
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Support, not automation

towards AI-supported code review for code quality and beyond
Heander, Lo; Söderberg, Emma; Rydenfält, Christofer

Published in:
33rd ACM International Conference on the Foundations of Software Engineering

2025

Document Version:
Peer reviewed version (aka post-print)

Link to publication

Citation for published version (APA):
Heander, L., Söderberg, E., & Rydenfält, C. (in press). Support, not automation: towards AI-supported code
review for code quality and beyond. In 33rd ACM International Conference on the Foundations of Software
Engineering: FSE Companion ’25 Association for Computing Machinery (ACM).

Total number of authors:
3

Creative Commons License:
CC BY

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://portal.research.lu.se/en/publications/c071364a-5617-4954-9b1c-84b11feb9d85


Support, Not Automation: Towards AI-supported
Code Review for CodeQuality and Beyond

Lo Heander
lo.heander@cs.lth.se
Lund University
Lund, Sweden

Emma Söderberg
emma.soderberg@cs.lth.se

Lund University
Lund, Sweden

Christofer Rydenfält
christofer.rydenfalt@design.lth.se

Lund University
Lund, Sweden

Abstract
Code review is a well-established and valuable software develop-
ment practice associated with code quality, interpersonal, and team
benefits. However, it is also time-consuming, with developers spend-
ing 10–20% of their working time doing code reviews. With recent
advances in AI capabilities, there are more and more initiatives
aimed at fully automating code reviews to save time and streamline
software developer workflows.

However, while automated tools might succeed in maintaining
the code quality, we risk losing interpersonal and team benefits such
as knowledge transfer, shared code ownership, and team aware-
ness. Instead of automating code review and losing these important
benefits, we envision a code review platform where AI is used to
support code review to increase benefits for both code quality and
the development team.

We propose an AI agent-based architecture that collects and
combines information to support the user throughout the code
review and adapt the workflow to their needs. We analyze this
design in relation to the benefits of code review and outline a
research agenda aimed at realizing the proposed design.

CCS Concepts
• Human-centered computing→ Human computer interaction
(HCI); • Software and its engineering → Software verification
and validation; Software notations and tools; • Computing
methodologies→Multi-agent systems.

Keywords
code review, agentic systems, human-in-the-loop, code review tools,
multi-agent systems, large language models
ACM Reference Format:
Lo Heander, Emma Söderberg, and Christofer Rydenfält. 2025. Support,
Not Automation: Towards AI-supported Code Review for Code Quality and
Beyond. In 33rd ACM International Conference on the Foundations of Software
Engineering (FSE Companion ’25), June 23–28, 2025, Trondheim, Norway.
ACM, New York, NY, USA, 5 pages. https://doi.org/10.1145/3696630.3728505

1 Introduction
Code review is a valued practice in the software industry. The prac-
tice, originally introduced for quality improvement in the 1980s [1],
is today valued for a number of properties beyond code quality.

This work is licensed under a Creative Commons Attribution 4.0 International License.
FSE Companion ’25, Trondheim, Norway
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1276-0/2025/06
https://doi.org/10.1145/3696630.3728505

Bacchelli and Bird [3] report that developers’ motivation for code
review is, in order: defect finding, code improvement, alternative
solutions, knowledge transfer, team awareness, improve the de-
veloper process, share code ownership, avoid build breaks, track
rationale, and team assessment. Notably, at least half of these moti-
vations are not directly about code quality but about user needs or
interpersonal benefits. Thus, code review is clearly an important
source of learning and education within a team.

Although code review is valued, it is also a time-consuming
practice. Software developers have been reported to spend between
10-20% of their working time doing code reviews [4, 29]; with an
estimated 28 million software developers during 2024 [32] this cor-
responds to 22-44 million hours every work day. The 2023 DORA
State of DevOps report [12], focused on industry best practices,
reports that optimizing code reviews is a key factor in overall de-
veloper team productivity. There is a need to continue to develop
code review and its tools to improve the practice.

With more and more capable AI models available, there is an
increased interest in automated code review. For example, Lu et
al. [23] have introduced LLaMA-Reviewer to automate the code
review task. Yu et al. [37] present Carllm for improved precision
and clarity in automated code review. Tang et al. [33] introduce
CodeAgent, an approach in which multiple agents collaborate to
find code quality issues. Google’s DIDACT project [15] trains ML
models on the sequential steps in software development processes,
such as code review, to automate them. Although these approaches
may be able to ensure code quality in the future, we see an over-
hanging risk that the interpersonal and team benefits of code review
will be lost in such a development.

In this paper, we present a vision for using AI to support code
review and its users, rather than replacing the activity. We believe
that we should strive to boost all the positive effects of code review,
including interpersonal effects such as knowledge transfer, team
awareness, and shared code ownership. We propose to do this by
focusing on the participants of the code review process, the authors
and reviewers – the users, and their needs. We envision an adaptive
code review pipeline, powered by an AI agent-based architecture,
that provides support customized to the needs of each code review
setting.

The contributions of this paper are an architectural design for
an AI agent-based code review platform (Section 3), an analysis of
the design with respect to code review benefits (Section 4), and an
outline of future research to realize this vision (Section 6).

2 Today’s code review and its user needs
Modern code review practices are centered on a web-based code
review tool, such as open source tools like Gerrit, open services like

https://orcid.org/0000-0002-0695-4580
https://orcid.org/0000-0001-7966-4560
https://orcid.org/0000-0003-1495-8263
https://doi.org/10.1145/3696630.3728505
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3696630.3728505


FSE Companion ’25, June 23–28, 2025, Trondheim, Norway Heander et al.

Figure 1: Illustration of navigation between tools in modern code review.

GitHub and GitLab [11], or proprietary tools like Critique [29] and
CodeFlow [3]. These tools contain functionality to list code changes
awaiting review, compare the changed and original code [17], write
review comments, respond to review comments, and vote on the
next steps. By integrating with continuous integration (CI) sys-
tems [22, 30] they can show results from automated tests, clean
code with automatic formatters, and reject code based on compiler
or linter errors.

There are several challenges with today’s code review practices
and tools. The information needed to complete the review is scat-
tered across different systems such as issue trackers, requirements
databases, KANBAN boards, team chats, API documentation, and CI
reports. Different users involved in code review will have different
needs, processes, and goals when using code review systems [20].
For example, the author of the change may want to view the code
and the rationale behind it briefly to discover mistakes before sub-
mitting it for review. An expert reviewer might want to get an
overview of architectural changes and the performance profile be-
fore and after the change. A new team member could spend extra
time understanding the rationale and need to ask questions about
unfamiliar patterns or APIs. Some team members might skim the
rationale and code to stay up-to-date with changes in the repository,
but not vote or write comments.

The reviewer must use their experience and the team processes
to navigate between tools effectively and decide which steps are
helpful and when [24]. Sometimes, even check out the code locally
to trace variables and execute the code to verify its behavior and
performance. This experience takes time to build up, and becoming
effective at carrying out code reviews in a new workplace can take
up to a year [5]. Even with experience, it demands time, effort, and
focus [31]. There are often difficulties in understanding the rationale
for the change [8] and reviewing large changes [13]. Multiple review
cycles between reviewers and authors, together with long response
times, can create delays affecting the overall productivity [12, 13].

Figure 1 illustrates what this can look like for a developer em-
barking on a code review. Carrying their experience as a backpack
full of resources and a checklist with the team code review process,
they switch between different tools and systems. The code review
system (Gerrit, GitHub, GitLab, etc.) is in the center, and the point to

return to and start from. With experience, iteration, and help from
their peers, they can reach the “pot of gold” containing improved
code quality, better knowledge distribution, team cohesion, and
more.

3 Design proposal
Our design proposal is a code review platform that is built on an
agent-based AI-OS architecture [26]. In the AI-OS architecture,
a central LLM takes a role similar to the kernel in an operating
system and is responsible for interpreting user input, planning,
and coordination. Smaller AI agents connected to the central LLM
manage integrations to databases and online APIs; functioning as
the input, output, and memory subsystems in the analogy to an
operating system. Several specialized Small Language Models are
trained to create prompts, construct database queries, build API
calls, and combine results [26].

In the case of code review, these agents implement integra-
tions with the version control system, requirements database, issue
tracker, continuous integration, API documentation, etc., to collect
all the information needed before, during, and after code review.
We envision a user interface that embeds existing and familiar tools,
such as Gerrit, GitHub, GitLab, CodeFlow, etc., in the center. Infor-
mation from, guidance by, and interaction with the agent-based
system is placed below and in the sidebar.

Figure 2 illustrates our envisioned code review platform archi-
tecture with an example flow. Throughout the review, the reviewer
interacts with the LLM trained to act as the platform’s foundation.
Information about the user’s preferences and the team’s code re-
view process (the backpack filled with experience and the process
document from Figure 1) can be configured by the team and the
user. Parts of this configuration could potentially be updated with
reinforcement learning or similar approaches to make it adaptable
over time and for different contexts. The LLM customizes the pro-
cess for each user using the configuration and coordinates the AI
agents to provide the information and support needed at the right
time during code review.

For example, for an in-depth review use case, the platform could
first assist with picking a change to review, given the reviewer’s



Support, Not Automation: Towards AI-supported
Code Review for CodeQuality and Beyond FSE Companion ’25, June 23–28, 2025, Trondheim, Norway

Figure 2: Proposal for a code review platform architecture driven by AI-agents.

time constraints. Then help throughout the process of understand-
ing the rationale of the change, connecting it to related work, read-
ing the code changes, finding potential defects, writing constructive
comments, and finally assist in making a decision on accepting the
code for integration or sending it back to the author for adjustments.

4 Analysis of design
An AI agent-based architecture has the potential to preserve or
amplify all the benefits of code review, as described by Bacchelli
and Bird [3], while at the same time reducing users’ mental load
and time spent. The agents are trained or tuned for each aspect of
code review, and the adaptable nature of the platform allows it to
fit the needs of different users and teams.

4.1 Defect finding, code improvement, and
alternative solutions

Current and future work on automated defect finding can be in-
tegrated into this architecture as one of the AI agents. An option
would be to run a model similar to CodeAgent [33], but instead
of automation support the user by marking parts of the code that
could contain a defect and suggesting code review comments. Other
agents could be trained to look for performance improvements,
refactorings, and alternative solutions.

4.2 Knowledge transfer
Knowledge transfer during code review has, for example, been
shown to reduce the impact of developer turnover by exposing
developers to code they have not authored [16]. Achieving this
requires keeping the human in the loop, i.e. doing the code review
supported by AI rather than automated with AI. AI agents can
further be used to gather information so that the user does not have
to navigate different systems to piece together the rationale, system
architecture, and implementation details. They can also expand on
user code review comments with references to team guidelines,
language conventions, design patterns, and best practices.

4.3 Team awareness
For users reading through code reviews to get awareness of ongoing
work, it can be time-consuming and demanding to read through a
large code diff just to understand what it does. Language models
for code comprehension are developing rapidly, with many options
both in open source [19] and in closed source [7]. Receiving a code
summary as soon as you open the review could be enough for users

looking to be aware of current changes with the option of going
deeper into the changed code when needed.

4.4 Improve developer process
A unified platform for the whole code review flow, instead of manu-
ally switching between code review tool, documentation, KANBAN
boards, etc. will streamline the developer process as a whole. In-
troducing, configuring, and refining the settings and use of the
platform can also encourage teams to examine and improve their
process. The adaptability of a multi-agent approach can also help
situations where different teams follow different workflows but still
need to work together.

4.5 Share code ownership
Software development teams are at risk of developing a blame
culture [18], where developers are held personally responsible for
introduced bugs. This culture can lead to a reluctance to contribute
new features and undermines trust between team members. Code
review can contribute to preventing or mitigating this. It is no
longer solely the fault of the author if a bug is introduced, but also
of all the reviewers who did not discover it.

This is another benefit that would be at risk if code reviews were
automated. Supporting the author and reviewers in assessing the
code and giving them good grounds for their decision using AI, but
leaving the decision of approving, rejecting, or revising the code
up to the users keeps the developers accountable and encourages a
culture of shared ownership.

4.6 Avoid build breaks
Connecting CI with code reviews is an effective way to encourage
reviewer participation and ensure passing builds [27]. This kind of
system already automatically rejects changes that break the build.
An AI agent could help by suggesting a fix or pointing out the most
likely causes.

4.7 Track rationale
Finding the rationale can involve piecing together information from
commit message, issue tracker, product plan, recent team meetings,
team chat conversations, and more. Bringing this information to-
gether and summarizing it in one place makes it easier to find the
rationale behind a code change and connect it to larger goals and
efforts.



FSE Companion ’25, June 23–28, 2025, Trondheim, Norway Heander et al.

4.8 Team assessment
Code reviews generate metrics such as the number of comments
written, acceptance rate for posted changes, time from comment
to resolution, etc. Measuring individual and team performance in
software development is very difficult, and looking at reviews may
provide additional insight. Our proposed design does not affect the
collection of metrics, but has the potential to make code reviews
more efficient, increase quality, and improve assessment metrics
for the whole team.

5 Related work
There are a few recent studies, also focused on supporting rather
than automating code review, that complement the vision in this
paper.

Unterkalmsteiner et al. [34] explore providing reviewers with
a better context for the code under review with a proposal called
the Code Review Contextualizer. Using existing literature on what
developers need help with during code review, they present sev-
eral parts that could be improved by data collection and assistance.
Although they do not go into detail regarding what kind of technolo-
gies and architectures could be used to implement such a system,
their research on use cases that should be supported is a valuable
foundation for building future AI-supported code review systems.

Almedia et al. [2] present AICodeReview, a plugin for the Intel-
liJ integrated development environment that takes advantage of
GPT 3.5. The plugin analyzes code snippets while they are being
written and identifies potential issues. Comments, resolutions, and
improvement suggestions are provided in the editor. This approach
can likely reduce human code review time since changes submitted
for code review are hopefully of higher quality than they would
have been without the AICodeReview plugin.

Wang et al. [35] presents an AI agent-based approach to recom-
mend which reviewers that should be assigned to each code review.
Their work complements the suggestion in this paper very well
in that it seeks to build AI-based support systems for human re-
viewers instead of automating the activity. The article shows better
preliminary performance using AI agents compared to previous
state of the art for reviewer recommendation.

6 Research agenda
Here, we list research activities that we believe are important for
realizing our proposed design vision.

6.1 Increased understanding of user needs
Recent work improves our understanding of the causes of confu-
sion [8], anxiety [21], and misalignments [31] in code review. This
research helps to provide a deeper understanding of user needs and
user experience in code review, but there is much more to study
here. For example, the needs of each user in code review vary [31],
and this variation goes beyond roles such as author and reviewer,
and may extend into tasks such as gatekeeping [29].

6.2 Measuring effectiveness of code review
Despite the wide use of code review in industry and its time-
consuming nature, there is no unified way to measure the effective-
ness of code review. The primary benefit explored with regard to
measuring is ‘defect finding’ [25]. Other benefits, such as knowl-
edge sharing, team awareness, and shared ownership, have not
been studied as extensively. With a deeper understanding of the
effectiveness of code review, we can consider cases where code
review is the most effective with respect to different benefits. This
understanding would open up for addressing the reported industry
need for optimization [12], but without an unintended loss of code
review benefits.

6.3 Effective code review interaction
The interaction with today’s code review tooling has stayed largely
the same since the introduction of the ICICLE tool in the 90s [6],
with variations of interfaces centered around textual diff views of
changed files (Gerrit, GitHub, Critique, and so on). Although this
user interface design helps to provide answers to questions best
answered with a textual diff, they are less successful at answering
questions connected to, for example, requirements or execution
behavior [31]. There is room for more exploration and innovation
here to better align the interaction with user needs.

An interesting research direction would be to explore the use
of collaborative and user-centered design processes [10] to take
advantage of the depth of experience in the software development
community. Another interesting direction would be to explore new
ideas from conversational interaction design [14]. There are exam-
ples on the use of conversational interaction design for software
development tools [9, 28] and recent advances in language models
provide interesting new possibilities.

6.4 Effective AI integration
There are technical challenges in how best to build an AI agent-
based code review pipeline, as outlined in our proposed design.
One challenge is to identify suitable tasks for agents. For example,
should an agent focus on one aspect of program comprehension,
like code summation, or rather be trained for larger functional
areas? There is also the challenge of choosing suitable models for
different agents, along with data collection, training, and tuning.
The models need to be integrated, and the main LLM trained to
manage orchestration based on configured user needs.

An interesting direction is to identify a minimal viable use case
and iterate on a smaller instance of the design with fewer AI agents.
Follow best practices for AI in software development [36] and
maintain close interaction with industry practitioners for rapid
prototyping, early user feedback, and testing.

Acknowledgments
The authors would like to thank the Swedish Strategic Research En-
vironment ELLIIT, the Swedish Foundation for Strategic Research
(grant nbr. FFL18-0231), and the Wallenberg AI, Autonomous Sys-
tems and Software Program (WASP) funded by the Knut and Alice
Wallenberg Foundation, for partly funding this work.



Support, Not Automation: Towards AI-supported
Code Review for CodeQuality and Beyond FSE Companion ’25, June 23–28, 2025, Trondheim, Norway

References
[1] A Frank Ackerman, Priscilla J Fowler, and Robert G Ebenau. 1984. Software

inspections and the industrial production of software. In Proc. of a symposium on
Software validation: inspection-testing-verification-alternatives. 13–40.

[2] Yonatha Almeida, Danyllo Albuquerque, Emanuel Dantas Filho, Felipe Muniz,
Katyusco De Farias Santos, Mirko Perkusich, Hyggo Almeida, and Angelo Perku-
sich. 2024. AICodeReview: Advancing Code Quality with AI-enhanced Reviews.
SoftwareX 26 (May 2024), 101677.

[3] Alberto Bacchelli and Christian Bird. 2013. Expectations, outcomes, and chal-
lenges of modern code review. In 2013 35th International Conference on Software
Engineering (ICSE). 712–721.

[4] Amiangshu Bosu and Jeffrey C Carver. 2013. Impact of peer code review on peer
impression formation: A survey. In 2013 ACM/IEEE International Symposium on
Empirical Software Engineering and Measurement. IEEE, 133–142.

[5] Amiangshu Bosu, Michaela Greiler, and Christian Bird. 2015. Characteristics of
Useful Code Reviews: An Empirical Study at Microsoft. In 2015 IEEE/ACM 12th
Working Conference on Mining Software Repositories. 146–156.

[6] L. Brothers, V. Sembugamoorthy, and M. Muller. 1990. ICICLE: Groupware
for Code Inspection. In Proceedings of the 1990 ACM Conference on Computer-
Supported Cooperative Work (CSCW ’90). ACM, 169–181.

[7] Eason Chen, Ray Huang, Han-Shin Chen, Yuen-Hsien Tseng, and Liang-Yi Li.
2023. GPTutor: A ChatGPT-Powered Programming Tool for Code Explanation.
Springer Nature Switzerland, 321–327.

[8] Moataz Chouchen, Ali Ouni, Raula Gaikovina Kula, Dong Wang, Patanamon
Thongtanunam, Mohamed Wiem Mkaouer, and Kenichi Matsumoto. 2021. Anti-
patterns in Modern Code Review: Symptoms and Prevalence. In 2021 IEEE Inter-
national Conference on Software Analysis, Evolution and Reengineering (SANER).
531–535.

[9] Luke Church, Emma Söderberg, and Alan McCabe. 2021. Breaking down and
making up-a lens for conversing with compilers. In Psychology of Programming
Interest Group Annual Workshop 2021.

[10] Sasha Costanza-Chock. 2020. Design Justice: Community-Led Practices to
Build the Worlds We Need. The MIT Press. arXiv:https://direct.mit.edu/book-
pdf/2248508/book_9780262356862.pdf

[11] Nicole Davila and Ingrid Nunes. 2021. A systematic literature review and tax-
onomy of modern code review. Journal of Systems and Software 177 (2021),
110951.

[12] DORA. 2023. Accelerate State of DevOps 2023. Technical Report. DORA. https:
//dora.dev/research/2023/dora-report/

[13] Emre Doğan and Eray Tüzün. 2022. Towards a taxonomy of code review smells.
Information and Software Technology 142 (2022), 106737.

[14] Hugh Dubberly and Paul Pangaro. 2019. Cybernetics and Design: Conversations
for Action. Springer International Publishing, 85–99.

[15] Google Research. 2023. Large sequence models for software development ac-
tivities. https://research.google/blog/large-sequence-models-for-software-
development-activities/

[16] Fahimeh Hajari, Samaneh Malmir, Ehsan Mirsaeedi, and Peter C. Rigby. 2023.
Factoring Expertise, Workload, and Turnover into Code Review Recommendation.
doi:10.48550/arXiv.2312.17236 arXiv:2312.17236 [cs]

[17] Lo Heander, Emma Söderberg, and Christofer Rydenfält. 2024. Design of Flex-
ible Code Block Comparisons to Improve Code Review of Refactored Code. In
Companion Proceedings of the 8th International Conference on the Art, Science, and
Engineering of Programming (Programming ’24). ACM, 57–67.

[18] F. Hein. 1998. The Blame Game. IEEE Software 15, 6 (1998), 89–91.
[19] Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Dayiheng Liu, Lei Zhang, Tianyu

Liu, Jiajun Zhang, Bowen Yu, Keming Lu, Kai Dang, Yang Fan, Yichang Zhang,
An Yang, Rui Men, Fei Huang, Bo Zheng, Yibo Miao, Shanghaoran Quan, Yunlong
Feng, Xingzhang Ren, Xuancheng Ren, Jingren Zhou, and Junyang Lin. 2024.
Qwen2.5-Coder Technical Report. doi:10.48550/ARXIV.2409.12186

[20] Raula Gaikovina Kula, Ana E. Carmago Cruz, Norihiro Yoshida, Kazuki Hamasaki,
Kenji Fujiwara, Xin Yang, and Hajimu Iida. 2012. Using Profiling Metrics to Cate-
gorise Peer Review Types in the Android Project. In 2012 IEEE 23rd International
Symposium on Software Reliability Engineering Workshops. IEEE, 146–151.

[21] Carol S Lee and Catherine M Hicks. 2024. Understanding and effectively mitigat-
ing code review anxiety. Empirical Software Engineering 29, 6 (2024), 161.

[22] Anton Ljungberg, David Åkerman, Emma Söderberg, Gustaf Lundh, Jon Sten, and
Luke Church. 2021. Case study on data-driven deployment of program analysis on
an open tools stack. In 2021 IEEE/ACM 43rd International Conference on Software
Engineering: Software Engineering in Practice (ICSE-SEIP). IEEE, 208–217.

[23] Junyi Lu, Lei Yu, Xiaojia Li, Li Yang, and Chun Zuo. 2023. LLaMA-Reviewer:
Advancing Code Review Automation with Large Language Models through
Parameter-Efficient Fine-Tuning. In 2023 IEEE 34th International Symposium on
Software Reliability Engineering (ISSRE). 647–658.

[24] Laura MacLeod, Michaela Greiler, Margaret-Anne Storey, Christian Bird, and
Jacek Czerwonka. 2018. Code Reviewing in the Trenches: Challenges and Best
Practices. IEEE Software 35, 4 (2018), 34–42.

[25] Mika V. Mäntylä and Casper Lassenius. 2009. What Types of Defects Are Really
Discovered in Code Reviews? IEEE Transactions on Software Engineering 35, 3
(2009), 430–448.

[26] Charles Packer, Sarah Wooders, Kevin Lin, Vivian Fang, Shishir G. Patil, Ion
Stoica, and Joseph E. Gonzalez. 2024. MemGPT: Towards LLMs as Operating
Systems. arXiv:2310.08560 [cs] http://arxiv.org/abs/2310.08560

[27] Mohammad Masudur Rahman and Chanchal K. Roy. 2017. Impact of Continuous
Integration on Code Reviews. In 2017 IEEE/ACM 14th International Conference on
Mining Software Repositories (MSR). IEEE, 499–502.

[28] Steven I. Ross, FernandoMartinez, Stephanie Houde, Michael Muller, and Justin D.
Weisz. 2023. The Programmer’s Assistant: Conversational Interaction with a
Large Language Model for Software Development. In Proceedings of the 28th
International Conference on Intelligent User Interfaces. ACM, 491–514.

[29] Caitlin Sadowski, Emma Söderberg, Luke Church, Michal Sipko, and Alberto
Bacchelli. 2018. Modern Code Review: A Case Study at Google. In Proceedings of
the 40th International Conference on Software Engineering: Software Engineering
in Practice (ICSE-SEIP ’18). ACM, 181–190.

[30] Caitlin Sadowski, Jeffrey Van Gogh, Ciera Jaspan, Emma Soderberg, and Collin
Winter. 2015. Tricorder: Building a program analysis ecosystem. In 2015
IEEE/ACM 37th IEEE International Conference on Software Engineering, Vol. 1.
IEEE, 598–608.

[31] Emma Söderberg, Luke Church, Jürgen Börstler, Diederick Niehorster, and
Christofer Rydenfält. 2022. Understanding the Experience of Code Review:
Misalignments, Attention, and Units of Analysis. In Proceedings of the 26th Inter-
national Conference on Evaluation and Assessment in Software Engineering (EASE
’22). ACM, 170–179.

[32] Statistia. 2025. Number of software developers worldwide in 2018 to 2024. https:
//www.statista.com/statistics/627312/worldwide-developer-population/

[33] Xunzhu Tang, Kisub Kim, Yewei Song, Cedric Lothritz, Bei Li, Saad Ezzini, Haoye
Tian, Jacques Klein, and Tegawendé F. Bissyandé. 2024. CodeAgent: Autonomous
Communicative Agents for Code Review. In Proceedings of the 2024 Conference on
Empirical Methods in Natural Language Processing. Association for Computational
Linguistics, 11279–11313.

[34] Michael Unterkalmsteiner, Deepika Badampudi, Ricardo Britto, and Nauman Bin
Ali. 2024. Help Me to Understand this Commit!-A Vision for Contextualized Code
Reviews. In Proceedings of the 1st ACM/IEEE Workshop on Integrated Development
Environments. 18–23.

[35] LuqiaoWang, Yangtao Zhou, Huiying Zhuang, Qingshan Li, Di Cui, Yutong Zhao,
and Lu Wang. 2024. Unity Is Strength: Collaborative LLM-Based Agents for Code
Reviewer Recommendation. In Proceedings of the 39th IEEE/ACM International
Conference on Automated Software Engineering (Sacramento CA USA, 2024-10-27).
ACM, 2235–2239. doi:10.1145/3691620.3695291

[36] Yanlin Wang, Wanjun Zhong, Yanxian Huang, Ensheng Shi, Min Yang, Jiachi
Chen, Hui Li, Yuchi Ma, Qianxiang Wang, and Zibin Zheng. 2024. Agents in
Software Engineering: Survey, Landscape, and Vision. arXiv:2409.09030 [cs.SE]
https://arxiv.org/abs/2409.09030

[37] Yongda Yu, Guoping Rong, Haifeng Shen, He Zhang, Dong Shao, MinWang, Zhao
Wei, Yong Xu, and Juhong Wang. 2024. Fine-Tuning Large Language Models
to Improve Accuracy and Comprehensibility of Automated Code Review. ACM
Trans. Softw. Eng. Methodol. 34, 1, Article 14 (Dec 2024), 26 pages.

https://arxiv.org/abs/https://direct.mit.edu/book-pdf/2248508/book_9780262356862.pdf
https://arxiv.org/abs/https://direct.mit.edu/book-pdf/2248508/book_9780262356862.pdf
https://dora.dev/research/2023/dora-report/
https://dora.dev/research/2023/dora-report/
https://research.google/blog/large-sequence-models-for-software-development-activities/
https://research.google/blog/large-sequence-models-for-software-development-activities/
https://doi.org/10.48550/arXiv.2312.17236
https://arxiv.org/abs/2312.17236
https://doi.org/10.48550/ARXIV.2409.12186
https://arxiv.org/abs/2310.08560 [cs]
http://arxiv.org/abs/2310.08560
https://www.statista.com/statistics/627312/worldwide-developer-population/
https://www.statista.com/statistics/627312/worldwide-developer-population/
https://doi.org/10.1145/3691620.3695291
https://arxiv.org/abs/2409.09030
https://arxiv.org/abs/2409.09030

	Abstract
	1 Introduction
	2 Today's code review and its user needs
	3 Design proposal
	4 Analysis of design
	4.1 Defect finding, code improvement, and alternative solutions
	4.2 Knowledge transfer
	4.3 Team awareness
	4.4 Improve developer process
	4.5 Share code ownership
	4.6 Avoid build breaks
	4.7 Track rationale
	4.8 Team assessment

	5 Related work
	6 Research agenda
	6.1 Increased understanding of user needs
	6.2 Measuring effectiveness of code review
	6.3 Effective code review interaction
	6.4 Effective AI integration

	Acknowledgments
	References

