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“Just as soon as you attain to one ambition you see another one glittering 
higher up still. It does make life so interesting.”  

L.M. Montgomery, Anne of Green Gables 
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Thesis at a glance 

 

Study  Question Method Results and Conclusions 

I 

Can quantitative 
measurements in 
multi-phase CT 
angiography 
differentiate normal 
from underperfused 
regions?  

Quantitative analysis of 
iodine concentration 
and HUA in PIB and MIC 
(40 keV) reconstructions 
of patient images (n=5 
with underperfusion, 
n=5 without) in vascular 
regions. 

The ratio of iodine 
concentration or HU 
between hemispheres can 
indicate underperfusion. 
Iodine and MIs (40 keV) 
provided greater 
differentiation than PIs. 

II 

Can MIs reconstructed 
from brain CTs 
enhance detection of 
acute ischemic lesions 
compared to PIs? 

Quantitative and 
qualitative analysis of PI 
and MI (40-200 keV) 
reconstructions of 
patient images (n=29 
with ischemic lesions, 
n=23 without). 

Low-energy MIs (40-70 keV) 
improved contrast between 
ischemic gray and normal 
white matter. Access to MIs 
may increase the sensitivity 
for detecting acute ischemia. 

III 

Can MIs reconstructed 
from brain CT 
angiography enable a 
50% reduction in 
contrast medium dose 
while maintaining 
image quality? Can MI 
salvage examinations 
with poor timing? 

Quantitative and 
qualitative analysis of PI 
and MI reconstructions 
of patient images (n=55 
with 100% dose, n=43 
with 50% dose, n=29 
with 50% dose and 
poor timing).  

Low-energy MIs (50 keV) 
with 50% reduced contrast 
medium may provide better 
image quality than PIs with 
100% dose, and can be used 
to salvage poorly timed 
examinations, thus reducing 
the number of non-
diagnostic examinations. 

IV 

How does combining 
of MIs reconstructed 
from brain CTs with 
MARD impact artifact 
severity and soft tissue 
contrast of intracranial 
tissues? 

Quantitative and 
qualitative analysis of PIs 
and MIs, with and 
without MAR, for a 
phantom (with and 
without metal coils) and 
a patient (with coils). 

High-energy MIs (120-140 
keV) combined with MAR 
minimized artifacts, while 
lower-energy MIs (60 keV) 
optimized soft tissue 
contrast. MIs at 80 keV could 
provide an optimal balance. 

 
AHounsfield Units (HU) 
BPolyenergetic Image (PI) 
CMonoenergetic Image (MI) 
DMetal Artifact Reduction (MAR) 
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Abstract 

Background and aim 

Stroke is a life-threatening condition requiring timely and accurate treatment. 
Computed tomography (CT) is widely used to detect stroke due to its accessibility, 
speed and diagnostic value. Spectral CT, the latest advancement in CT technology, 
utilizes multiple energy levels to improve tissue contrast and material differentiation. 
This thesis aims to evaluate how spectral reconstructions – monoenergetic images (MI) 
and iodine quantification – can improve brain imaging for stroke assessment. 

Methods 

Paper I assessed the feasibility of multiphase CT angiography (mCTA) for quantitative 
brain perfusion analysis, using CT perfusion (CTP) as the reference standard. Paper II 
compared the diagnostic performance of MIs and conventional polyenergetic images 
(PI) for detecting ischemia using non-contrast CT (NCCT). Paper III assessed whether 
contrast media (CM) dose during CTA could be reduced by 50% while maintaining 
the same image quality as using PIs with a standard CM dose. Paper IV evaluated the 
effectiveness of using metal artifact reduction (MAR) and MIs to reduce metal artifacts 
from intracranial coils. All studies were retrospective and, except for Paper I, included 
both quantitative and qualitative analyzis. 

Results 

Paper I: mCTA demonstrated potential for perfusion deficit detection, with MIs at 40 
keV and iodine quantification providing better separation between normal and 
underperfused tissue than PIs. Paper II: Mis reconstructed at 50–60 keV improved 
ischemia detection and diagnostic accuracy compared to PIs. Paper III: MIs 
reconstructed at 50 keV can be used to preserve image quality while reducing CM dose 
by 50%. With CM dose at 100%, using MIs improved image quality compared to PIs 
and can be used to salvage scans with poor contrast enhancement. Paper IV: High-
energy MIs (≥120 keV) with MAR reduced metal artifacts, though lower-energy MIs 
(60–100 keV) were superior for soft tissue contrast. An intermediate level of 80 keV 
could provide an optimal balance. 

Conclusions 

Spectral CT improves stroke imaging by enhancing perfusion assessment, soft tissue 
contrast, ischemia detection and vascular visualization, and reducing metal artifacts. 
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Populärvetenskaplig sammanfattning 

Stroke är ett livshotande tillstånd som uppstår på grund av av syrebrist i hjärnan, orsakat 
av en blodpropp eller blödning. 2 miljoner hjärnceller dör varje minut, så för att minska 
risken att patienten får bestående skador, eller i värsta fall avlider, är en snabb diagnos 
och behandling nödvändig för att återställa blodflödet.  

Datortomografi (DT) är en avancerad röntgenteknik som är central vid stroke-
diagnostik. I DT-undersökningar så roterar röntgenröret runt patienten och producerar 
röntgenstrålning som skickas genom kroppen. Röntgenstrålning består av ett spektrum 
av energier, vilket påverkar hur den interagerar med vävnaden och hur DT-bilden ser 
ut. Röntgenstrålningen som passerar kroppen fångas upp av en detektor och används 
för att skapa bilder av kroppens inre. Kroppens vävnader attenuerar, med andra ord 
dämpar, strålningen olika mycket beroende på materialsammansättning. Material med 
hög attenuering (till exempel skelett) är ljusa i DT-bilden, medan material med låg 
attenuering (till exempel lungor) är mörka. Alla material däremellan, som fett och 
muskler, visas i en gråskalenyans någonstans mellan svart och vitt. DT-bilder är 
detaljerade tvärsnittsbilder, som ger bättre visualisering än vanlig, så kallad slät, röntgen 
där vävnader visas överlagrade på varandra.  

Ett problem med konventionell DT är att olika vävnader kan ha liknande attenuering 
vilket gör dem omöjliga att särskilja i bilden. För cirka 20 år introducerades spektral 
DT, som löser detta genom att utnyttja att vävnader attenuerar röntgenstrålningen 
olika mycket beroende på röntgenstrålarnas energi. Genom att ta bilder vid två eller 
flera energier kan man skapa bilder som förstärker kontrasten mellan vävnader med 
liknande attenuering. En viktig tillämpning är monoenergetiska bilder, som modellerar 
hur bilden skulle ha sett se ut om den skapats med röntgenstrålar av en enda energi. 
Med spektral CT kan också materialspecifika bilder skapas, till exempel jodkartor som 
visar kontrastmedelsupptag. Kontrastmedel, ofta jod-baserade på grund av jods höga 
attenuering, används till exempel för att kunna se blodkärl, som annars är ”osynliga” i 
röntgenbilden eftersom de har samma attenuering som sin omgivning. Men genom att 
injicera kontrastmedel i blodomloppet kan de synliggöras.  

Vid misstänkt stroke görs flera DT-undersökningar. Först görs en hjärnundersökning 
utan kontrastmedel för att bedöma hjärnvävnaden. Därefter görs undersökningar med 
kontrastmedel för att bedöma hjärnans blodförsörjning. DT angiografi används för att 
visuellt utvärdera blodkärlen och identifiera blodproppar. DT perfusion används för att 
matematiskt analysera hjärnans blodförsörjning och identifiera områden med syrebrist. 
Utifrån dessa undersökningsresultat bestämmer läkare vilken behandling som bör ge 
patienten den bästa chansen till återhämtning. 
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Avhandlingens syfte är att undersöka hur spektral DT kan förbättra stroke-
diagnostiken, genom att utveckla nya metoder och utvärdera hur monoenergetiska 
bilder och jodkartor kan användas för att förbättra undersökningskvaliteten. 

I den första studien undersöktes om kvantitativ analys av DT angiografi kan ge samma 
information som DT perfusion. Resultaten indikerade att det går, men metoden 
behöver vidare utveckling. Vi såg även att monoenergetiska bilder och jodkartor 
förstärkte skillnaden mellan frisk och skadad vävnad, vilket skulle kunna medföra en 
högre detektion av ischemi, jämfört DT perfusion som är baserad på konventionella 
DT-bilder. 

Vävnad skadad på grund av en blodpropp kan identifieras genom att hitta områden 
med en förlorad kontrast mellan grå och vit hjärnsubstans. Den andra studien 
utvärderade om monoenergetiska bilder kan förbättra upptäckten av dessa skador i DT-
bilder utan kontrastmedel. Studien visade att den diagnostiska förmågan – d.v.s. antalet 
korrekt identifierade skador – förbättrades när granskande läkare hade tillgång till 
monoenergetiska bilder. 

Eftersom jodbaserat kontrastmedel kan ge en ökad risk för njurskador, och har en 
negativ miljöpåverkan, undersökte den tredje studien om kontrastdosen kan halveras i 
DT angiografi genom att använda monoenergetiska bilder. Resultaten visade att det 
inte bara var möjligt – utan att bildkvaliteten kunde förbättras jämfört med 
konventionella bilder och full kontrastdos. Studien visade också att monoenergetiska 
bilder kan rädda undersökningar där bildtagningens timing blivit fel, vilket annars kan 
försämra diagnostiken eller leda till omtag – som medför extra strålning och 
kontrastmedel för patienten. 

Patienter har i vissa fall metallimplantat i hjärnan, vilket skapar störningar (s.k. 
artefakter) i DT-bilden. I den fjärde studien utvärderades hur kombinationen 
monoenergetiska bilder och mjukvaror för metallartefaktsreduktion påverkar 
bildkvaliteten i DT-bilder utan kontrastmedel. Resultaten visade att mjukvaran för 
metallartefaktsreduktion var mer betydelsefullt än energinivån hos de monoenergetiska 
bilderna för att minska artefakter, men mjukvaran kunde också introducera nya 
artefakter. Höga monoenergetiska bilder med metallartefaktsreduktion gav minst 
störningar. Låga monoenergetiska bilder medförde en bättre mjukvävnadskontrast och 
föredrogs därför av de granskande läkarna, trots att mängden artefakter ökade. 

Sammanfattningsvis visar avhandlingen att spektral DT kan förbättra både stroke-
diagnostik och den bredare neuroradiologin. Spektral DT medför möjlighet till nya och 
förbättrade metoder för bedömning av blodförsörjning, förbättrad detektion av stroke, 
reducerad kontrastmedelsanvändning och mindre störningar från metallimplantat.  
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mCTA Multiphase Computed Tomography Angiography 
MI Monoenergetic Image 
MRI Magnetic Resonance Imaging 
MTT Mean Transit Time 
MVD Maximum Value of Derivative 
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Introduction 

Computed tomography (CT) is an indispensable diagnostic imaging modality thanks 
to its high accessibility, speed of image acquisition and diagnostic value. In recent years, 
spectral CT solutions have been developed to enhance the contrast between different 
materials or tissue, making it easier to differentiate between them. With spectral CT, 
image data are acquired at two or more X-ray energy levels, enabling material 
decomposition (the separating of different materials based on how they absorb X-rays 
at different energy levels) and reconstruction (converting the X-ray data into cross-
sectional images of the body) of synthetic monoenergetic images (MI). For many 
diagnostic situations, high contrast is required for distinguishing between types of soft 
tissue, such as in the identification of ischemic stroke. Compared to a conventional CT 
image, MI reconstructed at an energy level lower than the mean energy of the X-ray 
spectrum may enhance soft tissue contrast. Spectral CT enables multiple new image 
reconstructions, but to avoid irrelevant information and minimize radiologist 
workload, the optimal reconstruction for each diagnostic task needs to be determined. 
The medical profession has an obligation to use resources as effectively as possible, 
making sure that as many patients as possible can receive the care they need.  

In diagnostic imaging, there are many variables to consider when optimizing images: 
image quality, system capability and strengths, radiation dose and contrast medium 
concentration and dose, to name a few. At the core of image optimization is ALARA, 
“as low as reasonably achievable”, while maintaining AHARA, “as high as reasonably 
achievable, meaning that the image or examination quality should be as high as possible, 
but the radiation dose (or risk of negative effects) cannot be higher than that required 
to enable a correct diagnosis. 

Stroke is a life-threatening condition, with a high risk of permanent neurological 
damage, and its’ incidence is projected to increase as the global population ages [1]. To 
minimize the damage, correct and timely treatment is of the essence. As such, high 
quality diagnostic brain imaging is crucial. In this thesis, the focus was specifically on 
neuroradiological examinations typical for stroke imaging, to determine whether and 
how they can benefit from spectral imaging. 
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Rationale 

The motivation behind this thesis was to explore neuroradiological applications of 
spectral CT to increase and optimize its use and leverage its full potential. 

Research aims 

The overarching aim of this thesis was to explore how spectral CT, particularly 
monoenergetic and iodine imaging, can enhance neuroradiologic examinations of the 
brain. 

The specific aims for each paper were: 

I. To develop and evaluate a novel method for differentiating brain tissue 
(distinguishing underperfused from normal tissue, with conventional CT 
perfusion as reference) in multiphase CT angiography, on a dual layer CT, 
using MI and iodine quantification. 

II. To assess whether MI improves the detection of acute cortical ischemic lesions 
in non-contrast brain CT, on a dual layer CT, compared to conventional 
polyenergetic images (PI). 

III. To investigate the feasibility of reducing contrast medium (CM) dose by 50% 
in brain CT angiography, on a dual layer CT, without compromising image 
quality, and to evaluate whether MI can salvage examinations with suboptimal 
contrast medium timing.  

IV. To examine the combined effects of MI and metal artifact reduction 
algorithms on artifact severity and soft tissue contrast in non-contrast brain 
CT with intracranial metal, using both dual layer CT and photon counting 
CT. 
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Background 

In 1957, Allan M. Cormack laid the theoretical foundation for CT, while Godfrey N. 
Hounsfield developed the first CT scanner between 1966 and 1972 [2]. The first CT 
prototype, tested in 1971, immediately revolutionized medical X-ray technology. 
Unsurprisingly, Cormack and Hounsfield were jointly awarded the Nobel prize in 
Physiology or Medicine in 1979 for their ground-breaking innovation. 

Since the 1970s, CT technology has made tremendous advancements and has solidified 
its position at the forefront of diagnostic imaging [3]. Increased volume coverage, made 
possible by helical data acquisition and multi-slice detectors, combined with higher 
temporal resolution through faster gantry rotation, larger helical pitch and dual X-ray 
tube data acquisition, has made more advanced and dynamic imaging possible. Another 
milestone was the addition of spectral information. Although the dual energy CT 
(DECT) concept dates back to the advent of the first CT, its practical realization 
required extensive advancements in software and hardware. The first clinically available 
DECT system was introduced in 2006 [4, 5]. In 2022, CT imaging was revolutionized 
once again with the introduction of the first clinical photon counting CT [6, 7] 

Computed tomography physics 

A conventional CT scanner contains an X-ray tube and a detector. These are situated 
opposite each other on a gantry, which rotates around the patient. Photons emitted by 
the X-ray tube are either absorbed or scattered by the patient’s body (attenuated) or 
pass through and are captured by the detector, where they produce a signal proportional 
to their energy. When a photon is attenuated in the patient, part of or all of its energy 
is deposited. The deposited energy leads to the patient absorbing a radiation dose, with 
potentially damaging effects to the irradiated tissue.  

The linear attenuation coefficient (𝜇) describes the probability of photon attenuation 
when travelling through a material and is dependent on both the photon energy and 
material properties (density and atomic number). The attenuation of a photon beam, 
where every photon has the same energy, through an arbitrary material is expressed by: 
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𝐼 = 𝐼଴𝑒ିఓ௫  (1) 

where 𝐼 is the intensity (number of photons) of the photon beam after having travelled 𝑥 cm in the material, 𝐼଴ is the initial intensity and 𝜇 [cm-1] the linear attenuation 
coefficient of the material at the specific photon energy. An X-ray tube produces 
photons with a spectrum of energies and tissue is composed of many different materials, 
making the reality much more complicated – but the principle for attenuation stays the 
same. 

The photons that are captured by the detector generate projection data which are 
processed and rendered into cross-sectional CT images through tomographic 
reconstruction. From the tomographic reconstruction, the average linear attenuation 
coefficient of each voxel (a three-dimensional counterpart to a pixel) is calculated. 
Rather than presenting the image directly, the linear attenuation coefficient is 
converted to CT-numbers, expressed in Hounsfield units (HU), by relating the 
attenuation in each voxel to the linear attenuation coefficients of water and air: 𝐻𝑈 = 𝑘 ∙ ఓ೚್ೕ೐೎೟ିఓೢೌ೟೐ೝఓೢೌ೟೐ೝିఓೌ೔ೝ   (2) 

where 𝑘=1000 and 𝜇௪௔௧௘௥ and 𝜇௔௜௥ are the linear attenuation coefficients of water and 
air respectively. By definition, water has a CT-number of 0 HU, and air -1000 HU. 
Images are presented in grayscale, where HU values are assigned to shades of gray 
ranging from black (-1000 HU) to white (+1000 HU). Since human vision is incapable 
of discriminating between 2000 shades of gray, windowing techniques are generally 
used to highlight certain tissues, rather than viewing the image in the full range of HU 
[8]. 

Photon interaction with matter 

Diagnostic CT is performed using X-ray tube voltages of 70-150 kV, producing an X-
ray spectrum with mean energies of 40-70 keV. In this energy range, photon interact 
with matter in different ways. These interaction mechanisms include the photoelectric 
effect, Compton (incoherent) scattering and Rayleigh (coherent) scattering.  

The photoelectric effect is a process in which a photon interacts with an electron from 
an atom, resulting in the total absorption of the photon and the electron being ejected 
from the atom. Compton scattering also results in an electron being ejected from the 
atom, but the photon is not absorbed. Instead, it changes direction, losing part of its 
energy in the process. Rayleigh scattering is similar to Compton scattering, but no 
electron is ejected in the process. 
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The mass attenuation coefficient (𝜇 𝜌ൗ ) is the linear attenuation coefficient (𝜇) 
normalized by density (𝜌), creating a value which is constant for each material 
(although varying with energy). The total mass attenuation coefficient is expressed by 
the sum of the mass attenuation coefficients for each interaction mechanism: ቀఓఘቁ = ቀఓఘቁ௉௛௢௧௢௘௟௘௖௧௥௜௖ + ቀఓఘቁ஼௢௠௣௧௢௡ + ቀఓఘቁோ௔௬௟௘௜௚௛ (3) 

The contribution of Rayleigh (coherent) scatter can be considered negligible, 
simplifying the equation to include only the mass attenuation coefficients of the 
photoelectric effect and Compton scattering (Figure 1). 

 

Figure 1. 
Mass attenuation coefficients of water for Rayleigh (coherent) scattering, Compton (incoherent) scattering, 
photoelectric effect and the total mass attenuation coefficient, for photon energies ranging from 1 to 300 
keV [9]. 

The mass attenuation coefficient for photoelectric absorption is dependent on the 
material and energy, as described by [10]: 

ቀఓఘቁ௉௛௢௧௢௘௟௘௖௧௥௜௖ ∝ ௓ర(௞௘௏)ళ/మ  (4) 

where Z is the atomic number (or effective atomic number, which is used to describe 
the average atomic number for human tissue as it is composed of multiple elements), 
and keV denotes the photon energy. 

The photoelectric effect is the dominating attenuation mechanism in soft tissues at low 
photon energies (below 26 keV) [11]. K-edges correspond to abrupt increases in the 
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probability of the photoelectric effect, occurring when the photon energy matches the 
binding energy of electrons in an atom’s inner shell. The phenomenon is particularly 
notable in materials with high effective atomic number, as their K-edges fall within the 
diagnostic X-ray spectrum. As photon energy increases, the photoelectric effect 
becomes less dominant, except at K-edges, and Compton scattering becomes 
increasingly important. The mass attenuation coefficient for Compton scattering, in 
the diagnostic CT energy range, has the following dependence: ቀఓఘቁ஼௢௠௣௧௢௡ ∝ ୞୅  (5) 

where A is the effective atomic mass. Most soft tissues have a similar ୞୅ ratio. 

In the diagnostic CT energy range, photon energies are high enough to make Compton 
scattering 10 times more probable than the photoelectric effect for soft tissue. The 
photoelectric effect, however, contributes more to the attenuation of materials 
containing elements with a higher atomic number, such as bone, metal and iodinated 
CM. 

In summary, attenuation increases with increasing atomic number and material density 
but decreases with increasing photon energy, except at K-edges. 

Spectral computed tomography 

Since photon attenuation, measured by the linear attenuation coefficient, is dependent 
on both atomic number and material density, different materials can have the same HU 
value, making it challenging, or impossible, to differentiate between them in CT 
images. However, acquiring an additional CT scan at a second X-ray energy can 
improve differentiation. 

Spectral CT is used to describe CT systems capable of separating the signal from 
detected photons into two or more energy bins to achieve spectral resolution. These 
include DECT systems, as well as photon counting CT (PCCT). DECT employs 
different solutions, including dual layered detectors or dual X-ray sources (Figure 2) 
[12]. 
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Figure 2. 
A) Photon counting computed tomography (CT) with an energy-resolving detector. B) Dual layer CT. C) 
Dual source CT. D) Rapid kV-switching CT. E) Split-beam CT. F) Dual scan CT. For the dual energy systems 
in B-F, the blue and red colors represents low and high X-ray energy. 

The ability to correctly separate and identify materials in a CT image depends on several 
factors, including spectral separation (the degree of overlap between the low- and high-
energy data sets), temporal coherence (time difference between low- and high-energy 
data sets), noise levels and the reconstruction algorithm employed [3]. Material 
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decomposition performed in the projection space (i.e. pre-reconstruction) is 
theoretically more accurate than image space decomposition (i.e. post-reconstruction), 
offering the advantage of mitigating beam hardening artifacts [12]. However, the actual 
difference in performance using one method over the other may not be as large as was 
previously assumed since many factors in combination affect the result [13]. 

Ideally, low- and high-energy data sets would be acquired simultaneously, have similar 
photon counts, minimal noise, and a large spectral separation with no overlap (i.e. 
resembling two monochromatic beams). Current technology, however, necessitates 
compromises.  

Photon counting CT 
PCCT acquires all photons, regardless of energy, simultaneously, enabling material 
decomposition in the projection space. The semi-conducting detector provides 
excellent spectral separation thanks to its inherent energy resolution. Electronic noise, 
primarily found in the lowest energy bins, is eliminated by applying a threshold below 
which detected photons are discarded before image reconstruction. The first clinically 
available PCCT employed a cadmium-telluride-based detector [6]. This type of 
detector can be fabricated with smaller detector elements than scintillator detectors, 
improving spatial resolution. Furthermore, prototypes using silicon-based detectors, 
currently under development, may provide even better spectral resolution. 

Dual layer CT 
Dual layer CT (DLCT), like other conventional energy-integrating detector systems 
and DECT systems, uses scintillator detectors. Its two-layered detector design allows 
the top layer to primarily capture low-energy photons, while the bottom layer primarily 
captures high-energy photons. Spectral overlap occurs as some low-energy photons are 
detected by the bottom layer and vice versa, due to the stochastic nature of photon 
attenuation. DLCT has the advantage of simultaneous low- and high-energy data 
acquisition, allowing material decomposition in the projection space. High- and low-
energy data sets are always acquired, but one can choose whether to reconstruct spectral 
images or combine the data to a conventional PI. 

Dual source CT 
Dual source CT (DSCT) uses two X-ray tubes positioned 90 degrees apart on a rotating 
gantry, operating at two different voltages. This setup provides excellent spectral 
separation, with spectral degradation primarily due to contamination by scattered 
photons. Applying physical filters to the higher-energy X-ray tube further improves 
spectral separation. However, as data acquisition is not simultaneous, material 
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decomposition must be performed in the image space after reconstructing the high- 
and low- energy images separately. Misalignment between the two images can degrade 
the accuracy of the material decomposition. 

Rapid kV-switching CT 
In the rapid kV-switching CT approach, the X-ray tube alternates voltage to generate 
a high and low energy level approximately every millisecond, enabling near-
simultaneous acquisition of the low- and high-energy data. Despite some spectral 
overlap, this method achieves good spectral resolution.  

Split-beam CT 
Split-beam CT employs a physical filter to divide the photon beam into two energy 
ranges. The detector can be either single- or dual-layer, with acquisitions occurring 
near-simultaneously. The spectral resolution is adequate with a single layer detector but 
is improved using a dual layer detector. 

Dual scan CT 
Dual scan CT acquires one scan with low energy, followed by a second scan with high 
energy. While this method provides excellent spectral separation, the temporal delay 
between acquisitions introduces a high risk of motion artifacts and misalignment 
between the data sets. 

Material decomposition 

Material decomposition is a technique for determining the contribution of specific 
materials in each voxel of the image by utilizing the energy- and material-dependent 
nature of photon attenuation [13]. This approach separates attenuation into material- 
and energy-specific components, making it easier to determine a material’s composition 
from spectral imaging data. Materials without K-edges within the diagnostic imaging 
energy range have smooth changes in their attenuation with varying energy. The mass 
attenuation coefficient for any material, at a specific energy 𝐸, can be expressed as a 
linear combination of attenuation by the photoelectric effect and Compton scattering: ቀఓఘቁ (𝐸) = 𝛼௉ ∙ 𝑓௉(𝐸) + 𝛼஼ ∙ 𝑓஼(𝐸)  (6) 

where 𝛼௉, 𝛼஼ are material dependent factors and 𝑓௉, 𝑓஼ energy-dependent factors for 
the photoelectric effect and Compton scatter, respectively. When attenuation 
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measurements at two distinct energies (𝐸௅௢௪ and 𝐸ு௜௚௛) are available, 𝛼௉ and 𝛼஼ can 
be determined from equations 7 and 8: ቀఓఘቁ (𝐸௅௢௪) = 𝛼௉ ∙ 𝑓௉(𝐸௅௢௪) + 𝛼஼ ∙ 𝑓஼(𝐸௅௢௪)  (7) 

ቀఓఘቁ (𝐸ு௜௚௛) = 𝛼௉ ∙ 𝑓௉൫𝐸ு௜௚௛൯ + 𝛼஼ ∙ 𝑓஼൫𝐸ு௜௚௛൯  (8) 

With the material-dependent factors determined, the attenuation in every voxel, at any 
energy, can be modelled. This is the principle behind the generation of synthetic MI 
reconstructions. 

Furthermore, the attenuation of any material can be modelled as the linear combination 
of two basis materials (e.g., water and iodine) [14]:  

Two basis materials, 1 and 2, have the following attenuation: ቀఓఘቁଵ = 𝛼ଵ,௉ ∙ 𝑓௉(𝐸) + 𝛼ଵ,஼ ∙ 𝑓஼(𝐸)  (9) 

ቀఓఘቁଶ = 𝛼ଶ,௉ ∙ 𝑓௉(𝐸) + 𝛼ଶ,஼ ∙ 𝑓஼(𝐸)  (10) 

The mass attenuation of a third unknown material, given by equation 6 can, by 
substitution of 𝑓௉(𝐸) and 𝑓஼(𝐸) from equation 9 and 10, be expressed as a linear 
combination of the two basis materials: ቀఓఘቁଷ = 𝑚ଵ ∙ ቀఓఘቁଵ (𝐸) + 𝑚ଶ ∙ ቀఓఘቁଶ (𝐸)  (11) 

where 𝑚ଵ = ఈయ,ು∙ఈమ,಴ିఈయ,಴∙ఈమ,ುఈభ,ು∙ఈమ,಴ିఈమ,ು∙ఈభ,಴  (12) 

and 𝑚ଶ = ఈయ,಴∙ఈభ,ುିఈయ,ು∙ఈభ,಴ఈభ,ು∙ఈమ,಴ିఈమ,ು∙ఈభ,಴  (13) 

Neither a physical effect-model (equation 6) nor a material basis-model (equation 11) 
are good fits when the K-edge effect is a major contributing source of the attenuation 
[13]. In cases involving K-edges, three-material decomposition can be used by adding 
a K-edge term to the mass attenuation expression: 
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ቀఓఘቁ (𝐸) = 𝛼௉ ∙ 𝑓௉(𝐸) + 𝛼஼ ∙ 𝑓஼(𝐸) + 𝛼௄ ∙ 𝑓௄(𝐸)  (14) 

Where 𝛼௄ and 𝑓௄ represents the material- and energy-dependence of the K-edge effect. 
Determination of three materials from only two measurements is made possible by the 
assumption of volume or mass conservation [15]. If there is more than one K-edge 
material, two measurements at different energy levels will not be enough to solve the 
mathematical problem. 

Material decomposition can be performed post-reconstruction (image space) or pre-
reconstruction (projection space) of the CT image. The above equations refer to 
material decomposition in the image space, but there are corresponding equations for 
the projection space approach.  

Material-specific images 

Material-specific images are derived from spectral CT data by decomposing the 
material composition in each voxel and displaying the amount or concentration of 
specific materials. For example, iodine density (ID) maps present the concentration of 
iodine within a voxel. Iodine is an important element in CT imaging as it is the most 
common contrast agent, commonly injected intravenously to enable vascular 
assessment or identify abnormal masses (i.e. tumors). Another example of a material-
specific image is uric acid maps. Uric acid is present in kidney stones and these images 
can aid in kidney stone diagnosis. 

Material-specific images of materials with a strong energy-dependence (i.e. attenuation 
changes more noticeably across different energies) are more accurate than that of 
materials with a weak energy-dependence. The energy-dependence can be characterized 
by a dual energy ratio, the ratio of attenuation at high versus low energy, with higher 
dual energy ratios facilitating the creation of material-specific images. However, the 
dual energy ratio of a material varies across spectral CT systems, depending on the 
quality of the spectral separation.  

Materials with higher effective atomic numbers exhibits stronger energy dependence) 
compared to those with lower effective atomic numbers. Most elements making up 
human tissue, such as hydrogen (Z=1), carbon (Z=6), nitrogen (Z=7) and oxygen 
(Z=8), have low atomic numbers and show relatively similar attenuation across different 
energies, making it difficult to differentiate between them. In contrast, elements such 
as calcium (Z=20) and iodine (Z=53) demonstrate a pronounced energy-dependence 
caused by their higher atomic numbers, allowing them to be easily distinguished from 
other elements. 
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Since the iodine contribution within each voxel can be quantified, it can also be 
subtracted from the original image to produce a virtual non-contrast (VNC) image. 
VNC images can potentially replace true non-contrast images, reducing the number of 
scans and lowering radiation dose. Additionally, VNC images are useful for 
differentiating contrast medium extravasation from hemorrhage. 

Monoenergetic images 

MIs simulate the attenuation properties of a monochromatic X-ray beam at a specified 
energy level, derived from spectral CT data (Figure 3). These images are generated by 
modelling the attenuation of each voxel based on the calculated contributions of the 
photoelectric effect and Compton scattering. By adjusting the monoenergetic level, 
radiologists can tailor image properties to the diagnostic task. MIs suffer less from 
scatter compared to conventional images, improving image contrast. Additionally, MIs 
reconstructed at lower energy levels can accentuate attenuation differences, improving 
low-contrast resolution and thus the visibility of soft tissue and subtle tissue differences. 
Notably, the attenuation of iodinated contrast medium can be increased several times 
over. However, image noise can be amplified as well. Conversely, MIs reconstructed at 
higher energy levels offer less soft tissue contrast but can assist in minimizing artifacts 
caused by dense materials. 

Unlike material-specific images, which are primarily concerned with quantifying 
materials, MIs allow for visualizing tissue structures across a spectrum of energies. This 
flexibility makes monoenergetic imaging a valuable diagnostic tool. 

Polyenergetic images 
The conventional image output from a non-DECT is the PI (Figure 3). The X-ray tube 
emits photons with a spectrum of energies, with the maximum energy determined by 
the set tube voltage. Photons which are not attenuated are captured and produce a 
signal in the detector. However, the low-energy photons will have a smaller impact on 
the signal produced in the detector than the high-energy photons. This down-weighing 
of low-energy photons, which are the primary carriers of contrast, has a degrading effect 
on image quality. 
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Figure 3. 
Examples of polyenergetic (PI) and monoenergetic images at 40, 50, 60, 70, 100 and 200 keV, presented 
in the same window settings (C40/W80). The images are from one of the patients in Paper II, examined 
on a dual layer computed tomography (IQon Spectral CT, Philips Healthcare Inc., Best, The Netherlands). 
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Image quality 

Noise 

Image noise refers to the variation in HU and is quantified by standard deviation (SD) 
within a uniform region-of-interest (ROI). A high noise level has a negative effect on 
image quality, as it degrades anatomical visualization. Ideally, all pixels within the ROI 
would have the same HU value. However, quantum-, electronic- (system-specific) and 
reconstruction-related noise causes HU pixel values to vary around a mean. Quantum 
noise depends on the number of information carriers (photons). Thus, the noise level 
is directly related to the radiation dose, with increasing radiation dose reducing noise 
[11]: 𝑆𝐷 ∝ ଵ√௡ (15) 

where n is the number of photons. Consequently, the signal-to-noise ratio (SNR), 
defined as the signal intensity (HU) divided by the image noise (SD) improves in 
proportion to √𝑛: 𝑆𝑁𝑅 = ு௎ௌ஽ ∝ √𝑛 (16) 

Noise power spectrum (NPS) analysis provides a method for quantifying and 
characterizing image noise [11, 16]. NPS is typically measured in a region of an image 
where the signal is uniform and is computed by subtracting the mean pixel value from 
each pixel. This removes signal bias and ensures only the signal variation (noise) is 
analyzed. The signal variation is Fourier transformed decomposing it into spatial 
frequency components. Mathematically, NPS is expressed as: 𝑁𝑃𝑆 = ∆௡୒ ∑ |𝐹𝑇[𝐻𝑈 − 𝐻𝑈തതതത|ଶ  (17) 

where ∆𝑛 is the pixel size, N the number of pixels, and 𝐻𝑈തതതത the mean value of the ROI. 
The resulting NPS curve illustrates the distribution of noise across spatial frequencies.  

While SD and NPS analysis are useful for noise characterization, they must be applied 
and interpreted cautiously in patient images due to natural anatomical variations that 
can influence measurements. 
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Contrast resolution 

Image contrast can be defined as the difference in attenuation values (HU) between 
two adjacent tissue types, or an object and its background. Low-contrast resolution, 
often referred to as soft tissue contrast or differentiation, is the ability to detect an object 
with similar attenuation as adjacent tissues or surrounding background.  

High-contrast resolution is the ability to detect objects with distinct differences in HU 
relative to their surroundings. These objects can, for example, be small metal objects or 
calcifications and contrast-enhanced arteries. Unlike low-contrast resolution, high-
contrast resolution is less sensitive to noise level. Instead, it is primarily limited by the 
difference in HU between object and surroundings and the spatial resolution of the 
image. The spatial resolution is determined by the physical size of the detector elements 
and the matrix size (i.e. how many pixels are used to create the image). Spatial 
resolution can be improved by reducing the reconstructed field of view, thereby 
maximizing the use of the available matrix size. Additionally, reconstruction filters can 
enhance both measured and perceived resolution by applying high-pass filtering and 
edge enhancement.  

The contrast-to-noise ratio (CNR) provides a way to estimate image contrast while 
accounting for noise. CNR can be used to assess both low- and high-contrast resolution. 
It can be calculated in several different ways, with the simplest form being: 𝐶𝑁𝑅 = ு௎೚್ೕିு௎್ೖ೒ௌ஽್ೖ೒   (18) 

where 𝐻𝑈௢௕௝ represents the mean attenuation value of an object, and 𝐻𝑈௕௞௚ and 𝑆𝐷௕௞௚ represents the attenuation and standard deviation, respectively, of the 
background [11]. Alternative formulations of CNR consider noise contributions from 
both the object and background [17-19]. 𝐶𝑁𝑅 = ு௎೚್ೕିு௎್ೖ೒ටௌ஽೚್ೕమ ାௌ஽್ೖ೒మ   (19) 

or: 𝐶𝑁𝑅 = ு௎೚್ೕିு௎್ೖ೒ඥௌ஽೚್ೕାௌ஽್ೖ೒  (20) 
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Artifacts 

Artifacts are objects or patterns in an image that do not correspond to real, physical 
structures. They can arise from technical malfunction or because of the chosen scan or 
reconstruction parameters. Additionally, they can be patient-related, such as motion 
during the scan or the presence of dense materials such as metal devices or prostheses. 

Metal artifacts appear as alternating bright streaks and dark bands. They are 
predominantly caused by two phenomena: beam hardening and photon starvation. 
Beam hardening occurs when dense materials attenuate low-energy photons more 
effectively than high-energy photons, shifting the X-ray spectrum towards higher 
energies and thereby “hardening” it. This results in a misrepresentation of attenuation 
in the surrounding tissue, presenting as streak artifacts. Photon starvation occurs when 
nearly all photons are absorbed by a dense material, leading to insufficient signal in the 
detector and manifesting as streaks. 

Scanning with low X-ray tube voltages results in more pronounced artifacts, since a low 
tube voltage means a larger proportion of low-energy photons, which are less likely to 
penetrate dense materials. Therefore, using a high tube voltage can aid in mitigating 
this artifact. In the same way, high-energy MIs can be used for artifact reduction. 

Metal artifact reduction 
To reduce metal artifacts, all CT scanner manufacturers have metal artifact reduction 
(MAR) algorithms [20-22]. Although the explicit details of the algorithms may be 
proprietary information, common methods involve iterative “sinogram inpainting” 
[23-26]. This process segments the metal regions in the image, creating a metal-only 
version, which is used to identify and remove projections with metal contribution from 
the sinogram. Projections with metal are replaced with interpolated values, modelling 
tissue in place of the metal. With each iteration, a correction image is generated and 
subtracted from the original, progressively refining the image. In the absence of metal, 
the algorithm should make no alterations to the image. 

Artifact severity 
The preferred method of assessing artifact severity is subjective analysis by human 
observers. However, observer studies are time-consuming and subject to potential bias, 
making objective and quantitative measures of artifact severity an appealing alternative. 

A direct approach to assessing artifact severity or reduction involves surveying 
attenuation values to determine how closely HU values are restored to their true values. 
However, this requires prior knowledge of the true HU in the absence of artifacts. 
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Measuring the variation, in terms of SD, can also provide a simple estimation of artifact 
severity.  

The artifact index is a straightforward method for quantifying artifact severity. It 
involves subtracting an “artifact-free” image from an image with artifacts, producing an 
“artifact-only” image. The absolute voxel values of the “artifact-only” image are then 
summed to provide a measure of artifact severity. However, because this method 
requires a reference image free from artifacts, it is not feasible for patient images. 

Evaluation of streak artifacts using extreme value analysis 
Streak artifacts, characterized by extreme high and low pixel values, can be statistically 
modelled and evaluated using extreme value analysis [27]. The largest difference 
between adjacent pixel values is estimated to be attributed to, and is considered a feature 
variable of, the artifacts.  

Line profiles (i.e. measurements of HU along a line in the image) are placed 
perpendicular to the direction of the streaks to measure the difference in HU between 
adjacent pixels. The largest pixel differences, 𝑥, for the line profiles are arranged in 
ascending order: 𝑥ଵ ≤ 𝑥ଶ ≤ ⋯𝑥௡, where 𝑛 is the number of line profiles. The Gumbel 
distribution, which has been used to evaluate streak artifacts and to model the 
distribution of the largest pixel differences, is expressed by [27-29]: 𝐹(𝑥) = 𝑒𝑥𝑝 ቂ−𝑒𝑥𝑝 ቀ− ௫ିఉఊ ቁቃ (21) 

where 𝐹(𝑥) is the cumulative probability function for the largest pixel differences, 𝑥, 
and β and γ are location and scale parameters. 𝐹(𝑥) is unknown, but the estimated 
cumulative probability function, 𝐹෠(𝑥௜), can be estimated using the mean rank method: 𝐹෠(𝑥௜) = ௜௡ାଵ, for 𝑖 = 1, … ,𝑛 (22) 

The Gumbel plot is created by plotting the double logarithm of the estimated 
cumulative probability function against the largest pixel differences. By applying a 
linear fit (𝑎𝑥 + 𝑏), the location and scale parameters can be estimated from the 
parameters 𝑎 and 𝑏. −𝑙𝑛൛−𝑙𝑛ൣ𝐹෠(𝑥)൧ൟ = ଵఊ 𝑥 − ఉఊ (23) 

From equation 23, the location parameter can be derived as 𝛽 = −𝑏 𝑎ൗ , and used as 
an indicator of artifact severity. 
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Diagnostic performance 

Receiver operating characteristics (ROC) curves are a key tool for objective evaluation 
of diagnostic performance. This method assesses not only image quality, but also the 
ability of the interpreting radiologist to make an accurate diagnosis based on observing 
the image. For ROC analysis to be possible, ground truth data is required, specifically 
knowledge of whether a patient has the condition being investigated [11, 30].  

Performance metrics for ROC analysis are derived from a “truth table”, a 2x2 matrix 
categorizing diagnostic outcomes. This table includes the number of abnormal cases 
correctly identified as abnormal (true positive (TP)), abnormal cases incorrectly 
classified as normal (false negative (FN)), normal cases correctly classified as normal 
(true negative (TN)) and normal cases incorrectly classified as abnormal (false positive 
(FP)). 
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The sensitivity (true positive fraction (TPF)) and specificity (true negative fraction 
(TNF)) are metrics used to evaluate the diagnostic performance of a test: 𝑇𝑃𝐹 = 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = ்௉்௉ାிே  (24) 

𝑇𝑁𝐹 = 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 = ்ே்ேାி௉  (25) 

A test with high sensitivity will have a high chance of correctly identifying all cases with 
a condition, while a high specificity means that the test is good at ruling out the 
condition. The ROC curve is obtained by plotting the sensitivity as a function of false 
positive fraction (FPF) (Figure 4): 𝐹𝑃𝐹 = 1 − 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 = ி௉்ேାி௉  (26) 
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Figure 4. 
Receiver operating characteristics (ROC) curves. The ideal classifier has a sensitivity and specificity of 1, 
generating an area-under-curve (AUC) of 1, while the random classifier has an AUC of 0.5. The pink ROC 
curve represents a diagnostic method with a better performance (larger AUC) than the green ROC. 
Created in BioRender. Fransson, V. (2025) https://BioRender.com/ jfdmud7 

The overall performance of a diagnostic method is commonly described by the area 
under the ROC curve. An ideal diagnostic method has an area under the curve (AUC) 
of 1 and delivers only correct diagnoses. Meanwhile, a method with an AUC of 0.5 is 
no better than flipping a coin. In practice, however, a high sensitivity comes at the cost 
of a lower specificity, and vice versa. Related metrics are the positive predictive value 
(PPV), the likelihood that someone who tests positive has the condition, and negative 
predictive value (NPV), the likelihood that someone who tests negative truly does not 
have the condition. The diagnostic accuracy is defined as the probability of making a 
correct diagnosis: 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = ்௉ା்ே்௉ା்ேାி௉ାிே  (27) 

However, unlike the previous metrics, the accuracy is prevalence-dependent and should 
be interpreted with care.  
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Visual grading analysis 

Visual grading analysis (VGA) is used to study the subjective aspects of image quality, 
in which observers (typically radiologists) are asked to review images regarding certain 
criteria [31-33]. Unlike ROC analysis, VGA does not require a known ground truth, 
allowing virtually any image to be used. Its moderate workload makes it feasible to 
include multiple observers, increasing statistical power [31, 32, 34]. However, its 
validity relies on the assumption that visibility of anatomical structures correlates with 
visibility of the pathology, which may not always hold true. VGA can be either absolute 
or relative, where absolute VGA means that images are reviewed individually, and 
relative VGA means that images are compared to each other.  

VGA studies are susceptible to bias, including recognition bias, adaptation bias and 
observer selection bias [35-37]. Adaptation bias occurs if observers have a developed a 
preference for a specific image appearance based on past experience, while recognition 
bias arises if radiologists recognize which image is acquired under which condition, 
effectively unblinding the study. Observers may either be experts in the field or more 
open to new imaging conditions than the average radiologist, potentially making the 
results less representative of routine clinical practice. VGA studies should include a 
sufficient number of cases and observers while minimizing the participation of 
observers involved in the study to reduce confirmation bias [37]. 

To facilitate diagnostic performance observer studies, including VGA or ROC, 
dedicated software, such as ViewDex (Viewer for Digital Evaluation of X-ray images), 
has been developed [38-40]. 

Absolute visual grading 
In absolute VGA, observers evaluate individual images against criteria on an ordinal 
scale to estimate and compare image quality. Criteria can be based on established 
standards, such as the European Guidelines for quality criteria, or be customized for 
the study [34]. Grading scales typically include between four and five levels, from 
criterion not fulfilled (poor or non-diagnostic image quality) to criterion fulfilled 
(excellent image quality), with an even number of levels forcing a choice between poor 
or good quality and an odd number offering a middle “acceptable” level. Grading scales 
should be clinically relevant and tailored to the purpose of the study. 

Relative and preference visual grading 
In relative VGA, two or more images are reviewed simultaneously, with observers 
grading each image in comparison to a reference image. Grading scales can include 
between two (“worse” or “better”) and five levels (“much worse” to “much better”). 
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While intuitive and useful for capturing small differences, relative VGA has limited 
statistical possibilities, and all data rely on the quality of the reference image. A related 
method, the preference method, involves observers selecting their preferred image 
without using a reference image. 

Visual grading characteristics analysis 
Traditional statistical tests, such as the Mann Whitney U-test, fails to account for the 
complexity of VGA data, particularly the presence of multiple observers grading each 
case. This can lead to an underestimation of uncertainty and an increased risk of false 
positives, where the null hypothesis is incorrectly rejected. To address these limitations, 
a visual grading characteristics (VGC) analysis was developed [38, 41-44]. VGC is a 
non-parametric rank-invariant statistical method designed for VGA data. It enables the 
evaluation and comparison of image gradings obtained under two imaging conditions: 
a reference condition and a test condition. These conditions can differ in terms of scan 
protocols, CT systems, or reconstruction parameters, to name a few. 

In VGC analysis, a VGC curve is generated – similar to the ROC curve of diagnostic 
performance (Figure 5). The x-axis presents the proportion of scores above a certain 
threshold for the reference condition, while the y-axis presents the same for the test 
condition. However, unlike ROC analysis, which compares the AUC value of two 
different diagnostic methods, VGC estimates the uncertainty in the area under one 
VGC curve (AUCVGC). The AUCVGC ranges between 0 and 1, values above 0.5 indicate 
that the test condition received higher grading scores, and values below 0.5 indicate 
that the reference condition received higher scores. The uncertainty in AUCVGC is 
calculated using resampling techniques and presented with a 95% confidence interval. 
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Figure 5. 
Visual grading characteristics curves where the area-under-the-curve (AUC) is equal to 0.5 (reference 
condition and test condition had the same grading score), AUC higher than 0.5 (test condition received a 
higher score) and AUC lower than 0.5 (reference condition received a higher score). Created in BioRender. 
Fransson, V. (2025) https://BioRender.com/9p1q3hk 

Inter- and intra-observer agreement 
In a landmark tuberculosis study from 1947, researchers observed that experienced 
radiologists often disagreed when interpreting radiographic images. Moreover, the same 
radiologist could assess the same image differently at different times [45]. This 
inconsistency introduces uncertainty in observer studies and remains a challenge today. 
However, this inconsistency can be minimized by including a large, representative 
number of observers, ensuring the task is well-defined and understood, and providing 
all observers with the same information. 

In the context of VGA, inter-observer agreement refers to the consistency among 
different observers, while intra-observer agreement is the reliability of a single observer 
across multiple sessions. Observer agreement can be measured using the weighted 
Cohen’s kappa coefficient [46]. Kappa values range from -1 (perfect disagreement) to 
+1 (perfect agreement), with 0 representing chance agreement. Altman’s interpretation 
categorizes kappa values as follows [47]:   
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<0 = poor  
0.01–0.20 = slight  
0.21–0.40 = fair 
0.41–0.60 = moderate  
0.61–0.80 = substantial  
0.81–1.00 = almost perfect  

Cohen’s kappa was developed to control for random agreement, assuming observer 
independence, which can sometimes excessively lower the calculated agreement [48]. It 
is sensitive to the grading scale and the distribution of scores [16]. For example, when 
agreement is high, but the grading scale has few options, kappa may yield unexpectedly 
low values due to the high potential of a chance agreement. 

An alternative measure is percent agreement, which is calculated as the proportion of 
instances observers are in total agreement. While this method does not account for 
chance agreement and may overestimate reliability, it is useful when random guessing 
is unlikely [48].   
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Neuroradiology 

Stroke imaging 

Stroke is the sudden loss of neurological function due to a reduced or interrupted blood 
flow, and consequently oxygen supply, to brain cells. Stroke can be ischemic, caused by 
an occlusion (blocked artery), or hemorrhagic, caused by a ruptured artery (Figure 6). 
Symptoms vary depending on the affected brain region but without intervention the 
lack of oxygen will cause rapid cell death. The common saying “Time is brain” 
emphasizes the need for swift treatment [49, 50]. 

 

Figure 6. 
Illustrations of an ischemic and hemorrhagic stroke, with resulting penumbra and core region.  
Created in BioRender. Fransson, V. (2025) https://BioRender.com/ppozoda 

CT is the most common imaging modality for diagnosing acute stroke [51]. While 
positron emission tomography (PET) is the gold standard for perfusion imaging, it is 
time-consuming and often impractical. Diffusion magnetic resonance imaging (MRI) 
is highly sensitive to ischemic changes but is less accessible than CT, which offers rapid 
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imaging with high sensitivity for hemorrhage and the ability to detect occlusions [52]. 
For moderate to severe ischemic stroke, the ability of CT to detect ischemic damage 
has been found to be comparable to diffusion MRI [53]. However, early ischemic 
changes – characterized by loss of gray and white matter differentiation – and small 
lesions remain challenging to detect [50, 54, 55]. 

Stroke imaging with CT 
Non-contrast CT (NCCT) is a brain CT scan without contrast enhancement. It is the 
first choice of imaging in stroke diagnosis and used for soft tissue assessment, offering 
a high sensitivity for hemorrhage and the ability to visualize ischemic lesions depending 
on the extent of the damage (Figure 7). 

CT perfusion (CTP) is performed to evaluate blood flow and blood volume in brain 
tissue, indirectly indicating the oxygenation status of the tissue (Figure 7). It involves 
injecting the patient with CM, then performing a dynamic imaging sequence to 
monitor the passage of the CM through the brain. Specialized software analyzes the CT 
images to estimate perfusion parameters such as cerebral blood volume (CBV), cerebral 
blood flow (CBF) and mean transit time (MTT) for the CM passage [56]. These 
parameters are used to define penumbra (potentially salvageable tissue) and core 
(irreversibly damaged tissue). The volumetric mismatch between penumbra and core 
aids in identifying patients who may benefit from recanalization treatment 
(interventions to reopen an occluded artery, intravenous thrombolysis or endovascular 
thrombectomy). By providing additional information on tissue condition, CTP 
improves treatment decisions beyond merely using time thresholds [57]. 

CT angiography (CTA) is performed for arterial visualization and to identify 
occlusions, timed to coincide with the CM’s peak-arterial phase. In recent years, 
multiphase CTA (mCTA) has become a common examination (Figure 7) [58-60]. 
mCTA involves three scans: the first during the peak-arterial phase of the CM, the 
second during the peak-venous phase and the third during the late-venous phase. This 
technique indirectly assesses perfusion by evaluating the collateral blood flow. 
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Figure 7. 
Images from one of the patients in Paper I, examined on a dual layer computed tomography (CT) scanner 
(IQon Spectral CT, Philips Healthcare Inc., Best, The Netherlands) and perfusion data analyzed by Rapid 
(RapidAI, Menlo Park, CA, USA). Top) Non-contrast CT (NCCT) followed by the three phases of multiphase 
CT angiography (mCTA). The first phase corresponds to a conventional CT angiography. Bottom) CT 
perfusion maps: CBV – Cerebral blood volume, CBF – Cerebral Blood Flow, MTT – Mean Transit Time, 
Tmax – Time to maximum contrast enhancement. 

Artifacts in brain imaging 

Brain imaging is challenged by the presence of dense, highly attenuating materials, such 
as bone and occasionally metal, coils or stents from previous interventions. These high-
attenuating materials cause streak artifacts which degrades image quality and may 
obscure pathologies. Filtration and correction algorithms are implemented to 
compensate for beam hardening effects originating from the scull. But in the posterior 
fossa region, artifacts typically remain post-correction.  

For metal objects, MAR algorithms are commonly used. MIs have been suggested for 
further artifact reduction, and the combination of MAR and high-energy MI has been 
shown to have an additive effect in reducing artifacts. 
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Differentiation of gray and white matter 

Differentiation between gray and white matter is necessary for accurate diagnosis of 
early ischemia, ischemic lesions and other brain pathologies. This differentiation is 
improved by achieving a higher low-contrast resolution. 

CT imaging is typically performed with X-ray tube voltages ranging from 70 to 150 
kV. This produces an X-ray spectrum consisting of a wide range of photon energies, 
with a maximum energy corresponding to the tube voltage, and a much lower mean 
energy. At low photon energies, the photoelectric effect, which is highly dependent on 
atomic number, plays a dominant role in determining image contrast. However, in 
conventional single- and dual-energy CT systems with energy-integrating scintillator 
detectors, high-energy photons contribute more heavily to the signal, effectively 
downweighing the low-energy photons and degrading soft tissue contrast. Spectral CT 
provides a potential solution to this problem with the generation of MIs, especially MIs 
reconstructed at low energies since the visible and measurable attenuation difference 
between gray and white matter increases at lower energies (Figure 3, Figure 8). 

 

Figure 8. 
Example of how the attenuation, represented by Hounsfield units (HU), of gray matter, white matter and 
cerebrospinal fluid can vary as a function of monoenergetic level (keV). Created using data from a patient 
in Paper II, examined on a dual layer computed tomography (IQon Spectral CT, Philips Healthcare Inc., 
Best, The Netherlands). 
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Contrast medium 

Iodinated CM plays a key role in CT brain imaging by enhancing the visibility of 
vascular structures and improving the differentiation between normal and pathological 
tissue. Despite its diagnostic benefits, the use of CM carries potential risks in the form 
of contrast-induced nephropathy (CIN) [61-64]. CIN is a serious complication which 
may result in acute kidney injury and is associated with myocardial infarction and 
neurological complications. The risk of CIN varies between patients, with the most 
important risk factors being a pre-existing renal disease and diabetes [62, 64, 65]. 
Administrating higher CM doses is associated with a higher risk of CIN. Preventive 
measures, such as ample hydration and minimizing the CM dose, are commonly used 
for high-risk patients. 

Since iodine’s K-edge is at 33 keV, scanning with low tube voltages can increase CM 
attenuation, enabling lower doses of CM [66-69]. The visualization of contrast-
enhanced vascular structures is less sensitive to image degradation from increased noise, 
compared to soft tissue, making it more feasible to perform examinations with low tube 
voltage. Low-energy MI reconstructions from spectral CT are also a viable alternative 
as the CM attenuation increases at lower energies (Figure 9). 

 

Figure 9. 
Example of how the attenuation, represented by Hounsfield units (HU), of gray matter, white matter and 
an contrast-enhanced artery can vary as a function of monoenergetic level (keV). Created using data from 
a patient in Paper III, examined on a dual layer computed tomography (IQon Spectral CT, Philips 
Healthcare Inc., Best, The Netherlands). 
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Radiation dose and associated risks 

When optimizing diagnostic images, the radiation dose from X-ray exposure should 
follow the concept of ALARA. The radiation dose should be just high enough for the 
image quality to be good enough for the diagnostic task. Reducing the dose too much 
can result in a non-diagnostic image quality, and consequently misdiagnosis or need 
for additional imaging – ironically increasing the total radiation dose delivered. All X-
ray examinations must always be medically motivated. In a critical situation, for 
example when there is suspicion of stroke, the number one priority is a swift 
examination and diagnosis – followed by a timely and correct treatment of the 
condition – which means that a relatively high radiation dose may be necessary to 
improve patient outcome. 

Ionizing radiation is harmful due to its ability to damage the deoxyribonucleic acid 
(DNA), causing DNA strand breakage and leading to cell death, mutation or 
carcinogenesis. Radiation effects, describing the potential biological consequences of 
the radiation, are divided into stochastic (probabilistic) and deterministic (radiation-
level based) effects. Deterministic effects will arise when the radiation dose exceeds a 
certain threshold, becoming more severe as the dose increases. Stochastic effects are 
primarily radiation-induced cancer. Although debated, the most established model for 
risk assessment is the linear-no-threshold (LNT) model, stating there is no lower 
threshold for radiation effects [70-72]. Rather, all radiation is considered harmful, and 
the risk of stochastic effects increases with dose. 

The effective dose concept was developed to estimate the risk associated with exposure 
to radiation and should be used on a population level, rather than for individuals. 
Effective dose, 𝐸, is defined as [73, 74]: 𝐸 = ∑ 𝑤் ∙ ∑ 𝑤ோ ∙ 𝐷்,ோோ்   (28) 

where 𝐷்,ோ is the absorbed dose. It considers the radiation type (wR) and varying 
radiosensitivity, of human organs and tissue using a tissue weighting factor (wT). Given 
that the radiation weighting factor, wR, for photon exposure is 1, the equation becomes: 𝐸 = ∑ 𝑤் ∙ 𝐷்்   (29) 
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Radiation dose in CT imaging 

Modern hardware, for example dynamic collimators, and software solutions, such as 
iterative or deep learning-based reconstruction, have in recent years enabled high 
quality CT imaging using lower radiation doses than was previously possible. Three-
dimensional automatic exposure control has enabled radiation doses adjusted to patient 
size and diagnostic task. Despite these advancements, the radiation dose associated with 
CT examinations remains relatively high. The number of examinations per capita has 
increased over time, resulting in an increased collective effective dose [75-77]. To 
monitor radiation dose from medical CT examinations, a solid model for dose 
estimation is required. 

The radiation dose in CT imaging is measured using the CT dose index (CTDI) by 
volume (CTDIvol). When CTDI first came into use, scans were acquired using single-
slice axial scanning. The International Electrotechnical Commission defined CTDI100 
as the absorbed dose for one axial scan of 100 mm [78]. CTDI100 is measured using an 
ionization chamber with an active length of 100 mm, either in air or in a 15 cm long 
cylindrical polymethyl methacrylate (PMMA) phantom of 16 cm diameter, 
representing a head, or 32 cm, representing a body. Since the in-plane distribution of 
absorbed dose varies, a weighted CTDI (CTDIW) was introduced, where CTDI100 was 
measured both centrally and peripherally: 𝐶𝑇𝐷𝐼௪ = ଵଷ 𝐶𝑇𝐷𝐼ଵ଴଴,௖௘௡௧௥௔௟ + ଶଷ 𝐶𝑇𝐷𝐼ଵ଴଴,௣௘௥௜௣௛௘௥௔௟  (30) 

To account for axial scan spacing, or helical scanning, CTDI by volume (CTDIvol) was 
introduced: 𝐶𝑇𝐷𝐼௩௢௟ = ஼்஽ூೢ௣௜௧௖௛   (31) 

where pitch is the table movement per rotation, relative to the collimated beam width. 
The CTDIvol value is displayed at the console before scanning and is available after the 
scan. It represents the output from the scanner and will only depend on the scan 
parameters – not the patient size, shape or body composition [79-81]. As such, it does 
not represent the true absorbed dose to the patient.  

As examinations vary in scan length, dose length product (DLP) was introduced to 
provide a representation of the total absorbed dose: 𝐷𝐿𝑃 = 𝐶𝑇𝐷𝐼௩௢௟ ∙ 𝐿  (32) 
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where 𝐿 is the scan length. DLP can be translated to effective dose, 𝐸, using an 
anatomy-specific conversion factor, 𝑘: 𝐸 =  𝐷𝐿𝑃 ∙ 𝑘  (33) 

The size specific dose estimate (SSDE) is an alternative to CTDIvol which is becoming 
more common on modern CT scanners. SSDE takes patient size into account by 
multiplying the CTDIvol with a size-specific conversion factor. The conversion factor is 
determined by the patient’s size and/or tissue composition and is derived from the scout 
images. 

In Table 1, average radiation doses (CTDIvol, DLP and effective dose) are listed for the 
neuroradiological examinations studied in this thesis. The data are based on the average 
doses from CT systems at Skåne University Hospital in Lund in 2023. Effective dose 
was calculated using conversion factors based on weighting factors defined by the 
International Commission on Radiological Protection (ICRP), 0.0024 mSv/(mGy·cm) 
for brain (16 cm CTDI-phantom) and 0.009 mSv/(mGy·cm) for combined brain and 
neck imaging (32 cm CTDI-phantom) [82]. 

Table 1.  
Radiation dose (average ± standard deviation) for all examinations, performed at any computed tomography 
(CT) scanner, at Skåne University Hospital in Lund in 2023. Effective dose is calculated using conversion 
factors based on tissue weighting factors from the ICRP Publication 103 [82].  

 Non-contrast brain CT 
16 cm CTDI-phantom 

CT angiography of 
the neck and brain 
32 cm CTDI-phantom 

Brain CT perfusion 
16 cm CTDI-
phantom 

CTDIvol [mGy] 42.3 (±6.4) 12.5 (±7.8) 67.5 (±16.8) 

DLP [mGy∙cm] 855 (±164) 502 (±168) 540 (±155) 

Effective dose [mSv] 2.1 (±0.4) 4.5 (±1.5) 1.3 (±0.4) 

CTDIvol – volumetric computed tomography dose index, DLP – dose length product. 
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Summary of the studies 

This section summarizes the methodologies used for Papers I-IV, including study 
design, inclusion criteria, patient characteristics and CT scan parameters. Detailed 
descriptions of materials and methods can be found in their respective papers. 

Data collection 

The data in this thesis were obtained from CT images of 190 participants in total, 
distributed across four studies (Table 2). All participants were patients who underwent 
CT examinations in the below-listed CT systems at Skåne University Hospital in Lund 
between 2018 and 2023. Patients were retrospectively included from the hospital’s 
picture, archiving and communication system based on the inclusion criteria defined 
for each study. To minimize systematic errors and selection bias, examination codes 
and filters were applied to include consecutive examinations that met the criteria. 
Access to spectral data files was a criterion for inclusion, as they are required for 
retrospective generation of MIs and ID maps. 

Table 2.  
Summary of the total number of participants, examination type, CT systems and reconstructions for each 
paper, and whether analysis of phantom images were performed or not.  

 Paper I Paper II  Paper III  Paper IV 

Total number 
of participants 

10  52  127 1 

Examination 
type 

NCCT, CTP, 
mCTA 

NCCT CTA NCCT 

CT system(s) IQon Spectral CTa IQon Spectral CTa IQon Spectral CTa IQon Spectral CTa, 
Naeotom Alphab 

Reconstruction PI, ID,  
MI at 40 keV 

PI,  
MI at 40-200 keV 

PI,  
MI at 40-200 keV 

PI,  
MI at 40-190 keV 

Phantom 
analysis 

No No No Yes 

CT – computed tomography, CTA – CT angiography, CTP – CT perfusion, ID – iodine density, 
mCTA – multiphase CTA, MI – monoenergetic image, NCCT – non-contrast CT, PI – polyenergetic 
image.  
a Philips Healthcare Inc., Best, The Netherlands, b Siemens Healthineers, Forchheim, Germany 
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Ethical considerations 

All examinations included in the studies were clinically indicated and performed as part 
of standard clinical practice. Consequently, patients were not subject to additional 
examinations or radiation exposure. There were no risks or benefits associated with 
inclusion in the studies. Informed consent was waived, as all studies were retrospective 
in nature and involved no intervention, thus minimizing participation bias. Ethical 
approval for all studies was obtained from the Swedish Ethical Review Authority 
(reference no. 2019-02225) and informed consent was waived by the authority. 

Statistical methods 

Statistical methods were employed to analyze and compare results, providing estimates 
of whether observed differences were statistically significant. Parametric tests were used 
for data considered normally distributed, while non-parametric tests were applied when 
distributions could not be confidently classified as normal. The confidence level for all 
statistical tests was set at 95%, with a p-value threshold of 0.05 used to determine 
statistical significance. 

The statistical tests used in this thesis were predominantly non-parametric. For paired 
continuous and ordinal data, the Wilcoxon signed rank test was applied (Papers II-III). 
For nominal data, the Chi-square test was utilized (Papers II-III). In the case of 
continuous data with independent observations, the Mann-Whitney U-test was utilized 
(Papers II-III). VGA data were evaluated using VGC analysis (Paper III). 

Paper I 

We aimed to investigate whether mCTA can be used to distinguish underperfused from 
normal tissue, similar to CTP. mCTA is less technically demanding than CTP and has 
the added benefit of whole brain coverage and arterial visualization. We based our 
method on the hypothesis that iodine attenuation in two corresponding regions in the 
left and right hemisphere should only display major differences when there is a 
perfusion deficit present in either one of them. Additionally, we wanted to determine 
if this difference was enhanced using low-energy MIs or ID, compared to PIs.  

Patients were eligible for inclusion if they had performed a NCCT, mCTA and CTP 
examination due to suspicion of stroke. Ten patients were identified who fit the criteria, 
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five with perfusion deficits and five with normal perfusion. Scan and reconstruction 
parameters are listed in Table 3, while patient characteristics are presented in Table 4. 

Table 3.  
Scan and reconstruction parameters. 

Parameters NCCT CTP mCTA 

Tube voltage [kV] 120 80 120 

Tube loading for 
average adult, mAs 

220 (DRI 35) 75 162 (DRI 24) 

Collimation [mm] 64x0.625 64x0.635 64x0.625 

Pitch 0.359 1.000 1.015 

Rotation time [s] 0.33 0.5 0.5 

Contrast medium [ml] NA 40 60 

Reconstruction method 
and kernel 

iDose level 1, UB iDose level 5, UA iDose level 3, C 

Slice thickness [mm] 10 5 10 

Reconstructions PI, ID,  
MI at 40 keV 

PI PI, ID,  
MI at 40 keV 

CT – computed tomography, CTA – CT angiography, CTP – CT perfusion, ID – iodine density, 
mCTA – multiphase CTA, MI – monoenergetic image, NCCT – non-contrast CT, PI – polyenergetic 
image, NA – not applicable. 

Table 4.  
Patient characteristics and radiation dose exposure.  

Patient 
characteristics 

Patients with perfusion deficits 
(n=5) 

Patients with normal perfusion 
(n=5) 

Age (IQR) [years] 62 (5) 73 (15) 

Sex: F/M (%/%) 1/4 (20%/80%) 3/5 (60%/40%) 

Radiation dose NCCT  
(16 cm) 

CTP 
(16 cm) 

mCTA 
(32 cm) 

NCCT 
(16 cm) 

CTP 
(16 cm) 

mCTA 
(32 cm) 

CTDIvol (IQR) [mGy] 41.3 
(3.2) 

4.5 15.1 (6.5) 44.7 (1.8) 4.5 13.5 (5.4) 

DLP (IQR) [mGy∙cm] 893 (52) 540 1063 (339) 893 (63) 540 991 (317) 

Effective dose (IQR) 
[mSv] 

2.1 (0.1) 1.3 5.1 (1.7) 2.1 (0.1) 1.3 4.9 (1.6) 

CT – computed tomography, CTA – CT angiography, CTP – CT perfusion, CTDIvol – volumetric 
computed tomography dose index, DLP – dose length product, F – female, IQR – interquartile range, 
M – male, mCTA – multiphase CTA, NCCT – non-contrast CT. 

For the mCTA examination, three spiral scans were acquired eight seconds apart after 
CM injection, to capture the CM in three different phases: peak-arterial phase, venous 
phase and late-venous phase. In the CTP examination, sequenced scans were acquired 
every four seconds for sixty seconds total, to capture the entirety of the CM passage.  

Regions with perfusion deficits were identified from the CTP results (penumbra and 
core). PIs, MIs at 40 keV and ID maps were constructed and analyzed for the NCCT 
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and mCTA scans. HU in PIs and MIs, and iodine concentration in ID maps, were 
measured in 11 ROIs across six axial planes corresponding to the major arterial 
territories of the brain, using the Alberta Stroke Programme Early CT Score method 
(Figure 10) [83]. 

 

Figure 10. 
Region-of-interest placement for the quantitative measurements. The numbers corresponds to arterial 
territories: (1) anterior cerebral artery, (2) middle cerebral artery (M) subartery M1, (3) M2, (4) posterior 
cerebral artery, (5) posterior inferior cerebral artery, (6) superior cerebellar artery, (7) M3, (8) lenticulostriate 
arteries, (9-11) M4-M6. Adopted from Paper I. 

To quantify the difference in attenuation between regions in the left and right 
hemisphere, we developed a measure called “maximum value of derivative” (MVD). 
For each arterial territory, data points were normalized by their baseline value from the 
NCCT scan. For each phase, the ratio between corresponding ROIs in the right and 
left hemisphere was calculated and derived with respect to time, resulting in plots 
communicating how rapidly the ratio changed. MVD, the maximum change in ratio, 
was used to assess the magnitude of underperfusion. An MVD of zero would mean 
normal perfusion. A positive MVD would be indicative of a perfusion deficit in the 
right hemisphere, as the right side would experience a delayed or absent contrast 
enhancement. In the same way, a negative MVD would be indicative of a perfusion 
deficit in the left hemisphere. A step-by-step development of MVD can be seen in 
Figure 11, and the mathematical definition of MVD was: 

𝑀𝑉𝐷 = max డడ௧ ൬(ு௎ ௢௥ ூ஽)ೝ೔೒೓೟(ு௎ ௢௥ ூ஽)೗೐೑೟ ൰  (34) 
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A reliable method for detection of perfusion deficits should produce MVDs for regions 
with perfusion deficits, which are high enough to distinguish from the MVDs of 
regions with normal perfusion. The change in HU or iodine concentration and the 
MVD were quantitatively compared between the three reconstructions (PIs, MIs at 40 
keV and ID) regarding how well they were able to separate normal from underperfused 
regions. 

 

Figure 11. 
Top row: Hounsfield units (HU) and iodine density (ID) measured in regions-of-interest (ROI) and 
normalized to the ROIs baseline (phase 0) value in right (normal) and left (underperfused) hemispheres 
across four image phases. Phase 0 represents the non-contrast computed tomography (CT), and phases 1–
3 correspond to the three phases of the multiphase CT angiography. “0-1” indicates the transition 
between phase 0 and 1. Middle row: Ratio of HU and ID in the right and left hemisphere. Bottom row: 
The derivative (i.e. change) of the ratio between consecutive image phases. In this example, the maximum 
derivative of the ratio (MVD) was found between phases 1 and 2. Adopted from Paper I. 
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Paper II 

In this study, we evaluated the image quality and diagnostic ability of PIs and MIs to 
detect acute ischemic stroke, using quantitative and qualitative methods. 

Patients who underwent a NCCT scan, and had a confirmed acute, cortical ischemic 
lesion on either the initial CT or follow-up examination, were included. The negative 
control group consisted of patients who underwent NCCT but did not have any acute 
ischemic lesions or other pathologies. Patient characteristics and imaging parameters 
are listed in Table 5. 

Table 5.  
Patient characteristics, radiation dose, scan and reconstruction parameters.  

Patient characteristics and 
radiation dose 

Patients with ischemic 
lesions (n=29) 

Patients without ischemic 
lesions (n=23) 

Median age (IQR) [years] 67 (19) 63 (39) 

Sex: F/M (%/%) 9/20 (31%/69%) 11/12 (48%/52%) 

Median maximum diameter 
of ischemic lesion (IQR) [cm] 

3 (2.9) NA 

Median CTDIvol (16 cm) (IQR)  
[mGy] 

40.1 (5.6) 36.5 (5.1) 

Median DLP (16 cm) (IQR) 
[mGy∙cm] 

826 (98) 751 (149) 

Median effective dose (IQR) 
[mSv] 

2.0 (0.3) 1.7 (0.4) 

Scan and reconstruction parameters 

Tube voltage [kV] 120 

Automatic dose modulation DRI 37 

Collimation [mm] 64x0.625 

Pitch 0.36 

Rotation time [s] 0.33 

Reconstruction method and 
kernel 

iDose level 1, UB 

Slice thickness [mm] 3 

Reconstructions in 
quantitative analysis 

PI, MI at 40-200 keV 

Reconstructions in 
qualitative analysis 

PI, MI at 50, 60 and 70 keV 

CTDIvol – volumetric computed tomography dose index, DLP – dose length product,  
DRI – dose right index, F – female, IQR – interquartile range, M – male, MI – monoenergetic image,  
NA – not applicable, PI – polyenergetic image. 

For the quantitative analysis, HU and SD were measured for ischemic gray matter, 
normal gray matter and normal white matter (Figure 12). The ischemic gray matter 
ROI was placed using follow-up imaging as a guide. Difference in attenuation and 



57 

CNR was calculated between gray matter (ischemic and normal) and white matter, as 
well as between ischemic and normal gray matter, and compared across reconstructions. 

 

Figure 12. 
a) Ischemic gray matter, b) normal gray matter , and c) normal white matter. Adopted from Paper II. 

Qualitative image quality of PIs and MIs at 50, 60 and 70 keV were analyzed using 
absolute and relative VGA. The absolute VGA included patients with confirmed 
ischemic lesions, with two observers asked to grade the images using a five-point 
grading scale (1 – Non-diagnostic, 2 – Poor, 3 – Fair, 4 – Good, 5 – Excellent) for: 

1. Overall impression of image quality 

2. Impression of image ability of diagnosing acute ischemia  

The relative VGA was performed in supervised viewing sessions and included patients 
both with and without ischemic lesions. For each patient, two observers had access to 
both PI and MIs at the same time and were asked to identify: 

1. The presence of an ischemic lesion (yes/no) 

2. If yes, infarct location 

3. Which reconstruction was best to visualize ischemic lesions 

Follow-up CT or MRI was used to determine whether the observers were correct in 
their identification and localization of ischemia. Diagnostic performance was 
determined and compared between the original clinical report (by the attending 
radiologist in the acute stage, with access to PIs only) and the VGA study (observers 
with access to both PIs and MIs at 50, 60 and 70 keV). 
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Paper III 

In this study, we evaluated whether MIs reconstructed from CTA could increase arterial 
visualization and compensate for reduced contrast enhancement due to reductions in 
CM dose or poorly timed examinations. Our hypothesis was that low-energy MIs could 
return image quality to that of PIs with full contrast timing or optimal timing.  

Patient characteristics and imaging parameters are listed in Table 6. Patients were 
excluded if they had an internal carotid artery (ICA) or middle cerebral artery (MCA) 
occlusion. Participants were randomly assigned to a protocol group based on their exam 
date and each protocol was performed for a limited period. 

Table 6.  
Patient characteristics, radiation dose, scan and reconstruction parameters.  

Patient characteristics 
and radiation dose 

Group 1. Full CM 
dose (n=52) 

Group 2. Half CM 
dose (n=24) 

Group 3. Half CM 
dose, optimized 

timing (n=39) 

Median age (IQR) [years] 68 (18) 75 (26) 72 (22) 

Sex: F/M (%/%) 22/30 (42%/58%) 11/13 (45%/54%) 23/16 (59%/41%) 

Median CTDIvol (32 cm) 
(IQR) [mGy] 

12.3 (4.6) 12.2 (4.2) 14.6 (6.5) 

Median DLP (16 cm) (IQR) 
[mGy∙cm] 

509 (240) 511 (198) 586 (249) 

Median effective dose 
(IQR) [mSv] 

2.5 (1.2) 2.5 (1.0) 2.7 (1.2) 

Scan and reconstruction parameters 

Tube voltage [kV] 120 

Automatic dose 
modulation 

DRI 24 

Collimation [mm] 64x0.625 

Pitch 0.609 0.609 0.797 

Rotation time [s] 0.50 0.50 0.33 

Intravenous contrast 
medium [ml] 

60 30 30 

Reconstruction method 
and kernel 

iDose level 3, B 

Slice thickness [mm] 2 

Reconstructions in 
quantitative analysis 

PI, MI at 40-200 keV 

Reconstructions in 
qualitative analysis 

PI, MI at 50-60 keV 

CM – contrast medium, CTDIvol – volumetric computed tomography dose index, DLP – dose length 
product, DRI – dose right index, F – female, IQR – interquartile range, M – male, MI – monoenergetic 
image PI – polyenergetic image  
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Quantitative and qualitative measures of image quality were compared between Groups 
1 and 3 to determine if MIs with 50% reduction in CM dose (Group 3) were of equal 
image quality as PIs with full CM dose (Group 1). MIs with poor contrast timing 
(Group 2) were compared to PIs with optimized timing (Group 3) to determine if MIs 
could enhance arterial visualization and compensate for the suboptimal timing. 

Quantitatively, the arterial attenuation (HU), SNR and CNR in two arteries (ICA and 
M2 segment of the MCA) were analyzed. Homogenous white matter was used as the 
background tissue for CNR calculations.  

To assess the contrast timing, venous attenuation in the confluence of sinuses was 
measured (in the PI only) and used to calculate a vein-to-artery ratio (HUvein/HUICA). 
All ROIs were sized to include as much tissue as possible without risking partial volume 
effects. 

For qualitative image quality assessment, absolute VGA was performed, and the result 
was analyzed using VGC analysis. Five observers were asked to assess the PI and MI at 
50 keV and 60 keV regarding four criteria: 

1. Overall image quality 

2. Visual representation of the internal carotid artery 

3. Visual representation of the M2 segment of the middle cerebral artery 

4. Timing of the examination 

Criteria 1-3 were graded using a five-point scale (1 – Non-diagnostic, 2 – Poor, 3 – 
Fair, 4 – Good, 5 – Excellent) and for criterion 4 the observers could select between 
early arterial, late arterial or venous phase.  

Paper IV 

In a previous study by our research group, quality of images reconstructed from brain 
CTs with intracranial coils, without using MAR, was studied [22]. The results indicated 
that MIs improved soft tissue differentiation and did not increase artifact severity, 
compared to PIs. However, we found it challenging to perform objective, quantitative 
measurements of artifact severity in patient images. In this study, we aimed to facilitate 
artifact quantification using an anthropomorphic brain phantom. At the time of data 
collection for the previous study, MAR was not part of the clinical routine. Thus, we 
investigated how the combination of MI and MAR affects both visualization of soft 
tissue and artifact severity. 
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Scans from one patient were included. The patient had undergone coil treatment due 
to a subarachnoid hemorrhage and was scheduled for multiple follow-up examinations. 
The brain phantom had a cylindrical cavity, enabling scans both with and without coils. 
Scan and reconstruction parameters are listed in Table 7. 

Table 7.  
Scan and reconstruction parameters for the studied examinations. 

 Dual layer CT Photon counting CT 

Tube voltage [kV] 120 

Effective tube loading 
[mAs] 

305 228 

Collimation [mm] 64x0.625 48x0.4 

Pitch 0.36 0.35 

Rotation time [s] 0.33 0.5 

Median CTDIvol (16 cm) 
(IQR) [mGy] 

52.5 45 

Reconstruction method 
and kernel 

iDose level 1, UB QIR level 4, Hr36 

Type of MAR O-MAR iMAR, Neuro Coils 

Slice thickness [mm] 1 

Reconstructions in 
quantitative analysis 

PI, MI at 40-190 keV with and without MAR 

Reconstructions in 
qualitative analysis 

PI, MI at 60, 80, 100, 120 and 140 keV with and without MAR 

CT – computed tomography, CTDIvol – volumetric computed tomography dose index, IQR – 
interquartile range, MAR – metal artifact reduction, MI – monoenergetic image, PI – polyenergetic 
image. 

Quantitative analysis was performed using the phantom images. HU, SD and artifact 
index (the summative difference between an image with and without metal) were 
measured in a U-shaped ROI (Figure 13). Gumbel distribution analysis was performed 
to estimate the location parameter as an indicator of artifact severity. A low artifact 
severity was defined as HU close to that of the ground truth, low values of SD, artifact 
index and location parameter. 
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Figure 13. 
Region-of-interest for quantitative image analysis. Left: reference, middle: with coils, right: with coils and 
metal artifact reduction algorithm. Adopted from Paper IV. 

VGA was performed using images from both the phantom and clinical patient. Twelve 
reconstructions were included in the qualitative analysis: MI at 60, 80, 100, 120 and 
140 keV, and PI, all with and without MAR. Four observers were asked to choose 
which two reconstructions they preferred regarding: 

1. Overall image quality 

2. Reduction of metal artifacts 

3. Soft tissue differentiation in artifact afflicted regions 

4. Soft tissue differentiation in the whole scan 

First choice was awarded 2 points, and the second 1 point, to determine an overall 
superior reconstruction for each criterion. 

Phantom images were assessed regarding only criteria 1-2, as there was no visible or 
measurable difference in HU for white matter and gray matter in the PI. 

The observers then scored the images one at a time, using a four-point scale (1 – Non-
diagnostic, 2 – Poor, 3 – Good, 4 – Excellent).  
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Results and discussion 

Contributions to stroke imaging 

The papers in this thesis highlight the role of spectral CT in advancing stroke imaging, 
primarily by enhancing contrast, reducing artifacts and introducing a potential new 
approach for perfusion assessment. 

Brain perfusion 

Perfusion imaging is central to identifying tissue at risk and guide stroke treatment 
decisions. A study comparing predictive models incorporating NCCT, CTA and CTP 
found that CTP provided the most accurate prediction of patient outcomes. However, 
since CTA was assessed visually for collateral scoring and occlusion status, the apparent 
superiority of CTP may partly stem from the absence of an objective, quantitative 
analysis of CTA images [84]. 

In Paper I, we introduced a quantitative method of analyzing mCTA images, using 
results from CTP as a guide. The lower temporal resolution of mCTA increases the risk 
of not perfectly capturing the arterial peak, potentially making perfusion assessments 
harder to perform. However, in terms of identifying brain regions affected by 
underperfusion, the mCTA method demonstrated similar results to CTP. Normal 
brain regions in patients with a detected perfusion deficit exhibited similar MVDs to 
those of patients with a normal perfusion (Figure 14) 
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Figure 14. 
A) Five patients with normal perfusion and B) five patients with underperfused regions, according to 
computed tomography perfusion (CTP). The maximum value of derivative (MVD) is presented for iodine 
density (ID), monoenergetic images at 40 keV (MI40) and polyenergetic images (PI). Patients #6 and #10 
had an internal carotid occlusion. Patients #7 and #9 had an occlusion in the M1 segment and patient #8 
in the M3 segment of the middle cerebral artery. Created using data from Paper I. 

In contrast, regions with a perfusion deficit showed elevated MVDs compared to 
normal regions. Several other studies have also demonstrated the feasibility of 
quantitative mCTA as a potential substitute for CTP [85-88]. Compared to CTP, 
mCTA offers advantages, including direct visualization of arterial occlusions and 
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whole-brain coverage, which are not always available with CTP. Various methods of 
mCTA perfusion analysis have been proposed, with most relying on visual and/or 
quantitative hemispheric comparisons. Additionally, AI-based analysis of mCTA has 
shown high concordance with CTP perfusion maps [89, 90]. AI models offer an 
advantage over purely mathematical algorithms by integrating additional clinically 
relevant data, potentially enhancing the accuracy of predictions. 

Our study found that ID and HU in MIs at 40 keV produced a clearer distinction 
between normal and underperfused tissue compared to PIs. Similarly, other research 
has demonstrated that MIs at 40 keV improve the identification of penumbra and 
ischemic core while offering better prediction of final infarct volume, both visually and 
through quantitative analysis [88]. 

The degree of underperfusion (volume and/or severity) influenced the capability of our 
proposed method. In images with large perfusion deficits (ICA occlusions in patient 6 
and 10, Figure 14), there was a clear separation between MVDs of normal and 
underperfused tissue, while in images with more distal occlusions (M3 occlusion, 
patient 8) there was substantial overlap, reducing our method’s effectiveness in 
distinguishing perfusion differences. Measurements were performed in large ROIs 
(Figure 10), making the method less sensitive to small perfusion deficits. A minor 
underperfusion within an otherwise well-perfused arterial territory is unlikely to have a 
strong influence on the average ROI value, limiting detectability. To enhance this 
method’s sensitivity, future improvements could involve using smaller ROIs or 
performing the analysis at voxel level to generate perfusion maps, similar to 
conventional CTP. 

Differentiation of gray and white matter 

For any material, the change in attenuation as a result of change in MI level is most 
pronounced at low energies but becomes less noticeable at higher energies. Regardless 
of the specific imaging task, identifying a single optimal MI level is challenging, instead 
results typically indicate an energy range rather than a fixed value. Depending on study 
design and spectral CT solution, the optimal reconstruction for gray- and white matter 
differentiation has been reported to be MIs between 50 and 90 keV [17, 18, 91-94]. 

In Paper II, the CNR between gray matter (ischemic or normal) and white matter was 
maximized for MIs at 40 keV. Attenuation differences between ischemic and normal 
gray matter are due to cell death-induced edema, increasing water content and reducing 
attenuation. An unexpected finding was the low CNR between ischemic and gray 
matter for MIs at 40-50 keV, caused by negligible differences in attenuation. A 
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probable explanation for the high ischemic gray matter attenuation at low energies is 
the ROI placement (Figure 12). The ROI was placed cortically, making it susceptible 
to cupping artifacts caused by beam hardening from the cranial bone, which are 
amplified at low energies, while the ROI for normal gray matter was placed internally, 
shielded from such interference. 

In the presence of metal devices, gray and white matter differentiation is further 
complicated by streak artifacts. Although artifacts are less pronounced at higher MI 
levels, Paper IV demonstrated that low-energy MIs (such as at 60 keV) remained the 
preferred choice when high soft tissue contrast is required, highlighting the trade-off 
between artifact reduction and soft tissue visibility. 

 

Figure 15. 
Example images from a patient with an acute ischemic lesion, circled in the follow-up (FU) examination on 
the far left. Reconstructions for the acute examination are the conventional polyenergetic image (CI) and 
monoenergetic images at 50, 60 and 70 keV. Adopted from Paper II. 

Diagnostic performance 

In Paper II, we evaluated the diagnostic performance of two radiologists qualitatively 
detecting acute cortical ischemic lesion detection in PIs and MIs reconstructed from 
NCCT scans (Figure 15). Compared to the original diagnostic report, where the 
radiologists only had access to PIs, diagnostic accuracy was improved when they had 
access to MIs at 50, 60 and 70 keV alongside the PIs. Sensitivity increased from 0.55 
to 0.93 and 0.97 for observers 1 and 2, respectively. However, this improvement came 
at the cost of decreased specificity, which declined from 1.0 to 0.82 and 0.91, 
respectively. 

In contrast, another study in which observers evaluated one MI at a time reported a 
much lower sensitivity (best-performing MI was at 90 keV, 0.37) but slightly higher 
specificity (0.94) [94]. Their findings emphasized the importance of multiple observers, 
since inter-observer differences were larger than differences between reconstruction 
types. However, notably, each observer performed a more accurate evaluation with MIs 
than with PIs, reinforcing the value of spectral reconstructions. In our study, inter-
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observer agreement was very good in terms of ischemia identification and localization, 
but only moderate when rating individual reconstructions. While MIs improve 
detection, variability remains when observers assess different reconstructions 
independently. 

Assessing diagnostic performance requires a reliable reference standard. In Paper II, 
follow-up imaging (CT or MRI) was used as the ground truth. However, any 
misclassification of ischemic lesions or their location inevitably reduces the certainty of 
calculated diagnostic accuracy. Furthermore, the conditions under which images were 
reviewed in the original diagnostic report versus the visual grading sessions differed. 
During the visual grading sessions, observers were provided with clinical information 
from the referral report to improve realism. However, without access to previous 
radiological examinations, their ability to distinguish between old and acute lesions was 
limited, potentially impacting performance. 

Superior reconstruction for ischemia localization 
In Paper II, the MIs included in the visual grading were selected based on quantitative 
analysis results. Highest overall image quality was observed at 50 keV (rated “good” 
and “fair” by Observers 1 and 2) and 60 keV (rated “good” by both observers), with 
significantly higher scores compared to PIs. Similarly, for diagnostic ability, the highest 
ratings were given to MIs at 50 keV (“excellent” and “fair”) and 60 keV (“good”), while 
PIs were graded as “poor”. Across both image quality and diagnostic ability, MIs 
received significantly higher scores than PIs. 

Regarding the preferred reconstruction for ischemia assessment, one observer selected 
the 60 keV MI in 28/52 cases, and the 50 keV MI in 19/52 cases. The other observer 
predominantly preferred PIs (35/52 cases), highlighting inter-observer variability 
despite overall superiority of MIs. 

While gray-white matter contrast is maximized at the lowest MI levels, previous studies 
have suggested that MIs at 80-100 keV are optimal for ischemia assessment in regions 
suffering from beam hardening artifacts, such as the posterior fossa and subcalvarial 
space [93-95]. 

Arterial enhancement 

The quantitative analysis in Paper III demonstrated that MIs reconstructed at 40-60 
keV from Group 3 scans (half CM dose, optimized timing) exhibited significantly 
higher SNR and CNR compared to PIs from Group 1 (full CM dose). Additionally, 
the qualitative analysis found that MIs at 50 keV from Group 3 had significantly higher 
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overall image quality and improved visualization of the ICA and M2 artery (Figure 
16.). However, while statistically significant, the observed difference was smaller than 
one graded scale level, suggesting it may not be clinically relevant. Therefore, we 
concluded that MIs from Group 3 were, at least, of equal quality to PIs from Group 1. 
This finding aligns with previous studies across different anatomical regions, which 
have shown that CM dose reductions of 25-50% can be effectively compensated by 
reconstructing MIs at 50-60 keV [19, 96-99]. 

 

Figure 16. 
Score distribution for 1) overall image quality, 2) visual representation of the internal carotid artery, and 3) 
visual representation of the M2 segment of the middle cerebral artery. Adopted from Paper III.  
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Figure 17. 
Reconstructed polyenergetic images (PI), and monoenergetic images at 50 and 60 keV from patients in 
Groups 1-3. CM – Contrast medium. Adopted from Paper III. 

Differences in scan parameters may have influenced our results. Group 3 images were 
acquired using a higher pitch than Groups 1 and 2, which could lower image quality, 
particularly in regions with high attenuation gradients. However, patients in Group 3 
also received a slightly higher radiation dose, which – though statistically insignificant 
– can contribute to reduced image noise. Importantly, the difference in contrast phase 
between Groups 1 and 3 was negligible, whereas the difference between Groups 2 and 
3 was significant, a key factor when interpreting the results.  

In stroke imaging, the risk associated with delayed treatment far outweighs the potential 
risk of CIN. The clinical principle of ”neurons over nephrons” underscores this 
prioritization. However, stroke patients often undergo CM-intensive interventional 
procedures following the initial CT scan and in subsequent days, motivating CM dose 
reduction when image quality can be preserved.  

Beyond clinical benefits, reducing CM dose also has environmental advantages. 
Iodinated CM are excreted unchanged in urine and poorly removed by wastewater 
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treatment systems, contributing to water contamination. Thus, lower CM doses not 
only reduce the risk of CIN but also minimize environmental impact. 

In Paper I, spectral imaging enhanced vascular attenuation and the ability to 
quantitatively distinguish between normal and underperfused tissue. The difference in 
MVD was more pronounced when measured in MIs at 40 keV and ID maps than in 
PIs (Figure 14). 

Salvaging examinations with poor arterial enhancement 

Contrast enhancement in CT imaging is influenced by multiple factors, and 
suboptimal contrast timing is a common challenge. For instance, for a hypothetical 
adult male (30 years old, 70 kg, 170 cm), a 60% reduction in cardiac output can cause 
a 30-second delay in peak aortic enhancement, shifting it from 30 to 60 seconds post 
CM-injection [100]. The prevalence of poorly-timed examinations varies depending 
on the body region and the criticality of the timing. A study by Mahmoudi et al. 
reported that 3.8% of 11,746 abdominal contrast-enhanced scans had poor contrast 
timing [101]. Of these, 36.9% (or 1.4% of all examinations), were considered non-
diagnostic (rated “very poor” or “poor”) using the standard PIs. However, nearly all 
non-diagnostic cases in their study achieved acceptable image quality with MIs at 50 
keV. Similarly, MIs at 40 keV from PCCT scans have been shown to enhance arterial 
contrast in venous-phase images, improving image quality though not to a level 
comparable with a true arterial-phase image [102]. 

In Paper III, among the poorly timed examinations (Group 2) – which also had a 
lower-than standard CM dose – the proportion of non-diagnostic (rated “poor” or 
lower) conventional PIs was lower than in the study by Mahmoudi et al. For overall 
image quality and ICA visualization, 10-12% of all images were rated “non-diagnostic” 
or “poor”. For M2 it was 19%. When using MIs at 50 keV, 69-79% were rated “fair” 
image quality, or better. Compared to the study by Mahmoudi et al, the proportion of 
examinations that were changed from non-diagnostic to fair using MIs was relatively 
low in our study, likely due to the added challenge of a reduced CM dose.  

When MIs are reconstructed from poorly timed examinations with a standard CM 
dose, they can achieve diagnostic image quality. Our findings suggest that even with a 
50% reduction in CM dose and suboptimal contrast timing, many examinations could 
still reach diagnostic quality. 
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Artifacts in brain imaging 

Using MAR algorithms in combination with MIs is an interesting concept, as MAR 
algorithms were designed for PIs and may exhibit varying results depending on MI 
level. A previous study found no significant differences in assessed metal artifact severity 
between MI levels without using MAR [103]. However, regarding overall image quality 
and gray-white matter differentiation, MIs at 40 keV received the lowest scores, whereas 
MIs at 50 and 60 keV were rated highest.  

During the VGA study in Paper IV, it was observed that applying MAR algorithms 
introduced new image disturbances, particularly in the more distal brain regions (Figure 
18). This phenomenon has also been reported in other studies [104-106]. CT 
manufacturers recommend reconstructing images both with and without MAR, and 
our findings support this approach. 

 

Figure 18. 
Patient images example for the dual layer computed tomography (DLCT, left) and photon counting 
computed tomography (PCCT, right). From left to right: monoenergetic image reconstructions at 60, 100 
and 140 keV, top row without metal artifact reduction (MAR) and bottom row with MAR. Window 
settings were the same for both computed tomography systems (center=40, width=80). Adopted from 
Paper IV. 

Metal artifact reduction 
Both the qualitative and quantitative evaluations in Paper IV showed that MAR 
reduced artifact severity, across all MI and PI reconstructions and for both systems 
studied (Figure 19, Figure 20, Figure 21). Applying MAR had a greater impact on 
artifact severity than varying the MI level, though high-energy MIs were able to provide 
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further artifact reduction. Additionally, MIs offer advantages such as reduced sensitivity 
to beam hardening effects. 

High-energy MIs generally exhibited minimal artifact severity, with some exceptions. 
For DLCT scans, the artifact index reached a minimum at 60 keV, while the minimum 
SD value was between 70-100 keV. These findings may be explained by the fact that 
MIs reconstructed at 70 keV from DLCT closely resemble conventional PIs, yet offer 
a lower noise level, making them more compatible with the MAR algorithm. 

 

Figure 19. 
Measured Hounsfield Units (HU), standard deviation and range (maximum and minimum HU) in 
polyenergetic images (PI) and monoenergetic images reconstructed at 40-190 keV, with and without metal 
artifact reduction (MAR), for a dual layer computed tomography (DLCT) and photon counting computed 
tomography (PCCT). Adopted from Paper IV. 

During the qualitative image assessment in Paper IV, when observers compared 
multiple reconstructions simultaneously, the highest MI level studied (140 keV) was 
perceived to produce minimal artifacts. However, in absolute VGA, where images were 
assessed individually, artifact reduction scores varied only slightly across MI levels 
(median score range 3-3.5) (Figure 20). While high-energy MIs provided the greatest 
artifact reduction, the differences were subtle and difficult to detect in absolute VGA. 
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Figure 20. 
Visual grading median score for patient images: polyenergetic image (PI) and monoenergetic images 
reconstructed at 60, 80, 100, 120 and 140 keV, with and without metal artifact reduction (MAR) on a dual 
layer computed tomography (DLCT, left) and photon counting computed tomography (PCCT, right). 
Adopted from Paper IV. 
Score: 1 – Non-diagnostic, 2 – Poor, 3 – Good, 4 – Excellent.  
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Figure 21. 
The location parameter estimated from Gumbel distribution analysis in polyenergetic images (PI) and 
monoenergetic images reconstructed at 40-180 keV, with and without metal artifact reduction (MAR), for 
a dual layer CT (DLCT) and photon counting CT (PCCT). Adopted from Paper IV. 

Overall image quality and soft tissue discrimination in the presence of metal artifacts 
For overall image quality, when observers had access to all reconstructions 
simultaneously, reconstructions with MAR were consistently preferred. Regarding soft 
tissue discrimination, observers preferred MIs at lower energies without MAR, over 
MIs at higher energies with MAR. In contrast, when images were assessed individually, 
MAR had little impact on observer ratings across the different levels.  

Observers rated MIs reconstructed at 60-80 keV and PIs higher than MI reconstructed 
at energies above 100 keV, presumably due to the improved soft tissue contrast at lower 
photon energies, which outweighed the benefits of artifact reduction at higher energies. 
This reinforces the importance of selecting MI level based on the specific diagnostic 
task. The quantitative analysis showed only slight improvements in artifact reduction 
beyond 80 keV, while qualitatively, soft tissue differentiation substantially worsened. 
Thus, MIs at 80 keV may provide a good trade-off between artifact reduction and soft 
tissue visualization. 

Signal-to-noise ratio 

In Papers II-III, SNR was used as a measure of image quality, comparing PIs and MIs. 
For soft tissue (gray or white matter), SNR was generally higher in MIs than in PIs 
(Paper II). For ischemic and normal gray matter, the difference was significant at 60-
150 keV. For normal white matter, significance was only observed at 170-200 keV. 
Notably, SNR for ischemic gray matter and normal white matter was lower in MIs at 
40 keV compared to PIs.  
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Theoretically, higher SNR in MIs results from reduced image noise since MIs 
experience less beam hardening and Compton scatter. However, similarly to SD, SNR 
interpretation in patient images can be complex. Despite efforts to measure in 
homogenous regions, anatomical variation is unavoidable. Image noise is expected to 
be greater at lower MI levels, but soft tissue differentiation is also enhanced. Both 
contribute to a higher SD, assuming non-homogenous tissue, and lower SNR, though 
only increased noise has a negative impact on image quality. 

In contrast, the SNR behavior of arterial and venous segments in Paper III differed to 
that of soft tissue. SNR was highest at 40 keV and decreased with increasing MI level, 
with SNR in PIs closely resembling that of MIs at 80 keV. While SD varied similarly 
across MI levels in both vessels and soft tissues, the attenuation of iodinated vessels 
changed more dramatically with energy. As a result, SNR was primarily driven by 
iodine attenuation, peaking at lower photon energies where iodine attenuation is 
highest.  

Contrast-to-noise ratio 

The choice of background tissue for arterial CNR calculations should accurately 
represent its surrounding environment. Intracranial arteries are encased in a layer of fat, 
but in Paper III, white matter was used as the background tissue. The fat layer was not 
considered visible due to limited spatial resolution and calcium blooming artifacts. It 
was estimated that the arterial visualization depended more on contrast between the 
artery and white tissue rather than fat. If a higher spatial resolution was available, fat 
might be a more appropriate background tissue for CNR calculations. 

Radiation dose considerations 

Radiation doses for spectral CT are not necessarily higher than for conventional CT, 
though this depends on the specific spectral imaging solution. At Skåne University 
hospital in Lund, DLCT does not result in higher radiation doses compared to 
conventional single-energy CT.  

Using PCCT can potentially reduce radiation dose substantially compared to DECT 
solutions, due to its ability to eliminate electronic noise and reduce overall noise levels. 
At Skåne University hospital in Lund, this advantage has been utilized for certain 
examinations particularly in pediatric imaging. However, in some cases, the higher 
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image quality of PCCT has been prioritized over dose reduction, maintaining radiation 
exposure comparable to conventional CT systems. 

It is also important to note that radiation dose reductions may be limited in high-
resolution imaging. The higher spatial resolution of PCCT inherently results in 
increased image noise, which can counteract the dose-saving potential. Currently, CTA 
of the neck and brain is performed at a radiation dose level similar to other CT systems, 
but with a significantly improved spatial resolution – achieving a 0.4 mm slice thickness 
(compared to 0.6 mm) and a 0.2 mm pixel size (compared to 0.6 mm). While this 
results in greater image detail, it also leads to higher noise levels compared to standard 
resolution CT.  

The focus of this thesis was on maximizing the diagnostic utility of available spectral 
data, rather than optimizing radiation dose reduction. While minimizing radiation 
exposure is also desirable, it is not the primary concern in stroke imaging, where the 
risk of untreated ischemia far outweighs the potential risks associated with radiation.  

In Paper I, we explored the possibility of substituting CTP with quantitative analysis 
of mCTA images, which – if implemented – would lead to a reduction in both CM 
and radiation dose, as it would eliminate the need to perform both mCTA and CTP.  

We found in Paper III that many examinations with poor arterial enhancement could 
be improved from a non-diagnostic to diagnostic image quality, thereby eliminating 
the need to re-do the scan and reducing radiation exposure. 

Limitations 

The methodologies used in the papers of this thesis have inherent weaknesses, which 
may introduce limitations to the conclusions drawn. 

Manual measurements  
In Papers I-IV, manual quantitative measurements were performed, introducing 
potential risks of misplacement, partial volume effects and selection bias. However, our 
methodology maintained a level of objectivity when comparing different 
reconstructions (ID, PI or MIs) as a single ROI placement in one image automatically 
provided corresponding values for all reconstructions. 

Imperfect standard bias 
In Paper I, we aimed to develop a new method for perfusion assessment, which 
presented challenges regarding the choice of a reference standard. If the reference 
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standard is flawed or inaccurate, the new method will inherit bias from the reference, 
potentially affecting its perceived validity. By setting CTP results as ground truth, we 
limited our method to performing no better than CTP itself.  

Statistical considerations 
Sample sizes were determined based on previous studies and our research group’s 
experience.  

Paper I was a feasibility study, and the sample size was constrained by the time-
consuming nature of manual ROI delineation.  

Papers II and III were primarily limited in the qualitative analysis, as including 
multiple reconstructions per patient greatly increased observer workload. In Paper III, 
samples sizes were limited as we were unable to ethically justify continuing with a 
reduced CM dose protocol for additional patients without first confirming that image 
equality was adequately preserved.  

In Papers I and IV, no statistical tests were performed due to the nature of the data and 
the small sample sizes. After consulting with our statistical advisor, we determined that 
statistical testing would not provide meaningful conclusions. Instead, we prioritized 
graphical representation of the data, ensuring transparency and interpretability while 
allowing for qualitative assessment of trends.  

Visual grading analysis 
To mitigate observer bias in VGA studies, we aimed to include observers with diverse 
background and experience levels.  

In Paper II, two observers were recruited for each stage of the subjective analysis, which 
may be too few to ensure fully representative results. In Paper III, we increased the 
number of observers to four, allowing for a broader distribution of expertise and 
perspectives. 

To enable unsupervised grading, we used dedicated software for VGA in Papers II and 
III. Achieving a high degree of realism is ideal for reviewing images. However, at the 
time of the study, the software only allowed for the presentation of a single image stack 
per case. More recent software versions now enable the simultaneous display of multiple 
image stacks, which would be an improvement. In Paper IV, supervised grading was 
found to be valuable, as it provided insights into the observers’ thought processes. 
However, without a systematic approach to extract and analyze this information, it can 
only be considered anecdotal. Generally, the unsupervised approach is favored, as it is 
less time-consuming, allows observers greater flexibility in grading, and minimizes the 
risk of influence from the supervising researcher on the results. 
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Individual optimization of monoenergetic images 
In this thesis, PIs and MIs were reconstructed using similar parameters whenever 
possible. However, optimizing reconstruction methods and filters for each 
reconstruction type could have further improved MI image quality. Optimizing the 
pre-set window may also improve perceived image quality [107]. While observers were 
able to adjust window settings during VGA studies, the extent to which they utilized 
this option was unknown. 

Generalizability 

Paper I-III were single-system studies, focused exclusively on DLCT, which limits the 
generalizability of the findings. The DLCT system was partly chosen for practical 
reasons, as it is available in the Skåne University Hospital neuroradiology department 
and serves as the designated stroke CT. This setup allowed for the retrospective analysis 
of many images without disrupting clinical workflow. In Paper IV, we expanded the 
analysis by comparing DLCT and PCCT, identifying both similarities and differences 
between the two systems. The parallel trends observed across both types of CT system 
suggest that our findings are more likely a property of MIs, rather than being system-
specific.  

Probability of benefit 
The efficacy of diagnostic imaging can be understood as a hierarchical model of benefit 
probability, consisting of six levels [36, 108]: 

1: Technical quality – Imaging parameters, image quality assessments  
2: Diagnostic accuracy – Sensitivity, specificity 
3: Diagnostic thinking – Degree to which imaging aids in diagnosis 
4: Therapeutic – Degree to which imaging aids in treatment 
5: Patient outcome – Change in outcome with vs without imaging 
6: Societal – Cost-effectiveness from societal perspective 

A study cannot demonstrate efficacy at a higher level without first establishing efficacy 
at the lower levels. Papers I, III and IV evaluated the technical quality (level 1), while 
Paper II also assessed the diagnostic accuracy (level 2). Thus, this thesis does not extend 
beyond level 2, meaning that we cannot draw conclusions as to whether spectral CT 
leads to improved patient outcome or is more cost-effective than conventional CT.  

By modifying the study design, Paper II could have been expanded to include 
diagnostic thinking (level 3). This could have been achieved by conducting multiple 
reviewing sessions, where observers assessed the same cases with and without access to 
MIs. Such a setup would have allowed us to quantify the degree to which MIs aid 
diagnosis.  
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Conclusions 

In brain CT imaging, the goal is to accurately visualize brain anatomy and function, 
recognize pathology and ensure that patients receive timely and appropriate diagnoses 
and treatment. To this goal, we investigated whether and how spectral CT can improve 
image quality in neuroradiological examinations typical for stroke imaging.  

The conclusions from the individual papers are as follows:  

I. mCTA can be used for brain perfusion assessment. To improve the detection 
of perfusion deficits, the strongest possible iodine signal is preferred, which can 
be achieved using either direct iodine quantification or MIs reconstructed at 
40 keV. 

II. The image quality of NCCT scans and consequently radiologists’ ability to 
diagnose early ischemic lesions was improved using MIs at 50 and 60 keV 
compared to PIs. Diagnostic accuracy improved when radiologists had access 
to MIs, rather than relying solely on PIs. 

III. A 50% reduction in CM dose for CTA is feasible without compromising image 
quality when using MIs at 50 keV, compared to PIs with full CM dose. 
Alternatively, maintaining the CM dose while utilizing MIs can provide 
enhanced contrast and salvage examinations with poor arterial enhancement. 

IV. MIs reconstructed at energies ≥120 keV combined with MAR provided the 
lowest artifact severity in the presence of intracranial coils. However, for high 
soft tissue contrast, MIs at 60 keV were preferred. An intermediate energy such 
as 80 keV could be used for optimal balance. Since MAR can introduce new 
artifacts, reconstructions without MAR should always be included alongside 
MAR images. 

The results presented in this thesis solidifies the importance of spectral CT in routine 
clinical practice. The use of spectral CT has been shown to enhance diagnostic image 
quality, compared to conventional polyenergetic imaging, across multiple types of 
neuroradiological CT examinations. Using quantitative analysis of images from spectral 
CT presents great potential for further clinical advancement.   
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Future perspectives 

This thesis has demonstrated multiple ways in which spectral CT adds value in 
neuroradiology. Evaluating image quality through quantitative measures and VGA is 
straightforward, yet our ability to draw broader conclusions regarding benefit 
probability was limited. We therefore suggest that future studies should expand on 
evaluating both diagnostic performance and the therapeutic impact of spectral 
reconstructions.  

Beyond its visual advantages, the quantitative capabilities of spectral CT are particularly 
promising. Spectral reconstructions facilitate functional imaging, allowing the 
identification of kidney stones, distinction between contrast extravasation and 
hemorrhage, and improved diagnosis and treatment evaluation in oncology [109-111]. 
Additionally, the use of CTA for perfusion imaging enables perfusion assessment in 
settings where traditional CTP is impractical, such as angiography suites or mobile CT 
units. Further research should focus on refining and validating these methods.  

Spectral CT also has potential for proactive stroke prevention. Its ability to differentiate 
tissue composition can be applied to carotid plaque characterization, distinguishing 
stable asymptomatic plaques from high-risk plaques prone to rupture and stroke [112-
114]. This is especially relevant with PCCT, which provides higher spatial resolution, 
enhancing the detection and assessment of vulnerable plaques. 

Spectral CT is increasingly proving itself as a powerful and versatile imaging tool. Using 
PCCT can improve both spatial and spectral resolution while simultaneously reducing 
radiation dose. This may be particularly relevant as the increased utility of spectral CT 
could lead to broader use and more frequent CT examinations. 

Another key area of advancement is the integration of AI across all aspects of diagnostic 
imaging, from spectral data analysis, image acquisition, reconstruction and pathology 
detection. As these technologies continue to evolve, spectral CT is poised to become an 
even more important part of advanced medical imaging.  
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SPECTRAL COMPUTED TOMOGRAPHY (CT) is a diagnostic imaging modality 
that utilizes the energy- and material-dependence of photon attenuation to 
gain additional information about tissue properties. This adds another dimensi-
on to CT imaging, enabling the creation of new image types with the potential 
to improve the differentiation of similar tissue and detection of pathology.

The overall aim of this thesis was to evaluate the ability of spectral images, 
monoenergetic and material-specific images, to improve image quality and 
diagnostic performance in neuroradiological CT examinations. 


	383803_1_G5_Veronica F.pdf
	Tom sida
	Paper 2.pdf
	 Introduction
	 Material and Methods
	 Study population
	 Image acquisition and reconstruction parameters
	 Quantitative analysis
	 Qualitative analysis
	 Statistical analysis

	 Results
	 Study population characteristics
	 Quantitative analysis
	 Attenuation values in predefined brain locations
	 SNR in predefined brain locations
	 CNR in predefined brain locations

	 Qualitative analysis
	 Overall impression of image quality
	 Impression of image ability of diagnosing acute ischemia
	 Assessment of location of ischemia and optimal reconstruction


	 Discussion
	 Acknowledgements
	 References

	Paper 3.pdf
	Image quality of spectral brain computed tomography angiography using halved dose of iodine contrast medium
	Abstract 
	Purpose 
	Methods 
	Results 
	Conclusion 
	Introduction
	Methods and material
	Study design
	Study population
	Quantitative image analysis
	Qualitative image analysis
	Statistical analysis
	Analysis of quantitative image quality variables
	Analysis of virtual grading characteristic data


	Results
	Patient characteristics
	Quantitative image quality analysis
	Attenuation values
	Signal-to-noise ratio
	Full contrast dose (group 1 CI) compared to half contrast dose (group 3 VMI)
	Half contrast dose-optimized timing (group 3 CI) compared to suboptimal timing (group 2 VMI)

	Contrast-to-noise ratio
	Full contrast dose (group 1 CI) compared to half contrast dose (group 3 VMI)
	Half contrast dose-optimized timing (group 3 CI) compared to suboptimal timing (group 2 VMI)

	Qualitative image analysis
	Virtual grading characteristics analysis
	Average difference in ratings
	Full contrast dose (group 1 CI) compared to half contrast dose (group 3 VMI)
	Half contrast dose-optimized timing (group 3 CI) compared to suboptimal timing (group 2 VMI)

	Contrast timing
	Inter- and intra-rater agreements

	Discussion
	Conclusion
	References






