) 

where 𝐐(ω) is the diffusion encoding spectrum given by the Fourier transform of 𝐪(t). 
For the case of diffusion in a single Gaussian environment (where 𝐃(ω) is constant), 
the second-order VAF is given by  

〈𝐯(𝑡ଵ)⨂𝐯(𝑡ଶ)〉 =
1

𝜋
න 𝐃e௜ఠ|௧మି௧భ|𝑑𝜔

ஶ

ିஶ

= 2𝐃𝛿(𝑡ଶ − 𝑡ଵ), (22)
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where 𝛿 is the Dirac delta function. The result presented in Eq. 12 (signal attenuation 
driven by the b- and diffusion tensors) can be recovered by combining Eq. 21 and 22, 
yielding the second cumulant 

〈𝜙ଶ〉 = න න 𝐪(𝑡ଵ)⨂𝐪(𝑡ଶ) ∶ 2𝐃𝛿(𝑡ଶ − 𝑡ଵ)
்

଴

d𝑡ଵd𝑡ଶ

்

଴

= 2𝐁: 𝐃, (23) 

where 

𝐁 = න 𝐪(𝑡)⨂𝐪(𝑡)d𝑡
்

଴

 (24) 

is the b-tensor introduced for narrow pulses earlier but defined more generally here. 
The above discussion illustrates the versatility of the cumulant expansion: no demands 
are made on the shape of the gradient waveform. Of course, the caveat is that the 
expansion is valid only at low b-values.  

Given the insights provided by the second-order VAF, it is only instructive to also 
introduce the fourth-order VAF, which is contained in the fourth moment of the phase 
distribution via the cumbersome expression 

〈𝜙ସ〉 = න න න න 𝐪(𝑡ଵ)⨂𝐪(𝑡ଶ)⨂𝐪(𝑡ଷ)⨂𝐪(𝑡ସ) ∶
்

଴

்

଴

்

଴

்

଴

〈𝐯(𝑡ଵ)⨂𝐯(𝑡ଶ)⨂𝐯(𝑡ଷ)⨂𝐯(𝑡ସ)〉 d𝑡ଵd𝑡ଶd𝑡ଷd𝑡ସ. (25)

As is evident from the above, the fourth order VAF is a high-dimensional object—a 
fourth order tensor dependent on spin dynamics at four different time-points. For 
simplicity—and without loss of generality—the rest of this chapter will drop the 
tensorial description.  

It turns out, as we have shown in previous work (Chakwizira et al. 2022), that insights 
about restricted diffusion and exchange can be gleaned from the fourth-order VAF via 
a temporal decomposition analysis. For clarity, we represent the temporal arguments as 
subscripts such that 𝑣(𝑡ଵ) = 𝑣௔, 𝑣(𝑡ଶ) = 𝑣௕ , and so forth. The fourth-order cumulant 
features the fourth-order VAF and products of second-order terms as given by 

𝐶௔௕௖ௗ = 〈𝑣௔𝑣௕𝑣௖𝑣ௗ〉 − ⟨𝑣௔𝑣௕⟩⟨𝑣௖𝑣ௗ⟩ − ⟨𝑣௔𝑣௖⟩⟨𝑣௕𝑣ௗ⟩ − ⟨𝑣௔𝑣ௗ⟩⟨𝑣௕𝑣௖⟩ (26) 

With this formalism, we define the weighting function in Eq. 25 as 

𝑄௔௕௖ௗ = 𝑞௔𝑞௕𝑞௖𝑞ௗ  (27) 
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where the fourth cumulant is then given by 𝑜ସ = 𝐶௔௕௖ௗ: 𝑄௔௕௖ௗ where “:” now denotes 
integration over all four time points.  

 As shown in previous work (Chakwizira et al. 2022), independent information 
contained in the fourth order velocity autocorrelation function can be revealed by 
defining distinct temporal decompositions such as 

𝑜ସ
௔௔௔௔ = 𝐶௔௕௖ௗ: 𝑄௔௕௖ௗ𝛿௔௕𝛿௕௖𝛿௖ௗ (28) 

and 

𝑜ସ
௔௔௕௕ = 𝐶௔௕௖ௗ: 𝑄௔௕௖ௗ𝛿௔௕𝛿௖ௗ(1 − 𝛿௔௖൯ (29) 

where 𝛿௡௠ is the Kronecker delta which takes the value 1 when 𝑛 = 𝑚 and is otherwise 
zero. With this formalism, the fourth-order cumulant can be written 

𝑜ସ
௧௢௧௔௟ = 𝑜ସ

௔௔௔௔ + 3 ⋅ 𝑜ସ
௔௔௕௕ + 𝑜ସ

௥௘௦௧ (30) 

where the factor of 3 accounts for three different combinations of the aabb terms and 
“rest” denotes all contributions not included in the first two terms. As illustrated in Fig. 
3A, this decomposition reveals distinct signatures of different microstructures, with the 
first two terms on the right-hand-side being related to Gaussian diffusion and exchange, 
while the third term is non-zero only in the presence of restricted/hindered diffusion. 
Such insights can also guide the design of experiments to probe exchange. For example, 
as Fig. 3B shows, DDE is a more specific probe of exchange than SDE because it has 
its encoding power concentrated along the aabb axis where exchange manifests.  

Figure 3. Temporal decomposition of the fourth-order cumulant. Panel A shows three components of the fourth order 
cumulant obtained by a temporal decomposition of the velocity autocorrelation function (Eq. 30), plotted against the 
diffusion time in a narrow-pulse SDE experiment. The restriction component is zero for multi-Gaussian diffusion, as 
expected, and rises with the diffusion time for restricted/hindered diffusion. In a multi-Gaussian setting, exchange causes 
a temporal decline in the Gaussian/Exchange contribution but has no effect on the restriction component. Panel B 
shows the decomposition of the weighting function in Eq. 27 along the Gaussian/Exchange axis, for SDE and DDE. 
Unlike SDE, the encoding power in DDE is focused along the aabb axis, illustrating that DDE is a more specific probe 
of exchange than SDE. Figure adapted, with permission, from (Chakwizira et al. 2022), published by the ISMRM. 
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5 The forward problem: signal 
representations and models 

This chapter reviews the forward problem of dMRI, which involves deriving analytical 
expressions to predict the diffusion-weighted signal under given measurement settings. 
Prominent approaches are outlined, and they all fall into two broad categories: signal 
representations and microstructure models (Novikov et al. 2018). Models are often 
built on strong assumptions about the source of the signal (the tissue microstructure), 
while representations are more parsimonious and make no assumptions about the 
microstructure. Models, when correctly specified such that they capture the salient 
features influencing the diffusion process, yield parameter estimates more specific to 
tissue changes. Representations, on the other hand, provide indices highly sensitive to 
tissue changes but generally exhibit low specificity. In the following, signal 
representations including DTI, DKI, QTI and CTI will be discussed alongside the 
widely used Kärger model of exchange as well as common models of restricted diffusion. 

5.1 Non-exchanging Gaussian environments 

This section presents common dMRI models and signal representations describing 
diffusion in ensembles of non-exchanging Gaussian environments (DTI, DKI, QTI), 
ending with a novel extension capturing intra-compartmental non-Gaussian diffusion 
(CTI). 

The overarching signal representation governing the approaches outlined herein 
considers a diffusion environment featuring multiple distinct components, each having 
its own set of second and fourth-order cumulants 𝑜ଶ and 𝑜ସ. Averaging over these 
components provides (Jespersen et al. 2019) 

ln 𝑆/𝑆଴ ≈ −
1

2
〈𝑜ଶ〉 +

1

24
ቀ⟨𝑜ସ⟩ + 3(〈𝑜ଶ

ଶ〉 − 〈𝑜ଶ〉ଶ)ቁ (31)

35



36 

That is, the second cumulant is merely the average of the individual second cumulants 
while the fourth cumulant contains an average of the individual fourth cumulants (the 
intra-compartmental, microscopic or intrinsic contribution) plus the dispersion in 
second cumulants (the intercompartmental contribution). An expression for 𝑜ଶ was 
derived in previous chapters: 𝑜ଶ = 2𝐁: 𝐃.  

5.1.1 Diffusion tensor imaging 

Diffusion tensor imaging has become a cornerstone technique in neuroimaging, finding 
widespread application in studies of normal brain development and ageing(Moseley 
2002; Scholz et al. 2009; Lebel and Deoni 2018) as well as in pathologies such as stroke 
(Sotak 2002) and cancer (Jiang et al. 2014). DTI considers measurements at low b-
values where the signal is adequately described by only the second-order cumulant, 
giving the representation (Basser et al. 1994) 

ln 𝑆/𝑆଴ ≈ −𝐁: ⟨𝐃⟩ (32) 

where ⟨𝐃⟩ is the average diffusion tensor in an environment characterised by a 
distribution of diffusion tensors. Estimation of this tensor allows the definition of 
metrics such as the mean diffusivity, MD, proportional to its trace, and the fractional 
anisotropy (FA) quantifying its anisotropy. 

5.1.2 Diffusion kurtosis imaging 

Diffusion kurtosis imaging (Jensen et al. 2005; Jensen and Helpern 2010) is an 
extension of DTI that captures tissue heterogeneity and has been shown to outperform 
DTI in tumour grading (Raab et al. 2010; Van Cauter et al. 2012). DKI relies on 
measurements at higher b-values which provide access to the fourth cumulant in Eq. 
16, giving the signal representation (Jensen et al. 2005)  

ln 𝑆/𝑆଴ ≈ −𝐁: ⟨𝐃⟩ +
1

6
𝐁⨂ ଶ𝐷ഥଶ: 𝕎,  (33) 

where 𝕎 is a fourth-order total kurtosis tensor quantifying deviation from Gaussian 
diffusion and 𝐷ഥ =

ଵ

ଷ
trace(⟨𝐃⟩). The term “total” is used to indicate that the tensor 

incorporates all kurtosis sources such as isotropic and anisotropic and microscopic. 
Taking the powder average of Eq. 33 provides the familiar DKI signal representation 
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ln 𝑆/𝑆଴ ≈ −𝑏𝐷ഥ +
1

6
𝑏ଶ𝐷ഥ𝐾் ,  (34) 

where 𝐾் is the mean total kurtosis (note that this is generally different from the average 
of kurtosis measured in different directions). 

5.1.3 Q-space trajectory imaging 

Diffusion kurtosis imaging, owing to its reliance on SDE acquisitions, is inherently 
incapable of resolving the isotropic and anisotropic components of the kurtosis tensor. 
Isotropic heterogeneity and microscopic anisotropy can be teased apart by varying the 
shape of the b-tensor, which demands going beyond the canonical SDE and using, for 
example, a combination of planar and orthogonal DDE (Cory 1990; Shemesh et al. 
2010; Jespersen et al. 2013), or more generally using free waveforms and the q-space 
trajectory imaging (QTI) framework (Westin et al. 2016). Dissociating isotropic 
heterogeneity and microscopic anisotropy has been shown to improve tissue 
characterisation in conditions such as cancer (Szczepankiewicz et al. 2016), epilepsy 
(Lampinen et al. 2020b) and multiple sclerosis (Andersen et al. 2020). QTI is founded 
on the multiple Gaussian components premise where ⟨𝑜ସ⟩ is assumed to be zero. The 
signal representation reads (Jensen et al. 2005; Westin et al. 2014, 2016)  

ln 𝑆/𝑆଴ ≈ −𝐁: ⟨𝐃⟩ +
1

2
𝐁⨂ ଶ: ℂ,  (35) 

where ℂ is a fourth-order covariance tensor given by 

ℂ = ൻ𝐃⨂ ଶൿ − ⟨𝐃⟩⨂ ଶ. (36) 

The role of the b-tensor shape can be appreciated by considering the powder average of 
Eq. 35, 

ln 𝑆/𝑆଴ ≈ −𝑏𝐷ഥ +
1

2
𝑏ଶ൫𝑉ூ + 𝑏୼

ଶ𝑉஺൯, (37) 

where 𝐷ഥ = ⟨𝐃⟩: 𝐈ூ is the mean diffusivity with 𝐈ூ being an isotropic tensor, 𝑉ூ and 𝑉஺ 
are the isotropic and anisotropic variances defined through 𝑉ூ = ℂ: 𝕀ூ and 𝑉஺ = ℂ: 𝕀஺ 
where 𝕀ூ and 𝕀୅ are fourth-order isotropic tensors, respectively, (Basser and Pajevic 
2003; Eriksson et al. 2015; Westin et al. 2016; Nilsson et al. 2020) and 𝑏୼ is the shape 

of the b-tensor given for axisymmetric tensors by 𝑏୼ =
൫ఒ||ିఒ఼൯

௕
 where 𝜆|| and 𝜆ୄ are 
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the axial and radial eigenvalues (Eriksson et al. 2015). For linear, planar and spherical 
tensor encoding, 𝑏୼ takes the values 1, -1/2 and 0, respectively. SDE acquisitions yield 
linear tensors which probe the total variance given by 𝑉் = 𝑉ூ + 𝑉஺.  

5.1.4 Correlation tensor imaging 

Correlation tensor imaging (CTI) extends the QTI framework outlined above to enable 
estimation of, in addition to isotropic and anisotropic, microscopic kurtosis (Jespersen 
et al. 2019; Henriques et al. 2020, 2021). Microscopic kurtosis can stem from, for 
example, restricted diffusion or cross-sectional variation and has been shown to be 
important both in the healthy human brain (Novello et al. 2022) and in stroke (Alves 
et al. 2022). CTI uses a combination of SDE and parallel and orthogonal DDE 
acquisitions in the long mixing time regime to resolve the three kurtosis sources. The 
powder-averaged CTI signal representation (Henriques et al. 2021), written to align 
with the notation of the discussion above (Paper IV), is given by 

ln 𝑆൫𝑏, 𝑏∆
ଶ, 𝑏ఓ

ଶ൯/𝑆଴ ≈ −𝑏𝐷ഥ +
1

6
𝑏ଶ 𝐷ഥଶ൫𝐾ூ + 𝑏∆

ଶ𝐾஺ + 𝑏ఓ
ଶ𝐾ఓ൯,    (38) 

where 𝑏 = 𝑏ଵ + 𝑏ଶ is the total b-value, 𝑏∆
ଶ and 𝑏ఓ

ଶ are given by 

𝑏∆
ଶ =

𝑏ଵ
ଶ + 𝑏ଶ

ଶ + 𝑏ଵ𝑏ଶ(3 cosଶ 𝜃 − 1)

(𝑏ଵ + 𝑏ଶ)ଶ
= ቊ

1; SDE or parallel DDE
భ

ర
; orthogonal DDE if 𝑏ଵ = 𝑏ଶ

,    (39) 

which is in line with the preceding section, and 

𝑏ఓ
ଶ =

𝑏ଵ
ଶ + 𝑏ଶ

ଶ

(𝑏ଵ + 𝑏ଶ)ଶ
= ൜

1; SDE 
భ

మ
;  DDE  if 𝑏ଵ = 𝑏ଶ

.  (40) 

Thus, 𝐾஺ is accessed by contrasting parallel and orthogonal DDE acquisitions while 𝐾ఓ 
is obtained by contrasting an SDE and a parallel DDE acquisition at the same b-value. 

Assuming 𝑏ଵ = 𝑏ଶ, the contrast giving rise to microscopic kurtosis is given by 

ln൫𝑆(𝑏, 1,1)൯ − ln ൬𝑆 ቀ𝑏, 1,
ଵ

ଶ
ቁ൰ =

1

12
𝑏ଶ𝐷ഥଶ𝐾ఓ .   (41) 

The functional form of this contrast is significant for later chapters that will discuss the 
role of intercompartmental exchange in microscopic kurtosis estimation.  
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5.2 Restricted and hindered diffusion 

The microstructure of biological tissues can be probed with dMRI because the time 
scales for water molecules to diffuse across typical restriction lengths in tissue are 
commensurate with the time scales for typical dMRI experiments (10-100 ms) (Price 
2009; Reynaud 2017). The relevant timescale for restricted diffusion is set by 

𝜁 =
𝑅ଶ

𝐷଴
,  (42) 

where 𝑅 is the typical restriction length and 𝐷଴ is the bulk diffusivity. In complex media 
such as biological tissue, there is generally no analytical solution for the diffusion 
equation and thus for the diffusion time-dependence. The diffusion problem simplifies 
in only two regimes: (i) the short time regime (𝑡ௗ ≪ 𝜁) where time dependence is 
governed by the surface-to-volume ratio (Mitra et al. 1993) and (ii) the tortuosity limit 
(𝑡ௗ ≫ 𝜁) where diffusion is no longer time-dependent and can be described by a 
constant diffusion coefficient 𝐷ஶ (Price 2009; Callaghan 2011b; Reynaud 2017). 

5.2.1 Geometric models and the Gaussian phase approximation 

Restricted diffusion is typically described using geometrical models that depict tissue as 
comprising regular structures such as spheres or cylinders, to facilitate analytical 
solutions for the diffusion equation. The signal evolution can be described using the 
multiple propagator formalism introduced earlier (Caprihan et al. 1996; Callaghan 
1997; Drobnjak et al. 2010), but such expressions are computationally demanding 
especially for arbitrary gradient waveforms. More practical models of restricted 
diffusion are based on the Gaussian Phase Approximation, where they assume that the 
signal is described fully by the second cumulant (Douglass and McCall 1958; Neuman 
1974; Topgaard 2025). Geometric models of restricted diffusion have been used 
extensively for axon diameter mapping and cell size estimation in both health and 
disease (Stanisz et al. 1997; Assaf et al. 2004, 2008; Assaf and Basser 2005; Barazany et 
al. 2009; Alexander et al. 2010; Panagiotaki et al. 2014; Jiang et al. 2016; Reynaud et 
al. 2016; Veraart et al. 2020; Palombo et al. 2020b). 

The general solution for the diffusion equation in bounded media can be written in 
terms of the eigenfunction expansion (Stepišnik 1993; Callaghan 1995)  

𝑃(𝐫଴, 𝐫ଵ, 𝑡) =  ෍ 𝑢௞(𝐫଴)𝑢௞(𝐫ଵ)exp(−𝑎௞𝐷଴|𝑡|)

௞

, (43) 
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where 𝑢௞ are a set of orthogonal spatial eigenfunctions determined by the geometry 
and 𝑎௞ are the corresponding eigenvalues. This enables analytical expressions for the 
diffusion spectrum which facilitates evaluation of the second cumulant according to 
Eq. 21. For example, for diffusion perpendicular to a cylinder, the diffusion spectrum 
is given by (Mitra et al. 1992; Stepišnik 1993) 

𝐷(𝜔) = ෍ 𝐵௞

𝑎௞𝐷଴𝜔ଶ

𝑎௞
ଶ𝐷଴

ଶ + 𝜔ଶ
௞

 , (44) 

where 𝐵௞ =
ௗమ

ଶఓೖ
మ൫ఓೖ

మିଵ൯
, 𝑎௞ = ቀ

ଶఓೖ

ௗ
ቁ

ଶ
 and 𝜇௞ is the kth root of 𝐽ଵ

ᇱ (𝜇) = 0 where 𝐽ଵ is 

the Bessel function of the first order and kind. 

5.2.2 Low-frequency approximation of the diffusion spectrum 

The diffusion spectrum in Eq. 44—described by a sum of Lorentzians—can be 
represented by its low-frequency Taylor series expansion (Stepišnik 1993; Lundell et al. 
2019)  

𝐷(𝜔) ≈ 𝑅𝜔ଶ, (45) 

where 𝑅, referred to as the restriction coefficient (Nilsson et al. 2017) is defined 
through 𝑅 = 𝑐𝑑ସ/𝐷଴,where 𝑑 is the compartment size and 𝑐 is a constant. The utility 
of this representation is that it provides a signal equation that factorises the 
microstructure from the encoding. To illustrate, with the spectrum given in Eq. 45, the 
signal evaluates to   

ln 𝑆/𝑆଴ ≈  −
1

2𝜋
න |𝑄(ω)|ଶ ∶ 𝑅𝜔ଶd𝜔

ஶ

ିஶ

= −𝑅𝑏𝑉ఠ , (46) 

where 

𝑉ఠ =
1

2𝜋𝑏
න |𝑄(𝜔)|ଶ

ஶ

ିஶ

𝜔ଶ𝑑𝜔 =
𝛾ଶ

𝑏
න 𝑔ଶ(𝑡)d𝑡

்

଴

. (47) 

Notice that while 𝑅 contains microstructural information, 𝑉ఠ describes the diffusion 
encoding—that is, the experiment used to access 𝑅. This separation between 
microstructure and encoding provides insights into how to design the experiment to 
maximise sensitivity to the microstructure and will be treated in more detail in later 
chapters.  
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5.2.3 Hindered diffusion and structural disorder 

Hindered diffusion is associated with irregular geometries which makes analytical 
solutions difficult to derive. A solution, as alluded to earlier in this section, is to resort 
to extremes where enough coarse-graining has occurred such that global similarity 
emerges between complex environments that are structurally distinct (Novikov et al. 
2014). In a regime approaching the long-time limit, hindered diffusion is described in 
terms of structural disorder and the diffusion spectrum follows a power law scaling 
according to (Novikov et al. 2014, 2019; Burcaw et al. 2015; Lee et al. 2020) 

𝐷(𝜔) ≈ 𝐷ஶ + 𝐶 ⋅ 𝑅𝑒(𝑖𝜔)ఏ   , (48) 

where 𝐶 is a constant, 𝑅𝑒 denotes real part, and 𝜃 is a dynamical exponent reflecting 
the degree of disorder in the system. Knowledge of the dynamical exponent sheds light 
on the relevant mesoscopic structures influencing the diffusion-weighted signal. Short-
range disorder (𝜃 = 1) is the most common disorder class and gives a linear dependence 
on frequency (Novikov et al. 2019) 

𝐷(𝜔) ≈ 𝐷ஶ + 𝐶 ⋅ |𝜔|. (49) 

5.3 Exchange 

The diffusion problem describing a multicomponent system in exchange is intractable 
in all but the simplest geometries. Early models of exchange by Tanner (Tanner 1978), 
von Meerwall and Ferguson (von Meerwall and Ferguson 1981) and later Kuchel and 
Durrant (Kuchel and Durrant 1999) focused on diffusion restricted by permeable 
planar layers. Following a different approach, Jiang et al (Jiang et al. 2001) proposed a 
two-phase exchange model where both pores and the space between them were 
modelled with spheres and the exchange mechanism was based on the pore-hoping 
formalism of Callaghan (Callaghan et al. 1992). However, the most well-adopted 
model of exchange in dMRI—fundamentally different from the above as it is not based 
on geometrical considerations—was developed by Kärger (Kärger 1985; Kärger et al. 
1988) based on a combination of the diffusion equation and the Chapman-
Kolmogorov equations for Markov chains. The remainder of this chapter presents the 
principles of the Kärger model and outlines its prominent derivatives. 
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5.3.1 The Kärger model 

The Kärger model underpins all exchange estimation with dMRI (Fieremans et al. 
2010; Nilsson et al. 2010; Moutal et al. 2018; Jelescu et al. 2020, 2022; Olesen et al. 
2022; Uhl et al. 2024; Chan et al. 2025). In its basic form, it describes the continuous 
exchange between two well-mixed isotropic pools of freely diffusing spins (Kärger 
1985). The evolution of the signals from the two pools (denoted 1 and 2) is given by 
the coupled system of differential equations 

𝜕

𝜕𝑡
൬

𝑆ଵ

𝑆ଶ
൰ = [𝐾 − 𝐷𝑞(𝑡)ଶ] ൬

𝑆ଵ

𝑆ଶ
൰ , (50) 

where 𝐾 is the matrix of exchange rates given by 

𝐾 = ൤
−𝑘ଵଶ 𝑘ଶଵ

𝑘ଵଶ −𝑘ଶଵ
൨, (51) 

where 𝑘ଵଶ is the exchange rate from pool 1 to 2 and vice versa, and 𝐷 is a diagonal 
matrix of diffusion coefficients in both environments 

𝐷 = ൤
𝐷ଵ 0
0 𝐷ଶ

൨. (52) 

Note that exchange is modelled here as a Poisson process described by a constant rate 
matrix and the exchange rates obey the detailed balance 

𝑓ଵ𝑘ଵଶ = 𝑓ଶ𝑘ଶଵ, (53) 

where 𝑓௜ is the equilibrium fraction of spins in pool 𝑖 such that 𝑓ଵ + 𝑓ଶ = 1. 

When 𝑞(𝑡) is constant in time (which is the case for single diffusion encoding with 
narrow pulses), the Kärger equations (Eq. 50) can be solved analytically to yield the 
solution  

𝑆(𝑞, 𝑇)/S଴ =  𝟏 ∙ exp([𝐾 − 𝐷𝑞ଶ]𝑇) ∙ 𝐹, (54) 

where 𝟏 = [1  1], 𝐹 = [𝑓ଵ   𝑓ଶ]ᇱ and 𝑇 is the total duration of the diffusion encoding 
gradients. For non-constant 𝑞(𝑡), the Kärger equations cannot be solved analytically in 
closed form and require the multiple propagator approach, as we presented previously 
(Chakwizira et al. 2021) 



43 
 

𝑆(𝑞௜,  Δ𝑡, 𝑁)/𝑆଴ = 𝟙 ⋅ ෑ exp൫ൣ𝐾 − 𝐷𝑞௜
ଶ൧∆𝑡൯

ே

௜ୀଵ

⋅ 𝐹, (55) 

where 𝑞(𝑡) is discretised into 𝑁 steps such that  𝑇 = 𝑁Δ𝑡. This equation predicts the 
effects of exchange on the signal acquired using arbitrary gradient waveforms. However, 
as noted earlier, the flexibility afforded by this type of discretised solution comes at a 
cost. Using a coarse temporal resolution (large Δ𝑡) introduces numerical errors. A finer 
resolution gives higher accuracy but drastically increases the computation time due to 
the large number of matrix exponentials required to evaluate the signal evolution, 
making the equation impractical for model fitting.    

5.3.2 Cumulant expansions for measuring exchange 

An alternative, and arguably more intuitive, way of describing the diffusion-weighted 
signal in exchanging Gaussian pools is based on the cumulant expansion of Eq.54, valid 
at low b-values (Jensen et al. 2005) 

ln(𝑆/𝑆଴) ≈ −𝑏 ⋅ 𝐷ഥ +
1

2
𝑏ଶ ⋅ 𝑉஽ ⋅ 𝑓(𝑘, Δ),  (56) 

where 𝐷ഥ = 𝑓ଵ𝐷ଵ + 𝑓ଶ𝐷ଶ is the mean diffusivity, 𝑉஽ = 𝑓ଵ𝑓ଶ(𝐷ଵ − 𝐷ଶ)ଶ is the variance 
in diffusivities, 𝑘 = 𝑘ଵଶ + 𝑘ଶଵ is the sum of the forward and reverse exchange rates and  

𝑓(𝑘, Δ) =
2

𝑘Δ
−

2

(𝑘Δ)ଶ
+

2

(𝑘Δ)ଶ
eି௞୼  (57) 

describes the temporal decline in variance due to exchange. The equation above is valid 
for SDE with narrow pulses. It was generalised by Ning et al. (Ning et al. 2018) to 
arbitrary gradient waveforms, yielding 

ln(𝑆/𝑆଴) ≈ −𝑏 ⋅ 𝐷ഥ +
1

2
𝑏ଶ ⋅ 𝑉஽ ⋅ ℎ(𝑘),  (58) 

where ℎ(𝑘) is the generalised exchange-weighting function given by 

ℎ(𝑘) = 2 න 𝑞ସ෦(𝑡)
்

଴

⋅ exp(−𝑘𝑡) dt ,  (59) 

where 𝑞ସ෦(𝑡) = 𝑞ସ(𝑡)/𝑏ଶ and 
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𝑞ସ(𝑡) = න 𝑞ଶ(𝑡ᇱ)𝑞ଶ(𝑡ᇱ + 𝑡)d𝑡ᇱ
்

଴

(60) 

is the fourth-order autocorrelation function of the dephasing q-vector. If the value of 
𝑘𝑡 is small enough to permit the approximation exp(−𝑘𝑡) ≈ 1 − 𝑘𝑡, the exchange-
weighting function ℎ(𝑘) can be written 

ℎ(𝑘) ≈  (1 − 𝑘Γ) , (61) 

where 

Γ = 2 න 𝑡 𝑞ସ෦(𝑡)
்

଴

d𝑡 (62) 

is the exchange-weighting time. The quantity Γ is, to first order, a measure of the 
exchange weighting performed by the gradient waveform 𝑔(𝑡). 

Since the CTI framework discussed in the preceding chapter exploits the contrast 
between SDE and DDE at a fixed b-value, it is worth noting that the exchange-
weighting function for narrow-pulse DDE evaluates to (Ning et al. 2018) 

ℎ஽஽ா(𝑘, Δ, 𝑡௠) =
1

2
ℎௌ஽ா(𝑘, Δ) +

1

2(𝑘Δ)ଶ ൫eି௞௧೘ + eି௞(ଶ୼ା௧೘) − 2eି௞(୼ା௧೘)൯ . (63)

Eq. 58 predicts that, for any given exchange rate, the signal contrast 

ln 𝑆(𝑏, ℎௌ஽ா) − ln 𝑆(𝑏, ℎ஽஽ா) =
1

6
𝑏ଶ𝐷ഥଶ𝐾் ⋅ (ℎௌ஽ா − ℎ஽஽ா), (64) 

where ℎௌ஽ா = 𝑓(𝑘, Δ), gives the maximum attainable signal attenuation. That is, 
exchange sensitivity is driven by the SDE-DDE signal difference at a fixed b-value. 

5.3.3 Filter-exchange imaging 

Another derivative of the Kärger model is filter-exchange imaging (FEXI) which uses 
DDE with multiple mixing times to measure exchange (Callaghan and Furó 2004; 
Åslund et al. 2009; Lasič et al. 2011) (Fig. 4). FEXI has been applied to measure 
exchange in both the healthy human brain (Nilsson et al. 2013; Bai et al. 2020), in 
brain tumours (Lampinen et al. 2017b) and with modifications to assess blood-brain 
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Figure 4. Filter-Exchange Imaging (FEXI). Panel (A) shows the pulse sequence and (B) illustrates the principle. The 
filter block (red in panel A) perturbs the equilibrium signal fractions by attenuating fast-diffusing spins (panel B), leading 
to a reduction in the ADC. During the mixing time (tm), the fractions return to equilibrium at a rate called the apparent 
exchange rate (AXR). The detection block (blue) is applied with multiple b-values to enable ADC estimation at each 
mixing time. The AXR is then obtained using Eq. 68. Crusher gradients (green in panel A) are used to eliminate 
unwanted signal pathways. Note that panel (A) displays the effective gradient waveform incorporating effects of the RF 
pulses. Subscripts “f”, “c” and “d” denote filter, crusher and detection, respectively. δ is the pulse duration in the 
encoding and filter blocks, δπ is the pause time and δc is the crusher gradient duration. Figure adapted from Paper III, 
published by John Wiley & Sons Ltd. 

barrier permeability in neurodegenerative diseases (Zhang et al. 2023). It considers two 
tissue components: a slow and a fast, associated with fractions 𝑓ௌ and 𝑓ி = 1 − 𝑓ௌ and 
diffisivities 𝐷ௌ and 𝐷ி > 𝐷ௌ, respectively. The component fractions are at their 
equilibrium values (𝑓ௌ

௘௤ and 𝑓ி
௘௤) at time zero. The signal at equilibrium is given by  

𝑆(𝑏) = 𝑆଴൫𝑓ௌ
௘௤

𝑒ି௕஽ೄ + 𝑓ி
௘௤

𝑒ି௕஽ಷ൯  ≈ 𝑆଴𝑒ି௕⋅஺஽஼೐೜ , (65) 
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where 𝐴𝐷𝐶௘௤ = 𝑓ௌ
௘௤

𝐷ௌ + 𝑓ி
௘௤

𝐷ி. Application of the filter block causes greater signal 
attenuation in the fast-diffusing pool than in the slow (Fig. 4B), leading to perturbed 
signal fractions (𝑓ௌ

ᇱ and 𝑓ி
ᇱ) and a reduction in the ADC. With increasing mixing time, 

the fractions return to equilibrium following (Lasič et al. 2011) 

𝑓ௌ(𝑡௠) = 𝑓ௌ
௘௤

+ ൫𝑓ௌ
ᇱ − 𝑓ௌ

௘௤
൯𝑒ି஺௑ோ⋅௧೘;     𝑓ி(𝑡௠) = 1 − 𝑓ௌ(𝑡௠), (66) 

where 𝐴𝑋𝑅 ≈ 𝑘 from the previous chapter. In accordance with Eq. 65 above, the 
dependence of the signal on the mixing time is given by 

𝑆(𝑏, 𝑡௠) = 𝑆௙(𝑡௠)൫𝑓ௌ(𝑡௠)𝑒ି௕஽ೄ + 𝑓ி(𝑡௠)𝑒ି௕஽ಷ൯ ≈ 𝑆௙(𝑡௠)eష್⋅ಲವ಴ᇲ(೟೘), (67) 

where 𝑆௙(𝑡௠) is the signal in the absence of diffusion encoding gradients (different 
from 𝑆଴ due to diffusion and T2 relaxation in the filter block, as well as T1 relaxation 
during the mixing time) and 

𝐴𝐷𝐶ᇱ(𝑡௠) = 𝐴𝐷𝐶௘௤[1 − 𝜎𝑒ି஺௑ோ⋅௧೘], (68) 

where 𝜎 is the filter efficiency defined as 

𝜎 = 1 −
𝐴𝐷𝐶ᇱ(0)

𝐴𝐷𝐶௘௤
, (69) 

which quantifies the relative ADC reduction at a mixing time of zero. 
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6 The inverse problem: dissociating 
entangled contrasts 

The diffusion MRI experiment produces signal intensities. The previous chapter 
elaborated on a plethora of forward modelling approaches that predict the signal given 
prior knowledge of the microstructure and the experimental setup. The real challenge 
concerns the inverse problem where, given the signal and the experimental setup, 
information about the microstructure must be inferred by fitting the model to the 
signal. A long-standing hardship in this context is that the signal arises from more 
sources than are captured by the theory, or that the experimental approach conflates 
multiple sources of contrast. The result is biased estimation and misinterpretation, 
which hinders dMRI from realising its ambition of becoming a tool for virtual biopsy. 
Entangled contrasts are commonplace in the field, and this thesis makes no attempt at 
an exhaustive overview of all. Instead, emphasis is placed on those deemed relevant to 
most time-dependent dMRI studies, yet still lack an established remedy. Specifically, 
this chapter will highlight the entanglement between exchange and three other 
microstructural features: restricted diffusion, anisotropy and intra-compartmental 
kurtosis.  

6.1 Exchange and restricted diffusion 

It has been shown previously that restricted diffusion and exchange are entangled in an 
SDE experiment varying the diffusion time (Nilsson et al. 2009; Olesen et al. 2022). 
As the diffusion time increases, restrictions cause a reduction in the diffusivity and an 
increase in kurtosis, leading to an elevated signal. On the contrary, exchange causes an 
increase in diffusivity (if fast) and a decrease in kurtosis, leading to a decrease in signal. 
As a result, fast (or non-barrier-limited) exchange which manifests already in the 
second-order cumulant will bias size estimation if not modelled. Furthermore, 
restricted diffusion, especially in large confinements, leads to biased exchange estimates 
by introducing unmodelled time-dependence in the fourth cumulant. This problem 
was recognised in the past and many solutions have been proposed.  
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Aiming to account for restricted diffusion, modifications of the Kärger model have been 
suggested (Pfeuffer et al. 1998; Price et al. 1998; Meier et al. 2003). All are based on 
replacing the constant diffusion coefficient in one of the spin pools in the Kärger model 
with a time-dependent variant obtained from analytical solutions for restricted 
diffusion in impermeable regular geometries (or simply setting the diffusivity to zero 
under the assumption of long diffusion times). While this solves the problem in the 
case of narrow pulses where q is constant in time, more general gradient waveforms 
require signal evaluation via the multiple propagator formalism, where the value of the 
intracellular diffusivity at every time-point must be considered. A solution to this 
problem can be obtained via the position autocorrelation function for regular 
geometries (Chakwizira et al. 2022)  

1

2
⟨𝜙ଶ⟩ =

1

2
ඵ 𝑔(𝑡ଵ)𝑔(𝑡ଶ)

்

଴

⟨𝑥(𝑡ଵ)𝑥(𝑡ଶ)⟩d𝑡ଵd𝑡ଶ = −𝑏 ⋅ 𝐷ଵ(⋅), (70) 

where, for example, for a cylindrical geometry, the autocorrelation function is given by 
(Stepišnik 1993) ⟨𝑥(𝑡ଵ)𝑥(𝑡ଶ)⟩ = ∑ 𝐵௞𝑒ି௔ೖ஽బ|௧భି௧మ|ஶ

௞ୀ଴  where 𝐵௞ and 𝑎௞ are as 
defined earlier (Eq. 44). Discretising Eq. 70 allows the definition of a time-dependent 
diffusivity compatible with Eq. 55 

𝐷ଵ(𝑖) =
1

2𝑏
෍ 𝑔௡

௜

௡ୀ଴

෍ 𝑔௠

௜

௠ୀ଴

෍ 𝐵௞𝑒ି௔ೖ஽బ|௠ି௡|୼௧

ஶ

௞ୀ଴

Δ𝑡Δ𝑡. (71) 

This provides a model predicting the effects of exchange and restricted diffusion on the 
signal acquired with any gradient waveform. However, the challenges discussed in 
connection with Eq. 55 for Gaussian diffusion (errors due to coarse discretisation grids 
and high computational demand for fine grids) apply here as well, if not to a worse 
degree. 

Another approach for separating restricted diffusion and exchange relies on the now 
well-appreciated phenomenon that the diffusional kurtosis as a function of diffusion 
time has a non-monotonic behaviour, undergoing a restriction-driven increase at short 
diffusion times and an exchange-driven decline at longer times. The approach involves 
collecting dMRI data with multiple diffusion times and fitting the DKI signal 
representation at each time-point. The Kärger model kurtosis time-dependence (Eq. 
57) is then fitted to the kurtosis-vs-diffusion time data to obtain an exchange rate. To
minimise the effects of restricted diffusion, the analysis is restricted to a subset of the
data for which the mean diffusivity is constant in time and the kurtosis monotonically
decreases (Jensen et al. 2005; Li et al. 2023a, 2025; Jensen 2024; Uhl et al. 2024). More
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recent work circumvents this sampling approach and derives semi-empirical expressions 
based on Monte Carlo simulations to describe both the restriction- and exchange-
driven temporal dynamics of the kurtosis (Lee et al. 2025).  

Effects of restricted diffusion also confound exchange signatures in DEXSY, where joint 
probability density functions of apparent diffusivities are typically obtained via inverse 
Laplace transforms under the assumption of Gaussian diffusion (Cai et al. 2018, 2022; 
Williamson et al. 2020). Solutions to this degeneracy have been proposed by Cai et al. 
(2022) based on a careful subsampling of DEXSY data, with the most recent approach 
defining a so-called “Diffusion-Exchange Ratio” enabling joint estimation of both 
exchange rates and compartment radii (Cai et al. 2024). As will become evident in the 
next section, their work can be viewed as a special case within the more general 
framework presented in this thesis. 

All contemporary approaches outlined above are based on narrow-pulse SDE or DDE 
and therefore lack the flexibility of experimental design that is afforded by methods 
compatible with arbitrary gradient waveforms. 

6.1.1 The utility of free gradient waveforms 

In Paper I, we used the cumulant expansion to develop a theoretical framework that 
provides insights on how to design an experiment to maximally separate time-
dependent contrasts due to restricted diffusion and exchange. Consider a voxel 
featuring multiple restricted environments in exchange with an extracellular medium 
in which diffusion is free. We represent the average diffusion spectrum in each 
environment by the low-frequency approximation 

𝐷(𝜔) ≈ 𝐷 + 𝑅𝜔ଶ, (72) 

where 𝐷 and 𝑅 are constants capturing the time-independent and the time-dependent 
components of the spectrum, and 𝑅 is the restriction coefficient defined earlier. Eq. 72 
allows the second cumulant to be written 

1

2
𝑜ଶ =

1

2𝜋
න |𝑄(𝜔)|ଶ

ஶ

ିஶ

(𝐷 + 𝑅𝜔ଶ)d𝜔 = 𝑏𝐷 +  𝑏𝑉ఠ𝑅, (73) 

where 𝑉ఠ is the restriction weighting performed by the gradient waveform 𝑔(𝑡), as 
defined earlier (Eq. 47). Averaging over multiple such environments, as done for the 
Gaussian case in Eq. 31, provides 

1

2
𝑐ଶ =

1

2
〈𝑜ଶ〉 = 𝑏𝐸஽ +  𝑏𝑉ఠ𝐸ோ , (74) 
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where “E” denotes average. In the fourth order case, the average cumulant is given by 

𝑐ସ = 〈𝑜ସ〉 + 3(〈𝑜ଶ
ଶ〉 − 〈𝑜ଶ〉ଶ) ≈ 12𝑏ଶൣ𝑉஽ + 2𝑉ఠ𝐶஽,ோ + 𝑉ఠ

ଶ𝑉ோ൧ ⋅ (1 − 𝑘Γ), (75) 

where 𝑉 denotes variance, 𝐶 denotes covariance, 𝑘 is the exchange rate and we have 
assumed that the intra-compartmental term 〈𝑜ସ〉 is zero. The full signal equation reads 

ln(S/S଴) ≈ −𝑏[𝐸஽ +  𝑉ఠ𝐸ோ] +
1

2
𝑏ଶൣ𝑉஽ + 2𝑉ఠ𝐶஽,ோ + 𝑉ఠ

ଶ𝑉ோ൧ ⋅ (1 − 𝑘Γ). (76) 

Eq. 76 describes the dMRI signal in the presence of restricted diffusion and exchange 
and is compatible with arbitrary gradient waveforms. Notably, as opposed to merely 
varying the diffusion time in an SDE experiment, this theory provides a way to design 
a two-dimensional restriction-exchange experiment. We term this framework ResEx 
(Restriction-Exchange).  

As shown in Fig. 5A-B, for a given set of hardware constraints, gradient waveforms span 
a compact region when plotting the restriction sensitivity against the exchange 
sensitivity. This region defines the measurement space and is highly governed by the 
available hardware. In this regard, free waveforms provide a wider measurement space 
than standard pulsed designs. Numerical simulations from Paper I (Fig. 5C-D) 
demonstrate the ability of ResEx to separate restriction-driven from exchange-driven 
signal contrasts. Up to a size of 12 µm, size variations give contrast in the restriction-
encoding (3 and 4) but not the exchange-encoding waveforms (1 and 2). Variations in 
exchange rate give contrast in the exchange-encoding but not the restriction-encoding 
waveforms.  

The ResEx framework also sheds light on the restriction- and exchange-weighting 
properties of other dMRI methods (Fig. 5II). FEXI—as expected—predominantly 
encodes exchange. However, note that this is assuming the absence of imaging gradients 
which may alter the restriction sensitivity of the protocol, as will be discussed in more 
detail in the next section. OGSE mainly encodes restriction but also exhibits exchange 
sensitivity. Finally, CTI which leverages the contrast between SDE and DDE to 
estimate intra-compartmental kurtosis, also bears sensitivity to exchange. This result 
suggests an interplay between exchange and intra-compartmental kurtosis and will be 
explored in more detail in a later section. 
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Figure 5. Principle of the ResEx framework. Panels A and B show the restriction-exchange landscape at 80 mT/m and 
the available measurement space with free waveforms (FWF) and single diffusion encoding (SDE) given constraints of 
maximum encoding time of 120 ms and minimum b-value of 5 ms/µm2. FWF gives a wider space than SDE. Monte 
Carlo simulations (panel C and D) illustrate that the restriction-encoding waveforms (3 and 4) respond to size but not 
exchange variations, while the opposite is true of the exchange-encoding waveforms (1 and 2). Panel (II) shows the 
restriction-exchange encoding properties of previous frameworks, where FEXI encodes exchange (panel E), OGSE 
encodes mainly restriction but also has some exchange sensitivity (panel F) and CTI encodes exchange (panel G). Figure 
adapted from Paper I, published by John Wiley & Sons Ltd. 

In Papers II and VI, we applied the ResEx framework to develop acquisition protocols 
aimed at probing exchange and restriction in the human brain. The protocol used in 
Paper VI (Fig. 6A) was tailored for a clinical MRI scanner with a maximum gradient 
strength of 80 mT/m, and included two waveforms designed to encode exchange (1 
and 2), and two to encode restriction (3 and 4). Monte Carlo simulations were used to 
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verify the ability of the protocol to disentangle signal contrasts arising from exchange 
and restricted diffusion (Fig. 6B). 

For Paper II, we leveraged a high-performance MRI scanner featuring 300 mT/m 
gradients, enabling the design of a more advanced protocol comprising 150 distinct 
waveforms with varied sensitivities to restriction and exchange (Fig. 7A). This so-called 
discovery protocol enabled visualisation of the signal at a fixed b-value in the 
restriction–exchange landscape. The rationale was that signal variation along the 
restriction axis would indicate restricted diffusion as the dominant mechanism of time 
dependence, while variation along the exchange axis would point to exchange as the 
dominant mechanism. Monte Carlo simulations across a range of substrate sizes and 
exchange rates (Fig. 7C i and ii) confirmed this hypothesis. Finally, we developed a 
third protocol for the 300 mT/m system, featuring six waveforms for exchange 
encoding and six for restriction encoding, specifically designed to enable inversion of 
the ResEx signal representation (Fig. 7B). This protocol was also validated using 
numerical simulations where it showed the ability to distinguish exchange- from 
restriction-driven time-dependence (Fig. 7C iii and iv).  

Figure 6. ResEx protocol for in vivo studies at 80 mT/m. Panel (A) shows four waveforms designed for an 80 mT/m 
scanner, where two are exchange-encoding (1 and 2) and two are restriction-encoding (3 and 4). Simulation results in 
panel B show—as expected—that the first two waveforms are sensitive to exchange while the other two to restricted 
diffusion (cell size changes). Figure adapted from Paper VI. 
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Figure 7. ResEx protocols for in vivo studies at 300 mT/m. Panel A shows the 300 mT/m discovery protocol featuring 
150 waveforms spanning the restriction-exchange space. (B) shows waveforms for the 300 mT/m application protocol 
featuring six exchange-encoding (blue) and six restriction-encoding (red) waveforms. Panel C shows results of numerical 
simulations using both protocols, in substrates of varying size and exchange rate. For the discovery protocol (ii), 
visualisation of signals at a fixed b-value in the restriction-exchange landscape shows distinct time-dependence patterns 
in the different substrates. Restricted diffusion gives signal variation along y-axis, exchange along x-axis and both 
restriction and exchange give signal variation along the diagonal of the landscape. Note that, to enhance visual 
appreciation of the trends, five extreme points protruding from the landscape at high restriction weightings are excluded 
in Panel C (ii). Signal-vs-b curves for the application protocol (iii-iv) also indicate the ability to separate independent 
contrasts driven by restricted diffusion and exchange. Figure adapted from Paper II, published by Elsevier Inc. 
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6.1.2 Resolving crusher-induced bias in filter-exchange imaging 

As illustrated in the previous section, FEXI, which combines SDE and DDE 
acquisitions at a fixed diffusion time, isolates effects of exchange from restricted 
diffusion (Fig. 5E). However, this is true when only the diffusion-encoding gradients 
are taken into consideration. As shown in Fig. 4, a realistic FEXI pulse sequence also 
includes crusher gradients meant to eliminate unwanted signal pathways (Lasič et al. 
2011). When imaging with thin slices, strong crushers are typically used, and they 
perform additional diffusion encoding that is not accounted for by the FEXI signal 
equation. This problem has been solved previously for the case of Gaussian diffusion 
using matrix exponentials (Lasič et al. 2018; Ohene et al. 2023). However, there was 
no solution in the case of restricted diffusion until we, in Paper III, proposed a 
modification of the FEXI pulse sequence to consider the entire gradient waveform 
(filter, crushers and detection) as a triple diffusion encoding sequence (Fig. 8A). Note 
that the concept of filter and detection blocks is no longer meaningful in this new 
approach, and the two blocks are instead collectively referred to as “transverse 
encoding”, to distinguish them from the longitudinal encoding performed by the 
crushers. Note also that the term “crusher” in this context jointly refers to slice-selective 
and crusher gradients. 

The idea of the new approach was to, when varying the mixing time, increase the 
exchange weighting (Γ) while keeping the b-value and the restriction weighting (𝑉ఠ) 
fixed. This was achieved by varying both the amplitude and durations of the transverse 
encoding gradient pulses when the mixing time was changed. The resulting data, no 
longer compatible with the original FEXI signal equation, were analysed using Eq. 58 
with the generalised exchange weighting from (Ning et al. 2018) (equivalently, the 
ResEx representation without restriction-driven time-dependence). This study is an 
excellent demonstration of the power and utility of signal equations compatible with 
arbitrary experimental designs.  

We validated the modified FEXI approach (termed “Tuned Exchange Imaging”, TEXI) 
using Monte Carlo simulations in regular structures (spheres and cylinders) in exchange 
with the extracellular space (Paper III). Figure 8B shows that TEXI performs 
considerably better than the original FEXI in exchange estimation in the presence of 
restricted diffusion with strong crusher gradients. TEXI largely removed the 
dependence of exchange estimates on slice width (crusher gradient strength), yielding 
more reliable estimates. 
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Figure 8. The Tuned Exchange Imaging (TEXI) pulse sequence. Panel A shows the FEXI sequence modified to 
incorporate the effect of crusher gradients. TEXI uses the same set of RF pulses as FEXI. However, when varying the 
mixing time, the timing and amplitude of the filter and detection blocks are also varied to keep the restriction sensitivity 
fixed while increasing the exchange sensitivity. Panel B shows AXR estimates in the original FEXI (i) showing a strong 
dependence on slice thickness (or crusher strength). TEXI (ii) provides more accurate exchange estimates that are 
independent of slice thickness. Inserts show b-values and mixing times used for signal generation. Figure adapted from 
Paper III, published by John Wiley & Sons Ltd. 

6.2 Exchange and anisotropy 

The directional dependence of exchange in anisotropic brain tissue has been reported 
in several studies (Sønderby et al. 2014; Ludwig et al. 2021; Li et al. 2022; Shin et al. 
2024). This adds a source of variability which increases the challenge of reproducibility 
and interpretation of in vivo exchange estimates with dMRI. Previous work has 
proposed ways to incorporate anisotropy into exchange estimation. Fieremans et al. 
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(2010) presented the anisotropic Kärger model based on a tissue model of randomly 
packed parallel cylinders. Notably, the diffusivity according to the Kärger model 
remained independent of exchange even in the presence of anisotropy, with anisotropy 
effects manifesting in higher orders. This anisotropic Kärger model was recently 
adopted in Neurite Exchange Imaging (Jelescu et al. 2022). More recent work 
extending the Kärger model to anisotropic diffusion in the Standard Model with 
Exchange (SMEX) model (Ghazi et al. 2024) reports that incorporating planar tensor 
encoding in the form of orthogonal DDE adds additional information and removes 
degeneracies in the model fitting. However, the general knowledge of how to design 
experiments to disentangle anisotropy from exchange is still limited.  

6.2.1 Tensor-valued exchange encoding 

In Paper IV, we approached the problem of exchange and anisotropy from a favourite 
angle—free waveforms. We developed theory that describes exchange between 
anisotropic Gaussian domains and is compatible with arbitrary gradient waveforms, 
permitting flexibility of experimental design. This was achieved by extending the 1D 
multi-Gaussian exchange theory (Eq. 58-62) to a tensorial formulation 

ln 𝐸 ≈ −𝐁 ∶ 𝐃 +
1

2
ℍ(𝑘) ∶ ℂ଴, (77) 

where 𝐸 = 𝑆/𝑆଴, 𝐃 and ℂ଴ are the average diffusion tensor and diffusion tensor 
covariance of exchanging systems,  ℍ(𝑘) is the exchange-sensitised “square of the b-
tensor” defined through 

ℍ(𝑘) = 2 න ℚସ(𝑡) exp(−𝑘𝑡) d𝑡
்

଴

, (78) 

where ℚସ(𝑡) is the fourth-order autocorrelation tensor of the dephasing q-vector 
defined through 

ℚସ(𝑡) = න 𝐪⨂ ଶ(𝑡ᇱ) ⊗ 𝐪⨂ ଶ(𝑡ᇱ + 𝑡)d𝑡ᇱ
்

଴

. (79) 

Equation 77 states that, at long enough times, there will be no covariance left. However, 
a voxel may feature some non-exchanging compartments or comprise a collection of 
pairwise exchanging components with the pairs themselves not being in exchange with 
each other. In that case, Eq. 77 reads 



57 
 

ln 𝐸 ≈ −𝐁 ∶ 〈𝐃〉 +
1

2
ℍ(𝑘) ∶ ℂ଴ +

ଵ

ଶ
𝐁⨂ ଶ ∶ ℂஶ, (80) 

where ℂஶ = ൻ𝐃⊗ଶൿ − ⟨𝐃⟩⊗ଶ is the residual covariance that persists despite continuous 
local exchange. Under the rather strong assumption that all exchanging systems share 
the same exchange rate, permitting the factorisation ⟨ℍ(𝑘) ∶ ℂ଴⟩ = ℍ(𝑘) ∶ ⟨ℂ଴⟩, the 
powder average of Eq. 80 can be expressed  

ln 𝐸 ≈ −𝑏𝐷ഥ +
1

2
𝑏ଶℎ(𝑘)ൣ𝑉ூ

଴ + ℎ୼
ଶ(𝑘)𝑉஺

଴൧ +
1

2
𝑏ଶൣ𝑉ூ

ஶ + 𝑏୼
ଶ𝑉஺

ஶ൧ ,  (81) 

where ℎ(𝑘) and ℎ୼(𝑘) are the isotropic and anisotropic projections of  ℍ(𝑘) given by  

ℎ(𝑘) = (ℍ(𝑘) ∶ 9 𝕀୍ )/𝑏ଶ,  (82) 

and  

ℎ୼
ଶ(𝑘) = ൬ℍ(𝑘) ∶

9

2
𝕀஺൰ /𝑏ଶℎ(𝑘).                                       (83) 

Eq. 81 can be re-expressed in terms of kurtosis to obtain 

ln 𝐸 ≈ −𝑏𝐷ഥ +
1

6
𝑏ଶℎ(𝑘)𝐷ഥଶൣ𝐾ூ

଴ + ℎ୼
ଶ(𝑘)𝐾஺

଴൧ +
1

6
𝑏ଶ𝐷ഥଶൣ𝐾ூ

ஶ + 𝑏୼
ଶ𝐾஺

ஶ൧, (84) 

which we term MGE (Multi-Gaussian Exchange). This theory is compatible with 
arbitrary gradient waveforms and does not only account for anisotropy but in fact 
quantifies it alongside the exchange rate. Noteworthy is that the long-time kurtosis 
terms, in addition to the mechanisms described earlier, can arise from residual voxel 
anisotropy due to powder averaging. Neglecting this, as we did in Papers I and II, will 
lead to a negative bias in the estimated exchange rates. Finally, as with all other dMRI 
methods that incorporate these terms (Zhang et al. 2021; Jelescu et al. 2022), the ability 
to estimate them relies on the presence of a temporal dynamic in the kurtosis, that is, 
exchange must be non-zero.  

We evaluated MGE in Paper IV using Monte Carlo simulations in isotropic and 
anisotropic Gaussian components in exchange (Fig. 9). Signals were generated using 
the DDE protocol shown in the figure, with variable mixing times from 4 to 300 ms 
for both parallel and orthogonal DDE. All acquisitions used b-values ranging from 0.25 
to 2.5 ms/µm2. Rician noise was added to all signals at SNR = 200 prior to fitting.  
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Figure 9 highlights that, despite some bias in the estimation of the isotropic kurtosis, 
the MGE framework successfully disentangles exchange from anisotropy, and captures 
the correct exchange rate despite the presence of anisotropy. The fact that all kurtosis 
sources are largely independent of the exchange rate implies that MGE correctly probes 
the temporal dynamics of both isotropic and anisotropic components, capturing both 

Figure 9. Evaluation of MGE with Monte Carlo simulations. Panel A shows a DDE protocol featuring multiple b-
values and rotation schemes. Both parallel and orthogonal DDE acquisitions were performed with varying mixing times 
from 4 to 300 ms. Panel B shows MGE kurtosis and exchange estimates in substrates of exchanging isotropic and 
anisotropic Gaussian components. Kurtosis estimates are largely independent of the underlying exchange rate—as 
expected. Despite the bias in estimation of the isotropic component, kurtosis estimates generally agree with the ground 
truth. The exchange estimates also show good agreement with ground truth. Overall, MGE enables accurate exchange 
measurement in the presence of anisotropy. Figure adapted from Paper IV, published by Springer Nature. 
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the initial kurtosis and the long-time values. While the example shown here used DDE, 
MGE can be used with any set of gradient waveforms. A theoretical framework 
incorporating tensor-valued encoding for dissociating isotropic from anisotropic 
heterogeneity as well as the exchange rate is a powerful tool that we expect to be adopted 
in future studies.  

6.3 Exchange and intra-compartmental kurtosis 

Having addressed the problem of exchange in the presence of anisotropy, we proceed 
to the next hurdle: exchange in the presence of intra-compartmental (or microscopic) 
kurtosis. None of the exchange theories discussed so far account for this source of 
kurtosis. In systems well-described by the multi-Gaussian assumption, this is not a 
concern. However, as has become increasingly evident in recent years, diffusion in 
heterogeneous media such as biological tissue carries a non-negligible microscopic 
kurtosis (Henriques et al. 2020, 2021; Alves et al. 2022; Novello et al. 2022). The 
correlation tensor imaging (CTI) technique enables simultaneous estimation of 
isotropic, anisotropic, and microscopic kurtoses using a set of SDE and DDE 
acquisitions in the long mixing time regime. Microscopic kurtosis estimation—a novel 
contribution of CTI—is achieved using the signal contrast between an SDE and a 
parallel DDE acquisition at the same b-value (Henriques et al. 2021). In the exchange 
theories described above, maximum exchange sensitivity comes from this same contrast. 
This is not in itself a problem from the perspective of CTI, where microscopic kurtosis 
may have multiple origins, including exchange. However, reliable exchange estimation 
demands accounting for the additional unmodelled source of diffusional kurtosis. As 
will become evident in later sections, disentangling exchange from other sources of 
microscopic kurtosis may also have benefits for microstructure mapping. 

The relationship between exchange and microscopic kurtosis can be illustrated by 
comparing the signal contrasts used to quantify each phenomenon. Equating Eq. 41 
and 64 exposes this relationship in the multi-Gaussian setting 

𝐾ఓ = 2𝐾் ⋅ [ℎௌ஽ா(𝑘, Δ) − ℎ஽஽ா(𝑘, Δ, 𝑡௠)].  (85) 

At finite mixing times, Taylor-expanding the right-hand-side of Eq. 85 provides  

𝐾ఓ = 𝐾் ൬
2

3
Δ + 𝑡௠൰ 𝑘,  (86) 
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revealing that microscopic kurtosis outside the long mixing time regime is a growing 
function of the mixing time, exchange rate and diffusion time. At long mixing times, 
which is the domain of validity of CTI, one obtains  

𝐾ఓ(𝑡௠ → ∞) = 𝐾் ⋅ ℎௌ஽ா(𝑘, Δ) ≈ 𝐾் ⋅ ൬1 −
𝑘Δ

3
൰ , (87) 

showing that microscopic kurtosis is a decreasing function of the exchange rate and 
diffusion time. In the following, we present an approach for dissociating exchange from 
microscopic kurtosis, as developed in Paper IV.  

6.3.1 Dissociating exchange from intra-compartmental kurtosis  

We begin by clarifying terminology. The terms “microscopic kurtosis”, “intrinsic 
kurtosis” and “intra-compartmental kurtosis” all refer to the same CTI metric, 𝐾ఓ, 
which encompasses effects of intercompartmental exchange as well as an exchange-
independent kurtosis component. We refer to this exchange-independent component 
as “transient kurtosis”, alluding to the fact that it is likely short-lived.  

Consider a set of non-Gaussian, non-exchanging compartments, each with its 
individual diffusion and transient kurtosis tensor 𝐃௝ and 𝐖௝ . The powder-averaged 
signal from one such compartment is given by  

ln 𝐸 ≈ −𝑏𝐷௝ +
1

6
𝑏ଶ𝐷௝

ଶ𝑏ఓ
ଶ𝑊௝.  (88) 

Taking an average over all such compartments yields the signal equation 

ln 𝐸 ≈ −𝑏𝐷ഥ +
1

6
𝑏ଶ𝐷ഥଶ𝑏ఢ

ଶ𝐾ఢ +
1

6
𝑏ଶ𝐷ഥଶൣ𝐾ூ + 𝑏୼

ଶ𝐾஺൧, (89) 

where 𝐷ഥ = ൻ𝐷௝ൿ is the mean diffusivity, 𝐾ఢ =
ർ஽ೕ

మௐೕ඀

஽ഥమ  is the average transient kurtosis,   

𝐾ூ =
ଷቀർ஽ೕ

మ඀ିൻ஽ೕൿ
మ

ቁ 

஽ഥమ  is the isotropic kurtosis and 𝐾஺ =
଺

ହ
 
〈௏ഊ൫𝐃ೕ൯〉

஽ഥమ  is the anisotropic 
kurtosis. Equation 89 aligns fully with CTI, after setting 𝐾ఢ = 𝐾ఓ and 𝑏ఢ = 𝑏ఓ. 
Consider now slow exchange between the compartments, slow enough for the diffusing 
spins to spend most of the diffusion encoding time in the same compartment. In other 
words, barrier-limited exchange. It can be argued that, despite occasional spin 
migrations between compartments, the picture of distinct compartments remains a 
good approximation of the system, which entails that the quantity 𝐾ఢ continues to 
exist, independent of the exchange. The effect of exchange instead manifests in the 
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intercompartmental kurtosis sources, where it causes a temporal decline described by 
the rate 𝑘 according to the MGE framework: 

ln 𝐸 ≈ −𝑏𝐷ഥ +
1

6
𝑏ଶ𝐷ഥଶ𝑏ఢ

ଶ𝐾ఢ +
1

6
𝑏ଶ𝐷ഥଶℎ(𝑘, Δ, 𝑡௠)ൣ𝐾ூ

଴ + ℎ୼
ଶ(𝑘, Δ, 𝑡௠)𝐾஺

଴൧ . (90) 

As discussed in earlier sections, the presence of non-exchanging compartments or 
residual kurtosis due to powder averaging can be dealt with by incorporating long-time 
kurtosis sources to obtain  

ln 𝐸 ≈ −𝑏𝐷ഥ +
1

6
𝑏ଶ𝐷ഥଶℎ(𝑘, Δ, 𝑡௠)ൣ𝐾ூ

଴ + ℎ୼
ଶ(𝑘, Δ, 𝑡௠)𝐾஺

଴൧

+
1

6
𝑏ଶ𝐷ഥଶൣ𝐾ூ

ஶ + 𝑏୼
ଶ𝐾஺

ஶ + 𝑏ఢ
ଶ𝐾ఢ൧ .                                    (91) 

The signal representation in Eq. 91 is called tMGE (Multi-Gaussian Exchange with 
transient kurtosis). Inversion of this equation demands data acquired with multiple 
mixing times for both parallel and orthogonal DDE. The transient kurtosis, 𝐾ఢ, as 
described above, arises from a process that rapidly reaches the long mixing time regime 
and is independent of the intercompartmental exchange rate.  

In Paper IV, we evaluated tMGE using Monte Carlo simulations. We initially designed 
a simulation substrate to mimic the premise of tMGE, that is, a transient process that 
is exchange-independent and a slower exchange-dependent process (Fig. 10). The 
substate comprised two Gaussian components in rapid exchange with each other (100 
s-1, the transient process). The two components were jointly in much slower exchange 
(1–10 s-1) with a third compartment. Signals were generated using the same DDE 
protocol used to evaluate MGE (Fig. 9A).  

One would anticipate that 𝐾ఢ from tMGE would respond to the fast exchange process 
while the estimated 𝑘 responds to the slow exchange process. These trends are precisely 
what we observed in simulations (Fig. 10). 𝐾ఢ is non-zero and invariant to the 
‘intercompartmental’ exchange while the estimated 𝑘 grows monotonically. The 
simulations show that 𝐾ఓ from CTI is non-zero when 𝑘 is zero, suggesting that it is 
sensitive to the fast exchange process. However, as 𝑘 grows, so does 𝐾ఓ, indicating that 
it is also sensitive to the slower process. Note that the isotropic kurtosis from CTI is a 
function of 𝑘, whereas that from tMGE maintains its initial value even as 𝑘 increases.  

We also performed microstructure simulations in substrates of spheres, cylinders and 
beading structures in exchange with the extracellular space (Fig. 11). While CTI 
measures a high 𝐾ఓ as the exchange rate grows, tMGE detects no change in the transient 
kurtosis, in alignment with the theoretical discussion above. 
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Figure 10. Evaluation of tMGE with Monte Carlo simulations. In a substrate specifically designed to display transient 
kurtosis, increasing the intercompartmental exchange rate leads to a reduction in isotropic kurtosis estimated with CTI 
(panel A), accompanied by a corresponding increase in microscopic kurtosis. In contrast, tMGE (panel B) reports a 
non-zero transient kurtosis that is independent of exchange and captures intercompartmental exchange directly through 
the exchange rate 𝑘. Figure adapted from Paper IV, published by Springer Nature. 

 

Figure 11. Evaluation of tMGE and CTI with Monte Carlo simulations. Panel A: simulation substrates used: 
exchanging Gaussian components and spheres, cylinders and beads in exchange with the extracellular space. B(i) CTI 
parameter estimates, where the total, isotropic and anisotropic kurtosis sources decrease with the underlying exchange 
rate while the microscopic kurtosis increases. For tMGE (ii), the total, isotropic and anisotropic kurtoses are 
independent of the exchange rate. The transient kurtosis is invariant to the exchange rate. tMGE exchange estimates 
agree with the ground truth. Figure adapted from Paper IV, published by Springer Nature. 
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6.4 Limitations 

A critical reflection on the methods presented in this chapter is warranted. A common 
plague of all three (ResEx, MGE and tMGE) is their foundation in the cumulant 
expansion, which potentially introduces bias in parameter estimates due to the 
influence of higher order terms. Remedies for this have been proposed in other contexts 
(Ianuş et al. 2018), but have not been explored in this work. 

Furthermore, the ResEx protocols used in this work are an inefficient probe of restricted 
diffusion because they require that all waveforms in a protocol attain a set high b-value 
to probe the time-dependence of the fourth cumulant. However, this significantly 
reduces the maximum attainable 𝑉ఠ (since high-𝑉ఠ waveforms are oscillatory and thus 
less efficient), disadvantaging restriction coefficient mapping in the second cumulant. 
Access to high-performance MRI scanners featuring strong gradients resolves this 
problem, increasing the maximum attainable 𝑉ఠ at a given b-value. However, another 
problem arises. The restriction sensitivity, 𝑉ఠ, is based on a low-frequency 
approximation of the diffusion spectrum, which becomes inaccurate at high 
frequencies, especially when combined with large compartment sizes. The restriction-
weighting properties of the gradient waveform are no longer adequately described by 
𝑉ఠ, the so-called “exchange-weighting” waveforms with fixed 𝑉ఠ begin to exhibit 
restriction sensitivity and the ResEx framework becomes invalid. Restricted diffusion is 
best probed by restricting the analysis to the second cumulant and fitting the full 
diffusion spectrum to circumvent  𝑉ఠ-related limitations. Note, however, that in using 
the full spectrum, the factorisation between encoding and microstructure which gives 
insights on experimental design is lost. 

Yet another challenge with ResEx is that it represents the diffusion time-dependence of 
the second cumulant as driven solely by 𝑉ఠ𝑅, which is strictly true in a substrate of cells 
embedded in an MR-invisible medium. In complex media such as biological tissue, 
time-dependence may also arise from the extracellular space, which is associated with 
non-quadratic or even non-analytical spectra in the low frequency regime (Novikov et 
al. 2014). The presence of this unmodelled source of time-dependence complicates the 
interpretation of 𝑅 as a “restriction coefficient” and may also propagate errors to the 
other parameters of the representation.   

The weaknesses of ResEx are not restricted to 𝑉ఠ, but also manifest in the exchange-
weighting time Γ, which was defined assuming that 𝑘𝑡 ≪ 1. This approximation fails 
at high exchange rates such as those reported in recent work (Olesen et al. 2022; Uhl 
et al. 2024; Chan et al. 2025), where ResEx would likely predict a negative diffusional 
variance. Under these conditions, Γ is no longer enough to describe the exchange-
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weighting properties of a given gradient waveform. In analogy to the restriction case, 
this problem can be solved by fitting the full exchange-weighting function (Eq. 59) and 
dropping the Γ approximation. Even then, it should be noted that the foundation for 
the exchange formalism of ResEx is the Kärger model and as such, ResEx is valid for 
barrier-limited exchange that has no influence on the second cumulant. Non-barrier-
limited exchange voids this assumption, possibly leading to biased estimates. 

Some limitations unique to the tMGE and MGE frameworks are also worth 
highlighting. First, like the MGE approach of which it is an extension, tMGE becomes 
degenerate as the intercompartmental exchange rate 𝑘 approaches zero, since then the 
initial kurtosis values become inseparable from their long-time variants (Eq. 91). 
Furthermore, tMGE successfully separates transient kurtosis from intercompartmental 
exchange only when the two processes have different correlation times. When this 
condition is violated, the approach becomes degenerate. Note also that, unlike the 
MGE theory which is applicable to measurements with arbitrary gradient waveforms, 
tMGE is currently limited to DDE with narrow pulses. It also remains an open 
question whether tMGE produces meaningful results in biological tissue under realistic 
acquisition protocols and SNR.  

Finally, as indicated in the opening of this chapter, the methods presented in this thesis 
address a few entangled contrasts in dMRI but are by no means exhaustive. Other 
dimensions such as relaxation and flow remain to be explored. Previous work using 
FEXI or related methods has reported differences in transverse relaxation times between 
intra- and extracellular compartments as a source of bias in exchange estimation, and 
some propose solutions based on multi-echo-time acquisitions to enable separation of 
the two sources of contrast (Eriksson et al. 2017; Powell et al. 2023; Wu et al. 2024). 
Gradient waveforms used in the methods presented herein, especially ResEx, generally 
have varying sensitivities to flow, which becomes relevant especially for applications in 
pathologies that disrupt the blood-brain-barrier (Ahlgren et al. 2016; Szczepankiewicz 
et al. 2021a; Jalnefjord and Björkman-Burtscher 2024). These avenues will be explored 
in future work. 
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7 Interpretation and implications 

Previous chapters presented a collection of theoretical and experimental innovations to 
increase the specificity of time-dependent dMRI by dissociating entangled sources of 
contrast. In keeping with the overall goal of this thesis work—developing new MRI 
contrasts based on time-dependent dMRI—this chapter will present initial applications 
of some of the developed methods in the healthy human brain and in gliomas. The 
results focus on separating contrasts from exchange and restricted diffusion using free 
gradient waveforms. The chapter concludes by exploring a promising application: the 
potential for in vivo mapping of dendritic spine density using dMRI. 

7.1 Disentangling restriction and exchange in the healthy 
brain 

In Papers I, II and VI, we demonstrated using Monte Carlo simulations that free 
waveforms designed for selective sensitivity to restricted diffusion and exchange exhibit 
independent contrasts when cell size and permeability vary. Biological tissue presents 
an exceedingly more complex substrate than spheres and cylinders. In Paper II, we 
implemented the discovery and application protocols (Fig. 7) on a high-performance 
scanner and applied them in four healthy volunteers. The goal was to test if the same 
contrast patterns observed in simulations (Fig. 7) would also be seen in the brain. 

7.1.1 Distinct time-dependence signatures revealed in vivo 

The discovery experiment—featuring 150 distinct waveforms—provided a unique tool 
to probe brain tissue. In the cerebellar cortex (Fig.12) where both restricted diffusion 
and exchange are expected due to the abundant granule cells, the discovery protocol 
showed signal variation along both exchange and restriction axes. The internal capsule 
is predominantly white matter, where restriction effects are expected and limited 
exchange due to the presence of myelin. Indeed, the discovery protocol showed a signal 
variation along the restriction axis in this brain region. These trends were corroborated 
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Figure 12. Disentangling restriction and exchange in the human brain. Panels A and B show signals acquired with the 
300 mT/m discovery protocol at a b-value of 4 ms/µm2, plotted in the restriction-exchange landscape. Each dot 
represents the signal intensity from a unique gradient waveform. In the cerebellar cortex, the signal varies along the 
diagonal of the landscape, indicating both restriction and exchange contribute to the time-dependence. In the internal 
capsule, signal variation is along the y-axis, suggesting restriction as the dominant mechanism of time-dependence. 
Panels C and D show signal-vs-b curves for the application protocol in the cerebellar cortex and internal capsule. The 
contrast patterns corroborate the results of the discovery protocol. Overall, the ResEx framework separates restriction- 
from exchange-driven time-dependence in the healthy brain. Figure adapted from Paper II, published by Elsevier Inc. 

 

by the application protocol, whose contrasts in the same brain regions followed a similar 
pattern. These results suggest that the restriction-exchange parameters reveal distinct 
and independent time-dependence signatures in the human brain. This demonstrates 
that we have for the first time an approach for designing arbitrary gradient waveforms 
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specifically targeting restriction or exchange. The approach is a more flexible alternative 
to the diffusion time-sampling technique widely used in contemporary work measuring 
exchange via the kurtosis time dependence (Li et al. 2023a, 2025; Lee et al. 2025). 

7.1.2 Mapping restriction and exchange in vivo 

As we observed in Paper II, the restriction-exchange framework developed in Paper I 
allows estimation of restriction- and exchange-related parameters (Fig. 13). Exchange 
maps exhibited plentiful contrast, with high values indicated in grey matter compared 
to white matter. These results are in line with previous work reporting slow exchange 
in white matter due to the influence of myelin (Nilsson et al. 2013; Yang et al. 2018; 
Brusini et al. 2019; Bai et al. 2020). White matter exchange rates were, however, not 
zero, indicating some degree of intra-to-extra-axonal transport, likely at the nodes of 
Ranvier (Fig. 1). Furthermore, the cerebellar cortex featured relatively fast exchange, 
with exchange times down to 115 ms (computed as the inverse of the exchange rate). 
This is an interesting result, and it begs the question of what the underlying mechanism 
for the exchange estimates in grey matter is. Given the highly complex anatomy of the 
cerebellum as discussed earlier (section 3.1.4), exchange could be arising from water 
transport across the membranes of the granule cells, or from non-permeative water 
exchange between different domains of the crowded extracellular space, or between 
dendritic shafts and spines. Non-permeative (or geometric) exchange has been reported 
in recent studies (Khateri et al. 2022; Şimşek and Palombo 2024). Sensitivity to 
different exchange processes may also explain the discrepancy between the grey matter 
exchange times found in Paper II (115 ms or longer) and those reported in 
contemporary studies (15 ms or shorter) (Olesen et al. 2022; Jelescu et al. 2022). A 
later chapter of this thesis will explore this in more detail.  

Note that while the exchange maps in Fig. 13 are rich in contrast, the restriction maps 
are rather featureless, likely due to limited leverage along the restriction-encoding axis. 
As discussed in section 6.4, the requirement of high b-values limits the measurement 
space along the restriction axis. Another, perhaps less likely, explanation is the influence 
of diffusion time-dependence in the extracellular space which is not accounted for by 
the ResEx signal representation. It should also be mentioned that the restriction maps 
exhibit a non-physiological anterior-posterior intensity variation, likely due to gradient 
non-linearities (Fig. 13).   

We end on a positive note, remarking that while the data shown in Fig. 13 were 
acquired with a total scan time of 25 minutes, the acquisition can be down sampled to 
as little as 4 minutes (Paper II) without significantly degrading the quality of the results. 
This is important for future clinical applications where time is usually limited.  
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Figure 13. Exchange and restriction mapping in the healthy human brain using ResEx and free waveforms on a 300 
mT/m scanner. Results are shown in four volunteers. Exchange maps are rich in contrast and show high values in white 
matter compared to grey matter. The cerebellar cortex features particularly fast exchange. Restriction maps generally 
show no contrast except for hyperintense regions around the corticospinal tract and cerebellar nuclei. Figure adapted 
from Paper II, published by Elsevier Inc. 

7.2 Disentangling exchange and restriction in gliomas 

Gliomas are the most common primary tumours of the central nervous system and are 
associated with a disappointing prognosis regardless of the type of intervention used to 
manage them (Omuro and DeAngelis 2013; Jia et al. 2023). There is growing evidence 
that the membrane-bound protein AQP4 plays a role in the pathophysiology of gliomas 
(Nico et al. 2009; Papadopoulos and Verkman 2013; Sun et al. 2020) and is 
upregulated compared to normal cells (Warth et al. 2005; Maugeri et al. 2016; 
Montgomery et al. 2020). Elevated AQP4 expression leads to an increase in membrane 
permeability which can be captured via water exchange measurements with dMRI. 
Exchange estimation with dMRI may thus improve glioma characterisation by adding 
complementary information beyond that already accessible with conventional imaging. 
Exchange in gliomas has been mapped previously using FEXI (Lampinen et al. 2017b) 
where the AXR was found to be higher in gliomas compared to meningiomas. In Paper 
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VI, we examined four glioma patients preoperatively on a clinical MRI scanner using a 
custom pulse sequence and the ResEx protocol shown in Fig. 6A. Due to time 
constraints, data were acquired using only the two exchange-encoding waveforms (1 
and 2) with a total scan time of 5 minutes. Patients were labelled case 1 through 4, with 
cases 1–3 diagnosed with grade IV glioblastoma while case 4 had an astrocytoma.  

7.2.1 Distinct time-dependence signatures revealed in gliomas 

Figure 14 shows post-Gadolinium T1-weighted images for the four participants, where 
pronounced contrast enhancement was observed in cases 1-3 (glioblastoma), but not in 
case 4 (astrocytoma). Exchange-driven contrasts (signal difference between two  

Figure 14. Disentangling restriction and exchange in gliomas. Top row shows post-Gadolinium T1-weighted images 
of four glioma cases (1 to 3 are glioblastomas and 4 is an astrocytoma). Lower three rows show the signal contrast 
between the two exchange-encoding waveforms in Fig. 6 (difference scaled by average) at increasing b-values from 1.3 
to 4 ms/µm2. Contrast enhancement is generally associated with high exchange contrast. The tumour core exhibits high 
exchange contrast in some cases (1) and low in others (2), and judging by the T1-weighted images, this suggests that 
low exchange is likely related to necrosis. Case 4 presents an interesting finding, where the exchange contrast is high 
even in the absence of clear Gd contrast enhancement. Note that the U-shaped signal loss in the posterior part of the 
brain is due to a fat artifact in the diffusion-weighted images. Figure adapted from Paper VI. 
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exchange-weighting waveforms scaled by their mean) showed sensitivity to the lesions, 
with increasing conspicuity at higher b-values. This trend suggests that the mechanism 
driving the contrast is a higher-order effect beyond the apparent diffusion coefficient. 
In all cases considered, Gd-contrast enhancement was associated with elevated exchange 
contrast, likely resulting from increased permeability due to either membrane 
disruption or increased AQP4 expression as referenced above. The tumour core gave 
negligible exchange effects in cases 2 and 3, possibly due to its necrotic nature, but large 
effects in others that appeared less necrotic (case 1), indicating that exchange is likely 
related to the degree of necrosis. In the astrocytoma (case 4), elevated exchange contrast 
was observed in the left hemisphere, despite the absence of Gd-contrast enhancement. 
These observations suggest that exchange contrast may reflect microstructural changes 
not captured by conventional T1-weighted imaging. Remarkably, the discussion so far 
has only concerned signals, without modelling or parameter estimation, demonstrating 
the immense utility of the restriction-exchange framework developed in this thesis. 

7.2.2 Mapping exchange in gliomas 

The exchange contrast patterns in Fig. 14 were corroborated, as expected, by the 
parameter estimates in Fig. 15. Explorative region-of-interest analyses separately 
evaluating the oedematous, core and enhancing tumour regions showed that the 
exchange rate can distinguish between the three microstructures. Furthermore, the 
analysis revealed distinct patterns for cases 1 and 2: while the core exhibited highest 
exchange rates in case 1, it had the lowest in case 2. Exchange estimates lay between 0 
and 10 s-1, which aligns with in vivo measurements from Paper II. Overall, while 
generalisation from such small samples must be made with caution, we believe that 
these results illustrate the potential of exchange estimation with dMRI for the 
characterisation of gliomas. 
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Figure 15. Exchange mapping in gliomas using ResEx with free waveforms on an 80 mT/m system. Top row shows 
post-Gd T1- weighted images. Exchange maps show similar patterns to those observed in the contrast maps in Fig. 14. 
ROI analysis focusing on oedema, the core and the enhancing tumour show distinct patterns for the exchange rate in 
cases 1 and 2. Figure adapted from Paper VI. 

7.3 Interpreting in vivo exchange estimates: what are we 
measuring? 

Previous chapters alluded to the challenge of interpreting dMRI exchange estimates in 
living brain tissue, owing to the multiple potential mechanisms behind the observed 
contrasts. In Paper V, following previous work (Palombo et al. 2018, 2020a; 
Chakwizira et al. 2024; Palombo and Şimşek 2024; Şimşek and Palombo 2024), we 
explored the plausibility of geometric exchange between dendritic shafts and spines as 
an explanation for grey matter exchange estimates. To this end, synthetic Monte Carlo 
simulation substrates mimicking dendrites with varying spine densities were designed 
(Fig. 16) and mixed with extracellular water. The dendrites and spines were made 
permeable to allow water transport both between shafts and spines (geometric 
exchange) and between dendrites and the extracellular space (permeative exchange). 
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Simulated signals were analysed using two diffusion methods: FWF for exchange 
estimation using ResEx and DDE for microscopic kurtosis estimation using CTI.  

7.3.1 Dendritic spines may explain in vivo exchange estimates 

We observed that dendritic spines and permeative exchange have opposite effects on 
the mean diffusivity and kurtosis estimated with both ResEx and CTI: spines reduce 
the diffusivity and increase kurtosis, while permeative exchange increases diffusivity and 
reduces kurtosis (Fig. 16). More importantly, both spines and permeative exchange 
increase ResEx exchange estimates. CTI-estimated intra-compartmental kurtosis also 
increases with both modes of exchange, since it is based on the same contrast as ResEx. 
This implies that geometric and permeative exchange imprint the same exchange 
signature on the signal, making the relationship non-trivial between in vivo exchange 
estimates from dMRI and membrane permeability.  

Figure 16. Influence of geometric exchange in dendritic spines on dMRI measures. Results are shown for acquisition 
protocols designed for a 300 mT/m MRI system. The case 𝑘 = 0 represents diffusion within dendrites mixed with 20% 
extracellular water, while 𝑘 = 25 and 𝑘 = 50 s-1 represent the same configuration with intercompartmental exchange at 
the respective rates. For FWF (A), mean diffusivity (MD) and kurtosis are shown at the longest simulated Γ. Introducing 
permeative exchange consistently increases MD, reduces kurtosis, and elevates the measured exchange rate across all 
spine densities. For CTI (B), MD and total kurtosis are reported from the SDE acquisition. While MD remains largely 
unaffected by exchange, total kurtosis decreases with increasing 𝑘, and microscopic kurtosis reflects sensitivity to both 
permeative exchange and dendritic spine density. The key takeaway is that diffusion MRI-derived exchange estimates 
are modulated by both permeative and non-permeative exchange mechanisms. Figure adapted from Paper V. 
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7.3.2 Diffusion MRI: a potential probe of dendritic spine density

The tMGE framework we developed in Paper IV enables the estimation of an exchange-
independent intra-compartmental kurtosis (termed “transient” kurtosis) and the 
exchange rate, provided that the temporal dynamics of the former proceed on a 
substantially shorter timescale than the latter. The substrate considered in Fig. 16 
potentially satisfies this condition, with the spines providing the cross-sectional variance 
that gives rise to intra-compartmental kurtosis (Henriques et al. 2021). 

We explored this possibility in Paper V and observed that, indeed, tMGE can 
disentangle geometric contributions from permeative exchange, successfully isolating 
the two mechanisms (Fig. 17). Notably, transient kurtosis reflected dendritic spine 
density while remaining insensitive to permeative exchange, whereas the exchange 
parameter specifically captured permeative exchange and was unaffected by spine 
density. Note that while the mean diffusivity and total kurtosis also display sensitivity 
to spine density and insensitivity to the exchange rate (Fig. 17), we anticipate the 
transient kurtosis to be more specific to spines.  

Figure 17. Dissociating permeative from geometric exchange. Simulated signals were generated using a multi–mixing 
time DDE protocol and analysed using tMGE. The substrate modelled diffusion in dendrites mixed with 20% 
extracellular water, with intercompartmental exchange rates of 𝑘=25 and 𝑘=50 s-1. Panels A and B demonstrate that 
both mean diffusivity (MD) and kurtosis vary with spine density but are unaffected by permeative exchange. Similarly, 
transient kurtosis (C) increases with spine density yet remains independent of permeative exchange. In contrast, the 
estimated exchange rate (D) increases with permeative exchange but is insensitive to spine density. These results 
highlight the potential of tMGE to disentangle the effects of dendritic spines from those of permeative exchange in 
diffusion MRI. Figure adapted from Paper V. 

This finding is particularly exciting: beyond enabling more robust estimates of 
intercompartmental exchange, tMGE offers a parameter that is selectively sensitive to 
dendritic spine density. Given that spine density plays a key role in learning, 
development, and a range of brain disorders (Penzes et al. 2011), the prospect of reliably 
mapping it non-invasively with dMRI opens up transformative possibilities for 
neuroscience research and clinical applications. 
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8 Conclusions and future work 

Time-dependent dMRI and the processes giving rise to the observed contrasts are 
complex. Gaining an understanding of the problem is a multi-step process, and this 
thesis has paved the way for multiple such steps. From an overarching perspective, this 
thesis has presented a set of tools—combining both theory and experimental design—
to disentangle multiple contrasts: exchange and restricted diffusion, exchange and 
anisotropy as well as exchange and intra-compartmental kurtosis.  

Restricted diffusion and exchange were dissociated by leveraging free gradient 
waveforms, which allowed the design of experiments selectively sensitive to both 
phenomena. The approach—implemented on a high-performance MRI scanner—
successfully separated restriction- from exchange-driven contrasts in the healthy brain 
and enabled independent estimation of parameters related to both. Applications in 
gliomas on a clinical MRI system revealed substantial exchange-driven contrasts in the 
lesions, indicating potential for tumour characterisation. Furthermore, the approach 
proved capable of resolving imaging-gradient-induced biases in FEXI, enabling more 
reliable AXR estimation.  

Finally, to decipher the mechanisms underlying in vivo exchange estimates, the 
interplay between dendritic spine-driven geometric exchange and permeative exchange 
was numerically investigated. The results indicate that both geometric and permeative 
exchange influence dMRI exchange estimates. An approach to separate the two effects 
was proposed, yielding unconfounded estimates of permeative exchange as well as a 
method for potentially mapping spine density. 

The conclusions from each contribution included in this thesis were as follows: 

I. Restricted diffusion and exchange are disentangled using theory accounting for
both phenomena and compatible with free gradient waveforms. The
restriction- and exchange-encoding properties of any waveform can be
described by scalar quantities, providing a method for designing protocols to
separate the two effects. Free waveforms provide a wider restriction-exchange
measurement space than SDE, but the space is heavily limited by hardware.
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II. The ResEx framework with free waveforms isolates distinct contrasts driven by
restriction and exchange in the healthy human brain. Exchange is faster in grey
matter than in white matter. Exchange is particularly fast in the cerebellar
cortex, hinting at non-permeative transport mechanisms.

III. AXR estimation with FEXI suffers crusher gradient-induced bias in the
presence of restricted diffusion, when imaging using thin slices. Based on
ResEx, FEXI was successfully adjusted by varying the pulse timings to keep the
restriction sensitivity fixed when varying the mixing time, to remove the bias.

IV. Intra-compartmental kurtosis as measured by CTI is sensitive to both the
transient kurtosis and intercompartmental exchange. Theory accounting for
both, combined with multiple-mixing time DDE data, separates the two. The
theory also allows exchange estimation in the presence of anisotropy.

V. Geometric exchange between dendritic shafts and spines has the same imprint
on the dMRI signal as permeative exchange. An approach to separate them
using DDE with multiple mixing times was proposed. Simulations indicate
the ability to map dendritic spine density independent of permeative exchange.

VI. The ResEx framework reveals notable exchange-driven contrasts in gliomas on
a clinical scanner, capturing both inter-tumoural and intra-tumoural
heterogeneity. Exchange potentially adds information beyond that accessible
with conventional imaging.

In conclusion, this thesis presents a powerful set of techniques to interrogate brain tissue 
and extract specific and biologically meaningful information. Combined with the 
emerging high-performance MRI scanners, these advancements position us well for the 
future of microstructure imaging with dMRI. 

Future work will explore in vivo dendritic spine mapping with dMRI and its potential 
applications in neurodegenerative and neuropsychiatric diseases. Additionally, further 
studies on gliomas using a high-performance MRI scanner will be conducted to better 
understand the role of exchange in glioma pathology. 
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