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A B S T R A C T

Speckle metrology is a powerful optical sensing tool for non-destructive testing (NDT) and advanced surface 
characterization, enabling ultra-precise measurements of surface deformations and displacements. These capa-
bilities are critical for material analysis and surface assessment in sensing-driven applications. However, tradi-
tional correlation methods often struggle to balance resolution and robustness, particularly when simultaneously 
measuring both small- and large-scale deformations in noisy, high-frequency data environments. In this paper, 
we present an adaptive resolution approach for speckle displacement measurement that combines grid-based 
phase correlation with statistical refinement for enhanced accuracy and resolution.

Unlike traditional phase correlation techniques that rely on global correlation, our method introduces a 
flexible grid-based framework with localized correlation and dynamic overlap adjustments. To improve mea-
surement performance, we developed an optimization technique that uses the median absolute deviation of 
residuals between reference and deformed images, enabling the algorithm to automatically adapt grid sizes based 
on local deformation characteristics. This allows it to handle both small- and large-scale deformations simul-
taneously and effectively. The approach resulted in a relative error reduction of up to 14 % compared to the best 
of the results obtained using a manually fixed grid size.

The proposed sensing methodology is validated through a series of numerical simulations and experimental 
studies, including controlled deformations with a micrometer translation stage and random speckle displace-
ments on water-sprayed surfaces. Results demonstrate that our method can accurately detect both known and 
unknown deformations with high accuracy and precision, outperforming traditional techniques in terms of 
adaptability and robustness, particularly for surface deformation analysis.

1. Introduction

Optical metrology and non-destructive evaluation (NDE) are funda-
mental in engineering, where accurate and real-time sensing and mea-
surement of parameters like deformation, roughness, shape, refractive 
index, and temperature are crucial for assessing material integrity and 
performance [1–6]. Advanced optical techniques such as interferometry, 
spectroscopy, and laser-based imaging, provide the high-resolution, 
non-contact capabilities essential for these measurements and are 
indispensable in a wide range of engineering applications. Among these 
methods, speckle metrology has emerged as a highly adaptable and 
precise approach, enabling detailed measurement of surface de-
formations, structural displacements, and shape measurements [7–11]. 
These capabilities make speckle metrology a versatile tool, suited not 

only for quality control and structural monitoring but also for experi-
mental investigations in dynamic and challenging environments, where 
optical techniques drive innovation in metrological accuracy and 
adaptability for engineering solutions [12–14].

Speckle patterns form when coherent light, such as laser light, 
scatters off rough or irregular surfaces, producing an interference 
pattern with unique intensity distributions [7]. By analyzing shifts in 
these patterns, speckle metrology provides exceptional sensitivity to 
micro-scale surface deformations, making it highly valuable optical 
sensing technique in applications requiring precise surface measure-
ments. The technique’s ability to detect minute variations in surface 
texture, deformation, and strain makes it a cornerstone for modern non- 
destructive evaluation and material characterization [14]. Furthermore, 
recent advances in digital speckle interferometry and computational 
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methods have expanded its applicability, enabling real-time, high-res-
olution measurements for both micro- and macro-scale surface changes 
[15–19].

Speckle displacement analysis, a key aspect of speckle metrology, 
involves tracking the spatial shifts (displacements) in speckle patterns 
caused by deformations or surface changes [7,20]. These displacements 
can manifest in various forms, translation, rotation, deformation, shear, 
or changes in surface texture; and each type of displacement alters the 
speckle pattern uniquely. Accurately interpreting these displacements 
provides crucial insights into surface behavior, making speckle analysis 
a powerful sensing tool for real-time surface monitoring across diverse 
fields such as material science, optics, fluid mechanics, medical imaging 
and diagnostics, agriculture and more [12,21–25].

Traditionally, methods like optical flow, template matching, and 
feature-based tracking have been employed for displacement analysis. 
However, these techniques often struggle in the context of speckle im-
ages due to their high-frequency content and noisy nature. Optical flow 
methods, for example typically rely on smoothing techniques to reduce 
noise, which inadvertently removes high-frequency information and 
minute displacements [26]. As a result, optical flow is often less effective 
when dealing with fine movements or high-frequency patterns, such as 
those seen in speckle and material surface images. Feature-based 
methods are also limited by the lack of distinct features in speckle im-
ages [27–29]. In contrast, correlation-based algorithms are highly 
effective for displacement measurement in speckle patterns 
[21,25,30,31]. Unlike methods that rely on feature extraction or in-
tensity changes, correlation-based algorithms measure the statistical 
similarity between regions of the speckle pattern before and after 
displacement. The high contrast and random structure of speckle pat-
terns make them particularly suitable for correlation-based approaches, 
which can accurately detect minute displacements without relying on 
identifiable features. This makes them ideal for handling high-frequency 
and noisy data that would typically hinder other methods [32].

Digital Image Correlation (DIC) algorithms can be categorized into 
two main types: intensity correlation and phase correlation. Beyond the 
input type, the computation of correlation can happen either locally or 
globally [33]. In local correlation, the image is divided into smaller grids 
(subimages), and displacement and deformations are tracked within 
each subset individually [34]. This localized approach allows for higher 
accuracy in detecting small, localized deformations, but it may intro-
duce inconsistencies at the boundaries between subsets. On the other 
hand, global correlation [35,36] considers the entire image, providing 
consistent displacement measurement across the entire field but 
potentially lowering the resolution and missing minute deformations.

The accuracy of correlation-based methods is influenced by the 
correlation criteria and the size of the grid or subsets used in local 
computation [25]. Global computations tend to smooth out small-scale 
movements, making it harder to track subtle local small shifts. In 
contrast, local computations can capture fine details, but the boundaries 
between subsets require careful handling (interpolation) to ensure 
displacement continuity [33].

Among correlation-based techniques, Phase Correlation (PC) [37] is 
particularly notable for its computational efficiency and robustness in 
the frequency domain, achieved through the Fast Fourier Transform 
(FFT). When applied to speckle metrology, PC offers distinct advantages 
over intensity-based methods, which depend on image intensity and 
content. Instead, PC focuses on phase information, making it less sen-
sitive to variations in contrast and brightness. This phase-based sensing 
approach ensures that PC is invariant to global linear changes in illu-
mination, resulting in sharper and more precise correlation peaks. 
Moreover, because phase differences across all frequencies contribute 
equally, PC is highly resistant to frequency-dependent noise and local-
ized disruptions, ensuring that the dominant phase difference and thus 
the correlation peak remains stable. This robustness extends to handling 
significant intensity variations and dynamic changes in illumination, 
making PC particularly suitable for noisy, high-frequency data like 

speckle patterns. Its ability to maintain stability under varying lighting 
conditions makes it an ideal technique for surface analysis, where illu-
mination or contrast fluctuations are common challenges [36].

While conventional PC typically employs global correlation, where 
the entire image is analyzed as a whole, we propose a novel hybrid 
approach that integrates local correlation into PC, enhancing traditional 
methods through adaptive resolution in speckle displacement mea-
surement. In traditional sensing approaches, which rely on fixed grid 
sizes, there is often a trade-off between detecting small- and large-scale 
deformations. Smaller grids can capture fine details but risk missing 
larger displacements, while larger grids are better suited for detecting 
broader deformations but lack the resolution needed for precise detec-
tion of smaller-scale changes.

Our method addresses these limitations by incorporating a grid- 
based framework with dynamic overlap adjustments and optimization 
via statistical refinement. By dynamically adjusting grid sizes, we ach-
ieve adaptive resolution for displacement detection. This adaptive res-
olution ensures that both small- and large-scale deformations are 
accurately detected without the need to compromise between resolution 
and coverage. By automatically refining grid sizes based on the defor-
mation characteristics in different regions, our approach significantly 
improves resolution and adaptability across diverse surface conditions. 
This combination of local correlation, PC, and dynamic grid adjustments 
enables accurate and precise detection of both subtle and significant 
surface deformations.

In this paper, we present both numerical simulations and experi-
mental validation of the proposed method. The experimental validation 
includes two types of deformation scenarios: controlled deformation and 
uncontrolled deformation. In the controlled deformation case, we apply 
the proposed method to detect speckle displacements over time between 
consecutive images captured after known speckle translations using a 
micrometer translation stage. For the uncontrolled deformation, we 
apply the method to detect speckle displacements caused by unknown 
surface deformation, created by spraying water on a cardboard surface. 
These experiments demonstrate the method’s ability to track both 
known and unknown surface displacements with high accuracy and 
precision, outperforming traditional correlation techniques in adapt-
ability and robustness.

This paper is structured as follows: In Section 1, we discuss the sig-
nificance of speckle metrology in deformation analysis through speckle 
displacement measurements. We review well-established displacement 
measurement methods and highlight the limitations that our contribu-
tion aims to address. Section 2 details the proposed adaptive resolution 
grid-based phase correlation algorithm, including its theoretical foun-
dations, the integration of dynamic overlap, and the effective grid size 
mechanism, which allow for robust detection of both small and large 
displacements. Section 3 presents a simulation study in which the 
method is applied to simulated cases to evaluate its performance. We 
introduce an optimization technique based on median absolute devia-
tion (MAD) [38,39] to dynamically adjust the effective grid size and 
enhance the accuracy of displacement measurement in varying defor-
mation conditions. Section 4 describes the experimental setup and 
validation process, where the proposed algorithm is tested against both 
controlled and uncontrolled surface deformations, including real-world 
applications such as micrometer-induced displacements and random 
speckle movements caused by water spray. The results confirm the 
method’s robustness, adaptability, and accuracy in real-world scenarios. 
Section 5 discusses the significance of the findings in greater detail, 
emphasizing the advantages of our adaptive approach over traditional 
methods. This section also outlines potential improvements, including 
the extension of the algorithm to detect additional types of de-
formations, such as local rotations, and the exploration of non- 
symmetrical grid size adjustments. Finally, we offer concluding re-
marks on the method’s broader applicability and suggestions for future 
research directions.
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2. Theory and method

In this section, we present the methodological framework and 
theoretical principles that guide our approach to speckle displacement 
measurement. The proposed method, based on adaptive resolution grid- 
based phase correlation, allows for precise detection of displacements in 
speckle patterns by dividing the image into grids and dynamically 

adjusting the overlap between grids. By optimizing the overlap using 
MAD, the algorithm is capable of detecting both small, fine-scale dis-
placements and larger displacements that occur across the image. This 
adaptability ensures that the method remains robust, even in chal-
lenging conditions such as the presence of outliers or varying displace-
ment scales in terms of size and area. The following subsections provide 
an explanation of the proposed algorithm’s operational steps and the 
mathematical foundations underlying image registration and displace-
ment estimation. This includes the theoretical framework for accurately 
aligning images and calculating displacement vectors, ensuring 

accuracy in the detection of deformations.

2.1. The algorithm

The following algorithm outlines the steps of the proposed adaptive 
resolution grid-based phase correlation method for detecting and 
measuring speckle displacements:

In the algorithm, the parameter O represents the overlap, which 
modifies the effective grid size during the calculation of speckle 
displacement. When an overlap O is introduced, the initial grid size S 
expands symmetrically in both directions. Specifically, the grid size S 
increases by a factor of 1 + O, meaning that the new effective grid size 
becomes S(1 + O) × S(1 + O). This expansion happens equally in both 
the positive and negative directions for each grid.

If O is positive, the effective grid size increases, allowing the algo-
rithm to capture a larger area around the initial grid. This can help 
detect larger displacements more reliably by incorporating more 

Algorithm 1 
Adaptive Resolution Grid-Based Phase Correlation for Speckle Displacement Measurement.
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surrounding data into the correlation process. Larger effective grids 
reduce the risk of poor correlation or missed matches when displace-
ments exceed the original grid size. Conversely, if O is negative, the 
effective grid size decreases. This reduction in effective grid size can 
enhance the resolution of the algorithm, allowing it to focus on finer 
details and detect smaller, localized displacements with greater accu-
racy. Smaller grids provide higher spatial resolution, which is particu-
larly beneficial in detecting subtle deformations that may occur over 
small regions. By narrowing the area analyzed, the algorithm becomes 
more sensitive to localized variations in the speckle pattern, improving 
its adaptability to regions with fine-scale deformation. In both cases, the 
adjustment happens symmetrically, ensuring that the grid expands or 
contracts equally in all directions.

By fine-tuning the overlap parameter O, the algorithm dynamically 
adjusts the effective grid size, allowing it to adapt to the specific scale of 
the displacement being measured. This adaptability ensures that the 
algorithm can optimize both the resolution and accuracy of the 
displacement detection, making it capable of precisely measuring both 
large-scale and small, localized speckle movements.

2.2. The theory behind image registration and displacements calculation

In the context of detecting displacements between two grids, we 
employ a Fourier-based image correlation method to implement regis-
tration by correlating two images in the frequency domain using FFT 
[37]. This approach exploits the fact that translation in the spatial 
domain corresponds to a linear phase shift in the frequency domain, 
allowing for the accurate detection of displacement vectors [40]. The 
technique estimates the translation vector between the grids of the 
reference and deformed images by computing the cross-power spectrum 
of their Fourier transforms. By taking the inverse Fourier transform of 
this cross-power spectrum, a correlation matrix is produced, and the 
peak in this matrix reveals the translation offset between the two grids.

To ensure accuracy and mitigate spectral leakage in the frequency 
domain caused by periodic extension during FFT, we apply a Blackman 
window to each grid. This choice is motivated by its superior sidelobe 
suppression, which reduces spectral leakage more effectively than the 
Hann or Hamming windows [41]. The Blackman window smoothly ta-
pers intensity values at the grid edges, minimizing abrupt transitions 
that can introduce artificial high-frequency components, thereby 
improving the stability of the registration results.

Unlike Hann or Hamming windows, the Blackman window’s strong 
sidelobe attenuation preserves critical frequency content needed for 
speckle correlation, while reducing phase errors introduced by leakage 
in the Fourier domain. This is particularly important for broadband 
signals like speckle patterns, where leakage can significantly distort 
displacement estimates. Although the Blackman window attenuates 
edge pixels, we compensate by overlapping grids, ensuring that no in-
formation is lost. 

w(n) = a0 − a1cos
(

2πn
N − 1

)

+ a2cos
(

4πn
N − 1

)

, (1) 

where w(n) is the value of the window function at index n, n is the index 
along one of the rows or columns of the section, N is the total number of 
samples in the window, a0 = 0.42, a1 = 0.5, and a2 = 0.08.

Eq. (1) generates the coefficients of the Blackman window, which are 
then multiplied element-wise with I(x, y), the intensity of the grids at 
spatial coordinate of (x,y), to apply the windowing effect. Therefore, we 
have: 

f1(x, y) = I1(x, y).w(x).w(y), (2) 

f2(x, y) = I2(x, y).w(x).w(y), (3) 

where f1(x, y) and f2(x, y) are the intensity functions of the reference and 
deformed grids affected by Blackman window, respectively.

The Fourier transform of the spatial domain grid f(x, y) is 

F(u, v) =
∫∫ ∞

− ∞
f(x, y).e− 2πi(ux+vy)dxdy, (4) 

where F(u, v) is the Fourier transform of the grid, and u and v are the 
spatial frequency coordinates.

After the Fourier transform, high-pass emphasis filtering is applied to 
enhance high-frequency components in the Fourier magnitude spectra 
while suppressing low-frequency components. This helps improve the 
robustness of phase correlation by emphasizing image details and 
reducing the impact of background noise.

To do so, we first obtain Fourier magnitude spectra F1 and F2 of the 
reference and deformed grids, respectively, and apply a high-pass filter 
H(u, v) to enhance high-frequency components. The enhanced Fourier 
magnitude spectrum of the fixed and deformed grids become: 

F́ 1(u, v) = |F1(u, v) |.H(u, v), (5) 

F́ 2(u, v) = |F2(u, v) |.H(u, v), (6) 

where H(u, v)=(1 − X(u, v))(2 − X(u, v)) and X(u, v)=cos(πu).cos(πv).
The cross-power spectrum (P) is then calculated as the complex 

conjugate of the Fourier transform of one grid multiplied by the Fourier 
transform of the other grid: 

P(u, v) =
F́ 1(u, v).F *́

2 (u, v)⃒
⃒F́ 1(u, v).F *́

2 (u, v)
⃒
⃒
, (7) 

where F *́
2 (u, v) denotes the complex conjugate of F́ 2(u, v).

The PC operation involves taking the inverse Fourier Transform IFFT 
of the cross-power spectrum P(u, v) to obtain the correlation matrix C(x, 
y) in the spatial domain: 

C(x, y) = IFFT{P(u, v) }. (8) 

The displacement between the two grids is identified by locating the 
peak in the correlation matrix C(x, y). The coordinates of this peak 
indicate the horizontal and vertical shifts required to align the grids. 

(Δx,Δy) = arg max(x,y)C(x, y), (9) 

where (Δx,Δy) are the detected displacements.

3. Simulation study and optimization

3.1. Numerical simulation

In this study, we simulate laser speckle patterns to evaluate the 
performance of the proposed method for speckle displacement mea-
surement. To generate speckle patterns, we use a numerical approach 
that creates a random phase matrix combined with a uniform amplitude 
field representing the laser beam. The resulting complex field undergoes 
a Fourier transform to produce the speckle pattern. In cases where it is 
necessary to manipulate the speckle size, an optional zero-padding step 
can be applied before the Fourier transform. This increases the speckle 
size and allows for studying larger displacements or reducing high- 
frequency noise. After applying zero-padding, the central region of the 
transformed speckle pattern can be extracted to match the desired size.

The generated speckle pattern is then used as the reference image Iref 
in our algorithm, while known local displacements are introduced into 
different areas of Iref to create the deformed image Idef. These displace-
ments vary in both magnitude and affected area, ranging from minute, 
localized deformations to larger-scale shifts across different regions. By 
applying these controlled displacements to both small and large areas, 
we can evaluate whether the proposed algorithm accurately detects and 
measures both subtle, localized deformations and larger-scale dis-
placements in regions of varying size. This allows us to thoroughly 
investigate the algorithm’s robustness and accuracy across different 
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scales of displacement.

To evaluate the performance of our proposed adaptive resolution 
grid-based phase correlation algorithm, we first generated a 600 × 600 
pixel speckle pattern image as the reference image Iref. Displacements 
were then introduced into five distinct regions of the reference speckle 
pattern to create the deformed image Idef, as shown in Fig. 1. The regions 
affected by the displacements are highlighted by squares in the figure, 
with the speckle patterns before and after the shifts displayed on the left 
and right, respectively.

The specific sizes of each region and their corresponding displace-
ment values are as follows: 

• Upper-Left Corner (Region 1), 250 × 250 pixels: 
– X-direction shift: 20 pixels to the right.
– Y-direction shift: 18 pixels upward

• Upper-Right Corner (Region 2), 60 × 60 pixels: 

– X-direction shift: 5 pixels to the left.

– Y-direction shift: 6 pixels downward
• Center of the image (Region 3), 40 × 40 pixels: 

– X-direction shift: 4 pixels to the right
– Y-direction shift: 4 pixels downward

• Bottom-Left side of the image (Region 4), 50 × 50 pixels: 
– X-direction shift: 5 pixels to the right
– Y-direction shift: 6 pixels upward

• Bottom-Right Corner (Region 5), 30 × 30 pixels: 
– X-direction shift: 4 pixels to the right
– Y-direction shift: 4 pixels downward

These controlled displacements allow us to evaluate the proposed 
method’s ability to detect and measure displacements across regions of 
varying sizes and magnitudes. The simulation includes both subtle, 
localized deformations and larger-scale shifts, testing the method’s 

Algorithm 2 
Adaptive Resolution Grid-Based Phase Correlation for Speckle Displacement Measurement.
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robustness and adaptability. By applying varying displacement magni-
tudes and region sizes, we thoroughly assess the method’s capacity to 
resolve different displacements while adapting to the size of the affected 
regions.

In this section, we investigate how varying grid sizes S and overlap O 
influence the accuracy of the proposed method in detecting displace-
ments of different magnitudes across regions of varying sizes within the 
image. Fig. 2 shows the results for a grid size of 30 × 30 pixels, with 
overlap values of 1, 2, 4 and 6 (Fig. 2a, 2b, 2c, and 2d, respectively). 
Similarly, Fig. 3 displays the results for a grid size of 20 × 20 pixels, and 
Fig. 4 presents the results for a grid size of 15 × 15 pixels, each with 
overlap values of 1, 2, 4 and 6, respectively.

As seen in Figs. 2–4, when the effective grid size S(1 + O) becomes 
significantly larger than the deformed area or displacement magnitude, 
the algorithm struggles to detect shifts accurately. Conversely, when the 
effective grid size is considerably smaller than the deformed region, the 
algorithm can still detect the deformed area but fails to accurately 
compute the displacement values.

These results highlight the crucial role of the overlap parameter O in 
detecting displacements. In the simulated case, the displacement mag-
nitudes and deformed area sizes are predetermined, allowing us to 
evaluate the method’s performance across various scenarios. In real- 
world applications, however, the deformed regions and displacements 
are unknown, making the choice of grid size and overlap critical for 
robust detection.

One potential solution, demonstrated in Figs. 2–4, is to systemati-
cally vary the grid size and overlap while observing the resulting 
displacement maps. This approach helps to identify configurations 
where the displacement vectors (represented by arrows) within each 
local deformed regions exhibit consistent and logical behavior in both 
size and direction. Based on our analysis, the configuration with a grid 
size of 15 × 15 pixels and an overlap of 4 emerges as the most effective 
overall for this particular example, and could serve as a reference for 
selecting optimal grid and overlap parameters.

Next, we focus on the performance of the algorithm in Fig. 4c, 
analyzing its effectiveness for each local deformed region in detail.

Fig. 5a provides a zoomed-in view of Region 1 from Fig. 4c, showing 
that the computed shifts U and V accurately match the actual displace-
ments introduced in the simulation. It is worth noting that in MATLAB, 
the sign of V (in the data box) is printed opposite to the conventional Y- 
direction; however, the arrows correctly represent the direction of the 
introduced shifts. Blue points represent the center of each grid.

In Fig. 5b, we zoom in on Region 2 from Fig. 4c, where the computed 
displacements closely match the actual shifts. Fig. 5c shows similar ac-
curacy in Region 3. In Fig. 5d, the displacement vectors for the bottom- 
left region (Region 4) of Fig. 4c are displayed, further confirming the 
method’s capability. Finally, Fig. 5e shows the computed displacements 
for the bottom-right region (Region 5) of Fig. 4c, where a high degree of 
correspondence is observed between the computed and actual shifts.

Although the grid size of 15 × 15 pixels and the constant overlap 
value of 4 produce strong accuracy across the regions, there remains 
room for further refinement. Rather than applying a constant effective 
grid size across the entire image, we propose that the effective grid size 
be adaptively adjusted and optimized for each grid during the compu-
tation of displacements. This approach would allow the algorithm to 
fine-tune its performance based on the local deformation characteristics.

3.2. Adaptive resolution with dynamic and automatic overlap 
optimization

An effective approach for achieving adaptive resolution is to 
dynamically adjust the overlap value for each grid during computation. 
Instead of applying a single overlap value across the entire image, the 
algorithm tests a range of overlaps for each local region to identify the 
optimal overlap size. This allows the algorithm to adapt to various scales 
of deformation across regions, which may differ both in size and 

displacement characteristics, some regions might be small with subtle 
shifts, while others could be larger with more pronounced deformations.

Initially, we explored using correlation-based metrics to optimize the 
overlap. However, due to inherent image noise, these methods often 
favored larger overlaps (larger effective grids) because stronger corre-
lation values were achieved, albeit at the cost of reduced resolution. This 
approach led to suboptimal results in areas where high resolution was 
needed. To overcome this, we investigated alternative metrics and found 
that MAD provided superior resilience. Compared to mean-based 
methods, MAD offers a more robust measure of central tendency, 
being less affected by outliers. This made MAD better suited for deter-
mining the optimal overlap size, maintaining both accuracy and 
resolution.

By continuously adjusting the overlap O during the computation and 
using MAD as the guiding metric, the algorithm dynamically selects the 
most appropriate effective grid size and overlap for each region. This 
results in an automatic and adaptive resolution that can handle 
deformed regions with different sizes and deformation characteristics, 
maintaining accuracy without sacrificing resolution. MAD, calculated 
as: 

Fig. 1. Speckle patterns before (left) and after (right) the introduction of 
controlled displacements. Five distinct regions, highlighted by squares, show 
varying displacement magnitudes and region sizes. The regions represent 
different scales of deformation used to evaluate the method’s performance in 
detecting both subtle and larger displacements.

Fig. 2. Displacement vectors for a grid size of 30 × 30 pixels with overlaps of 1, 
2, 4, and 6 in (a)–(d), respectively.

H. Sabahno et al.                                                                                                                                                                                                                               Sensing and Bio-Sensing Research 48 (2025) 100790 

6 



MAD = median(|εi − median(ε) | ), (10) 

where εi represents residual (the pixel-wise difference) between two 
grids after the alignment which is calculated as: 

εi = I1(x, y) − Í 2(x, y), (11) 

where and I1(x, y) represents the intensity value at position (x, y) in the 
selected grid from the reference image, while I2(x, y) is the intensity 
value from the corresponding grid found in the deformed image. And 
Í 2(x, y) refers to the intensity values of the corresponding grid in the 
deformed image after it has been geometrically transformed and aligned 
with the reference grid using the computed displacements (Δx,Δy). This 
transformation ensures that the two grids are aligned and comparable. 
The median(ε) represents the median residual of all pixel intensity dif-
ferences between the two aligned grids.

Thus, we directly measure the residual errors after alignment, 
providing a reliable indication of the registration accuracy. The MAD of 
the residuals between the reference grid and the transformed grid serves 
as critical feedback for the optimization process. It determines whether 
the chosen transformation parameters, including the overlap value, 
yield a precise alignment. This metric ensures that the algorithm adjusts 
dynamically to find the optimal overlap (Consequently optimal effective 
grid size) for each region, based on the actual deformation 
characteristics.

To evaluate this optimization method, we used a fixed grid size of 15 
× 15 pixels and varied the overlap range O from 0 to 5, incrementing by 
0.2 (i.e., 0:0.2:5). The results of this evaluation are shown in Fig. 6. As 
seen, the detected speckle displacements are highly accurate, with ar-
rows representing the detected shifts clearly covering all local deformed 
regions. These areas exhibit different deformation characteristics, yet 
the algorithm successfully adapts to varying overlap values and captures 
both small and large displacements with high accuracy.

To analyze the results in greater detail, we focus on the different 
regions of Fig. 6, as done in previous sections, to investigate the 
computed displacements.

In Region 1, illustrated in Fig. 7a, the computed displacements align 
perfectly with the actual shifts. For Region 2, the zoomed-in view in 
Fig. 7b demonstrates that the computed displacements accurately reflect 

Fig. 3. Displacement vectors for the grid sizes of 20 × 20 pixels with overlaps 
of 1, 2, 4, and 6 in (a)–(d), respectively.

Fig. 4. Displacement vectors for the grid sizes of 15 × 15 pixels with overlaps 
of 1, 2, 4, and 6 in (a)–(d), respectively.

Fig. 5. Fig. 4c zoomed with displacement details in a: Region 1, b: Region 2, c: 
Region 3, d: Region 4, e: region 5.
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the actual shifts. Similarly, the center region of Fig. 6, as shown in the 
zoomed-in view in Fig. 7c, also reveals an accurate match between the 
computed and actual displacements. Moving on to Region 4, as seen in 
Fig. 7d, the computed displacements again correspond to the actual 
shifts. Lastly, in the zoomed-in view of Region 5 shown in Fig. 7e, we 
observe a strong alignment between the actual and computed dis-
placements, with only minimal differences.

Upon analyzing Fig. 7, it is evident that the computed displacements 
align more accurately with the actual displacements compared to the 
results seen in Fig. 4. Notably, the optimization method eliminates the 
misalignment issues previously observed in Figs. 2–4, where arrows 
occasionally pointed in incorrect directions. Specifically, the detected 
speckle displacement using the best manually set (fixed resolution) 
method – shown in Fig. 4c, yielded relative errors of 15.2 % and 15.17 % 
in Region 1 for the X and Y directions, respectively. For Region 2, the 
relative errors were 0.4 % in the X direction and 1.5 % in the Y direction. 
In Region 3, the relative errors were 1.75 % for X and 3 % for Y. Region 4 
exhibited relative errors of 5 % in the X direction and 0.8 % in the Y 
direction, and Region 5 showed relative errors of 1.25 % for X and 5 % 
for Y.

In contrast, with the proposed optimized (adaptive resolution) 
method, the relative error rates decreased significantly (Fig. 6). In Re-
gion 1, the relative errors dropped to 1.35 % in the X direction and 1.28 
% in the Y direction. For Region 2, the errors were 0 % in both X and Y 
directions. In Region 3, the errors reduced to 1.25 % in both X and Y 
directions. Region 4 showed error rates of 1 % and 0.8 % in X and Y 
directions. Region 5 achieved errors of 2.5 % in both X and Y directions. 
The optimization approach has therefore successfully enhanced the ac-
curacy and consistency of the displacement detection across all regions.

To further illustrate the effectiveness of the dynamic and automatic 
overlap optimization approach, we plot the MAD values as a function of 
the overlap O for five representative grids, each selected from Regions 1 
to 5. These regions exhibit varying deformation characteristics, with 
differences in both the size of the deformed area and the magnitude of 
the displacement, which necessitate different resolutions to accurately 
detect the local displacements.

Fig. 8 presents the results of this analysis. For a grid in Region 1, 
which corresponds to a larger deformed area, the MAD reaches its 
minimum value at an optimal overlap of O = 3.2. In contrast, for Region 
2, which is characterized by a smaller deformation area, the optimal 
overlap is O = 2.4. The displacement in Region 3, located near the center 
of the image, requires a significantly smaller overlap of O = 0.6 to 
minimize the MAD value. Meanwhile, in Region 4, the optimal overlap is 
found to be O = 1.2, and for Region 5, the MAD reaches its minimum at 
O = 1.8. These results demonstrate the algorithm’s ability to adaptively 
select different overlap values based on the unique deformation char-
acteristics of each region, ensuring optimal detection of displacements 
across a wide range of scales and conditions.

4. Experimental validation

In this section, we further validate the proposed adaptive resolution 
speckle displacement measurement method through two distinct ex-
periments: controlled deformations using a micrometer translation 
stage, and uncontrolled deformations induced by random forces applied 
to a cardboard surface. These experiments are designed to assess the 
algorithm’s robustness and effectiveness in detecting both known and 
unknown displacements under different conditions.

4.1. Controlled deformations using a micrometer translation stage

4.1.1. Experimental setup
In the controlled deformation experiment, we employed a green laser 

to generate coherent light, which was then directed onto a cardboard 
surface. A diffuser lens was used to scatter the laser beam, ensuring 
uniform illumination across the surface. The scattered laser light 

produced a speckle pattern on the cardboard, which was captured by a 
digital camera equipped with an objective lens.

To induce controlled displacements, we mounted the cardboard on a 
micrometer translation stage, which allowed precise movement in both 
the X and Y directions. The micrometer translation stage used in the 
experiment had a resolution of 10 μm. The experimental setup is shown 
in Fig. 9, with the left image showing the schematic of the setup and the 
right image displaying the real equipment.

4.1.2. Controlled translation procedure
The experiment began by capturing a reference speckle image of the 

cardboard surface. The object was then manually displaced using a 
micrometer translation stage, which allowed for controlled movements 
in both the X and Y directions. The displacements were applied as 
follows: 

(X = 0 μm, Y = 50 μm)
(X = 100 μm, Y = 150 μm)
(X = 200 μm, Y = 200 μm)
(X = 250 μm, Y = 500 μm)

After each displacement, the corresponding speckle images were 
captured and analyzed using the developed speckle displacement mea-
surement algorithm. The extracted speckle displacement fields for each 
controlled translation are presented in Fig. 10, consisting of four sub-
figures representing different translation cases.

In Fig. 10a, the computed displacements are shown for the micro-
meter shift of (X = 0 μm, Y = 50 μm). Fig. 10b illustrates the computed 
displacements for a shift of (X = 100 μm, Y = 150 μm). In Fig. 10c, the 
computed displacements are shown for a shift of (X = 200 μm, Y = 200 
μm), and Fig. 10d corresponds to the largest translation of (X = 250 μm, 
Y = 500 μm).

In each subfigures of Fig. 10, the red arrows represent the computed 
displacement vectors, indicating the detected shifts across the speckle 
field. It is important to note that while the direction of the arrows is 
accurate, their length has been automatically scaled by MATLAB for 
visualization purposes, and does not directly correspond to the actual 
displacement values. To ensure the true displacement magnitude is 
accurately conveyed, each subfigure includes a data box. This data box 
provides specific computed displacement values at a given point in the 
field, displaying the calculated shifts (μm) in the X (U) and Y (V) 
directions.

4.1.3. Results and analysis
The proposed adaptive resolution speckle displacement measure-

ment algorithm was applied to the captured images for each controlled 
translation. The measured displacements were compared with the 

Fig. 6. Detected optimal displacement vectors using a grid size of 15 × 15 
pixels with dynamically optimized overlap, demonstrating adaptive resolution 
across different regions.
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known displacements introduced by the manual micrometer translation 
stage. Table 1 summarizes the actual displacements in micrometers (μm) 
alongside the systematic and random errors in the displacement values 
calculated by the algorithm. It also includes the relative systematic error 
as a percentage for both X and Y directions. Overall, the results indicate 
that the algorithm accurately tracks the speckle displacements, with 
generally low error rates across different translations. This confirms the 
robustness and effectiveness of the method in detecting and measuring 
controlled speckle displacements.

Upon closer inspection of the results, differences were observed be-
tween displacements measured in the upper and lower parts of the 
image, as well as between the rightmost and leftmost parts. For instance, 
for an actual shift of (X = 0 μm, Y = 50 μm), the measured Y displace-
ment in the upper part of the image was 54.95 μm, while in the lower 
part, it was 51.62 μm. Similarly, for X displacement in the same test, the 
average measured shift in the most upper part of the image was 1.52 μm, 
while in the lowest part, it increased to 2.49 μm. Despite no actual 
displacement in the X direction, the systematic error of 1.6 μm suggests a 
slight drift in the experiment, which contributes to a higher error rate in 
X compared to Y in subsequent translations.

These discrepancies suggest that the cardboard surface may not be 
perfectly aligned with the X-Y plane of the camera’s field of view, 
leading to slight inclinations. Even small inclinations of the surface 

along both the X and Y axes can introduce out-of-plane displacements, 
affecting the accuracy of the measured shifts. This is especially evident 
in regions where the speckle movement is most sensitive to such angular 
misalignments. The systematic difference between the upper and lower 
areas of the image supports this hypothesis.

Moreover, these factors, along with the manual operation of the 
micrometer translation stage, which has a resolution of 10 μm, introduce 
further uncertainty. Human-induced variations, combined with the 
mechanical limitations of the translation stage, contribute to the 
observed error rates. These uncertainties and limitations become more 
significant when measuring smaller actual displacements, where the 
errors become comparable to the size of the displacement itself. This is 
why minute displacements are more affected by these errors.

To minimize these sources of error and improve measurement ac-
curacy, further calibration of the system could be performed in future 
work. Additionally, employing a motorized micrometer translation 
stage would also minimize human variability, improving the consistency 
of the translations and further refining the accuracy of the displacement 
measurements.

4.2. Uncontrolled deformations: Random speckle movements

In the second experiment, we tested the algorithm’s robustness in 

Fig. 7. Detected optimal displacements after optimization (Fig. 6 Zoomed) in a: Region 1, b: Region 2, c: Region 3, d: Region 4, e: region 5.
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detecting random, uncontrolled deformations. In this case, speckle dis-
placements were introduced by spraying water onto a cardboard sur-
face, creating random shifts in the speckle pattern. The setup and camera 
remained the same as in the previous experiment. We aimed to experi-
mentally track the displacement of surface speckles on the cardboard 
surface over time after it was sprayed with water. The cardboard surface 
was initially dry, and water droplets were distributed randomly across 
the surface using a fine mist spray bottle. After spraying the surface with 
water, a sequence of speckle images was captured to observe the tem-
poral changes in the speckle pattern over time. Unlike the controlled 
experiment, the exact amount of displacement caused by the water spray 
was unknown, making this a more challenging scenario for the algo-
rithm. The speckle pattern formed on the surface of the cardboard under 
laser illumination is shown in Fig. 11.

The proposed algorithm was applied to track the speckle displace-
ments resulting from the random deformations and are shown in Fig. 12. 
Despite the uncontrolled nature of the deformations, the algorithm 
successfully detected the displacements across different areas of the 
image. The effectiveness of the adaptive resolution approach allowed for 
the simultaneous detection of minute, subtle, and large displacements, 
even in regions where the deformation was unevenly distributed.

The movement of the speckles was primarily due to the interaction 
between the water and the cardboard surface. When water was sprayed 
onto the cardboard, the spreading and absorption of the water caused 
temporal changes in the speckle pattern. These changes were detected as 

displacements in the speckle positions between the two images. The 
speckle pattern shifted because the scattering properties of the card-
board surface were altered by the movement of water, which resulted 
from water absorption, expansion, spreading, and evaporation. The 
displacement vectors of the speckles provided quantitative information 
about surface deformation and the dynamics of water absorption and 
evaporation.

5. Discussion

The adaptive resolution grid-based phase correlation algorithm 
introduced in this study offers a significant advancement in speckle 
displacement measurement, providing enhanced precision in surface 
deformation analysis for optical metrology and non-destructive testing 
(NDT). Traditional correlation techniques typically divide the entire 
image into fixed sub-images (grids) to detect displacements. However, 
these sub-images are static in size, which presents limitations when the 
scale of deformation varies across different regions of the image. Fixed 
sub-images often fail to capture the full range of displacement charac-
teristics, small grids may not detect large displacements effectively, 
while large grids may overlook minute, localized deformations. The 
challenge lies in achieving the right balance between resolution and 
robustness for varying deformation scales.

In our algorithm, we address this challenge by introducing the 
concept of effective grids (or effective sub-images), which are dynamically 
adjusted based on local deformation characteristics. This is achieved 
through the introduction of an overlap parameter (O). The overlap, 
when combined with the initial grid size (S), forms the effective grid size 
S(1 + O), allowing the algorithm to adaptively adjust the sub-image 
dimensions. Unlike conventional methods where the sub-image size is 
fixed throughout the entire image, our approach allows the effective grid 
size to vary, ensuring better adaptability to both small and large dis-
placements within regions of different sizes.

This dynamic adjustment is key to the algorithm’s success, as it en-
ables the detection of all types of deformations, subtle, minute, or large- 
scale, without sacrificing resolution. By adjusting the overlap for each 
grid independently, the algorithm captures a broader range of defor-
mation characteristics, providing a significant improvement over static 
methods that require manual tuning of grid sizes. This automated 
approach ensures high accuracy in detecting both localized fine dis-
placements and larger-scale deformations.

While the adaptive grid sizing enhances the ability to capture both 
fine and large-scale deformations, the fundamental resolution of 
displacement measurements remains governed by the sensor’s pixel 
pitch, the speckle grain size, and the quality of the correlation. In 
practical terms, reliable displacement tracking requires speckle grains to 
span multiple pixels, typically 3 to 5, to ensure sufficient intensity 
variation and avoid aliasing [42,43]. Although subpixel algorithms are 
capable of detecting displacements at sub-pixel levels, maintaining 
precision depends critically on the presence of adequately sized speckles 
and well-textured correlation grids. Smaller grids improve spatial 

Fig. 8. Plot of MAD values as a function of overlap O for representative grids 
from Regions 1 to 5. The optimal overlap varies across regions, reflecting the 
algorithm’s ability to adapt to different deformation area sizes and displace-
ment magnitudes, with minimum MAD values indicating the most accurate 
alignment for each region.

Fig. 9. Schematic (left) and actual arrangement (right) of the experimental system. The setup includes a green laser source, a diffuser lens, and a digital camera for 
capturing speckle patterns. The cardboard, serving as the targeted test object, is mounted on a micrometer translation stage for precise displacements. (For inter-
pretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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resolution but may reduce measurement precision if they contain too 
few speckle features, while larger grids provide more stable correlation 
at the cost of local detail. The adaptive nature of the proposed method 

helps mitigate this trade-off by adjusting grid overlap and size based on 
local deformation complexity, maintaining high tracking performance 
across varying regions of the image.

Moreover, we combined our algorithm with phase correlation (PC) 
due to its unique advantages over other correlation techniques. PC 
provides robustness against global variations in contrast and brightness, 
offering sharper and more stable correlation peaks [36]. This makes it 
particularly effective in noisy environments where other techniques may 
struggle. By incorporating PC into our adaptive resolution algorithm, we 
benefit from these strengths, enabling accurate displacement detection 
even in conditions with high-frequency noise. The combination of PC 
and our dynamic overlap approach ensures superior performance 
compared to traditional intensity-based or global correlation 
techniques.

5.1. Effective grid size and overlap

The effectiveness of the algorithm relies heavily on the interplay 
between the grid size (S) and the overlap parameter (O). In conventional 

Fig. 10. Computed displacement fields for controlled translations of the cardboard surface: (X = 0 μm, Y = 50 μm) (a), (X = 100 μm, Y = 150 μm) (b), (X = 200 μm, 
Y = 200 μm) (c), and (X = 250 μm, Y = 500 μm) (d). Red arrows represent the computed displacement vectors, scaled for clarity. Data boxes indicate the actual 
computed displacements (U, V) in μm at a specific point. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version 
of this article.)

Table 1 
Summary of controlled displacements produced by a manual micrometer 
translation stage and the corresponding systematic and random errors measured 
by the speckle displacement measurement algorithm, with relative systematic 
error reported for each translation in the X and Y directions.

Actual 
Displacement (μm)

Systematic Error 
(μm)

Random Error 
(μm)

Relative Systematic 
Error (%)

X = 0, Y = 50
X = 1.6, Y =
0.16

X = 1.89, Y =
7.32 X = N/A, Y = 0.32 %

X = 100, Y = 150
X = 7.82, Y =
8.06

X = 1.48, Y =
3.43

X = 7.82 %, Y =
5.37 %

X = 200, Y = 200 X = 8.37, Y =
− 1.12

X = 8.6, Y =
7.96

X = 4.19 %, Y =
− 0.56 %

X = 250, Y = 500
X = 16.88, Y =
18.2

X = 11.54, Y =
10.35

X = 6.75 %, Y =
3.64 %
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methods, the grid size is fixed, which often leads to compromises in 
accuracy when dealing with varying deformation magnitudes. In our 
approach, the overlap modifies the effective grid size dynamically, 
providing the flexibility to adapt the resolution as needed. 

• Positive Overlap (O > 0): When the overlap is positive, the effective 
grid size increases. This helps the algorithm capture larger dis-
placements by incorporating more surrounding data into the corre-
lation process, thereby reducing the risk of poor correlation or 
missed matches when displacements exceed the original grid size. 
Larger effective grids are particularly useful for detecting broad, 
large-scale deformations.

• Negative Overlap (O < 0): Conversely, when the overlap is negative, 
the effective grid size decreases. This reduction enhances the spatial 
resolution of the algorithm, making it more sensitive to smaller, 
localized displacements. Smaller grids are especially beneficial in 
detecting subtle deformations that occur over small regions, where 
high resolution is essential for capturing fine details.

Given that the size of the deformed regions and displacement mag-
nitudes are typically unknown in practical applications, it is advisable to 
initially select a small grid size to ensure high-resolution detection. 
Therefore, only positive overlap (O > 0) is necessary to increase the 
effective grid size where larger displacements occur, allowing the al-
gorithm to detect both small and large deformations without the need 
for negative overlaps.

This dynamic adjustment of the effective grid size ensures that the 
algorithm can maintain both accuracy and resolution across different 
scales of displacement. The adaptability provided by the overlap 
parameter allows the algorithm to optimize its performance based on the 
specific deformation characteristics in each grid, which is particularly 
important in real-world applications where the size of the deformed 
regions and the magnitude of displacements are often unknown.

5.2. MAD-based optimization

To further enhance the accuracy of displacement detection, we 
incorporated a statistical optimization technique based on the median 
absolute deviation (MAD) of residuals. This optimization method 
dynamically selects the most appropriate overlap for each grid, refining 
the effective grid size to best suit the local deformation characteristics. 
The MAD criterion is particularly effective and more robust against 
outliers compared to traditional correlation maximization techniques, 
which tend to favor larger grid sizes that can obscure fine details. By 
focusing on the residual differences after alignment, MAD ensures that 
both subtle and larger displacements are accurately detected, without 
noise masking smaller deformations.

Using MAD as the guiding metric allows the algorithm to avoid the 

pitfalls of larger grids that often smooth over small deformations. This 
approach ensures that even minute displacements are detected with 
high accuracy, making the algorithm resilient to variations in 
displacement scales.

5.3. Automatic grid size adjustment

The core strength of our algorithm lies in its ability to automatically 
adjust the effective grid size throughout the image. Unlike conventional 
methods that rely on manual tuning or fixed grid sizes, our algorithm 
adjusts the overlap dynamically to achieve the optimal balance between 
resolution and robustness. This ensures that each grid is appropriately 
sized based on the local deformation characteristics.

For most practical applications, we used symmetrical adjustments in 
both the X and Y directions. However, in cases where the deformation 
components in one direction are significantly larger than in the other, a 
non-symmetrical adjustment may be necessary. For example, if the 
deformation in the Y direction is dominant, a square grid could lead to 
inaccuracies in the X direction. In such cases, adjusting the grid size 
unequally in the X and Y directions would allow for more accurate 
detection of displacements in both directions. This refinement is 
particularly important in scenarios where the deformation field is highly 
anisotropic.

5.4. Real-world validation and challenges

The proposed algorithm was validated through both numerical 
simulations and experimental measurements. In the simulations, 
controlled displacements were applied to speckle patterns to test the 
algorithm’s ability to detect deformations across regions of different 
sizes and magnitudes. In the experimental validation, we tested 
controlled displacements, introduced using a micrometer translation 
stage, and random deformations induced by spraying water on a card-
board surface. In both cases, the algorithm successfully tracked the 
displacements, confirming its robustness and adaptability in real-world 
scenarios.

However, even with this robust optimization method, caution must 
be exercised when selecting the range of overlap values. Excessively 

Fig. 11. Speckle patterns observed on the surface of the cardboard under laser 
illumination.

Fig. 12. The surface of the cardboard was randomly sprayed with water. 
Speckle displacements map showing the temporal changes in the speckle 
pattern of water sprayed surface.
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large effective grid sizes may miss smaller deformations, while overly 
small grids could result in poor detection of larger displacements. 
Therefore, the selection of a suitable overlap range is critical to ensuring 
the algorithm produces the desired range of resolutions across a wide 
range of deformation magnitudes.

5.5. Future considerations and enhancements

In future developments, the algorithm could be extended to handle 
other types of deformations beyond translations, such as local rotations. 
While the current implementation focuses on translational shifts, 
incorporating the ability to detect additional types of deformations 
would significantly broaden the algorithm’s applicability.

Additionally, further exploration of non-symmetrical grid size ad-
justments for highly anisotropic deformation fields would improve the 
accuracy of the method, particularly in cases where deformations occur 
with significantly different magnitudes along the X and Y directions. 
This refinement would ensure that smaller components of deformation 
are not missed in the presence of dominant larger components.

Even with MAD-based optimization, there remains a slight degree of 
residual error. Therefore, future research could consider investigating 
alternative optimization techniques to further enhance accuracy. 
Exploring other statistical optimization methods or hybrid approaches 
may help reduce these errors in specific cases. Additionally, the inte-
gration of machine learning or artificial intelligence (AI) [44,45] could 
provide dynamic grid size and overlap adjustments based on learned 
data patterns, potentially enhancing performance in real-time, espe-
cially in more complex deformation fields.

Finally, the use of a motorized translation stage and improved cali-
bration techniques would enhance further the accuracy of experimental 
measurements, reducing manual errors and ensuring more accurate 
displacement measurement in future experiments.

6. Conclusion

In summary, the adaptive resolution grid-based phase correlation 
algorithm presents a flexible and robust solution for speckle displace-
ment measurement in optical metrology. By combining phase correla-
tion with the introduction of dynamic overlap and effective grid size, the 
algorithm adapts to both small and large deformations across regions of 
varying sizes. This adaptability ensures that the method remains accu-
rate in both high-resolution, small-scale deformations and larger-scale 
displacements, achieving a relative error reduction of up to 14 % 
compared to the best results obtained with manually fixed grid sizes. The 
combination of phase correlation with these adaptive features not only 
makes the method robust, even in noisy environments, but also ensures 
stable detection of displacement vectors.

The use of MAD-based optimization further refines the algorithm, 
making it resilient to outliers and capable of detecting fine details 
without sacrificing robustness. Future work should explore extending 
the method to detect other types of deformations, such as local rotations, 
and optimizing the grid size asymmetrically for highly anisotropic 
deformation fields.
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