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Computationally Efficient Capon- and APES-based
Coherence Spectrum Estimation

K. Angelopoulos∗, G. O. Glentis∗, Member, IEEE, and A. Jakobsson†, Senior Member, IEEE

Abstract— The coherence spectrum is of notable interest as a bivariate
spectral measure in a variety of application, and the topic has lately
attracted interest with the recent formulation of several high-resolution
data adaptive estimators. In this work, we further this development
with the presentation of computationally efficient implementations of
the Capon- and APES-based MSC estimators. The presented imple-
mentations furthers the recent development of exploiting the estimators’
inherently low displacement rank of the necessary products of Toeplitz-
like matrices to include also the required cross-correlation covariance
matrices for the mentioned coherence algorithms. Numerical simulations
together with theoretical complexity measures illustrate the performance
of the proposed implementations.

Index Terms— Coherence spectrum, data adaptive estimators, efficient
algorithms

I. INTRODUCTION

ESTIMATING the coherence between two or more measured
signals is a ubiquitous problem, finding applications in a variety

of fields, such as speech processing, time series analysis, geophysics,
biomedical engineering, and synthetic aperture radar imaging. The
topic has lately attracted renewed interest with the proposal of
the non-parametric data-dependent Capon-based magnitude squared
coherence (MSC) estimator proposed in [1], and then further explored
in [2]–[6]. The one- and two-dimensional (2-D) Capon- and APES-
based approaches introduced in [1], [2] show that these estimators
allow for proper high-resolution MSC estimates by forming data-
adaptive filter banks, with each filter being constrained to pass its
center frequency undistorted while suppressing the contribution of all
other components. In this paper, we further these works by examining
both the computational complexity and the performance of the Capon
and APES algorithms. Given the high complexity of these methods,
we examine ways to form computationally efficient implementations
of the algorithms. Reminiscent to the efficient implementations in [7],
[8], formulated for the corresponding spectral estimation techniques,
these MSC estimators allow for computationally efficient implemen-
tations by making use of the inherently low displacement rank of the
necessary products of Toeplitz-like matrices, thereby allowing for the
development of appropriate Gohberg-Semencul (GS) representations
of these matrices. Although the here presented material is related to
the results in these earlier works, the GS formulations and relevant
data dependent trigonometric polynomials required here for the
MSC estimation will differ from those of the corresponding spectral
estimators in the formulation of the required cross-spectral density
estimates. In the interest of brevity, we will here primarily refer the
reader to these earlier works for the details on the implementation of
the (auto) spectral densities, and focus on the novel results needed
for the MSC estimation. In the following section, we briefly review
the Capon- and APES-based MSC estimators, whereafter we proceed
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to present efficient implementations for the these algorithms. This is
done by reformulating the algorithms in terms of data dependent
trigonometric polynomials whose kernels are products of Toeplitz-
like matrices of various dimensions, which are shown to admit for
low displacement rank representations, subsequently utilized for the
estimation of the efficient evaluation of the trigonometric polynomi-
als. Then, in Section V, we illustrate the performance of the discussed
methods before concluding on the work in Section VI.

II. DATA-ADAPTIVE MSC ESTIMATION

The MSC spectrum, γ2
x1x2(ω), of two stationary complex valued

signals, x1(n) and x2(n), for n = 0, 1, . . . , N − 1, is defined as
(see, e.g., [9])

γ2
x1x2(ω) =

|Sx1x2(ω)|2

Sx1(ω)Sx2(ω)
, (1)

where Sx1(ω) and Sx2(ω) denote the (auto) spectra of the signals
x1(n) and x2(n), respectively, whereas Sx1x2(ω) denotes the cross-
spectrum between these two signals. The Capon- and APES-based
MSC estimates are formed using the matched filter bank framework
(see also [9], [10]). Let h

(i)
M ∈ CM×1 denote a narrowband data de-

pendent finite impulse response filter centered at a generic frequency
ω ∈ [−π, π], and form the signals of interest into M × 1 subvectors

x
(i)
M (n) =

ˆ
xi(n) xi(n− 1) . . . xi(n−M + 1)

˜T (2)

for n = M − 1, . . . , N − 1, where i = 1 or 2 for the respective
signal, and where (·)T denotes the transpose. Then, the filter output
for the i:th filter at time n is

zi(n) = h
(i)H
M x

(i)
M (n), (3)

where (·)H denotes the conjugate transpose. As the filters are
narrowband, aiming to only pass the generic frequency ω undistorted
whereas the contribution from all other frequencies are minimized,
the matched filter bank spectral estimate at frequency ω is found as
the power of the filtered signal, i.e.,

Sxi(ω) = E
n
zi(n)zH

i (n)
o
≈ h

(i)H
M R

(i)
M h

(i)
M (4)

where E{·} denotes the expectation, and R
(i)
M is an estimate of the

signal’s covariance matrix, of the form

R
(i)
M =

N−1X
n=M−1

x
(i)
M (n)x

(i)H
M (n) (5)

with i = 1 or 2 for the respective signal. Similarly, the cross-spectral
density needed to form (1) is estimated as

Sx1x2(ω) = E
n
z1(n)zH

2 (n)
o
≈ h

(1)H
M R

(12)
M h

(2)
M , (6)

with R
(12)
M denoting an estimate of the cross-covariance matrix, given

by

R
(12)
M =

N−1X
n=M−1

x
(1)
M (n)x

(2)H
M (n). (7)
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As shown in [1], [2], the Capon- and APES-based MSC estimates
result from two different design choices for the narrowband filters,
yielding the MSC estimates

γ2,Capon
x1x2 (ω) =

˛̨̨
G(1)H

ω R12
MG(2)

ω

˛̨̨2
Q2

i=1 fH
M (ω)[R

(i)
M ]−1fM (ω)

, (8)

γ2,APES
x1x2 (ω) =

˛̨̨
Ğ(1)H

ω R12
M Ğ(2)

ω

˛̨̨2
Q2

i=1 Ğ
(i)H
ω R

(i)
M Ğ(i)

ω

(9)

where G(i)
ω = [R

(i)
M ]−1fM (ω),Ğ(i)

ω = [Q
(i)
M (ω)]−1fM (ω), with

fM (ω) =
ˆ

1 e−ω . . . e−(M−1)ω
˜T

(10)

whereas the covariance matrices R
(1)
M and R

(2)
M , as well as the cross-

covariance matrix R
(12)
M , are estimated as in (5) and (7), respectively,

and the frequency dependent (noise covariance) matrix Q
(i)
M (ω) is

estimated as Q
(i)
M (ω) = R

(i)
M − 1

L
g

(i)
M (ω)g

(i)H
M (ω), where L = N −

M + 1, and

g
(i)
M (ω) =

N−1X
n=M−1

x
(i)
M (n)e−ωn. (11)

Direct, brute force, computation of the resulting Capon- and APES-
based MSC estimates require a notable amount of computations.
Assuming a uniformly spaced frequency grid with K grid points,
they require approximately CCapon ≈ 2M3 + (3L + 3K)M2 and
CAPES ≈

`
2M3 + 7M2 + 2LM

´
K operations.

III. MSC COMPUTATION USING DATA DEPENDENT

TRIGONOMETRIC POLYNOMIALS

To reduce the computational complexity of forming the discussed
MSC estimators, we examine how one may exploit the matrix
structure to reduce the amount of necessary computations notably. To
do so, we begin with examining the Capon-based estimator, noting
that (8) may be reformulated in terms of data dependent trigonometric
polynomials as

γ2,Capon
y1y2 (ω) =

|ϕ12(ω)|2

ϕ1(ω)ϕ2(ω)
, (12)

where ϕi(ω) and ϕ12(ω) are

ϕi(ω) , fH
M (ω)[R

(i)
M ]−1fM (ω), (13)

for i = 1 or 2, and

ϕ12(ω) , fH
M (ω)PM fM (ω) (14)

PM , [R
(1)
M ]−1R

(12)
M [R

(2)
M ]−1. (15)

To form the APES-based MSC estimate, rewrite (11) as

g
(i)
M (ω) = X

(i)
M,LfL(ω)e−ω(M−1). (16)

where

X
(i)
M,L =

h
x

(i)
M (M − 1) x

(i)
M (M) . . . x

(i)
M (N)

i
(17)

which, after some algebraic manipulation, allows (9) to be expressed
in terms of trigonometric polynomials as (18), given at the top of the
next page, where

νi(ω) = fH
M (ω)G

(i)
M,LfL(ω) (19)

ξi(ω) = fH
L (ω)H

(i)
L,LfL(ω) (20)

ν12(ω) = fH
M (ω)G

(12)
M,LfL(ω) (21)

ν21(ω) = fH
M (ω)G

(21)
M,LfL(ω) (22)

ξ12(ω) = fH
L (ω)H

(12)
L,L fL(ω) (23)

with data adaptive kernels defined as

G
(i)
M,L = [R

(i)
M ]−1X

(i)
M,L (24)

H
(i)
L,L = X

(i)H
M,L [R

(i)
M ]−1X

(i)
M,L (25)

G
(12)
M,L = PMX

(1)
M,L (26)

G
(21)
M,L = PH

MX
(2)
M,L (27)

H
(12)
L,L = X

(1)H
M,L PMX

(2)
M,L (28)

The advantage of using trigonometric polynomials in the MSC
estimation stems from the fact that these can efficiently be evaluated
on the unit circle using the Fast Fourier Transform (FFT), since for
a kernel AM,L of dimensions M × L, one may have

ϕ(ω) , fH
M (ω)AM,LfL(ω) =

L−1X
κ=−M+1

cκe
kω. (29)

When AM,L is available, the coefficients of the trigonometric poly-
nomial cκ can be estimated by adding up the matrix elements upon
the diagonals. Direct estimation of the kernels associated with the
data adaptive trigonometric polynomials required for the computation
of the Capon-based MSC, i.e., (13) and (14), and the APES-based
MSC, i.e., (19)-(23), results in an unnecessarily high computational
complexity, since the pertinent kernels are products of Toeplitz-like
matrices thus being Toeplitz-like matrices themselves and as shown in
[7], [11], trigonometric polynomials related to Toeplitz-like matrices
can directly (and efficiently) be evaluated from their displacement
representation bypassing the need of constructing these matrices
explicitly. For the readers benefit and for further use, we proceed
by presenting briefly the basics from the displacement representation
theory of matrices (see also [12]–[15]), recalling that the displacement
of the matrix AM,L ∈ CM×L with respect to ZM and ZT

L is defined
as

∇ZM ,ZT
L
AM,L , AM,L − ZMAM,LZT

M,L. (30)

where ZM and ZL are lower shifting matrices of dimensions M×M
and L×L, respectively. Suppose that there exist integers ρ and σi ∈
{−1, 1}, i = 1, 2 . . . ρ, such that

∇ZM ,ZT
L
AM,L =

ρX
i=1

σit
i
MsiH

L = TM,ρΣΣΣρS
H
L,ρ (31)

where TM,ρ =
ˆ

t1
M . . . tρ

M

˜
,SL,ρ =

ˆ
s1

L . . . sρ
L

˜
, and

ΣΣΣρ = diag (σ1 . . . σρ), whereas diag(a) denotes the diagonal matrix
formed with the vector a along its diagonal, and with ti

M and
si

L being the so-called generator vectors. The displacement rank of
the representation equals the rank of the associated displacement
matrix, ∇ZM ,ZT

L
AM,L, whereas the integer ρ may be larger than

or equal to the corresponding displacement rank. In summary, the
triplet (TM,ρ,SL,ρ,ΣΣΣρ) is called the displacement representation of
AM,L with respect to ZM and ZT

L . Then, the GS factorization of
AM,L may be expressed as

AM,L =

ρX
i=1

σiLM (ti
M )LH

L (si
L) (32)

where LM (x) (LL(y)) denotes a Krylov matrix of the form

L(x) =
ˆ

x ZMx Z2
Mx . . . ZM−1

M x
˜
. (33)

Given the displacement representation of AM,L the coefficients of the
associated trigonometric polynomial (29) can be efficiently computed
directly from the generator vectors bypassing the need of forming
AM,L explicitly, [7], [11]. Moreover, using the displacement repre-
sentation of AM,L, related matrix vector products can be computed
in a fast manner using the FFT.
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γ2,APES
x1x2 (ω) =

|(L− ξ1(ω))(L− ξ2(ω))ϕ12(ω) + (L− ξ1(ω))ν21(ω)ν∗2 (ω) + (L− ξ2(ω))ν∗12(ω)ν1(ω) + ν1(ω)ξ12(ω)ν∗2 (ω)|2Q2
i=1 ((L− ξi(ω))2ϕi(ω) + (2L− ξi(ω))|νi(ω)|2)

(18)

IV. DISPLACEMENT REPRESENTATION OF DATA DEPENDENT

KERNELS

The efficient evaluation of the data dependent trigonometric poly-
nomials in (13) and (14), as well as (19)-(23), relies upon the
computation of the displacement representation of the pertinent
kernels. Thanks to the Toeplitz-like structure of the data covariance
matrices (5), a displacement representation of their inverses [R

(i)
M ]−1,

for i = 1 and i = 2, can be efficiently computed and subsequently
be utilized for the computation of the displacement representation of
G

(i)
M,L and H

(i)
L,L, defined by (24) and (25), respectively, as it has

been recently shown in [7]. We further these results by developing
novel and efficient displacement representations for the remaining
kernels involved in the fast computation of the Capon and APES MSC
using data dependent trigonometric polynomials, namely (15) and
(26)-(28). We proceed to present the key properties of the covariance
matrices as well as to define the basic parameters associated with the
displacement generators of the pertinent kernels. Consider the order
partitions of the data vectors

x
(i)
M (n) =

"
x

(i)
M−1(n)

x(i)(n−M + 1)

#
=

"
x(i)(n)

x
(i)
M−1(n− 1)

#
(34)

implying that R
(i)
M may be partitioned as

R
(i)
M =

"
R

(i)
M−1 r

b(i)
M−1

r
b(i)H
M−1 r

bo(i)
M

#
=

"
r

fo(i)
M r

f(i)H
M−1

r
f(i)
M−1

bR(i)
M−1

#
, (35)

with the resulting forward and backward predictors and the associated
prediction powers being defined as

ā
(i)
M =

»
1

a
(i)
M−1

–
, b̄

(i)
M =

»
b

(i)
M−1

1

–
(36)

and

a
(i)
M−1 = −[ bR(i)

M−1]
−1r

f(i)
M−1, (37)

b
(i)
M−1 = −[R

(i)
M−1]

−1r
b(i)
M−1, (38)

α
f(i)
M = r

fo(i)
M + r

f(i)H
M−1 a

(i)
M−1, (39)

α
b(i)
M = r

bo(i)
M + r

b(i)H
M−1 b

(i)
M−1. (40)

Furthermore, define the rank-two modification of the (lower order)
covariance matrix as

R̃
(i)
M−1 = R

(i)
M−1 − x

(i)
M−1(N − 1)x

(i)H
M−1(N − 1), (41)bR(i)

M−1 = R̃
(i)
M−1 + x

(i)
M−1(M − 2)x

(i)H
M−1(M − 2). (42)

and the resulting Kalman type vectors and their powers as

w̄
(i)
M =

»
0

w
(i)
M−1

–
, v̄

(i)
M =

»
0

v
(i)
M−1

–
(43)

and

w
(i)
M−1 = −[R̃

(i)
M−1]

−1x
(i)
M−1(N − 1), (44)

v
(i)
m−1 = −[ bR(i)

m−1]
−1x

(i)
m−1(M − 2), (45)

α
w(i)
M = 1− x

(i)H
M−1(N − 1)w

(i)
M−1, (46)

α
v(i)
M = 1 + x

(i)H
M−1(M − 2)v

(i)
M−1. (47)

Combining these results, a displacement representation of [R
(1)
M ]−1

and [R
(2)
M ]−1 with respect to ZM and ZT

M with displacement rank

TABLE I
AUXILIARY VARIABLES REQUIRED FOR THE DISPLACEMENT

REPRESENTATION OF PM .

co
M = b̄

(1)H
M R

(12)
M b̄

(2)
M

c
(1)
M =

"
[R

(2)
M−1]−1 0

0T 0

#
R

(12)H
M b̄

(1)
M

c
(2)
M =

"
[R

(1)
M−1]−1 0

0T 0

#
R

(12)
M b̄

(2)
M

c
(12)
M = c

(1)
M + b̄

(2)
M

co∗
M

α
b(2)
M

do
M = ā

(1)H
M R

(12)
M ā

(2)
M

d
(1)
M =

"
0 0T

0 [ bR(2)
M−1]−1

#
R

(12)H
M ā

(1)
M

d
(2)
M =

"
0 0T

0 [ bR(1)
M−1]−1

#
R

(12)
M ā

(2)
M

d
(12)
M = d

(1)
M + ā

(2)
M

do∗
M

α
f(2)
M

po
M = w

(1)H
M−1R̃

(12)
M−1w

(2)
M−1

p
(1)
M−1 = [R̃

(1)
M−1]−1R̃

(12)
M−1w

(2)
M−1 −

w
(1)
M−1

α
w(1)
M

p
(2)
M−1 = [R̃

(2)
M−1]−1R̃

(12)H
M−1 w

(1)
M−1 −w

(2)
M−1

po∗
M

α
w(2)
M

qo
M = v

(1)H
M−1R̂

(12)
M−1v

(2)
M−1

q
(1)
M−1 = [R̂

(1)
M−1]−1R̂

(12)
M−1v

(2)
M−1 −

v
(1)
M−1

α
v(1)
M

q
(2)
M−1 = [R̂

(2)
M−1]−1R̂

(12)H
M−1 v

(1)
M−1 + v

(2)
M−1

qo∗
M

α
v(2)
M

p̄
(i)
M =

"
0

p
(i)
M−1

#
, q̄

(i)
M =

"
0

q
(i)
M−1

#
, i = 1, 2

of ρR = 4 has been presented in [7] and subsequently been utilized
for the efficient evaluation of the trigonometric polynomials ϕi(ω)

in (13). Given the GS representations of R
−1(1)
M and R

−1(2)
M , we

proceed to form a representation of the product that appears in (14),
i.e.,

PM , R
−1(1)
M R

(12)
M R

−1(2)
M . (48)

As the displacement rank of R
−1(1)
M and R

−1(2)
M is ρR1 = ρR2 = 4,

and the displacement rank of R
(12)
M is ρR12 = 4, the displacement

rank of the product of these three matrices may be expected to be
ρP ≤ 14 (see also [12], [14]), although, as is proved in Appendix A,
one may in fact form a more compact displacement representation
as:

Lemma 1: A displacement representation of PM with respect to
ZM and ZT

M may be formed as
`
ΥΥΥM,8,ΨΨΨM,8,ΣΣΣ

P
8

´
, where

ΥΥΥM,8 =
ˆ
υυυ1

M . . . υυυ8
M

˜
, (49)

ΨΨΨM,8 =
ˆ
ψψψ1

M . . . ψψψ8
M

˜
, (50)

ΣΣΣP
8 = diag(σP

1 , . . . σ
P
8 ) (51)
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with the set of auxiliary variables tabulated in Table I, and

υυυ1
M = ā

(1)
M /

√
α

f(1)
M , ψψψ1

M = d
(12)
M /

√
α

f(1)
M , σP

1 = 1 (52)

υυυ2
M = d

(2)
M /

√
α

f(2)
M , ψψψ2

M = ā
(2)
M /

√
α

f(2)
M , σP

2 = 1 (53)

υυυ3
M = ZM b̄

(1)
M /

√
α

b(1)
M , ψψψ3

M = ZMc
(12)
M /

√
α

b(1)
M , σP

3 = −1
(54)

υυυ4
M = ZMc

(2)
M /

√
α

b(2)
M , ψψψ4

M = ZM b̄
(2)
M /

√
α

b(2)
M , σP

4 = −1
(55)

υυυ5
M = w̄

(1)
M /

√
α

w(1)
M , ψψψ5

M = p̄
(2)
M /

√
α

w(1)
M , σP

5 = 1 (56)

υυυ6
M = p̄

(1)
M /

√
α

w(2)
M , ψψψ6

M = w̄
(2)
M /

√
α

w(2)
M , σP

6 = 1 (57)

υυυ7
M = v̄

(1)
M /

√
α

v(1)
M , ψψψ7

M = q̄
(2)
M /

√
α

v(1)
M , σP

7 = −1 (58)

υυυ8
M = q̄

(1)
M /

√
α

v(2)
M , ψψψ8

M = v̄
(2)
M /

√
α

v(2)
M , σP

8 = −1. (59)

The displacement rank of the representation is ρP = 8. �
To complete the derivation of the fast algorithm for the estimation
of the displacement representation of PM , several matrix vector
products associated with the variables that appear in Table I should
be organized in an efficient way, which is in fact feasible, since one
can show that:

Lemma 2: Given the displacement representation of [R
(i)
M ]−1, as

in Lemma 3 of [7], the displacement representation of»
[R

(i)
M−1]

−1 0

0T 0

–
with respect to ZM and ZT

M may be formed as
“
T̃

(i)
M,4, T̃

(i)
M,4,ΣΣΣ

R
4

”
,

where

T̃
(i)
M,4 =

h
t
(i),1
M t̃

(i),2
M t

(i),3
M t

(i),4
M

i
, (60)

ΣΣΣR
4 = diag(σR

1 , . . . σ
R
4 ) (61)

for i = 1, 2 and with t
(i),1
M = ā

(i)
M /

√
α

f(i)
M , σR

1 = 1, t̃
(i),2
M =

b̄
(i)
M /

√
α

b(i)
M , σR

2 = −1, t
(i),3
M = w̄

(i)
M /

√
α

w(i)
M , σR

3 = 1, σR
4 = −1,

and t
(i),4
M = v̄M/

√
α

v(i)
M . �

Given the displacement representation of R
−1(i)
M , the displacement

representation of G
(i)
M,L and H

(i)
L,L, as defined by (24) and (25), can

be computed using a set of auxiliary variables defined as

e
a(i)
L = X

(i)H
M,L ā

(i)
M , e

b(i)
L = X

(i)H
M,Lb̄

(i)
M (62)

e
w(i)
L = X

(i)H
M,Lw̄

(i)
M , e

v(i)
L = X

(i)H
M,Lv̄

(i)
M , (63)

whereby the polynomials ϕi(ω), νi(ω), and ξi(ω), for i = 1, 2,
as defined by (13), (19) and (20), respectively, can be computed
efficiently using the method presented in [7], while ϕ12(ω) may
be computed as discussed above. Thus, it remains to show how the
polynomials ν12(ω), ν21(ω), and ξ12(ω), defined by (14) and (21)-
(23), respectively, can be computed efficiently. To do so, we make
use of Lemma 1 to form displacement representations of the matrices
G

(12)
M,L and G

(21)
M,L, given by (26) and (27), and we introduce a further

set of auxiliary variables, similar to those defined by (62) and (63),
as

e
p(2)
L = X

(2)H
M,L p̄

(2)
M , e

p(1)
L = X

(1)H
M,L p̄

(1)
M (64)

e
q(2)
L = X

(2)H
M,L q̄

(2)
M , e

q(1)
L = X

(1)H
M,L q̄

(1)
M (65)

e
c(12)
L = X

(2)H
L c

(12)
M , e

c(1)
L = X

(1)H
M,L c

(2)
M (66)

e
d(12)
L = X

(2)H
M,L d

(12)
M , e

d(1)
L = X

(1)H
M,L d

(2)
M (67)

Reminiscing the approach following in the derivation of the displace-
ment representation presented in Lemma 1, and after some further
algebraic manipulation, a displacement representation of G

(21)
M,L with
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Fig. 1. Computational complexity of the Capon- and APES-based algorithms
using the proposed and the brute force implementations, for varying filter
lengths, M , for N = 512, and with K = 2048.

respect to ZM and ZT
L may then be formed as

“
ΥΥΥM,8,ΞΞΞ

(2)
L,8,ΣΣΣ

P
8

”
,

where

ΞΞΞ
(2)
L,8 =

ˆ
ξξξ2,1

L . . . ξξξ2,8
L

˜
, (68)

with

ξξξ2,1
L = e

d(12)
L /

√
α

f(1)
M , ξξξ2,2

L = e
a(2)
L /

√
α

f(2)
M

ξξξ2,3
L = ZLe

c(12)
L /

√
α

b(1)
M , ξξξ2,4

L = ZLe
b(2)
L /

√
α

b(2)
M

ξξξ2,5
L = P[e

p(2)
L ][0]/

√
α

w(1)
M , ξξξ2,6

L = P[ew2
L ][0]/

√
α

w(2)
M

ξξξ2,7
L = P[e

q(2)
L ][1]/

√
α

v(1)
M , ξξξ2,8

L = P[e
v(2)
L ][α

v(2)
M

]/
√
α

v(2)
M

Here, the operator P[x][χ] replaces the first element of the vector
upon which it acts by χ, i.e., if x =

ˆ
x0 x1 . . . xL−1

˜T ,
then

P[x][χ] =
ˆ
χ x1 . . . xL−1

˜T
. (69)

Similarly, a displacement representation of G
(12)
M,L with respect to ZM

and ZT
L may be formed as

“
ΨΨΨM,8,ΞΞΞ

(1)
L,8,ΣΣΣ

P
8

”
, where

ΞΞΞ
(1)
L,8 =

ˆ
ξξξ1,1

L . . . ξξξ1,8
L

˜
(70)

with

ξξξ1,1
L = e

a(1)
L /

√
α

f(1)
M , ξξξ1,2

L = e
d(1)
L /

√
α

f(2)
M ,

ξξξ1,3
L = ZLe

b(1)
L /

√
α

b(1)
M , ξξξ1,4

L = ZLe
c(1)
L /

√
α

b(2)
M ,

ξξξ1,5
L = P[e

w(1)
L ][0]/

√
α

w(1)
M , ξξξ1,6

L = P[e
p(1)
L ][0]/

√
α

w(2)
M ,

ξξξ1,7
L = P[e

v(1)
L ][α

v1
M ]/

√
α

v(1)
M , ξξξ1,8

L = P[e
q(1)
L ][−qo

M ]/
√
α

v(2)
M ,

Finally, a displacement representation of H12
L,L with respect to ZL

and ZT
L may be formed as

“
[ΞΞΞ

(1)
L,8 1L], [ΞΞΞ

(2)
L,8 1L], (ΣΣΣP

8 , 1)
”

, where
1L is a L×1 vector with a one in the first position followed by L−1
zeros. The displacement rank of the matrix H12

L,L is ρH12 = 9. The
derivation of the proposed displacement representation of H

(12)
L,L is

supplied in Appendix B, noting that the displacement representations
of G

(12)
M,L and G

(21)
M,L are derived in a similar way.
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A. Overall organization

An efficient implementation of the Capon-based MSC estimate
may thus be formed by first computing the displacement represen-
tation of [R

(i)
M ]−1, for i = 1, 2, using the generalized Levinson

algorithm for the computation of the pertinent variables, as given in
(37)-(40) and (44)-(47) [7]. The computational complexity of this step
is 9M2 + 6φ(N), where φ(N) denotes the cost for the computation
of the FFT. Then, using the displacement representation of [R

(i)
M ]−1,

for i = 1, 2, compute the displacement representation of PM using
Lemma 1, where the pertinent variables in (52)-(59) are estimated
using Table I and Lemma 2 at a cost of 20M2 + 6φ(N) operations,
if conventional matrix vector multiplication is applied, or at a cost of
88φ(2M) + 26φ(N) when fast Toeplitz vector multiplication using
(32) is used. Using these representations, one may then compute the
coefficients of the trigonometric polynomials required to form (13)
and (14), respectively, using the results in [7], at a cost of 52φ(M).
These polynomials are then evaluated over a uniform grid of size K
using the FFT, yielding the Capon-based MSC estimate via (12) at a
cost of 3φ(K) operations. Thus, the total computational complexity
of the fast Capon-based MSC implementation is

CFCapon−I ≈ 9M2 + 140φ(2M) + 32φ(N) + 3φ(K)

CFCapon−II ≈ 29M2 + 52φ(2M) + 12φ(N) + 3φ(K)

where the first method is the one using the fast Toeplitz vector
multiplication, whereas the latter use the conventional matrix vector
multiplication. Thus, the first method is asymptotically faster that the
second one, whereas, for short filter bank lengths M , the second
method is faster. The APES-based MSC is computationally more
intensive as compared to the Capon-based counterpart, since on top
of the operations required by the Capon-based method, additional
computations are necessary for the formulation of the auxiliary
variables (62)-(67) and the trigonometric polynomials (19)-(23), all
of which may, as shown in [7], be formed using fast convolution
and fast trigonometric polynomial evaluation methods based on the
FFT. The computational complexity of the proposed fast APES-based
MSC estimation method is given by

CFAPES ≈ CFCapon + 52φ(2M) + 27φ(2L) + 86φ(N) + 7φ(K)

with CFCapon denoting the complexity of either of the Capon-
formulations. The computational complexities of the proposed
Capon-based and APES-based methods are illustrated in Fig. 1, for
N = 512 and for M varying up to N/2−1, with K = 2048. Clearly,
the proposed implementations are up to five orders of magnitude
faster than their brute force counterparts. Moreover, despite the fact
that the fast implementation of the APES-based MSC is by far more
involved than the Capon-based formulation, the complexity overhead
is almost marginal asymptotically.

V. NUMERICAL EXAMPLES

The performance of the proposed MSC estimation algorithms are
illustrated by means of computer simulations. Consider N = 200
samples of two signals, x1(n) and x2(n), which are both a mixture
of sinusoidal signals corrupted by additive noise

xi(n) =

7X
`=1

ri
`e

2πfi
`n + wi(n), i = 1, 2 (71)

where ri
` are complex amplitudes of unit magnitude and uni-

formly distributed phases, and with wi(n), for i = 1, 2, de-
noting two independent circularly symmetric zero-mean Gaus-
sian random processes, whereas the Signal to Noise ratio (SNR)
is fixed to SNR=5dB. Here, the signals’ frequencies are se-
lected as f1 = [0.1, 0.2, 0.3, 0.31, 0.6, 0.61, 0.8] and f2 =
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(b)

Fig. 2. MSC estimation of two cisoidal mixtures using N = 200, at
SNR=5dB, with K = 1000 uniformly spaced frequency points: (a) Capon-
and (b) APES-based MSC with filter lengths set equal to M = 40,

[0.1, 0.2, 0.3, 0, 0.6, 0.61, 0]. The MSC is evaluated over K = 1000
uniformly distributed frequency grid points. The Capon- and APES-
based MSC estimates are illustrated in Fig. 2(a) and (b) with filter
lengths of M = 40, where the MSC is successfully resolved by
either method, noting that the high noise floor (erroneous peaks) can
be reduced by decreasing the value of M at the expense of lower
spectral resolution.

VI. CONCLUSIONS

This works examines the performance of, as well as introduce
computationally efficient implementations for, the Capon, and APES-
based MSC estimators.The estimators are data-adaptive filter bank
formulations of the MSC spectrum and as it has been show they
can expressed in terms of data adaptive trigonometric polynomials,
whose kernels are products of Toeplitz-like matrices, allowing for
low rank displacement representation, which is subsequently utilized
for the efficient computation of the polynomial coefficients and
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PM − ZMPMZT
M =

ā
(1)
M d

(12)H
M

α
f(1)
M

+
d

(2)
M ā

(2)H
M

α
f(2)
M

− ZM b̄
(1)
M c

(12)H
M ZT

M

α
b(1)
M

− ZMc
(2)
M b̄

(2)H
M ZT

M

α
b(2)
M

+
w̄

(1)
M p̄

(2)H
M

α
w(1)
M

+
p̄

(1)
M w̄

(2)H
M

α
w(2)
M

− v̄
(1)
M q̄

(2)H
M

α
v(1)
M

− q̄
(1)
M v̄

(2)H
M

α
v(2)
M

. (72)

their evaluation on the unit circle, offering a a significant computa-
tional reduction compared to the direct (brute force) implementation.
Numerical simulations illustrate both the achievable reduction in
computational complexity and typical performance of the estimators
for some narrowband data sets.

A. PROOF OF LEMMA 1

Using the matrix inversion lemma (MIL) for partitioned matrices
in (35) yields

[R
(i)
M ]−1 =

»
[R

(i)
M−1]

−1 0

0T 0

–
+

b̄
(i)
M b̄

(i)H
M

α
b(i)
M

(73)

=

»
0 0T

0 [ bR(i)
M−1]

−1

–
+

ā
(i)
M ā

(i)H
M

α
f(i)
M

(74)

which, together with again using the MIL for rank-one modification
on (41) and (42) implies

[R
(i)
M−1]

−1 = [R̃
(i)
M−1]

−1 −
w

(i)
M−1w

(i)H
M−1

α
w(i)
M

, (75)

h
R̃

(i)
M−1

i−1

= [ bR(i)
M−1]

−1 +
v

(i)
M−1v

(i)H
M−1

α
v(i)
m

. (76)

Furthermore, R
(1,2)
M is partitioned as

R
(1,2)
M =

"
R

(1,2)
M−1 r

b(1,2)
M−1

r
b(2,1)H
M−1 r

bo(1,2)
M

#
=

"
r

fo(1,2)
M r

f(2,1)H
M−1

r
f(1,2)
M−1

bR(1,2)
M−1

#
. (77)

Combining (73), (74), and (77) yields

PM =

»
PM−1 0
0T 0

–
+

b̄
(1)
M c

(12)H
M

α
b(1)
M

+
c
(2)
M b̄

(2)H
M

α
b(2)
M

(78)

=

»
0 0T

0 bPM−1

–
+

ā
(1)
M d

(12)H
M

α
f(1)
M

+
d

(2)
M ā

(2)H
M

α
f(2)
M

(79)

where

PM−1 , [R
(i)
M−1]

−1R
(12)
M−1[R

(2)
M−1]

−1, (80)bPM−1 , [ bR(i)
M−1]

−1 bR(12)
M−1[

bR(2)
M−1]

−1 (81)

with auxiliary variables being defined in Table I. It remains to show
how the time shifted variables that are involved in (79) can be
managed. A rank-one modification of (7) imply

R̃
(12)
M−1 = R

(12)
M−1 − x

(1)
M−1(N − 1)x

(2)H
M−1(N − 1) (82)bR(12)

M−1 = R̃
(12)
M−1 + x

(1)
M−1(M − 2)x

(2)H
M−1(M − 2) (83)

which, combined with (75), (76), (82), and (83) yields

PM−1 = P̃M−1 −
p

(1)
M−1w

(2)H
M−1

α
w(2)
M

−
w

(1)
M−1p

(2)H
M−1

α
w(1)
M

(84)

P̃M−1 = bPM−1 +
q

(1)
M−1v

(2)H
M−1

α
v(2)
M

+
v

(1)
M−1q

(2)H
M−1

α
v(1)
M

(85)

where

P̃M−1 , [R̃
(1)
M−1]

−1R̃
(12)
M−1[R̃

(2)
M−1]

−1 (86)

P̂M−1 , [R̂
(1)
M−1]

−1R̂
(12)
M−1[R̂

(2)
M−1]

−1. (87)

Thus, using (78)-(85), one obtains the displacement of PM as (72),
given at the top of this page.

B. DISPLACEMENT REPRESENTATION OF H
(12)
L,L

Consider the partitions of the data matrix (17), X
(i)
M,L, as

»
X

(i)
M−1,L−1 x

(i)
M−1(N)

× ×

–
=

»
× ×

x
(i)
M−1(M − 2) X

(i)
M1,L−1

–
,

(90)
where the symbol × denotes unspecified terms. Combining (15), (78)
and (90) results in

H
(12)
L,L =

»
H

(12)
L−1,L−1 ×
× ×

–
+

e
b(1)
L e

c(12)H
L

α
b(1)
M

+
e

c(1)
L e

b(2)H
L

α
b(2)
M

(91)

or, alternatively

H
(12)
L,L =

"
ho

M h
(21)H
L−1

h
(12)
L−1 H

(12)
L−1,L−1

#
+

e
a(1)
L e

d(12)H
L

α
f(1)
M

+
e

d(1)
L e

a(2)H
L

α
f(2)
M

+
e

w(1)
L e

p(2)H
L

α
w(1)
M

+
e

p(1)
L e

w(2)H
L

α
w(2)
M

− e
v(1)
L e

q(2)H
L

α
v(1)
M

− e
q(1)
L e

v(2)H
L

α
v(2)
M

(92)

where

ho
M = x

(1)H
M−1(M − 2)PM−1x

(2)
M−1(M − 2) (93)

h
(12)
L−1 = X

(1)H
M−1,L−1PM−1x

(2)
M−1(M − 2) (94)

h
(21)
L−1 = X

(2)H
M−1,L−1P

H
M−1x

(1)
M−1(M − 2) (95)

Using (91) and (92), the displacement representation of H12
L,L with

respect to ZL and ZT
L takes the form of (88) that appears at the top

of next page. It remains to show how (93)-(95) can be expressed in
terms of variables already used by the algorithm. Using (78), (79),
(84) and (85) together with (62)-(67) and taking into account the
definition of the auxiliary variables presented in Table I, (93)-(95)
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H
(12)
L,L − ZLH

(12)
L,LZT

L =

"
ho

M h
(21)H
L−1

h
(12)
L−1 0L−1,L−1

#
+

e
a(1)
L e

d(12)H
L

α
f(1)
M

+
e

d(1)
L e

a(2)H
L

α
f(2)
M

+
e

w(1)
L e

p(2)H
L

α
w(1)
M

+
e

p(1)
L e

w(2)H
L

α
w(2)
M

− e
v(1)
L e

q(2)H
L

α
v(1)
M

− e
q(1)
L e

v(2)H
L

α
v(2)
M

− ZLe
b(1)
L e

c(12)H
L ZT

L

α
b(1)
M

− ZLe
c(1)
L e

b(2)H
L ZT

L

α
b(2)
M

(88)

H
(12)
L,L − ZLH

(12)
L,LZT

L =
e

a(1)
L e

d(12)H
L

α
f(1)
M

+
e

d(1)
L e

a(2)H
L

α
f(2)
M

− ZLe
b(1)
L e

c(12)H
L ZT

L

α
b(1)
M

− ZLe
c(1)
L e

b(2)H
L ZT

L

α
b(2)
M

+
P[e

w(1)
L ][0]

“
P[e

p(2)
L ][0]

”H

α
w(1)
M

+
P[e

p(1)
L ][0]

“
P[e

w(2)
L ][0]

”H

α
w(2)
M

−
P[e

v(1)
L ][α

v(1)
M

]
“
P[e

q(2)
L ][1]

”H

α
v(1)
M

−
P[e

q(1)
L ][−qo

M ]
“
P[e

v(2)
L ][α

v(2)
M

]
”H

α
v(2)
M

+ 1L1T
L (89)

take the form

ho
M = q0M +

e
q(1)
L,1 e

v(2)∗
L,1

α
v(2)
M

+
e

v(1)
L,1 e

q(2)∗
L,1

α
v(1)
M

−
e

p(1)
L,1 e

w(2)∗
L,1

α
w(2)
M

−
e

w(1)
L,1 e

p(2)∗
L,1

α
w(1)
M

(96)

h
(12)
L−1 = −

e
q(1)
L,2:L

α
v(2)
M

+
e

v(1)
L,2:L

“
−1 + e

q(2)∗
L,1

”
α

v(1)
M

−
e

p(1)
L,2:Le

w(1)∗
L,1

α
w(2)
M

−
e

w(1)
L,2:Le

p(2)∗
L,1

α
w(1)
M

(97)

h
(21)
L−1 = −

e
q(2)
L,2:L

α
v(1)
M

+
e

v(2)
L,2:L

“
qo∗

M + e
q(1)∗
L,1

”
α

v(2)
M

−
e

w(1)
L,2:Le

p(1)∗
L,1

α
w(2)
M

−
e

p(2)
L,2:Le

w(1)∗
L,1

α
w(1)
M

(98)

with xL,1 and xL,2:L denoting the first element, and all but the first
elements of the vector xL, respectively, i.e., xL = [xL,1 xT

L,2:L]T .
Finally, using (96)-(98) and (88) one gets the displacement of H

(12)
L,L

as it appears in (89) at the top of this page.
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