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Abstract

This paper proposes an alternative semi-analytical Fourier modal method
adapted for general periodic anisotropic gratings made of dielectrics with mod-
erate to low index profiles corresponding to materials ranging from conven-
tional dielectric 3D printing materials to ceramic materials. The proposed
method is closely related to classical Rigorous Coupled-Wave Analysis built on
scattering matrices, however a key difference is that the new scheme relies on
the recently reported concept of stabilized wave propagation operators, leading
to improved numerical stability and accuracy for a wider range of structures
where e.g., evanescent waves are present. Multilayer structures can be handled
in a stable manner using the dissipative property of the Redheffer star product
for cascading scattering matrices from which the reflection and transmission
of the whole structure is derived. Numerical examples of practical interest as
well as importance for future development demonstrate the method’s accuracy,
efficiency as well as stability through comparison with solutions obtained by
finite elements as well as results published in the literature.

1 Introduction
As the demand for high-performance devices grows, 2D periodic multilayer dielectric
devices are becoming increasingly crucial in fields like microwave engineering, pho-
tonics and radome enclosed sensor applications. Accurately modeling their behavior
is essential for designing high performance devices.

Numerical techniques that rely on Fourier expansions of the electromagnetic
fields and on grating parameters such as the permittivity and the permeability are in
general referred to as Fourier modal methods (FMM) [30]. For example, the Rigorous
Coupled-Wave Analysis (RCWA) method introduced in [35] is a well known FMM
technique that is commonly used within the optical community. Over the years,
researchers have proposed various reformulations of FMM and RCWA to adress
specific challenges, such as convergence and numerical stabilization issues. A more
extensive survey of the development can be found in [30].

The objective of this paper is on the development and evaluation of an alterna-
tive FMM method adapted for the analysis of functional devices built on 1D or 2D
periodic multilayer dielectrics. The proposed method is closely related to classical
RCWA built on scattering matrices [46, 50, 58]. However, a key difference is that
the new scheme relies on the recently reported concept of stabilized wave propaga-
tion operators [3] that enhances numerical stability, allowing for the analysis of a
broader class of 2D periodic multilayer dielectrics where, e.g., evanescent waves are
present. The suggested scheme can handle surface relief gratings made with general
anisotropic materials, and multilayer structures are treated in a stable manner using
the dissipative property of the Redheffer star product for cascading scattering ma-
trices from which the reflection and transmission of the whole structure are derived
[46].

The accommodation of general anisotropic materials prepare future development
and generalizations, e.g., in order to adapt the method for more complex grating
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geometries. However, the main goal of this study is to evaluate the suitability of
using the proposed technique for applications with devices made of periodic mul-
tilayer dielectrics having moderate to low index contrast with interest in, e.g., the
microwave regime for electrical design of broad band gradient radomes [43]. This
paper is limited to consider the alternative FMM formulation without introducing
additional techniques such as, e.g., factorization techniques based on the normal
vector method or adaptive spatial resolution. The limitation is shown not being
severe at least for the considered numerical examples within the paper. A separate
section on potential extensions of the proposed method is included in the paper with
the aim to introduce suitable techniques for efficiency and accuracy improvements
in future development.

The paper is organized as follows. In Section 2 is a detailed presentation of the
proposed scheme given and potential extensions are discussed in Section 3. The
numerical accuracy, efficiency as well as stability of the new formulation is verified
in Section 4 where a number of examples of practical interest as well as importance
for future development are given. Finally, the paper is concluded and summarized
in Section 5.

2 Stable multimodal scattering matrix formulation
Classical RCWA is adapted for the analysis of periodic functional surfaces, e.g.,
gratings, where the electromagnetic fields as well as the material parameters are
expanded in a plane wave base [31, 35, 36, 37]. The proposed method is closely
related to RCWA built on scattering matrices [46, 50, 58]. Similar to RCWA,
the proposed formulation is fully vector based, and rigorous in the sense that no
approximations are made to Maxwell’s equations. The three-dimensional structure
is divided into several planar slabs that are invariant in their longitudinal direction
as depicted in Figure 1, and owing to the Fourier expansions Maxwell’s equations are
converted into matrix form in terms of a system of ordinary differential equations
(ODE) that model one-dimensional wave propagation.

The Maxwell equations are classically solved in each slab by decomposing into
Floquet-Bloch modes, however the propagation of Floquet-Bloch modes is governed
by a generalization of the fundamental propagator equation [25, Chapter 10]. The
generalization encompasses an extension of the fundamental propagator equation in
Fourier space into an infinite system of equations. Through this approach the form
of the fundamental equation is kept in order to more easily reformulate the matrix
equations into a stable scattering matrix form by using the technique reported in
[3]. This section presents in detail the extension of the stabilized scattering matrix
formulation into a multimodal form.

The incident wave is assumed being a monochromatic plane wave with harmonic
time dependence, and all media are non-conducting and linear, described in general
by fully anisotropic tensors. The anisotropic case is mainly of importance for the
preparation of future development and generalizations to handle more general set-
tings, e.g., cases with grating geometries that are not aligned with the boundaries of
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Figure 1: The symbolic representation of the left and right propagating modal
split fields f˘ in region a and b, outside the stratified region. Region 2 depicting
a slab that is 2D-periodic in the xy plane while invariant in the longitudinal z-
direction. The media in regions a and b are arbitrary linear homogeneous and
isotropic characterized by refractive index na and nb, respectively.

the reference unit cell, see e.g., [16, 21, 28]. To this end, the scattering matrix form
in addition has the advantage that other methods can more easily be incorporated
into the general framework of scattering matrices as pointed out in [46].

2.1 Scattering configuration

The scattering configuration of interest is shown in Figure 1, depicting a multi-layer
device in terms of a plane-stratified structure where one or several slabs can be 2D-
periodic in the xy plane while invariant in the longitudinal z-direction. The analysis
of plane-stratified structures is not restricted to time harmonic plane wave incidence
since the fields can be decomposed into a spectrum of plane waves, see, e.g., [7, 25].
In this paper the time convention e´iωt is adopted.

2.2 2D-periodic structures and reciprocal unit vectors

Many functional surfaces can be described by a two-dimensional periodicity, illus-
trated here by a relative permittivity function ϵprq assumed being periodic in the
xy plane in accordance with Figure 1 i.e.,

ϵprq “ ϵpr ` pa1 ` qa2q (2.1)
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where a1 and a2 are lattice vectors, whereas p and q are integers, and r “ xx̂ `
yŷ ` zẑ is the position vector. The reference cell Ω is spanned by a1 and a2 in the
xy plane, and is infinite in the z direction.

Due to the geometry of the reference cell, expansions are most commonly made
in terms of the concept of reciprocal unit vectors; see e.g., [48, p.152–153] and the
references therein. The reciprocal reference cell Ω1 is spanned by the reciprocal unit
vectors

b1 “ 2π
a2 ˆ ẑ

ẑ ¨ pa1 ˆ a2q and b2 “ 2π
ẑ ˆ a1

ẑ ¨ pa1 ˆ a2q (2.2)

We have in general ai ¨ bj “ 2πδij, where δii “ 1 and δij “ 0 if i ‰ j. In the
simplest case of a quadratic reference cell with period a, we have a1 “ ax̂, a2 “ aŷ,
b1 “ p2π{aqx̂, and b2 “ p2π{aqŷ.

2.3 Fourier expansions fields and materials

In analogy with classical RCWA, only Fourier expansion along x and y are utilized,
while the z variable remains unchanged. Making use of the Bloch’s theorem [48,
p.153–154], we expand the tangential fields in spatial harmonics according to

$

’

’

&

’

’

%

Etprq “
ÿ

p,q

stpp, q, zqeiktpp,qq¨ρ

η0J ¨ Htprq “
ÿ

p,q

utpp, q, zqeiktpp,qq¨ρ (2.3)

where J “ ẑ ˆ I is a rotation in the xy plane by π{2, ρ “ x̂x ` ŷy is the lateral
position vector, whereas st and ut are vectors formed by the spatial harmonics of
the electric and magnetic fields and

ktpp, qq “ kinc
t ` Gpp, qq “ kinc

t ` pb1 ` qb2 (2.4)

where b1 and b2 are the reciprocal basis vectors defined by (2.2). The vector kinc
t

defines the incident transverse wave vector, i.e., the linearly progressing phase
of the incident field and the sums in (2.3) are over all integer combinations of
the reciprocal lattice vectors b1, and b2. The transverse wave vectors ktpp, qq “
kxpp, qqx̂ ` kypp, qqŷ, are all equal trough the layers of a stacked structure. Cor-
responding Fourier expansions of the materials i.e., the relative permittivity and
permeability tensors ϵ and µ are

$

’

’

&

’

’

%

ϵprq “
ÿ

p,q

epp, q, zqeiGpp,qq¨ρ

µprq “
ÿ

p,q

mpp, q, zqeiGpp,qq¨ρ (2.5)

If the structure under consideration has a z-dependent permittivity or permeabil-
ity distribution, it is common in practice to approximate the material parameters
according to the staircase and zigzag approximation, see e.g., [42]. However, more
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recently has an alternative technique for the handling of more general cross-sectional
shape variations been published, see [60].

The modal wave vectors are decomposed in transverse and longitudinal parts
according to

kpp, qq “ ktpp, qq ` ẑkzpp, qq (2.6)

where p “ ´8, . . . ,´2,´1, 0, 1, 2, . . . ,8, and q “ ´8, . . . ,´2,´1, 0, 1, 2, . . . ,8.
The incident medium, is assumed being region a as depicted in Figure 1. Region

a is a linear, homogeneous and isotropic medium, characterized by the refractive
index na “ ?

ϵaµa. Furthermore, the incident transverse wave vector components
kinc
x and kinc

x are defined by
#

kinc
x “ k0na cosϕ sin θ

kinc
y “ k0na sinϕ sin θ

(2.7)

where k0 “ 2π{λ0 and λ0 is the wavelength in vacuum. Thus, (2.7) correspond to
a three-dimensional tilt of the entire mode set by the incidence angles θ and ϕ in
spherical coordinates. Corresponding longitudinal wave numbers kzpp, qq are given
by the dispersion relation

kzpp, qq “ pk2 ´ ktpp, qqq2q1{2 “
#

k0
a

n2
a ´ pktpp, qq{k0q2 k ą kt

ik0
apktpp, qq{k0q2 ´ n2

a k ă kt
(2.8)

where k “ k0na, and ktpp, qq “ |ktpp, qq| is the modulus of the transverse wave
vectors. By this definition, kz applies to waves traveling in the `z-direction and
´kz to waves traveling in the opposite direction.

In numerical computations truncation of the Fourier expansions (2.3) and (2.5),
respectively, is inevitable. To this end, the mode indices p and q are truncated in
symmetrical intervals according to

#

p “ ´P, . . . ,´2,´1, 0, 1, 2, . . . , P

q “ ´Q, . . . ,´2,´1, 0, 1, 2, . . . , Q
(2.9)

and the limits of the resulting symmetrically truncated partial sums are defined by
the mode count M “ 2P ` 1 and N “ 2Q ` 1, respectively, for each dimension.
Thus, the total number of spatial modes is L “ p4P ` 2qp4Q ` 2q, including all
modes for both the tangential electric and the magnetic field component expansions
cf., (2.3).

2.4 Time harmonic dynamic systems in real space

The generalization of the fundamental equation [25, Chapter 10] into Fourier space
starts with the system of partial differential equations describing the dynamics of
the tangential time harmonic electromagnetic fields in real space governed by the
system of equations

B
Bz

ˆ

Etpr, ωq
η0JHtpr, ωq

˙

“ ik0Mpr, ωq
ˆ

Etpr, ωq
η0JHtpr, ωq

˙

(2.10)
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where
Mpr, ωq “

ˆ

M1pr, ωq M2pr, ωq
M3pr, ωq M4pr, ωq

˙

(2.11)

is a linear map M : C2 ˆ C2 Ñ C2 ˆ C2 and

Etpr, ωq “
ˆ

Expr, ωq
Eypr, ωq

˙

, J “
ˆ

0 ´1
1 0

˙

, η0JHtpr, ωq “ η0

ˆ´Hypr, ωq
Hxpr, ωq

˙

(2.12)
The system (2.10) has the same form as the fundamental equation [25, 44] except
that the field quantities in (2.10) have not been Fourier transformed with respect
to the lateral coordinates. Anisotropic media is in general described by the relative
permittivity and permeability tensors

ϵprq “
¨

˝

ϵxx ϵxy ϵxz
ϵyx ϵyy ϵyz
ϵzx ϵzy ϵzz

˛

‚, µprq “
¨

˝

µxx µxy µxz

µyx µyy µyz

µzx µzy µzz

˛

‚ (2.13)

and the blocks of (2.11) are represented by
$

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

%

M1pr, ωq “ i

k0

ˆBxpϵ´1
zz ϵzxq Bxpϵ´1

zz ϵzyq
Bypϵ´1

zz ϵzxq Bypϵ´1
zz ϵzyq

˙

` i

k0

ˆ

µyzµ
´1
zz By ´µyzµ

´1
zz Bx

´µxzµ
´1
zz By µxzµ

´1
zz Bx

˙

M2pr, ωq “ ´ 1

k2
0

ˆBxpϵ´1
zz Bxq Bxpϵ´1

zz Byq
Bypϵ´1

zz Bxq Bypϵ´1
zz Byq

˙

`
ˆ

µyzµ
´1
zz µzy ´ µyy µyx ´ µyzµ

´1
zz µzx

µxy ´ µxzµ
´1
zz µzy µxzµ

´1
zz µzx ´ µxx

˙

M3pr, ωq “ ´ 1

k2
0

ˆ Bypµ´1
zz Byq ´Bypµ´1

zz Bxq
´Bxpµ´1

zz Byq Bxpµ´1
zz Bxq

˙

`
ˆ

ϵxzϵ
´1
zz ϵzx ´ ϵxx ϵxzϵ

´1
zz ϵzy ´ ϵxy

ϵyzϵ
´1
zz ϵzx ´ ϵyx ϵyzϵ

´1
zz ϵzy ´ ϵyy

˙

M4pr, ωq “ i

k0

ˆ Bypµ´1
zz µzyq ´Bypµ´1

zz µzxq
´Bxpµ´1

zz µzyq Bxpµ´1
zz µzxq

˙

` i

k0

ˆ

ϵxzϵ
´1
zz Bx ϵxzϵ

´1
zz By

ϵyzϵ
´1
zz Bx ϵyzϵ

´1
zz By

˙

(2.14)
All material parameters defined by (2.13) are in general functions of spatial position.
Notice that lossy materials are described by complex media quantities i.e., ϵmn “
ϵ1
mn ` iϵ2

mn and µmn “ µ1
mn ` iµ2

mn, where m,n “ x, y, z. The derivation of (2.10) is
based on decomposition of Maxwell’s equations and the field quantities into lateral
and longitudinal components relative to the xy-plane following a similar approach
as given in [11, p. 10-11]. However, an alternative approach that considers the
anisotropic case is reported in e.g., [40, p. 249-256].

2.5 The fundamental equation in discrete Fourier space

The Maxwell equations are classically solved in each slab by expansions of the elec-
tromagnetic fields and grating parameters into Floquet-Bloch modes cf., (2.3) and
(2.5), respectively. In this paper the general form of the fundamental equation as
used in [3] is kept, and by insertion of the field and parameter expansions in the
real space dynamical system (2.10) the problem is transformed into discrete Fourier
space, i.e., the spatial frequency domain.
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After substitution of the Fourier expansions in (2.10) the final form of the matrix
equations expressing the fundamental equation in discrete Fourier space is obtained.
The result is

d

dz

ˆ

st
ut

˙

“ ik0M

ˆ

st
ut

˙

(2.15)

with
M “

ˆ

M1 M2

M3 M4

˙

,
ˆ

st
ut

˙

“ `

sx sy ´uy ux

˘T (2.16)

where st and ut, respectively are column vectors representing the tangential electric
and magnetic amplitude vectors cf., (2.3), whereas the block matrices M1, M2, M3

and M4 are comprised of the wave vector components and convolution matrices
that account for the coupling between electric and magnetic amplitude vectors. In
practice the infinite series (2.3) and (2.5) are truncated which limits the number
of spatial harmonics and thus, the number of diffraction orders considered in the
computation. The matrix M becomes a linear map M : C2M ˆ C2N Ñ C2M ˆ
C2N , where M “ 2P ` 1 and N “ 2Q ` 1 by truncating the mode index p and
q in symmetric intervals according to (2.9), and thus the total number of spatial
harmonics is L “ p4P ` 2qp4Q ` 2q. The representations of the blocks Mi, i “
1, . . . , 4, are

M1 “
ˆ

M11 M12

M21 M22

˙

, M2 “
ˆ

M13 M14

M23 M24

˙

M3 “
ˆ

M31 M32

M41 M42

˙

, M4 “
ˆ

M33 M34

M43 M44

˙ (2.17)

where cf., (2.14)
$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

M11 “ ´Kxrϵzz˚s´1rϵzx˚s ´ rµyz˚srµzz˚s´1Ky

M12 “ ´Kxrϵzz˚s´1rϵzy˚s ` rµyz˚srµzz˚s´1Kx

M21 “ ´Kyrϵzz˚s´1rϵzx˚s ` rµxz˚srµzz˚s´1Ky

M22 “ ´Kyrϵzz˚s´1rϵzy˚s ´ rµxz˚srµzz˚s´1Kx

M13 “ Kxrϵzz˚s´1Kx ` rµyz˚srµzz˚s´1rµzy˚s ´ rµyy˚s
M14 “ Kxrϵzz˚s´1Ky ´ rµyz˚srµzz˚s´1rµzx˚s ` rµyx˚s
M23 “ Kyrϵzz˚s´1Kx ´ rµxz˚srµzz˚s´1rµzy˚s ` rµxy˚s
M24 “ Kyrϵzz˚s´1Ky ` rµxz˚srµzz˚s´1rµzx˚s ´ rµxx˚s
M31 “ Kyrµzz˚s´1Ky ` rϵxz˚srϵzz˚s´1rϵzx˚s ´ rϵxx˚s
M32 “ ´Kyrµzz˚s´1Kx ` rϵxz˚srϵzz˚s´1rϵzy˚s ´ rϵxy˚s
M41 “ ´Kxrµzz˚s´1Ky ` rϵyz˚srϵzz˚s´1rϵzx˚s ´ rϵyx˚s
M42 “ Kxrµzz˚s´1Kx ` rϵyz˚srϵzz˚s´1rϵzy˚s ´ rϵyy˚s
M33 “ ´Kyrµzz˚s´1rµzy˚s ´ rϵxz˚srϵzz˚s´1Kx

M34 “ Kyrµzz˚s´1rµzx˚s ´ rϵxz˚srϵzz˚s´1Ky

M43 “ Kxrµzz˚s´1rµzy˚s ´ rϵyz˚srϵzz˚s´1Kx

M44 “ ´Kxrµzz˚s´1rµzx˚s ´ rϵyz˚srϵzz˚s´1Ky

(2.18)
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In (2.18) the matrices Ki, i “ x, y MN ˆ MN , are diagonal matrices of the scaled
wave vector components kipp, qq{k0, i “ x, y, whereas rϵij˚s and rµij˚s, i, j “ x, y, z
are MN ˆ MN convolution matrices of all corresponding relative permittivity and
permeability Fourier coefficients eijpp, q, zq and mijpp, q, zq, cf., (2.5). It should
be noticed that rϵ´1

zz ˚s and rµ´1
zz ˚s have been replaced with rϵzz˚s´1 and rµzz˚s´1,

respectively in accordance with [39, p. 1777]. Otherwise the appearance of the block
matrices of M in (2.16) in fact resembles the form of corresponding blocks reported
in e.g., [45] and [40, p. 256]. Alternative formulations adapted for anisotropic as
well as bianisotropic gratings are also found in e.g., [16, 21, 28, 32, 38, 41, 53].

2.6 Some notes related to convergence and truncation

The material properties as well as the electromagnetic fields inside the grating are
Fourier expanded in lateral direction and across potential jump discontinuities. At
these boundaries the approximated material properties and the fields exhibit com-
plementary jumps, which can lead to numerical artifacts and slow convergence of
the method. As shown by [33], the convolution of two functions with concurrent
jump discontinuities is one consequence for the slow convergence. In its original
formulation FMM provides a very fast convergence for one- and two-dimensional
dielectric structures with low to moderate index profile, but owing to the Gibbs
phenomenon, i.e., the oscillating behavior of the Floquet-Fourier expansion of dis-
continuous functions, the convergence is poor for high index contrast profiles, espe-
cially for metal–dielectric structures [57]. For additional notes regarding the use of
FMM for metals, see [34, p. 2242–2243] and the references therein. For instance,
several problems are pointed out in [20] regarding the truncation of the RCWA for-
mulation. To this end, the mathematical justification related to the truncation of
the Fourier expansions and the infinite system of differential equations is of great
importance, see e.g., [4, 29].

Furthermore, additional techniques necessary for extended applicability of the
original formulation are discussed in Section 3. These possible extensions aim to
improve efficiency and accuracy in configurations with high index contrast profiles
as well as more complex geometries.

2.7 Scattered harmonics in terms of scattering matrix

Scattered spatial harmonic waves as solutions to the fundamental equation (2.15)
in Fourier space are sought. To this end, the technique reported in [3] is extended
to handle an arbitrary number of spatial harmonics. This means in principle that
a multimodal propagator formulation is transformed into corresponding scattering
matrix form, from which the ingoing fields connect to the left and right outgoing
spatial harmonic waves, i.e., the scattered harmonics.
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2.7.1 Modal wave propagation operator

The total tangential electric and magnetic wave modes are all continuous across the
interfaces in a planar stratified structure, which implies that the propagator can be
extended into a multi-modal setting. Thus, the solution to the modal fundamental
equation (2.15) is formally written as

ˆ

stpzq
utpzq

˙

“ Ppkt, z, z0q
ˆ

stpz0q
utpz0q

˙

(2.19)

where the propagator P is a p4P ` 2qp4Q ` 2q ˆ p4P ` 2qp4Q ` 2q complex-valued
matrix, mapping the tangential electric and magnetic amplitude vectors from z1 to
z.

2.7.2 Modal wave splitting in simple medium

The relative wave impedance operator Zr given in [3] can similarly be applied in
the modal setting where it relates the electric and magnetic field modes propagating
in the ˘z-direction within a homogeneous linear isotropic media i.e., simple media
through

utpzq “ ¯Zrpktq´1stpzq (2.20)

In analogy with the wave splitting utilized in, e.g., [25, 44] the total tangential
electric and magnetic harmonics, st and ut, respectively, are related to the set of
forward and backward harmonics f˘, propagating in the ˘z directions. Thus, in
simple media the relation is given by the modal wave splitting

ˆ

stpzq
utpzq

˙

“
ˆ

I I
´Z´1

r Z´1
r

˙ ˆ

f`pzq
f´pzq

˙

(2.21)

with inverse
ˆ

f`pzq
f´pzq

˙

“ 1

2

ˆ

I ´Zr

I Zr

˙ ˆ

stpzq
utpzq

˙

(2.22)

The matrices Z´1
r and Zr are given by

Z´1
r pktq “ 1

η

„ˆ

K´1
z K2

t,x K´1
z Kt,xKt,y

K´1
z Kt,yKt,x K´1

z K2
t,y

˙

`
ˆ

KzK
2
t,y ´KzKt,yKt,x

´KzKt,xKt,y KzK
2
t,x

˙ȷ

(2.23)
and

Zrpktq “ η

„ˆ

KzK
2
t,x KzKt,xKt,y

KzKt,yKt,x KzK
2
t,y

˙

`
ˆ

K´1
z K2

t,y ´K´1
z Kt,yKt,x

´K´1
z Kt,xKt,y K´1

z K2
t,x

˙ȷ

(2.24)
where η “ a

µ{ϵ, and k “ k0n are the relative wave impedance and wavenumber,
respectively, whereas

Kt,i “ diagp kt,ipp, qq
|ktpp, qq|q, i “ x, y (2.25)

and Kz “ diagpkzpp, qq{kq, K´1
z “ diagpk{kzpp, qqq. The longitudinal wave numbers

kzpp, qq are defined by (2.8).
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2.7.3 The multimodal scattering matrix form

Combining (2.19) and the wave splitting relations (2.21) and (2.22) for an arbitrary
material a on the left and material b on the right, gives the scattering relation

ˆ

f`pzNq
f´pzNq

˙

“ W

ˆ

f`pz0q
f´pz0q

˙

(2.26)

where

W “
ˆ

W11 W12

W21 W22

˙

“ 1

2

ˆ

I ´Zr,b

I Zr,b

˙ ˆ

P11 P12

P21 P22

˙ ˆ

I I
´Z´1

r,a Z´1
r,a

˙

(2.27)

In order to easily identify the left- and right-going scattered spatial harmonics in
terms of the incoming wave fields, one can conveniently reformulate the relation
(2.26) into a scattering matrix form defined by

ˆ

f´pz0q
f`pzNq

˙

“ S

ˆ

f`pz0q
f´pzNq

˙

(2.28)

However, (2.26) is not necessarily numerically stable when evanescent waves are
present which implies the need to reformulate (2.28) into a well-conditioned form
[3].

2.8 Stable multimodal scattering matrix form

Evanescent wave fields are in general present in the scattering problems of periodic
devices, which implies the need for having a numerically stable formulation [8, 10,
58]. A scheme that utilizes the spectral decomposition of the propagator for the
separation of exponentially growing and decaying terms was developed in [3] in
order to obtain a well-conditioned formulation. This section revisits the technique
used in [3] from which the stable generalized multimodal scattering matrix is found.

2.8.1 Spectral decomposition

The fundamental matrix M has eigenvectors and eigenvalues tvm, nmu
M ¨ vm “ nmvm (2.29)

where the eigenvalues nm are the refractive indices of the propagating modes, which
have polarizations given by the eigenvectors vm. The propagator has the same
eigenvectors and propagation factors as eigenvalues

P ¨ vm “ eik0dnmvm (2.30)

where d is the thickness of the slab, and the quantity dnm is often referred to as the
optical thickness.
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According to the technique reported in [3], we use the left eigenvectors um defined
by um̊ ¨P “ eik0dnmum̊ rather than the right eigenvectors vm. Spectral decomposition
of P, yields

U: ¨ P “ D ¨ U: (2.31)

where U is a matrix having the left eigenvectors as columns, and : denotes the
Hermitian transpose, and D is a diagonal matrix containing the eigenvalues

D “

¨

˚

˚

˚

˝

eik0dn1 0 . . . 0
0 eik0dn2 . . . 0
...

... . . .
...

0 0 . . . eik0dnn

˛

‹

‹

‹

‚

(2.32)

More details on spectral decomposition of the propagator P can be found in [25, pp.
663–669]. Note that the eigenvectors U: and eigenvalues nm are computed from the
eigenproblem (2.29) for M, and P is never explicitly computed.

2.8.2 Well-conditioned multimodal scattering matrix form

This section considers a straightforward generalization into multimodal form of the
unconditionally stable scattering matrix formulation recently reported [3]. A similar
technique that reformulates a transfer matrix approach into a numerically stable
scattering matrix formulation has been reported in [11, pp. 4–5].

Accordingly, the scattering matrix form (2.28) is derived through reformulation
of the modal wave scattering relation (2.26) for a structure, enclosed by two ho-
mogeneous isotropic half-spaces a and b as depicted in Figure 1. The reformulated
relation reads

ˆ

I I
´Z´1

r,b Z´1
r,b

˙ ˆ

f`
b

f´
b

˙

“ P

ˆ

I I
´Z´1

r,a Z´1
r,a

˙ ˆ

f`
a

f´
a

˙

(2.33)

where Z´1
r,a and Z´1

r,b are found from (2.23), and f˘
a “ f˘pz1q, f˘

b “ f˘pzNq, as well
as P “ PpzN , z1q have been introduced for brevity.

In analogy with the approach in [3] the modal split fields on either side of the
structure are written in terms of the excitation fields f`

a and f´
b and the scattering

matrix as
ˆ

f`
a

f´
a

˙

“
ˆ

I 0
S11 S12

˙ ˆ

f`
a

f´
b

˙

“
„ˆ

I 0
0 0

˙

`
ˆ

0 0
I 0

˙ ˆ

S11 S12

S21 S22

˙ȷ

¨
ˆ

f`
a

f´
b

˙

(2.34)
ˆ

f`
b

f´
b

˙

“
ˆ

S21 S22

0 I

˙ ˆ

f`
a

f´
b

˙

“
„ˆ

0 0
0 I

˙

`
ˆ

0 I
0 0

˙

¨
ˆ

S11 S12

S21 S22

˙ȷ ˆ

f`
a

f´
b

˙

(2.35)

Insertion of these expressions in (2.33) yields a matrix equation
„ˆ

0 I
0 ´Z´1

r,b

˙

´ P

ˆ

I 0
Z´1

r,a 0

˙ȷ ˆ

S11 S12

S21 S22

˙

“ P

ˆ

I 0
´Z´1

r,a 0

˙

´
ˆ

0 I
0 Z´1

r,b

˙

(2.36)

for arbitrary excitations f`
a and f´

b . From this equation, one could solve directly for
the scattering matrix S, but this only leads to the instabilities as explored in detail
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in [3]. Instead, we use the spectral decomposition (2.31) which enables separation of
the exponentially growing and decaying terms in order to obtain a well-conditioned
formulation cf., (2.32). By following the technique in [3, pp. 33–34] the resulting
generalized multimodal scattering matrix reads

S “
ˆ

S11 S12

S21 S22

˙

“
„

D´U:
ˆ

0 I
0 ´Z´1

r,b

˙

´ D`U:
ˆ

I 0
Z´1

r,a 0

˙ȷ´1

„

D`U:
ˆ

I 0
´Z´1

r,a 0

˙

´ D´U:
ˆ

0 I
0 Z´1

r,b

˙ȷ

(2.37)

where D´ and D` are diagonal matrices found by identifying propagation factors
that are both large and small which could correspond to any number of modes. For
the sake of clarity we assume |eik0dnm | ą 1 for m ă k, i.e.,

D´ “

¨

˚

˚

˚

˚

˚

˚

˚

˝

e´ik0dn1

. . .
e´ik0dnk´1

1
. . .

1

˛

‹

‹

‹

‹

‹

‹

‹

‚

(2.38)

and

D` “

¨

˚

˚

˚

˚

˚

˚

˚

˝

1
. . .

1
eik0dnk

. . .
eik0dnn

˛

‹

‹

‹

‹

‹

‹

‹

‚

(2.39)

Thus, by dividing by the potentially large exponential functions, all coefficients have
finite amplitude leading to a well-conditioned scattering matrix form.

The technique in this section enables the computation of scattering matrices in
a stable and numerically robust manner in all layers even where evanescent wave
fields are present. Multilayer structures can be handled in a stable manner using the
dissipative property of the Redheffer star product for cascading scattering matrices,
see [3] for further details.

2.9 Reflection and transmission

The blocks of the scattering matrix, e.g., (2.37) are by definition identified with the
reflection and transmission matrices

S “
ˆ

S11 S12

S21 S22

˙

(2.40)
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By the scattering relation (2.28), we express the reflected and transmitted split fields
in terms of (2.40). Thus, assuming incidence only from the left, i.e., f´pzNq “ 0,
we get

#

f´pz0q “ S11f
`pz0q

f`pzNq “ S21f
`pz0q (2.41)

The split fields f˘ can in fact be identified with the electric harmonics st as seen
by combination of (2.22) with (2.20). The result is

f˘ “ 1

2
pst ¯ Zrutq “ 1

2
pst ` stq “ st (2.42)

Thus, (2.41) can be rewritten in terms of the electric harmonics according to
#

sreft pz0q “ S11s
inc
t pz0q

strnt pzNq “ S21s
inc
t pz0q (2.43)

where sinct denotes the spatial harmonic of the incident electric source field.
Assume that the sources located at the left side of the structure depicted in

Figure 1, generates a source field in terms of a single monochromatic plane wave
propagating in the direction k̂ “ kp0, 0q{|kp0, 0q| (|θ| ă 90˝), with unit amplitude
polarization E0 at the plane z “ z0, thus

sinct “
ˆ

E0,xδ00,pq

E0,yδ00,pq

˙

and δ00,pq “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

0
...
0

δ00,pq
0
...
0

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

(2.44)

where the column vector δ00,pq is of length p2P ` 1qp2Q ` 1q, and δ00,pq, denote the
Kronecker delta. The polarization vector can be written in terms of a polarization
angle χ (χ “ 0 TE and χ “ π{2 TM) according to

E0pz0q “ E0pz0qpêK cosχ ` ê∥ sinχq (2.45)

where |E0pz0q| “ 1, êK “ ẑ ˆ k̂p0, 0q, and ê∥ “ k̂p0, 0q ˆ êK, whereas k̂p0, 0q “
kp0, 0q{|kp0, 0q| with k found from (2.6). In the case of normal incidence ẑ and
k̂p0, 0q are parallel and then êK is arbitrarily set to ŷ. It should be noticed that
extensions of the classical RCWA formulation have been made for the handling of
more general source fields in a way that it can propagate multiple input modes in
a single calculation see, [7]. For arbitrary linear homogeneous isotropic media a
on the left and b on the right, cf., Figure 1, we express the incident, reflected and
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transmitted time averaged power flow according to
$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

P inc
z “ 1

2η0
Re t kinc

z,a

µak0
u|sincp0, 0, z0q|2

Pref
z “ ´ 1

2η0

ÿ

p,q

Re tkz,app, qq
µak0

u|srefpp, q, z0q|2

Ptrn
z “ 1

2η0

ÿ

p,q

Re tkz,bpp, qq
µbk0

u|strnpp, q, zNq|2

(2.46)

where

sinc “
¨

˝

sincx

sincy

sincz

˛

‚, sref “
¨

˝

srefx

srefy

srefz

˛

‚ and strn “
¨

˝

strnx

strny

strnz

˛

‚ (2.47)

with the longitudinal amplitude vector components computed according to
$

’

&

’

%

sincz “ ´K´1
z,a

`

Kxs
inc
x ` Kys

inc
y

˘

srefz “ K´1
z,apKxs

ref
x ` Kys

ref
y

˘

strnz “ ´K´1
z,bpKxs

trn
x ` Kys

trn
y

˘

(2.48)

where
Kz,r “ pµrϵrI ´ K2

x ´ K2
yq1{2, r “ a, b (2.49)

By assuming incidence from the left, cf., Figure 1, the overall reflectance and trans-
missivity are (|sinc|2 “ 1)

$

’

’

’

’

&

’

’

’

’

%

R “
ÿ

p,q

Re tkz,app, qq
kinc
z,a

u|srefpp, q, z0q|2

T “
ÿ

p,q

Re tµa

µb

kz,bpp, qq
kinc
z,a

u|strnpp, q, zNq|2
(2.50)

where
#

|sref |2 “ |srefx |2 ` |srefy |2 ` |srefz |2
|strn|2 “ |strnx |2 ` |strny |2 ` |strnz |2 (2.51)

for each p, q. The sum of R and T must be unity for lossless gratings i.e., energy
conservation shall be maintained. This condition is necessary for lossless structures
but not sufficient to ensure the accuracy of the diffraction efficiency, [36, pp. 1074–
1076].

Thus, the total reflectance and transmissivity, i.e., the diffraction efficiency is
defined by (2.50) where the sums are over all diffraction orders. Corresponding
specular reflectance and transmissivity, respectively are found by just taking the
zero order terms (p “ q “ 0) in (2.50). In general, the reflected and transmitted
diffraction efficiencies of order pp, qq are given by

DERpp, qq “ Re tkz,app, qq
kinc
z,a

u|srefpp, q, z0q|2

DETpp, qq “ Re tµa

µb

kz,bpp, qq
kinc
z,a

u|strnpp, q, zNq|2
(2.52)
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for fixed p and q.

3 Potential extensions
FMM is in general a versatile and robust class of methods well adapted for grating
diffraction problems. Unfortunately, it requires the solution of an eigenproblem
which becomes particularly costly in the case of two-dimensional crossed gratings,
where the number of retained orders are squared relative to the one-dimensional
(1D) grating. As mentioned in the Introduction several improvements have been
introduced for FMM in the past decades with focus on convergence and accuracy
improvements [30].

Besides stability issues [27, 37] crucial steps towards accurate and fast converg-
ing schemes, e.g., the application of the correct factorization rules and fast Fourier
factorization introduced in [33, 39], further developed for two-dimensional crossed
gratings [26] as well as gratings with anisotropic materials [28, 32, 41]. Improved con-
vergence rates have also been obtained through reformulation of FMM with adaptive
spatial resolution (ASR) techniques as was done in [17] for one-dimensional gratings
and later generalized for multilevel profiles [51] as well as two-dimensional crossed
gratings [19]. A method that automatically generates adaptive coordinates (AC) for
arbitrarily shaped index profiles has been proposed in [14]. The AC and ASR tech-
niques support more accurate resolutions regarding small geometric features and/or
large refractive index contrasts within the reference cell. The factorization rules have
in addition been combined with the normal vector method in order to handle more
general geometries of the refractive index contrast [9, 15, 47]. Recently, [52] and [11]
provided a local normal vector field approach that makes use of the gradient of the
real permittivity in the reference cell in order to generate local normal vectors.

Methods based on polynomials and non-periodic basis function expansions have
furthermore been considered as alternative techniques for stability and convergence
rate improvement, [12, 13, 24, 59]. An alternative approach to suppress the Gibbs
phenomenon is to treat continuous field components in the Fourier space analogously
to the conventional algorithm, whereas the discontinuous components are calculated
in real space as suggested by [5]. In addition [49] recently proposed an alternative
treatment of interface conditions to overcome the effect of the Gibbs phenomenon
that is crucial, e.g., for accurate near field computations.

Thus, these techniques are potential extensions for methods based on FMM that
have been proven useful, e.g., in order to handle gratings with ultrahigh-contrast
permittivity profile within the optical regime [17, 18, 51, 57] or metallic lamellar
gratings at microwave frequencies [22, 23] as well as plasmonic resonances [56].
However, this paper is limited to consider an alternative FMM formulation that
classically make use of Fourier expansions of the electromagnetic fields and on grating
parameters while being based on scattering matrices that rely on stabilized wave
propagation operators [3]. The new scheme is adapted for layered and periodic
dielectric devices with moderate to low index contrast.
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z

y

x

kinc

kinc
t

θ

ϕ

êK ê∥

E0

E0 “ êK cosχ ` ê∥ sinχχ

na “ ?
ϵaµa

nb “ ?
ϵbµb

Figure 2: Scattering configuration. The plane of incidence is illustrated by a grey
shaded rectangle. The normal of the plane of incidence is parallel with êK and the
field polarization angle is χ. For χ “ 0 (TE) and χ “ π{2 (TM) the electric and the
magnetic fields, respectively, are perpendicular to the plane of incidence.

4 Numerical examples
This section provides three examples for verification and demonstration purpose
regarding the efficiency and accuracy of the proposed method. As stated in the
Introduction the main focus in this paper is on periodic structures made of dielectrics
with moderate to low index contrast having interest, e.g., in the microwave regime
for the electrical design of broad band gradient radomes [42]. To this end examples
of practical interest have been chosen with moderate as well as low index profiles.
The last example considers benchmarking of the proposed method for analysis of
an anisotropic grating earlier presented in [16, 21, 28]. This last example is of
importance for the preparation of future development and generalizations e.g., in
order to adapt the method to more complex configurations.

In the numerical examples, a linearly polarized time-harmonic electromagnetic
plane wave is incident upon a binary dielectric grating structure, as depicted in
Figure 2. The wave propagates in the direction of the incident wave vector kinc “
kp0, 0q, see (2.6), at angle of incidence θ P r0˝, 90˝q, and azimuth angle ϕ P r0˝, 360˝q,
defined by the angle between the x-axis and the projection of the incident wave
vector kinc on the xy-plane. The polarization angle between the electric-field vector
E0 and the normal êK to the plane of incidence is denoted by χ, see (2.45) and
Figure 2.
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Lx

Dx

LyDy

y

x

ϵ “ 12

ϵ “ 1 ϵ “ 2.2

dh dp

z

Figure 3: The geometry of the 7-layer binary grating [6, 54, 55]. The three gray
shaded slabs represent the homogeneous layers with thickness dh “ 4 mm and
relative permittivity ϵ “ 2.2, whilst the other slabs represent the 2D periodic layers
with thickness dp “ 2 mm made of a material with relative permittivity ϵ “ 12
indicated by blue shaded regions. The reference cells are rectangular having periods
Dx “ Dy “ 10 mm and centered quadratic air filled holes of side lengths Lx “ Ly “ 7
mm.

4.1 Multilayer binary crossed grating

The device considered is a 7-layer lossless dielectric binary crossed grating earlier
presented in [6, 54, 55]. More specifically, the structure as depicted in Figure 3, is
made up by three identical homogeneous layers and four identical 2D-periodic grat-
ing layers. Computed diffraction efficiency using the proposed FMM formulation is
presented in Figure 4. The result agrees well with corresponding HFSS reference
solution produced by using a frequency domain finite element method (FEM). How-
ever, a slight shift of the frequency response is observed in Figure 4 indicating that
the solution has not fully been converged for P “ Q “ 9. The slight deviation can
also be seen in Figure 5 presenting the convergence rate and relative error at the
fixed frequency 9.0 GHz. The calculation time for the FMM formulation using trun-
cation order P “ Q “ 9 and implemented in MATLAB was approximately 10 times
faster than corresponding HFSS FEM solution. The calculation time as a function
of truncation order agrees well with corresponding results reported in [55, Fig. 3.
(d)]. The convergence rate in Figure 5 corresponds well with data computed by
use of the enhanced transfer matrix method (ETM) reported in [54, Figure 5 (a)].
However, corresponding convergence results by use of adaptive spatial resolution
(ASR) given in [54, Figure 5 (a)] showed limited computational precision for trun-
cation orders above 22 which is not the case by use of the method of this paper, see
Figure 5. Thus, this result indicates that the proposed formulation handles higher
order modes in a robust and stable manner.
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Figure 4: Diffraction efficiency (2.50) of the 7-layer binary grating [54]. Incidence
TM polarization (χ “ π{2) at normal angles of incidence, i.e., θ “ 0˝ and ϕ “ 0˝.
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Figure 5: The convergence rate and relative error of the diffraction efficiency (2.50)
at 9 GHz for the 7-layer binary grating. The reference has been computed by Ansys
HFSS.
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Lx

Dx

LyDy

y

x

ϵ “ 3

ϵ “ 1

dh dp

z

1 2 . . . Layer No. . . . 11 12

Figure 6: The geometry of the gradient radome. The gray shaded layers (layer
number 1 and 12) represent the homogeneous layers with permittivity ϵ “ 3.50 and
thickness dh “ 1 mm enclosing the interior stack of 2D periodic layers (layer number
2´11). The reference cell is made of a material with permittivity ϵ “ 3 with period
Dx “ Dy “ 7.00 mm. The cells having air filled square holes of side lengths Lx “ Ly

in accordance with values given in Table 1. The thickness of the 2D-periodic layers
are all identical and equal dp “ 1.78 mm.

4.2 Broadband gradient radome

This example considers a gradient radome based on a dielectric 2D periodic gra-
dient structure with broadband characteristics [43]. The considered radome design
constitutes of two homogeneous layers enclosing an interior stack of 2D periodic
dielectric binary crossed grating layers. All materials are assumed being lossless in
this example. The structure and design parameters of the radome are defined in
Figure 6 and Table 1. Notice that this is a relevant numerical example, however
any discussion on the optimization technique as well as realization aspects e.g., by
use of 3D printing technology is out of the scope of this paper. Figure 7 shows the
diffraction efficiency of the gradient radome.

As seen in Figure 7, computed results by use of the proposed method agree
very well with the reference solution, even with a relatively low order truncation
(P “ Q “ 5). Corresponding convergence performance is presented in Figure 8.

From Figure 8 it is seen that the relative error for transmission and reflection
are identical for TE polarization which is due to the fact that both the reflection
and transmission level coincides (all materials assumed lossless) around ´5 dB at
8.5 GHz according to Figure 7. However, this is not the case for TM polarization
where the reflection level is approximately ´10 dB lower relative corresponding
transmission data cf., Figure 7, which implies larger relative error of the reflection
data relative corresponding transmission data as clearly is shown in Figure 8.
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Figure 7: Diffraction efficiency (2.50) of the broad band gradient radome defined
in Figure 6 and Table 1. Incidence TE (χ “ 0) and TM polarization (χ “ π{2),
respectively, at oblique angles of incidence θ “ 45˝ and ϕ “ 45˝.



21

Layer No. Lx “ Ly [mm] Remark Layer No. Lx “ Ly [mm] Remark
1 - Hom. 7 4.53 2D-per.
2 6.25 2D-per. 8 6.25 2D-per.
3 0.25 2D-per. 9 2.00 2D-per.
4 2.00 2D-per. 10 0.25 2D-per.
5 6.25 2D-per. 11 6.25 2D-per.
6 4.53 2D-per. 12 ´ Hom.

Table 1: The side lengths Lx “ Ly of the dielectric square binary crossed grating
layers i.e., layer number 2´11. Layer number 1 and 12 are the enclosing homoge-
neous layers of the gradient radome cf., Figure 6.
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Figure 8: The relative error of the diffraction efficiency (2.50) at 8.5 GHz for the
gradient radome. The reference has been computed by Ansys HFSS.
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Figure 9: Convergence rate of the zero order diffraction efficiency DERp0, 0q in (2.52)
of the anisotropic crossed grating with grating parameters, Dx “ 2.4λ0, Dy “ 1.4λ0,
Lx{Dx “ Ly{Dy “ 0.5, and thickness λ0 (an arbitrary free space wavelength),
see [28, p.352] for details. The polarization is TM (χ “ π{2), at normal angle of
incidence θ “ 0˝ and ϕ “ 0˝, i.e., the incident electric field vector is aligned along
the x axis cf., Figure 2.

4.3 Anisotropic binary crossed grating

This last example considers a binary crossed anisotropic grating earlier reported in
[28]. The grating is nonmagnetic i.e., µ “ I and is described by two gyrotropic
anisotropic permittivity tensors given by

ϵ1 “
¨

˝

2.25 i0.5 0
´i0.5 2.25 0
0 0 2

˛

‚ and ϵ2 “
¨

˝

2.25 ´i0.5 0
i0.5 2.25 0
0 0 2

˛

‚ (4.1)

The semi-infinite media to the left and right enclosing the grating are described by
refractive index na “ 1 and nb “ 1 ` i5, respectively, cf., Figure 1 or 2.

The convergence rate result for the grating using the formulation proposed in
this paper is shown in Figure 9. The numerical result in Figure 9 agrees well with the
corresponding case computed without use of the factorization procedure as reported
in [28, p.352] and reproduced in Figure 9 for convenience. In addition, see also cor-
responding results reported in [21, p. 1705] that used a projection operator method
which is a variation of the normal-vector method as well as [16, p.656–657] that
used a modal spectral element method (SEM) with modified Legendre polynomials
to analyze binary crossed gratings.



23

5 Conclusions
The proposed multimodal formulation is a semi-analytical FMM method that clas-
sically relies on plane-wave expansions of the electromagnetic fields and on grating
parameters such as the permittivity and the permeability. The new method is closely
related to classical RCWA built on scattering matrices [46], however a key difference
is that the proposed scheme relies on the recently reported concept of stabilized wave
propagation operators that enhance numerical stability.

The new formulation can handle anisotropic gratings and functional devices made
of periodic multilayer dielectrics having moderate to low index contrast correspond-
ing to materials ranging from conventional dielectric 3D printing materials to ceramic
materials. Through numerical examples it has been demonstrated that even with a
relatively low order truncation, computed results with the proposed method showed
excellent agreement with corresponding reference solutions computed by FEM, with
maximum relative error sufficiently low for usage in the design process of a broad
range of practical applications. While FEM is a versatile method, the proposed
semi-analytical approach offers significant advantage in terms of computational ef-
ficiency. The numerical efficiency and accuracy showed in fact similar performance
in comparison with related schemes recently reported in the literature. The dissi-
pation property of the Redheffer star product, furthermore implies that multilayer
devices can be handled in a numerically stable manner which makes the method
useful for a broad class of problems where evanescent fields are present. It was
demonstrated that the proposed method did not suffer from numerical instabilities
for large truncation orders which is an advantage compared with the corresponding
results published in [54].

The proposed formulation is well suited as a design tool in combination with any
optimization toolbox supported by, e.g., MATLAB or similar. Another application
could be a tool for creating reflection and transmission data characterizing any 2D
periodic dielectric device as input to solvers based on high frequency approximations
adapted for the analysis of scattering properties of electrically large structures that
is common in, e.g., the microwave regime for electrical design and optimization of
radomes [1, 2].

In addition there is potential for improving convergence rate and accuracy further
by incorporating techniques such as correct factorization rules, adaptive spatial res-
olution or the use of polynomials and non-periodic basis function expansions. These
extensions are crucial in order to handle gratings with, e.g., ultrahigh-contrast per-
mittivity profile such as metallic lamellar gratings at microwave frequencies. How-
ever, these techniques have not been introduced within the scope of this paper.

Finally, the proposed approach is well prepared for further development by the
fact that it is formulated for general dielectric anisotropic 2D gratings and based
on the general framework of scattering matrices that supports the incorporation of
other methods and techniques as pointed out in [46].
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