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Abstract

This thesis theoretically investigates electronic transport in different low dimensional nano-
structures. The miniaturization of electronics means that we reach a limit where quantum
effects play a role in electronic devices. To understand and improve electronics at this level
it is important to understand the transport properties. Excellent control over the nano-
structures also makes them a great platform for exploring fundamental physics aspects.

In this thesis we investigate two different types of low dimensional system. It contains three
peer-reviewed studies that have been published in scientific journals.

Papers I and II investigate different quantum dot systems coupled to electronic leads. To
treat theses systems we use master equations and counting statistics, which are introduced
before summarizing the papers. In paper I we explore a parallel double quantum dot and
its application as a charge sensor. We compare to a more conventional single dot charge
sensing setup and show that the double dot sensor is not limited by temperature. Paper II
investigates a single spinful quantum dot in a thermoelectric engine configuration. Here we
investigate the so-called thermodynamic uncertainty relations, a trade off between power,
fluctuations and efficiency of the engine. In principle, including transport processes up
to cotunneling order allows for violations of these relations. However, in the heat engine
regime we cannot find violations at the maximum the power point of the engine.

Paper III investigates edge states in two dimensional topological insulators. In these systems
the quantum spin Hall effect leads to so-called helical edge states that are robust to scattering
on non-magnetic impurites. We investigate the density of states and transmission though
these edge states in the presence of rotating magnetic impurites. We use Green’s functions
and scattering theory, which are both introduced in the preceding sections. We identify
different driving regimes and find that the electric potential can not screen the imputities
in a way that prevents backscattering.
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Popular summary in English

Contrary to what teachers used to say, we are carrying a calculator with us at almost all
times. With the computing power of many times what was used for the moon landing
our mobile phones are more than overpowered for double and triple checking the calcu-
lations we do in our heads. This power is to a large extent based on our ability to create
smaller and smaller electric circuits and components. We are reaching length scales, where
important parts of these components are only made up of a few atoms. At these length
scales the classical picture of an electric current is not necessarily a full description of what
is happening anymore. We have to take into account quantum mechanical effects to fully
understand what is happening. Quantum mechanics is the theory used to described the
strange world of single electrons and atoms. Of course, this can also be turned around: the
ability to create and control tiny systems allows us to look for new and interesting quantum
mechanical effects that we would not see otherwise, and perhaps use these effects to make
better devices. In this thesis we theoretically investigate two examples of what can happen
when the systems get small in all three or only one spatial dimension, respectively.

To make this summary a little more fun, we will tell a story about electrons and how they
travel the world. Electrons share a surprising amount of properties with us humans. For
example, they have a strong desire for personal space. They are negatively charged, so they
do not like to be close to each other. This is called Coulomb repulsion. When the electrons
go on vacation to a nice little tropical island, the first one hops on it quite easily. The
second electron however will need a lot of convincing to share the space with the one that
is already there. We call these little islands quantum dots. The larger landmasses, where
the electrons spend their non-vacation time, are the electric contacts and an incredibly large
amount of electrons lives on these contacts. When two of these big landmasses are close
to the island, some electrons will occasionally jump onto the island, this is the famous
tunnel effect. Sometimes they also hop to the other side, as you can see in Fig. A. If enough
electrons jump across in one direction, we have a current that we can measure. The current

Figure A: Electrons hopping between main landmasses, cold (left) and hot (right), and the island in the middle.
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can depend on many things, for example how far it is between the island and the main
land, so how easy it is for the electrons to jump. This is called the tunnel coupling. Other
factors can be how high the island is, the energy of the so-called dot level, and also how
many electrons are on the main land, the chemical potential of the contact. When one of
the main landmasses has a lot more electrons on it, electrons on the island are more likely to
jump to the less populated side. The difference in population between the main landmasses
is called potential difference or voltage.

We can modify this setting in many ways. What happens if we put two islands between
the main lands? This is called a double quantum dot. How does this setup react, if we
slightly alter the distance to the main land or the height of the islands? This corresponds to
changing the tunnel couplings and the dot level, respectively. By sitting on the main land
and counting how many electrons come from the island, can we learn something about a
third island, that sits close by? If we for example find out, whether there are electrons on the
third island, this is called charge sensing. This is the topic of paper I, where we investigate a
parallel double dot and potential applications as a charge sensor.

So far we have not really cared about the weather. Which way will electrons go if it is very
hot on one side of the island and really cold on the other, like the situation in Fig. A?
If we can convince electrons to jump to the side with more electrons, we have used heat
from the hot side to do electrical work. This is the concept of a heat engine. What if we
bring the island and mainlands close enough together, so two electrons can shout at each
other and coordinate their jumps, or one of them can jump twice in a very short time?
The processes that involve two coordinated jumps are called cotunneling events. Allowing
these arrangements between electrons does not only change how many electrons jump on
average, the current, but also how the number of electrons that jump fluctuates around the
average This is called the noise. It also affects the efficiency of the heat engine. In paper II
we investigate these effects and also look at a trade-off between the current, noise and the
efficiency in the so-called thermodynamic uncertainty relations.

Of course, not all electrons hang out close to these little island in the sea all the time. Some
of them have regular jobs and have to commute along a coastal highway, the sea on one
side and a impassable landscape on the other, as sketched in Fig. B. The highway also has
somewhat special traffic rules: in one direction only blue cars are allowed and in the other
direction only red cars. They call this rule spin-momentum locking and the countries where
that happens topological insulators. In these very special countries the electrons are also
very environmentally friendly and have to carpool. They also have somewhat funny cars.
Depending on which of the seats in the car are occupied the color of the car is either red
or blue. This property is called the spin projection and determines which way the electrons
are allowed to go. When the car hits a speed bump, they call them magnetic impurities, the
electrons are sometimes thrown up from their seats. If after this scattering event they sit
in different places the car can change color. If they hit a speed bump on the highway and
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Figure B: Illustration of the coastal highway with the strange traffic rules: red cars can only go on the right, blue cars
on the left in the opposite directions. The speed bumps are drawn in orange.

the car changes color they of course have to turn around. This can make the traffic quite
challenging. If a car enters on one end of the coastal highway, the likelihood of making it
to the other side is called the transmission. In paper III we look at how the speed bumps
affect the traffic and how likely it is for electrons to arrive where they had planned to go.
And since that is not strange enough already, we also let the speed bumps rotate.

With this thesis we hope to contribute to the understanding of the travel habits of electrons,
so they can be used in this strange and wonderful quantum world that we and the electrons
live in. The vacation and car pooling habits of electrons could in the future be used in
many technical applications. From using quantum effects to make existing electronics more
efficient, to using them to measure things we could not before or even develop entirely new
types of computers, a huge number of things seem possible.
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Populärwissenschaftliche Zusammenfassung auf Deutsch

Im Gegensatz zu dem, was Lehrer früher sagten, tragen wir fast immer einen Taschen-
rechner bei uns. Mit einer Rechenleistung, die ein Vielfaches dessen beträgt, was für die
Mondlandung verwendet wurde, sind unsere Mobiltelefone für das Überprüfen unserer
Kopfrechenaufgaben, mehr als ausreichend. Diese Leistung beruht zu einem großen Teil
auf unserer Fähigkeit, immer kleinere elektrische Schaltkreise und Komponenten herzu-
stellen. Wir erreichen Größenskalen, bei denen wichtige Teile dieser Komponenten nur
noch aus wenigen Atomen bestehen. Bei diesen Größenskalen ist das klassische Bild eines
elektrischen Stroms nicht mehr unbedingt eine vollständige Beschreibung des Geschehens.
Wir müssen quantenmechanische Effekte berücksichtigen, um die Vorgänge vollständig
zu verstehen. Die Quantenmechanik ist die Theorie, die verwendet wird, um die seltsame
Welt der einzelnen Elektronen und Atome zu beschreiben. Natürlich lässt sich dies auch
umkehren: Die Fähigkeit, winzige Systeme zu schaffen und zu kontrollieren, ermöglicht
es uns, nach neuen und interessanten quantenmechanischen Effekten zu suchen, die wir
sonst nicht sehen würden. Vielleicht lassen sich diese Effekte auch nutzen, um bessere Gerä-
te zu bauen. In dieser Arbeit untersuchen wir theoretisch zwei Beispiele dafür, was passieren
kann, wenn die Systeme in allen drei bzw. nur einer räumlichen Dimension klein werden.

Um diese Zusammenfassung ein wenig unterhaltsamer zu gestalten, erzählen wir eine Ge-
schichte über Elektronen und wie sie durch die Welt reisen. Elektronen haben überraschend
viele Eigenschaften mit uns Menschen gemeinsam. Zum Beispiel haben sie ein starkes Be-
dürfnis nach persönlichem Freiraum. Da sie negativ geladen sind, stehen sie nicht gern
dicht beieinander. Dies wird als Coulomb-Abstoßung bezeichnet. Wenn die Elektronen auf
eine nette kleine tropische Insel in den Urlaub fahren, hüpft das erste Elektron ganz einfach
darauf. Das zweite Elektron braucht jedoch viel Überzeugungsarbeit, um den Platz mit dem
bereits vorhandenen Elektron zu teilen. Wir nennen diese kleinen Inseln Quantenpunkte.
Die größeren Landmassen, auf denen die Elektronen ihre Nichturlaubszeit verbringen, sind
die elektronischen Kontakte. Auf diesen Kontakten lebt eine unglaublich große Anzahl von

Abbildung A: Elektronen hüpfen zwischen den kalten (links) und heißen (rechts) Hauptlandmassen und der Insel in
der Mitte.
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Elektronen. Wenn sich zwei dieser großen Landmassen in der Nähe der Insel befinden,
springen gelegentlich einige Elektronen auf die Insel, dies ist der berühmte Tunneleffekt.
Manchmal springen sie auch auf die andere Seite, wie man in Abb. A sehen kann. Wenn
genügend Elektronen in eine Richtung springen, entsteht ein Strom, den wir messen kön-
nen. Der Strom kann von vielen Dingen abhängen, z. B. davon, wie weit die Insel vom
Festland entfernt ist, also wie leicht es für die Elektronen ist, zu springen. Dies nennt man
dieTunnelkopplung. Weitere Faktoren sind die Höhe der Insel, die Energie des so genannten
Punktlevels, und auch die Anzahl der Elektronen auf dem Festland, das chemische Potenzial
des Kontakts. Wenn sich auf einer der Hauptlandmassen viel mehr Elektronen befinden,
springen die Elektronen auf der Insel mit größerer Wahrscheinlichkeit auf die weniger be-
völkerte Seite. Der Unterschied in der Bevölkerung zwischen den Hauptlandmassen wird
als Potentialdifferenz oder Spannung bezeichnet.

Wir können die Ausgangssituation auf viele Arten verändern. Was passiert, wenn wir zwei
Inseln zwischen die Hauptländer setzen? Das wird alsDoppelquantenpunkt bezeichnet. Wie
reagiert diese Anordnung, wenn wir den Abstand zum Hauptland oder die Höhe der Inseln
leicht verändern? Dies entspricht einer Änderung der Tunnelkopplungen bzw. des Punkt-
levels. Wenn wir auf dem Festland sitzen und zählen, wie viele Elektronen von der Insel
kommen, können wir dann etwas über eine dritte Insel erfahren, die sich in der Nähe befin-
det? Wenn wir zum Beispiel herausfinden, ob sich auf der dritten Insel Elektronen befinden,
nennt man das einen Ladungssensor. Dies ist das Thema des Artikels I, in dem wir einen
parallelen Doppelpunkt und mögliche Anwendungen als Ladungssensor untersuchen.

Bislang haben wir uns nicht wirklich um das Wetter gekümmert. Welchen Weg werden
die Elektronen einschlagen, wenn es auf der einen Seite der Insel sehr heiß und auf der
anderen Seite sehr kalt ist, wie in Abb. A? Wenn wir die Elektronen überzeugen können,
auf die Seite mit mehr Elektronen zu springen, haben wir die Wärme der heißen Seite ge-
nutzt, um elektrische Arbeit zu verrichten. Dies ist das Konzept eines Wärmemotors. Was
wäre, wenn wir die Insel und das Festland nahe genug zusammenbringen, so dass sich zwei
Elektronen gegenseitig absprechen und ihre Sprünge koordinieren können, oder eines von
ihnen in sehr kurzer Zeit zweimal springen kann? Die Prozesse, bei denen zwei koordinierte
Sprünge stattfinden, werden als cotunneling-Ereignisse bezeichnet. Wenn man diese Anord-
nungen zwischen Elektronen zulässt, ändert sich nicht nur die durchschnittliche Anzahl der
springenden Elektronen, der Strom, sondern auch das Rauschen um diesen Mittelwert. Das
Rauschen wird auch als Fluktuationen bezeichnet. Es wirkt sich auch auf den Wirkungsgrad
der Wärmekraftmaschine aus. In Papier II untersuchen wir diese Effekte und betrachten
auch ein Zusammenspiel zwischen dem Strom, dem Rauschen und dem Wirkungsgrad in
den sogenannten thermodynamischen Unschärferelationen.

Natürlich halten sich nicht alle Elektronen die ganze Zeit in der Nähe dieser kleinen Insel
im Meer auf. Einige von ihnen haben einen festen Arbeitsplatz und müssen entlang einer
Küstenstraße pendeln, mit dem Meer auf der einen und einer unwegsamen Landschaft
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Abbildung B: Illustration der Küstenautobahnmit den seltsamen Verkehrsregeln: rote Autos dürfen nur rechts fahren,
blaue Autos links in die entgegengesetzte Richtung. Die Bodenwellen sind orange eingezeichnet.

auf der anderen Seite, wie in Abb. B skizziert. Auf dem Highway gelten auch besondere
Verkehrsregeln: In der einen Richtung dürfen nur blaue Autos fahren, in der anderen nur
rote. Man nennt diese Regel Spin-Impuls-Kopplung und die Länder, in denen das passiert,
topologische Isolatoren. In diesen ganz besonderen Ländern sind die Elektronen auch sehr
umweltbewusst und müssen Fahrgemeinschaften bilden. Sie haben auch etwas komische
Autos. Je nachdem, welche Sitze im Auto besetzt sind, ist die Farbe des Autos entweder rot
oder blau. Diese Eigenschaft wird als Spinprojektion bezeichnet und bestimmt, in welche
Richtung sich die Elektronen bewegen dürfen. Wenn das Auto auf eine Bodenwelle stößt,
man nennt sie magnetische Verunreinigungen, werden die Elektronen manchmal von ihren
Sitzen hochgeschleudert. Wenn sie sich nach diesem Streuungsereignis an verschiedenen
Orten niederlassen, kann das Auto seine Farbe ändern. Wenn sie auf der Autobahn auf
eine Bodenwelle stoßen und das Auto seine Farbe ändert, müssen sie natürlich umdrehen.
Das kann den Verkehr ziemlich herausfordernd machen. Wenn ein Auto an einem Ende der
Küstenautobahn einfährt, wird die Wahrscheinlichkeit, es auf die andere Seite zu schaffen,
als Transmission bezeichnet. In Papier III sehen wir uns an, wie sich die Bodenwellen auf
den Verkehr auswirken und wie wahrscheinlich es ist, dass die Elektronen dort ankommen,
wo sie eigentlich hinwollen. Und weil das noch nicht seltsam genug ist, lassen wir die
Bodenwellen auch noch rotieren.

Mit dieser Arbeit hoffen wir, einen Beitrag zum Verständnis der Reisegewohnheiten von
Elektronen zu leisten, damit sie in dieser seltsamen und wunderbaren Quantenwelt, in der
wir und die Elektronen leben, genutzt werden können. Die Urlaubs- und Fahrgemein-
schaftsgewohnheiten von Elektronen könnten in Zukunft in vielen technischen Anwen-
dungen genutzt werden. Von der Nutzung von Quanteneffekten, um die bestehende Elek-
tronik effizienter zu machen, bis hin zur Verwendung von Quanteneffekten, um Dinge
zu messen, die wir bisher nicht messen konnten, oder sogar zur Entwicklung völlig neuer
Arten von Computern - vieles scheint möglich.
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Populärvetenskaplig sammanfattning på svenska

Till skillnad från vad lärarna brukade säga har vi nästan alltid en miniräknare med oss.
Med en datorkraft som är många gånger större än den som användes vid månlandningen
räcker våra mobiltelefoner mer än väl till för att dubbel- och trippelkolla de beräkningar vi
gör i huvudet. Denna prestanda beror till stor del på vår förmåga att tillverka allt mindre
elektriska kretsar och komponenter. Vi håller på att nå längdskalor där viktiga delar av
dessa komponenter består av endast några få atomer. På dessa längdskalor är den klassiska
bilden av en elektrisk ström inte längre nödvändigtvis en fullständig beskrivning av vad som
händer. Vi måste ta hänsyn till kvantmekaniska effekter för att till fullo förstå processerna.
Kvantmekanik är den teori som används för att beskriva den märkliga värld som enskilda
elektroner och atomer lever i. Naturligtvis kan detta ses från det omvända perspektivet:
Möjligheten att skapa och kontrollera små system gör att vi kan leta efter nya och intressanta
kvantmekaniska effekter som vi annars inte skulle se, och kanske använda dessa effekter för
att förbättra eller uppfinna nya komponenter. I den här artikeln undersöker vi teoretiskt
två exempel på vad som kan hända när systemen blir små i alla tre eller bara en rumslig
dimension.

För att göra denna sammanfattning lite mer underhållande berättar vi en historia om elektro-
ner och hur de färdas genom världen. Elektroner har förvånansvärt många egenskaper ge-
mensamt med oss människor. Till exempel har de ett starkt behov av personligt utrymme.
Eftersom de är negativt laddade tycker de inte om att vara nära varandra. Detta kallas för
Coulombrepulsion. När elektronerna åker på semester till en fin liten tropisk ö är det bara
för den första elektronen att hoppa på. Den andra elektronen behöver dock en hel del över-
talning för att dela utrymmet med den elektron som redan är där. Vi kallar dessa små öar
för kvantprickar. De större landmassorna där elektronerna tillbringar sin icke-semestertid
är de elektriska kontakterna, och ett otroligt stort antal elektroner lever på dessa kontakter.
När två av dessa stora landmassor är nära ön, hoppar ibland några elektroner till ön, det-
ta är den berömda tunneleffekten. Ibland hoppar de också till andra sidan, vilket kan ses i

Figur A: Elektronerna studsar mellan de kalla (vänster) och varma (höger) landmassorna och ön i mitten.
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Fig. A. Om tillräckligt många elektroner hoppar i en riktning uppstår en ström som vi kan
mäta. Strömmen kan bero på många saker, t.ex. hur långt ön ligger från fastlandet, dvs.
hur lätt det är för elektronerna att hoppa. Detta kallas för tunnelkoppling. Andra faktorer
är öns höjd, energin i den s.k. kvantpricknivån, och även antalet elektroner på fastlandet,
den kemiska potentialen i kontakten. Om det finns många fler elektroner på en av de stora
landmassorna är det mer sannolikt att elektronerna på ön hoppar till den mindre befolkade
sidan. Skillnaden i befolkning mellan de stora landmassorna kallas potentialskillnad eller
spänning.

Det finns många varianter av ovanstående bild man kan fundera på. Vad händer om vi läg-
ger två öar mellan landmassorna? Detta kallas för en dubbel kvantprick. Hur reagerar detta
arrangemang om vi ändrar avståndet till fastlandet eller höjden på öarna något? Detta mot-
svarar en förändring av tunnelkopplingarna eller punktens nivån. Om vi sitter på fastlandet
och räknar hur många elektroner som kommer från ön, kan vi då ta reda på något om en
tredje ö som ligger i närheten? Om vi till exempel tar reda på om det finns elektroner på
den tredje ön kallas detta för laddningsavkänning. Detta är ämnet för artikeln I, där vi un-
dersöker en parallell dubbel kvantprick och möjliga tillämpningar som en laddningssensor.

Hittills har vi inte brytt oss så mycket om vädret. Vilken väg kommer elektronerna att ta
om det är mycket varmt på den ena landmassan och mycket kallt på den andra, som i
Fig. A? Om vi kan övertyga elektronerna om att hoppa till sidan med fler elektroner har
vi använt värmen från den varma sidan för att utföra elektriskt arbete. Detta är konceptet
för en värmemotor. Tänk om vi kunde få ön och fastlandet tillräckligt nära varandra så
att två elektroner kunde ropa åt varandra och samordna sina hopp, eller så kunde en av
dem hoppa två gånger på mycket kort tid? De processer där två koordinerade hopp äger
rum kallas för cotunnelling-händelser. Om man tillåter dessa avtal mellan elektroner ändras
inte bara det genomsnittliga antalet hoppande elektroner, strömmen, utan också antalet
hoppande elektroner, som fluktuerar runt det genomsnittliga antalet hoppande elektroner.
Detta kallas brus. Det påverkar också värmemotorns verkningsgrad. I artikel II undersöker vi
dessa effekter och överväger också en avvägning mellan strömmen, bruset och effektiviteten
i de så kallade termodynamiska obestämbarhetsrelationerna.

Alla elektroner håller sig naturligtvis inte hela tiden i närheten av denna lilla ö i havet. En
del av dem har en fast arbetsplats och måste pendla längs en kustväg, med havet på ena
sidan och ett oframkomligt landskap på den andra, som visas i Fig. B. Även på motorvägen
gäller särskilda trafikregler: Endast blå bilar får köra i ena riktningen och endast röda bilar i
den andra. Denna regel kallas spinn-rörelsemängd-låsning och de länder där detta sker kallas
topologiska isolatorer. I dessa mycket speciella länder är elektronerna också mycket miljövän-
liga och måste bilda bilpooler. De har också roliga bilar. Beroende på vilka säten i bilen som
är upptagna är bilens färg antingen röd eller blå. Denna egenskap kallas spinn projektion och
bestämmer i vilken riktning elektronerna tillåts röra sig. När bilen stöter på ett farthinder,
som kallas magnetiska orenheter, kastas elektronerna ibland upp från sina platser. Om de
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Figur B: Illustration av kustmotorvägen med de märkliga trafikreglerna: röda bilar får bara köra till höger, blå bilar
till vänster i motsatt riktning. Farthindren visas i orange.

lägger sig på olika ställen efter denna spridningshändelse kan bilen ändra färg. Om de kör på
ett farthinder på motorvägen och bilen ändrar färg, måste de naturligtvis vända. Detta kan
göra trafiken ganska utmanande. När en bil kör in i ena änden av kustmotorvägen kallas
sannolikheten för att den ska ta sig till andra sidan för transmission. I artikel III tittar vi på
hur farthinder påverkar trafiken och hur troligt det är att elektroner kommer dit de vill.
Och eftersom det inte är konstigt nog får vi också farthindren att rotera.

Med det här arbetet hoppas vi kunna bidra till förståelsen av elektronernas resvanor så att
de kan användas i den märkliga och underbara kvantvärld som vi och elektronerna lever i.
Elektronernas semester- och samåkningsvanor kan komma att användas i många tekniska
tillämpningar i framtiden. Från att använda kvanteffekter för att göra befintlig elektronik
mer effektiv, till att mäta saker som vi inte kunde mäta tidigare, eller till och med för att
utveckla helt nya typer av datorer - mycket verkar möjligt.
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Introduction

Electronic transport is the basis of modern semiconductor technology. In many technolo-
gies, including computers, chip miniaturization plays a big role. Modern processing meth-
ods allow for smaller and smaller structures. Semiconductor companies now routinely fab-
ricate transistors with gate lengths on the scale of tens of nanometers [1]. Also light emitting
diodes [2], solar cells [3] and highly sensitive charge sensors [4, 5] can be made from nano-
scale structures. Due to the small length scales in these nanostructures quantum mechanic
effects start playing a role or are even the reason why they work in the first place. This is
the case, e.g., for qubits [6], the basic building blocks of quantum computers. At these
tiny length scales electrons start experiencing confinement effects and can no longer move
freely. A fitting analogy here is water. A huge, deep body of water, like an ocean, will have
drastically different properties compared to a shallow lake, river or a droplet.

Not only for applications, but also for understanding fundamental science aspects, elec-
tronic transport plays a big role as transport properties like the current are comparatively
easy to access. Measuring transport allows extracting a lot of information about the proper-
ties and/or structure of the material [7–11]. Modern processing and measurement methods
also allow us to investigate structures at the nanoscale experimentally. To understand the
effects that drastically change the properties at small scales and control them the develop-
ment of accurate theory models is crucial.

1 Nanostructures and transport in the quantum regime with re-
duced dimensionality

In bulk materials electrons can move freely. Confining them in the spacial dimensions leads
to a quantization of their energy due to their wave nature. In semiconductors this happens
approximately at the length scale of tens of nanometers when the de Broglie-wavelength of
the electrons around the Fermi energy becomes comparable to the size they are confined
to.
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If the electrons are confined in one spacial direction and can only move freely in a two
dimensional plane a two dimensional electron gas is formed. This can be done in hetero-
structures, e.g., made from GaAs [8, 12, 13], where the two dimensional electron gas can
form at the interface between two different materials. In contrast, there are also intrins-
ically two dimensional systems like, e.g., graphene [14] where the the staring point is an
atomically thin layer of material. A two dimensional electron gas can be used to investigate,
e.g., the quantum Hall effect [15], form quantum dots (QDs) [16] or has applications in
electronics [17, 18]. An important characteristic in low dimensional electronic systems is
the density of states [19]. Intuitively the density of states should have a big influence on the
transport properties of a system, as it describes how many electrons can exist within a small
energy interval around a given energy. For example the density of states of a free electron
gas in tree dimensions follows a square root dependence on the energy, two dimensional
systems have a flat density of states and one dimensional systems follow a inverse square
root dependence for each sub band. If the electrons get confined in all three spacial dimen-
sions discrete energy levels form, i.e., electrons can only exist at specific energies and the
density of states becomes a delta function [20].

Some special types of two dimensional systems can form channels on the edge of the sys-
tem, where the electrons effectively move in a one dimensional channel. Examples for
such systems, with rather exotic properties, are quantum Hall systems [15, 21–23] and two
dimensional topological insulators with so-called helical edge states [24–26]. Another ex-
ample of electrons confined in more than one spacial direction are nanowires with diameters
on the nanoscale [27]. In such systems the electrons can only move freely along the wire.
Nanowires can be grown from semiconductor materials [28, 29] and investigated in a vari-
ety of experiments. Particularly relevant to this thesis is the fact that they can be used to
form QDs. The QD structures have a discrete energy spectrum that allows, e.g., for the use
as solar cells [30], qubits [6, 31], optical [32] and charge sensors [33, 34] and even nanoscopic
heat engines [35–38].

2 Quantum dots and quantum thermodynamics

One of the most prominent applications of QDs coupled to electronic reservoirs are cur-
rently spin qubits [6, 31, 39–41], one possible basic building block of quantum computers.
The realization of spin qubits requires great control of the properties of QDs and it is
therefore crucial to understand their transport properties. Also for other applications, e.g.,
charge sensing [33, 34, 42] or QD heat engines [35–38] understanding the transport prop-
erties is important. Last but not least different QD structures are also interesting from a
fundamental physics point of view, for example to investigate coherence and entanglement
[43].
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Figure 2.1: Schematic representation of an example transport setup for QDs. The QDs are coupled to each other byΩ
and to macroscopic leads described by their respective temperatures T, T ′ and chemical potential µ, µ′.
The coupling between the QD system and the leads is contained in the tunnel rates Γ,Γ′.

QDs have been realized in various ways, e.g., by electrostatically confining electrons in a
two dimensional electron gas [16] or in nanowires [44]. In nanowires the barriers confining
the electrons along the wire can also be epitaxially defined, i.e., due to a change in crystal
structure [45, 46] or material along the wire. For the level of theory description we use here
the practical realization is not important.

An important effect in QDs is Coulomb interaction which leads to a repulsive force between
electrons. A consequence of that is the so-called Coulomb blockade [47, 48], a regime
where the current is blocked by an electron on the QD, that prohibits other electrons from
tunneling through. An example for a transport setup where a QD system is coupled to
a number of leads is shown in Fig. 2.1. In these setups the leads are described by their
respective temperatures T, T ′ and chemical potential µ, µ′. The QDs are coupled to each
other via Ω. The couplings between QD levels and leads are described by the tunnel rates
Γ,Γ′.

2.1 Quantum thermodynamics and thermodynamic uncertainty relations

Thermodynamics is branch of physics that emerged long before quantum mechanics. De-
veloped as a tool to improve steam engines it deals with large systems close to equilib-
rium. In the realm of quantum mechanics we work with very small systems and very small
particle numbers. This begs the question of how the large scale theory with the laws of
thermodynamics carries over to the quantum world and which adaptations or extensions
are needed. To answer these questions, in recent years the field of quantum thermodynam-
ics has emerged. Within this field significant efforts have been made to extend thermody-
namics and non-equilibrium statistical physics considering small system sizes and quantum
effects [49]. This has been approached in many different ways not only by the statistical
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ϵ

Figure 2.2: Schematic representation of a single level QD heat engine. The QD energy level is denoted by ϵ. The QD
level is coupled to a hot/cold lead with temperature Th/Tc and chemical potential µh/µc.

physics and many-body theory communities [49], but also from a quantum information
theory perspective [50]. It is now possible to describe, e.g., classical engine cycles like the
Otto or Carnot cycle or other driving schemes in a quantum thermodynamic process [51,
52]. One can also define thermodynamic properties like heat or entropy on the quantum
level and put quantum bounds on these quantities [53]. For a more exhaustive overview we
refer to the various reviews and books on the field like, e.g., Refs. [49–51, 53, 54].

Prototypical quantum systems for considering thermodynamic properties are QD heat en-
gines [35, 36, 55–58]. They are both interesting from a fundamental point of view as well
as for practical applications. Since QDs can be a building block for quantum computers,
operating them as a heat engine can be used for local cooling and potentially improve the
performance of quantum computers [59]. Similar applications are heat rectification and
refrigeration [60–63].

A typical QD heat engine setup is shown in Fig. 2.2. The working principle is rooted in the
energy filtering provided by the QD level [55]. The difference in the lead temperatures leads
to energy windows, where the occupation of the hot lead is higher than that of the cold
lead. If the energy level of the QD is placed in such a window a thermoelectric current will
flow from the hot to the cold lead. This can even happen against the electrical bias given
by the difference in the chemical potentials. In that case the thermocurrent can be used to
perform electrical work and the QD setup works as a heat engine.

For QD heat engines investigating thermodynamic properties seems natural. Also in the
context of biomolecular processes and motors questions with regards to thermodynamics
have emerged [64]. The systems studied here are small and therefore fluctuations become
important. However, the effects can be described by means of classical statistical physics and
no quantum description is needed. In that field the so-called thermodynamic uncertainty
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relation (TUR)s [64, 65] have been developed. They are a relation between the mean and
fluctuations of a physical observable and the entropy production in the system. Knowing
two of the quantities consequently leads to a bound on the third. This physical observable
could, e.g., be the power output of a heat engine or the electrical current.

QD heat engines are a good platform for probing these TURs. This can give insights into
how to create highly efficient QD heat engines. Moreover, violations of the TURs indicate
the presence of quantum effects [66]. It is an interesting questions, whether taking into
account different effects results in different bounds. It has been shown that, e.g., in the
quantum regime a looser bound holds [67] and that including measurement and feedback
can lead to modified relations [68]. The search for performance bounds in quantum thermal
engines and other thermal machine is an active area of research, see, e.g., [69–73].

3 Topology and two dimensional topological insulators

Here we want to briefly describe why we are interested in topological systems. Mathemat-
ically topology is the branch considering conserved properties of geometric objects under
continuous deformations. In our case the deformed objects are typically bandstructures
and continuous deformations correspond to deformation of the bands without closing the
band gap. The first question that comes to mind is why we should care about such ab-
stract things. To answer this, let us consider a complicated system. If we can deform the
bandstructure of the complicated system continuously to a simple toy model where we
can easily perform calculations, we can learn properties of very complicated systems from
simple calculations. The properties we can learn about are connected to so called topolo-
gical invariants, i.e., quantities that do not change under continuous deformations of the
bandstructure. It is possible to connect the existence of these topological invariants to the
symmetries and dimension of the system. This has been done in the Altland-Zirnbauer
periodic table of topological phases [74, 75]. That table also directly tells us against which
perturbations the properties we found are robust, namely all perturbations that conserve
the symmetries considered in the table. The robustness of these properties is connected to
the existence of states on the boundary of the finite system, given by the so called bulk-
boundary correspondence. It predicts the existence of topological states at the boundaries
of systems that are in a non-trivial topological phase [75, 76]. Some examples of topolo-
gical states are Majorana bound states [77–79] at the edges of a so-called Kitaev-chain [80],
quantum Hall edge channels [21–23, 81, 82] at the boundary of two or three dimensional
materials and quantum spin Hall states on the boundaries of so called topological insulators
[24, 25, 83–85].

These boundary states in topological insulators are dissipationless and protected by time-
reversal symmetry. In three dimensional topological insulators the electronic structure of
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(a) (b)

Figure 3.1: Illustration of (a) edge channels carrying different spin species (red/blue) on the edge of a two dimensional
material and (b) randomly placed, aligned rotating magnetic impurities (yellow) on the 1D edge channels
(red/blue). Adapted from Ref. [100].

the boundary states leads to interesting transport properties [86–89]. If the bulk material is
instead a two dimensional system the dissipationless edge states are one dimensional, but
still follow a linear dispersion relation. They exhibit so called spin-momentum-locking, i.e.
the two counter-propagating states carry opposite spins. For a more extensive review of the
topic we refer to Refs. [26, 75, 76].

We can understand the emergence of these edge states in two dimensional systems in a
semi-classical picture. The origin of the quantum Hall effect is the movement of electrons
in a strong magnetic field. The electrons are forced on circular orbits by the Lorenz force.
These orbits are quantized and the emerging discrete energy levels are called Landau levels
[90]. The closed electron orbits mean that the bulk of these two dimensional materials are
insulating. At the edge of the system the quantized orbits lead to edge states with quantized
conductance [21] due to the Landau levels. In the semi-classical picture the electrons cannot
complete their orbit at the edge and we can imaging the electrons bouncing along the edge
in so-called skipping orbits [19]. In two dimensional topological insulators the effect forcing
the electrons onto the circular orbits is not an external magnetic field, but the strong spin-
orbit coupling. This also implies that electrons with different spin circulate in different
directions. This is called quantum spin hall effect [83] and leads to two counter-propagating
helical edge states, illustrated in Fig. 3.1a. The edge channels have been shown to follow a
Dirac type dispersion [75, 76].

Two dimensional topological insulators have first been predicted in 2006 [24], and in 2007
they were experimentally confirmed in HgTe/CdTe quantum wells [84, 85]. Subsequently,
various measurements on quantum spin Hall systems in HgTe/CdTe wells have been per-
formed [91–94], but also other material systems like InAs/GaSb/AlSb quantum wells have
been shown to be two dimensional topological insulators [95–98]. The dissipationless trans-
port through the helical edge states suggests applications in, e.g., low-power information
processing and spintronics [94, 99].
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Impurities close to the edge states can have an influence on the transport properties [101,
102]. In practice, impurities can rarely be avoided, and are often introduced intentionally
via doping to control the properties of the system. In the absence of electron-electron inter-
actions in the case of two dimensional topological insulators only magnetic impurities with
a magnetic moment have an influence, e.g., on the density of states. This is due to the fact
that purely electric impurities do not enable backscattering in the edge states. For backs-
cattering to occur time-reversal symmetry needs to be broken, i.e., magnetic impurities are
necessary. This is due to the aforementioned spin-momentum locking, that only allows
the electrons to backscatter if their spin is also flipped. A situation like where magnetic im-
purities are present on the edge is schematically depicted in Fig. 3.1b. If electron-electron
interactions are present, also non-magnetic impurities can lead to backscattering [103]. The
effect of static aligned magnetic impurities has been investigated in Ref. [101].

4 Thesis outline

This thesis focuses on theoretical investigations of transport properties in QD systems,
connected to papers I and II, and two dimensional topological insulators in the context of
paper III.

In the QD transport part we begin by introducing the QD Hamiltonian we use to describe
QD systems in Sec. 5. Subsequently, we introduce the main ideas and formalism used in pa-
pers I and II, most notably generalized master equations in Sec. 6 and counting statistics in
Sec. 7. In Secs. 8 and 9 we introduce two relevant approximations to the generalized master
equations. We discuss some details concerning the numerical implementation of counting
statistics in Sec. 10. To familiarize ourselves further with QD transport, we discuss some in-
structive toy models in Sec. 11 using the previously introduced methods. Section 12 provides
context on charge sensing relevant for the summary and discussion of paper I in Sec. 13. For
the discussion of paper II we provide some context on quantum (dot) thermodynamics and
TURs in Sec. 14. The summary and discussion of paper II follows in Sec. 15.

The topological insulator part in a similar fashion covers the most relevant methods for
paper III. Section 16 introduces the model Hamiltonian for the topological insulator edge
states with impurities. In Sec. 17 background on Floquet theory is provided. Section 18
covers Green’s functions and Sec. 19 explains how transport properties are extracted from
the Green’s functions. Paper III investigates the effect of harmonically rotating magnetic
impurities in two-dimensional topological insulators using these methods and is discussed
in Sec. 20.

We close with an overview of ongoing research and a brief outlook.
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Quantum dot transport

In QD transport setups QDs get coupled to macroscopic leads and currents through the
system are investigated. When such a small system gets coupled to a large environment
this is referred to as an open quantum system where the density matrix is needed to de-
scribe the system. There are several different techniques that are commonly used on open
quantum systems. If the, e.g., the electron-electron interactions in the system are small
enough to be neglected the transport problem can be solved with exact Landauer-Büttiker
theory [104–106]. Non-equilibrium Green’s function techniques [107–109] can be used if
the interactions are not negligible and the tunnel coupling to the leads is strong. When
tunnel couplings and interactions are of the same order typically renormalization group
approaches [110, 111] are employed. In the case of strong electron-electron interaction and
weak tunnel couplings master equations are a standard tool for transport calculations in
QD systems. These systems exhibit for example effects like Coulomb blockade, where the
trapping of one electron on the system leads to a blocking of the current.

Generalized master equations, equations of motion for the density matrix [112, 113], give
access to many useful quantities like for example occupation probabilities and particle,
spin or heat currents. They are typically based around a perturbative expansion in the
tunnel couplings and naturally incorporate electron-electron interactions. There are many
ways of setting up a master equation for a given system involving different approximations
[112, 114–118]. For calculating steady state properties, master equation techniques lead to a
matrix equation for the density matrix that can be solved numerically. There are however
many approximations one can make in the setup (see, e.g., [116]) and depending on the
choice the calculations of the needed matrix elements can become numerically expensive.
Another potential pitfall of a master equation approach is that approximations under certain
circumstances can lead to unphysical results, like density matrices that are not positive semi-
definite [112] or violations of the Onsager relations [119]. Therefore, one needs to carefully
select the approach and make sure it is appropriate for the system under investigation.

In this chapter we first introduce the QD Hamiltonian in Sec. 5. Subsequently we outline
the theoretical framework of (generalized) master equations (Sec. 6), that we will be using
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to calculate different properties of QD systems coupled to reservoirs. Then we give an
introduction to electron counting statistics withing the framework of the aforementioned
master equations in Sec. 7. Two relevant approximations to the generalized master equation
and the combination with counting statistics are introduced in sections 8 and 9. We also
discuss numerical implementations of counting statistics in Sec. 10. We then discuss two
relevant models, the single resonant level and the spinful single level, in different approxim-
ations and contexts, see Sec. 11. With these models at hand we first discuss charge sensing
in Sec. 12 and paper I in Sec. 13. Subsequently, we give a brief introduction to quantum
thermodynamics and QD thermoelectric engines, see Sec. 14 and discuss paper II in Sec. 15.

5 The quantum dot Hamiltonian

We consider a general QD system of the type shown in Fig. 2.1. The Hamiltonian can be
written as [37, 118]

HQD = HSingle +HCoulomb, (5.1)

where we have separated the single particle Hamiltonian and the interaction due to Cou-
lomb repulsion

HSingle =
∑
i

ϵid
†
idi +

∑
i ̸=j

Ωijd
†
idj , (5.2)

HCoulomb =
∑
mnkl

Umnkld
†
md

†
ndkdl with m < n. (5.3)

The single particle Hamiltonian contains the energy levels ϵi where i is an orbital and/or
spin index and the couplings between QD levels within the system are given by Ωij . The
charging energy due to Coulomb interaction is given by Umnkl. The QD creation/annihil-
ation operators d†i/di appear in both the single particle and interaction Hamiltonians. This
Hamiltonian can be diagonalized in the many-body energy eigenbasis {|a⟩} and together
with the reservoir Hamiltonian HR and the tunneling Hamiltonian HT we can write the
QD coupled to reservoirs as [37, 118]

H = HQD +HR +HT , (5.4)

where

HQD =
∑
a

Ea |a⟩ ⟨a| , (5.5)

HR =
∑
r

HR,r =
∑
rkσ

ωrkσc
†
rkσcrkσ, (5.6)

HT =
∑
r

HT,r =
∑
rkiσ

trkσ,id
†
icrkσ + t∗rkσ,idic

†
rkσ. (5.7)
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Here we have introduced the many-body energies Ea, the lead energies ωrkσ indexed by
the reservoir r, momentum k and spin-index σ, the reservoir creation/annihilation operator
c†rkσ/crkσ and the tunneling amplitudes trkσ,i connecting the QD to the leads. From the
tunneling amplitudes we can define the tunneling rates as

Γrkσ,i = 2πνr|trkσ,i|2, (5.8)

where we have assumed the wide band limit, i.e., the density of states νr of the leads are
constant over the relevant energy range in the leads. We assume the leads to be infinitely
large and in thermal equilibrium, such that they can be described by their temperatures Tr
and their chemical potentials µr. The average occupation is then described by the Fermi-
Dirac distribution

fr(E) =
1

e(E−µr)/Tr + 1
. (5.9)

Note, that throughout the thesis we set ℏ = e = kB = 1. This description of the QD
system coupled to leads allows us to investigate the dynamics and stationary state transport
properties using generalized master equations.

6 Generalized master equation

The derivation of the generalized master equation in this section follows Refs. [37, 118, 120].
Generalizsed master equations provide an equation of motion for the reduced density mat-
rix of the system of interest, which in this thesis is given by one or several QDs. Here we use
the QD Hamiltonian (5.4) to describe the systems we have in mind for these calculations.
Explicitly, we think about one or several QDs coupled to electronic leads.

The Liouville-von Neumann equation that governs the time-evolution of the density matrix
ρ(t) can be written as (see, e.g., [112, 113])

ρ̇(t) = −i [H, ρ(t)] = −iLρ(t), (6.1)

where [•, •] is the commutator and we have introduced the superoperator L = [H, •]. If
we refer to corresponding superoperators for the separate parts of the QD Hamiltonian (5.4)
we index it like LA = [HA, •], where A is QD, R or T . Note that it is always possible to
recast the density matrix into a vector and write Eq. (6.1) as a matrix×vector equation with
an appropriate matrix representation of the superoperator L. This is called superoperator
space and is often useful for numerical calculations. Working in this matrix representation
of superoperator space transforms the equation to what looks like a classical rate-equation,
but since transforming to superoperator space does not reduce dimensionality coherence
effects can be present.
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The Liouville-von Neumann Eq. (6.1) for time-independent L has the formal solution

ρ(t) = e−iLtρ(0) (6.2)

for the full density matrix. In open systems relevant to us we are usually not interested in
the full density matrix, but the reduced density matrix of the QD system. To gain access
to that we trace out the degrees of freedom of the reservoirs

ρQD = TrR ρ. (6.3)

Assuming the leads to be in their equilibrium state ρR and the system to be initially uncor-
related, i.e., ρ(0) = ρR ⊗ ρQD(0) we can perform a Laplace transform to find

ρQD(z) = TrR
∫ ∞

0
dt eizte−iLtρ(0) = TrR

i
z − L

ρQD(0)⊗ ρR. (6.4)

Here z is the Laplace frequency. The fraction in Eq. (6.4) can be expanded in powers of the
tunneling part LT of the Liouvillian L = LQD+LR+LT . The resulting geometric series
in LT can be re-summed into an effective self-energy. After taking the trace the result is

ρQD(z) =
i

z − LQD − iW (z)
ρQD(t0), (6.5)

where the effective self energy superoperatorW (z) contains the information about the tun-
neling between the QDs and the lead due toLT . Note that the expansion and re-summing,
that is, e.g., carried out in Refs. [118, 121], is in principle exact. In practice it is usually not
possible to calculate the full series and different approximations and simplifications need
to be made to find the exact form of W (z). For this work, the relevant approaches are
Lindblad master equations [114, 117, 122] and second order perturbation theory based on
real-time diagrammatics [118, 121, 123–126]. They will be briefly introduced in Sec. 8 and 9
respectively.

We are usually interested in the stationary state limit, i.e., t → ∞. In Laplace space this
corresponds to the limit z → 0+ resulting in(

−iLQD +W (i0+)
)
ρQD = 0. (6.6)

Note that before the infinite time limit W has a dependence on the Laplace frequency z,
which is going to be important for the counting statistics approach in Sec. 7.

Transforming back to the time-domain Eq. (6.5) turns into the integrodifferential equation

ρ̇QD(t) =

∫ ∞

0
dt ′L(t− t′)ρQD(t

′), (6.7)

where we introduced the effective Liouvillian or kernel L(t− t′) = −iLQD −W (t− t′).
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7 Counting statistics

Since the transport of electrons is a statistical process, the average current does not contain
all the information.. Fluctuations, i.e., current noise and higher momenta of the distribu-
tion describing the transport have to be taken into account to fully describe the process. In
particular, the noise can contain additional information about the transport in the system
[106, 127, 128].

Full counting statistics are commonly used to access the current statistics. Counting stat-
istics were originally developed in a transmission function setting [129] and can be used to
investigate, e.g., molecular junctions [130] and superconducting systems [131–133]. In the
context of rate equations they have also been used [134], e.g., for single QDs [135]. Based
on the rate equation approach Ref. [136] describes how higher cumulants can be accessed
via master equations. Here we introduce this counting statistics formalism following Refs.
[113, 120, 137].

The conditional master equation describes the dynamics of the system keeping track of
how many particles have been transferred between the system and a set of leads. This set of
leads can be chosen freely, and we refer to them as counting leads. Here, ρ(n)QD is the density
matrix of the system, under the condition that it has transferred n electrons to the counting
leads. The full density matrix is then the sum over the number of transferred particles, i.e.,
ρQD =

∑
n ρ

(n)
QD. The most general form for the reduced density matrix reads [137]

d
dt
ρ
(n)
S (t) =

∞∑
n′=−∞

∫ ∞

0
dt ′Ln−n′(t− t′)ρ

(n′)
S (t′), (7.1)

where the reduced density matrix and effective Liouvillian now carry an additional index to
clarify the condition of having transferred n and transferring n−n′ electrons, respectively.
A Fourier transform introduces the counting field χ as conjugate variable to the number
of transferred particles n. Transforming to Laplace space subsequently results in

zρχS(z)− ρχS(t = 0) = L(χ, z)ρχS(z). (7.2)

From this one can find the cumulant generating function M for large times

M(χ, t) = tz∗(χ). (7.3)

The generating function M describes the distribution of transferred particles. In order
to find the current cumulants we need to take the time derivative to go from number of
transferred particles to the rate of transferred particles, i.e., the current cumulants. The
time derivative is simply z∗(χ), which is given by the solution of

z∗ − Λ0(χ, z
∗) = 0, (7.4)
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where Λ0 is the eigenvalue of the kernel L(χ, z) that develops adiabatically from 0 with χ,
i.e., Λ0(0, z) = 0. On the one hand, the solution z∗ can be expanded in iχ which yields

z∗(χ) =

∞∑
n=1

(iχ)n

n!
⟨⟨In⟩⟩. (7.5)

On the other hand, Λ0 can be expanded according to Brillouin-Wigner perturbation the-
ory (see, e.g., [136]). Comparing coefficients of the two expansions then gives the current
cumulants.

To write them in a compact way we introduce notations used in the Brillouin-Wigner
perturbation theory. The left and right eigenvectors of the kernel (in superoperator space)
are defined as

L(0, 0+)|ψ0⟩⟩ = 0, (7.6)
⟨⟨ψ0|L(0, 0+) = 0. (7.7)

|ψ0⟩⟩ is the stationary density matrix of the system in superoperator space, together with
⟨⟨ψ0| it corresponds to taking the trace, i.e., ⟨⟨ψ0|A|ψ0⟩⟩ = Tr (AρQD). These vectors also
define the expectation value

⟨⟨•⟩⟩ = ⟨⟨ψ0| • |ψ0⟩⟩ (7.8)

and the projection operators

P = |ψ0⟩⟩⟨⟨ψ0|, (7.9)
Q = 1− P. (7.10)

With these we can, in turn, define the pseudo-inverse

R(ϵ) = Q
1

iϵ+ L(0, 0+ − iϵ)
Q (7.11)

and

J(χ, ε) = L(χ, z = ε+ i0+)− L(χ = 0, z = i0+), (7.12)

along with the derivatives

J ′ = ∂χJ |χ,ε→0, (7.13)

J̇ = ∂εJ |χ,ε→0. (7.14)
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Using these conventions the first two current cumulants, namely the average current ⟨I⟩
and the current noise S evaluate to [120]

⟨I⟩ = ⟨⟨I1⟩⟩ = −i⟨⟨J ′⟩⟩, (7.15)

S = ⟨⟨I2⟩⟩ = −⟨⟨J ′′ − 2J ′RJ ′⟩⟩︸ ︷︷ ︸
Sm

+ 2⟨I⟩⟨⟨J̇ ′ − J ′RJ̇⟩⟩︸ ︷︷ ︸
”non-Markovian” contribution

. (7.16)

For Markovian master equations, the kernel L does not depend on the Laplace frequency
z [137]. In that case terms containing J̇ are zero. Hence we refer to the first terms Sm
in Eq. 7.16 as the Markovian part of the noise and call the second term non-Markovian
contributions¹. Here we only give the first two cumulants, but in principle it is also possible
to find higher cumulants, as, e.g., done in Refs. [120, 136, 137].

8 Gorini-Kossakowski-Sudarshan-Lindblad master equation

The so-called Gorini-Kossakowski-Sudarshan-Lindblad (GKSL) form is the most general
form of a Markovian quantum master equation that is a trace preserving completely posit-
ive map [114, 122]. That means it is mathematically guaranteed to produce physical density
matrices, where the diagonals, i.e., the probabilities of the many-body states of the sys-
tem, are all non-negative and sum to one. Starting from the generalized master equation
Eq. (6.1), inserting the QD Hamiltonian Eq. (5.4) and making the Born-Markov approx-
imation one arrives at the so-called Redfield equation. The Born-Markov approximation
assumes weak coupling between bath and QD system and that the bath relaxation time is
faster than any other time scale present. The Redfield equation is only of GKSL form if
one does a secular approximation, i.e., keep off diagonal elements only between degenerate
states. However, this is a bad approximation whenever there are states that have a small but
finite energy splitting (comparable to Γ). Fortunately, it has been shown in Refs. [117, 138,
139] that the Redfield equation also in this case can be cast in GKSL form by additional
approximations. The resulting master equation of GKSL form for a QD system we use
takes the form

ρ̇QD = −i [HQD +HLS , ρQD] +
∑
α=±
r,i

(
Ari,αρQDA

†
ri,α − 1

2
{A†

ri,αAri,α, ρQD}
)
,

(8.1)

with the Lamb-shift Hamiltonian HLS and the jump operators Ari,α. {•, •} denotes the
usual anti-commutator. The Lamb-shift is a renormalization of the many-body energies due

¹We use a loose notion of (non-)Markovian as explained in Ref. [136]
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to the coupling with the bath [138]. The jump operators Ari,α in the many-body energy
eigenbasis {|a⟩} of the QD Hamiltonian HQD are [117, 138, 139]

Ari,+ =
∑
mn

√
Γr,ifr(Em − En) |m⟩ ⟨m| d†i |n⟩ ⟨n| , (8.2)

Ar,i− =
∑
mn

√
Γr,i(1− fr(Em − En)) |m⟩ ⟨m| di |n⟩ ⟨n| (8.3)

with the many-body eigenenergies Em. The jump operators correspond to the physical
processes, where electrons from the lead tunnel into the dot and change the many-body
energy state of the system.

If coherences do not play a role, i.e., the off-diagonals of the density matrix in the (many-
body) energy eigenbasis for the isolated QD are zero, the system can be fully described by
the occupation probabilities Pa = ⟨a| ρQD |a⟩ of these eigenstates. This is the case, e.g., if
all quantum numbers that index the many-body states are conserved in the entire system
(QD and reservoirs and tunneling) [121]. Then we can replace the reduced density matrix
in the equations above with a probability vector P . In fact, ignoring coherences and the
Lamb shift in the Lindblad Eq. (8.1) leads to the so-called classical Pauli rate equation for
the occupation probabilities.

Ṗa =
∑
b

WabPb −WbaPa (8.4)

where the rates Wab are given by

Wab =
∑
α=±
r,i

(Ari,α)ab(A
†
ri,α)ba (8.5)

=
∑
ri

Γr,ifr(Ea − Eb)| ⟨a| d†i |b⟩ |
2 + Γr,i(1− fr(Ea − Eb))| ⟨a| di |b⟩ |2 (8.6)

8.1 Counting statistics in the sequential tunneling Markovian case

In the conditional master equation (7.1), just like for the generalized master equation (6.1),
the time dependence in the kernel is a delta function, i.e., L(t, n) = L(n)δ(t). Thus, the
transformation to Laplace space leads to a z-independent master equation. The noise then
reduces to

S = −⟨⟨J ′′ − 2J ′RJ ′⟩⟩. (8.7)

In the case of first order Markovian master equations, i.e., perturbation theory of the kernel
to leading order in the tunneling rates together with the Markov approximation, the kernel
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only contains processes that transfer single electrons between the leads an the dot. That
means, the counting field dependent kernel can be decomposed as

L(χ) = L0 + eiχL+ + e−iχL−, (8.8)

where L± contain rates of all processes adding/removing an electron to/from the system
via the counting leads. Note that the exact form depends on the details in the setup of the
master equation and also the choice of leads, e.g., for counting at lead r with the GKSL
equation Eq. (8.1) L± will contain the matrix elements of the jump operators Ari, σ, i.e,

L±• =
∑
i

(
Ari,± •A†

ri,± − 1

2
{A†

ri,±Ari,±, •}
)
. (8.9)

In sequential tunneling they will necessarily be located on the first off-diagonal of charge
blocks, since they can only transfer exactly one electron. Using Eq. (9.6) we can write
J(χ) = (1− eiχ)L− + (1− e−iχ)L+ and Eqs. (7.15) and (8.7) reduce to

⟨I⟩ =⟨⟨L− − L+⟩⟩ (8.10)
S =⟨⟨(L− + L+)− 2(L− − L+)R(L− − L+)⟩⟩ (8.11)

For paper I we use the Lindblad approach described above. If the coherences do not play
a role in the system, the Lindblad equation reduces to a classical rate equation. This is
for example a good model for a weakly coupled single level, both with and without spin.
The counting field resolved kernel and the decomposition Eq. (8.8) is then easy to find
analytically. We will treat this explicit example later in Sec. 11.1.

9 Second order real time diagrammatic approach

In this section we introduce the real-time-diagrammatic approach to second order [118,
121, 123–126]. It allows for co-tunneling and all other coherent processes involving two
tunneling events, including also pair tunneling [140], as well as processes leading to level
broadening and renormalization [121]. In paper II we use this theory to investigate the
effects of slightly larger tunnel couplings up to Γ = 0.4T , where the sequential tunneling
approximation begins breaking down and regimes where sequential tunneling is suppressed.
Note here that the resulting master equation is not of Lindblad form, i.e. it can not be
written in the structure of Eq. (8.1). While it is trace preserving it can in principle lead to
negative probabilities.
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The real-time diagrammatic approach is a systematic expansion of the effective self-energy
kernel W (z) in Eq. (6.6) to second order in the tunnel rates² Γ

W (z) ≈W (2)(z) +W (4)(z). (9.1)

Note, that only even orders are present in the expansion, as tracing over the reservoirs elim-
inates all terms with an odd number of QD creation/annihilation operators. The expansion
results in

W (2)(z) =− iγp2p121 Gp2
2

1

z + x1 − L
Gp1

1 , (9.2)

W (4)(z) =− iγp3p232 γp4p141 Gp4
4

1

z + x1 − L
Gp3

3

1

z + x1 + x2 − L
Gp2

2

1

z + x1 − L
Gp1

1

+ iγp4p242 γp3p131 Gp4
4

1

z + x2 − L
Gp3

3

1

z + x1 + x2 − L
Gp2

2

1

z + x1 − L
Gp1

1 .

(9.3)

Terms of the type (z + x − L)−1 are free propagators between the vertices Gpi
i and the

energies xj are implicitly integrated over. The verticesGpi
i correspond to creation/annihil-

ation operators in superoperator space. They can be expressed in a diagrammatic language.
For more details see Refs. [118, 120, 121]. Here, we are mainly interested in the contraction
functions γpipjij . First we note that the indices p1, . . . , p4 ∈ {±} in Eqs. (9.2) and (9.3) are
Keldysh-indices, for more details see Refs. [118, 121]. Second, the lower indices on γpipjij

are a multi-indices, j = (ηj , kj , rj) where ηj ∈ {±} denotes whether the corresponding
lead operator is a creation or annihilation operator, kj denotes its momentum and rj la-
bels the lead. These are implicitly summed over in Eqs. (9.2) and (9.3). The standard bath
contraction function reads

γp2p121 = δ21̄p1fr1(−η1p1ω1) (9.4)

where fr is the Fermi function Eq. 5.9 and ω1 the energy of lead r1.

Physically the first order kernel corresponds to single coherent tunneling processes. The
second order kernel represent coherent processes with two tunneling events within a short
time interval. This, for example, allows for transport through a virtual intermediate state
which can lead to an effective level broadening and finite currents in the Coulomb blockade
regime.

The matrix elements of a superoperator S are evaluated according to

Sa′b′
ab = ⟨a|

(
S |a′⟩ ⟨b′|

)
|b⟩ . (9.5)

²This is equivalent to fourth order in the tunnel amplitudes. We follow the convention of Refs. [118, 120,
121] and index the kernel by the order in tunnel amplitudes. In the text we refer to the expansion in orders of
tunnel rates.
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For more details, see [121, 141, 142]. Calculating the matrix elements of the kernels Eqs. (9.2)
and (9.3) one has to evaluate several integrals that are given for example in Refs. [118, 120,
121]

9.1 Second order counting statistics

When including coherent tunneling of two electrons, the n-resolved master equation (7.1)
can contain terms that transfer up to two electrons. Similar to Eq. (8.8) the kernel can then
be decomposed as

L(χ) = L0 + eiχL+ + e−iχL− + e2iχL2+ + e−2iχL2−. (9.6)

Looking at the second order kernel Eq. (9.3) it is not straight forward to assign the terms to
the corresponding L0,1±,2±. The second order terms can in principle transfer any number
of electrons up to two at one specific lead. If exactly two electrons at the counting lead are
transferred in the same direction, the term is contained in L2±. If they are transferred in
opposite directions, they should be assigned toL0. Finally, there are also processes that only
transfers one electron at the observed lead, and an additional one at another lead. These
terms should be assigned to L±.

Modifying the bath contraction functions γij to [120]

γp2p121 (χ) = γp2p121 exp

[
isα1η1

(
p1 − p2

2

)
χα1

]
, (9.7)

assigns the counting field correctly to the physical processes. Here, sα1 is a sign that sets
the convention for the current direction for each lead, i.e., whether going onto the QD or
the lead is positive current. In practice this means that calculating the ”counting index”
η1
(p1−p2

2

)
for every contraction function and assigning the term to the corresponding

parts of the counting kernel results in the correct decomposition.

Similar to Eqs. (8.10),(8.11) we can find expressions for the current and noise up to second
order. Due to the ϵ-derivative J̇ Eq. (7.14) in Eq. (7.16) these expressions are lengthy and
we omit them here.

10 Transport calculations with QmeQ

There are many software packages for quantum transport calculations, e.g., QuTiP [143,
144] that focuses on simulating the dynamics of open systems using various different master
equation solvers, Monte Carlo, stochastic solvers and many more. It contains a large variety
of methods and can be used to simulate many different types of quantum systems. Other
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packages like kwant [145] are made for quantum transport calculations in tight binding
models. Naturally, that means kwant can only deal with non-interacting systems. We
use and develop the python package QmeQ [116], that is specialized on master equation
transport calculations in QD systems. Given the Hamiltonians of a QD system, leads and
tunneling, QmeQ can set up the master equation using various different approximations
and methods. The different methods to set up the master equation in QmeQ are called
approaches. The standard QmeQ implementation calculates stationary electronic and heat
currents for a given QD system. Large parts of this thesis involve calculations performed
with an extended version of QmeQ that has been adapted to perform the counting statistics
calculations described in sections 7,8,9 ³. Developing this extended QmeQ version was a
central part of the thesis work with the big benefit that it can be used by others on different
systems as well. As this was a central part of the work and an important tool for the results
presented here, we will in this chapter describe the basics of how QmeQ operates and how
it was adapted to perform counting statistics calculations.

The first order approaches in QmeQ are classical rate equations, also referred to as the
Pauli approach [47], Bloch-Redfield master equations [112] and Lindblad master equations
[114, 117, 122]. Additionally, there are the so called first and second order von-Neumann ap-
proaches [146, 147], that are based on taking the full correlation between up to one and two
electrons, respectively, into account. Finally, the second order perturbation theory based
on real time diagrammatics discussed in Sec. 9 was implemented in QmeQ as described in
[37].

Fig. 10.1 schematically shows the standard procedure and the counting statistics implement-
ation in QmeQ. The main difference is the separation of the kernel into the counting field
resolved parts. Once this is done the current and noise can directly be calculated accord-
ing to Eqs. (7.15) and (7.16). In contrast to the original QmeQ implementation we do not
get the lead resolved current, i.e., the current at every lead separately, but only the cur-
rent through a set of leads, the counting leads, that we pass as a model parameter. This is
mainly done to reduce overhead, however, a generalization is straightforward. The current
working version has the counting statistics implementation running alongside the regular
calculations for the convience of immediate cross checking. In the case of the first order
approaches the additional counting statistics calculations are included in the original ap-
proach class. In the future they could be separated into completely separate approaches to
optimize performance and clearly differentiate from the standard approaches. The real time
diagrammatic (RTD) implementation has been moved to a separate approach, that inherits
many functions and properties from the original RTD implementation. Additionally, an
extended kernel handler class has been implemented to deal with the counting kernel.

³The extended version is available on a fork of QmeQ at https://github.com/si8881wo/qmeq. Note
that the extension is work in progress and while the core functions will presumably not change much, details
could still be adapted. When we refer to QmeQ we mean (a branch) of this repository, unless stated otherwise.
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Calculate current

Density matrix + coupling terms to 
calculate (lead resolved) current

Counting resolved kernel + density 
matrix allows to calculate first and 

second cumulant, i.e. current and noise

Solve for density matrix

introduce normalization condition and solve with standard solver 
(LU decomp. or least square)

Calculate coupling terms elements

write to kernel

identify counting index, write to 
respective summand of counting 

resolved kernel, sum over counting 
indices to get full kernel

Input: Hamiltonian
model parameters:

Leads (number, chemical potentials, temperatures), 
Quantum dots (number, levels, internal couplings, coulomb term), 

tunnel couplings

Figure 10.1: Schematic of the procedure to calculate the current in QmeQ with the steps specific to standard QmeQ
(orange), the counting statistics implementation (green) and common procedures (gray). All steps ex-
cept the first one (setting model parameters and from them building the Hamiltonian) are defined and
performed in the approach class, that defines in which way the Master equation is set up.

The practical difficulty lies in finding the counting field dependence of the kernel L in
Eq. (7.1). For the first order approaches in QmeQ, finding the different parts of the count-
ing field resolved kernel is straightforward. QmeQ assumes that charge is a good quantum
number and in the process of building the kernel it loops over the different charge states as
well as the leads. This implementation is very convenient to identify kernel matrix elements
that change the charge state due to the transfer of a single charge between the QD and the
chosen leads. Currently all first order approaches in QmeQ work with this method. Since
paper I is using the Lindblad approach we show a code example in Listing 1 with source
code from the Lindblad approach. The additional lines that write the elements of L+ into
the correct matrix (kh.set_matrix_element_lpm(...)) are highlighted in green. Here we use
the fact that in sequential tunneling the processes transferring a lead to/from the leads are
on the off-diagonal of the charge blocks. Building the kernel QmeQ loops over these charge
blocks and the leads, so we can easily identify in which part of the counting field resolved
kernel Eq. (8.8) the matrix element needs to be written. The original approach does, at this
point, not differentiate between the leads and simply adds the summed up coupling terms
to the full kernel matrix (kh.set_matrix_element(...), highlighted in blue). In addition to
identifying the elements to write into the correct part of the counting field resolved ker-
nel, the implementation in QmeQ involves setting up necessary infrastructure including
additional matrices, parser functions, etc., that we will not discuss further here.
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1 d e f g e n e r a t e _ c o u p l i n g _ t e r m s ( s e l f , b , bp , b c h a r g e ) :
2 tLba = s e l f . t Lba
3 s i , kh = s e l f . s i , s e l f . k e r n e l _ h a n d l e r
4 n l e a d s , s t a t e s d m = s i . n l e a d s , s i . s t a t e s dm
5 Lpm = s e l f . Lpm
6 c o u n t i n g l e a d s = s e l f . f uncp . c o u n t i n g l e a d s
7
8 a c h a r g e = b ch a r g e − 1
9 c c h a r g e = b c h a r g e + 1

10
11 f o r a , ap i n i t e r t o o l s . p r o du c t ( s t a t e s dm [ a c h a r g e ] , s t a t e s dm [ a c h a r g e ] ) :
12 i f kh . i s _ i n c l u d e d ( a , ap , a c h a r g e ) :
13 f c t _ a a p = 0
14 f o r l i n r ang e ( n l e a d s ) :
15 f c t _ a a p += tLba [ l , b , a ] * tLba [ l , bp , ap ] . c o n j u g a t e ( )
16 i f l i n c o u n t i n g l e a d s :

17 kh . s e t _m a t r i x _ e l em e n t _ l pm ( 1 j * tLba [ l , b , a ] * tLba [ l , bp , ap ] . c o n j u g a t e ( ) , 0 , b , bp , b ch a r g e , a ,
ap , a c h a r g e )

18 kh . s e t _ m a t r i x _ e l e m e n t ( 1 j * f c t _ a a p , b , bp , b ch a r g e , a , ap , a c h a r g e )
19 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
20 f o r bpp i n s t a t e s d m [ b c h a r g e ] :
21 i f kh . i s _ i n c l u d e d ( bpp , bp , b c h a r g e ) :
22 f c t _bppbp = 0
23 f o r a i n s t a t e s d m [ a c h a r g e ] :
24 f o r l i n r ang e ( n l e a d s ) :
25 f c t _ bppbp += −0 . 5 * tLba [ l , a , b ] . c o n j u g a t e ( ) * tLba [ l , a , bpp ]
26 f o r c i n s t a t e s d m [ c c h a r g e ] :
27 f o r l i n r ang e ( n l e a d s ) :
28 f c t _ bppbp += −0 . 5 * tLba [ l , c , b ] . c o n j u g a t e ( ) * tLba [ l , c , bpp ]
29 kh . s e t _ m a t r i x _ e l e m e n t ( 1 j * f c t _bppbp , b , bp , b ch a r g e , bpp , bp , b c h a r g e )
30 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
31 i f kh . i s _ i n c l u d e d ( b , bpp , b c h a r g e ) :
32 f c t _ b bpp = 0
33 f o r a i n s t a t e s d m [ a c h a r g e ] :
34 f o r l i n r ang e ( n l e a d s ) :
35 f c t _ b bpp += −0 . 5 * tLba [ l , a , bpp ] . c o n j u g a t e ( ) * tLba [ l , a , bp ]
36 f o r c i n s t a t e s d m [ c c h a r g e ] :
37 f o r l i n r ang e ( n l e a d s ) :
38 f c t _ b bpp += −0 . 5 * tLba [ l , c , bpp ] . c o n j u g a t e ( ) * tLba [ l , c , bp ]
39 kh . s e t _ m a t r i x _ e l e m e n t ( 1 j * f c t _bbpp , b , bp , b ch a r g e , b , bpp , b c h a r g e )
40 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
41 f o r c , cp i n i t e r t o o l s . p r o du c t ( s t a t e s dm [ c c h a r g e ] , s t a t e s dm [ c c h a r g e ] ) :
42 i f kh . i s _ i n c l u d e d ( c , cp , c c h a r g e ) :
43 f c t _ c c p = 0
44 f o r l i n r ang e ( n l e a d s ) :
45 f c t _ c c p += tLba [ l , b , c ] * tLba [ l , bp , cp ] . c o n j u g a t e ( )
46 i f l i n c o u n t i n g l e a d s :
47 kh . s e t _m a t r i x _ e l em e n t _ l pm ( 1 j * tLba [ l , b , c ] * tLba [ l , bp , cp ] . c o n j u g a t e ( ) , 1 , b , bp , b ch a r g e , c ,

cp , c c h a r g e )
48 kh . s e t _ m a t r i x _ e l e m e n t ( 1 j * f c t _ c c p , b , bp , b ch a r g e , c , cp , c c h a r g e )
49 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Listing 1: Code example from the Lindblad approach in QmeQ. This function generates one column of the kernel and
gets called for all charge states during the kernel generation.

Currently, in the first order approaches, the reduced density matrix is calculated with the
kernel from the original QmeQ routine for convenience. In principle it is exactly the same
matrix as the counting field resolved kernel evaluated at χ = 0 and the redundancy of
storing two kernels could be removed when optimizing performance. The counting field
resolved kernel is currently only used for calculating the current and noise according to
Eqs. (7.15) and (7.16) additionally to the standard method.
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10.1 Real time diagrammatics implementation

For the second order implementation we follow Ref. [120], that provides a simple way to
find the counting field resolved kernel for the real-time diagrammatic approach [118, 121].
This procedure has been described in Sec. 9. Once the counting field resolved kernel is
found the full non-Markovian formula for the cumulants Eqs. (7.15) and (7.16) can be ap-
plied.

To find the current and Markovian part of the noise it is enough to find the ”counting
index”, as the ε-derivative from Eq. (7.14) does only appear in the ”non-Markovian” part of
Eq. (7.16). Taking this derivative numerically requires solving the integrals for the matrix
elements with a modification of the many-body energy level spacing.

The standard real-time diagrammatics implementation in QmeQ exploits the so-called
”mirror rule” [121]

ReW a1+a1−
a2+a2− = ReW a1−a1+

a2−a2+ ,

ImW a1+a1−
a2+a2− = −ImW a1−a1+

a2−a2+ , (10.1)

in order to reduce number of times the numerically expensive integrals have to be calculated
when evaluating the kernel. It follows from the general kernel property (W (z))

a1+a1−
a2+a2− =

(W (−z∗))a1+a1−
a2+a2−∗ that guarantees a hermitian stationary state density matrix. In partic-

ular, using the mirror rule in Eq. (10.1) halves the number of integrations. That is because
the mirror rule corresponds to flipping all indices. However, the mirror rule is only valid
in the limit z → i0+. We need to evaluate the kernel at finite z = ε+ i0+ in order to take
the numerical derivative J̇ . A finite ε in the kernel W (ε + i0+) corresponds to a system
with a slight shift in the many-body eigenenergies.

The diagrams that need to be calculated are implemented explicitly in QmeQ. We have
added the required additional diagrams with flipped indices in order to be able to calculate
the numerical derivative. Note that the finite difference is used for the numerical derivative.
The step length is set explicitly (but can be changed like a model parameter) and it is
in principle not guaranteed to be small enough. One could iterate over decreasing step
lengths until convergence, but for each step the integral has to be evaluated again. That
comes at a large numerical cost and we choose to leave it up to the users discretion to
change it appropriately if needed. To set the standard value and check for implementation
errors we compared to the results of Ref. [120]. We have also implemented the ”O(4)
trunc.” approach from Ref. [120] alongside second order RTD, as it uses the same counting
kernels. It is a rigorous expansion of the transport quantities to second order in the tunnel
couplings. The density matrix, projectors and pseudoinverse in Eqs. (7.15) and (7.16) need
to be expanded in orders of Γ as well and subsequently all terms O(Γ3) are neglected.
Details on this expansions can be found in Refs. [148, 149].
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11 Single resonant level and Anderson dot

In this section we want to make use of the formalism and tools we have introduced in
Secs. 5-10. We give a simple example of using counting statistics on the single resonant
level in Sec. 11.1 and use it briefly illustrate the working principle of a QD thermoelectric
engine and a simple QD charge sensor. In Sec. 11.2 we then discuss the effects of interactions
and second order tunneling.

11.1 Counting statistics with rate equations on a single resonant level

The simplest model of a QD system is a single resonant level. We can think of it as a QD
with a single level without spin. The full Hamiltonian is

HSRL = εd†d+
∑
r,k

tk,rc
†
r,kd+ h.c.+

∑
r,k

tk,rc
†
r,kcr,k. (11.1)

With this Hamiltonian the energy eigenbasis is simply {|0⟩ , |1⟩}, where the states are
numbered by their occupation. We can insert this in the Pauli rate equation (8.4) and with
the rates in Eq. (8.6) find the rate equation

Ṗ0 = −(ΓLfL + ΓRfR)P0 + (ΓL(1− fL) + ΓR(1− fR))P1 (11.2)

Ṗ1 = (ΓLfL + ΓRfR)P0 − (ΓL(1− fL) + ΓR(1− fR))P1 (11.3)

for the occupation probabilities P1 = 1− P0 of the QD. Note that in a single level there
are no off-diagonals of the density matrix, so this is a full description in the sequential
tunneling regime. From here we can set up the conditional rate equation by keeping track
of the number of transferred electrons n at, for example, the left lead as

Ṗ0(n) = −(ΓLfL + ΓRfR)P0(n) + ΓL(1− fL)P1(n+ 1) + ΓR(1− fR)P1(n)
(11.4)

Ṗ1(n) = ΓLfLP0(n− 1) + ΓRfRP0(n)− (ΓL(1− fL) + ΓR(1− fR))P1(n).
(11.5)

Note that this is an very simple version of the conditional master equation (7.1). Introdu-
cing the counting field χ as conjugate variable to n via ˙̃P (χ) =

∑
n e

inχP (n) we find the
counting field resolved rate equation in matrix form

˙̃P =

(
−ΓLfL − ΓRfR ΓL(1− fL)e

−iχ + ΓR(1− fR)
ΓLfLe

iχ + ΓRfR −ΓL(1− fL)− ΓR(1− fR)

)
P̃ . (11.6)
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Here we relabeled the sum index when converting to the counting field dependent prob-
abilities. In this simple case it is possible to obtain an analytical expression for the needed
eigenvalue of the counting field resolved Liouvillian

z(χ) =
(ΓL + ΓR)

2

·

(√
1 +

4ΓLΓR

(ΓL + ΓR)
2 (fL (1− fR) (eiχ − 1) + fR (1− fL) (e−iχ − 1))− 1

)
(11.7)

and take the first and second derivative in the expansion Eq. (7.5) to arrive at

I =− iz′(0) =
ΓLΓR

(ΓL + ΓR)
(fL − fR) (11.8)

S =− z′′(0) =

ΓLΓR

(ΓL + ΓR)

(
Γ2
L + Γ2

R

)
(fL + fR − 2fLfR) + 2ΓLΓR (fL(1− fL) + fR(1− fR))

(ΓL + ΓR)
2 .

(11.9)

Alternatively can easily identify

L− =

(
0 ΓL(1− fL)
0 0

)
, L+ =

(
0 0

ΓLfL 0

)
. (11.10)

and arrive at the same expressions for I and S via Eqs. (8.10) and (8.11).

In Fig. 11.1 we show an example of the current I , differential conductance dI/dV , noise S
and Fano factor F = |S/I| according to Eqs. 11.8 and 11.9. In this case we show a sys-
tem with symmetric tunnel couplings ΓL = ΓR = Γ and a temperature bias TL > TR
between the leads. We see that I = ±0.5Γ for large positive/negative biases Addition-
ally, the effect of the temperature bias is visible in the different broadening of the current
steps/conductance lines.

We now focus on the current, Eq. (11.8), that depends on a the difference between the Fermi
functions at the left and right leads, i.e.

I ∝ fL − fR =
1

e(ε−µL)/TL + 1
− 1

e(ε−µR)/TR + 1
. (11.11)

In the large bias limit with µL < µR we have fL = 0 and fR = 1 and find a negative
current for all QD levels ε, that corresponds to electrons flowing from the left lead to the
right lead. Similarly, if the bias is finite but significantly bigger than temperature µL −
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Figure 11.1: (a) Current I (red-blue, left), differential conductance dI/dV (purple, right), (b) noise S and (c) Fano
factor F = |S/I| as functions of a symmetrically applied bias Vb = µL − µR and gate voltage Vg = −ε,
where TL = 5T and TR = T sets the temperature bias and ΓL = ΓR = 0.25T . The star in (a) indicates
a reasonable point to operate the QD as a sensor, c.f. Sec. 12.

µR ≫ T , then if the QD level is in the so-called bias window µL < ε < µR, we get
the same current as in the infinite bias case. Outside the bias window the current will
drop to zero. This can be utilized as a charge sensor, by coupling to the QD level [150–
152]. The current through the QD can then be used as the signal when switching between
two configurations. The sensitivity of such a sensor is then tied to the temperature, which
determines how well the current reacts to changes in the QD level. This can clearly be
seen in the width of the conductance lines. The line associated with the hotter left lead is
broader than the one associated with the colder right lead. We will discuss this in more
detail in the context of paper I in sections 12 and 13.

Given the temperature difference TL > TR between the leads, for biases with µL < µR it
is possible to find an ε resulting in a current from right to left, against the bias. The system
then operates as a heat engine. The QD levels where electrons are transported against a bias
in this case will lie above the bias window. We will discuss this in more detail in sections
14.2 and 15 in the context of paper II.

11.2 Interaction and second order effects in an Anderson dot

If one includes also the spin in the QD we call the system an Anderson dot. It exhibits
rich physics like, e.g, the Kondo effect [153–156] and Coulomb blockade. The former only
becomes relevant for large tunnel couplings and requires a type of theory that is beyond the
scope of this thesis. The Anderson dot can also be operated in a heat engine regime similar
to the single resonant level. In this subsection we want to briefly show effects of Coulomb
interactions and second order perturbation theory in the tunnel couplings on the transport
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through such an Anderson dot. The Hamiltonian reads

HAD =HQD +HT +HR

=
∑
σ

εσd
†
σdσ + Ud†↑d↑d

†
↓d↓

+
∑
r,k,σ

trkσc
†
rkσdσ + h.c.

+
∑
r,k,σ

ωrkσc
†
rkσcrkσ. (11.12)

Compared to the single resonant level introduced before, we have added a spin index σ
to the level and a charging energy U between electrons on the dot. Note that due to the
charging energy U it is not easily possible to find an analytical solutions for this system.
We can however make use of the numerical machinery introduced in Sec. 7 and calculate
transport quantities. In particular we here want to show the difference between the sequen-
tial tunneling case and the second order approximation introduced in Sec. 9. In Fig. 11.2
we show various transport quantities as functions of VB and VG calculated using the Pauli
(a-c) and RTD (d-f ) approaches.

The introduction of the second spin state and the Coulomb interaction leads to the emer-
gence of so-called Coulomb diamonds. When an electron occupies the dot and the bias is
not large enough to overcome the charging energy U no current can flow. This can be seen
in the current and differential conductance in Figs. 11.2(a) and (d) for both first and second
order, where in the central region the current is suppressed. The height of the Coulomb
diamond is determined by the charging energy U and the magnetic field B = ε↑ − ε↓
that splits the spin levels. In sequential tunneling, the current is exponentially suppressed
in the Coulomb diamond. Second order processes lead to a finite conductance and ad-
ditional structure inside the Coulomb diamond. Note that the structure is not visible in
the current on a linear scale, and only becomes apparent in the differential conductance
on a logarithmic color scale. Similarly, on the linear scale used here, there is no obvious
difference between the noise S in first and second order. When looking at the Fano factor
F = |S/I| however, the difference between the first and second order results becomes
apparent also on a linear scale.

Figure 11.2 clearly highlights the effects of second order tunneling processes in the regions
where current is suppressed. Given a temperature bias on the leads of a spinful single level
QD, this blockaded region is precisely where the system can be operated as a heat engine.
That means that for a proper analysis of a the heat engine we need to take second order
effects into account. This and more will be discussed in more detail in sections 14 and 15 in
the context of paper II.
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Figure 11.2: (a) Current(red-blue, left) and differential conductance (purple, right), (b) noise and (c) Fano factor for
the Anderson dot in first (upper row (a-c)) The lower row (d-f) shows the same quantities in the second
order RTD approach. The parameters are Γ = 0.25T , U = 100T and a magnetic field B = 25T that
detunes the spin levels ε↑/↓ = −VG ± B. Note that far inside the Coulomb diamond the sequential
tunneling current is exponentially suppressed. This can lead to numerical problems when calculating the
Fano factor and hence the center in (a) and (c) have been left blank. The implementation of the RTD
approach can lead to artifacts related to higher order tunneling processes, which can be seen origination
from points at zero bias in the Coulomb diamond in (d) and (f).

12 Charge sensing

A sensor is a device that measures the properties of an adjacent system. Here we want
to detect small changes in the electrostatic environment of our sensor. More specifically,
we think about detecting single charges, e.g., electrons on a QD or charge island, close to
the sensor system. To achieve this we want to use an observable that is easy to measure
and sensitive to changes in the electrostatic environment. Our observable of choice is the
charge current through a QD system, as we have easy access to it not only in our theoretical
description, but it also is a standard measurement in transport setups.

To illustrate the principle we will make use of a standard setup for charge sensing [150–152],
the single resonant level model⁴ as described in Sec. 11.1. The changes in the electrostatic
environment will be reflected in changes to the energy level ε of the QD. In principle it
would also be possible to use a change in the tunnel couplings, but in practice that is much
less sensitive to changes to nearby charges.

⁴The same arguments apply if, e.g., an Anderson type setup described in Sec. 11.2 is used.
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We formalize the signal as a derivative of the current with respect to a change the QD level

∂δεI =
dI

dδε
|δε=0. (12.1)

In practice that means we want to tune the gate and bias voltage of the QD, such that we are
positioned on the conductance line at the border between a high and low current regime,
as indicated by the star in Fig. 11.1(a). At that point we find µR = −ε and if we are far
enough from the crossing point of the conduction lines the current according to Eq. (11.8)
reduces to

I ≈ ΓLΓR

(ΓL + ΓR)

(
1− 1

eδε/TR + 1

)
. (12.2)

At δε = 0 we then find the signal

∂δεI = − ΓLΓR

4 (ΓL + ΓR)

1

T
∝ 1

T
. (12.3)

Optimizing only the signal is not sufficient for a good sensor. If the noise is too big, then
no signal can be extracted from a measurement in a reasonable time. The performance can
be formalized in the error

σ2δε =
1

τ

S

(∂δεI)
2 , (12.4)

obtained by the standard error propagation formula [157, pp.366]. Here, τ is the measure-
ment time. The error reflects the trade-off between large signal and acceptable noise. We
will use it as is our measure for the quality of a sensor.

At the operation point, where µR = −ε, and far enough from the crossing we find fL =
1 and fR = 1/2, such that the noise according to Eq. (11.9) is constant with respect to
temperature. That means the temperature dependence of the error here is due to the scaling
behavior of the signal. Overall we find

σ2δε ∝ T 2
R (12.5)

for the error of the single resonant level model operated as a charge sensor.

13 Summary and discussion of paper I

We investigate the dynamics of an interacting parallel double QD and its possible applic-
ation as a charge sensor in paper I. The parallel double QD system can exhibit metastable
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(b)

(a)

Figure 13.1: Schematic representation of the parallel QD setup. The QD energy levels are denoted by ϵi and are
coupled to macroscopic leads s via the tunnel couplings Γis. Here i = 1, 2 is the QD level index and
s = L,R is the lead index. The leads are characterized by temperatures TL and TR and chemical
potentials µL and µR, respectively. Adapted from paper I.

behavior, i.e., it can evolve through a quasi stationary state before relaxing into its true
stationary state [158–161], giving rise to an additional relaxation time scale that has to be
considered for the sensor application. Dynamical and quantum effects may even give rise
to advantages for metrology applications [162, 163].

In the specific system we are investigating, two spinless QDs coupled in parallel to mac-
roscopic leads as shown in Fig. 13.1. The Hamiltonian can be written in a form similar to
Eq. (5.4)

H = HPD +HL +HT , (13.1)

where the parallel QD Hamiltonian is

HPD =
∑
j=1,2

ϵjd
†
jdj + Ud†1d1d

†
2d2. (13.2)

The two parallel single level QDs are labeled by j and they interact only via Coulomb
interaction U . The leads and tunneling parts are

HL =
∑

s=L,R

∑
k

ωskc
†
skcsk. (13.3)

HT =
∑
j=1,2

∑
s=L,R

∑
k

(
tjskc

†
skdj + t∗jskd

†
jcsk

)
, (13.4)

Importantly, the two QDs couple to the same lead mode.

In the fully symmetric configuration, i.e. tjsk = tk and ϵj = ϵ the system is invariant
under exchanging electrons on the two dots. If this symmetry is intact, the system supports
two distinct stationary states. In the presence of strong Coulomb interaction, these two
stationary states carry vastly different currents. Breaking this parity-like symmetry leads to
the emergence of an additional slow timescales in the dynamics of the systems relaxation
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to the steady state. The stationary state in the so-called metastable regime can be expressed
as a probabilistic mixture of the two stationary states of the fully symmetric system. Since
the two stationary states in the symmetric case carry such different currents, the current
of the stationary state, when the symmetry is broken can be very sensitive with regard to
small changes in parameters. This allows for the use of the system as a charge sensor, e.g.,
by capacitively coupling to the gates controlling the QD levels.

The contributions relevant for this thesis were the numerical steady state noise and signal
calculations in chapter V of paper I. The remainder of this chapter will therefore focus on the
details and results of these calculations, implications and also a more detailed comparison
to the conventional single QD setup for charge sensing. The noise calculations were done
using the methods described in Secs. 6-8.

We use the Lindblad approach since coherences play a central role for the physics of the
system. In this particular case the Lamb-shift has been taken into account. Interference
between the two paths the electrons can take when tunneling from one lead to another, see
Fig. 13.1, is encoded in the non-diagonal density matrix elements.

To operate the double QD as a sensor we set the energy levels to be

ϵ1 = ϵ− δϵ, ϵ2 = ϵ+ δϵ, (13.5)

i.e., they are equal up to a detuning δϵ. The tunneling rates are chosen as

Γ1L = Γ− δΓ, Γ1R = Γ + δΓ, (13.6)
Γ2L = Γ + δΓ, Γ2R = Γ− δΓ, (13.7)

with a small perturbation δΓ. We make this specific choice to break the symmetry lead-
ing to the metastable behavior, but that the qualitative physics remains the same for any
perturbation that breaks this symmetry.

We assume that the charge we want to sense, e.g., an electron on a nearby QD, impacts
the detuning δϵ. The response of the current to a change in the detuning, i.e., ∂δϵI , is the
signal. In Fig. 13.2 (a-c) we show the current, signal and noise for this setup. The current
plot, Fig. 13.2(a), shows that regions with greatly different currents emerge when changing
the detunings. If we choose the detuning in between these two regions any small change
due to close by charges will lead to a big signal.

We can also see that the signal increases if we close in on the high-symmetry point where all
tunnel couplings are equal and there is no detuning, see Fig. 13.2(b). For some parameter
choices (small δε and δΓ) the system exibits a metastable regime due to an emerging small
time scale set by the small perturbations. The relevant time scales in this case are given λ2
and λ3 that are the eigenvalues with largest non-zero real part of the Liouvillian, where
0 > Reλ2 > Reλ3. If Reλ2 ≫ Reλ3 then there is an additional relaxation timescale
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Figure 13.2: (a) Current, (b) signal, (c) noise as a function of detuning δϵ and δΓ and (d) temperature dependence of
the error of the double QD set-up operated at the points 1 and 2 indicated by the stars in (a-c). Here
U = 250Γ and TL = TR = 10Γ. The gate voltage controlling the QD level (ϵi = −eVG) is set to
VG = 0 and the chemical potentials of the leads are set to result in a symmetric bias of VB = 30Γ. This
operation point is also indicated in the stability diagrams 13.3. Adapted from paper I.

present and we identify the regime where metastability occurs by the somewhat arbitrarily
picked condition Reλ3/Reλ2 > 20. The outer border of this region is indicated by the
dashed line in Figs. 13.2(a-c). To make use of the metastable behavior for the sensor we
need to be in inside this border.

The slowest timescale in the system also gives a lower limit on the choices for δε. The
dynamics have to be fast enough for the system to reach the steady state on a much smaller
timescale than the measurement time τ . In that case we can calculate all quantities in the
steady state. Requiring −Reλ2/Γ > 103 to ensure fast enough relaxation results in the solid
line in Figs. 13.2(a-c).

In Fig. 13.2(c) we see that the noise is strongly enhanced for small detunings. As this is also
the region where the signal is large, finding a good operation point is a trade off between
large enough signal and acceptable noise. In Fig. 13.2(d) we show the error for the two
parameters indicated in the other plots of Fig. 13.2 along with the error for a single QD
operated as a sensor. We see that the double QD setup by far outperforms the single-QD
sensor. This is due to the fact that the two different current regimes in Fig. 13.2(a) are caused

32



0.5

0.5

5

0

5

0

50

100

150

0
0.2
0.4

0.8
0.6

(a) (b)

(c) (d)

Figure 13.3: (a) Stationary current, (b) noise, (c) signal and (d) error for the parallel double QD system plotted as a
function of VG and VB . The star indicates the parameters used in Fig. 13.2. Adapted from paper I.

by coherences in the system that are not limited by the lead temperature.

In the stability diagrams shown in Fig. 13.3 the parameter point used in Fig. 13.2 is indicated
by a star. Note that the structure inside the Coulomb diamond in Fig. 13.3(d) is due to
the current and noise not being exactly zero, but exponentially suppressed. In this area
higher order processes dominate the transport and the Lindblad approach is not a good
description of the system so we do not consider this area further. The operation point in
the stability diagram has not been fine tuned to achieve the optimal error. Comparing
Figs. 13.3(b,c) or directly looking at the error Fig. 13.3(d) we can see that most of the area
between the conductance lines can result in a good sensor. The fact that the operation point
and detunings in Fig. 13.2(d) were not optimized shows the double QD setups potential as
a charge sensor.

14 Quantum dot thermoelectric engines and quantum thermody-
namics

On the one hand, driving current through a QD does not only transfer particles from one
lead to the other, but also energy and heat flow between the leads. On the other hand, ap-
plying different temperatures to leads coupled to a QD system can lead to a thermoelectric
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current driven by the temperature gradient. With the help of quantum master equations
we can calculate the relevant thermodynamic quantities and investigate thermodynamic
properties at the quantum level.

14.1 Additional transport quantities

In the context of quantum thermal machines, the particle current and noise are not the only
relevant transport quantities. In order to define efficiencies, we need to additionally define
for example the produced power, heat current and efficiency. In this section we follow [54],
in particular section 3, to formulate the first law of thermodynamics in the context of the
QD Hamiltonian Eq. (5.4) in order to motivate the heat current. The relevant quantity is
the time derivative of the average of the total Hamilatonian, i.e. the total energy in the
system and baths,

∂t ⟨H(t)⟩ = Tr(∂tH(t)ρtot(t)) + Tr(H(t)∂tρtot(t))︸ ︷︷ ︸
=0, see Ref. [54]

(14.1)

= ∂t⟨HQD(t)⟩+ ∂t
∑
r

⟨HR,r⟩+ ∂t⟨HT,r⟩. (14.2)

Here we assumed that the reservoir and tunneling Hamiltonians are time independent, i.e.
∂tH(t) = ∂tHQD(t). Note that this does not imply ∂t⟨HR,t⟩ = 0 since the average
contains the time dependence of the total density matrix. Writing the power provided to
the system by an external drive as ⟨∂tHQD(t)⟩ = Ps we can rearrange this to

∂t⟨HQD(t)⟩ = Ps − ∂t
∑
r

⟨HR,r⟩ − ∂t
∑
r

⟨HT,r⟩. (14.3)

This is an energy balance for the QD or in other words a first law of thermodynamics
for our QD. Here ∂t

∑
r⟨HR,r⟩ is the energy flowing out of the reservoirs, i.e. energy

current from reservoirs and the last term ∂t
∑

r⟨HI,r⟩ corresponds to some energy, stored
in the coupling barriers between system and bath. The latter is typically small and can be
neglected in weak coupling [54]. The energy current out of reservoir r typically gets further
separated into

∂t⟨HR,r⟩ = Qr + µrIr, (14.4)

where Ir = ∂t⟨Nr⟩ is the particle current. The heat current

Qr = ∂t⟨HR,r⟩ − µrIr (14.5)

can in this way be seen as the energy flowing out of reservoir r due to particles flowing
out of the reservoir at energies above its chemical potential µr or electrons entering the
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reservoir r below the its chemical potential. In summary, when we assume no driving on
the QD and weak coupling we find that the energy change on the QD

∂t⟨HQD(t)⟩ = −
∑
r

(Qr + µrIr) (14.6)

is due to heat and electrons flowing from the leads into the QD or vice versa. This is
consistent with a classical thermodynamic view of energy conservation.

Note here that we have not made any approximations up until this point and have not set
up a master equation. It is also worth noting that finding the heat current in this way (i.e.
via the energy current) with, e.g., a master equation of Lindblad form does not necessarily
ensure that the thermodynamic laws hold (see Refs [54, 164] for example with Lindblad).
This is due to the various approximations like Markov or secular approximation that are
often made when deriving master equations. Large violations typically indicate that one
operates outside the regime of validity of one or more or the approximations.

In the context of QD thermoelectric engines the heat current is an important quantity since
it can be used to calculate the efficiency. In particular the efficiency is the ratio of produced
electrical power P to the heat flowing out of the hot lead QH

η = P/QH . (14.7)

For the details of how the energy and heat current are calculated we refer to Refs. [37, 116].

14.2 Quantum dot thermoelectric engines

As mentioned for the simple model in Sec. 11, QD devices can be operated as heat engines.
To do this we make use of their energy filtering properties. For two leads at different
temperatures, the Fermi function describing their population is broadened differently. This
can lead to situations, where in an energy range the occupation probability in the lead
with lower chemical potential is greater than in the lead with higher chemical potential
lead. Using QDs to create a narrow transmission window between two leads allows one to
restrict electron exchange to this energy window and generate an overall current against the
external potential difference. One can even show that a narrow transmission window, like
a single QD level in the sequential tunneling limit described by rate equations, is the most
efficient [165, 166]. It can in principle reach Carnot efficiency, but in that case the process
needs to be reversible and no power can be extracted.

For two leads, there are two configurations where the occupation probabilities are inverted.
When the hot lead has lower chemical potential, the occupation inversion lies above the bias
window. If the cold leads chemical potential lies lower, then the inversion happens below
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the bias window. These two situations are sketched in Fig. 14.1(a) and (b), respectively. The
electrical power of a heat engine is simply the current times the bias

P = −IVb, (14.8)

where the minus sign comes from our convention for current and bias directions.
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Figure 14.1: (a) and (b) indicate the possible configurations of energy levels and chemical potential for operation as
a heat engine (adapted from paper II). The arrow indicates the direction of the (particle) thermocurrent.
Figures (c-i) show transport quantities for a Anderson dot with Th = 1.3Tc, Γ = 0.25Tc andU = 100Tc.
In (c) the current is shown over a wide range in VB and Vg with the box indicating the region displayed
in (d-i). In the smaller area we show (d) the current, (e) the noise and (f) the Fano factor. Figure (g) shows
the power output where the QD operates as a heat engine and the star indicating the maximum, (h) the
heat current at the hot lead and (i) the efficiency.
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In Figs. 14.1(c-i) we show the transport quantities for an Anderson type QD described by the
HamiltonianHAD in Eq. (11.12) calculated with the second order RTD approach outlined
in Sec. 9. Figure 14.1(c) shows the full current Coulomb diamond, where the rectangle
around the left crossing indicates the area where it operates as a heat engine. The current
and noise in that area are shown in Fig. 14.1(d) and (e) respectively. With that, the Fano
factor can be calculated, shown in Fig. 14.1(f ). Note here that the large increase around zero
current clearly indicates the edge of the positive power regime, where the setup operates as
a heat engine.

The power is shown in Fig. 14.1(g), where only areas of positive power have been drawn and
the remaining areas are left blank. The star indicates the maximum power. The shape of
the positive power lobes is a result of the second order approach and is due to the effective
broadening of the level due to cotunneling. In sequential tunneling the positive power area
would extend to the teal and purple shaded areas. The color indicates the configuration of
the QD as shown in 14.1(a) and (b).

Figure 14.1(h) shows the heat current at the hot lead. When the power is positive, the heat
current is also positive, i.e. heat is flowing out of the lead. In Fig. 14.1(i) the efficiency
is shown. Note that the maximum efficiency point does not line up with the maximum
power point.

While transporting electrons against an externally applied bias shows the thermoelectric
current we wish to use in a heat engine, it is not possible to extract electrical work in this
setup. An external load, where the power is developed can be modeled by connecting the
leads via a resistor R. This situation is shown in Fig. 14.2(a) and (b).

To find the voltage and current through the load resistor we use Ohms law

I(U, Vg)−
U

R
= 0, (14.9)

where I(U, Vg) is the current through the QD with bias U at gate voltage Vg. Due to
Kirchhoffs law this is exactly the voltage drop U over the resistor R and current going
through it. We can numerically solve this equation for the bias U at a given gate and
resistance.

For a given resistor, sweeping the gate results in a cut through the positive power lobe. At
infinite resistance, i.e. an open circuit, the resulting cut is exactly the outline of the positive
power lobes, while the short circuit power will be zero. If one wishes to operate at the
maximum power point, is possible to calculate the needed load resistor. To do that one can
simply find the maximum power point in gate-bias space and rearrange Eq. (14.9) for the
resistanceR. Similarly, one can find a load resistance corresponding to any other operating
point in the heat engine regime.
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Figure 14.2: Schematic of (a) a single spinful QD (Anderson model) and (b) a serial double QD operated as a heat
engine coupled to a load resistor. (c) shows the left hand side of the TUR (14.12) for the Anderson model
using Pauli rate equations. The parameters used for the calculations correspond to ΓL = 5.0GHz, ΓR =
1.1GHz, TL = 1K, TR = 1.5K, U = 100meV which is motivated by preliminary measurements taken
in a lab. (d) shows the hand side of the TUR (14.12) for serial double QD operated as a heat engine
coupled to a load resistor with inter dot coupling Ω = 50Γ, Coulomb interaction strength U = 250Γ
and temperatures TL = 100Γ, TR = 150Γ using the Lindblad approach. The inset shows the violations,
where the value of the left hand side clearly goes below 2, which is the value given by the TUR.

14.3 Thermodynamic uncertainty relations in thermoelectric engines

The general form of the TUR is [64, 167, 168]

⟨⟨Φ2⟩⟩
⟨Φ⟩2

σ ≥ 2, (14.10)

where ⟨Φ⟩ and ⟨⟨Φ2⟩⟩ are mean and fluctuations, respectively, of a physical observable Φ
and σ is the entropy production. It can be derived in the context of classical rate equations.
That means it can in principle be violated when quantum effects are taken into account
and play a role in the system. In fact, violations are expected and have been shown in a
non-interacting setting in Refs. [169, 170], specifically in the presence of coherences and
for higher order tunneling contributions. Previous works showed that even in a single QD
operating as a heat engine at high efficiencies second order contributions become important
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for modeling the current accurately [35–37]. It seems likely that second order contributions
will have a notable effect also on the noise, which could lead to violations of the TURs.

The TURs in thermoelectric engines can be expressed in terms of transport quantities,
namely the current I , noise S and efficiency η. In particular, the entropy production σ in
thermoelectric engines can be written as [170]

σ = ⟨jp⟩
1

Tc

ηc − η

η
, (14.11)

where ⟨jp⟩ = P = −I · V is the power output of the engine, η(c) the (Carnot) efficiency
and Tc the temperature of the cold reservoir. The efficiency can be calculated from the heat
current Q via η = P/Q = IV/Q and the Carnot efficiency ηc = 1− Tc/Th depends on the
ratio of the temperatures of the cold and hot bath. The setups we investigate here are for
example the ones sketched in Fig. 14.2, where the energy filtering property of the QD(s) is
used to create a thermocurrent against the potential bias due to a load resistor.

Inserting Eq. (14.11) into the general TUR in Eq. (14.10) and choosing the current as ob-
servable Φ we get

C =
S

I2
σ =

S

I
V

1

Tc

ηc − η

η
≥ 2, (14.12)

Where we have introduced the variable C to refer to the left hand side of the inequality.

We can investigate the TUR, e.g., for the Anderson model (single spinfull QD) coupled to
a load resistor, see Fig. 14.2a. Since in this systems there are no coherences present we can
use Pauli rate equations for first order calculations in tunneling rate and we do not expect
any TUR violations. Indeed, if we plot the left hand side of Eq. (14.12) for a system with
experimentally relevant parameters we see that while we get very close to saturating the
inequality we never violate it, see Fig. 14.2c.

In Refs. [169, 170] it has been theoretically shown that serial double QD heat engines can
violate the TUR. While the presence of coherences does not guarantee violations, we can
find regimes where violations occur. An example system where coherences play a significant
role is a serial double QD, see Fig. 14.2b. Fig. 14.2d shows calculations using the Lindblad
approach (that was also used in paper I) for Coulomb interaction strength U = 250Γ and
temperatures TL = 100Γ, TR = 150Γ. For a large range of gate voltages the TUR is
clearly fulfilled, i.e., the left hand side is clearly bigger than two. There are, however, two
intervals where the relations are close to saturated and the inset clearly shows, that they are
in fact violated. Note that the violations here are small. We have not tuned the system
for maximal violations, so it is possible, that the model parameters can be optimized for
bigger violations. In contrast to Refs. [169, 170], that use non-interacting transmission
functions, we have included electron-electron interactions. A comparison of different ap-
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proaches and investigation of the TURs in a serial double QD system without temperature
bias has recently been done [171].

15 Summary and discussion of paper II

Coherences are not the only effect that can lead to violations of the TURs. Another effect
that is not considered in the original derivations [64, 167, 168] is higher order tunneling
contributions. Refs. [169, 170] show that including them can lead to violations. In paper
II the aim was to investigate the TURs using the second order RTD approach outlined in
Sec. 9, where processes up to cotunneling order are considered.

Figure 14.1 shows the transport properties of the Anderson dot heat engine described by
the Hamiltonian HAD in Eq. (11.12). In previous works [35, 36] the optimal efficiency and
power of such a heat engine has been investigated, with the result that second order is
necessary to accurately model this system as a heat engine. This gives the motivation for
paper II to investigate the noise and the TURs. In Fig. 15.1 we plot the the left hand side C
of the TUR Eq. (14.12) for the same parameters and in the same regime as earlier in Fig. 14.1.
The minima of C in the two heat engine lobes indicated by the stars are close to zero bias,
where the power output is approaching 0. For the chosen parameters the minima are far
from saturating the TUR, in contrast to the sequential tunneling results from Fig. 14.2c(c).
The parameters in either case are not optimized to minimize C.
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Figure 15.1: Left hand side C of the TUR for the same parameters as in Fig. 14.1. The stars indicate the minima
Cmin,L ≈ 2.53 in the left and Cmin,R ≈ 2.51 in the right power lobe.

In paper II, instead of the minima of the TUR we focus on the maximum power point in
the heat engine regime, as this is where one would realistically want to operate. This point is
not necessarily fixed in gate-bias space when varying parameters. Here, we vary the tunnel
couplings Γ and the temperature bias ∆T . In Fig. 15.2(a) and (b) we show the position of
the maximum power point in gate-bias space for varying Γ and ∆T respectively. Note that
for varying Γ, see Fig. 15.2(a), the maximum power point for the first order results does not
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Figure 15.2: Position of the maximum power point in gate-bias space when varying (a) the tunnel coupling 0 < Γ ≤
0.4 and (b) temperature difference 0 < ∆T ≤ 3. The arrows indicate the change in position when
increasing the Γ and ∆T respectively. Adapted from paper II.

move. This is due to the fact that the current in first order simply scales with Γ. Here, also
the difference between Coulomb interaction being present or not can clearly be seen. For
varying temperature difference there is no large difference in the overall trend between the
different parameters and approaches. In all cases the maximum power point moves towards
larger bias and gate voltages, see Fig. 15.2(b)

Using an appropriate resistance to cross through the maximum power when sweeping the
gate voltage at fixed Γ and ∆T we find two important results. First, the Fano factor
F = |S/I|, which is directly proportional to C, for this sweep is increased for second
order. While in the heat engine regime second order tunneling processes decrease both cur-
rent and noise, the current is affected more strongly, leading to an enhanced Fano factor.
Second, the efficiency is also decreased. This is due to the decoupling of particle and heat
current leading to a non-vanishing heat current at the current inversion point [35]. While
in sequential tunneling the QD heat engine can in principle reach Carnot efficiency (at
vanishing power output) the decoupling in second order prevents that. These two effects
of second order prevent us from saturating (as well as from breaking) the TUR in this con-
figuration. The gate sweeps are shown in Figs. 15.3(a) and (b). Both effects are also visible
when comparing the transport quantities at the maximum power point for different tunnel
couplings, as shown in Fig. 15.3(c) and (d). The Fano factor increases and the efficiency
decreases with increasing tunnel couplings Γ. The opposite happens when the temperature
bias is increased, i.e., the Fano factor decreases while the efficiency increases, as can be seen
in Fig. 15.3(e) and (f ). However, this is not enough to counteract the effects of second order.
The bounds appear generally closer to saturation for sequential tunneling.

Additionally to the comparison with sequential tunneling we also investigate the effect
of Coulomb interaction on the quantities. We compare master equation results for no
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interaction U = 0 and U = 100T ≫ T,Γ with non-interacting scattering theory (for
U = 0 only). The results forU = 0 reproduce the non-interacting scattering theory results
well for a large range of parameters. Increasing Γ leads to larger deviations, as expected.
In particular the comparison between the non-interacting cases shows that it is important
to go to second order, even for relatively small Γ, especially around the blockaded regimes
where sequential tunneling processes are exponentially suppressed.
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Figure 15.3: (a) Fano factor F and (b) efficiency η/ηC for a gate sweep with fixed resistance, Γ = 0.25 and temper-
ature bias ∆T = 0.3T . (c) and (d) show the Fano factor and efficiency, respectively, for varying Γ at
fixed ∆T = 0.3. (e) and (f) show the Fano factor and efficiency, respectively, for varying ∆T at fixed
Γ = 0.25. Adapted from paper II.
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Topological insulators and transport
through edge states

In the following we give a short introduction to some concepts that are important for the
understanding of paper III. We start with introducing the Bernevig-Hughes-Zhang (BHZ)
Hamiltonian. Subsequently we briefly introduce some fundamental theoretical tools we
use, namely Floquet theory following Refs. [172–174] and the general concept of Green’s
functions. The application of Green’s functions to periodically driven systems will connect
to Floquet theory and result in the main equations we are using in paper III to access the
Green’s function. We then outline how we can extract information about the spectral and
transport properties from the Green’s function and finally discuss some aspects of paper III
more closely.

16 The BHZ Hamiltonian

The BHZ model is a theoretical description of quantum spin Hall insulators proposed in
2006 [24]. The full Hamiltonian for an infinite two dimensional plane reads [76]

HBHZ =

(
h
(
k⃗
)

0

0 h∗(−k⃗)

)
, (16.1)

h
(
k⃗
)
= ϵ

(
k⃗
)
+
∑
i

di

(
k⃗
)
σi, (16.2)

ϵ
(
k⃗
)
= C −D(k2x + k2y), (16.3)

di

(
k⃗
)
=
[
Akx,−Aky,M

(
k⃗
)]
, (16.4)

M
(
k⃗
)
=M −B(k2x + k2y), (16.5)
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with the Pauli matrices σi. The material parameters A, B, C,D andM depending on the
specific quantum well geometry [76]. This Hamiltonian is expressed in the basis
{|E+⟩ , |H+⟩ , |E−⟩ , |H−⟩}, where E± and H± are the relevant electron and hole bands
in the quantum well, respectively. The states |E±⟩ and |H±⟩ are degenerate Kramers pairs,
leading to the block-diagonal structure. The two blocks are related by time-reversal sym-
metry and are essentially two copies of the massive Dirac Hamiltonian. In the form of
Eq. (16.4) we can see that M(k⃗) plays the role of a mass term, that determines the split-
ting of electron and hole bands, composed of a static (Dirac) part M and a momentum
dependent (Newtonian) part B(k2x + k2y). The system is in a topological state supporting
edge states if the ratio M/B > 0 [76]. Figure 16.1(a) shows a typical bulk bandstructure
for the BHZ Hamiltonian in a topological regime with the edge states with different spin
polarization indicated in different colors. At the phase transition point, see Fig. 16.1(b),
the gap is closed when transitioning from the topological into the trivial state. The trivial
bandstructure is shown in Fig. 16.1(c).

kx

E

(a) topological

kx

E

(b) transition

kx

E

(c) trivial

Figure 16.1: Typical bulk bandstructure of the BHZ Hamiltonian (a) in the topological regime, (b) at the transition
and (c) in the trivial regime. The edge states in the topological case (a) are indicated in red and blue,
where the colors correspond to the two different spin polarizations. Note, that the bulk bands are doubly
degenerate.

The 4 × 4 effective Hamiltonian (16.1) describes the bulk properties of two dimensional
topological insulators. If one is interested in the properties of the edge states it is possible
to find an effective description for those as well. Solving this Hamiltonian on an infinite
half-plane yields two states Ψ↑,Ψ↓ that are localized at the edge [76, 85, 175–177]. As illus-
trated earlier these two states have opposite spin projection and momentum orientation,
so different spins travel in different directions, as illustrated in Fig. 3.1a. This is called spin
momentum locking. The direction of spin polarization of the edge states is determined by
the sign of A/B [76].

To find the effective edge Hamiltonian the full Hamiltonian (16.1) can be projected onto
the edge statesΨ↑,Ψ↓ viaHα,β

edge(k) = ⟨Ψα|HBHZ|Ψβ⟩. Assuming a symmetric bulk band
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structure, this results in the effective edge Hamiltonian [76]

Hedge = Akxσz = ℏνFkxσz. (16.6)

This Dirac type Hamiltonian describes two one-dimensional edge states with opposite
Fermi velocities on the edge of the half plane and can be applied if the considered en-
ergies lie within the bulk band gap of the full BHZ Hamiltonian (16.1). The edge state
dispersion is indicated in red and blue in the bulk band gap in Fig. 16.1.

17 Floquet theory

Floquet theory is a formalism developed to solve time-periodic differential equations. As
such it is very useful to treat time-periodic Hamiltonians H(t+ T ) = H(t). The found-
ation of Floquet theory is the Floquet theorem, that similar to the Bloch theorem [178]
for space-periodic functions, predicts the existence of solutions for the time-periodic case.
A main advantage is that it avoids so-called secular terms, that are not periodic in time.
Secular terms frequently appear when applying Raighley-Schrödinger perturbation theory
[172] and are artifacts of the perturbation theory. Since they are not present in Floquet
theory, it intrinsically respects the time-periodicity of the system.

Here we briefly introduce the core concepts of this formalism. More details can be found
in Refs. [172–174]. To solve the time dependent Schrödinger equation we can invoke the
Floquet theorem, which states that there exist solutions of the form

ψα(t) = exp
(
−i
ϵα
ℏ
t
)
Φα(t). (17.1)

These are called Floquet-state solutions and consist of the quasi-energy exponential
exp(−iϵα/ℏt) and the time-periodic Floquet modes Φα(t) = Φα(t + T ). The Floquet-
state solutions live in a composite Hilbert space R⊗T , composed of the space R, spanned
by the eigenfunctions of the time-independent part of the Hamiltonian and the T -periodic
functions T . We can solve for the Floquet modes in the composite space, where the dif-
ference is essentially that we decomposed the time-dependence of the system into Fourier
components and get a block of the dimension of the original system for each Fourier com-
ponent. In practice this blows up the matrix dimension in calculations, which means it
comes at a numerical cost. As long as we can truncate at small enough Fourier indices this
poses no problem for numerical simulations.

With the Floquet modes, we can calculate the time evolution of any initial state |ψ(0)⟩ as

|ψ(t)⟩ =
∑
α

cα exp(−iεαt/ℏ) |Φα(t)⟩ , (17.2)

where cα = ⟨Φα(0)|ψ(0)⟩ [172].
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18 Green’s function formalism

Green’s functions are a mathematical tool to solve differential equations[179]. They can
be applied in many fields of physics, e.g., geophysics [180], acoustics [181], particle physics
[182], and many more. We are interested in their application in solid state systems, where
they can be used to solve the Schrödinger equation. In the transport setups we are think-
ing about, we are often interested in the response of the system to an excitation, such as
an incoming electron. The Green’s function describes exactly this response of the system
[183]. The single particle Green’s function approach we use here is conceptually simple and
connects naturally to scattering theory [8]. In particular, the retarded Green’s function [8,
183] is often called a propagator since a physical interpretation of it is that it ”propagates”
the wave function [184] in space and/or time. Given a basis of incoming wave functions the
scattering matrix containing transmission and reflection coefficients can readily be extrac-
ted [185]. In contrast to master equations that we introduce in section 6 to analyze transport
in QD systems, the approach we use here does not contain interactions between electrons.
The propagator simply describes how a single electron moves in the system. While it is in
principle possible to also include interactions [179] and write scattering-type expressions
for the transmission, in practice it quickly becomes impossible to find the Green’s function
and approximations need to be made. In this section we introduce the basic concept of
non-interacting Green’s functions and extend it to time-periodic systems. We also high-
light the connection to wave functions and outline how to extract transport properties from
them.

18.1 Green’s functions

Green’s functions are a well know method in solid state physics. More detailed introduc-
tions can, e.g., be found in Refs. [183, 184], on which this short introduction is based.

Mathematically, Green’s functions are fundamental solution to the Schrödinger equation

(H − iℏ∂t)ψ(t) = 0. (18.1)

For the non-interacting case the so-called retarded Green’s function can be defined as a
solution of the equation of motion,

[iℏ∂t −H(r⃗)]GR(r⃗, t; r⃗′, t′) = δ(t− t′)δ(r⃗ − r⃗′). (18.2)

If the Hamiltonian has matrix structure due to, e.g., spin, the Green’s function will inherit
this matrix structure. We can explain the name retarded Green’s function by looking at the
effect of it on a known wave function ψ at time t′ via the integral equation

ψ(r⃗, t) =

∫
dt′ dr⃗′GR(r⃗, t; r⃗′, t′)ψ(r⃗′, t′). (18.3)
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We see that GR propagates the wave function forward in time to t depending on the wave
function at time t′, hence the name. In the following chapters we will omit the super-
script and simply refer to it as the Green’s function. On the one hand, this relation to the
propagation of states explains why the Green’s function is interesting for calculations of
transport properties. It is therefore also closely related to the scattering matrix as we will
discuss later in this section. On the other hand, this relation also explains the similarities
between the Floquet theory discussed earlier and the Green’s functions for time-periodic
Hamiltonians we will discuss now.

18.2 Green’s functions for time periodic Hamiltonians

Here we give a short overview of a procedure closely related to Floquet theory to calculate
the Fourier components of the Green’s function for a time-periodic Hamiltonian. It has
been used in paper III and a detailed description can be found in Ref. [100].

For a general time dependent Hamiltonian H(t) = H0 + V (t) we can write the integral
equation of motion for the Green’s function

G(t, t′) = g(t− t′) +

∫
dt1 g(t− t1)V (t1)G(t1, t

′), (18.4)

where g(t−t′) is the free Green’s function. The free Green’s function g(t−t′) is determined
by the free equation of motion

[iℏ∂t −H0]g(t− t′) = δ(t− t′). (18.5)

Note, that for convenience we suppress the spatial dependence. If V (t) is periodic, i.e.
V (T + t) = V (t), the Green’s function G(t, t′) can be shown to be periodic in t′ and
t. That allows us to Fourier transform to the energy domain in t′ and expand as a Fourier
series in t. As a result the Green’s function can be written as

G̃(t, E) =
∑
n∈Z

ein
2π
T

tG̃n(E), (18.6)

where the Fourier components G̃n(E) can be calculated as

G̃n(E) = g̃(E)δn,0 + g̃(E − nℏΩ)
∑
m

VmG̃n−m(E). (18.7)

Here g̃(E) is the Fourier transform of the free Green’s function g(t− t′). This general set
of coupled equations can be written as a matrix equation and solved numerically. We then
have access to the Fourier components of the Green’s function.
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19 Extracting transport properties from the Green’s function

The nature of the Green’s function as a propagator for the wave function suggests an un-
derlying connection to the transport properties of the system. Indeed we can extract useful
information from the Green’s function, as outlined in the following subsections.

19.1 Density of states

The density of states is an experimentally accessible property of mesoscopic systems. It
describes the number of states in an infinitesimal interval around a given energy [8, 19, 184]
and can be found from the Green’s function via taking the trace

D(E, t) = − 1

π
ImTr G̃(t, E). (19.1)

For practical purposes we are interested in the time-averaged density of states. When taking
the time average over Eq. (18.6) all Fourier components except G̃0(E) will average out due
to the complex exponentials, so the time-averaged density of states can be calculated as

D̄(E) = − 1

π
ImTr G̃0(E). (19.2)

For a system without impurities, the density of states turns out to be flat.

19.2 Transmission

In addition to the previous topics that were covered in more detail in Ref. [100], paper III
also investigates transport properties of the system. While Ref. [186] describes the procedure
to get the scattering matrix from the Green’s function by propagating an initial state from
one lead of a multi-terminal system to another, Ref. [185] introduces the Floquet-scattering
matrix, which is the appropriate scattering matrix for driven systems. Paper III (specifically
section IID) describes how to combine these two building blocks into a scattering theory
similar to Baranger and Stone [186] for time periodic driving to extract the transmission via
the Floquet-scattering matrix calculated from the Fourier expansion of the Green’s function.

The cornerstones of the derivation are the propagation of a basis of initial states via the
space-dependent Green’s function. Decomposing the outgoing state into the appropriate
basis states results in Floquet-scattering matrix elements SF

RL(E
′, E) for scattering from

the left to the right lead. The energy arguments play an important role here, as these matrix
elements describe the scattering amplitude for an incoming mode with energy E′ to the
outgoing mode at the other lead with energyE. In the case of a harmonically driven system
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the energy difference ∆E = E − E′ will correspond to energy quanta of the driving
absorbed during transmission, i.e., if the system is driven harmonically with frequency Ω,
then ∆E = nℏΩ with an integer n.

The transmission is simply the absolute square of the Floquet scattering matrix, but depends
on the absorbed energy as well according to

T
(n)
RL (E) = |SF

RL(E
′, E)|2 with E′ − E = nℏΩ. (19.3)

With this we can calculate the current and assuming low temperature and small bias extract
the total transmission

T (E) =
∑
n

T
(n)
RL (E). (19.4)

However, that this simplification is only possible if T (n)
RL (E) = T

(n)
LR (E). We can in this

approximation interpret the transmission as the sum over transmission channels indexed
by the number of absorbed energy quanta n.

19.3 Impurity averaging

In realistic systems we often encounter large amounts of randomly distributed impurities.
One can imagine, that a real sample the size of millimeters, even at low doping densities
contains a huge number of impurities. In contrast to real systems in a lab, theoretical
calculations are restricted by computing power and we can only perform calculations for
a much smaller number of impurities. We can get around the numerical limitations by
dividing the system into smaller subsystems, that only contain a numerically viable number
of impurities, perform the calculations for the smaller subsystems and then average over all
subsystems. In general this is possible, if the coherence length of the particles in the system
is smaller than the size of the subsystems, i.e., the subsystems need to be uncorrelated
[184]. In practice that means that we perform the calculations for many randomly generated
impurity distributions and analyze the average of those.

20 Summary and discussion of paper III

In paper III we investigate the behavior of helical edge states of a two dimensional topolo-
gical insulator in the presence of impurities on the edge. The impurities have a scalar elec-
trical potential as well as a time-reversal symmetry breaking magnetic moment. This break-
ing of time-reversal symmetry enables backscattering from one of the counter-propagating
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edge states into the other and can thus open a gap in the density of states and also impact
the transmission. The effective edge Hamiltonian including the delta impurities reads

H(t) = ℏvFkxσz +
∑
j

(V σ0 +M(t) · σ)δ(x− xj), (20.1)

where vF is the Fermi velocity, V is the static potential and the magnetic part of the delta
impurities can be expressed as

M(t) · σ
|M |

=Msσy (20.2)

+
√
1−M2

s (sin (Ωt)σx + cos (Ωt)σz) (20.3)

=Msσy +

√
1−M2

s

2i
(σx + iσz)e

iΩt (20.4)

−
√
1−M2

s

2i
(σx − iσz)e

−iΩt. (20.5)

For static impurities this has been investigated previously [101]. The results there show,
that orienting the magnetic moment of aligned impurities in the x-y-plane leads to a gap
opening in the density of states, that is closed by sufficiently large electric potential of the
impurities. For impurities pointing along the z-direction there is no gap.

We now look at impurities that are are aligned and their magnetic moment rotates in the
x-z-plane, i.e., from a direction that results in a gap in the static case to one that doesn’t
and back. Depending on the drive speed we find and explain different gaps in the time
averaged density of states and reduced transmissions that, similar to the static case, close
with increasing scalar potential.

To calculate the Green’s functions describing propagation between arbitrary x̄1 and x̄N
positions on the edge we start from the matrix Eq. 18.7 which for harmonic driving can be
written out as

. . . . . .

. . . 1− g̃(E + ℏΩ)V0 −g̃(E + ℏΩ)V †
+

−g̃(E)V+ 1− g̃(E)V0 −g̃(E)V †
+

−g̃(E − ℏΩ)V+ 1− g̃(E − ℏΩ)V0
. . .

. . . . . .





...
G̃−1(E)

G̃0(E)

G̃1(E)
...

 =



...
0

g̃(E)
0
...

.

(20.6)
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Explicitly including the spacial dependence we get

G̃n(E; x̄1, x̄N ) = g̃(E; x̄1, x̄N )δn,0

+
∑

m=0,±1

Nimp∑
k=1

g̃(En; x̄1, xk)UmG̃n−m(E;xk, x̄N ). (20.7)

We can substitute x̄1 = xk in Eq. (20.7) and use the explicit form of the free Green’s
function [101],

g̃(E;x, x′) =UV (x, x
′)g0(x− x′, E), (20.8)

UV (x, x
′) =e

i σz
ℏνF

∑
l Vl(θ(x−xl)−θ(x′−xl)) (20.9)

g0(x− x′, E) =
−i

2ℏνF

[
e

E(x−x′)
ℏνF θ(x− x′)(1 + σz)

+ e
−E(x−x′)

ℏνF (1− θ(x− x′))(1− σz)

]
, (20.10)

to find the G̃n−m(E;xk, x̄N ) numerically for each k. With those we can finally calculate
G̃n(E; x̄1, x̄N ).

Note here that the free Green’s function has dimension 2 × 2 due to spin, so in total the
blocks of Eq. (20.6) have dimension 2Nimp × 2Nimp. This makes it very clear that the
number of Fourier components has a large influence on the computational cost, since for
each additional component we increase the size of the matrix equation by four times the
number of impurities.

In paper III we considerNimp impurities in the region x = 0 to x = L. On the one hand,
if we set x̄1, x̄N = L/2 to be the center of the impurity region we can already directly
calculate the density of states via Eq. (19.2) On the other hand if we set x̄1, x̄N to be the
left and tight end of the impurity region, respectively, we calculate the scattering solution
as described in paper III and project out the Floquet scattering matrix elements and find
the partial transmissions

T
(n)
RL (E) = |SF

RL(En, E)|2 = (ℏνF )2
∣∣∣∣[G̃n(E;L, 0)

]
↑↑

∣∣∣∣2 . (20.11)

Note here that the transmission is essentially the diagonal matrix elements of the 2 × 2
Green’s function corresponding to one spin polarization, in this case ↑. This reflects the
helicity of the edge states, since outside the impurity region, and in fact also in between
the impurities, due to the spin-momentum locking a spin species can only travel in one
direction.

Another aspect is that the effective transmission Eq. (19.4) only holds for symmetric par-
tial transmissions. Due to the structure of Green’s function this is not necessarily given
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for a single impurity distribution, in fact it only holds for impurity distributions symmet-
ric around the center of the impurity region. On the other hand the impurity averaging
results in symmetric partial transmission, due to the large number of random impurity
distributions.
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Figure 20.1: Band structure calculated directly from the Floquet-Hamiltonian for a homogeneous dynamic magnetic
barrier. Floquet parameters: ℏΩ/∆ = 0.2, nmax = 25 (red) and nmax = 10 (blue). Adapted from [100]

An important question for the numerical calculations is where to cut of the Fourier series,
as this has a big influence on the computation time. On the one hand one can estimate
the involved time scales by comparing to relaxation times in a static system, i.e., looking at
the time evolution operator for a static system. This estimation is carried out in Ref. [100]
and results in 2∆/ℏΩ ≲ nmax, where ∆ is the expected gap for a average magnetic field
corresponding to the impurities, Ω is the driving frequency and nmax is the cut-off Fourier
index. This also motivates the scaling of energies in terms of the driving frequency we
use. On the other hand we can also use intuition from Floquet theory, see section 17. The
quasi energies of the Floquet state solutions have to be equally spaced. We can diagonalize
the Floquet Hamiltonian for a homogeneous rotating magnetic field exactly to find the
”quasi bandstructure”. Using a magnetic field strength corresponding to the average over
the impurity region, we can determine whether the quasi energy bands are periodic. In
Fig. 20.1 we show the band structure for different cut offs nmax, where we can clearly see
that the energy levels are not periodic for the smaller cut off. This has also been discussed
in some detail in Ref. [100] and together these two methods should provide a reliable way
to determine a good cut off.

In paper III we calculate the density of states and transmission in different driving regimes
and for different scalar potential strength. We find that the time-reversal symmetry breaking
impurities lead to gaps opening in the density of states and the transmission. The position
and shape of the gap depend on the driving frequency. Specifically in the fast driving case
shown in Fig. 20.2c we can see the gaps being formed at half the driving frequency. This
can be understood in the context of the Floquet band structures discussed earlier. The
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gaps close with increasing scalar potential and similar to the static impurity case [101] a flat
density of states is recovered. The transmission shown in Fig. 20.2 for three different driving
frequencies flattens slower than the density of states. Note here how the transmission does
not approach unity, so the potential part cannot screen the magnetic impurities in a way
that fully prevents backscattering.

(a) (b) (c)

Figure 20.2: Transmission T for (a) slow driving (hΩ/M = 0.2, nmax = 20), (b) resonant driving (hΩ/M = 2,
nmax = 6) and (c) fast driving (hΩ/M = 25, nmax = 2) as a function of energy. We show results
for different ratios of potential and magnetic part V/M and MS = 0.0 (blue), MS = 0.1 (orange),
MS = 0.5 (green), i.e., 0%/10%/50% of the magnetic part statically pointing along the edge. The
remainingmodel parameters are |M |/ℏνF = 0.2, andL/l∆ = 8.0 andwe averaged overNruns = 1000
impurity configurations. Adapted from paper III
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Outlook

In this thesis we investigated two very different low dimensional systems using different
methods. As paper I and II are the more recent work, this outlook naturally focuses around
topics and methods addressed in these works. Specifically, the general implementation of
the counting statistics for noise calculations in the QmeQ package can be used for many
other things in the future. Here it is worth noting that the implementation of the real
time diagrammatics counting statistics at the moment neglects coherences (which were not
present in the model we studied in this thesis). This limits the type of systems we can
investigate with this approach, but the inclusion of the off-diagonal corrections should be
straight forward.

The counting statistics implementation allows for easy access to the zero frequency noise
for QD systems. We have used this in the context of a single QD thermoelectric engine
in paper II. QmeQ is well suited to aid experimental efforts by modeling data. The gen-
eral implementation in QmeQ means we could perform calculations on more complicated
heat engine systems and investigate the TURs there. Setups one could think of would for
example be more complicated multi terminal heat engine devices [57, 187] or the double
QD setup from paper I operated as a heat engine. Furthermore, investigating the TURs
in a strong coupling regime or even in the Kondo regime, where higher order tunneling
plays an important role in the transport, is an interesting topic. In general TURs are a very
active topic of research within the quantum thermodynamics community, for example in
the search for bounds on the performance of thermal machines [71, 72].

In paper I we also investigated the dynamics of a QD system. Easy access to the kernel in
QmeQ also allows us to look at dynamics of noise and TURs for example in the metastable
regime, which could be a future direction. Another active area of research is quantum
reservoir computing [188, 189], where the dynamic of a complicated quantum system is
used to perform calculations. One idea for the realization of such a reservoir is a network
of QDs with random parameters. Using for example the chemical potentials as inputs and
(transient) currents as outputs, together with a single linear layer of artificial neurons, this
system can for example perform memory tasks. We have started to investigate this idea, but
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it is not part of this thesis. One could even go one step further and think about tuning the
system parameters in order to train the QD network to perform these tasks. This idea is then
closer to quantum neuromorphic computing and quantum extreme learning machines.

All in all, the developments in quantum thermodynamics and on QD systems promise
a better understanding of fundamental physics in the quantum regime and also possible
applications for quantum systems. With this thesis and the contained papers we aim to
contribute to this development.
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