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Abstract

Exceptional are the instances where explicit solutions to optimal control problems
are obtainable. Of particular interest are the explicit solutions derived for minimax
problems, as they provide a framework for addressing challenges involving adver-
sarial conditions and uncertainties. This thesis presents explicit solutions to a novel
class of minimax optimal control problems for positive linear systems with linear
costs, elementwise linear constraints in the control policy, and worst-case distur-
bances. We refer to this class of problems, in the absence of disturbances, as the
linear regulator (LR) problem. Two types of worst-case disturbances are considered
in this thesis: bounded by elementwise-linear constraints and unconstrained positive
disturbances. Using dynamic programming theory, explicit solutions to the Bellman
equation (in the discrete-time setting) and the Hamilton-Jacobi-Bellman equation
(in the continuous-time setting) are derived for both finite and infinite horizons. For
the infinite horizon case, a fixed-point method is proposed to compute the solution
of the HJB equation. Furthermore, a necessary and sufficient condition for minimiz-
ing the l1-induced gain of the system is derived and characterized by the disturbance
penalty in the cost function of the minimax problem. This condition characterizes
the solution of the l1−induced gain minimization problem and demonstrates that, if
a finite solution exists for the minimax problem under the presence of worst-case,
unconstrained and positive disturbances, the solution to the minimax setting reduces
to that of the LR problem in the absence of disturbances.

This thesis also analyzes the stabilizability and detectability properties of the LR
problem. Similar to the Linear-Quadratic Regulator (LQR) problem, the LR prob-
lem is shown to facilitate the stabilization of positive systems. A linear program-
ming formulation is introduced to compute the associated stabilizing controller, if
one exists. The scalability and practical advantages of this theoretical framework
for large-scale applications are demonstrated through its implementation in an op-
timal voltage control problem for a DC power network and in the management of a
large-scale water network.

The second important contribution of this thesis is addressing positive synchro-
nization on undirected graphs for homogeneous discrete and continuous-time pos-
itive systems. A static feedback protocol, derived from the Linear Regulator prob-
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lem, is introduced. The stabilizing policy is derived by solving the linear program-
ming formulation of the explicit solution to the LR problem under appropriate as-
sumptions. Necessary and sufficient conditions are provided to ensure the positivity
of each agent’s trajectory for all nonnegative initial conditions. The effectiveness of
this approach is illustrated through simulations on large regular graphs with varying
nodal degrees.

Throughout the thesis, we demonstrate how the results can be applied to prob-
lems over networks with positive dynamics. Our results pave the way for robust
networks that maintain stability and optimal performance despite adversarial condi-
tions. By leveraging explicit solutions to minimax optimal control and multi-agent
synchronization problems, this work provides a computationally efficient and scal-
able framework for controlling large-scale systems.
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Notation and symbols

Below is a list of frequently used symbols and notations that appear in this thesis.

Rn n-dimensional real space
Cn n-dimensional complex space
Zn n-dimensional integer space
Rn
+ nonnegative orthant

Rn×m all n×m real matrices
A ≥ 0 nonnegative matrix
A > 0 positive matrix
A ≫ 0 strictly positive matrix
diag(a1,a2, . . . ,an) diagonal n×n matrix with ai its diagonal entries
A⊤ transpose of a matrix A ∈ Rn×n

A−1 inverse of the matrix A
det(A) determinant of the matrix A ∈ Rn×n

ai j (i, j)-th entry of A ∈ Rn×n

In identity matrix of dimension n×n
σ(A) spectrum of A ∈ Rn×m

α(A) spectral abscissa of A ∈ Rn×m

ρ(A) spectral radius of A ∈ Rn×m

λi(A) i-th eigenvalue of A ∈ Rn×n

Re(λ ) real part of λ ∈ C
|A| entry wise absolute value of a matrix
1 column vector with unit entries
0 matrix or column vector with zero entries
⊗ Kronecker product

sign(x) =


{+1} if x > 0
{−1} if x < 0
[−1,+1] if x = 0

The set-valued signature of a scalar x.
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1
Introduction

Control theory plays a crucial role in maintaining the stability and performance of
dynamic systems, especially in the presence of disturbances and uncertainties. Dis-
turbances, such as environmental variations, sensor noise, or unexpected inputs, can
disrupt system behavior and reduce performance. Likewise, model uncertainties,
such as inaccuracies in the system’s mathematical representation or time-varying
parameters, pose significant challenges to the reliability of controllers designed for
ideal conditions. In this thesis, these issues are addressed by deriving explicit so-
lutions to a novel minimax optimal control problem class, with optimal controllers
that not only stabilize the system but also remain effective under worst-case dis-
turbances. The challenges posed by disturbances and uncertainties are particularly
pronounced in large-scale systems. Examples include power grids, transportation
networks and sensor networks. For such systems, computational feasibility becomes
a critical consideration. Solving high-dimensional optimal control problems or im-
plementing complex controllers can become unreasonably expensive or impractical.
Therefore, the existence of explicit solutions, which enable efficient computation
and implementation even as the system scales, is considered invaluable, especially
when working with this type of system dynamics.

An important feature of the dynamical systems studied in this thesis are the
positive dynamics, a class of systems where all state variables remain non-negative
under non-negative initial conditions and inputs. These systems naturally arise in
applications such as population dynamics, epidemiology, chemical processes, and
networked systems like traffic or communication networks. Their inherent non-
negativity aligns with physical constraints in many real-world scenarios, mak-
ing their study particularly relevant. Furthermore, positive systems exhibit special
mathematical properties that simplify the analysis and design of control strategies.
Throughout this thesis, it is demonstrated how these properties make them particu-
larly suitable for deriving scalable and robust control solutions.

The final contribution of this thesis applies the theoretical framework devel-
oped to the multi-agent synchronization problem. This problem aims to achieve
coordinated behavior among a group of agents, such as robots, drones, or com-
putational nodes, by ensuring that they evolve according to a common dynamic
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1.1 Minimax problems in control theory

behavior while exchanging information through a communication network. This
problem is fundamental to the efficient operation of modern large-scale systems, in-
cluding autonomous transportation, smart power grids, and decentralized networks,
which are essential in today’s interconnected society. A static feedback protocol
design for large-scale positive multi-agent systems is proposed, based on the LR
framework, including a condition for the positivity of all state trajectories, which
is particularly relevant in applications where variables represent inherently positive
quantities, such as population dynamics, epidemic spread, or resource allocation in
decentralized networks.

1.1 Minimax problems in control theory

Minimax optimal control problems are widespread across control theory and engi-
neering disciplines, providing a framework for addressing challenges characterized
by competitive dynamics and uncertainties. Their formulation often involves solv-
ing the Isaacs equation [Isaacs, 1965], a fundamental partial differential equation
governing differential games and worst-case control strategies. These problems are
particularly relevant in areas such as robust control, multi-agent systems and game
theory, where it finds direct application in H∞ robust control [Başar, 1984; Başar,
1989; Başar and Bernhard, 1989; Bernhard, 1991; Başar, 1991; Haurie and Zac-
cour., 2005]. Tackling such problems presents significant difficulties, particularly
when we deal with large-scale systems, due to the computational complexity and
dimensionality of the associated optimization problems.

The study of optimal control problems with nonnegative cost dates back
to [Strauch, 1966; Blackwell, 1965; Blackwell, 1967]. In particular, this work draws
inspiration from the unified dynamic programming framework developed by D.
Bertsekas [Bertsekas, 2005; Bertsekas, 2017]. Despite significant advancements in
the theory of dynamic programming, obtaining exact solutions often remains chal-
lenging. A notable exception is the linear quadratic regulator problem, as presented
in the pioneering work of Kalman [Kalman, 1960].

Linear quadratic regulator problem (LQR)
Before reviewing minimax problems from the literature, we will briefly revisit the
classical problem of LQR. The linear quadratic regulator (LQR) is a foundational
problem in control theory that aims to determine the optimal control policy for a lin-
ear dynamic system to minimize a quadratic cost function. This framework achieves
stability and performance objectives by balancing state regulation with control ef-
fort, using penalties on both states and controls. The remainder of this section re-
views the infinite-horizon setting of the LQR problem. For the finite-horizon sce-
nario, we refer the reader to [Bertsekas, 2007, Ch. 3].
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Chapter 1. Introduction

(a) Abstract picture of the smart grid

(b) Transportation network

(c) Large-scale generic water network (d) Sketch of a residential heating network

Figure 1.1 Examples of large-scale network systems.

(See List of Figures for image sources.)
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1.1 Minimax problems in control theory

The dynamics of the LQR problem are linear and can be described by{
x(t +1) = Ãx(t)+ B̃u(t) Discrete-Time

ẋ(t) = Ax(t)+Bu(t) Continuous-Time,
(1.1)

where x is the n-dimensional vector of states and u is the m-dimensional control
variable. The quadratic cost function is given by

∞

∑
t=0

g(x(t),u(t)) Discrete-Time
∞∫
0

g(x(t),u(t))dt Continuous-Time

with

g(x,u) = x⊤Qx+u⊤Ru

where Q∈Rn×n is the state weighting matrix and R∈Rm×m is the control weighting
matrix.

The optimal policy and cost of the LQR problem can be found using several
techniques such us dynammic programming (DP) [Bellman, 1957], [Bertsekas,
2005] or Pontryagin’s Maximum Principle1. The derivations for the solution to
the novel class of problems that are presented in this thesis are mainly based on
dynamic programming. The following derivations of the explicit solutions to the
infinite-horizon LQR problem are further explained in Section 2.3, where the gen-
eral dynamic programming (DP) theory is reviewed, and the Bellman equation is
introduced in more detail.

In the infinite horizon case, the Bellman equation takes the following form{
J̃(x) = minu[g(x,u)+ J̃( f̃ (x,u))] Discrete-Time

0 = minu[g(x,u)+ ∂J
∂x

⊤
f (x,u)] Continuous-Time

where f̃ (x,u) = Ãx+ B̃u, f (x,u) = Ax+Bu respectively.
Using as candidate solutions J̃(x) = x⊤P̃x and J(x) = x⊤Px, the Bellman equa-

tion for the LQR problem in infinite horizon results in the following algebraic equa-
tions

P̃ = Ã⊤P̃Ã− Ã⊤P̃B̃K̃ +Q (1.2)

0 = PA+A⊤P−PBK +Q (1.3)

and the optimal feedback laws u(t) = K̃x(t) and u(t) = Kx(t) where

K̃ = (R+ B̃⊤P̃B̃)−1B̃⊤P̃Ã (1.4)

K = R−1B⊤P.

1 Recall that while the Bellman equations in DP theory are both necessary and sufficient conditions
for optimality, the maximum principle is only a necessary condition for a controller to be optimal.
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Chapter 1. Introduction

An important extension of the LQR problem arises when disturbances are in-
troduced in the system dynamics, leading to a minimax linear quadratic regulator
formulation. In this setup, the controller seeks to minimize the cost function, while
the disturbances try to maximize it, resulting in a robust control strategy.

EXAMPLE 1—MINIMAX LQR IN INFITINE HORIZON

Assume that the dynamics of the LQR problem (1.1) are affected by the worst-
case disturbance ω ∈ Rl

f (x,u,ω) = Ãx+ B̃u+ F̃ω.

Let the quadratic cost function (1.1) be

g(x,u,ω) = g(x,u)− γ
2
ω

⊤
ω.

Then, substituting the value function J(x) = x⊤Px in

J(x) = min
u

[g(x,u,ω)+ J( f (x,u,ω))]

0 = min
u

[
g(x,u,ω)+

∂J
∂x

⊤
f (x,u,ω)

]

leads to the optimal policies u = −K̃x, u = −Kx where feedback matrices are ex-
actly (1.4) but where P̃,P in (1.2) and (1.3) this time result from the equations

P̃ = Ã⊤P̃Ã− Ã⊤P̃B̃K̃ +Q︸ ︷︷ ︸
(1.2)

− 1
γ2 Ã⊤P̃F̃F̃⊤P̃Ã

0 = A⊤P+PA−PBK +Q︸ ︷︷ ︸
(1.3)

− 1
γ2 PFF⊤P. 2

Minimax LQR problems can be categorized based on the nature of the disturbances
and the uncertainty in system parameters. In this thesis, deterministic worst-case
disturbances are studied. In these scenarios, the disturbance is modeled as an ad-
versarial input that maximizes the system’s cost. The control law is designed to
counteract the worst-case effects of this disturbance, ensuring robust performance.
This formulation of the LQR problem closely aligns with the principles of H∞ con-
trol, where the controller seeks to minimize the H∞ norm of the closed-loop transfer
function to achieve robustness against bounded disturbances [Başar and Bernhard,
1991; Zhou et al., 1996].

Another prominent category involves stochastic minimax problems [Athans,
1971; Başar and Olsder, 1998], which incorporate probabilistic uncertainty. Here,
the disturbances are modeled as random processes, and the objective is to minimize
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1.2 Problem Formulation

the expected worst-case cost. This approach often appears in robust control formu-
lations blending ideas from H∞ and Linear Quadratic Gaussian (LQG) control. A
more generalized formulation considers parametric uncertainties in the system dy-
namics. This leads to a robust optimization problem where the control law must
stabilize the system and achieve desired performance for all possible values of the
uncertain parameters within a given set. Techniques such as linear matrix inequali-
ties (LMIs) are commonly employed in these problems to compute robust stabiliz-
ing controllers [Boyd et al., 1994]. Hybrid approaches like mixed H2/H∞ control
have been developed to address scenarios where both robustness (worst-case opti-
mization) and efficiency (mean-square performance) are critical [Doyle et al., 1988].
These methods combine the benefits of robust control with traditional LQR formu-
lations to achieve a balance between robustness and optimality. The probabilistic
setting is beyond the scope of this work.

As previously mentioned, this thesis focuses on a novel class of deterministic
minimax problems. This setup enables the design of robust controllers that ensure
performance and stability, even in worst-case scenarios. Assume that the distur-
bance ω , which enters the system in Example 1, is unbounded. The output in Ex-
ample 1 is defined as follows

z(t) = x(t)⊤Qx(t)+u(t)⊤Ru(t)− γ
2w(t)⊤w(t).

In these scenarios, the LQR problem transforms into an H∞−type control for-
mulation, where the goal is to compute an optimal controller that minimizes the
worst-case l∞−induced gain, ensuring robust performance against unbounded ex-
ternal perturbations.

DEFINITION 1
The l∞−induced gain from disturbance ω(t) to output z(t) is the maximum
energy gain from ω(t) to z(t) and is defined as

γ∞ = sup
ω ̸=0

∥z(t)∥
∞

∥ω(t)∥
∞

.

It represents the worst-case amplification of disturbances ω through the
system to the output z. 2

1.2 Problem Formulation

Recent research [Rantzer, 2022; Li and Rantzer, 2024] proposes a very intriguing
problem class in discrete-time for positive systems with nonnegative linear costs.
This problem setting, which will be introduced next, is denoted throughout this work
as The Linear Regulator problem (LR). In both quadratic (LQR) and linear nonneg-
ative cost settings (LR), the optimal cost is determined by an algebraic equation.
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Chapter 1. Introduction

For large-scale systems, when the linear quadratic approach is chosen, the algebraic
equation is the Riccati equation, and the number of unknown parameters grows
quadratically with the state dimension. However, in the LR setting, the growth rate
of the unknown parameters in the algebraic equation is linear with respect to the
dimension of the state. This difference becomes particularly significant when the
state dimension becomes large.

The Linear Regulator Problem (LR)
The system dynamics for the LR problem in [Rantzer, 2022] are linear and time-
invariant and can be described by

x(t +1) = Ax(t)+Bu(t) (1.5)

where x ∈ Rn
+ is the n−dimensional vector of states and u ∈ Rm the m−dimensional

control variable, A ∈ Rn×n, B ∈ Rn×m. Furthermore, it is assumed that the control
policy is subject to elementwise linear constraints, given by |u| ≤Ex with E ∈Rm×n

+ .
In addition, to guarantee the positivity of the closed-loop system’s dynamics, it is
required that A ≥ |B|E.

The cost function of the LR problem is linear and is defined as

J =
∞

∑
t=0

[
s⊤x(t)+ r⊤u(t)

]
where s ∈ Rn, r ∈ Rm are such that s ≥ |E⊤r|. This assumption guarantees that
the cost g(u,x) = s⊤x+ r⊤u is nonnegative, and the problem is well-posed [Li and
Rantzer, 2024]

f (x,u) ∈ X , ∀x ∈ X , u ∈U(x).

Moreover, both s and r influence the detectability and stabilizability properties
of the problem class. This is further analyzed in Chapter 4.

Similar to the LQR problem, the objective is to minimize the cost with respect
to {u(t)}∞

t=0, resulting in the optimal controller

K ∈

 sign(r1 + p⊤B1)E1
...

sign(rm + p⊤Bm)Em

 . (1.6)

where p satisfies

p = s+A⊤p−E⊤|r+B⊤p|. (1.7)

Equation (1.7) serves as the counterpart to the discrete algebraic Riccati equation in
the LQR problem setting. Notably, in the LR framework, the number of unknown
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1.2 Problem Formulation

parameters corresponds to the dimension of the vector p whereas in the LQR frame-
work, it corresponds to the dimension of the matrix P. Consequently, as the system
dynamics scale, the number of unknown parameters in the LR setting grows linearly,
offering a significant advantage in scalability.

The continuous-time formulation of this setting is derived in Chapter 3. How-
ever, the primary objective of this thesis is to extend the entire linear regulator prob-
lem class to encompass its worst-case minimax control framework in both discrete
and continuous time. This expanded formulation is referred to as the Minimax Lin-
ear Regulator Problem throughout the document.

The Minimax Linear Regulator Problem

Figure 1.2 Block Diagram of the closed loop system dynamics.

The setup for the minimax linear regulator problem is represented in Figure 1.2
for the continuous-time scenario. An analogous representation can be obtained for
the discrete-time setting. The diagram can be described as the continuous-time lin-
ear time invariant state-space model

Gµ :

{
ẋ = Ax+Bµ(x)+Fw+Hv
z = s⊤x+ r⊤µ(x)− γγγ⊤w−δ⊤v.

(1.8)

Denote {
ẋ Continuous-time case
x(t +1) Discrete-time case

where x is the n-dimensional vector of state variables, u the m-dimensional con-
trol variable, w the l-dimensional disturbance, v the c-dimensional disturbance,
A ∈ Rn×n, B ∈ Rn×m, F ∈ Rn×l , H ∈ Rn×c, µ is any, potentially nonlinear, control
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Chapter 1. Introduction

policy, z is a target output variable representing the system’s performance, s ∈ Rn

and r ∈ Rm. Assuming zero initial conditions, the system dynamics (1.8) can be
seen as an operator Gµ from the disturbance w to the output z.

This thesis considers two distinct types of deterministic disturbances:

1. Disturbances bounded by elementwise linear constraints:

|v(t)| ≤ Gx(t), G ∈ Rc×n
+

which can be interpreted as model errors.

2. Unconstrained nonnegative disturbances:

w(t)≥ 0

which can be understood as external disturbances that are inherently nonnega-
tive.

The cost function of the minimax linear regulator problem is also linear.

J =


T
∑

t=0

[
s⊤x(t)+ r⊤u(t)− γγγ⊤w(t)−δ⊤v(t)

]
Discrete-Time

T∫
0

[
s⊤x(τ)+ r⊤u(τ)− γγγ⊤w(τ)−δ⊤v(τ)

]
dτ Continuous-Time

where s ∈ Rn, r ∈ Rm, γγγ ∈ Rl and δ ∈ Rc. The objective is to minimize the cost with
respect to u(t) while maximizing with respect to w(t) and(or) v(t).

Observe that, because we are dealing with positive systems, linear cost functions are
particularly suitable, as variables such as flow, population, or inventory are inher-
ently non-negative. In these scenarios, penalizing deviations directly with a linear
term aligns naturally with the system’s physical constraints and provides a straight-
forward interpretation of costs related to the use of resources or penalties for exceed-
ing limits. In contrast, linear quadratic cost functions, which penalize the square
of deviations and control efforts, emphasize dynamic trade-offs and smooth per-
formance. Quadratic terms inherently penalize larger deviations more heavily than
smaller ones, which may not always align with the characteristics of certain positive
systems. For instance, in systems like water distribution networks or supply chains,
the linear cost captures more accurately the proportional relationship between flow
rates or inventory levels and the associated penalties or resource expenses.

While both cost functions have their advantages, the linear cost function can
be particularly well-suited for positive systems due to its compatibility with the
systems’ natural properties. Additionally, its linear structure simplifies computation,
enhancing scalability in large-scale settings.
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1.2 Problem Formulation

Objective
This thesis focuses on extending the linear regulator framework to the minimax set-
ting, addressing two distinct types of disturbances. Building on the discrete-time
LR framework presented in [Rantzer, 2022], solutions for the continuous-time set-
ting are derived and investigated. The contributions are motivated and illustrated
by their computational efficiency and applicability to large-scale systems. In Chap-
ter 3, dynamic programming is employed to derive closed-form solutions to the
Bellman and Hamilton-Jacobi-Bellman equations within the multi-disturbance min-
imax linear regulator framework. Furthermore, the relationship between the sys-
tem’s l1−induced norm and the existence of finite solutions to the optimal control
problem is thoroughly examined (see Chapter 3). Subsequently, methods for solv-
ing the Bellman-HJB equation are explored. In the multi-disturbance setting, stan-
dard value iteration and a fixed-point method are proposed. For scenarios where the
system is influenced solely by unconstrained disturbances, a linear programming
formulation is established and discussed in Chapter 4. Finally, the application of
this framework is demonstrated in the synchronization of positive multi-agent sys-
tems. A synchronization protocol is proposed for both continuous and discrete-time
homogeneous agents operating within upper and lower-bounded families of undi-
rected graphs (Chapter 5).
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Chapter 1. Introduction

1.3 Outline and contributions

The outline of this thesis and its key contributions can be summarized as follows:

Chapter 2: Preliminaries.
This chapter presents the technical preliminaries on positive systems, dynamic pro-
gramming, graph theory, and the synchronization problem for multi-agent systems
that are relevant to this thesis. No contributions of the author appear in this chapter.

Chapter 3: Minimax Linear Regulator for Positive Systems.
The first contribution of this thesis introduces a novel class of worst-case mini-
max optimal control problems. In [Rantzer, 2022], a discrete-time framework with
linear cost, linear dynamics, and elementwise constraints on the control policy is
introduced. This chapter extends the problem to a multi-disturbance worst-case
minimax setting. Solutions for the extended problem are derived for both discrete
and continuous-time settings, covering finite and infinite horizons. These solutions
are obtained using dynamic programming, demonstrating that the optimal con-
trol policy, among all admissible policies, is linear. In the discrete-time setting,
the policy is computed through standard value iteration, while in the continuous-
time case, a fixed-point method is proposed to solve the Hamilton-Jacobi-Bellman
equation. Additionally, the feedback matrix of the optimal controller inherits the
sparsity structure of the constraint matrix in the problem formulation. This prop-
erty allows for structural constraints in controller design and facilitates application
to large-scale systems. An analysis of the l1−induced gain of the system and its
characterization through the disturbance penalty in the cost function is introduced.
Examples on the scalability of this theoretical framework are provided through an
optimal voltage control problem in a DC power network and a line-shaped water
flow network.

The results in Chapter 3 have been published/submitted to:

• A. Gurpegui, E. Tegling, A. Rantzer. Minimax Linear Optimal Control of
Positive Systems. IEEE Control Systems Letters and American Control con-
ference 2024 (joint submission), Vol. 7, pp. 3920 - 3925, Dec 2023.

• A. Gurpegui, E. Tegling, A. Rantzer. A Minimax Optimal Controller for Pos-
itive Systems. Presented at 26th International Symposium on Mathematical
Theory of Networks and Systems (Extended Abstract [Gurpegui et al., 2024]),
Cambridge, UK, Aug 2024.

• A. Gurpegui, M. Jeeninga, E. Tegling, A. Rantzer. Minimax Linear Optimal
Control of Positive Systems. Submitted to IEEE Transactions on Automatic
control.
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1.3 Outline and contributions

Chapter 4: Linear Programming Formulation of the LR Problem.
This chapter studies the stabilizability and detectability properties of the linear reg-
ulator (LR) problem and establishes a priori detectability conditions for the system.
Additionally, a linear programming formulation is proposed to solve the Bellman
equation for the LR problem in continuous time, under suitable assumptions. This
formulation is also applicable to the minimax linear regulator setting with uncon-
strained disturbances, as the resulting solution, provided a finite solutions exist,
coincides with the optimal setup in the absence of disturbances. The latter is a
result presented in Chapter 3.

Chapter 4 is mainly based on

• A. Gurpegui, M. Jeeninga, E. Tegling, A. Rantzer. Minimax Linear Optimal
Control of Positive Systems. Submitted to IEEE Transactions on Automatic
control.

Chapter 5: Synchronization of Positive Multi-agent Systems.
Inspired by the ARE-based synchronization protocol presented in [Saberi et al.,
2022], Chapter 5 introduces a static feedback protocol derived from the algebraic
equation of the Linear Regulator problem. This protocol achieves positive syn-
chronization in continuous and discrete-time homogeneous multi-agent systems
operating on undirected graph families with appropriate eigenvalue bounds. Addi-
tionally, the chapter provides sufficient and necessary conditions to guarantee that
each agent’s trajectory remains positive for all nonnegative initial conditions.

The results in Chapter 5 have been submitted to:

• A. Gurpegui, M. Jeeninga, E. Tegling, A. Rantzer. A. Gurpegui, E. Tegling,
A. Rantzer. Linear Regulator-Based Synchronization of Positive Multi-Agent
Systems. Submitted to the European Control Conference, Thessaloniki,
Greece, June 2025.

• A. Gurpegui, M. Jeeninga, E. Tegling, A. Rantzer. A. Gurpegui, E. Tegling,
A. Rantzer. Linear Regulator Based Synchronization of Positive Multi-Agent
Systems in Discrete-Time. Submitted to the 10th IFAC Conference on Net-
worked Systems, Hong Kong, China, June 2025.

Chapter 6: Conclusions. In this chapter, we summarize the key findings of this
thesis and discuss their implications, emphasizing the computational tractability of
the proposed theoretical framework for large-scale positive systems and its applica-
tions to multi-agent system synchronization. Additionally, we examine the limita-
tions of our results and suggest potential directions for future research.
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2
Preliminaries

In this chapter, the mathematical background relevant to this thesis is reviewed and
organized into sections that form the foundation for developing the contributions
of this thesis. It is important to note that this chapter does not contain any original
contributions by the author.

The first section focuses on positive system theory, beginning with the review
of the Perron Frobenius theorem for nonnegative and strictly positive matrices. This
theory forms the basis for understanding the structural properties of positive sys-
tems and their implications in optimal control. The second section addresses dy-
namic programming theory, presenting key results and extending them to minimax
problems in both discrete and continuous time. These provide the basis for analyz-
ing the minimax problem class and are explicitly used in the proof of the results of
Chapter 3. Building on these foundations, the chapter reviews key concepts for the
introduction of the LR-based synchronization protocol. It continues with a back-
ground section on dynamical systems over general graphs, providing the notation
and necessary insights for describing dynamical systems in networked structures.
This is followed by an introduction to the multi-agent system dynamics that are
presented in this thesis. The chapter concludes by reviewing the state synchroniza-
tion problem, presenting standard definitions and the theoretical results required to
understand the derivation of the synchronization protocol introduced in Chapter 5.

2.1 Definitions for positive system theory

Some of the definitions and conditions of positivity for linear system presented later
in the thesis require the notion of positivity of matrices and vectors.

DEFINITION 2—NONNEGATIVE MATRIX
A matrix A ∈ Rn×m is nonnegative, A ≥ 0, (equivalently A ∈ Rn

+) if all its entries are
nonnegative ai j ≥ 0. 2
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2.2 Positive systems

DEFINITION 3—POSITIVE MATRIX
A matrix that A ∈ Rn×m is positive, A > 0, if all its entries are nonnegative and there
exists at least one entry ai j that is strictly positive ai j > 0. 2

DEFINITION 4—STRICTLY POSITIVE MATRIX
A matrix that A∈Rn×m is strictly positive, A≫ 0, if all its entries are strictly positive
ai j > 0. 2

DEFINITION 5—POSITIVE (NEGATIVE) DEFINITE MATRIX

A matrix A∈Rn×m is said to be positive(negative) definite A≻ 0 (A≺ 0) if x⊤Ax> 0
(x⊤Ax < 0) for all x ∈ Rn such that x ̸= 0. 2

DEFINITION 6—POSITIVE (NEGATIVE) SEMI-DEFINITE MATRIX
A matrix A ∈ Rn×m is said to be positive(negative) semi-definite, A ⪰ 0 (A ⪯ 0) if
x⊤Ax ≥ 0 (x⊤Ax ≤ 0) for all x ∈ Rn such that x ̸= 0. 2

Along these lines, we say that a matrix A∈Rn×m is strictly greater than a matrix B∈
Rn×m, denoted by A ≫ B if all the elements ai j are greater than the corresponding
elements of bi j, i.e., ai j > bi j for all i, j. If all the elements of A are greater than or
equal to the corresponding elements of B, but at least one element of A is greater
than the corresponding element in B, we say that A is greater than B denoted by A >
B. Similarly, if all the elements of A are greater than or equal to the corresponding
elements of B, then we say that A is greater than or equal to B, denoted by A ≥ B,
which is also satisfied when A = B. Analogous definitions and notations can be
given also for n−dimensional vectors with n ≥ 0. When dealing with scalars, note
that strict positivity a ≫ 0 coincides with positivity a > 0.

2.2 Positive systems

Positive dynamics have gained attention in control theory literature because of the
many technological and physical phenomena that can be captured by positive dy-
namics. Classical books on the topic are [Berman, 1994] and [Luenberger, 1979].
In the latter, David Luenberger in 1979 devotes a chapter to positive dynamical
systems, which is considered by many the initiation of “Positive System Theory.”
Significant research has been conducted to represent natural extensions of the class
of positive systems, for instance positive systems with delays [Ebihara et al., 2017],
positive switched systems [Blanchini et al., 2015a] and monotone systems [Smith,
1995]. Positive systems’ theory has been useful to describe dynamical systems
in a wide range of applications, such as, biology, ecology, physiology and phar-
macology [Carson and Cobelli, 2001; Coxson and Shapiro., 1987; Haddad and
Chellaboina., 2005; Haddad et al., 2010; Hernandez-Vargas et al., 2011; Jacquez,
1974], thermodynamics [Blanchini et al., 2015b; Haddad et al., 2010], epidemi-
ology [Rami et al., 2013; Hernandez-Vargas and Middleton, 2013; Moreno et al.,
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Chapter 2. Preliminaries

2002], econometrics [Nieuwenhuis, 1986], filtering and charge routing networks
or power systems [Benvenuti and Farina., 1996; Benvenuti and Farina, 2001; Ben-
venuti et al., 2001]. One of the main advantages of positive systems is that stability
can be verified using linear Lyapunov functions [Blanchini and Giordano, 2014],
[Rantzer, 2015], making this class of systems more tractable in a large scale setting
because of their computational scalability [Rantzer and Valcher, 2021]. The purpose
of this section is to establish a theoretical foundation that elucidates why positive
system theory serves as a fundamental component of the theoretical framework pre-
sented in this thesis.

The Perron Frobenius theorem
Among the various properties of positive systems, the one associated with the dom-
inant mode is particularly relevant, as it often enables a significant simplification of
stability analysis. This property is expressed through a series of results known as
the Perron-Frobenius theorems. The original work by Perron, in which these results
for positive matrices were first introduced, can be found in [Perron, 1907]. The
Perron-Frobenius theorems are presented here as stated in [Fiedler, 1986].

Perron Theorem for strictly positive matrices If A is a strictly positive
square matrix, then ρ(A) is a positive eigenvalue of A and there is only one
linearly independent eigenvector belonging to the eigenvalue ρ(A). More-
over, this eigenvector may be chosen to be positive [Fiedler, 1986, Lem.
Perron].

Frobenius extended Perron’s results to nonnegative irreducible matrices
in [Frobenius, 1912].

DEFINITION 7—REDUCIBLE AND IRREDUCIBLE MATRIX
A matrix A ∈ Rn×n is reducible if there exists a permutation matrix P such that

PAP−1 =

[
A11 A12
0 A22

]
where A11, A22 are square matrices. A matrix A ∈ Rn×n is irre-

ducible if it is not reducible. 2

Perron Frobenius Theorem for nonnegative matrices Let A be a nonneg-
ative square matrix order n > 0. Then ρ(A) is an eigenvalue of A and there
exists a nonnegative eigenvector of A belonging to this eigenvalue [Fiedler,
1986, Thm. 4.11].
If A is irreducible, then ρ(A) is a simple positive eigenvalue of A and there
is a positive eigenvector belonging to the eigenvalue ρ(A). No nonnegative
eigenvector belongs to any other eigenvalue of A [Fiedler, 1986, Thm. 4.8].

REMARK 1
The eigenvalue ρ(A) is commonly known as the Perron root of A, while the corre-
sponding eigenvector is referred to as the Perron vector of A. 2

24



2.2 Positive systems

The remainder of the chapter is dedicated to reviewing the main results from posi-
tive systems theory presented in [Farina and Rinaldi, 2000; Kaczorek, 2002], which
are relevant to the optimal control framework proposed in this thesis. The results
for continuous-time positive systems are introduced first, followed by those for
discrete-time positive systems.

Continuous-time positive systems
Consider the continuous-time linear system described by

ẋ(t) = Ax(t)+Bu(t), x(0) = x0 (2.1)
y(t) =Cx(t)+Du(t) (2.2)

where x(t) ∈ Rn is the state variable at time t, u(t) ∈ Rm the input vector, y(t) ∈ Rp

is the output vector, A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n, D ∈ Rp×m.
Linear systems have two definitions of positivity: external and internal. In this

thesis, we primarily focus on internal positivity, which we will refer to simply as
positivity. For context, we also review the notion of external positivity.

DEFINITION 8—CONTINUOUS-TIME EXTERNALLY POSITIVE LINEAR SYSTEM
The continuous-time linear system (2.1) is called externally positive if and only if
for every nonnegative input u(t) ∈ Rm

+ and initial state x0 = 0 its output is nonnega-
tive for all t ≥ 0. 2

It is important to emphasize that the positivity of a linear system depends on the
basis chosen to represent inputs and outputs. In general, determining whether a basis
exists that ensures a given linear system is positive is not straightforward. However,
in most practical applications, the natural choice of basis also turns out to be the
appropriate one.

LEMMA 1
A continuous-time linear system (2.1) is externally positive if and only if its impulse
response is nonnegative [Kaczorek, 2002, Thm 2.1]. 2

DEFINITION 9—METZLER MATRIX
A square matrix A ∈ Rn×n is Metzler if A+αI ≥ 0 for some α ∈ R. 2

Next, we formally introduce the definition of a continuous-time (internally) pos-
itive system, which is the notion of positivity for linear systems that is applied
throughout our results in this thesis.

DEFINITION 10—CONTINUOUS-TIME POSITIVE LINEAR SYSTEM
The system (2.1), (2.2) is called (internally) positive system if and only if for any
nonnegative initial state x0 ∈ Rn

+ and for every nonnegative input u ∈ Rm
+, its state

and output are nonnegative. 2
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Chapter 2. Preliminaries

Note that while the definition of positivity requires the output to be nonnegative for
every nonnegative initial state, the definition of external positivity only requires the
output to be nonnegative when x0 = 0.

COROLLARY 2
Every continuous-time (internally) positive system is also externally positive. 2

Observe that the reverse is not true. It is possible to determine formally whether a
linear system is positive through the following results.

LEMMA 3
The continuous-time system (2.1), (2.2) is internally positive if and only if the ma-
trix A is a Metzler, B ≥ 0, C ≥ 0, D ≥ 0 [Farina and Rinaldi, 2000, Thm. 2]. 2

EXAMPLE 2—[KACZOREK, 2002]
Given the circuit in Figure 2.1 with known resistances R1, R2, R3, inductances L1,

R1 R2R3

i1 i2
L2L1

i1 − i2

e2e1

Figure 2.1

L2 and source voltages e1 = e1(t), e2 = e2(t). The currents i1 = i1(t), i2 = i2(t)
in the inductances are chosen as the state variables and the output is y = y(t) =[
R1i1 R2i2

]⊤. Using the Kirchhoff law we obtain the equations

R3(i1 − i2)+R1i1 +L1
di1
dt

= e1

R3(i2 − i1)+R2i2 +L2
di2
dt

= e2.

The equations can be rewritten as

d
dt

[
i1
i2

]
= A

[
i1
i2

]
+B

[
e1
e2

]
; y =C

[
i1
i2

]
where

A =

[
−R1+R3

L1

R3
L1

R3
L2

−R2+R3
L2

]
; B =

(
1
l1

0
0 1

L2

)
; C =

[
R1 0
0 R2

]

26



2.2 Positive systems

It follows that A is Metzler and B and C has nonnegative entries. Thus, the system
is (internally) positive. 2

Stability of continuous-time positive systems
Consider a continuous-time positive system described by

ẋ = Ax, x(0) = x0 (2.3)

where A ∈ Rn×n is Metzler. The solution of (2.3) is

x(t) = eAtx0. (2.4)

DEFINITION 11
The positive system (2.3) is asymptotically stable if and only if the equation (2.4)
satisfies that

lim
t→∞

x(t) = 0 ∀x0 ∈ Rn
+. 2

Next, necessary and sufficient conditions for the asymptotic stability of a
continuous-time linear system are reviewed.

LEMMA 4
The positive system (2.3) is asymptotically stable if and only if all eigenvalues
λ1,λ2, . . . ,λn, such that det[Inλi −A] = 0 for all i = 1, . . . ,n of the Metzler matrix A
have negative real parts [Kaczorek, 2002, Thm. 2.7]. 2

LEMMA 5
The positive system (2.3) is asymptotically stable if and only if all coefficients αi
i = 0,1, . . . ,n−1 of the (characteristic) polynomial

det[sI −A] = sn +αn−1sn−1 + · · ·+α1s+α0

are positive i.e., αi > 0 [Kaczorek, 2002, Thm. 2.10]. 2

LEMMA 6
The positive system (2.3) is unstable if at least one diagonal entry of the matrix A is
positive [Kaczorek, 2002, Thm. 2.10]. 2

DEFINITION 12—HURWITZ
A square matrix A ∈ Rn×n is Hurwitz if all its eigenvalues have strictly negative real
parts. In other words, Re(λ (A))< 0, for all λ ∈ spec(A). 2

COROLLARY 7
A linear system of the form (2.3) is asymptotically stable if its state matrix A∈Rn×n

is Metzler and Hurwitz. 2
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The equilibrium points of asymptotically stable continuous-time systems are
now characterized, as they allow for the derivation of additional stability properties
for continuous-time positive systems.

DEFINITION 13
A vector x∗ satisfying the condition ẋ = 0 is called the equilibrium point of the
continuous-time system (2.3). 2

Consider the continuous-time single-input system

ẋ = Ax+bu (2.5)

with a constant positive input û > 0. Let x∗ be the equilibrium point of the system.
Then (2.5) gives

Ax∗+bû = 0. (2.6)

By Lemma 4, if the positive system (2.5) is asymptotically stable then all eigenval-
ues of the system have negative real parts and det(A) ̸= 0. In this case the equilib-
rium point is given by

x∗ =−A−1bû.

LEMMA 8
The equilibrium point x∗ of an asymptotically stable positive system (2.5) for a
constant input û > 0 is positive, i.e. x∗ > 0 if b > 0. Similarly, x∗ is strictly positive
if b is also strictly positive [Kaczorek, 2002, Thm. 2.11]. 2

The properties of continuous-time positive systems that are relevant to this thesis,
based on the theory reviewed in this subsection, are summarized in the following
corollary.

COROLLARY 9— [RANTZER AND VALCHER, 2018B]
Let A ∈ Rn×n be a Metzler matrix. Then the following properties are equivalent:

(i.) A is Hurwitz.

(ii.) There exists a vector x ≫ 0 such that Ax ≪ 0.

(iii.) There exists a vector p ≫ 0 such that p⊤A ≪ 0.

(iv.) There exists a diagonal matrix P ≻ 0 such that A⊤P+PA ≺ 0.

(v.) −A−1 exists and has nonnegative entries. 2
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2.2 Positive systems

EXAMPLE 3
Consider the single input system system (2.5) with

A =

[
−a c
d −b

]
; B =

[
β1
β2

]
; û = γ,

where a,b,c,d,β1,β2,γ > 0 and ab− cd > 0. Since

det[sI −A] = s2 +(a+b)s+ab−dc = 0,

by Lemma 5 the system is asymptotically stable. Moreover, using equation (2.2) it
is possible to obtain

x∗ =−A−1bû =−
[
−a c
d −b

]−1 [
β1
β2

]
γ =

1
ab−dc

[
b c
d a

][
β1
β2

]
γ

=
1

ab−dc

[
bβ1 + cβ2
dβ1 +aβ2

]
γ ≫ 0. 2

Discrete-time positive systems
Consider the discrete-time linear system

x(t +1) = Ax(t)+Bu(t) (2.7)
y(t) =Cx(t)+Du(t) (2.8)

where x(t) ∈ Rn is the state variable at the discrete time instant t ∈ Z+, u(t) ∈ Rm is
the input vector, y(t) ∈ Rp, A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n, D ∈ Rp×m.

Analogously to the continuous-time setting two definitions of positive linear
systems are introduced for the discrete-time setting.

DEFINITION 14—DISCRETE-TIME EXTERNALLY POSITIVE LINEAR SYSTEM
The discrete-time linear system in equation (2.7) is called externally positive if

and only if for every nonnegative input sequence u(t) ∈ Rm
+, t ∈ Z+ and initial state

x0 = 0 its output is nonnegative for all t ∈ Z+. 2

LEMMA 10
The system (2.7) is externally positive if and only if its impulse response matrix is
nonnegative [Kaczorek, 2002, Thm. 2.2]. 2

Next, we introduce the definition of (internally) positive discrete-time systems.

DEFINITION 15—DISCRETE-TIME POSITIVE LINEAR SYSTEM
The system (2.7), (2.8) is called (internally) positive system if for every x0 ∈ Rn

+

and any nonnegative input sequence u(t) ∈ Rm
+, its state and output are nonnegative,

i.e., x(t) ∈ Rn
+ y(t) ∈ Rp

+ for all t ∈ Z+. 2
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LEMMA 11
The system (2.7), (2.8) is positive if and only if A ≥ 0, B ≥ 0, C ≥ 0 and D ≥ 0
[Kaczorek, 2002, Thm. 2.6]. 2

It can be shown, analogous to the continuous-time case, that every discrete-time
(internally) positive system is also externally positive.

Stability of discrete-time positive systems
Consider a discrete-time positive system described by the equation

x(t +1) = Ax(t), t ∈ Z+ (2.9)

with A ∈ Rn×n
+ and x(0) = x0. The solution of equation (2.9) has the form

x(t) = Atx0 (2.10)

DEFINITION 16
The positive system in Equation (2.9) is called asymptotically stable if and only if
the solution (2.10) satisfies the condition

lim
t→∞

x(t) = 0, ∀x0 ∈ Rn
+ 2

Next, necessary and sufficient conditions for the asymptotic stability of a discrete-
time system are given.

LEMMA 12
The positive system (2.9) is asymptotically stable if and only if all eigenvalues
λ1, . . . ,λn of the matrix A∈Rn

+, satisfying det(λiIn−A) for i= 1, . . . ,n, have moduli
less than 1, i.e. |λi|< 1 for i = 1, . . . ,n [Kaczorek, 2002, Thm. 2012]. 2

LEMMA 13
The positive system (2.9) is asymptotically stable if and only if all the coefficients
δi of the (characteristic polynomial)

det[zIn −A+ I] = zn +δn−1zn−1 + · · ·+δ1z+δ0

are positive δi > 0. 2

LEMMA 14
The positive system (2.11) is unstable if at least one diagonal entry of the matrix A
is greater than 1 [Kaczorek, 2002, Thm. 2.15]. 2

DEFINITION 17—SCHUR MATRIX
A matrix A ∈ Rn×n is called Schur if all its eigenvalues lie strictly inside the unit
disk in the complex plane, i.e. |λ |< 1 for all eigenvalues λ of A. 2
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COROLLARY 15
If the state matrix A of a linear system of the form (2.9) is nonnegative and Schur,
then the system is positive and asymptotically stable. 2

Similarly to the continuous-time case, the equilibrium points of a linear system are
also utilized to derive stability properties of discrete-time positive systems.

DEFINITION 18
A state vector x∗ satisfying x∗ = Ax∗ is called the equilibrium point of the discrete
time system (2.9). 2

Consider the single input discrete-time system

x(t +1) = Ax(t)+bu(t) (2.11)

with constant input û > 0. Let x∗ be the equilibrium point of the system (2.11). Then

x∗ = Ax∗+bû. (2.12)

By Lemma 12, if the positive system (2.11) is asymptotically stable, then all eigen-
values have moduli less than one. In this case, det[I −A] ̸= 0 and the equilibrium
point of the system is

x∗ = [I −A]−1bû. (2.13)

LEMMA 16
The equilibrium vector x∗ of the asymptotically stable positive system (2.11) with a
constant input û > 0 is positive if b > 0. Similarly, it is strictly positive, x∗ ≫ 0, if
b ≫ 0 [Kaczorek, 2002, Thm. 2.16]. 2

Based on the theory reviewed in this subsection, the following corollary sum-
marizes the key properties of discrete-time positive systems relevant to this thesis.

COROLLARY 17— [RANTZER AND VALCHER, 2018B]
Let A ∈ Rn×n be a nonnegative matrix, the following properties are equivalent:

(i) A is Schur.

(ii) There exists x ≫ 0 such that Ax ≪ x.

(iii) There exists p ≫ 0 such that p⊤A ≪ p⊤.

(iv) There exists a diagonal P ≻ 0 such that A⊤PA−P ≺ 0.

(v) (In −A)−1 exists and has nonnegative entries. 2

31



Chapter 2. Preliminaries

EXAMPLE 4—[FARINA AND RINALDI, 2000]
Consider a set of firms i = 1, . . . ,n in the stock market, and denote by bi and ai j the
shares of firm i held by an outside shareholder and by firm j, j = 1, . . . ,n. This is

bi +
n

∑
j=1

ai j = 1.

and the systems dynamics are given by x(t +1) = Ax(t)+b. Note that, because A is
nonnegative and the sum of every row of A is 1− bi, the Perron eigenvalue of A is
smaller than one. Thus, A is asymptotically stable. Let x∗ be the equilibrium vector
of the system representing the influence level of the outside shareholders on each
firm, i.e. x∗i = bi +ai1x∗1 + · · ·+ainx∗n. It is direct that x∗ ≫ 0. 2
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2.3 Dynamic programming

2.3 Dynamic programming

In the 1950s, the RAND Corporation, with support from the U.S. Air Force, was
interested on the multi-stage decision making problem [Åström and Kumar, 2014].
Richard Bellman, a mathematician attracted to this problem, pioneered the field of
dynamic programming [Bellman, 1957]. Concurrently, Rufus Isaacs was research-
ing dynamic continuous-time two-person zero-sum games. His work resulted in the
Isaacs equation, a two-sided generalization of the Hamilton–Jacobi equation. This
differential game theory was initially applied to military strategy problems [Zachris-
son, 1964] and later became influential in robust control [Başar and Bernhard,
1991].

Dynamic programming was originally developed to address complex multi-
stage decision processes and has since become a cornerstone in various fields, in-
cluding control theory, operations research, artificial intelligence, and economics. In
control theory, it plays a crucial role in solving optimal control problems [Bertsekas,
2005; Bertsekas, 2017; Bertsekas, 2023], where the objective is to determine a se-
quence of control inputs that optimize a given performance criterion over time. It
has found wide applicability across diverse physical systems such as large-scale sys-
tems [Chen et al., 2023; Zhao et al., 2023; Jiang and Jiang, 2012] or robotics [Kang
and McKay, 1986; Lee, 1995].

(a) (b)

Figure 2.2 Examples of dynammic programming for path planning (a) and clustering (b)

At its core, dynamic programming involves breaking down a large optimization
problem into smaller, manageable subproblems, solving each subproblem only
once, and storing the results to avoid redundant computations. This methodology is
grounded in the principle of optimality, which was developed by R. Bellman and is
central to dynamic programming theory.
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The Principle of Optimality [Bellman, 1957]: An optimal policya has the
property that whatever the initial state and initial decisions are, the remaining
decisions must constitute an optimal policy with regard to the state resulting
from the first decision.

a A decision-making rule that specifies the best action to take at each stage based on the current
state.

This recursive property is fundamental to the efficiency and potential of dy-
namic programming, enabling it to address highly complex problems. Building on
these foundational ideas, this section reviews auxiliary results that extend classi-
cal DP principles and adapt them to the deterministic minimax framework. Min-
imax dynamic programming introduces an adversarial perspective by embedding
a worst-case optimization into the traditional DP formulation. This involves solv-
ing a two-layered problem: minimizing over control decisions while simultaneously
maximizing over disturbances or adversarial inputs. The resulting Bellman equation
reflects this nested optimization structure, incorporating the principle of optimality
and the value function in a form suited to robust control.

In this section, we first revisit the discrete-time deterministic dynamic program-
ming (DP) results from [Bertsekas, 2023, Sec. 1.2] and [Bertsekas, 2005, Ch. 1],
along with their dynamic game formulation presented in [Başar and Bernhard, 1991,
Ch. 2.2]. Next, we review the deterministic continuous-time DP framework from
[Bertsekas, 2005, Ch. 3] and its corresponding continuous-time dynamic game for-
mulation in [Başar and Bernhard, 1991, Ch. 2.3]. These results serve as the foun-
dation for deriving closed-form solutions, in both discrete and continuous time, for
a novel class of minimax optimal control problems, which are analyzed over finite
and infinite horizons in Chapter 3 and represent the primary contribution of this
thesis.

This methodology is characterized by two key components: a discrete-time dy-
namic system and a cost function defined over time. The dynamic system captures
the evolution of certain variables, representing the system’s state, as influenced by
decisions made at discrete time steps. The system dynamics are

x(t +1) = f (x(t),u(t),ω(t)) (2.14)

where x(t) is the state of the system and summarizes past information that is relevant
for future optimization, u(t) is the control or decision variable to be selected at
time t, ω(t) is, in this case, a deterministic disturbance at time t, T is the number
of times the control is applied, and f is a function that describes the system, in
particular the mechanism by which the state is updated. In the discrete-time setting
the cost function is additive in the sense that the cost incurred at time t, denoted by
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Figure 2.3 Deterministic T -stage optimal control problem. Starting from state x(t) the next
state under control u(t) and disturbance ω(k) is generates according to f (x(t),u(t),ω(t)),
incurring a cost of g(x(t),u(t),ω(t)).

g(x(t),u(t),ω(t)) accumulates over time. The total cost is

ϕ(x(T ))+
T−1

∑
t=0

g(x(t),u(t),ω(t))

where ϕ(x(T )) is a terminal cost incurred at the end of the process. The optimal
policy µ∗ and disturbance ω∗ are the ones that respectively minimize and maximize
the cost; that is

Jµ∗,ω∗(x0) = inf
µ

sup
ω

Jµ,ω(x0)

where x0 is the initial state, U is the set of all admissible policies and Ω the set of
all admissible disturbances. Note that the optimal policy µ∗ and the optimal distur-
bance ω∗ are associated with a fixed initial state x0. Hence, the optimal cost depends
on x0 and is denoted by J∗(x0), that is

J∗(x0) = inf
µ

sup
ω

Jµ,ω(x0). (2.15)

It is helpful to consider J∗ as a function that assigns the optimal cost J∗(x0) to
each initial state x0. This function is referred to as the optimal cost function. As
previously mentioned, dynamic programming techniques are based on the principle
of optimality, following the notation in [Bertsekas, 2023, Ch. 1.2] this principle can
be mathematically expressed in our setting as follows.
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The Principle of Optimality:
Let µ∗ = {µ∗(x0),µ

∗(x(1)), . . . ,µ∗(x(T −1))} be an optimal control se-
quence, and let {ω∗(0), . . . ,ω∗(T −1)} be the sequence of worst-case distur-
bances, which, together with x0 determines the corresponding state sequence
{x∗(1), . . . ,x∗(T )} via the system equation (2.14). Consider the subproblem
whereby we start at x∗(k) at time k and wish to minimize the cost-to-go from
time k to time T ,

ϕ(x(T ))+
T−1

∑
t=T−k

g(x(t),µ(x(t)),ω∗(t))

over {µ(x(t)),µ(x(t +1)), . . . ,µ(x(T −1))} with u(t) ∈ U(x(t)). Then the
truncated optimal control sequence {µ∗(x(t)),µ∗(x(t +1)), . . . ,µ∗(x(T −1))}
is optimal for this subproblem.

Observe that if the truncated policy {µ∗(x(t)),µ∗(x(t +1)), . . . ,µ∗(x(T −1))}
were not optimal as assumed, it would be possible to further reduce the cost by
switching to an optimal policy for the subproblem starting at x(t). This indicates
that an optimal policy can be constructed step by step, beginning with the optimal
policy for the final step and recursively extending it to construct an optimal policy
for the entire problem.

EXAMPLE 5—DETERMINISTIC SCHEDULING [BERTSEKAS, 2005]
For a particular product, four operations denoted by A, B, C, and D, must be per-

formed on a specific machine. It is assumed that operation B can only be performed
after operation A is completed, and operation D can only follow operation B. The
cost CAB represents the cost of transitioning from operation A to B. Additionally,
there is an initial cost SA or SC for starting with operation A or C, respectively. The
total cost of a sequence is the sum of its setup costs. For instance, the cost of a
sequence ACDB is defined as

SA +CAC +CCD +CDB.

We can view this problem as a sequence of three decisions, namely the choice
of the first three operations to be performed (the last operation is determined from
the preceding three). The possible state transitions for this problem are illustrated in
Figure 2.4. Because the problem is deterministic, each choice of control at a given
state leads to a uniquely determined next state. For instance, from state AC choosing
to perform operation D results in state ACD with a cost of CCD. The optimal solution
is the path that starts at the initial state, ends at a terminal state, and minimizes the
total arc costs plus the terminal cost. 2
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2.3 Dynamic programming

Figure 2.4 The transition graph for the deterministic scheduling problem in Example 5.

Discrete Time
In this subsection, we revisit the results from [Bertsekas, 2005, Ch. 1] on deter-

ministic discrete-time optimal control. We review two key auxiliary results for the
discrete-time worst-case minimax setting, considering both finite and infinite hori-
zons. For the reader’s convenience, we provide the proofs for the infinite-horizon
case and refer to [Başar and Bernhard, 1991, Ch. 2.2] for the derivation of the finite-
horizon scenario.

FINITE HORIZON

We define, a general discrete-time, minimax optimal control problem with con-
tinuous cost function and continuous constraints

inf
µ

sup
ω

[
T−1

∑
t=0

g(x(t),u(t),ω(t))

]
subject to (2.16)

x(t +1) = f (x(t),u(t),ω(t))

x(t) ∈ X ⊆ Rn; x(0) = x0 ; u(t) = µ(x(t))

u(t) ∈U(x(t))⊆ Rm; ω(t) ∈ Ω(x(t))⊆ Rl

where f : Rn×Rm×Rl −→Rn, g : Rn×Rm×Rl −→R+ are continuous with respect
to x, u and ω , x represents the vector of n-dimensional state variables, u is the m-
dimensional control variable and ω is the l-dimensional disturbance variable. The
objective is to minimize the worst-case cost over all possible control strategies.
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LEMMA 18
Suppose

max
ω

[g(x,u,ω)]≥ 0

∀x ∈ X , ∀u ∈ U(x), ω ∈ Ω(x). Then, the general optimal control problem (2.16)
attains a finite value for every x0 ∈ Rn

+ if and only if the Bellman equation

J∗k (x) = min
u∈U(x)

max
ω∈Ω(x)

[
g(x,u,ω)+ J∗k−1( f (x,u,ω))

]
J∗0 (x) = 0 (2.17)

has a finite solution J∗k (x), ∀x ∈ X , k = 0,1, . . . ,T . Moreover, if this holds, then the
minimal value of (2.16) is equal to J∗T (x(T )). 2

INFINITE HORIZON

Consider the infinite time-horizon variant of the general minimax optimal con-
trol problem (2.16).

inf
µ

sup
ω

[
∞

∑
t=0

g(x(t),u(t),ω(t))

]
(2.18)

subject to
x(t +1) = f (x(t),u(t),w(t)),

x(t) ∈ X ⊆ Rn; x(0) = x0 ; u(t) = µ(x(t))

u(t) ∈U(x(t))⊆ Rm; ω(t) ∈ Ω(x(t))⊆ Rl

In the next lemma, we study an important instance of Lemma (18) where the time
horizon of the minimax control problem (2.16) approaches infinity, T → ∞.

LEMMA 19
Suppose

max
ω

[g(x,u,ω)]≥ 0

∀x ∈ X , ∀u ∈U(x), ω ∈ Ω(x). Then, the following statements are equivalent.

(i) The general optimal control problem in (2.18) attains a finite value for every
x0 ∈ Rn

+.

(ii) The recursive sequence {Jk}∞

k=0 with J0 = 0 and

Jk(x) = min
u

max
ω

[g(x,u,ω)+ Jk−1( f (x,u,ω))] (2.19)

has a finite limit ∀x ∈ X .
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(iii) The Bellman equation

J∗(x) = min
u

max
ω

[g(x,u,ω)+ J∗( f (x,u,ω))] (2.20)

has nonnegative solution J∗(x), ∀x ∈ X . 2

Proof: Note that, by dynamic programming, the increasing monotone recursive se-
quence {Jk}∞

k=1 (see Proposition 20) defined in (2.19) also satisfies

Jk(x) = inf
µ

sup
ω

k

∑
t=0

[g(x(t),u(t),ω(t))] . (2.21)

To prove the equivalence we will prove implications (i) =⇒ (ii), (ii) =⇒ (iii),
(iii) =⇒ (ii), (iii) =⇒ (i).

(i) =⇒ (ii) Assume (i). Then, in (2.21) when k −→ ∞ we get Jk(x) < α < ∞

for all x, with α representing a finite value for (2.18). Hence, the recursive se-
quence (2.19) has a finite limit.

(ii) =⇒ (iii) Assume (ii). Taking the limit when k −→ ∞ on both sides of the
equation (2.19) we get (iii).

(iii) =⇒ (ii) Assume (iii). We want to prove that limk−→∞ Jk(x) < ∞ for all x
with Jk(x) defined in (2.21). To achieve this, we use induction over Jk(x)≤ J∗(x)<
∞. It is clear that 0 = J0(x) ≤ J∗(x) with J∗ nonnegative by definition. For the in-
duction step, we assume that Jk(x)≤ J∗(x). We want to prove that Jk+1(x)≤ J∗(x).
From the induction hypothesis, it is direct that

Jk+1(x) = min
u

max
ω

[g(x,u,ω)+ Jk( f (x,u,ω))]

≤ min
u

max
ω

[g(x,u,ω)+ J∗( f (x,u,ω))]

= J∗(x).

Thus, Jk+1(x)≤ J∗(x) for all x, and limk−→∞ Jk(x)< ∞ for all k and for all x, as we
wanted to prove.

(iii) =⇒ (i) Assume (iii). Define for all x

µ
∗(x) = argmin

u
max

ω
{g(x,u,ω)+ J∗( f (x,u,ω))}

such that

J∗(x) = min
u

max
ω

[g(x,u,ω)+ J∗( f (x,u,ω))] .

Indeed, from (2.21) and implication (iii) =⇒ (ii) it can be observed that

max
ω

k

∑
t=0

[g(x,µ∗(x),ω)]≤ inf
µ

max
ω

k

∑
t=0

[g(x(t),u(t),ω(t))]

= Jk(x)≤ J∗(x)< ∞.
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Hence,

max
ω

k

∑
t=0

[g(x,µ∗(x),ω)]≤ J∗(x)

for all k and for all x. This proves (i). ■

PROPOSITION 20
Let

max
ω

[g(x,u,ω)]≥ 0

∀x ∈ X and ∀u ∈U . Then, the recursive sequence {Jk(x)}∞

k=0 with J0(x) = 0 and

Jk(x) = min
u

max
ω

[g(x,u,ω)+ Jk−1( f (x,u,ω))] (2.22)

satisfies that 0 ≤ J0(x)≤ J1(x)≤ J2(x)≤ ... for all x ∈ X and all k ∈ N. 2

Proof: To prove this we use induction over Jk(x). From the proposition statement
J0(x) = 0 gives

J1(x) = min
u

max
w

[g(x,u,ω)+ J0( f (x,u,ω))] =

= min
u

max
ω

[g(x,u,ω)]≥ 0 = J0(x)

for all x. For the induction step we assume that Jk(x) ≥ Jk−1(x). We then want to
prove that Jk+1 ≥ Jk. From (2.19) and the induction hypothesis we have that

Jk+1(x) = min
u∈U(x)

max
ω∈Ω(x)

[g(x,u,ω)+ Jk( f (x,u,ω))]

≥ min
u∈U(x)

max
ω∈Ω

[g(x,u,ω)+ Jk−1( f (x,u,ω))]

= Jk(x)

Thus, Jk+1(x)≤ Jk(x) for all k and for all x. ■

Continuous time
The deterministic continuous-time optimal control results from [Bertsekas, 2005,
Ch. 3] are revisited in this subsection. Two auxiliary results for deriving solutions
to the continuous-time worst-case minimax setting, presented in Chapter 3, are re-
viewed. These results are formulated for both finite and infinite horizons. Analogous
to the discrete-time setting, the proofs for the infinite-horizon case are included for
the reader’s convenience, while [Başar and Bernhard, 1991, Ch. 2.2] is referenced
for the derivation of the finite-horizon minimax results.
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Consider the continuous-time dyamics:

ẋ(t) = f (x(t),u(t),ω(t)) 0 ≤ t ≤ T (2.23)

where x(t) represents the vector of state variables at time t, u(t) ∈ U is the control
variable vector at time t and ω(t) ∈ Ω the disturbance at time t. U(x) is the control
constrained set, Ω(x) the disturbance set and T ∈ R+ is the terminal time or time
horizon. The system (2.23) represents the n first-order differential equations

dxi(t)
dt

= fi(x(t),u(t),ω(t)), i = 1, · · · ,n. (2.24)

We view ẋ(t), x(t), u(t) and ω(t) as column vectors, with ∇t denoting the partial
derivative with respect to t and ∇x denoting the column vector of partial derivatives
with respect to x of appropiate dimensions.

FINITE HORIZON

We define, a general continuous-time, minimax optimal control problem with
continuous constraints and nonnegative final conditions φ(x(T )) as

inf
µ

max
ω

[
φ(x(T ))+

∫ T

0
g(x(τ),u(τ),ω(τ)) dτ

]
subject to (2.25)

ẋ = f (x(t),u(t),ω(t))

x(t) ∈ X ⊆ Rn; x(0) = x0 ; u(t) = µ(x(t))

u(t) ∈U(x(t))⊆ Rm; ω(t) ∈ Ω(x(t))⊆ Rl

where f : Rn × Rm × Rl −→ Rn, g : Rn × Rm × Rl −→ R+ are continuously dif-
ferentiable functions with respect to x, and continuous with respect to u and ω .
φ : X → X is continuously differentiable with respect to x, x represents the vector
of n-dimensional state variables, u is the m-dimensional control variable and ω is
the l-dimensional disturbance variable. The objective is to minimize the worst-case
cost over all possible control strategies.

LEMMA 21
Suppose

max
ω

[g(x,u,ω)]≥ 0

∀x ∈ X , ∀u ∈U(x), ω ∈ Ω(x). Then, the optimal control problem (2.25) has a finite
value for every x0 ∈ Rn

+ if and only if the Hamilton-Jacobi-Bellman (HJB) partial
differential equation (PDE)

−∇tJ∗(t,x) = min
u

max
ω

[
g(x,u,ω)+∇xJ∗(t,x)⊤ f (x,u,ω)

]
J∗(T,x) = φ(x(T )) (2.26)
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has a solution J∗(t,x), ∀x ∈ X , t ∈ [0,T ]. Moreover, if (ii) holds, then the minimal
value of (2.25) is equal to J∗(0,x). 2

INFINITE HORIZON

Consider the infinite time-horizon variant of the general minimax optimal con-
trol problem (2.25)

inf
µ

max
ω

∫
∞

0
g(x(τ),u(τ),ω(τ)) dτ

subject to (2.27)
ẋ = f (x(t),u(t),ω(t))

x(t) ∈ X ⊆ Rn; u(t) = µ(x(t))

u(t) ∈U(x(t))⊆ Rm; ω(t) ∈ Ω(x(t))⊆ Rl

In the next lemma, we study an important instance of Lemma (21) where the time
horizon of the minimax control problem (2.25), approaches infinity, T −→ ∞, and
the HJB equation (2.26) takes a simpler form.

LEMMA 22
Suppose

max
ω

[g(x,u,ω)]≥ 0

∀x ∈ X and ∀u ∈U(x). Then, the following statements are equivalent.

(i) The general optimal control problem in (2.27) has a finite value for every
x0 ∈ Rn

+.

(ii) The HJB differential equation

0 = min
u

max
ω

[
g(x,u,ω)+∇xJ∗(x)⊤ f (x,u,ω)

]
(2.28)

has a finite solution J∗(x), for all x ∈ X . 2

Proof: From Lemma (21) we know that the finite horizon minimax control prob-
lem (2.25) has a minimal value for all x0 ∈ Rn

+ if and only if ∀x ∈ X and t ∈ [0,T ]
the HJB equation (2.26)

−∇tJ∗(t,x) = min
u

max
ω

[
g(x,u,ω)+∇xJ∗(t,x)⊤ f (x,u,ω)

]
J∗(T,x) = φ(x(T )) (2.29)
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has a solution J∗(t,x) of the form

J∗(t,x) = inf
µ

max
ω

φ(x(T ))+
∫ T

t
g(x(τ),u(τ),ω(τ))dτ. (2.30)

(i) =⇒ (ii) Recall (2.30). Observe that as T −→ ∞ the dependency of the optimal
cost on t ∈ [0,T ] in (2.30) vanishes. Thus, the value function of the infinite horizon
problem (2.27) becomes

J∗(x) = inf
µ

max
ω

∫
∞

t0
g(x(τ),u(τ),ω(τ))dτ. (2.31)

Note that (2.31) is independent on the initial time t0, which can be observed from
the fact that shifting the initial time leads to the same optimal u and ω with the same
time shift.

Moreover, from Lemma (21), the HJB equation (2.29) has a solution J∗(x) sat-
isfying (2.31), ∀x ∈ X , t ∈ [0,∞]. The value function (2.31) gives

∇tJ∗(x) = 0

which reduces the HJB equation (2.29) to (2.28). This proves (ii).
(ii)=⇒ (i) Suppose that the HJB differential equation (2.28) has a finite solution

Ĵ(x̂) for all x ∈ X , that is, Ĵ(x̂) is a continuously differentiable function representing
the optimal value function.

Let {û(t) | t ∈ [0,∞]}, be the control trajectory associated with Ĵ(x̂) and
{x̂(t) | t ∈ [0,∞]} the corresponding state trajectory. Define a disturbance trajec-
tory {ω∗(t) | t ∈ [0,∞]} such that∫

∞

0
g(x̂(τ), û(τ),ω∗(τ)) dτ = max

ω

∫
∞

0
g(x̂(τ), û(τ),ω(τ)) dτ.

Thus, {ω∗(t) | t ∈ [0,∞]} is the worst-case disturbance for Ĵ(x̂).
From the HJB equation (2.28), we have that for all t ∈ [0,∞]

0 ≤ g(x̂(t), û(t),ω∗(t))+∇xĴ(x̂(t))⊤ f (x̂(t), û(t),ω∗(t)).

Define ˙̂x(t) = f (x̂(t), û(t),ω∗(t)), x̂0 = x̂(0). The right hand side of (2.28) is equiv-
alent to

g(x̂(t), û(t),ω∗(t))+
d
dt

J∗(x̂(t))≥ 0.

where d
dt J∗(x̂(t)) = ∇xJ∗(x̂)⊤ ˙̂x(t). This is

g(x̂(t), û(t),ω∗(t))≥− d
dt

Ĵ(x̂(t)). (2.32)
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Now, we integrate both sides of (2.32) over time from 0 to some T > 0∫ T

0
g(x̂(t), û(t),ω∗(t)) dτ ≥ Ĵ(x̂(0))− Ĵ(x̂(T )).

By assumption, there is no terminal cost and the value function is finite, therefore,
the value function converges as T → ∞, which implies that Ĵ(x̂(T ))→ 0 as T → 0.
Thus we can write ∫

∞

0
g(x̂(t), û(t),ω∗(t)) dτ ≥ Ĵ(x̂(0)). (2.33)

Finally, let J∗(x∗0) be the resulting cost for the control and state trajectories u∗(t)
and x∗(t) respectively, where the inequality (2.33) becomes an equality, i.e.:

J∗(x∗0) =
∫

∞

0
g(x∗(τ),u∗(τ),ω∗(τ)) dτ.

Note that the cost corresponding to {u∗(t) | t ∈ [0,T ]} is no larger than the cost
corresponding to any other admissible control trajectory {u(t) | t ∈ [0,T ]}, in par-
ticular {û(t) | t ∈ [0,T ]}. It follows that {u∗(t) | t ∈ [0,T ]} is optimal with

µ(x) = argmin
u

max
ω

{
g(x,u,ω)+∇xJ∗(t,x)⊤ f (x,u,ω)

}
and

Ĵ(x̂0) = J∗(x∗0)

is the minimal value of (2.27) for all x0 ∈ Rn
+. Moreover, the preceding argument

can be repeated with any initial time t ∈ [0,∞] and any initial state x. Thus,

Ĵ(x) = J∗(x), for all x ∈ X .

This proves (ii) =⇒ (i). ■

2.4 Dynamical systems over general graphs

Graph description
A graph G is also defined as a set G= {VG,EG}, with a set of N = |VG| nodes and
a set EG ⊆ VG×VG of edges, each of which has an associated nonnegative weight
wi j. In this work, only undirected graphs are considered, hence, the edge (i, j) ∈ EG

is bidirectional (i.e. it does not have a direction). Moreover, every graph G has a
connected spanning tree. This means there exists a path from any node i ∈ VG to
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every other node j ∈ VG \ i. The Laplacian matrix L(G) of G, or simply L when G

is clear from the context, is defined as

L(G)i j =

 −wi j i ̸= j
∑k∈Ni wik i = j
0 otherwise.

(2.34)

Alternatively, in terms of the degree matrix D and the adjacency matrix A of the
graph G, the Laplacian matrix is given by L= D−A.

1 2

3

4 5
6

Figure 2.5 Example of an undirected and connected graph with N = 6 nodes.

EXAMPLE 6
Given the graph in Figure 2.5, observe that its degree, adjacency and Laplacian
matrices are

D =


3 0 0 0 0 0
0 3 0 0 0 0
0 0 2 0 0 0
0 0 0 2 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 , A =


0 1 1 1 0 0
1 0 1 0 0 1
1 1 0 0 0 0
1 0 0 0 1 0
0 0 0 1 0 0
0 1 0 0 0 0



L=


3 −1 −1 −1 0 0
−1 3 −1 0 0 −1
−1 −1 2 0 0 0
−1 0 0 2 −1 0
0 0 0 −1 1 0
0 −1 0 0 0 1

 . 2

Note that the Laplacian matrix of undirected graphs is symmetric, thus, its eigen-
values are real. The set of connected graphs is denoted by G and is characterized by
the following property.

LEMMA 23
A graph G is connected if and only if the associated Laplacian matrix L has a simple
eigenvalue at the origin. Furthermore, in this case, the eigenvector associated with
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the eigenvalue at the origin is 1 and all other eigenvalues lie in the open right half-
plane. 2

Denote by λk(G), or λk if G is clear from the context, with k = 1, . . .N the eigen-
values of L. The eigenvalues are numbered so that 0 = λ1 < λ2 ≤ ·· · ≤ λN . The
eigenvalue λ2 is known as the algebraic connectivity of G.

DEFINITION 19—ALGEBRAIC CONNECTIVITY
The algebraic connectivity of a graph G is a measure of its connectivity based on
the spectrum of its Laplacian matrix. It is defined as the second smallest eigenvalue
λ2(G). If λ2(G)> 0 indicates that G is connected, whereas if G= 0 indicates that the
graph is disconnected. Larger values of λ2 imply a more robust and well-connected
graph. 2

In [Saberi et al., 2022, Ch. 3] the regularized Laplacian matrix of a graph is
considered. This matrix, denoted as D is defined as

D= I − (I +D)−1L (2.35)

where D is diagonal with

Dii =
N

∑
k=1

wik

the degree matrix of the graph G. The matrix D has eigenvalues µi, i = 1, . . .N,
which are real because D is similar to the symmetric matrix

I − (I +D)−
1
2 L(I +D)−

1
2 .

The matrix D is nonnegative and row stochastic, meaning each row of D sums to
1, i.e., D1 = 1. From the above equality it is immediate that for λ1 = 0, D1 = 1,
thus, µ1 = 1 is the largest eigenvalue of D with associated eigenvector 1.

In this thesis we focus on families F ⊆ G (in the continuous-time case) and
F ⊆ G̃ (in the discrete-time case) of connected, undirected graphs, for which the
eigenvalues of the associated Laplacian L (continuous-time case) and respectively
the row stochastic matrix D (discrete-time case) satisfy upper and lower bounds.

DEFINITION 20
The set of undirected graphs for which the associated Laplacian matrix has nonzero
eigenvalues λi, i = 2, . . .N such that a ≤ λi ≤ b is defined by

G[a,b] = {G ∈ G | λi(G) ∈ [a,b] , ∀i > 1} . 2

In the continuous-time scenario, a is a lower bound for the algebraic connectivity
of the graphs in G[a,b]. In the literature, the upper bound b has been be related to the
number of agents and their degree of connectivity.
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2.4 Dynamical systems over general graphs

Figure 2.6 Visualization of Graph topologies, its algebraic connectivity, Laplacian matrix
and spectrum.
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DEFINITION 21
The set of undirected graphs for which the associated row-stochastic matrix D sat-
isfies the property that all eigenvalues, except for µ1 = 1, have an absolute value
smaller than d and greater than c is defined by

G̃[c,d] = {G ∈ G |µi(G) ∈ [c,d], ∀i > 1} .

where c ∈ (−1,d], d ∈ (0,1). 2

Expressions for c and d has been studied in the literature—See e.g., [Banerjee and
Mehatari, 2016].

2.5 Multi-agent systems

Multi-agent systems (MAS) are systems composed of multiple interacting agents
that work collaboratively or competitively to achieve individual or collective ob-
jectives. These agents are autonomous entities, such as robots, vehicles, software
programs or sensors, capable of sensing their environment, making decisions, and
taking actions based on their observations and interactions. In the remainder of this
section, the definitions and notation follow those used in [Saberi et al., 2022].

Continuous-time
This thesis focuses on continuous-time multi-agent systems (MAS) composed by
an arbitrary number of identical, linear time-invariant agents of the form

ẋi = Axi +Bui (2.36)

where xi ∈ Rn, ui ∈ Rm are, respectively, the state and input vectors of agent i, A ∈
Rn×n is Metzler and B ∈ Rn×m.

It is assumed that the communication network provides each agent with a linear
combination of its own state relative to the states of its neighboring agents. Each
agent i ∈ {1, . . . ,N} in the network can access the relative information of the full
states of its neighboring agents compared to its own state. Specifically, each agent
has access to the quantity

ζi =
N

∑
j=1

wi j(xi − x j) (2.37)

where wi j ≥ 0, wii = 0 for i, j ∈ {1, . . . ,N}. The network topology is described by an
undirected graph G ∈ G[β ,γ] where nodes represent the agents and edges correspond
to the nonzero coefficients wi j. In particular, wi j > 0 indicates the presence of an
edge from agent j to i with the edge weight equal to the magnitude of ai j.
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2.6 The state synchronization problem

The communication in the continuous-time network is expressed using the
Laplacian matrix L, associated with this weighted graph G. In particular, ζi can
be written as

ζi =
N

∑
j=1

li jx j (2.38)

where li j are elements of L.

Discrete-time
In this thesis discrete-time multi-agent systems (MAS) composed by an arbitrary
number of identical, linear time-invariant agents are also studied. The dynamics of
each agent i = 1, . . . ,N are described by

xi(t +1) = Axi(t)+Bui(t); A ∈ Rn×n
+ ,B ∈ Rn×m (2.39)

where xi ∈ Rn, ui ∈ Rm are, respectively, the state and input vectors of agent i.
Each agent communicates with its neighbors through a network described by an

undirected graph G ∈ G̃ where nodes represent agents, and edges represent commu-
nication links. The edge weights wi j ≥ 0 determine the strength of the connection
between agents i and j, with wii = 0. The adjacency matrix of the graph is denoted
as W= [wi j] and the associated Laplacian matrix is given by

L= D−W

Agents access the relative information of their neighbors through full-state mea-
surements. Specifically, each agent i has access to the quantity

ζi(k) = 1
1+∑

N
j=1 wi j

∑k∈Ni
wik(yi(t)− yk(t)), (2.40)

This information exchange can be expressed compactly in terms of the row-
stochastic matrix D defined as (2.35). Rewriting ζi(k) we have

ζi(k) = xi(t)−∑k∈Ni
dik(xi(t)− xk(t)) (2.41)

where di j are the elements of D.

2.6 The state synchronization problem

A relevant problem in control theory is the design of protocols that lead to the
synchronization of interconnected systems. Synchronization is a desired behavior
in many dynamical systems associated with numerous applications [Ren and Beard,
2005; Tegling et al., 2023; Fabiny et al., 1993; Fax and Murray, 2004]. Note that
the results and definitions in this section follow those in [Saberi et al., 2022].
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Chapter 2. Preliminaries

A multi-agent system is homogeneous when all agents share identical dynam-
ics. Synchronization in such systems is achieved when differences in the state of
neighbouring agents asymptotically converge to zero.

DEFINITION 22—STATE SYNCHRONIZATION
Consider the continuous-time MAS described by (2.36) and (2.37) (the discrete time
MAS described by (2.39) and (2.41)). The agents in the continuous-time (discrete-
time) network achieve state synchronization if

lim
t→∞

[xi(t)− x j(t)] = 0, ∀i, j ∈ 1, . . . ,N. (2.42)
2

REMARK 2
The continuous-time agents in (2.36) (discrete-time agents (2.39)) are described by
an LTI system, where y(t) = x(t). This coupling, where the full state of the agents
is used in the control law, is referred to in the literature as full-state coupling. 2

The state synchronization problem Consider a continuous-time MAS de-
scribed by (2.39), (2.41), (discrete-time MAS (2.36), (2.37)). Let F be a given
family of graphs such that F ⊆ Ga (F ⊆ G̃). The state synchronization problem
with a set of network graphs F consists of finding, if possible, a linear static
protocol of the form

ui(t) = Fζi(t) (2.43)

for i = 1, . . . ,N such that for any graph G ∈ F and all initial conditions of the
agents, state synchronization is achieved. Furthermore, this problem is referred
to as the the positive consensus problem if, for any selection of nonnegative
initial conditions, the states of all agents remain nonnegative.

a Recall that G, (G̃) is the sets of connected, undirected graphs where nodes represents
continuous-time (discrete time) agents and edges represent communication links.

Protocol design for continuous-time MAS
After implementing the linear static protocol (2.43), the MAS described by (2.36)
and (2.37) follows from the dynamics

ẋi = Axi +BFζi

with i = 1, . . . ,N. Then, the overall dynamics of the N agents can be written as

ẋ = (IN ⊗A+L⊗BF)x. (2.44)
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It has been shown in [Mengran and Sandip, 2017], [Feketa et al., 2019], that the
synchronization of the system (2.44) is equivalent to the asymptotic stability of the
following N −1 subsystems

˙̃ηi = (A+λiBF)η̃i, i = 2, . . . ,N (2.45)

where λi, i = 2, . . . ,N are the nonzero eigenvalues of L.

LEMMA 24
The MAS (2.36) and (2.37) achieves state synchronization if and only if the subsys-
tems (2.45) are globally asymptotically stable [Saberi et al., 2022, Thm. 2.5]. 2

The continuous-time methodology presented in Chapter 5 in this thesis follows
the notation of [Saberi et al., 2022] and is presented in the next Remark.

REMARK 3
In the proof of Lemma 24 in [Saberi et al., 2022], the following coordinate transfor-
mation is defined

η := (T−1 ⊗ In)x = (η1 . . .ηN)

where ηi ∈ Rn and T is the matrix of eigenvectors of the Laplacian L, satisfying
L= T−1JT . In this context, note that the function η1 satisfies

η̇1 = Aη1, η1(0) = (w⊗ In)x(0).

which can be shown by using the fact that 0 is a simple eigenvalue of the Laplacian.
Here, w represents the first row of T−1, i.e., the normalized eigenvector associated
with the zero eigenvalue, which corresponds to 1, in the case of an undirected graph.
Consequently, the proof of Lemma 24 shows that the synchronized trajectory of the
network is given by,

xs(t) = eAt 1
N

N

∑
i=1

xi(0). (2.46)
2

EXAMPLE 7—SYNCHRONIZATION OF CONTINUOUS-TIME MAS
Consider a system of N agents interacting over a regular graph where each agent

has two neighbors. The system dynamics are

ẋi(t) =− ∑
j∈Ni

(xi(t)− x j(t)).

Let the interconnection network be a cycle graph represented by the Laplacian ma-
trix

Li j =


2, if i = j
−1, if i,j neighbors
0, otherwise

(2.47)
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and the initial states of the agents satisfy that xi(0) ∈ [0,10] for i = 1, . . . ,N and are
generated randomly. The continuous-time dynamics can be simulated as

ẋ(t) =−Lx(t) 2

where x(t) ∈ Rn is the vector of states of all agents at time t. Figure 2.7 shows that
the states of a network of N = 4,50 agents converge over time achieving synchro-
nization. The synchronized state is given by (2.46).

Figure 2.7 Convergence of the 4 and 50 continuous-time agent network system to the syn-
chronized trajectory in Example 7.

Protocol design for discrete-time MAS
After implementing the linear static protocol (2.43), the MAS described by (2.39)
and (2.41) evolves according to the dynamics

xi(t +1) = Axi(t)+BFζi(t)

with i = 1, . . . ,N. The overall dynamics of the N agents can be written compactly as

x(t +1) = (IN ⊗A+(I −D)⊗BF)x(t). (2.48)

It has been shown in [Feketa et al., 2019] and [Mengran and Sandip, 2017], that the
synchronization of the system (2.48) is equivalent to the asymptotic stability of the
following N −1 subsystems

η̃i(t +1) = (A+(1−µi)BF)η̃i(t), i = 2, . . . ,N (2.49)

where µi, i = 2, . . . ,N are the eigenvalues of D inside the unit disc.

LEMMA 25
The MAS described by (2.39) and (2.41) achieves state synchronization if and only
if the subsystems (2.49) are globally asymptotically stable [Saberi et al., 2022, Thm.
3.4]. 2
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2.6 The state synchronization problem

The discrete-time methodology presented in Chapter 5 in this thesis follows the
notation of [Saberi et al., 2022] and is presented in the next Remark.

REMARK 4
In the proof of Lemma 25 in [Saberi et al., 2022] the following coordinate transfor-
mation is defined

η := (T−1 ⊗ In)x = (η1 . . .ηN)

where ηi ∈ Rn and T is the matrix of eigenvectors of the row stochastic matrix D,
satisfying D= T−1JDT . In this context, note that the function η1 satisfies

η1(t +1) = Aη1(t), η1(0) = (w⊗ In)x(0),

where w is the first row of T−1, i.e., the normalized eigenvector associated with the
eigenvalue 1 of D. This implies that the synchronized trajectory is given by

xs(t) = At 1
N ∑

N
i=1 xi(0). (2.50)

2

EXAMPLE 8—SYNCHRONIZATION OF A DISCRETE-TIME MAS
Consider again a system of N agents over the cycle graph represented by the Lapla-
cian in (2.47) where each agent is connected to its two nearest neighbors and the
initial states of the agents satisfy that xi(0) ∈ [0,10] for i = 1, . . . ,50 and are gener-
ated randomly. The state of each agent evolves according to

x(t +1) =Dx(t),

where x(t) ∈ Rn is the vector os states of all agents at time step t and D is the row-
stochastic matrix D governing the dynamics defined as D = I − (I +D)−1L, with
D = diag(2,2, . . . ,2). Thus, each agent xi(t) evolves according to

xi(t +1) = xi(t)+
1
3

(
∑

j∈Ni

(x j(t)− xi(t))

)
2

Figure 2.8 shows that the states of a network of 4 and 50 agents converge over time,
achieving synchronization. The synchronized state is given by (2.50).
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Figure 2.8 Convergence of the 4 and 50 discrete-time agent network system to the syn-
chronized trajectory in Example 8.
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3
Minimax linear regulator for
positive systems

In this chapter, the theoretical framework and primary contributions of this thesis are
introduced. The framework is formulated as a multi-disturbance, worst-case mini-
max optimal control problem, characterized by a linear cost function and positive
linear dynamics. Unlike the Dynamic Programming section in Chapter 2, this chap-
ter begins by presenting the continuous-time framework, addressing both finite and
infinite horizon cases, as these are the settings in which the main contributions are
made. Next, the discrete-time variant is also presented. This multi-disturbance ap-
proach accounts for two types of disturbances: elementwise bounded disturbances,
which model situations where disturbances are proportional to the state of the sys-
tem and are limited in magnitude, and unconstrained disturbances. Examples of
the first include actuator constraints, such as motor capacity or battery power, and
bounded external factors, such as load variations in power systems or temperature
fluctuations. Additionally, unconstrained disturbances capture scenarios involving
unrestricted, non-negative inputs, such as unbounded growth or external demands
that can only increase. Throughout this chapter, explicit solutions to this theoretical
framework are derived, revealing that the optimal control policy (among all possi-
ble policies) is linear. This policy can in turn be computed through standard value
iterations. Moreover, the feedback matrix of the optimal controller inherits the spar-
sity structure from the constraint matrix of the problem statement. This permits
structural controller constraints in the problem design and simplifies the applica-
tion to large-scale systems. Additionally, a section on the l1-induced gain of the
continuous-time setting is presented, linking the existence of a finite solution to the
minimax optimal control problem with the disturbance penalty in the cost function.
To illustrate the methodology, two main examples are provided: a large-scale water
distribution network and an optimal DC power network.
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3.1 Continuous-time setting

Finite-horizon case
The optimal control problem in this section is formulated as a continuous-time min-
imax problem with nonnegative linear cost, positive linear dynamics, elementwise
linear constraints on the control policy and the disturbance v ∈ Rc, nonnegative un-
constrained disturbance w and final conditions equal to zero,

inf
µ

max
w,v

∫ T

0

[
s⊤x(τ)+ r⊤u(τ)− γγγ

⊤w(τ)−δ
⊤v(τ)

]
dτ

Subject to
ẋ(t) = Ax(t)+Bu(t)+Fw(t)+Hv(t) (3.1)
x(0) = x0, u(t) = µ(x(t)),

|u| ≤ Ex, w ≥ 0, |v| ≤ Gx.

Here, x represents the n-dimensional vector of state variables, u the m-dimensional
control variable, w, v are the l-dimensional and c-dimensional disturbance, µ is any,
potentially nonlinear, control policy, E prescribes the structure of the control law, G
determines the linear dependency of the disturbance v and the state, and T ∈ R+ is
the time horizon. The objective is to minimize the worst-case cost over all possible
control strategies.

In the next theorem we use dynamic programming theory (Subsection 2.3) to
derive explicit solutions to the Hamilton-Jacobi-Bellman equation of (3.1) and give
necessary and sufficient conditions for the existence of finite solutions in finite time.

THEOREM 26
Let A ∈ Rn×n, B = [B1 . . .Bm] ∈ Rn×m, F ∈ Rn×l

+ , H ∈ Rn×c, E =
[
E⊤

1 . . .E⊤
m
]⊤ ∈

Rm×n
+ such that E⊤

i ̸= 0 for all i, G ∈ Rc×n
+ , s ∈ Rn, r ∈ Rm, γγγ ∈ Rl

+ and δ ∈ Rc.
Suppose that A−|B|E is Metzler and

s ≥ E⊤ |r|−G⊤ |δ | . (3.2)

Then the following statements are equivalent:

(i) The optimal control problem (3.1) has a finite value for every x0 ∈ Rn
+;

(ii) The differential equation in p(t) ∈ Rn,

− ṗ(t) = s+A⊤p(t)−E⊤
∣∣∣r+B⊤p(t)

∣∣∣+G⊤
∣∣∣−δ+H⊤p(t)

∣∣∣ ,
p(T ) = 0, (3.3)

has a unique solution and

γγγ ≥ F⊤p(0). (3.4)
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Moreover, if the above conditions hold, the minimal value of the optimal con-
trol problem (3.1) is p(0)⊤x0 and the optimal control policy is given by u∗(t) =
−K(t)x∗(t) with

K(t) ∈

 sign(r1 + p(t)⊤B1)E1
...

sign(rm + p(t)⊤Bm)Em

 . (3.5)
2

REMARK 5
The right-hand side of (3.5) is a set, since multiple controllers may exists that
achieve the optimal cost. For any index i such that ri + p(t)⊤i Bi = 0 all controllers
in the set

K=
{

DE | Dii ∈ [−1,1] ,D j j ∈ sign(r j + p(t)⊤j B j) for j ̸= i
}

correspond to same and unique solution p(t) of the HJB ODE equation (3.3). 2

REMARK 6
Condition (3.2) will be needed when applying Lemma 21 in Subsection 2.3 to the
objective function in (3.1). 2

REMARK 7
The condition E⊤

i ̸= 0 for all i = 1, . . . ,m, is imposed to prevent ill-posed scenar-
ios where certain control inputs ui satisfy |ui| ≤ E⊤

i x = 0 leading to trivial control
actions. 2

REMARK 8
Even though dynamic programming is executed without a priori condition on linear-
ity or sparsity, these properties result from the optimization criteria and constraints.
In fact, the sparsity structure of the control gain K(t) in (3.5) is inherited from the
E matrix which can be determined by the problem designer. 2

Proof: The proof of this theorem relies on Lemma 21 in the Appendix. To apply this
Lemma, define

f (x,u,w) := Ax+Bu+
[
F H

]
ω

g(x,u,ω) := s⊤x+ r⊤u−
[
γ⊤ δ⊤]ω (3.6)

ω :=
[
w⊤ v⊤

]⊤
.

It is direct that f : Rn×Rm×Rl −→ Rn, g : Rn×Rm×Rl −→ R+ are linear and con-
tinuously differentiable with respect to x and continuous with respect to u, w. Thus,
it is clear that the minimax control problem (3.1) is a special case of the general
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minimax setting (2.25) in Section 2.3. Therefore, (i) in Theorem 26 is equivalent to
(i) in Lemma 21 in the Appendix. Note that condition (3.2) gives

max
w≥0
|v|≤Ex

[
s⊤x+ r⊤u− γγγ

⊤w−δ
⊤v
]

= s⊤x+ r⊤u+max
w≥0

[
−γγγ

⊤w
]
+ max

|v|≤Gx

[
−δ

⊤v
]

≥
(

E⊤ |r|−G⊤ |δ |
)⊤

x+ r⊤u+max
w≥0

[
−γγγ

⊤w
]
+ |δ |⊤ Gx

≥
(

E⊤ |r|
)⊤

x−
∣∣∣r⊤∣∣∣Ex+max

w≥0

[
−γγγ

⊤w
]

≥ max
w≥0

[
−γγγ

⊤w
]
≥ 0 (3.7)

Thus,

max
w,v

[g(x,u,ω)] = max
w≥0
|v|≤Gx

[
s⊤x+ r⊤u− γγγ

⊤w−δ
⊤v
]
≥ 0

as required in Lemma 21. Next we verify that the differential equation (3.3) in (ii)
is equivalent to (2.26) in Lemma 21. Recall the cost-to-go function (2.30). Define
J∗(t,x) = p⊤(t)x,

0 = min
u

max
ω

[
g(x,u,ω)+∇tJ∗(t,x)+∇xJ∗(t,x)⊤ f (x,u,ω)

]
= min

u
max

v,w

[
s⊤x+ r⊤u− γγγ

⊤w−δ
⊤v+ ṗ(t)⊤x+ p(t)⊤(Ax+Bu+Fw+Hv)

]
= ṗ(t)⊤x+(s⊤+ p(t)⊤A)x+ min

|u|≤Ex

[
(r⊤+ p(t)⊤B)u

]
+max

w≥0

[
−γγγ

⊤w+ p(t)⊤Fw
]
+ max

|v|≤Gx

[
−δ

⊤v+ p(t)⊤Hv
]

= ṗ(t)⊤x+(s⊤+ p(t)⊤A)x−
∣∣∣r⊤+ p(t)⊤B

∣∣∣Ex (3.8)

+max
w≥0

[
(−γγγ

⊤+ p(t)⊤F)w
]
+
∣∣∣−δ

⊤+p(t)⊤H
∣∣∣Gx.

Given the linear nature of the optimization setting and the policy constraint de-
sign, the resulting HJB minimax equation becomes decoupled. Moreover, due to
the linear nature of the value function (2.30) in this setting, the optimizing vari-
ables attain their optimal values on the boundary, i.e. ui ∈ {−Eix,Eix}, wi ∈ {0,∞},
vi ∈ {−Gix,Gix} for all i. Thus, the differential equation (3.8) admits a finite solu-
tion if and only if (3.4) holds. Assuming (3.4) is satisfied, the HJB equation becomes

ṗ(t)⊤x+(s⊤+ p(t)⊤A)x−
∣∣∣r⊤+ p(t)⊤B

∣∣∣Ex+
∣∣∣−δ

⊤+p(t)⊤H
∣∣∣Gx = 0 (3.9)
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which is exactly (3.3). Since the right-hand side of (3.3) is Lipschitz, a solution
exists and is unique. Hence, (i) and (ii) in Theorem 26 and in Lemma 21 in Subsec-
tion 2.3 are equivalent. Consequently, the proof of this theorem relies on Lemma 21.

Lastly, an expression for the optimal control policy is given

µ(x) = arg min
u≤Ex

[
g(x,u,w)+

(
∇x p(t)⊤x

)
( f (x,u,w))

]
= arg min

u≤Ex

m

∑
i=1

[(
r⊤i + p(t)⊤Bi

)
ui

]
.

Because for all i = 1, . . . ,m the inequality |u| ≤ Ex restricts ui to the interval
[−Eix,Eix], the minimum is attained when (ri + p(t)⊤Bi) and ui have opposite
signs. If (ri + p(t)⊤Bi) = 0, then any ui ∈ [−Eix,Eix] is admissible. Thus, ui ∈
−sign(ri + p(t)⊤Bi)Eix. This proves the formula for K(t) in (3.5). ■

Although the solution to the ODE (3.3) is unique, the same is not necessarily
true for the control policy (3.5) that achieves the optimal cost. At any time instant for
which there occurs a switch in the sign of ri + p(t)⊤Bi, any choice ui ∈ [−Eix,Eix]
would render the control policy optimal. Naturally, this can be neglected if such
behavior occurs on a set of zero measure. It should be noted, however, that (ri +
p(t)⊤Bi) = 0 could also hold on a set with positive measure, meaning that multiple
choices of the controller achieve the optimal cost. This is illustrated in the next
example. Nevertheless, consistently choosing either ui = −Eix or ui = Eix when
(ri + p(t)⊤Bi) = 0 yields a bang-bang controller and is sufficient for optimality.

EXAMPLE 9
Let

A =

−2 1 0
1 −2 0
0 0 1

 ; B =

 1 0
−1 0
0 2

 ; E =

[
1 1 0
0 0 1

]

F,G,H = 0; s =
[
1 1 1

]⊤ ; r =
[
0 0

]⊤
.

The solution to the Bellman equation (3.3) is

p(t) = (1− e−t)
[
1 1 1

]⊤
. (3.10)

Then

r⊤+ p(t)⊤B =
[
0 2(1− e−t)

]
and both K1 and K2 given by

K1 =

[
1 0
0 1

]
E; K2 =

[
−1 0
0 1

]
E
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achieve the optimal cost (3.10) and are stabilizing, with

A−BK1 =

−3 0 0
2 −1 0
0 0 −1

 ; A−BK2 =

−1 2 0
0 −3 0
0 0 −1

 . 2

Infinite-horizon case
Consider the optimal control problem specified in (3.1). In this section, we present
its infinite horizon variant.

inf
µ

sup
w,v

∫
∞

0

[
s⊤x(τ)+ r⊤u(τ)− γγγ

⊤w(τ)−δ
⊤v(τ)

]
dτ

Subject to
ẋ(t) = Ax(t)+Bu(t)+Fw(t)+Hv(t) (3.11)
x(0) = x0, u(t) = µ(x(t)),

|u| ≤ Ex, w ≥ 0, |v| ≤ Gx.

THEOREM 27
Let A ∈ Rn×n, B = [B1, . . . ,Bm] ∈ Rn×m, F ∈ Rn×l

+ , H ∈ Rn×c, E =
[
E⊤

1 , . . . ,E⊤
m
]⊤ ∈

Rm×n
+ such that E⊤

i ̸= 0 for all i, G ∈ Rc×n
+ , s ∈ Rn, r ∈ Rm, γγγ ∈ Rl

+ and δ ∈ Rc.
Suppose that A−|B|E is Metzler and

s ≥ E⊤ |r|−G⊤ |δ | . (3.12)

Then the following statements are equivalent:

(i) The optimal control problem (3.11), has a finite value for every x0 ∈ Rn
+;

(ii) There exists p ∈ Rn
+ such that

A⊤p = E⊤
∣∣∣r+B⊤p

∣∣∣−G⊤
∣∣∣−δ +H⊤p

∣∣∣− s (3.13)

and

γγγ ≥ F⊤p (3.14)

Moreover, if (i)–(ii) are satisfied, then the infinite horizon minimax control prob-
lem (3.11) has minimum value p⊤x0 and the control law u(t) = −Kx(t) is optimal
when

K ∈

 sign(r1 + p⊤B1)E1
...

sign(rm + p⊤Bm)Em

 . (3.15)
2
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3.1 Continuous-time setting

Note that, Remark 6, 7 and 8 also apply to the infinite horizon case.
Analogous to the finite time horizon case, it may happen that the control law that

achieves the optimal cost is not unique. Taking T → ∞ in (9) provides an example
of such a situation.

Proof: The proof of this Theorem relies on Lemma 22 in Subsection 2.3. Analo-
gous to Theorem 26, define (3.6). Then the minimax optimal control problem (3.11)
is a special case of the general minimax setting (2.27) in Section 2.3. Therefore, (i)
in Theorem 27 is equivalent to (i) in Lemma 22 in Section 2.3. Additionally, condi-
tion (3.2) gives

max
w,v

[g(x,u,ω)] = max
w≥0
|v|≤Gx

[
s⊤x+ r⊤u− γγγ

⊤w−δ
⊤v
]
≥ 0.

as required in Lemma 22. Next, we verify that equation (3.13) in (ii) is equivalent
to (2.28) in Lemma 22. Define J∗(x) = p⊤x. Equation (2.28) in Lemma 22 in the
Appendix implies that

0 = min
u

max
w

[g(x,u,w)+∇xJ∗(x) f (x,u,w)] (3.16)

= min
u

max
w,v

[
s⊤x+ r⊤u− γγγ

⊤w−δ
⊤v+ p⊤ (Ax+Bu+Fw+Hv)

]
=
(

s⊤+ p⊤A
)

x+ min
|u|≤Ex

[
(r⊤+ p⊤B)u

]
+max

w≥0

[
−γγγ

⊤w+ p⊤Fw
]
+ max

|v|≤Gx

[
−δ

⊤v+ p⊤Hv
]

=
(

s⊤+ p⊤A
)

x−
∣∣∣r⊤+ p⊤B

∣∣∣Ex

+max
w≥0

[
(−γγγ

⊤+ p⊤F)w
]
+
∣∣∣−δ

⊤+p⊤H
∣∣∣Gx.

By applying condition (3.14) we obtain(
s⊤+ p⊤A

)
x−
∣∣∣r⊤+ p⊤B

∣∣∣Ex +
∣∣∣−δ

⊤+p⊤H
∣∣∣Gx = 0

which is equation (3.13) in (ii). Hence, (i), (ii) in Theorem 27 and in Lemma 22 are
equivalent. As a consequence, the proof of equivalence between (i), (ii) in Theorem
27 follows from the proof of Lemma 22.

Finally, the formula for K in (3.15) is derived analogously to the formula for
K(t) in the finite horizon case (3.5). ■

The following theorem proposes an iterative fixed point method to solve the HJB
equation (3.13). It relies on an iterative method for solving the Bellman equation of
the discrete-time version of the optimal control problem (3.11), which appears in
the following subsection and was introduced in Section 2.3.
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Chapter 3. Minimax linear regulator for positive systems

THEOREM 28—CONTINUOUS-TIME VALUE ITERATION
Let A ∈ Rn×n, B ∈ Rn×m, H ∈ Rn×c, E ∈ Rm×n

+ , s ∈ Rn, r ∈ Rm, δ ∈ Rc and h ∈ R.
Assume s ≥ E⊤ |r|−G⊤ |δ |, A−|B|E is Metzler and A−|B|E+hIn ≥ 0 with h > 0.
Define Â = 1

h A+ In, B̂ = 1
h B, Ĥ = 1

h H, Ê = E, Ĝ = G, ŝ = 1
h s, r̂ = 1

h r and δ̂ = 1
h δ .

Then, the recursive sequence {pk}∞

k=0 with p0 = 0 and

pk+1 = ŝ+ Â⊤pk − Ê⊤
∣∣∣B̂⊤pk + r̂

∣∣∣+ Ĝ⊤
∣∣∣Ĥ⊤pk − δ̂

∣∣∣ (3.17)

has a finite limit if and only if there exists p ∈ Rn such that (3.13), in which case
pk → p. 2

Proof: From Theorem 1 in [Gurpegui et al., 2023] it is direct that (3.17) has a finite
limit if and only if there exists a p ∈ Rn

+ such that

p = ŝ+ Â⊤p− Ê⊤
∣∣∣B̂⊤p+ r̂

∣∣∣+ Ĝ⊤
∣∣∣Ĥ⊤p− δ̂

∣∣∣ . (3.18)

and in this case, pk → p. By definition of A, B, H, E, G, s, r and δ , adding −p to
both sides of (3.18) and multiplying by h yields

0 = ŝ+(Â− In)
⊤p− Ê⊤

∣∣∣B̂⊤p+ r̂
∣∣∣+ Ĝ⊤

∣∣∣Ĥ⊤p− δ̂

∣∣∣⇒
0 = h

(
ŝ+(Â− In)

⊤p− Ê⊤
∣∣∣B̂⊤p+ r̂

∣∣∣+ Ĝ⊤
∣∣∣Ĥ⊤p− δ̂

∣∣∣)
= s+A⊤p−E⊤

∣∣∣B⊤p+ r
∣∣∣+G⊤

∣∣∣H⊤p−δ

∣∣∣ .
Thus, p solves (3.18) if and only if p solves (3.13). ■

3.2 l1-induced gain analysis

The l1-induced gain of a positive system plays an important role in robust stabil-
ity analysis against dynamical and parametric uncertainties [Rantzer and Valcher,
2018a; Briat, 2013; Ebihara et al., 2011]. Past studies on switched positive sys-
tems [Zappavigna et al., 2010b; Zappavigna et al., 2010a], show how the l1-induced
gain can also be employed as a performance index to be minimized.

Recall that the l1-induced gain of a system is the maximum ratio of the l1 norm
of the system’s output to the l1 norm of the control and disturbance input. Thus, it
measures the maximum amplification of the input disturbances and control signals
to the system’s output.

Formally, we define the l1-induced gain of the system

ẋ(t) = Ax(t)+Bu(t)+Fw(t)+Hv(t)
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3.2 l1-induced gain analysis

with respect to a disturbance ω as

∥∥Gµ,ω

∥∥
1−ind = sup

ω ̸=0

∥z∥1
∥ω∥1

= sup
ω ̸=0

∫
∞

0
[
s⊤x(τ)+ r⊤u(τ)

]
dτ∫

∞

0 1⊤ω(τ) dτ
. (3.19)

In this section, the l1-induced gain of the closed loop system

Gµ :
{

ẋ(t) = Ax(t)+Bµ(x(t))+Fw(t)+Hv(t)
z(t) = s⊤x(t)+ r⊤µ(x(t))− γγγ⊤w−δ⊤v

with respect to the disturbance w ≥ 0 and the worst-case disturbance of (3.11) are
given. The same results are obtained for the infinite time setting in [Blanchini et al.,
2023, Sec. 6]. However, this section extends that analysis by characterizing the l1-
induced gain of the system with respect to the disturbance penalty in the cost func-
tion. In addition, we give tight bounds on the disturbance penalty to ensure that the
optimal control problem achieves a finite cost, which motivates the conditions (3.4)
and (3.14) in the context of the l1-induced gain of the disturbance.

Assume in Theorem 26 and Theorem 27 that G = H⊤ = 0, w ̸= 0 and denote
γγγ = γ 1. Let the l1-induced gain of the system in Figure 1.2 with respect to the
disturbance w be bounded by a parameter γ∗,∥∥Gµ,w

∥∥
1−ind = sup

w≥0

∥z∥1
∥w∥1

≤ γ
∗. (3.20)

It is immediate from (3.19) that (3.20) gives

sup
w≥0

∫ T

0

[
s⊤x(τ)+ r⊤u(τ)− γ

∗1⊤w(τ)
]

dτ ≤ 0.

Therefore, given a fixed time horizon T ∈ [0,∞]

arg max
w≥0

[∫ T

0

[
s⊤x(τ)+ r⊤u(τ)− γ1⊤w(τ)

]
dτ

]
=

{
0 γ ≥ γ∗

∞ γ < γ∗
(3.21)

holds. Thus, the cost function (3.21) has a finite value when γ ≥ γ∗. From Theo-
rem (26) and Theorem (27) we know that there exists a finite solution to the optimal
control problem (3.1) and (3.11) if and only if the conditions in (3.4) and (3.14)
hold, respectively. Thus, the minimum l1-induced gain of the system in Figure 1.2
with G = H⊤ = 0 is

γγγ
∗ = γγγ =

{
F⊤p(0). if T < ∞

F⊤p if T = ∞.
(3.22)

The worst-case disturbance can be found in [Blanchini et al., 2023].
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Chapter 3. Minimax linear regulator for positive systems

3.3 Line-shaped water-flow network

Consider a river system with a downstream flow represented by β and the dissi-
pation capacity α . The river flow is segmented into n sections, where the state x
reflects the volume of water in each section, with initial volume one. Dams posi-
tioned at these sections act as control points u modulating the downstream flow.
In this context, disturbances v arise due to leakage effects, where water is dissi-
pated more than is accounted for, resulting in extraneous flow towards downstream
reservoirs. These leakages intensify as the disturbances propagate downriver, in-
fluencing the water volumes of subsequent sections. Additionally, we denote w as
an unconstrained positive disturbance in the form of rain. The system dynamics of

x1

xn−1

xn

u1

un−1

βn

βn−1

β2
αn

αn−1

α1

w w

w
w

v1

vn−1

Figure 3.1 Scalable Water-flow diagram.

the water-flow diagram in Figure 3.1 describe the water-flow of a river with differ-
ent stations represented by the nodes xi, i = 1, . . . ,n. The state-space model of the
system dynamics in Figure 3.1 can be described by

ẋ1 =−(α1)x1 +β2x2 −u1 + v1,

ẋi =−(αi +βi)xi +βi+1xi+1 −ui +ui−1 + vi − vi−1

ẋn =−(αn +βn)xn +un−1 − vn−1 (3.23)

i = 2, . . . ,n− 1. Assume that the network is homogeneous, i.e. αi = α for all i =
1, . . . ,n, βi = β for all i = 2, . . . ,n. Then the system matrices A ∈ Rn×n, B ∈ Rn×m
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3.3 Line-shaped water-flow network

and initial state x(0) = x0 are

A =


−α β · · · 0
0 −(α +β ) · · · 0
...

...
. . . β

0 0 0 −(α +β )

 ; B =


−1 0 . . . 0
1 −1 . . . 0

0
. . . . . .

...
...

. . . . . . −1
0 0 · · · 0 1

 ;

H =−B; x0 = 1. (3.24)

Leakages: load disturbances
Initially, assume there is no additional rain input, i.e. w = 0. The control and dis-
turbance actions in this network system are constrained by |u| ≤ Ex, |v| ≤ Gx with
E,G ≥ 0. Here, G represents the slope of the water flow network, where a higher
altitude corresponds to a greater leakage disturbance. The choice of parameters
E,s,r,δ are designed to satisfy the assumptions (3.27), (3.28):

E =


0 ζu 0 · · · 0
0 0 ζu · · · 0
...

...
. . . . . .

...
0 0 . . . 0 ζu

 ; G =
1
n


ζv 0 . . . 0 0
0 2ζv . . . 0 0
...

...
. . .

...
...

0 0 . . . (n−1)ζv 0

 ;

s = ρs
[
1 0 . . . 0 0

]
; r = ρu

[
2/n . . . n−1/n 0

]⊤ ; (3.25)

and δ = ρv1. Here ζu and ζv scale, respectively, the control and disturbance capac-
ity. ρs, ρu, ρv are scaling parameters for the penalties on state, control, and distur-
bance terms in the cost function. The sparsity structure of E relies on the Metzler
condition, ensuring a viable setup under the given constraints.

The optimal control problem setup (3.11) of this example is

min
µ

sup
v

∫ T

0

[
s⊤x(τ)+ r⊤u(τ)−δ

⊤v(τ)
]

dτ

Subject to
ẋ(t) = Ax(t)+Bu(t)+Hv(t) (3.26)
x(0) = x0, u(t) = µ(x(t)),

|u| ≤ Ex, |v| ≤ Gx.

The choice of ζu, ζv, ρs, ρu, and ρv depends on following conditions:

A−|B|E =


−α β −ζu · · · 0
0 −(α +β )−ζu · · · 0
...

...
. . .

...
0 0 · · · β −ζu
0 0 · · · −(α +β )−ζu

 (3.27)
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Chapter 3. Minimax linear regulator for positive systems

has to be Metzler. Hence, it is necessary that β ≥ ζu. Moreover,

s−
(

E⊤ |r|−G⊤ |δ |
)
=


ρs +

1
n ζvρv

0− 2
n (ζuρu −ζvρv)

...
0− n−1

n (ζuρu −ζvρv)
0

≥ 0. (3.28)

Therefore, for all ρs ≥ 0 it is sufficient that, ζuρu −ζvρv ≤ 0.
Set α = 3, β = 10 and assume the river flow has n = 100 sections. Note that,

under these parameters, the state matrix has a Perron root of λp =−3.
Now, consider ζv = 3. In the presence of leakages, the Perron root shifts to

λp ≈ 0.19 causing the system dynamics to become unstable.

Simulations. In Figure 3.2, the optimal cost evolution shows that, despite distur-
bances causing an increase in the cost and making the system unstable, the con-
troller derived from our minimax framework successfully stabilizes and reduces the
cost to the level observed in the absence of disturbances. This demonstrates that, un-
der pertinent assumptions and proper tuning of the different optimization variables,
the controller’s effectiveness allows the system to maintain performance compara-
ble to the disturbance-free scenario. Figure 3.3 complements this by showing the
state trajectories for the open-loop system in the absence of disturbances, the open-
loop system with disturbances, and the closed-loop system with control.

Finally, Figure 3.4 illustrates the behavior of the total optimal cost when T → ∞

and as the network size increases. As the number of nodes grows, the cost in the
presence of disturbances rises significantly, indicating how disturbances escalate
the cost in larger networks. In contrast, when the controller derived from the min-
imax framework is introduced, it effectively stabilizes the system and significantly
reduces the cost. These simulation results demonstrate that, with appropriate pa-
rameter tuning, the derived optimal policy from our novel problem class effectively
compensates for disturbances entering locally at each node of the system, even when
their effects cascade through the line-networked structure. Moreover, exploring al-
ternative network topologies appears to be a promising direction for designing op-
timal network structures within the context of this theoretical framework.
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3.3 Line-shaped water-flow network

Figure 3.2 Optimal cost p(t)⊤x0 evolution over time t ∈ [0,T ] with T = 10.

Figure 3.3 Trajectories x(t) = eÃtx0 over time t ∈ [0,T ], with T = 10 of (a) the open-loop
system Ã = A, (b) the open loop system in the presence of disturbances Ã = A+ |H|G, (c)
the closed loop system in presence of disturbance and control Ã = A+ |H|G−BK.
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Chapter 3. Minimax linear regulator for positive systems

Figure 3.4 Logarithmic growth of the optimal cost p⊤x0 when T → ∞, as the water-flow
network is scaled from n = 2 to 200 sections.

Rain: positive unconstrained disturbance.
Assume that it starts raining. Let the rain be interpreted as a worst-case positive,
unconstrained disturbance w ≥ 0 affecting all nodes homogeneously, i.e. F = 1.
Suppose this disturbance persists over a time horizon of T = 24. An upper bound
on the amount of rain that the feedback controller, derived from the minimax frame-
work, can compensate for is studied. To establish this bound, condition (3.4) from
Theorem 26 is applied. This condition provides a measure of the system’s capacity
to handle the disturbance, with γγγ ≥ F⊤p(0) representing the minimum l1-induced
gain required to counteract the worst-case rain disturbance and maintain system
stability. The extended optimal control problem becomes

min
µ

sup
v

∫ 24

0

[
s⊤x(τ)+ r⊤u(τ)−δ

⊤v(τ)− γγγ
⊤w
]

dτ

Subject to
ẋ(t) = Ax(t)+Bu(t)+Hv(t)+1w (3.29)
x(0) = x0, u(t) = µ(x(t)),

|u| ≤ Ex, |v| ≤ Gx, w ≥ 0.

Assuming the same parameter choice as before, it is obtained that F⊤p(0) ≈ 1.56.
Therefore, if the optimal control problem (3.26) has a finite solution p⊤(0)x0 and
γ ≥ 1.56 then the extended optimal control problem (3.29) also has a finite solu-
tion, and its solution coincides with that of (3.26). This result establishes that the
controller derived for the original problem is robust enough to handle the additional
rain disturbance, provided that the gain condition is satisfied.
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3.4 Discrete-time setting

3.4 Discrete-time setting

Finite-horizon case
The optimal control problem in this section is formulated as a discrete-time min-
imax problem with nonnegative linear cost, positive linear dynamics, elementwise
linear constraints on the control policy and the disturbance v ∈ Rc, nonnegative un-
constrained disturbance w and initial conditions equal to zero,

min
µ

max
w,v

T−1

∑
t=0

[
s⊤x(t)+ r⊤u(t)− γγγ

⊤w(t)−δ
⊤v(t)

]
Subject to

x(t +1) = Ax(t)+Bu(t)+Fw(t)+Hv(t) (3.30)
x(0) = x0, u(t) = µ(x(t)),

|u| ≤ Ex, w ≥ 0, |v| ≤ Gx.

Here, x represents the n-dimensional vector of state variables, u the m-dimensional
control variable, w, v are the l-dimensional and c-dimensional disturbance, µ is any,
potentially nonlinear, control policy, E prescribes the structure of the control law, G
determines the linear dependency of the disturbance v and the state, and T ∈ R+ is
the time horizon. The objective is to minimize the worst-case cost over all possible
control strategies.

In the next theorem we use dynamic programming theory (Subsection 2.3) to
derive explicit solutions to the Bellman equation of the minimax setup (3.30) and
give necessary and sufficient conditions for the existence of finite solutions in finite
time.

THEOREM 29
Let A ∈ Rn×n, B =

[
B⊤

1 , . . . ,B
⊤
m
]⊤ ∈ Rm×n

+ , F ∈ Rn×l , H ∈ Rn×c, E =[
E⊤

1 , . . . ,E⊤
m
]⊤ ∈ Rm×n

+ , such that E⊤
i ̸= 0 for all i, G ∈ Rc×n

+ , s ∈ Rn, r ∈ Rm,
γ ∈ Rl and δ ∈ Rc. Suppose that

A ⩾ |B|E (3.31)

s ⩾ E⊤ |r|−G⊤ |δ | . (3.32)

Then the following statements are equivalent:

(i) The optimal control problem (3.30), has a finite value for every x0 ∈ Rn
+.

(ii) The algebraic equation in pk ∈ Rn
+,

pk =s+A⊤pk−1 −E⊤
∣∣∣r+B⊤pk−1

∣∣∣+G⊤
∣∣∣−δ+H⊤pk−1

∣∣∣ (3.33)

p0 = 0,
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has a unique solution and

γγγ ≥ F⊤pT . (3.34)

Moreover, if the above conditions holds, the minimal value of the optimal control
problem (3.30) is p⊤T x0 and the optimal control policy is given by u∗(t) =−Kkx(k),
is optimal when

Kk ∈

 sign(r1 + p⊤k−1B1)E1
...

sign(rm + p⊤k−1Bm)Em

 . (3.35)
2

REMARK 9
The right-hand side of (3.5) is a set, since multiple controllers may exists that
achieve the optimal cost. For any index i such that ri +[pk]

⊤
j Bi = 0 all controllers in

the set

K=
{

DE | Dii ∈ [−1,1] ,D j j ∈ sign(r j +[pk−1]
⊤
j B j) for j ̸= i

}
correspond to same and unique solution pk of the Bellman equation (3.33). 2

REMARK 10
Condition (3.34) will be needed when applying Lemma 18 in section 2.3 to the
objective function in (3.30). 2

REMARK 11
The condition E⊤

i ̸= 0 for all i = 1, . . . ,m, is imposed to prevent ill-posed scenar-
ios where certain control inputs ui satisfy |ui| ≤ E⊤

i x = 0 leading to trivial control
actions. 2

The following remark concerning the sparsity of the optimal controller still holds
for the discrete-time setting.

REMARK 12
As in the continuous-time scenario, dynamic programming is conducted without
explicitly enforcing linearity or sparsity; however, these properties naturally emerge
as a result of the optimization criteria and constraints. Furthermore, the sparsity
structure of the control gain Kk in (3.35) is determined by the E matrix, which is
specified by the problem designer. 2

Proof: The general nonlinear minimax optimal control problem (2.16) presented in
the subsection 2.3 reduces to our problem set up (3.41) if

f (x,u,w) := Ax+Bu+
[
F H

]
ω

g(x,u,w) := s⊤x+ r⊤u−
[
γ⊤ δ⊤]ω (3.36)

ω :=
[
w⊤ v⊤

]⊤
.
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It is direct that f : Rn ×Rm ×Rl −→ Rn, g : Rn ×Rm ×Rl −→ R+ is linear. Thus,
the minimax control problem (3.30) is a special case of the general minimax set-
ting (2.16) in section 2.3. Observe that, condition (3.43) gives

max
w≥0
|v|≤Ex

[
s⊤x+ r⊤u− γγγ

⊤w−δ
⊤v
]

= s⊤x+ r⊤u+max
w≥0

[
−γγγ

⊤w
]
+ max

|v|≤Gx

[
−δ

⊤v
]

≥
(

E⊤ |r|−G⊤ |δ |
)⊤

x+ r⊤u+max
w≥0

[
−γγγ

⊤w
]
+ |δ |⊤ Gx

≥
(

E⊤ |r|
)⊤

x−
∣∣∣r⊤∣∣∣Ex+max

w≥0

[
−γγγ

⊤w
]

≥ max
w≥0

[
−γγγ

⊤w
]
≥ 0 (3.37)

Therefore,

max
w,v

[g(x,u,ω)] = max
w≥0
|v|≤Gx

[
s⊤x+ r⊤u− γγγ

⊤w−δ
⊤v
]
≥ 0

as required in Lemma 18. Recall the cost-to-go function (2.21). Define J0(x) = p0
and Jk(x) = p⊤k x. It follows from the Bellman equation (2.17) in Lemma 18 that

J∗k (x(t)) = min
u

max
ω

[
g(x(t),u(t),ω(t))+ J∗k−1( f (x(t),u(t),ω(t)))

]
(3.38)

= min
u

max
v,w

[
s⊤x+ r⊤u− γγγ

⊤w−δ
⊤v+ p⊤k−1(Ax+Bu+Fw+Hv)

]
= s⊤x+ p⊤k−1Ax+ min

|u|≤Ex

[
r⊤u+ p⊤k−1Bu

]
+max

w≥0

[
−γγγ

⊤w+ p⊤k−1Fw
]
+ max

|v|≤Gx

[
−δ

⊤v+ p⊤k+1Hv
]

= s⊤x+ p⊤k−1Ax−
∣∣∣r+B⊤pk−1

∣∣∣⊤ Ex

+max
w≥0

[
−γγγ

⊤w+ p⊤k−1Fw
]
+
∣∣∣−δ +H⊤pk−1

∣∣∣⊤ Gx.

Analogous to the continuous-time setting, because of the linear nature of the op-
timization setting and the policy constraint design, the resulting Bellman minimax
equation becomes decoupled. Moreover, due to the linear nature of the value func-
tion (2.21), the optimizing variables attain their optimal values on the boundary,
i.e. ui ∈ {−Eix,Eix}, wi ∈ {0,∞}, vi ∈ {−Gix,Gix} for all i. Applying (3.34), the
Bellman equation becomes

s⊤x+ p⊤k−1Ax−
∣∣∣r+B⊤pk−1

∣∣∣⊤ Ex+
∣∣∣−δ +H⊤pk−1

∣∣∣⊤ Gx = p⊤k (3.39)
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which is exactly (3.33). Hence, (i) and (ii) in Theorem 29 and Lemma 18 are equiv-
alent. Consequently, the proof of this theorem relies on Lemma 18. Lastly, an ex-
pression for the optimal control policy u(t) = µ(x(t)) is given by

µ(x) = arg min
u≤Ex

[
s⊤x+ r⊤u− γγγ

⊤w−δ
⊤v+ p⊤k−1(Ax+Bu+Fw+Hv)

]
= arg min

u≤Ex

m

∑
i=1

[(
r⊤i + p⊤k−1Bi

)
ui

]
.

Because for all i = 1, . . . ,m the inequality |u| ≤ Ex restricts ui to the interval
[−Eix,Eix], the minimum is attained when (ri + p⊤k−1Bi) and ui have opposite
signs. If (ri + p⊤k−1Bi) = 0, then any ui ∈ [−Eix,Eix] is admissible. Thus, ui ∈
−sign(ri + p⊤k−1Bi)Eix. This proves the formula for Kk in (5.20). ■
While the solution to the Bellman equation (3.3) is unique, the corresponding
control policy (5.20) that achieves the optimal cost may vary. Specifically, when
(ri+ p⊤k−1Bi) = 0, multiple control actions can lead to the same optimal cost. This is
illustrated in the next example. Nonetheless, consistently selecting either ui =−Eix
or ui = Eix whenever (ri + p⊤k−1Bi) = 0 ensures a bang-bang control strategy, which
is sufficient to achieve optimality.

EXAMPLE 10
Let

A =

 1
2

1
4 0

1
4

1
2 0

0 0 2

 ; B =
1
4

 1 0
−1 0
0 3

 ; E =

[
1 1 0
0 0 2

]

F,H,G = 0; s =
[ 1

4
1
4

1
2

]⊤ ; r =
[
0 0

]⊤
.

The solution to the Bellman equation (3.18) for a general time step k can be written
as

p = [1 1 1]⊤. (3.40)

where αk ≥ 0 is the value of the first and second coordinates, and βk ≥ 0 alternates
between 1 (odd k) and 0 (even k). Then

r⊤+ p⊤B =
[
0 3/4

]
and both K1 and K2 given by

K1 =

[
1 0
0 1

]
E; K2 =

[
−1 0
0 1

]
E
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3.4 Discrete-time setting

achieve the optimal cost (3.40) and are stabilizing, with

A−BK1 =

 1
4 0 0
1
2

3
4 0

0 0 1
2

 ; A−BK2 =

 3
4

1
2 0

0 1
4 0

0 0 1
2

 . 2

Infinite-horizon case
Consider the optimal control problem specified in (3.30). In this section, we present
its infinite horizon variant.

inf
µ

max
w

∞

∑
t=0

[
s⊤x(t)+ r⊤u(t)− γγγ

⊤w(t)−δ
⊤v(t)

]
(3.41)

subject to
x(t +1) = Ax(t)+Bu(t)+Fw(t)+Hv(t),

x(0) = x0; u(t) = µ(x(t))

|u| ≤ Ex ;w ≥ 0; |v| ≤ Gx

THEOREM 30
Let A ∈ Rn×n, B =

[
B⊤

1 , . . . ,B
⊤
m
]⊤ ∈ Rm×n

+ , F ∈ Rn×l , H ∈ Rn×c, E =[
E⊤

1 , . . . ,E⊤
m
]⊤ ∈ Rm×n

+ such that E⊤
i ̸= 0 for all i, G ∈ Rc×n

+ , s ∈ Rn, r ∈ Rm,
γ ∈ Rl and δ ∈ Rc. Suppose that

A ⩾ |B|E (3.42)

s ⩾ E⊤ |r|−G⊤ |δ | . (3.43)

Then the following statements are equivalent:

(i) The optimal control problem (3.41), has a finite value for every x0 ∈ Rn
+.

(ii) The recursive sequence {pk}∞

k=0 with p0 = 0 and

pk = s+A⊤pk−1 −E⊤
∣∣∣r+B⊤pk−1

∣∣∣+G⊤
∣∣∣−δ +H⊤pk−1

∣∣∣ (3.44)

has a finite limit.

(iii) There exists p ∈ Rn
+ such that

p=s+A⊤p−E⊤
∣∣∣r+B⊤p

∣∣∣+G⊤
∣∣∣−δ+H⊤p

∣∣∣ . (3.45)

and

γγγ ≥ F⊤p. (3.46)
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Chapter 3. Minimax linear regulator for positive systems

If (iii) is true then (3.41) has the minimal, finite, nonnegative value pT x0, with p
being the limit of the recursive sequence {pk}∞

k=0 in (ii). Moreover, the control law
u(t) =−Kx(t), is optimal when

K ∈

 sign(r1 + p⊤B1)E1
...

sign(rm + p⊤Bm)Em

 . (3.47)
2

Analogous to the finite time horizon case, it may happen that the control law
that achieves the optimal cost is not unique. Taking T → ∞ in Example 10 provides
an example of such a situation.

Proof: The proof of this Theorem relies on Lemma 19 in Section 3.4. Analogous
to Theorem 29 define (3.36). Then the minimax optimal control problem (3.41) is
a special case of the general minimax setting (2.18) in Section 3.4. Additionally,
condition (3.43) gives

max
w,v

[g(x,u,ω)] = max
w≥0
|v|≤Gx

[
s⊤x+ r⊤u− γγγ

⊤w−δ
⊤v
]
≥ 0

as required in Lemma 19 in the Section 2.3. Now, it is clear that (i) in Theorem 30
is equivalent to (i) in Lemma 19 in the Section 2.3. Next, we will verify that the
recursive sequence in (ii) is equivalent to (ii) in Lemma 19. To prove this we use
induction over p⊤k x = Jk(x). By definition, it is direct that p⊤0 x = 0 = J0(x) for all
x. For the induction step we assume that p⊤k x = Jk(x). Now we want to prove that
p⊤k+1x = Jk+1(x). From (2.19) and the induction hypothesis we have that

Jk+1(x) = min
u

max
ω

[g(x,u,w)+ Jk( f (x,u,ω))]

= min
u

max
w,v

[
s⊤x+ r⊤u− γγγ

⊤w−δ
⊤v+ p⊤k (Ax+Bu+Fw+Hv))

]
= s⊤x+ p⊤k Ax+ min

|u|≤Ex

[
r⊤u+ p⊤k Bu

]
+max

w≥0

[
−γγγ

⊤w+ p⊤k Fw
]
+ max

|v|≤Gx

[
−δ

⊤v+ p⊤k Hv
]

= s⊤x+ p⊤k Ax−
∣∣∣r+B⊤pk

∣∣∣⊤ Ex

+max
w≥0

[
−γγγ

⊤w+ p⊤k Fw
]
+
∣∣∣−δ +H⊤pk

∣∣∣⊤ Gx.

Because the sequence in (ii) has a finite limit, the Bellman equation becomes

s⊤x+ p⊤k Ax−
∣∣∣r+B⊤pk

∣∣∣⊤ Ex+
∣∣∣−δ +H⊤pk

∣∣∣⊤ Gx = p⊤k+1x.
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3.5 Optimal voltage control in a DC power network

Therefore, p⊤k x = Jk(x) for all k ∈ N and all x ∈ Rn
+, and p⊤x = J∗(x) for all x.

Hence, (ii) and (iii) both in Theorem 30 and Lemma 19 are equivalent. Furthermore,
note that under homogeneous constraints the linearity of Jk is preserved during value
iteration.

Because (i), (ii) and (iii) in this theorem and in Lemma 19 are equivalent, the
proof of equivalence between (i), (ii) and (iii) in Theorem 30 follows from the
proof of Lemma 19 in Section 2.3.

To finish this proof it is just left to give an expression for the optimal control
policy u(t) = µ(x(t)),

µ(x) = argmin
|u|≤Ex

[
s⊤x+ r⊤u− γγγ

⊤w−δ
⊤v+ p⊤(Ax+Bu+Fw+Hv)

]
= argmin

|u|≤Ex

m

∑
i=1

[(
ri + p⊤Bi

)
ui

]
.

Finally, since for all i = 1 ... m the inequality |u| ≤ Ex restricts ui to the interval
[−Eix,Eix], the minimum is attained when (ri + p⊤Bi) and ui have opposite signs.
Thus, ui =−sign(ri + p⊤Bi)Ei for all i = 1 ... m. ■

3.5 Optimal voltage control in a DC power network

Figure 3.5 Example of a DC network of 3 terminals (buses) and 5 lines. The controls ui are
used to control the voltage when the system is subjected to the disturbances wi.

The optimal control problem (3.41) admits sparsity constraints on the controller,
making it particularly useful for problems defined over network graphs. Here, we
consider a simple example of voltage control in a DC (i.e., direct current) power
network. Here, the nodes represent voltage source converters with positive volt-
age dynamics, interconnected through resistive lines. The model can, for example,
capture an envisioned multi-terminal high-voltage DC network, whose design aims
to transmit power over long distances while maintaining low losses [Van Hertem
and Ghandhari, 2010; Andreasson et al., 2017] or a simplified DC distribution net-
work [Karlsson and Svensson, 2003]. The (continuous) voltage dynamics at the DC
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Chapter 3. Minimax linear regulator for positive systems

bus i (node i) is given by

CiV̇i(t) =−
n

∑
j=1

Ii j +ui(t)+ vi(t)

=−
n

∑
j=1

1
Ri j

(Vi(t)−Vj(t))+ui(t)+ vi(t), (3.48)

for all i = 1,2, . . . ,n, where ui denotes the controlled injected current, Ri j the re-
sistance of transmission line (i, j) (with Ri, j = ∞ if there exists no line connecting
nodes i and j), and Ci is the total capacitance at bus i.1 We have also included the
disturbance current wi, arising from variations in local generation and load. Defin-
ing the vector V = [V1(t), ...,Vn(t)]

⊤, u and v analogously, and C = diag([C1, ...Cn]),
we may write (3.48) on vector form as

CV̇ (t) =−LRV (t)+u(t)+ v(t). (3.49)

Here, LR is the weighted Laplacian matrix of the graph representing the transmis-
sion lines, whose edge weights are given by the conductances 1

Ri j
, i.e.,

[LR]i, j =

{
− 1

Ri, j
if i ̸= j

∑
n
j=1

1
Ri, j

if i = j
.

Note that −LR is Metzler, and the system (3.49) thus positive.
The dynamics in 3.49 can be discretized as

C(V (τh+h)−V (τh))/h =−LRV (τh)+u(τh)+ v(τh).

Setting t = τh and re-defining the state x(t) =V (τh) gives the discrete-time dynam-
ics

x(t +1) =
[
I −hC−1LR

]
x(t)+hC−1u(t)+hC−1v(t). (3.50)

Now, we formulate the optimal control problem (3.41) for the dymamics (3.50)

inf
µ

max
v

∞

∑
t=0

[
s⊤x(t)+ r⊤u(t)− γ

⊤v(t)
]

(3.51)

Subject to

x(t +1) =
[
I −hC−1LR

]
x(t)+hC−1u(t)+hC−1v(t)

u(t) = µ(x(t)) ; x(0) = x0

|u| ≤ Ex ; |v| ≤ Gx

1 Any line capacitances can for the purpose of this example be absorbed in to the buses.
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3.5 Optimal voltage control in a DC power network

Identifying A and B, condition (3.42) reads[
I −hC−1 ·LR

]
⩾ hC−1E +hC−1G. (3.52)

Clearly, the right hand side of the inequality must inherit the zero pattern of LR,
i.e. its sparsity pattern. In other words, the disturbances and control signal must
be compatible with the physical network structure and depend only on connected
nodes. E, or G can, however be more sparse than LR. Furthermore, (3.52) reveals
that the diagonals of the left hand side must satisfy

(eii +gii)+
N

∑
j=1

1
Ri j

≤ Ci

h

This can always be satisfied by making h sufficiently small. However, the off-
diagonals reveal conditions on ei j, gi j that depend on the line resistances Ri j in a
manner best illustrated by (3.53).

In Fig. 3.5 a 3-terminal DC power network system is introduced. For this net-
work, the condition (3.52) reads1−∑

3
j=1

h
R1, j ·C1

h
R1,2·C1

0
h

R2,1·C2
1−∑

3
j=1

h
R2, j ·C2

h
R2,3·C2

0 h
R3,2·C3

1−∑
3
j=1

h
R3, j ·C3



⩾


h

C1
(e1,1 +g1,1)

h
C1
(e1,2 +g1,2) 0

h
C2
(e2,1 +g2,1)

h
C2
(e2,2 +g2,2)

h
C2
(e2,3 +g2,3)

0 h
C3
(e3,2 +g3,2)

h
C3
(e3,3 +g3,3)

 . (3.53)

This element-wise matrix inequality shows necessary constraints on the elements of
E and G.

In parallel, condition (3.43) means that E and G need to satisfy

s ⩾ E⊤ |r|−G⊤ |γ| .
Here, the structure of E determines the states available to the local current con-
trollers and G the manner in which disturbances enter the system.

Particularly, in our 3 terminal DC power network we need the problem design
to satisfy s1

s2
s3

⩾
e1,1 e2,1 0

e1,2 e2,2 e3,2
0 e2,3 e3,3

∣∣∣∣∣∣
r1

r2
r3

∣∣∣∣∣∣−
g1,1 g2,1 0

g1,2 g2,2 g3,2
0 g2,3 g3,3

∣∣∣∣∣∣
γ1

γ2
γ3

∣∣∣∣∣∣ .
In this example, the resulting optimal controller (3.47) can take 8 different config-
urations depending on the sign of each element of the parameter r. If r is positive,
because in this problem B = hC−1 is positive, all the signs of the rows in K are
positive so that u(t) = −Ex(t) becomes optimal. However, if r is not positive, it is
possible to use this parameter to modify the signs of the rows in the resulting control
action.
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x1

x2

u

w

Figure 3.6 Double Tank process with disturbance w.

Double-tank Process
Consider the discretized double-tank process dynamics from [Hansson and Boyd,
1998], represented in Figure 3.6, in the presence of disturbances, which are treated
similarly to the control action. The system dynamics are described by:

x(k+1) = Ax(k)+Bu(k)+Fw(k)

where

A =

[
0.9648 0
0.0345 0.9648

]
; B = F =

[
0.0971
0.0017

]
.

Let γ ≥ F⊤p, E =
[
1 0

]
, s =

[
1 1

]⊤ and r = 0.2. The optimal control problem
follows the problem setting in (3.41) with G,H = 0 and δ = 0.

First we check that conditions (3.42) and (3.43) hold

A =

[
0.9648 0
0.0345 0.9648

]
≥
[

0.0971 0
0.0017 0

]
= |B|E

s =
[

1
1

]
≥
[

1
0

]
0.2 = E⊤r.

Now, solving the Bellman equation (3.45) we obtain

p =

[
13.09
28.41

]
. (3.54)

Finally, from Theorem 30 we know that the problem (3.41) has a solution if and
only if γ ≥ F⊤p ≈ 1.32. For this value of γ the optimal solution is (3.54) and its
respective feedback controller matrix is K = E.
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3.6 Concluding summary of Chapter 3

This Chapter provides an extensive framework for minimax problems for positive
systems that considers elementwise-bounded and unconstrained worst-case distur-
bances. Dynamic programming is applied without imposing predefined constraints
on linearity or sparsity; instead, these properties arise naturally from the optimiza-
tion criteria and constraints. This approach differs from methods in which the con-
trol design explicitly dictates specific structures. In both finite and infinite hori-
zon settings, the minimization and the two distinct maximization problems are de-
coupled. This property allows the explicit solution of the Bellman equation (for
the discrete-time case) and the Hamilton-Jacobi-Bellman (HJB) equation (for the
continuous-time case) to be extended to the minimax framework, resulting in a
closed-form solution. In the finite-horizon setting, the Bellman equation is repre-
sented as a difference equation, while the HJB equation takes the form of an or-
dinary differential equation (ODE). In contrast, in the infinite-horizon case, both
equations simplify to an algebraic equation which grows linearly with the state di-
mension. A fixed-point method for computing the solution to the algebraic HJB
equation in the presence of elementwise bounded disturbances is provided in Theo-
rem 28.

This novel class of optimal control problems is shown to enable efficient scal-
ing to large dynamical systems. This efficiency stems partly from the sparsity of the
optimal policy, which is a direct result of the constraints imposed by the problem
statement and the optimization process. In addition, the l1-induced gain of the sys-
tem with respect to unbounded disturbance was formulated, and a tight bound for
the finiteness of the cost under this disturbance was presented. The methodology
is illustrated through an example involving a DC power network and a large-scale
water management network, highlighting its scalability and practical relevance.
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4
Linear programming
formulation of the LR
problem

Building on recent work in discrete time [Rantzer, 2022; Li and Rantzer, 2024],
this chapter introduces a linear programming formulation for the minimax linear
regulator problem in the infinite-horizon setting in continuous-time (see (3.11) in
Chapter (3)). This formulation assumes that the system is influenced exclusively
by positive, unconstrained disturbances. Firstly, the stabilizability and detectability
properties of the minimax linear regulator problem (3.11) are examined. Subse-
quently, a linear programming formulation of the Hamilton-Jacobi-Bellman (HJB)
equation is developed, and the equivalence of its solutions is thoroughly investi-
gated.

Assume for the entire chapter that H = G⊤ = 0, meaning that the system is
only subject to worst-case unconstrained disturbances w ≥ 0. Furthermore, under
the context of Theorem 27, also assume the condition γγγ ≥ F⊤p. Then, it follows
that the solution p o the minimization problem (4.1) coincides with the solution to
the minimax problem (3.11).

inf
µ

∫
∞

0

[
s⊤x(τ)+ r⊤u(τ)

]
dτ

Subject to
ẋ(t) = Ax(t)+Bu(t) (4.1)
x(0) = x0, u(t) = µ(x(t)),

|u| ≤ Ex.

In this context, the minimal value solution is p⊤x0, where p is obtained by solving
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4.1 E-Stabilizability and detectability conditions

the algebraic equation

0 = s+A⊤p−E⊤
∣∣∣r+B⊤p

∣∣∣ . (4.2)

Moreover, if Theorem 27 holds, the optimal value of the optimal control prob-
lem (4.1) is p⊤x0 and the optimal policy is given by u∗ =−Kx(t), satisfies (3.15).

4.1 E-Stabilizability and detectability conditions

In the context of (4.1), two relevant definitions are presented. A pair (A,B) is E-
stabilizable if there exists a feedback law u =−Kx with |u| ≤ Ex such that A−BK
is Hurwitz. The system is detectable if all unobservable states are stable. Next, a
detectability characterization for positive systems is presented.

PROPOSITION 31—PROPOSITION 3 [DAMM AND ETHINGTON, 1969]
Let A ∈ Rn×n, B ∈ Rn×m and C ∈ Rn. Consider the autonomous system

ẋ = Ax, y =Cx

where A is a Metzler matrix and C ≥ 0. The pair (C,A) is detectable if and only if
Cv> 0 for any nonnegative eigenvector v corresponding to a nonnegative eigenvalue
λ of A. 2

THEOREM 32
Suppose that the Bellman equation (4.2) has a finite solution p. Let K satisfy (3.15).
If the pair (s⊤− r⊤K,A−BK) is detectable, then u(t) =−Kx(t) stabilizes the sys-
tem. 2

Proof: Since p solves the Bellman equation, the controller K achieves the optimal
cost. The optimal cost in closed loop equals J∗(x0) =

∫ t
0(s

⊤− r⊤K)x(τ)dτ and is
optimal. It satisfies J∗(x0) = p⊤x0 and is bounded. Therefore, (s⊤− r⊤K)x(τ)→ 0
as τ → ∞. If the pair (s⊤− r⊤K,A−BK) is detectable, this implies that the closed-
loop matrix A−BK is Hurwitz. ■

Detectability of the pair (s⊤− r⊤K,A−BK) can be verified through Proposi-
tion 31, since the closed-loop system is again a positive system and s⊤ − r⊤K is
nonnegative thanks to (3.12). The next corollary gives a simple but restrictive a pri-
ori condition that implies observability for all of the controllers that can be produced
by Theorem 27. A more sophisticated condition is introduced in Theorem 35.

COROLLARY 33
Suppose s−E⊤ |r| ≫ 0, then (s⊤− r⊤K,A−BK) is detectable for any K satisfying
|K| ≤ E. Moreover, if (i)–(ii) in Theorem 27 hold with G = H⊤ = 0 and K that
satisfies (3.5), then u(t) =−Kx(t) stabilizes the system. 2
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Chapter 4. Linear programming formulation of the LR problem

Proof: Since s−K⊤r ≥ s−E⊤ |r| ≫ 0 we have (s−K⊤r)⊤v > 0 for every nonzero
nonnegative eigenvector v of A−BK. Hence (s⊤− r⊤K,A−BK) is detectable by
Proposition 31. The remainder follows from Theorem 32. ■

In the next theorem, we demonstrate that the detectability of (s⊤−K⊤r,A−BK)
is guaranteed if every nonzero state incurs a positive cost regardless of the policy
applied.

THEOREM 34
Assume conditions (i) and (ii) in Theorem 27 hold with G = H⊤ = 0. Let K
satisfy (3.15). If there exists a solution p ∈ Rn

+ to (4.2) such that p ≫ 0 and
α(A−BK) ̸= 0, then the pair (s⊤− r⊤K,A−BK) is detectable and u(t) =−Kx(t)
is a stabilizing policy.

Moreover, if α(A−BK)= 0 then the pair (s⊤−r⊤K, A−BK) is not detectable.2

Proof: Suppose there exists a vector p ∈ Rn
+ solving (4.2) with p > 0. Note that

K⊤(B⊤p+ r) = E⊤|B⊤p+ r|.

Substituting this into (4.2), it follows that

−(A−BK)⊤p = s−K⊤r. (4.3)

If A−BK is Hurwitz, then all unobservable states of A−BK are asymptoti-
cally stable. Thus, the pair (s⊤− r⊤K,A−BK) is detectable and u(t) =−Kx(t) is a
stabilizing policy.

Suppose A−BK is not Hurwitz. Since A−|B|E is Metzler, A−BK is also Met-
zler. Therefore, there exists a nonnegative eigenvector, specifically the Perron eigen-
vector vp of A−BK, corresponding to the largest eigenvalue λp = α(A−BK) ̸= 0.
This eigenvector satisfies λpvp = (A − BK)vp, thus vp ̸= 0. The right-hand side
of (4.3) can be rewritten as

p⊤(−(A−BK))vp = p⊤(−λp)vp. (4.4)

Since p≫ 0, vp ≥ 0 and λp > 0 it follows that p= p⊤(−λp)vp ≪ 0. This contradicts
the left-hand side of (4.3), (s−K⊤r)⊤vp ≥ 0. Therefore, if p ≫ 0 and λp ̸= 0 the
inequality cannot hold. Consequently, if there exists a solution p ≫ 0 to (4.2) and
α(A−BK) ̸= 0 the pair (s⊤− r⊤K,A−BK) is detectable and u(t) = −Kx(t) is a
stabilizing policy.

Finally, if α(A−BK) = 0, the Perron root is λp = 0 with vp ≥ 0. Therefore, (4.4)
gives p⊤(−λp)vp = (s−K⊤r)⊤vp = 0. Thus, (s⊤− r⊤K,A−BK) is not detectable
by Proposition 31. ■

Recall the observability condition in [Li and Rantzer, 2024, Assumption 4.1].

(s⊤−|r⊤|E)
n−1

∑
i=0

(A−|B|E)i ≫ 0. (4.5)
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Condition (4.5) is based on the sum of the observability matrix in the discrete-
time framework. In continuous time, the observability matrix involves the integral∫

∞

0 e(A−|B|E)tdt. This integral does not converge for the modes λ of A−|B|E satis-
fying Re(λ )≥ 0. Thus, the observability condition∫

∞

0
e(A−|B|E)⊤(s−E⊤|r|)dt ≫ 0

ensures that no unstable mode v ̸= 0 associated with Re(λ ) ≥ 0 is unobservable in
continuous-time. Inspired by (4.5), the next theorem proposes an a priori detectabil-
ity condition for the continuous-time setting.

THEOREM 35
Assume (i)–(ii) in Theorem 26 and Theorem (27) hold with G = H⊤ = 0. Let h ∈ R
such that A−|B|E +hIn ≥ 0 and h > 0. Suppose also that

(s⊤−|r⊤|E)
n−1

∑
i=0

(
1
h
(A−|B|E)+ I

)i

≫ 0. (4.6)

Then, (s⊤− r⊤K,A−BK) is detectable for any K satisfying |K| ≤ E. 2

Proof: Suppose (4.6) holds. Let M = A− BK, N = s−K⊤r, M̂ = A− |B|E and
N̂ = s−E⊤|r|. Note that M ≥ M̂ and N ≥ N̂. The ODE (3.3) can be rewritten as
−ṗ(t) = Mp(t)+N with p(T ) = 0. Define w(t) = p(T − t) and suppose T > 0,
then w(0) = 0 and w(t) for t ∈ [0,T ] satisfies

w(t) =
∫ t

0
eM⊤τ Ndτ. (4.7)

It is possible to approximate the integral by

w(t) =
∫ t

0
eM⊤τ Ndτ = lim

h→∞

1
h

⌊ t
h⌋−1

∑
i=0

(
1
h

M⊤+ I)iN (4.8)

Because M + hIn ≥ M̂ + hIn ≥ 0 and N ≥ N̂ ≥ 0, the summation in (4.8) can be
lower bounded by

lim
h→∞

1
h

n−1

∑
i=0

(
1
h

M̂⊤+ I
)i

N̂ ≫ 0

which is positive by assumption. For a nonnegative vector v ̸= 0 corresponding to
an eigenvalue λ ≥ 0 of M it holds that

v⊤w(t) = v⊤ lim
h→∞

1
h

⌊ t
h⌋−1

∑
i=0

(
1
h

M⊤+ I)iN

= lim
h→∞

1
h

⌊ t
h⌋−1

∑
i=0

(
λ

h
+1)iv⊤N =

(∫ t

0
eλτ dτ

)
v⊤N.
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Clearly
∫ t

0 eλτ dτ > 0. At the same time

v⊤w(t) = v⊤ lim
h→∞

1
h

⌊ t
h⌋−1

∑
i=0

(
1
h

M⊤+ I)iN

≥ v⊤ lim
h→∞

1
h

n−1

∑
i=0

(
1
h

M̂⊤+ I)iN̂ > 0.

Thus, v⊤N = v⊤(s−K⊤r)> 0 and (s⊤− r⊤K,A−BK) is detectable by Propo-
sition 31. ■

EXAMPLE 11—DETECTABILITY OF THE LINE-SHAPED WATER NETWORK

Recall the Line-Shaped water network in Section 3.3. Let Ã = A + |H|G and
s̃ = s⊤+ |δ⊤|G. The detectability of the pair (s̃− r⊤K, Ã−BK) is established via
Theorem 35. However, the sufficient condition provided in Corollary 33 is overly
restrictive for this example, as (3.28) is not strictly positive. Since λp ≈ 0.19 it suf-
fices to choose h = 20 to verify the inequality

1
h
(s̃⊤−|r⊤|E)

n−1

∑
i=0

(
1
h
(Ã−|B|E)+ I

)i

≫ 0.

Therefore, the pair (s̃− r⊤K, Ã−BK) is detectable for any K satisfying |K| ≤ E. 2

4.2 Linear programming

It is possible to obtain a solution to the Bellman equation (4.2) through the linear
program (LP)

Maximize 1⊤p over p ∈ Rn
+, ζ ∈ Rm

+

Subject to A⊤p ≥ E⊤
ζ − s (4.9)

−ζ ≤ r+B⊤p ≤ ζ .

Lemma 36 characterizes the boundedness of (4.9) by considering the dual linear
program.

LEMMA 36
The following are equivalent:

(i) The primal linear program (4.9) has a bounded solution;

(ii) The dual linear program

Minimize s⊤x+ r⊤u with x ∈ Rn
+

Subject to Ax+Bu ≤−1 (4.10)
−Ex ≤ u ≤ Ex
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4.2 Linear programming

is feasible;

(iii) There exists a D ∈ Rm×m satisfying −I ≤ D ≤ I such that A−BDE is Hurwitz.
2

Proof: (i)⇐⇒ (ii): This follows from the weak duality of the linear programs, and
the fact the the primal problem is feasible. Indeed, taking p = 0 and ζ = |r| renders
the primal linear program feasible since s ≥ E⊤|r|.

(ii) =⇒ (iii): For any feasible (x,u) let D such that −I ≤D≤ I and u=−DEx. It
follows that (A−BDE)x ≤−1 < 0. The matrix A−BDE is Metzler since A−|B|E
is Metzler and −I ≤ D ≤ I. Since x ≥ 0, it follows by item 1 and 18 of [Fiedler,
1986, Thm. 5.1] that A−BDE is Hurwitz.

(iii) =⇒ (ii): By item 2 and 18 of [Fiedler, 1986, Thm. 5.1] there exists a v ≫ 0
such that (A−BDE)v ≪ 0. Let α = mini |(A−BDE)i| and take x = 1

α
v and u =

−DEx, then Ax+Bu = (A−BDE)x ≤−1, −Ex ≤ u ≤ Ex and x ≥ 0. ■

THEOREM 37
If the linear program has a bounded value, then the optimizer p solves the Bellman
equation (4.2). 2

Proof: Let p and ζ optimize (4.9), then A⊤p = E⊤ζ −s and ζ = |r+B⊤p|, and thus
(3.13) with G = H⊤ = 0 is satisfied. ■

Note that the existence of a bounded solution to the LP (4.9) is not necessary
for the existence of solution to the HJB equation.

EXAMPLE 12
Let

A =

−2 1 0
1 −2 0
0 0 1

 ; B =

 1
−1
0

 ; E⊤ =

1
1
0


s =

[
1 1 0

]⊤ ; r = 0.

The third state is unstable and not detectable (nor stabilizable). The solution to the
Bellman equation (3.3) is

p =
[
1 1 0

]⊤
. (4.11)

However, the third entry of the p vector in the linear program is unbounded. 2

Moreover, a system that is not detectable might still be stabilizable, but the Bellman
equation might fail to identify the stabilizing solution.
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EXAMPLE 13
Let

A =

 1
2 1 0
0 −1 0
0 0 −1

 ; B =

1
0
0

 ; E⊤ =

1
0
0


s =

[
0 2 3

]⊤ ; r = 0.

The Perron Frobenius eigenvalue of A is λp = 0.5 indicating that the first state is
unstable. Furthermore, the detectability condition fails since

(s⊤−|r⊤|E)vp =
[
0 2 3

][
1 0 0

]⊤
= 0

where vp is the eigenvector associated with λp. This implies that the first state is not
detectable. However, the system is stabilizable: Choosing K = E yields

A−BK =

− 1
2 1 0

0 −1 0
0 0 −1

 , λp =−0.5.

In this context, the solution to the Bellman equation (4.2) is

p =
[
0 2 3

]⊤ (4.12)

with K = sign(0)E, i.e. any K ∈ [−E,E] is minimizing. However, K =−E does not
give a stable closed loop, so not all minimizing solutions are stabilizing. 2

Lemma 36 implies that the linear program (4.9) converges only if (A,B) stabilizable
by a feedback u = −Kx with |u| ≤ Ex. Therefore, a solution to the Bellman equa-
tion (4.2) is an optimizer to (4.9) as long as the closed-loop system is detectable.

Next, a partial converse to Theorem 37 is presented:

THEOREM 38
If p solves the Bellman equation (3.13), K satisfies (3.15) and K is such that(

s−K⊤r,A−BK
)

(4.13)

is detectable, then p maximizes (4.9), with ζ = |r+B⊤p|. 2

Proof: For the primal linear program to be bounded we require by Lemma 36 that
there exists a feedback law u(t) =−Kx(t) with K = DE and |D| ≤ I that stabilizes
the system. By Theorem 32, it follows that any K that satisfies (3.15) stabilizes
the system. Taking p in (4.9) as the solution to (3.13) and ζ = |r+B⊤p| satisfies
constraints of (4.9). If p would not be optimal, then applying the iteration (28) to p
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would result in a p̃ for which 1⊤p ≤ 1⊤ p̃ [Rantzer, 2022]. However, since p solves
the Bellman equation we have p = p̃, and thus p is optimal. ■

From the proof of Lemma 36 it is clear that the dual linear program (4.10)
always generates a stabilizing controller. We use this fact to show that the primal
linear program (4.9) also generates at least one stabilizing controller.

THEOREM 39
If the primal linear program (4.9) has a bounded solution p, then all controllers
u(t) =−Kx(t) satisfying

K ∈ diag(sign(B⊤p+ r))E

achieve the optimal cost and at least one stabilizes the system, i.e., the resulting
closed loop matrix A − BK is Hurwitz. Moreover, if (s⊤ − r⊤K,A − BK) is de-
tectable, then K always stabilizes the system. 2

Proof: The primal and dual linear programs (4.9) and (4.10) achieve the same cost
due to strong duality (e.g., see [Dantzig and Thapa, 2003, Ch. 2]). Let p∗, ζ ∗, x∗ and
u∗ be such as the optimal cost of both programs is achieved. That is, s⊤x∗+ r⊤u∗ =
1⊤p∗. Thanks to optimality of the constraints we have

|r+B⊤p∗|= ζ
∗, E⊤

ζ
∗ = s+A⊤p∗,

Ax∗+Bu∗ =−1, |u|= Ex∗.

Let D = diag(sign(u∗)) such that u∗ = DEx∗. If x∗i = 0, note that ((A+BDE)x∗)i ≥
0 since all off-diagonal entries of A + BDE are nonnegative. This violates (A +
BDE)x∗ = −1 and therefore x∗ > 0. By assumption, E is nonnegative and has no
all-zero rows, and so Ex∗ > 0. The established equalities yield

|r+B⊤p∗|⊤Ex∗ = ζ
∗⊤Ex∗ = s⊤x∗+ p∗⊤Ax∗

= s⊤x∗− p∗⊤1− p∗⊤Bu∗ =−r⊤u∗− p∗⊤Bu∗

=−(r+B⊤p∗)⊤u∗ =−(r+B⊤p∗)⊤DEx∗.

It follows that equality holds if D ∈ −diag(sign(r+B⊤p∗)). The controller is not
necessarily unique if there exists an index i such that (r+B⊤p∗)i = 0. At least one of
such D satisfies D= diag(sign(u∗)) and therefore stabilizes the system. The optimal
cost J∗(x0) =

∫ t
0(s

⊤− r⊤K)x(τ)dτ satisfies J∗(x0) = p∗⊤x0 and is bounded. There-
fore, (s⊤− r⊤K)x(τ)→ 0 as τ → ∞. If the pair (s⊤− r⊤K,A−BK) is detectable,
this implies that A−BK is Hurwitz. ■

4.3 Concluding summary of Chapter 4

This chapter extends previous results in discrete time presented in [Rantzer, 2022]
and [Li and Rantzer, 2024], focusing on the continuous-time version of the novel
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class of problems introduced in those works. A linear programming formulation is
proposed to solve the HJB equation for the linear regulator problem and the mini-
max linear regulator problem in the presence of unconstrained disturbances w ≥ 0
under appropriate assumptions.

The stabilizability and detectability properties of the system dynamics are ana-
lyzed and linked to the existence and equivalence of solutions of the HJB equation
derived in the previous chapter, and the linear programming formulation derived in
this one. Additionally, sufficient detectability conditions are established to ensure
the uniqueness of a stabilizing policy when the HJB equation admits a finite solu-
tion and it is demonstrated that the proposed linear programming approach always
identifies a stabilizing policy, provided one exists.
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5
Synchronization of positive
multi-agent systems

Synchronization is a critical behavior in many dynamical systems and has broad
applications across various domains [Ren and Beard, 2005; Tegling et al., 2023;
Fabiny et al., 1993; Fax and Murray, 2004]. A fundamental challenge in control
theory is designing protocols that achieve synchronization in interconnected sys-
tems. In recent research, a widely adopted approach to addressing the synchro-
nization problem involves the design of stabilizing controllers for the closed-loop
dynamics of individual agents. These controllers are then extended to develop a
synchronization-achieving controller for the overall system. A detailed overview of
this approach is provided in [Saberi et al., 2022]. Central to stabilizing the local
system is solving the algebraic Riccati equation for the agent dynamics. Notably,
the resulting controller ensures that increasing the input signal maintains stability
in the local system, a critical requirement for synchronization.

Research on positive systems has also expanded significantly to the study pos-
itive consensus [Valcher and Zorzan, 2016; Valcher and Zorzan, 2017]. For exam-
ple, [Valcher and Misra, 2014] addresses the positive consensus problem using a
static output feedback approach for single-input, single-output positive agents, with
the controller gain matrix encoding the network’s connectivity structure.

This chapter builds on these ideas by proposing a synchronization controller for
systems with positive homogeneous dynamics. The approach relies on solving the
Linear Regulator problem in Chapter 3, which is analogous to the algebraic Riccati
equation in the Linear Quadratic Regulator framework. However, the Linear Reg-
ulator problem offers significant computational advantages: its algebraic equation
can be solved using linear programming, and the number of unknowns grows lin-
early with the state dimension, in contrast to the quadratic scaling in the Riccati
equation. Moreover, the sparsity structure of the resulting optimal control policy
can be chosen by the problem designer. Necessary and sufficient conditions ensur-
ing the positivity of each agent’s trajectory for all nonnegative initial conditions are
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also provided. Numerical simulations on large regular graphs with different nodal
degrees illustrate the proposed results and demonstrate its effectiveness.

5.1 The LR-based method in continuous-time

In [Saberi et al., 2022, Prot. 2.1], a protocol design method based on an algebraic
Riccati equation (ARE) is presented. For this protocol, it is shown that full-state
coupling is always solvable for a family in G[β ,∞)

1, where no upper bound is re-
quired for the nonzero eigenvalues of L.

ARE-based protocol for continuous-time MAS

Consider a MAS described by (2.36) and (2.37). We consider the protocol

ui = ρFζi, (5.1)

where ρ ≥ 1 and F = −B⊤P with P > 0 being the unique solution of the
continuous-time algebraic Riccati equation

A⊤P+PA−2βPBB⊤P+Q = 0 (5.2)

where Q> 0 and β is a lower bound for the real part of the nonzero eigenval-
ues of all Laplacian matrices associated with a graph in the set of connected
graphs G[β ,∞).

Recall the Linear Regulator set up (4.1).

inf
µ

∫
∞

0

[
s⊤x(τ)

]
dτ

Subject to

ẋ(t) = Ãx(t)+ B̃u(t), x(0) = x0 (5.3)
u(t) = µ(x(t)), |u| ≤ Ẽx.

where Ã ∈ Rn×n, B̃ ∈ Rn×m, Ẽ ∈ Rm×n
+ , s ∈ Rn

+ such that s ≫ 0, and Ã− |B̃|Ẽ is
Metzler. For F,H,G = 0 it follows from Theorem (27) that (5.3) has a finite solution
for every x0 ∈ Rn

+ if and only if there exists a nonnegative vector p ∈ Rn
+ such that

Ã⊤p = Ẽ⊤|B̃⊤p|− s. (5.4)

1 Recall Definition 20
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5.1 The LR-based method in continuous-time

If either are satisfied, then (5.3) has the minimal value p⊤x0. Moreover, the
control law u(t) =−Kx(t) is optimal when

K := diag
(

sign(B̃⊤p)
)

Ẽ. (5.5)

REMARK 13
To verify the E-stabilizability of the pair (A,B) with A Metzler, it is shown in
Lemma 36 that it is necessary and sufficient to verify the feasibility of

Ax+Bu ≤−1, −Ex ≤ u ≤ Ex.

This feasibility problem can be verified by any linear program solver. 2

Note that by construction s > 0. Assuming also that the pair (Ã, B̃) is Ẽ-stabilizable,
by Corollary 33 and Theorem 35 in Chapter 4 a vector p ≥ 0 solves (5.4) if and only
if p maximizes linear program

Maximize 1⊤p over p ∈ Rn
+, ζ ∈ Rm

+

Subject to Ã⊤p ≤ Ẽ⊤
ζ − s (5.6)

−ζ ≤ B̃⊤p ≤ ζ .

Inspired by the ARE-based protocol (5.1.1) and the Continuous-time Linear regu-
lator protocol framework this section presents solution to two problems.

PROBLEM 1—SYNCHRONIZATION PROBLEM
Design a linear feedback controller of the form (5.1) that solves the State Synchro-
nization Problem in Section 2.6 and satisfies the constraint

|ui| ≤ E |ζi| . (5.7)
2

PROBLEM 2—POSITIVE SYNCHRONIZATION PROBLEM
Find necessary and sufficient conditions for our protocol, which ensures that the

positivity of each agent’s trajectory is preserved for all nonnegative initial condi-
tions. 2

REMARK 14
For B nonnegative we always have that K = E, implying that the internal positivity
of each agent ensures the positivity of the interconnected system. 2
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LR-based protocol for continuous-time MAS

Consider the MAS described by (2.36) and (2.37) with A ∈ Rn×n Metzler
and B∈Rn×m. Let E ∈Rm×n

+ , s∈Rn
+ and L be a Laplacian matrix associated

with a graph G ∈ G[β ,γ] with N agents. Suppose

A− γ|B|E (5.8)

is Metzler and ρ ≥ 1
β

. The LR-based protocol is given by

ui =−ρKζi, (5.9)

where K follows from (5.5) with Ã = A, B̃ = B, Ẽ = 1
ρ

E, F = H = G = 0
and s > 0.

THEOREM 40
Consider a graph family F ⊆ G[β ,γ] and the MAS described by (2.36) and (2.37). If
the pair (A,B) is E-stabilizable then the protocol (5.9) solves the state synchroniza-
tion problem for any undirected graph G∈F. Moreover, the synchronized trajectory
is given by (2.46), and each ui satisfies the bound (5.7). 2

Proof: Let G be any graph in F. The overall dynamics of the N agents with the
protocol (5.1.1) can be written as

ẋ = (IN ⊗A−ρL(G)⊗BK)x. (5.10)

By Lemma 24, the synchronization of the system (5.10) is equivalent to the asymp-
totic stability of

˙̃ηi = (A−λiρBK)η̃i, i = 2, . . . ,N (5.11)

where λi = λi(G), i = 2, . . . ,N are positive. We prove that A−λiρBK is Hurwitz for
all i.

Let i = 2, . . . ,N and αi = λiρ . Recall that λi ≥ β ≥ 1
ρ

, and thus αi ≥ 1. By
assumption, γ ≥ λi and A− γρ |B| Ẽ is Metzler and since BK ≤ |B|Ẽ, A−αiBK is
also Metzler. Observe from (5.5) that K satisfies

K⊤(B⊤p) = Ẽ⊤
∣∣∣B⊤p

∣∣∣≥ 0,

where p ≥ 0 solves (5.4). It follows from (5.4) that

(A−αiBK)⊤p = A⊤p−αiK⊤B⊤p

= Ẽ⊤
∣∣∣B⊤p

∣∣∣− s−αiẼ⊤
∣∣∣B⊤p

∣∣∣(1−αi)E⊤
∣∣∣B⊤p

∣∣∣− s ≤−s < 0.
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5.1 The LR-based method in continuous-time

Therefore, by [Fiedler, 1986, Thm. 5.1] it is implied that A−αiBK is Hurwitz as
we wanted to prove. ■

Positive systems often appear as dynamical systems for which the states are
representing (physical) quantities that cannot become negative. In some contexts
it is therefore desired that the trajectories remain in the nonnegative orthant. The
following theorem characterizes when this is the case.

THEOREM 41
Consider a graph family F ⊆ G[β ,γ] and the MAS described by (2.36) and (2.37).
Suppose the pair (A,B) is E-stabilizable and consider the protocol (5.9). The trajec-
tories of the MAS remain nonnegative for all nonnegative initial conditions if and
only if BK is nonnegative. 2

Proof: The dynamics (2.36) of each agent i is rewritten as

ẋi = Âxi + B̂ûi (5.12)

where Â = A−ρBK ∑
N
j=1 ai j, B̂ = ρBK and ûi = ∑

N
j=1 ai jx j. Note that γ ≥ ∑

N
j=1 ai j

and |B|E ≥ BK, hence, Â is Metzler.
(=⇒): Suppose that the matrix BK has, at least, one negative element, then there

exists B̂p,q < 0 for some p,q ∈ N. Let xi(0)p = 0 and x j(0)q be sufficiently large for
some q ̸= p. Then ûi(0)q ≫ 0 and from (5.12) it follows that ẋi(0)p < 0. Thus, xi
leaves the nonnegative orthant.

(⇐=): Because Â is Metzler and B̂ ≥ 0 the system is internally positive with
respect to û [Rantzer and Valcher, 2018a]. Thus, the trajectories of (5.12) remain
nonnegative. ■

Recall that the LR-based consensus protocol requires that the gain parameter ρ

satisfies ρ ≥ 1
λ2

. Violation of this bound may destabilize the systems (5.11) for some
i, resulting in dissensus. At the same time we require in the proof of Theorem 40
that the state matrix A− λiρBK in (5.11) is Metzler, in order to apply the Linear
Regulator theory. For this to hold, we need λiρ ≤ α , where

α = argmaxτ≥0
{

A− τ|B|Ẽ is Metzler
}
, Ẽ = 1

ρ
E. (5.13)

For any graph family F ⊆ G[β ,γ] we have λi(G) ∈ [β ,γ] for any G ∈ F, implying the
bounds

1
λi
≤ 1

β
≤ ρ ≤ α

γ
≤ α

λi
.

We therefore conclude that, in order to apply the LR-based protocol, we require that

α ≥ γ

β
. (5.14)

Note that γ

β
≥ 1, and thus α ≥ 1 is required as well. Note also that the left-hand side

of (5.14) depends fully on the local agent dynamics via (5.13), whereas the right-
hand side depends on the class G[β ,γ] that contains the graph family of interest. It
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follows that the system dynamics dictate for which graph families the Protocol 5.1.1
can reach consensus. Although the matrix Ẽ could be scaled down such that α is
increased, doing so might violate the E-stabilizability of (A,B).

Numerical simulations
Consider the MAS (2.36) described by

A =

[
−2.21 2.40
0.43 −0.44

]
; B =

[
0.27

0

]
; E =

[
0.06
0.6

]⊤
and composed by 150 agents. Consider also a connected undirected graph G in
the family of regular graphs of degree d = 4,7 for FR. The matrix A is unstable
σ(A) = {−2.63,0.03}.

Let the eigenvalues of every G ⊆ FR be upper bounded by γ = 13 and lower
bounded by β = 1 such that ρ = 1/β = 1. To solve the state synchronization
problem, the LR-based Protocol 5.1.1 is implemented. Consider s = 1 > 0, and
Ẽ = 1

ρ
E =

[
0.06 0.6

]
such that A−|B|Ẽ is Metzler. The linear program (4.9) is

maximized by a vector p∗, which satisfies the algebraic equation (5.4) resulting in
K = E.
Observe that, A− γ|B|E with Ẽ = 1

ρ
E is Metzler and BK = BE ≥ 0. Hence, from

Theorem 41 the trajectories of the MAS remain nonnegative for all initial condi-
tions. The initial condition is arbitrarily chosen to be nonnegative.

Figure 5.1 illustrates the evolution of the first and second states of each of the
150 agents in an interconnected system, where each agent is connected to 4 and
7 neighbors, respectively. In Figure 5.2 the state synchronization of the agents is
illustrated with a 2D plot of their trajectories. As expected, the trajectories do not
leave the positive orthant. Moreover, the synchronization is achieved faster as the
nodal degree is increased. The distance from the trajectories to the synchronized
trajectory is represented in Figure (5.3).
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5.1 The LR-based method in continuous-time

Figure 5.1 Evolution over time of the first (left panels) and the second (right panels) state
of each agent i = 1, . . . ,150 synchronizing over 5-regular graphs (upper panels) and 7-regular
graphs.

Figure 5.2 Trajectories of agents synchronizing over a 5-regular graph (left panel) and 7-
regular graph.
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Chapter 5. Synchronization of positive multi-agent systems

Figure 5.3 Euclidean distance to the synchronized trajectory xs(t) i.e. ∥xi(t)− xs(t)∥ for
i = 1, . . .150 over 5-regular graphs (left panel) and 7-regular graphs.

5.2 The LR-based method in discrete-time

Analogous to the continuous-time case, in [Saberi et al., 2022, Prot. 3.5], a protocol
design method based on the discrete-time algebraic Riccati equation is introduced.
This method demonstrates that full-state coupling synchronization is always achiev-
able for a family of graphs in G̃(−∞,β ]

2, where β ∈ (0,1) is fixed.

ARE-based protocol for discrete-time MAS

Consider a MAS described by (2.39) and (2.41). The protocol is given by

ui = Fδ ζi (5.15)

where

Fδ =−(1−β
2)−1(B⊤Pδ B+ I)−1B⊤Pδ A,

with Pδ > 0 determined as the unique solution of

Pδ = A⊤Pδ A+δ I −A⊤Pδ B(B⊤Pδ B+ I)−1B⊤Pδ A, (5.16)

for some δ > 0 satisfying

β
2B⊤Pδ B < (1−β

2)I. (5.17)

2 Recall Definition 21
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5.2 The LR-based method in discrete-time

Consider the discrete-time version of the Linear Regulator set up (4.1).

inf
µ

∞

∑
t=0

[
s⊤x(t)

]
Subject to

x(t +1) = Ãx(t)+ B̃u(t), x(0) = x0 (5.18)
u(t) = µ(x(t)), |u| ≤ Ẽx.

where Ã ∈Rn×n, B̃ ∈Rn×m, Ẽ ∈Rm×n
+ , s ∈Rn

+ such that s ≫ 0 and Ã−|B̃|Ẽ ≥ 0. For
F,H,G = 0 it follows from Theorem (30) that the optimal control problem (5.18)
has a finite solution for every x0 ∈Rn

+ if and only if there exists a nonnegative vector
p ∈ Rn

+ such that

p = s+ Ã⊤p− Ẽ⊤|B̃⊤p|. (5.19)

If the above conditions are met, the minimal value equals p⊤x0. Moreover, the
optimal control law u(t) =−Kx(t) is

K := diag
(
sign(B̃⊤p)

)
Ẽ. (5.20)

REMARK 15
Analogous to the continuous-time result in Lemma 36, verifying E-stabilizability
of (A,B) with A ≥ 0, reduces to solving

(A− I)x+Bu ≤−1, −Ex ≤ u ≤ Ex.

which can be efficiently checked using a linear programming solver. 2

Note that by construction s > 0. Assuming also that the pair (Ã, B̃) is Ẽ-stabilizable,
by Corollary 33 and Theorem 35 in Chapter 4 a vector p ≥ 0 solves (5.4) if and only
if p maximizes linear program

Maximize 1⊤p over p ∈ Rn
+, ζ ∈ Rm

+

Subject to p ≤ s+ Ã⊤p− Ẽ⊤
ζ (5.21)

−ζ ≤ B̃⊤p ≤ ζ .

Inspired by the ARE-based protocol (5.2.1) and the Discrete-time Linear regulator
protocol framework this section presents solution to Problem 1 and Problem 2 for
Discrete-Time MAS.
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LR-based protocol for discrete-time MAS

Consider the MAS described by (2.39) and (2.41) with A ∈ Rn×n
+ and B ∈

Rn×m. Let E ∈ Rm×n
+ , s ∈ Rn

+ such that s > 0 and D be the row stochastic
matrix associated with a graph G ∈ G̃[γ,β ] with N agents. Suppose

A− (1− γ)|B|E ≥ 0 (5.22)

γ ∈ (−1,1). The LR-based protocol is given by

ui =−ρKζi, (5.23)

where ρ ≥ 1
1−β

, β ∈ (0,1) and K follows from (5.20) with Ã = A, B̃ = B,

Ẽ = 1
ρ

E and s > 0.

THEOREM 42
Consider a family of graphs F⊆ G̃[γ,β ] and the MAS described by (2.39) and (2.41).
If the pair (A,B) is E-stabilizable then the protocol (5.23) solves the state synchro-
nization problem for any undirected graph G ∈ F. Moreover, the synchronized tra-
jectory is given by (2.46), and each ui satisfies the bound (5.7). 2

Proof: Let G be any graph in F. The dynamics of the N agents under the proto-
col (5.1.1) can be expressed as

x(t +1) = (IN ⊗A− (I −D(G))⊗BK)x(t). (5.24)

By Lemma 24, the synchronization of the system (5.24) is equivalent to the asymp-
totic stability of the following N −1 subsystems

η̃i(t +1) = (A− (1−µi)ρBK)η̃i(t), (5.25)

where µi = µi(G), i = 2, . . . ,N are the eigenvalues inside the unit disc for the row
stochastic matrix D associated with G ∈ G̃[γ,β ]. We prove that A− (1− µi)ρBK is
Schur stable for all i.

Let δi = (1−µi)ρ for all i= 2, . . . ,N. Recall that µi ≤ β ≤ 1− 1
ρ

, thus δi ≥ 1. By
assumption, γ ≤ µi and A−(1−γ)ρ|B|Ẽ ≥ 0. Since BK ≤ |B|Ẽ, then A−δi|B|E ≥ 0.
Observe from (5.20) that K satisfies

K⊤(B⊤p) = Ẽ⊤
∣∣∣B⊤p

∣∣∣≥ 0,
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5.2 The LR-based method in discrete-time

where p ≥ 0 solves (5.19). Using that s > 0, ρ ≥ 1
1−β

, γ ∈ (−1,β ), β ∈ (0,1), it
follows from (5.19) that

(A− (1−µi)ρBK)⊤p = A⊤p−δiK⊤(B⊤p)

≤ A⊤p−δiẼ⊤
∣∣∣B⊤p

∣∣∣
≤ A⊤p− Ẽ⊤

∣∣∣B⊤p
∣∣∣

= p− s < p.

Therefore, by Proposition 17 in Section 2.2, A− δiBK is Schur stable for all
i = 1, . . . ,N with γ ≤ µi ≤ β . ■

The following theorem provides an analogous characterization to the one in
Theorem 41 for the trajectories of a discrete-time MAS.

THEOREM 43
Consider a graph family F ⊆ G̃[γ,β ] and the MAS described by (2.39) and (2.41).
Suppose the pair (A,B) is E-stabilizable and consider the protocol (5.23). Suppose
also that

−1 < γ ≤ 1
1+∑

N
j=1 wi j

∀i = 1, . . .N.

The trajectories of the MAS remain nonnegative for all nonnegative initial condi-
tions if and only if BK is nonnegative. 2

Proof: The dynamics (2.39) of each agent i is rewritten as

xi(t +1) = Âxi(t)+ B̂ûi(t) (5.26)

where Â = A−ρBK
∑

N
j=1 wi j

1+∑
N
j=1 wi j

, B̂ = ρBK and ûi = ∑
N
j=1

wi j

1+∑
N
k=1 wik

x j. Note that, by

assumption A−|B|E ≥ 0 and |B|E ≥ ρBK, hence Â ≥ 0.
(=⇒): Suppose that the matrix BK has, at least, one negative element, then there

exists B̂p,q < 0 for some p,q ∈ N. Let xi(0)p = 0 and x j(0)q be sufficiently large for
some q ̸= p. Then ûi(0)q ≫ 0 and from (5.26) it follows that xi(1)p < 0. Thus, xi
leaves the nonnegative orthant.

(⇐=): Because Â, B̂ ≥ 0 the system is internally positive with respect to û [Fa-
rina and Rinaldi, 2000, Ch. 2]. Thus, the trajectories of (5.26) remain nonnegative.

■

Numerical simulations
Consider the MAS (2.39) composed by 150 agents and described by

A =

[
0.4 0.8
0.4 0.7

]
; B =

[
−0.6 0.002 −0.2
−0.4 0.005 0.03

]
; E =

0.07 0.2
0.3 0.3
0.3 0.01


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Chapter 5. Synchronization of positive multi-agent systems

with randomly generated initial conditions in the interval [0,1]. Consider also
a connected undirected graph G in the family of regular graphs of degree d =
7,20 denoted by FR ⊆ G̃[γ,β ]. The matrix A is unstable with spectrum σ(A) =
{−0.035235, 1.135235}.

Let the eigenvalues of every row stochastic matrix D associated with G⊆ FR be
upper bounded by β = 0.25 such that ρ ≥ 1/(1−β ), in particular ρ = 3.83. To solve
the state synchronization problem, the LR-based Protocol 5.2.1 is implemented.
Consider s = 1> 0, and

Ẽ =
1
ρ

E =

0.02 0.05
0.07 0.07
0.07 0.003


such that A−|B|Ẽ is nonnegative. The linear program (5.21) is maximized by a vec-
tor p∗ = [70.71, 128.27], which satisfies the algebraic equation (5.19) and results
in

K =

−0.07 −0.2
0.3 0.3
−0.3 −0.01

 .
Observe that, A−|B|E with Ẽ = 1

ρ
E is nonnegative and

BK ≈
[

0.1 0.1
0.02 0.08

]
≥ 0.

Hence, from Theorem 43 the trajectories of the MAS remain nonnegative for all
initial conditions.

Figure 5.4 shows the evolution of the first and second states for each of the
150 agents in an interconnected system, where each agent is connected to 7 and 20
neighbors, respectively. It is clear from the figure that synchronization is achieved
more rapidly as the nodal degree increases. In Figure 5.5, the state synchronization
of the agents is depicted using a 2D plot of their trajectories. The distance from the
trajectories to the synchronized trajectory is represented in Figure (5.6).
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5.3 Concluding summary of Chapter 5

Figure 5.4 Evolution over time of the first (left panels) and the second (right panels) state of
each agent i = 1, . . . ,150 synchronizing over 7-regular graphs (upper panels) and 20-regular
graphs.

5.3 Concluding summary of Chapter 5

In this Chapter we have introduced the linear-regulator based synchronization pro-
tocol for multi-agent systems with positive dynamics. The protocol was designed
to ensure synchronization for all graphs within a specified family, assuming known
upper and lower bounds on their eigenvalues. The approach serves as a positive
systems analogue to the well-established LQR-based consensus protocol in [Saberi
et al., 2022]. Building on previous results for the linear regulator problem in Chap-
ters 3 and 4, it has been demonstrated that the proposed protocol ensures stability
and provides an a priori proportional bound on the control input for each agent.
Additionally, a condition guaranteeing the positivity of all state trajectories was es-
tablished.
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Figure 5.5 Trajectories of agents synchronizing over 4-regular graphs (left panel) and 20-
regular graphs.

Figure 5.6 Euclidean distance to the synchronized trajectory xs(t) i.e. ∥xi(t)− xs(t)∥ for
i = 1, . . .150 over 7-regular graphs (left panel) and 20-regular graphs.
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6
Conclusions and directions
for future work

Explicit solutions to optimal control problems are rarely found or computed ef-
ficiently, especially for systems subject to disturbances or those of large scale.
This thesis derives explicit solutions for a class of minimax optimal control prob-
lems with positive system dynamics (Chapter 3). Additionally, it characterizes the
continuous-time, linear program formulation of the Linear Regulator problem, in-
troduced in the discrete-time work [Rantzer, 2022], through detectability and stabi-
lizability analysis (Chapter 4). Furthermore, this class of problems has been demon-
strated to serve as a foundation for developing synchronization protocols in positive
multi-agent systems (Chapter 5). We conclude the thesis by summarizing key find-
ings related to these systems and outlining potential directions for future research.

6.1 Main conclusions

There are several optimal control problem classes. A well-studied class is the linear
quadratic regulator. Using methodologies such as dynamic programming or Pon-
tryagin’s Maximum Principle one can derive a control law for a given system such
that a certain optimality criterion is achieved. In this thesis a novel class of mini-
max control problems for positive systems is presented. Motivated by applications
to large-scale systems, the computational tractability of explicit solutions for this
class of problems is investigated. In particular, their linear program formulation is
examined under the presence of unbounded, worst-case disturbances. Another inter-
esting class of disturbances, those that are bounded with homogeneous constraints,
is introduced, for which explicit solutions can also be found. Not only are large-
scale systems utilized to enhance the advantages of this framework, but continuous
and discrete-time multi-agent system dynamics are also shown to achieve consensus
under the LR-based protocol introduced in the last contribution of this thesis. The
topics are further elaborated below.
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Minimax linear regulator framework
In Chapter 3, we demonstrate that the linear nature of the optimization framework,
enables explicit solutions with parameters that scale linearly with the state dimen-
sion, making this approach particularly effective for large-scale systems. Notably,
dynamic programming is performed without imposing a priori constraints on linear-
ity or sparsity. Instead, these properties emerge naturally from the optimization cri-
teria and constraints, ensuring that no nonlinear or nonsparse controller can achieve
a lower cost. These explicit solutions rely on the positivity of the system dynamics,
an essential feature of this problem class. For the infinite-horizon case, we derive
explicit solutions using standard value iteration and a fixed-point iteration method
for the continuous-time setting. Additionally, a necessary and sufficient condition
on the disturbance penalty in the cost function is derived, addressing the l1−induced
gain minimization problem and guaranteeing the existence of solutions under un-
constrained disturbances.

To illustrate the practical impact of these findings, two main examples are an-
alyzed. Firstly, a continuous-time water-flow network subjected to disturbances
from leakages and rainfall achieves system costs that closely approach those of
a disturbance-free scenario. This demonstrates the efficiency of the optimal static
feedback, provided appropriate tuning parameters are selected. Secondly, in the
discrete-time setting, an optimal DC power network subject to disturbances from
local generation and load variations highlights the diverse sparsity structure that
the system designer can choose for the constraints on the control variable. These
constraints determine the sparsity structure of the optimal control policy. Addition-
ally, a discretized double-tank system illustrates how the sufficient and necessary
condition for the disturbance penalty applies in the discrete-time setting.

Overall, this chapter introduces a robust and scalable optimal control framework
that leverages the advantages of positive system dynamics, offering a novel and
efficient approach to large-scale dynamical systems.

Sparsity of the optimal control law
The minimax regulator problems presented in this thesis and the linear regulator
problem share the same optimal control policy structure. In Chapter 3, we demon-
strate that this policy is static in the infinite horizon case and a bang-bang controller
in the finite horizon case, for both continuous and discrete-time settings. A signifi-
cant contribution of this problem class is that, unlike in the LQR framework, where
the feedback matrix K is generally dense, the sparsity of the controller in our ap-
proach arises naturally from the constraints on the control variable. This characteris-
tic is particularly advantageous for large-scale systems, where dense matrices pose
computational challenges. Additionally, in applications such as distributed systems,
it is often beneficial to enforce sparsity in K. Our method not only guarantees opti-
mality but also offers the flexibility to define the sparsity structure of the controller.
Ongoing research aims to establish precise guarantees on the level of sparsity that
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can be achieved while preserving the existence of optimal solutions.

Linear Program Formulation of the LR problem
To further highlight the strengths of our theoretical framework for large-scale sys-
tems, we demonstrate in Chapter 4 that, in the infinite-horizon minimax setting with
positive unconstrained disturbances, the Hamilton-Jacobi-Bellman (HJB) equation
can be reformulated as a linear program. Through the detectability and stabiliz-
ability analysis conducted in this chapter, we establish conditions guaranteeing the
equivalence between the solutions of the HJB equation and its linear programming
formulation. This linear programming formulation is subsequently employed to de-
rive the static feedback protocol presented in Chapter 5. Taking advantage of the
computational tractability of linear programming, this framework proves particu-
larly effective when the system dynamics become large.

LR synchronization protocol
In Chapter 5, a synchronization protocol for positive systems based on the linear
regulator static feedback matrix is introduced. This method highlights another com-
pelling application of the theoretical framework developed in this thesis. The pro-
posed approach inherits several advantages from the linear regulator setting. For
instance, it allows for deriving the optimal policy through a linear programming for-
mulation and facilitates the design of sparse optimal policies. This sparsity emerges
directly from the constraints imposed on the control variable and subsequently prop-
agates through the interconnected system.

6.2 Directions for future work

Many of the results presented in this thesis also provide interesting openings for
further research. For example, ongoing research aims to characterize the family of
E matrices that result in finite solutions under the assumption that the system (A,B)
is positive and E-stabilizable. A related question is determining the most efficient
sparsity structure of the E matrix, particularly as this sparsity is inherited by the
optimal controller, which has important implications for computational efficiency
and scalability.

Additionally, considering the high computational cost of value iteration, the ex-
ploration of alternatives such as policy iteration [Bertsekas, 2017], offers a com-
pelling direction for future work, particularly in computing the solution to the multi-
disturbance algebraic HJB and Bellman equation, since a linear program has not yet
been formulated.

Another promising direction is characterizing how network topology impacts
the existence of finite solutions. Building on the results in Chapters 3 and 4 to
explore the output feedback setting, investigating how MPC can benefit from the
LR framework, or incorporating stochastic disturbances and nonlinearities into the
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system dynamics also present exciting possibilities for future work. Along these
lines, modeling the approximation errors arising from linearizing a system or the
system uncertainties under our disturbance class representation introduces an in-
triguing topic for further research.

In the context of the LR-based protocol, potential extensions include deriving
an LR-based protocol for directed graphs, addressing systems subjected to distur-
bances, and deriving a priori conditions to guarantee positive synchronization. An-
other interesting research direction is to further analyze and characterize the eigen-
value bounds of graph families that facilitate synchronization, as well as to elucidate
the role of the sparsity structure in the optimal feedback matrix for the scalability
of the interconnected system. These directions highlight the potential for further
research and generalization of the results in this thesis.
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Başar, T. (1989). “Disturbance attenuation in lti plants with finite horizon: optimal-
ity of nonlinear controllers.” Systems and control letters, 13(3):183–191.
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