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Adaptive control in uncertain environments
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Trond A. Tjøstheimb(trond_arild.tjostheim@lucs.lu.se)
Andreas Stephensb(andreas.stephens@fil.lu.se)

Abstract
While recent cognitive science research shows a renewed interest in understanding intelligence,
there is still little consensus on what constitutes intelligent behaviour and how it should be
assessed. Here we propose a refined approach to biological intelligence as accurate prediction,
according to which intelligent behaviour should be understood as adaptive control driven by the
minimisation of uncertainty in dynamic environments with limited information. Central to this
view is the concept of accuracy, which we argue is key to determining the success of predictions.
We identify tensions in applying this framework to contemporary artificial systems such as
large-language models, which, despite their impressive capacities for abstract prediction, show
deficits in terms of context-sensitive knowledge transfer.

Keywords
Accuracy ∙ Adaptive control ∙ Artificial intelligence ∙ Biological intelligence ∙ Embodied cognition ∙
Intelligence ∙ Intelligent behaviour ∙ Predictive processing

1 Introduction
While recent cognitive science research shows a renewed interest in understand-
ing intelligence, there is still little consensus on what constitutes intelligent be-
haviour and how it should be assessed. Legg and Hutter (2007) review definitions
of intelligence across different contexts, including dictionary and encyclopaedic
definitions, as well as definitions from psychology and AI research. They sum-
marise their synthesis definition as “[i]ntelligence measures an agent’s ability to
achieve goals in a wide range of environments.” (Legg and Hutter, 2007, p. 9), thus
implicitly including goal achievement and context independence. However, these
contemporary characterisations say little explicitly about the role of the body and
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Nina L. Poth, Trond A. Tjøstheim, and Andreas Stephens 2

environment – surprisingly, as it was central already to the cybernetics tradition
(Wiener, 1948), and, to some, is the source of a remaining conceptual disconnect
between AI modelling and the study of robotics (Rajan and Saffiotti, 2017, pp. 2–
4). Biological views are now more frequently considered “highly relevant for AI
researchers striving to build accurate models of natural cognition” because “the bi-
ological foundations of enactive cognitive science can provide the conceptual tools
that are needed to diagnose more clearly the shortcomings of current embodied
AI” (Froese and Ziemke, 2009, p. 466, emphasis added).

In this paper we explore a view of biological intelligence as a form of accurate
prediction, as one perspective that we believe offers fruitful insights on adaptive be-
haviour. This view roots in the predictive processing framework (PP) of cognitive
and biological systems, and suggests that we should rethink intelligent behaviour
as adaptive control driven by prediction and the minimisation of uncertainty in
dynamic environments with limited information (see Geary, 2009; Tjøstheim and
Stephens, 2022).1 In drawing out the view, we clarify the important role that the
notion of accuracy plays in generating adaptive control. In particular, we emphasise
the importance of embodied prediction, where organisms rely on their interactions
with the environment to optimise their actions and conserve energy. Accurate pre-
dictions are not only about forecasting the future but also about transferring those
predictions across different contexts. The purpose of this transfer is to enhance
an organism’s ability to effectively prepare for energy-optimising action and con-
trol the anticipated environmental effects. We argue that one way of achieving
adaptive control happens through a process of re-concretisation, where a learned
abstraction is reified into a novel situation through the direct experience with the
world that embodiment affords. This explains why AI models often generalise at
the expense of detail, while biological systems can tailor predictions to specific
environments and changes over time. Thus, prediction is not everything to adap-
tive behaviour, which also relies on embodied models that align predictions with
real-world constraints.

The structure of the paper is as follows. In section 2, we present and discuss
the predictive processing framework of cognition and its ties to cybernetics. In
section 3, we argue that biological intelligence should be interpreted as a form of
accurate prediction that generates adaptive control. We highlight general princi-
ples of feedback control and self-regulation in complex systems as being at their

1 Following this view, we understand ‘adaptive behaviour’ ecumenically, in terms of a property
associated with a trait that is likely to be selected in a specific type of environment. Being well
adapted to an environment means, for biological systems, being likely to survive and reproduce
in that environment. For artificial systems, we understand this analogically to mean that such
a system is likely to persist and replicate or propagate information in conditions typically im-
posed by that sort of environment. More generally, being well adapted to an environment means
being likely to resist decay in that environment. Propagating information is important for this
because it provides flexibility and resilience in dynamic environments that require the system to
go beyond meeting narrow pre-defined design goals and instead change its own goals relative
to the changing environmental conditions over time.
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Rethinking intelligent behaviour through the lens of accurate prediction 3

core influenced by the context-sensitivity and the embodiment of that system. In
section 4, we apply this view to draw distinctions between biological intelligence
and AI such as large-language models (LLMs). In section 5, we present concluding
remarks.

2 Taking a predictive perspective

2.1 Basics of PP
At its core, PP assumes that cognition follows a single ‘imperative’ to minimise a
quantity called ‘prediction error,’ on average and in the long run (Friston, 2005; Ho-
hwy, 2013). Prediction errors can be characterised as evaluations of the difference
in the information content between incoming sensory signals at some point in time
and the cognitive system’s previous predictions or ‘guesses’ (Figdor, 2021). There
remains much controversy about how information content in predictions is to be
understood exactly but a general characterisation is in terms of a system’s estimate
of a particular environmental state occurring (Sprevak, 2020). In its formulation as
a version of the Bayesian BrainHypothesis (Knill and Pouget, 2004), the framework
claims that the brain represents information at the subpersonal level in terms of
probability distributions over possible sensory states at various levels of a hier-
archical generative model. The model is cortically implemented by a hierarchical
message-passing schema in which top-down connections of neural networks carry
predictions about activities at lower levels of the cortical hierarchy and bottom-up
connections carry information about errors in those predictions, and prediction
error signals encode information about the discrepancy between incoming signals
and prior predictions at each level (Wiese and Metzinger, 2017). Generally, cogni-
tive systems are characterised as creating models (internal representations) of the
external world (Craik, 1944) and then updating their models given feedback in the
form of prediction errors. Message passing is seen as a way of gaining information
by minimising uncertainty; the more uncertainty there is, the more information is
gained by removing the uncertainty (Shannon, 1948).

Hierarchical information processing is particularly efficient when much data
needs to be processed, as is the case for complex systems such as the brain.2 A
hierarchical organisation allows that only information about the error, as opposed
to the complex incoming signal, is processed at higher levels, and this minimises
the amount of data to be processed (Rao and Ballard, 1999; Bubic et al., 2010, p. 10).

PP refines this rationale in the context of cognition research by suggesting
that prediction errors can be minimised in multiple ways. In perception, prediction
errorminimisation is achieved by updating the generativemodel that produces top-

2 The central nervous system from this perspective may be seen as the steersman, where the brain-
stem controls lower-level functions, the midbrain processes sensory data, while the neocortex
can govern complex mental models. This implicit notion of hierarchical control can be traced
back to seminal work in control theory (Lefkowitz, 1966; Mesarovic, 1970)
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down predictions at higher levels of the hierarchy in proportion to the magnitude
of incoming error signals, in such a way that the resulting predictions approximate
information from novel incoming sensory signals at lower levels. An alternative
way of minimising prediction error is by changing the world through actions to
accommodate internal predictions. This ‘active inference’ perspective is at times
embedded within a broader view on the important role that cognitive principles
might play for the possibility of life. This view starts from the assumption that
organisms obtain certain objective goals, such as to stay alive and to reproduce.
And to satisfy these goals, they need to self-regulate to maintain homeostasis.

The second way proposes that organisms self-regulate by minimising free en-
ergy (the analogue of minimisation of prediction error in neural systems) in the
long run (Friston and Stephan, 2007; Friston et al., 2010). The quantity of free en-
ergy has been proposed as a representation of the misfit between an embodied
agent and its niche, where the embodied agent (i.e., not only the brain) models the
relevant environment statistics (Bruineberg and Rietveld, 2014). Simultaneously,
the agent’s behaviour may impact its ecological niche, for example, an agent can
learn the most efficient path to a pre-specified foraging location that may also
emerge as a function of the niche-constructing activities of the agent itself (Bru-
ineberg et al., 2018). Niche construction here refers to the way a cognitive system
actively shapes and manipulates its external environment to enhance its cognitive
functioning. The key idea is that cognition is not merely a product of the brain’s in-
ternal workings but is shaped by how cognitive systems interact with and alter the
environment to support thinking and problem-solving (Clark, 2008). The minimi-
sation or prediction error here refers to the optimisation of an agent-environment
system. Instead of reactively customising the internal world-model in response
to environmental effects, the agent actively changes its environment to make fu-
ture processes of updating and interactions with the environment more efficient.
Niche construction can thus reduce the long-term energetic cost that the agent
must bring up to adapt its internal model to match the environment. Although
the tendency to utilise external structures to support cognitive processing is an
evolved trait, not all forms of cognitive niche construction are necessarily adap-
tive, that is, it could also lead to maladaptive behaviours. The concept of niche
construction in embodied PP emphasises the interactive relationship between cog-
nition and the environment and thus illustrates how cognitive systems shape and
are shaped by the environmental conditions they engage with.

It is important to note that while PP and the free-energy principle (FEP) of-
ten co-occur, they are conceptually distinct frameworks with distinct assumptions
and scope. PP starts from the assumption that the brain faces uncertainty about
incoming sensory inputs. The aim is to explain why and how the brain generates
and changes predictions to reduce sensory error. The FEP starts from the broader
assumption that organisms aim to maintain homeostasis in dynamically changing,
uncertain, environments. To do this, organisms minimise free energy to stay in
predictable, stable, states. That is, they align their internal model, which also repre-

Poth, N. L., Tjøstheim, T. A., & Stephens, A. (2025). Rethinking intelligent behaviour through the
lens of accurate prediction: Adaptive control in uncertain environments. Philosophy and the Mind
Sciences, 6. https://doi.org/10.33735/phimisci.2025.11780

©The author(s). https://philosophymindscience.org ISSN: 2699-0369

https://doi.org/10.33735/phimisci.2025.11780
https://creativecommons.org/licenses/by/4.0/
https://philosophymindscience.org


Rethinking intelligent behaviour through the lens of accurate prediction 5

sents how sensory input is generated, with external world states (e.g., as through
niche construction). Free energy quantifies the difference between the system’s
predictions and reality. As a first principle in the life sciences, the FEP should ap-
ply to any living adaptive system, not just nervous systems. There are ongoing
discussions about how PP and the FEP relate. While some suggest that PP is a
specific implementation of the FEP, i.e., a specific approach to how the brain pro-
cesses sensory data in line within the FEP’s demand of minimising free energy to
maintain a stable and coherent model of the world (see Piekarski, 2023), others are
more cautious. For example, Sprevak and Smith (2023, p. 7) argue that “... there is
no simple logical equivalence between variational free energy and prediction error.
Identifying which assumptions most plausibly connect free energy minimisation
and prediction error minimisation within the brain remains an open issue.”

The significance of both PP and the FEP are often stated in terms of their inte-
grative power, as noted by Pezzulo and Sims (2021):

[…] the FEP is an integrative proposal on adaptive self-organizing sys-
tems that suggests living organisms manage to survive by forming
internal generative models of the causes of their sensations and using
them to minimize a measure of (roughly) surprise—or in other words,
to ensure that they remain in the ecologically “adaptive” states that
they should inhabit. (Pezzulo and Sims, 2021, p. 7807)

It has been argued that prediction error minimisation provides an elegant abstract
schema to unify diverse aspects of cognition such as perception, action, learning,
attention, memory, motivation, social cognition, psychopathology, language, con-
sciousness, and other phenomena (Friston, 2010; Clark, 2008, 2013, 2016; Hohwy,
2013; Gładziejewski, 2016; Sprevak, 2024; Poth, 2022). Some authors, such as Beni
(2018) and Gładziejewski (2019), claim that the framework also provides unified
mechanistic explanations of mind and brain, but this thesis remains controversial.

However, this integrative character is challenged by a remaining tension be-
tween computational versus embodied interpretations of the framework when us-
ing it to understand mind and cognition.

2.2 Computational versus embodied PP
Computationalist approaches to PP follow the standard model of efficient coding
(Section 2.1), wherein, whether it is appropriate to minimise prediction error in
the long run via perception or via action in either case depends on internal aspects
of the model. Specifically, it depends on the precision in proportion to which er-
ror signals are weighted. Precision is defined as the inverse of the variance of the
subjective probability distribution involved in prediction. On one view, these prob-
ability distributions are interpreted as subjective degrees of belief. This interpreta-
tion illustrates the internalist view of PP advocated by, for instance, Frith (2007),
Hohwy (2013) and Kiefer and Hohwy (2018), according to which predictive agents
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internally model their environments. This view interprets the Markov Blanket for-
malism (Pearl, 1988) commonly associated with the FEP to endow the FEP with
implicit representational assumptions by suggesting an interpretation of agents as
models of the world. The reasoning is that internal and external states cannot in-
fluence each other directly but only via acting and sensing, and so these processes
form a blanket that separates the agent’s internal model from the immediate envi-
ronmental causes (formally, the external environmental and internal sensory pro-
cesses become statistically independent). On Hohwy’s internalist view, it is due to
the segregation of internal states from the external world via the Markov blanket
that the brain’s processing should be understood as a form of internal, secluded,
inference, for a lack of direct access (see also Parr et al., 2020).

Other groups of PP researchers interested in embodied cognition shift focus
away from the internalist view and transfer the maxim of prediction error minimi-
sation to the domain of adaptive behaviour in living organisms relative to their
ecological niche (Bruineberg and Rietveld, 2014; Clark, 2016), thus proposing a
non-intellectualist perspective. From this perspective, predictions in physiology
are typically interpreted as cybernetic setpoints that allostatic processes do work
to achieve (Seth, 2014, 2015). PP proponents of this view suggest that prediction is
a necessary condition of action and environmental control. These connections be-
tween cybernetics and PP are often displayed as contrastive to the standard model,
describing how “perception emerges as a consequence of a more fundamental im-
perative towards homeostasis and control, and not as a process designed to furnish
a detailed inner ‘world model’ suitable for cognition and action planning.” (Seth,
2015, p. 3, emphasis added). Wiese (2015, p. 3) correspondingly labels this view
“action as predictive control”, contrasting it with “action as hypothesis-testing”.3

The prioritised target is to understand how living beings are able to go on living,
and internal representations are a means to this end.

Some descriptions characterise perception as ‘controlled hallucination’ where
stored knowledge is used to make top-down guesses concerning our incoming sen-
sory stimuli (Clark, 2016; see also Frith, 2007). However, Clark insists that it is a
mistake to see this as a form of “fantasy” ormerely the brain’s model or hypothesis.
Moreover, it is something more than just indirect realism (cf. Tiehen, 2023). Rather,
Clark highlights the importance of understanding how we are “embedded” within
the world which “enables us to see through the veil of surface statistics to the world
of distal interacting causes itself.” (Clark, 2016, p. 170, emphasis in original). Clark’s
major disagreement with the view of perception as a form of hallucination (under-
stood as fantasy or virtual reality) lies in Clark’s strong commitment to embodied
cognition and the idea that perception is essentially bound to action and physical
constraints (e.g., the biological fact that I cannot bendmy elbow backwards beyond
a certain degree limits the possible actions I predict to do). Clark instead thinks of

3 Wiese (2015, p. 11), referring to Hohwy, also highlights the importance of the depth of a gener-
ative model for improving predictive control. Our discussion below brings forth an underlying
rationale, that increased depth comes from increased environmental complexity.
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perceptual inference as adaptive because it is shaped by the interaction between
the agent’s needs and the world’s properties. The role of the agent is to be active in
exploiting environmental structures according to its needs (e.g., the possible ways
of moving an elbow), and moreover shaping them itself (e.g., building furniture to
accommodate those needs – a process of niche-construction, see Bruineberg et al.,
2018). There is no fundamental ‘barrier’ between agent and world.

2.3 Prediction and adaptive control
Many of these ideas originate from the cybernetics tradition, which provides us
a more ecumenical perspective on the complexity of adaptive behaviour and the
task of maintaining stable internal states in the face of uncertain, changing, envi-
ronments. Furthermore, according to Heylighen and Joslyn (2001) there is a contin-
uation where many fields today use perspectives introduced by cybernetics, some-
times without proper acknowledgement, and for example the fields of complex
adaptive systems and artificial life research “seems to have taken over the cybernet-
ics banner in its mathematical modelling of complex systems across disciplinary
boundaries, however, while largely ignoring the issues of goal-directedness and
control” (Heylighen and Joslyn, 2001, p. 157, emphasis added). PP’s connection to
cybernetics is even more obvious given the participative nature of perception and
action in both PP and cybernetics (Wiese, 2015, pp. 2–3), but while PP focuses pre-
dominantly on the adjustment of internal brain processes and prediction of future
states to meet goals, cybernetics emphasises the function of behavioural regula-
tion via perception to service action, which is conditioned on the outside world. In
doing so, cybernetics brings to the fore two key ideas.

The first idea is that adaptive control requires feedback. The cyberneticists sug-
gested that in order to enable self-regulation and environmental-effects control,
feedback is required in the form of information delivered to the system in focus.
This mirrors the viewwe find in the PP framework of an agent constantly updating
her internal model – through feedback – and then her taking action in the world as
a result of prediction error minimisation on average and in the long run. So, both
cybernetics and PP let feedback play a central role in how agents handle informa-
tion processing in order to gain control. In particular, ‘feedback’ can be understood
as one of the mechanisms underlying ‘prediction error.’ Other mechanisms include
a sensor that can provide a measurement, and a comparator process that can yield
the difference between the prediction and the measured actual state of the system
which constitutes the error; some kind of effector process is also necessary such
that the prediction error can be reduced.

For example, consider a simple artificial system like a temperature controller,
with the thermoregulation process that goes on in a mammalian body. In the first
case, the control system consists of a temperature sensor that yields an electrical
voltage depending on temperature; this voltage is fed into a comparative amplifier
along with a voltage that represents the desired temperature. In this context the
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setpoint, or desired temperature, can be interpreted as a prediction. The difference
between them is then fed into an effector, that is, something that can do work to
change the temperature, such that the error is reduced. Now, in the case of a mam-
malian thermoregulation system, the temperature sensor is realised by neurons
throughout the body that expresses temperature sensitive proteins. Signals from
these neurons are fed into nuclei in the hypothalamus, which coarsely works as
a comparator process. The difference between these signals is typically produced
by means of inhibition, such that setpoint values inhibit incoming sensory signals.
The resulting prediction error is then fed into nuclei that can engage a variety of
effects throughout the body. For example, vasoconstriction or vasodilation in the
skin can up- or down-regulate blood flow in tissues to conserve or dissipate heat.
For larger prediction errors, muscle contractions in terms of shivering or sweating
can respectably generate heat or dissipate larger amounts of it. In addition, mam-
mals can engage in behaviours tomove their bodies actively towards, or away from
heat sources or -sinks. Feedback loops enable a system to update its internal model
or actions in response to ongoing changes in the environment.

The second idea is that regulation, or control, is key to the system’s capability
to adapt to its environment. It is possible to characterise the process of prediction
error minimisation in terms of the cyberneticist’s notion of cognition as an inter-
twined relation between perception (categorisation), choice, and action. This ex-
panded perspective on prediction error minimisation meets an embodied-PP view
of the world as affording actions. On such a view, some prediction errors can only
be minimised by discovering and exploiting particular affordances. Affordances
are typically understood as ‘opportunities for action’ that an embodied cognitive
system recognises in the world. In simple terms, this is perhaps most easily un-
derstood as something like ‘graspability’ and ‘chewability.’ That is, an ape can
grasp, bite and chew a banana, but not a boulder. The boulder affords ‘climbabil-
ity’ though.

Cognition on this view is considered part of dynamic interactions with the en-
vironment, where the recognition or discovery of affordances is highly relevant: a
system must actively explore the world to discover how it can be employed in the
process of allostasis4; these discoveries can then be exploited in the service of al-
lostasis. Motivation for this is the idea that organisms must maintain homeostasis,
and one way of achieving this is via information-processing. Von Uexküll (2001)
provides an example of a tick predicting the availability of nutritious blood based
on the presence of airborne chemicals (butyric acid) secreted by mammals; when
the tick detects these chemicals, it releases its hold on the plant on which it is sit-
ting, dropping down and, likely, landing on the animal. This process is risky (it
will require significant energy expenditure for the tick to crawl back up), but it is

4 By ‘allostasis,’ wemean all physiological processes that predictively spend energy inmaintaining
the system’s integrity, that is avoidance of decay or dissipation. Allostasis is an instance of a
cybernetic process, that is a process that uses feedback and various kinds of effectors to maintain
a set-point, e.g., body temperature.
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statistically sufficiently successful to result in energy gain for procreation. In this
case, the likelihood that the tick successfully lands on the animal will increase with
an increasing accuracy in the tick’s prediction of the chemical’s source location.

The above reference to affordance discovery illustrates that allostasis also en-
compasses explorative processes, and explorative behaviours may be necessary to
learn how a particular environmental niche affords the ingestion of energy rich
foods or water, and e.g., the maintenance of a steady body temperature (e.g., find-
ing shelter). This comes in addition to exploitation behaviours that have already
been established through evolutionary biases or previous exploration (Stephens
and Krebs, 1986). Predictive processes, and successful prediction in particular, thus
can find a natural role in allostasis: e.g., the conservation of energy related to trial
and error in affordance discovery (i.e., exploration) and -exploitation (Schulkin and
Sterling, 2019).

In sum, cybernetics recommends two ingredients for adaptation: feedback and
control. These ingredients are central to biological systems because they allow or-
ganisms to maintain homeostasis and effectively interact with their environment.
In the following, we refine this more recent embodied narrative. Specifically, we
rethink intelligent behaviour in biological systems as adaptive control coming out
of a capacity of accurate prediction. The accuracy of the predictions in turn presup-
poses a form of embodiment or interaction with the outside world.

3 Sophisticating adaptive control through accu-
rate prediction

3.1 Spatiotemporal depth
In complex systems, control requires prediction. Adjusting behaviour in response
to direct feedback from the environment alone is insufficient, as the environmental
conditions may be such that regulation requires the capacity to anticipate future
possible outcomes. We consider this argument in two parts. The first part identi-
fies the relevant complexity with the internal spatiotemporal depth of a hierarchi-
cally organised predictive system. The second part considers a more ecumenical
perspective, where having internal depth is rational relative to the complexity of
the environment that the biological system adapts to. Thus, while embodied PP
continues ideas from cybernetics, its core appeal to ‘prediction’ offers a unique
contribution to understanding the possibility of control in complex systems.

In such systems, predictions fulfil an important functional role: to simulate
the consequences of possible actions and events, before they actually occur. Pez-
zulo and Sims (2021, p. 7803) call this functional role “vicarious use before or in
the absence of external events”, and it is commonly known under “vicarious trial
and error” in the neuroscience literature (see e.g. Redish, 2016). Having a capacity
for prediction has been considered useful for systems that face complex practical
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problems. Predictions, in this sense, may fulfil an important role for instrumental
reasoning in both human and nonhuman animals as well as AI (Halina, 2021).5

Pezzulo and Sims argue that to fulfil this functional role, predictions must be
generated autonomously, that is, not “determined or sustained by external stimuli”
(Pezzulo and Sims, 2021, p. 7818). They suggest two ways in which this functional
role of predictions can be realised: 1) by variational free energyminimisation, which
requires a constant comparison between prior predictions and the direct percep-
tual effects in the light of continuously incoming sensory information, or 2) via
expected free energy minimisation, which supports the selection of action policies
based on future – i.e., purely anticipated and non-sensory – information.

Which strategy is appropriate to use depends on the complexity of the system
at hand. In PP, ‘increasing complexity’ amounts to the ‘increased spatiotemporal
depth’ that is accommodated by PP’s commitment to inferential hierarchies – it
is the hierarchical layers of the predictive process that capture different degrees
of spatiotemporal grain or levels of abstraction. According to both Clark (2013,
2016) and Hohwy (2013), spatiotemporally coarse-grained predictions – encoding
information about large and slowly changing phenomena – occur higher upwards
in the PP hierarchy, and spatiotemporally more fine-grained predictions – about
small and rapidly changing phenomena – occur lower down in the PP hierarchy.6

On Sims and Pezzulo’s view, strategy (2) presupposes more complexity – in the
form of spatiotemporal depth – to allow agents to use their internal generative
models offline (i.e., decoupled from sensory input) for the representation of future
observable (but unobserved) states. Only through increased spatiotemporal depth
can organismsmake decisions or choices to select between different possible future
outcomes.

The advantage of thinking in foresight, in this view, is that it obtains higher
flexibility because it is bound merely by what is possible, not by what is actually
the case. This allows predictions to obtain more degrees of freedom due to their

5 Camp (2009) has independently argued that the possibility to utilise representations offline bears
an adaptive advantage for animals because it makes it possible to entertain thoughts about absent
states of affairs. She argues that conceptual thought is essentially stimulus-independent, and this
allows the animal to engage with abstract representations that are not bound to the current en-
vironment or sensory context. Camp takes stimulus-independence to be (a) essential for flexible
and abstract thinking, (b) a precondition for instrumental reasoning and (c) the best explanation
of the complex problem-solving behaviour of intelligent animals such as New Caledonian crows.
Additionally, Camp highlights that conceptual thought involves grasping the conditions under
which the belief would turn out to be true or accurate, and this grasp requires the thinker to
be decoupled from present sensory experiences. Camp’s much earlier contribution is worth not-
ing since it independently supports, or at least is externally coherent with, the claim that there
is a rational relation between the development of a capacity for offline-use of representations
of possible states of appearances (what we may want to call predictions) and flexible, adaptive
behaviour.

6 Although the notion of hierarchical levels is predominant in the predictive-mind literature, we
think that the notion of predictive or anticipatory control is general enough to also apply to
contexts in which system levels may be heterarchically organised (for discussion see Bechtel,
2022).
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being further removed from the constraints governing the physical world, or from
the agent’s immediate perception-action cycle. Predictions thus enjoy greater free-
dom in the possible contents they can express and, in consequence, the varieties
of inferences and counterfactuals to draw to prepare for action. This aligns with
a common-sense understanding of intelligence as a matter of planning, foresight,
and abstract, counterfactual thinking – capacities that form a dominant part of
psychological tests of intelligence or cognitive ability (IQ). For example, the fourth
version of the Wechsler Adult Intelligence Scale tests people on verbal compre-
hension, perceptual reasoning, working memory and processing speed, and the
results in these cognitive domains tend to highly correlate with each other to form
a ‘general cognitive ability’ (Deary, 2020). People are tested on their ability to say
what two words have in common, to explain the meaning of a word, to answer
questions about every-day life problems, or to detect patterns, numbers or letters,
and match, arrange or complete them. A lot of these tasks involve instrumental
reasoning skills, but many of them are verbal and abstract. In fact, the test tests
precisely subjects’ ability to abstract away and think forward in completing the
task. Performing well on tests like this corresponds to a high ‘g’ score, which is
the statistical correlation of performance. That is, if someone is good at solving
one of these tasks, then they are likely to be good at solving another task in the
test. While it remains unclear why ‘g’ occurs, the measure indicates an ability to
think or reason towards the abstract.

It would be misleading, however, to identify biological intelligence purely with
the complexity of internal computations (i.e., the capacity to predict with greater
spatiotemporal depth) and resulting capacities for abstraction and generalisation
of a system. As we argue next, in complex environments, control requires accurate
transfer across contexts.

3.2 Accuracy
We have thus far highlighted the flexibility that is gained from being able to pre-
dict future states and abstract away from current perceptual stimuli. These capac-
ities allow intelligent systems to adapt to their environments by representing and
choosing among future possibilities. However, biological organisms must not only
generate predictions in novel situations. Theymust also be able to accurately trans-
fer those predictions across different contexts to increase their adaptive survival
chances. This perspective helps us to refine the role of prediction, from its contri-
bution to flexible thinking in foresight (i.e., vicarious trial and error), towards its
contribution to efficient goal-directed behaviour in real-world contexts.

In an attempt to elucidate the processes that underlie goal-achievement in bio-
logical systems, Tjøstheim and Stephens approximate general intelligence as “the
ability to abstract away context information, identify patterns, and transfer accu-
rate predictions across contexts, as well as the ability to perform mental transfor-
mation and comparison” (Tjøstheim and Stephens, 2022, p. 476). This focus high-
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lights that organisms’ need to stay alive (stay in homeostasis) can be met to the
extent that they can track changes in the environment by making accurate pre-
dictions. If they are able to accurately transfer their predictions between contexts
they will be less “tied” to their niche. On the one hand they are freer to imagine
possibilities in adjacent niches as indicated by Pezzulo and Sims (2021), on the
other, as we argue here, they can make use of abstraction to spot commonalities
and make use of the knowledge they already have. To illustrate, the New Caledo-
nian crow demonstrates remarkable cognitive flexibility by using tools in novel
ways across different contexts (Weir et al., 2002). Unlike many other animals that
rely on instinctual behaviours within a narrow ecological niche, these crows can
manufacture and modify tools to extract food from crevices, even improving upon
previous designs. Experiments have shown that they can transfer their problem-
solving skills to new situations, such as bending a wire to create a hook when no
pre-made tool is available. This ability to abstract key features of a problem, recog-
nise patterns across contexts, and apply learned solutions in novel environments
exemplifies how abstraction and accurate prediction supports adaptive survival be-
yond rigid niche constraints. In this example, the pattern that food is partly hidden
but retrievable with a tool can occur both in a forest in the form of grubs in trees,
but also in a city in the form of food in garbage baskets – or in an experimental
setup made by humans.

Accuracy, in this framework, can be defined as a composite of ‘trueness’ and
‘precision’. The former refers to how close an average observation is to an accepted
reference value, like the bullseye of a target. The latter, on the other hand, refers
to how close repeated independent measures are to each other; this is like the
tightness of repeated shots at the target. Applied to cognitive systems, trueness
corresponds to the correctness of categorisation – how well a system identifies or
classifies phenomena – while precision reflects the level of detail or specificity, rep-
resented by the narrowness of a statistical distribution in its predictions. Together,
these dimensions capture the dual demands of categorisation accuracy and pre-
dictive detail that underpin intelligent behaviour. In terms of probabilistic models,
trueness is the match between the mean value associated with the internal proba-
bility distribution given by the predictive model and the actual (objective chance)
value in the world. The system can approximately assess the divergence between
the physical/objective value and the mean of its own internal model distribution.
This definition of trueness builds on the assumption that the system is equipped
with reliable ways of detecting real values, i.e., being appropriately tuned to the
environment statistics.

We understand the notion of generality as the ability to recognise commonali-
ties across contexts. This allows predictions to be generated in novel environments
by abstracting away surface detail from a familiar context and ‘filling in’ suitable
details with the use of imagination (Tjøstheim and Stephens, 2022). On this view,
the ability to abstract away from the immediate effects of perceptual stimuli, is
key to achieving embodied control, particularly in novel situations, for the pur-
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pose of keeping the waste of energy low. “Waste” here refers to the metabolic cost
of using physical activity to solve problems by trial and error, compared to doing
trial and error by mental simulation as discussed under “vicarious trial and error”
in section 3.1. The typical experimental setup to test vicarious trial and error in-
volves an animal positioned in a Y maze such that it has to choose whether to
go left or right to get a reward. In the beginning the animal will usually explore
each arm of the maze physically. But after it has formed an internal model of the
task structure, it will begin to pause at the decision point (the point at which the
rat stops to decide whether to go left or right), engaging in vicarious trial and er-
ror by mentally simulating the consequences of each choice before deciding. The
measurement of the predictive process typically involves invasive measurement
of the activities of hippocampal neurons. These neurons are typically described
to “play motion forward”, becoming active as if the animal was actually moving
(Redish, 2016). This shift in behaviour reflects the transition from reliance on overt
exploration to internalised predictive modelling. Crucially, this optimises energy
expenditure by reducing unnecessarymovement. Inmore general terms, the ability
to anticipate and plan actions based on internal models allows organisms to adapt
efficiently to environmental challenges, reinforcing the link between spatiotempo-
ral depth in representation and homeostatic regulation. In other words, the ability
to anticipate environmental changes helps keep the waste of energy low because
it reduces the need for constant updating through trial and error (which costs en-
ergy or computational power) and instead allows actions to be planned effectively
to avoid unnecessary movement.

We see the rationality of accurate prediction as resulting from the assumption
that the complexity associated with the internal organisation of the predictive sys-
tem is mirrored in environmental complexity. Mobus and Kalton (2015, p. 374)
point out three factors that “apply to all control mechanisms.” These are temporal
factors (e.g., timing), factors governing the system’s ability to change (e.g., costs
involved to affect change), and computational factors (e.g., complexity of compu-
tation and involved costs). Organisms need to interact with their environment in
a manner that respects the flows that affect them. That is, the rationale for intro-
ducing accurate prediction is that it might not be possible to wait too long before
acting, and one’s actions might need to be precise and true enough for them to
actually work, or else acting might waste energy. Up to an individual threshold,
systemsmight be able to copewith suchwaste, although it is suboptimal. For exam-
ple, a foraging animal must predict not only the location and timing of food avail-
ability but also adjust its behaviour quickly enough to capture resources before
a competitor does. A delay or choice of a suboptimal action can result in wasted
energy. This balance between maintaining a complex predictive model (allowing
accurate prediction) and executing timely, energy-efficient actions (allowing ac-
tual goal accomplishment) is thus necessary to drive adaptive control in dynamic
environments.
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An important aspect of reality that organisms need to tackle is that environ-
ments change. This is true both on shorter and longer timeframes. Something im-
mediate can happen that the systemmust address, but there might also be a slower
change in the overall environment that gradually changes what is beneficial to do.
Organisms that live in less complex environments can afford to be less complex.
While organisms that need to ‘handle’ multi-level stochastic processes, since their
environments are prone to faster change, must themselves be more complex. This
adaptiveness that is required of organisms relative to their environmental nichewas
central to cybernetics. We have viewed PP as expanding this approach by suggest-
ing that it is the constant updating of the agent’s internal model that allows for
successful – adaptive – action and thus survival. Viewing intelligent behaviour
as adaptive control, coming out of a capacity for accurate prediction, thus com-
plements internalist perspectives in highlighting not only features (e.g., temporal
depth) of mental models, but also highlights the need for internal predictions to be
appropriately (i.e., adaptively) related to environmental conditions. Interpreting
intelligent behaviour in biological systems as accurate prediction highlights that
it is, at least in part, the environmental conditions that determine which rewards
and subsequent observations reward learners receive, andwhich response patterns
will be selected for by the learning or adaptive process.

In sum, from the perspective of accurate prediction, adaptive behaviour con-
sists not only in vicarious use of static stimuli, but more specifically in transferring
predictions accurately across dynamically changing environmental contexts. That
is, predictions are not just about what is next, but about what solutions might work
across different scenarios. Key to this new perspective is the claim that adaptive be-
haviour requires a good balance between making true and precise predictions. This
balance is necessary to avoid unnecessary movements or actions that might waste
energy (metabolic cost), especially in environments that change over time. Accu-
rate prediction is not only about predicting the future but doing so in a way that
allows for efficient action under conditions of urgency as when foraging for food.
Our view thus rethinks biological intelligence as a fundamentally relative prop-
erty. It is an attribute that is not just associated with an individual agent where
the depth of its generative models promotes the capacity for flexible, perceptually
decoupled, prediction. Instead, it is inherently an attribute that must be evaluated
in terms of how these predictions align with environmental conditions.7

7 Our approach is thus distinct from others that take prediction to be important for intelligence.
Hutter (2021), for example, argues that a good compression method can help a system to repre-
sent informative patterns in the data. In our approach, adaptive behaviour requires more than
compression; it also requires the capacity to represent relationships in the data. This aligns with
neurobiological approaches to intelligence. Hawkins (2004, 2022), for example, emphasises that
the brain encodes information not about single objects but about relationships among objects,
and this requires the brain to situate itself relative to other objects and changing dynamics of the
world it interacts with. Our relational view provides a broader rationale: processing information
about environmental complexities requires a balance between generalisation (avoiding overfit-
ting) and learning those features in the data that are relevant to a specific task and a specific
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4 Artificial versus natural intelligence
While the notion of accurate prediction applies to biological intelligence in the first
place, it can be useful for identifying possible limits of AI systems. Identifying such
limits becomes relevant when simply scaling up the size of computational models
and data does not seem promising to improve performance, especially on tasks
that require sensorimotor competence (cf. Zador et al., 2023). Some AI researchers
– for example, LeCun and colleagues atMeta AI Research – already claim that “[t]he
essence of intelligence is the ability to predict” (Henaff et al., 2016, p. 1; LeCun et al.,
2015). However, it remains unclear how exactly this claim should be understood.8

In the following, we illustrate how rethinking intelligence as accurate prediction
accommodates more fine-grained distinctions between the intelligence expressed
by biological systems in contrast to artificial systems.

Considering our insights from section 3.1, we would agree that prediction char-
acterises aspects such as abstraction, foresight and planning well in artificial sys-
tems. This is because we may well draw analogies in terms of the functional role of
predictions as fulfilled by the spatiotemporal depth achieved by hierarchical organ-
isation between some biological (e.g., human-like) and artificial systems. Recent ar-
guments support this analogy by highlighting that AI systems such as deep convo-
lutional networks, due to their hierarchical organisation, are capable of performing
transformational abstractions by convolution and max pooling–processes taken to
resemble those performed by simple and complex cells in the mammalian visual
cortex (Buckner, 2024, Chapter 3). However, while hierarchical organisation may
be responsible for both prediction and transformative abstraction, other aspects of
deep-learning systems reveal significant disanalogies to human-like intelligence.
For example, according to Halina, AI systems such as AlphaGo, which relies on hi-
erarchical Monte-Carlo tree-search, can “... transform a conceptual space in ways
that do not appear available to human minds” (Halina, 2021, p. 316). A possible
explanation is that the process of self-play (Samuel, 1959; Bansal et al., 2017) used
when training AlphaGo allows it to explore combined areas of the game space that
no single human would be likely to encounter; it is like collecting the lifetime ex-
perience of thousands of humans in one system, thus enabling superhuman game
playing abilities. In this sense, there is a significant ‘brute force’ aspect of what
AlphaGo does that, while exceptional, does not resemble human cognition well.

context in which that task must be carried out. For biological systems, the relevant features will
be those affording action, and what affords action is sensitive to context.

8 Gamez (2021) also supports the idea that prediction is a core component of intelligence, both in
natural and artificial systems. On this view, an accurate measure of a system’s predictive skill can
effectively measure its intelligence. However, this account is insensitive to the fact that biological
systems face different accuracy demands that do not hold for AI.
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4.1 Generalisation at a cost
We highlighted in section 3.1 that intelligence in biological systems is a matter
of the ecological conditions imposed on an agent. In section 3.2, we argued these
conditions function as accuracy conditions that constrain how well predictions
in biological systems can contribute to appropriate action. Action possibilities are
constrained through the embodied structure of an organism and interactions with
the environment. Crucially, this structure remains lacking in current AI systems.
These systems are dependent in their accuracy on the quality of static training sets
instead. Although natural systems can provide a valuable resource of insights and
inspiration when designing and building artificial ones (Hassabis et al., 2017), they
remain different in terms of their accuracy constraints.

Take AlexNet as an example. Perconti and Plebe (2020) illustrate how this deep
convolutional network architecture vindicates the classical disembodied ideal of
‘pure’ vision. The pure-vision paradigm holds three core tenets: First, the visual
system’s task is to create a detailed model of the world in front of the eyes. Second,
the visual system achieves this task by processing information in a hierarchical
manner, with each stage extracting increasingly specific features. Third, higher
levels of processing depend on the information processed at lower levels, but not
the other way around, and so lower levels operate independently of the higher-
level interpretations. The pure-vision paradigm directly opposes the alternative
paradigm of embodied and interactive vision, according to which “[t]he visual pro-
cessing of objects and their attributes is driven by the kind of task the subject is
performing, and object affordances are transformed into specific motor represen-
tations” (Perconti and Plebe, 2020, p. 6). AlexNet vindicates all three commitments
of pure vision, and shares little with embodied and interactive vision. Firstly, the
ImageNet benchmark on which the network is trained is organised according to
the hierarchy of nouns in the lexical dictionary WordNet, and each lexical entry
is associated with hundreds of static images. Secondly, convolutional layers are
organised in a hierarchical way, so that earlier convolutions extract low-level fea-
tures, which in turn become the input of other convolutions that extract features
at progressively higher levels. Finally, AlexNet is feedforward, and so higher lev-
els depend on lower levels in information processing, but not vice versa. In other
words, the net learns purely from images and lexical descriptions of the category
of objects in the image. AlexNet’s success in object classification is certainly not
due to its embodiment or dynamic interaction with the environment.

More generally, the failures of such deep-neural network systems are a good
illustration of our claim that having predictive depth and abilities for transfor-
mational abstraction, which we are willing to ascribe to them, are insufficient
to recreate biological capacities as those illustrated by the human visual system.
Mitchell (2019, pp. 120–123) describes a case where AlexNet correctly classified
images into ‘contains an animal’ versus ‘contains no animal’, but after rigorous
tests, her team found that the net failed on images that did not contain a blurry
background. The net in fact was a ‘bokeh’ detector of a photographic artefact that
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arises when zooming in on the target of a portrait, as opposed to a landscape. Il-
lustrations like these support the hypothesis that transformative abstraction alone,
while praised by many, is insufficient to obtain the level of accuracy in prediction
that is comparable to the mammalian visual system.

Looking to an embodied approach, as opposed to pure prediction, makes a di-
vergence between human-like biological and artificial systems expectable. In par-
ticular, it suggests that these systems are subject to different accuracy conditions,
with biological systems underlying embodiment, interaction and thermodynamic
constraints that AI is not subject to. The lack of embodiment in AI systems9 re-
veals that the process of training these models does not guarantee that predictions
will be accurate outside the training sets used to develop AI systems. The embod-
ied and interactive paradigm suggests one reason why such a guarantee cannot
be given: disembodied AI systems do not couple with their environment in the
way biological organisms do (sometimes referred to as ‘grip’ e.g. Bruineberg and
Rietveld, 2014). That is, they are not constantly processing information from and
interacting with the environment. AI systems instead produce an output for a dis-
crete input and are inert afterwards. This is also true for systems such as AlphaGo,
where self-play only applies to closed domains with preset rules. This static prop-
erty of AI learners stands in stark contrast to biological brains, which constantly
interact with the environment. Evolved mechanisms for prediction error minimisa-
tion allow biological brains to adapt and improve the accuracy of predictions only
because biological brains are embedded in dynamically changing environments.

We suggest the concept of effective ‘re-concretisation’ as key to supporting
adaptation to novel situations and contexts, allowing an organism to maintain
“grip” (Bruineberg and Rietveld, 2014), or coupling, to the environment. Re-
concretisation can be seen as part of a predictive cybernetic control mechanism.
In this mechanism, previous experience aids prediction in novel situations by
supplying situated and embodied concrete information. This information is
obtained from sensory and motor sources through direct interaction with the
world.10 Dynamic feedback information will in this case continuously refine
predictions through free energy minimisation. Because AI systems do not interact
dynamically and couple with their environment in the same way, they currently
do not do re-concretisation well.

The human brain treats details differently, due to the way biological neural net-
workswork. Biological neural networks can save information and learn at different
levels of detail (Navon, 1977). They can then draw on these details in their knowl-
edge base in order to re-concretise into new contexts. In human brains, this ability

9 The LLMs that control chatbots can be configured to be multimodal and predict both sensory
information as well as motor sequences to control a robot. While this might make them, at least
in some sense, embodied, the way in which they process multimodal information remains static.
These LLM variants are referred to as Vision-Language-Action models (Brohan et al., 2023; Kim
et al., 2024).

10 The coupling between organisms and environment means that they tend, on average, to make
good enough predictions for surviving, at least over evolutionary time.
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of re-concretisation may be mediated by anti-Hebbian learning (i.e., units inhibit
each other instead of building and strengthening connection between each other
which is the case in Hebbian learning) and sparse coding (Földiák, 1990). Anti-
Hebbian learning, which in humans is important to store details, refers to neural
units representing differences rather than similarities and produces de-correlated
output. Joint activity of these units becomes less likely with time because the con-
nection between neural units becomes progressively weaker. Sparse coding com-
plements anti-Hebbian learning since it allows multiple objects to be represented
with little overlap in the receptive field due to each neuron or feature detector re-
sponding selectively to a specific stimulus or pattern (i.e., the adequate stimuli to
activate the neural unit are ‘sparse’), minimising redundancy in unit activation and
interference between them (Olshausen and Field, 2004; Földiák and Young, 1995).
This reduces representational overlap, enabling efficient storage and retrieval of
distinct sensory sequences while preserving their individual characteristics.

Recently, LLMs make use of a “mixture of experts” design (Jacobs et al., 1991;
Chen et al., 2022; Aoki et al., 2022), where a collection of specialised models col-
laborates to produce answers to users’ queries. This contrasts with earlier designs
where one big, general model would do all the work by itself. In the case of such
big models, the model averages over more information, allowing for greater gen-
eralisation. However, in this process particularities will inevitably be lost. In other
words, by averaging over many knowledge domains it is possible to get valid ab-
stractions and generalities that fit each domain to some approximation. However,
the valuable details of those domains will be lost because they are not retrieved
adequately from the model. More specifically, accuracy depends on a combination
of several factors, like how effectively specific details are encoded in the model’s
parameters alongside more general patters; the ability of the model to recall the
correct details for a particular input, rather than amore general pattern or a halluci-
nation, and the model’s ability to correctly avoid overgeneralisation and recognise
exceptional cases (outliers of a statistical distribution). This can be solved to some
extent by increasing the number of parameters (Kaplan et al., 2020). Having lots
of parameters affords having more specialised weights for particular cases, but it
also increases the computational cost of running the model. The mixture of ex-
pert design is a different way of ameliorating the problem of lost details, but the
need for this engineering solution indicates that generalisation comes at the cost
of precision. Conversely, we hypothesise that deep accurate prediction, and with
it adaptive control, becomes increasingly viable the more narrow the context, envi-
ronment, or ecological niche is. This suggests that LLMs’ lack of accuracy despite
having capabilities for abstraction, is due to a lack of grounding in concrete situ-
ations, and a lack of re-concretisation ability. Embodied experience, on the other
hand, allows human-like biological systems to fill in details when making concrete
predictions that complement abstract reasoning principles.

We can certainly develop a predictive system that uses an optimisation algo-
rithm searching for the parameter values that give the least error. Nevertheless,
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from the perspective we outlined here, there remains a crucial difference between
this system and a biological counterpart, and this difference lies in the accuracy
conditions on prediction. In particular, the minimisation of error in predictive AI
systems remains unconstrained by thermodynamic factors or energetic cost. To
illustrate, let’s consider experiences with everyday physics. For example, a trained
ballet dancer learning salsa for the first time could draw on their embodied expe-
rience with balance, timing, and movement coordination to allow them to pick up
the new style quickly. An LLM, even if trained on vast amounts of text about dance
theory, may describe the abstract principles of rhythm, foot placement, and partner
connection. But it lacks the embodied sense of momentum, the tactile feedback of
another dancer’s lead, and the proprioceptive adjustments required to accurately
predict how the body should move.

One may object that both natural selection and human design seem to have
converged on the behaviour of ‘next-token prediction’, and the best explanation is
that they have done so by means of recurrent networks (Whittington et al., 2021).
But to understand the important differences between biology and technology it
needs to be more strongly acknowledged that the accuracy of the predictions has,
at least so far, very different teleological origins. In biology, it is ultimately the
environment that determines what is accurate or not. That is, given a specific goal,
the relevant environment will put pressure on the organism in focus to develop
certain skills rather than others, for example, which abstractions are relevant and
where to direct attention.

4.2 Embodied intelligence and accurate re-concretisation
The relevance of embodied capabilities for abstract reasoning tasks is more
subtle in the contrast between human performance on standard tests like Raven’s
matrices (Figure 1) and the more recent Abstraction and Reasoning Corpus (ARC)
(Chollet, 2019). The ARC consists of a number of grid-based tasks, where the
grid ranges in size from 1x1 to 30x30 (Figure 2). The latest version at the time
of writing is ARCv2 (Kamradt, 2025). This new version is particularly aimed at
reasoning, or ‘thinking’ LLMs, collecting tasks that require visual manipulation
and reasoning. The test now also places limitations on the amount of computa-
tional power participants can use since ARCv1 became less useful as a benchmark
distinguishing AI from humans when OpenAI’s resource-intensive AI services
became strong enough to make the difference negligible. When attempting the
ARCv1 or ARCv2 tests, the task is to identify the pattern in a set of demonstration
instances and thereby complete a test instance correctly. Patterns consist of
coloured grid squares, and success is determined by correctly predicting the
colour of each square in the test instance (see Figure 2). The idea of the ARC tests
is that the tasks are intuitively easy for humans but difficult for machines to solve.
The contrast of human ease vs. computer difficulty is intended to reveal the details
of what AI systems are currently missing in terms of human-like intelligence.
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Figure 1: Example of Raven’s matrices (adapted from Blair et al., 2005). The correct
answer is no 8 in the lower right-hand corner, which is the combination of the two
preceding circles.

Accurate prediction in this context pertains to first, identifying what the task is,
second, identifying which actions are required to do the task, and third, identifying
what the outcome should be given that those actions are successfully completed.
For the ARC tests, the actions would be something like doing a comparison to
identify the differences among instances of a given trial, and inferring an abstract
pattern or rule from those differences to subsequently employ this rule to produce
the prediction of the required outcome in the third instance of the task.
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Figure 2: Example of the ARCv2 test, adapted from the ARCv2 training set. The cor-
rect answer involves counting the dots inside the frames, then copying the frame
with the highest number, using the colour of the dots.

Crucially, that LLMs are ‘pretrained’ presupposes that there is a static aspect of
the environment which stands in tension with the need for organisms to consider
the dynamic changes of their environments. This presupposition reveals the sub-
tleties alluded to above; one hypothesis of how humans are capable of performing
the ARC tasks is that they rely on prior (subpersonal-level) predictions of what
features are relevant for matching patterns in the visual array. For example, find-
ing the overlap or commonality of abstract feature combinations of shapes per
row requires skilled expertise to effectively guide action. By skill in this context we
mean procedural knowledge, concerning both how to direct attention in terms of
motor control of the eyes, but also cognitive skills involving making comparisons,
and identifying promising differences. There is conceptual knowledge concerning
what the problem is, for example specific factors such as knowing what is relevant
foreground and irrelevant background, as well as more overarching knowledge
concerning what comparison tasks such as these involve generally. There can also
be factual knowledge about aspects of the problem such as that particular colours
and shapes should be broken up and held apart. Evolved biological systems have
gained the necessary competences for solving tasks like this through their adap-
tation to a visual world that requires the ability to direct attention, identify and
work towards goals, and inhibit information that is irrelevant to those goals. In
the human brain, these processes are mediated by areas including, coarsely, the
occipital lobe for visual processing, the hippocampus for memory, and the pre-
frontal areas for directing attention, inhibiting noise, as well as selecting arbitrary
goals. Artificial systems, and LLMs in particular, draw their apparent ‘skills’ from
patterns implicit in their training set. This means that to be able to do reliably well
on tasks like those in the ARCv2 dataset, it is necessary for the system to have
representative examples to identify statistical patterns. Further, LLMs require hu-
man feedback to build a probability distribution from those patterns that allows for
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correct generalisation when encountering examples that are outside the training
set.

One often overlooked aspect of abstract thinking and reasoning is that abstrac-
tions typically need to be made actionable to be of any practical use. That is, after
having identified an abstract analogy, or pattern, actions and outcomes need to be
re-concretised into the situation at hand. In other words, details need to be filled in
to make predictions accurate for particular cases. Biological systems have a high
capacity for filling in accurate detail in concrete situations, as evidenced in the ex-
ample of New Caledonian crows above. To use the language of cybernetics again, a
predictive controller with memory and amodel of the world can use previous expe-
rience and knowledge to scaffold predictions in novel contexts. Sensory feedback
would then serve to continuously refine predictions in the unfamiliar environment
by means of free energy minimisation. For example, Northwestern crows have
been observed to use different methods to hide food from other crows, including
rock sides, grass clumps, and river banks (James and Verbeek, 1983); this could be
viewed as re-concretising the pattern of ‘food occlusion’ into a variety of contexts.
However, as explained in section 4.1, artificial systems tend to lose details and par-
ticulars in their training process. This makes re-concretisation arbitrary. That is,
there are no constraints in the system to rule out inaccurate detail in the gener-
ation process. In practice, constraints are added during post-training through re-
inforcement learning with human feedback (RLHF), where humans work to weed
out inaccuracies and promote correct answers by giving the system a ‘thumbs up’
or ‘thumbs down’. This is problematic if the AI system is supposed to be an au-
tonomous system since they will not be able to translate their skill sets to novel
contexts11.

To summarise this section, we first (Section 4.1) looked at what the notion of ac-
curacy means in the case of AI and in biology. For biological systems, the accuracy
of predictions is afforded and constrained by their coupling with the environment
and energy costs involved in minimising prediction errors. In contrast, the pre-
dictive accuracy of a deep neural network depends on the quality of its training
set. To avoid inaccurate generalisation, care must be taken to include enough vari-
ety in the data to allow the optimisation algorithm to infer the correct categories.
AI systems like LLMs with their huge training sets can generalise across differ-
ent contexts, but the problem for them is to retrieve and correctly apply valuable
detail from the training data. Such detail remains necessary to generate accurate
predictions in particular cases. More specifically, accuracy depends on several fac-
tors, like how effectively specific details are encoded in the model’s parameters
alongside more general patterns; and crucially, the ability of the model to recall
the correct details for a particular input, rather than a more general pattern or a

11 That is not to say that biological systems aren’t limited too; they are. In completely novel sit-
uations animals will get confused and come up short. Nevertheless, they can usually draw on
previous experiences that at least share some similarities with the situation at hand; completely
novel situations remain uncommon.
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hallucination. Second (Section 4.2), we have suggested that ‘re-concretisation’ –
the ability to translate abstract knowledge into concrete solutions – is necessary
for accurate prediction when using abstractions to solve novel problems. To test
the abstract reasoning powers of AI, the ARC tests work as kinds of IQ tests for
machines. Though AIs so far have to train on examples of the ARC tests, humans
use sparse coding and other mechanisms to conserve useful details from experi-
ence. These aspects of sparse coding might be key for allowing humans to do re-
concretisation of abstract patterns into new situations with more accuracy than
AI.

5 Concluding remarks
Taken together, we have argued for a PP-view of biological intelligence as a form
of adaptive control achieved by performing accurate prediction. This view empha-
sises the importance of embodied prediction, and the need for organisms to rely
on their interactions with the environment to optimise their actions and conserve
energy. The key feature of accurate predictions is that they allow organisms with
those needs to accurately transfer predictions across different contexts and thus
effectively prepare for energy-optimising action and control the anticipated envi-
ronmental effects. This view highlights an important contrast between biological
and artificial intelligence. In particular, one way of achieving adaptive control is
through a process of re-concretisation, where a learned abstraction is reified into a
novel situation through the direct experience with the world that embodiment af-
fords. Under the plausible assumption that AI models lack the relevant constraints
from worldly interactions, the view provides a rationale for why AI models often
generalise at the expense of detail, while biological systems can tailor predictions
to specific environments and changes over time. Thus, while prediction is impor-
tant for adaptive behaviour, control additionally relies on embodied models that
align predictions with real-world constraints.

Acknowledgements
Wewould like to thank two anonymous reviewers and the editor of this journal for
immensely helpful comments that improved the quality of this paper. All mistakes
are our own.

References
Aoki, R. Y., Tung, F., &Oliveira, G. L. (2022). Heterogeneousmulti-task learningwith expert diversity. IEEE/ACMTransactions

on Computational Biology and Bioinformatics, 19(6), 3093–3102. https://doi.org/10.1109/TCBB.2022.3175456

Bansal, T., Pachocki, J., Sidor, S., Sutskever, I., & Mordatch, I. (2017). Emergent complexity via multi-agent competition.
arXiv preprint, arXiv:1710.03748. https://doi.org/10.48550/arXiv.1710.03748

Poth, N. L., Tjøstheim, T. A., & Stephens, A. (2025). Rethinking intelligent behaviour through the
lens of accurate prediction: Adaptive control in uncertain environments. Philosophy and the Mind
Sciences, 6. https://doi.org/10.33735/phimisci.2025.11780

©The author(s). https://philosophymindscience.org ISSN: 2699-0369

https://doi.org/10.1109/TCBB.2022.3175456
https://doi.org/10.48550/arXiv.1710.03748
https://doi.org/10.33735/phimisci.2025.11780
https://creativecommons.org/licenses/by/4.0/
https://philosophymindscience.org


Nina L. Poth, Trond A. Tjøstheim, and Andreas Stephens 24

Bechtel, W. (2022). Levels in biological organisms: Hierarchy of production mechanisms, heterarchy of control mechanisms.
The Monist, 105(2), 156–174. https://doi.org/10.1093/monist/onab029

Beni, M. D. (2018). The reward of unification: A realist reading of the predictive processing theory. New Ideas in Psychology,
48, 21–26. https://doi.org/10.1016/j.newideapsych.2017.10.001

Blair, C., Gamson, D., Thorne, S., & Baker, D. (2005). Rising mean IQ: Cognitive demand of mathematics education for young
children, population exposure to formal schooling, and the neurobiology of the prefrontal cortex. Intelligence, 33(1),
93–106. https://doi.org/10.1016/j.intell.2004.07.008

Brohan, A., Brown, N., Carbajal, J., Chebotar, Y., Chen, X., Choromanski, K., Ding, T., Driess, D., Dubey, A., Finn, C., Florence,
P., Fu, C., Arenas, M. G., Gopalakrishnan, K., Han, K., Hausman, K., Herzog, A., Hsu, J., Ichter, B., … Zitkovich, B. (2023).
Rt-2: Vision-language-actionmodels transfer web knowledge to robotic control. arXiv preprint, arXiv:2307.15818. https:
//doi.org/10.48550/arXiv.2307.15818

Bruineberg, J., Kiverstein, J., & Rietveld, E. (2018). The anticipating brain is not a scientist: The free-energy principle from
an ecological-enactive perspective. Synthese, 195(6), 2417–2444. https://doi.org/10.1007/s11229-016-1239-1

Bruineberg, J., & Rietveld, E. (2014). Self-organization, free energy minimization, and optimal grip on a field of affordances.
Frontiers in Human Neuroscience, 8(599), 1–14. https://doi.org/10.3389/fnhum.2014.00599

Bubic, A., Von Cramon, D. Y., & Schubotz, R. I. (2010). Prediction, cognition and the brain. Frontiers in Human Neuroscience,
4(25). https://doi.org/10.3389/fnhum.2010.00025

Buckner, C. J. (2024). From deep learning to rational machines: What the history of philosophy can teach us about the future of
artificial intelligence. Oxford University Press.

Camp, E. (2009). Putting thoughts to work: Concepts, systematicity, and stimulus‐independence. Philosophy and Phenomeno-
logical Research, 78(2), 275–311. https://doi.org/10.1111/j.1933-1592.2009.00245.x

Chen, Z., Shen, Y., Ding, M., Chen, Z., Zhao, H., Learned-Miller, E. G., & Gan, C. (2022). Mod-Squad: Designing mixture of
experts as modular multi-task learners. arXiv, abs/2212.08066. https://doi.org/10.48550/arXiv.2212.08066

Chollet, F. (2019). On the measure of intelligence. arXiv preprint, arXiv:1911.01547. https://doi.org/10.48550/arXiv.1911.01547

Clark, A. (2008). Supersizing the mind: Embodiment, action, and cognitive extension. Oxford University Press.

Clark, A. (2013). Whatever next? Predictive brains, situated agents, and the future of cognitive science. Behavioral and Brain
Sciences, 36(3), 181–204. https://doi.org/10.1017/S0140525X12000477

Clark, A. (2016). Surfing uncertainty: Prediction, action, and the embodied mind. Oxford University Press.

Craik, K. J. W. (1944). The nature of explanation. Philosophy, 19(73), 173–174. https://doi.org/10.1038/153605a0

Deary, I. J. (2020). Intelligence: A very short introduction (Vol. 39). Oxford University Press.

Figdor, C. (2021). Shannon + Friston = content: Intentionality in predictive signaling systems. Synthese, 199(1), 2793–2816.
https://doi.org/10.1007/s11229-020-02912-9

Földiák, P. (1990). Forming sparse representations by local anti-Hebbian learning. Biological Cybernetics, 64, 165–170. https:
//doi.org/10.1007/BF02331346

Földiák, P., & Young, M. P. (1995). Sparse coding in the primate cortex. In M. A. Arbib (Ed.), The handbook of brain theory
and neural networks (pp. 895–898). The MIT Press.

Friston, K. J. (2005). A theory of cortical responses. Philosophical transactions of the Royal Society B: Biological sciences,
360(1456), 815–836. https://doi.org/10.1098/rstb.2005.1622

Friston, K. J. (2010). The free-energy principle: A unified brain theory? Nature Reviews Neuroscience, 11(2), 127–138. https:
//doi.org/10.1038/nrn2787

Friston, K. J., Daunizeau, J., Kilner, J., & Kiebel, S. J. (2010). Action and behavior: A free-energy formulation. Biological
Cybernetics, 102, 227–260. https://doi.org/10.1007/s00422-010-0364-z

Friston, K. J., & Stephan, K. E. (2007). Free-energy and the brain. Synthese, 159, 417–458. https://doi.org/10.1007/s11229-
007-9237-y

Frith, C. (2007). Making up the mind: How the brain creates our mental world. John Wiley & Sons.

Froese, T., & Ziemke, T. (2009). Enactive artificial intelligence: Investigating the systemic organization of life and mind.
Artificial Intelligence, 173(3/4), 466–500. https://doi.org/10.1016/j.artint.2008.12.001

Gamez, D. (2021). Measuring intelligence in natural and artificial systems. Journal of Artificial Intelligence and Consciousness,
8(2), 285–302. https://doi.org/10.1142/S2705078521500090

Geary, D. C. (2009). The evolution of general fluid intelligence. In S. M. Platek & T. K. Shackelford (Eds.), Foundations in
evolutionary cognitive neuroscience (pp. 22–56). Cambridge University Press.

Gładziejewski, P. (2016). Predictive coding and representationalism. Synthese, 193, 559–582. https://doi.org/10.1007/s11229-
015-0762-9

Poth, N. L., Tjøstheim, T. A., & Stephens, A. (2025). Rethinking intelligent behaviour through the
lens of accurate prediction: Adaptive control in uncertain environments. Philosophy and the Mind
Sciences, 6. https://doi.org/10.33735/phimisci.2025.11780

©The author(s). https://philosophymindscience.org ISSN: 2699-0369

https://doi.org/10.1093/monist/onab029
https://doi.org/10.1016/j.newideapsych.2017.10.001
https://doi.org/10.1016/j.intell.2004.07.008
https://doi.org/10.48550/arXiv.2307.15818
https://doi.org/10.48550/arXiv.2307.15818
https://doi.org/10.1007/s11229-016-1239-1
https://doi.org/10.3389/fnhum.2014.00599
https://doi.org/10.3389/fnhum.2010.00025
https://doi.org/10.1111/j.1933-1592.2009.00245.x
https://doi.org/10.48550/arXiv.2212.08066
https://doi.org/10.48550/arXiv.1911.01547
https://doi.org/10.1017/S0140525X12000477
https://doi.org/10.1038/153605a0
https://doi.org/10.1007/s11229-020-02912-9
https://doi.org/10.1007/BF02331346
https://doi.org/10.1007/BF02331346
https://doi.org/10.1098/rstb.2005.1622
https://doi.org/10.1038/nrn2787
https://doi.org/10.1038/nrn2787
https://doi.org/10.1007/s00422-010-0364-z
https://doi.org/10.1007/s11229-007-9237-y
https://doi.org/10.1007/s11229-007-9237-y
https://doi.org/10.1016/j.artint.2008.12.001
https://doi.org/10.1142/S2705078521500090
https://doi.org/10.1007/s11229-015-0762-9
https://doi.org/10.1007/s11229-015-0762-9
https://doi.org/10.33735/phimisci.2025.11780
https://creativecommons.org/licenses/by/4.0/
https://philosophymindscience.org


Rethinking intelligent behaviour through the lens of accurate prediction 25

Gładziejewski, P. (2019). Mechanistic unity of the predictive mind. Theory & Psychology, 29(5), 657–675. https://doi.org/10.
1177/0959354319866258

Halina, M. (2021). Insightful artificial intelligence. Mind & Language, 36(2), 315–329. https://doi.org/10.1111/mila.12321

Hassabis, D., Kumaran, D., Summerfield, C., & Botvinick, M. (2017). Neuroscience-inspired artificial intelligence. Neuron,
95(2), 245–258. https://doi.org/10.1016/j.neuron.2017.06.011

Hawkins, J. (2004). On intelligence. Henry Holt; Company.

Hawkins, J. (2022). A thousand brains: A new theory of intelligence. Basic Books.

Henaff, M., Weston, J., Szlam, A., Bordes, A., & LeCun, Y. (2016). Tracking the world state with recurrent entity networks.
ArXiv preprint arXiv:1612.03969. https://doi.org/10.48550/arXiv.1612.03969

Heylighen, F., & Joslyn, C. (2001). Cybernetics and second-order cybernetics. Encyclopedia of Physical Science & Technology,
4, 155–170. https://doi.org/10.1016/B0-12-227410-5/00161-7

Hohwy, J. (2013). The predictive mind. Oxford University Press.

Hutter, M. (2021). The Hutter Prize [http://prize.hutter1.net/].

Jacobs, R. A., Jordan, M. I., Nowlan, S. J., & Hinton, G. E. (1991). Adaptive mixtures of local experts. Neural Computation, 3,
79–87. https://doi.org/10.1162/neco.1991.3.1.79

James, P. C., & Verbeek, N. A. (1983). The food storage behaviour of the northwestern crow. Behaviour, 85, 276–290. https:
//www.jstor.org/stable/4534267

Kamradt, G. (2025). ARC-AGI-2 + ARC Prize 2025 is live! [https://arcprize.org/blog/announcing-arc-agi-2-and-arc-prize-
2025].

Kaplan, J., McCandlish, S., Henighan, T., Brown, T. B., Chess, B., Child, R., Gray, S., Radford, A., Wu, J., & Amodei, D. (2020).
Scaling laws for neural language models. ArXiv preprint arXiv:2001.08361. https://doi.org/10.48550/arXiv.2001.08361

Kiefer, A., & Hohwy, J. (2018). Content and misrepresentation in hierarchical generative models. Synthese, 195, 2387–2415.
https://doi.org/10.1007/s11229-017-1435-7

Kim, M. J., Pertsch, K., Karamcheti, S., Xiao, T., Balakrishna, A., Nair, S., Rafailov, R., Foster, E., Lam, G., Sanketi, P., Vuong,
Q., Kollar, T., Burchfiel, B., Tedrake, R., Sadigh, D., Levine, S., Liang, P., & Finn, C. (2024). Openvla: An open-source
vision-language-action model. ArXiv preprint arXiv:2406.09246. https://doi.org/10.48550/arXiv.2406.09246

Knill, D. C., & Pouget, A. (2004). The Bayesian brain: The role of uncertainty in neural coding and computation. Trends in
Neurosciences, 27 (12), 712–719. https://doi.org/10.1016/j.tins.2004.10.007

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436–444. https://doi.org/10.1038/nature14539

Lefkowitz, I. (1966). Multilevel approach applied to control system design. ASME Journal of Basic Engineering, 88(2), 392–
398. https://doi.org/10.1115/1.3645868

Legg, S., & Hutter, M. (2007). A collection of definitions of intelligence. Frontiers in Artificial Intelligence and Applications,
157, 17–24. https://doi.org/10.48550/arXiv.0706.3639

Mesarovic, M. D. (1970). Multilevel systems and concepts in process control. Proceedings of the IEEE, 58(1), 111–125. https:
//doi.org/10.1109/PROC.1970.7545

Mitchell, M. (2019). Artificial intelligence: A guide for thinking humans. Penguin Random House UK.

Mobus, G. E., & Kalton, M. C. (2015). Principles of systems science. Springer.

Navon, D. (1977). Forest before trees: The precedence of global features in visual perception. Cognitive Psychology, 9(3),
353–383. https://doi.org/10.1016/0010-0285(77)90012-3

Olshausen, B. A., & Field, D. J. (2004). Sparse coding of sensory inputs. Current Opinion in Neurobiology, 14(4), 481–487.
https://doi.org/10.1016/j.conb.2004.07.007

Parr, T., Da Costa, L., & Friston, K. J. (2020). Markov blankets, information geometry and stochastic thermodynamics. Philo-
sophical Transactions of the Royal Society A, 378(2164), 20190159. https://doi.org/10.1098/rsta.2019.0159

Pearl, J. (1988). Probabilistic reasoning in intelligent systems: Networks of plausible inference. Morgan Kaufmann.

Perconti, P., & Plebe, A. (2020). Deep learning and cognitive science. Cognition, 203, 104365. https : / /doi .org/10 .1016/ j .
cognition.2020.104365

Pezzulo, G., & Sims, M. (2021). Modelling ourselves: What the free energy principle reveals about our implicit notions of
representation. Synthese, 199(3-4), 7801–7833. https://doi.org/10.1007/s11229-021-03140-5

Piekarski, M. (2023). Incorporating (variational) free energy models into mechanisms: The case of predictive processing
under the free energy principle. Synthese, 202(58), 1–33. https://doi.org/10.1007/s11229-023-04292-2

Poth, N. (2022). Schema-centred unity and process-centred pluralism of the predictive mind. Minds and Machines, 32(3),
433–459. https://doi.org/10.1007/s11023-022-09595-w

Poth, N. L., Tjøstheim, T. A., & Stephens, A. (2025). Rethinking intelligent behaviour through the
lens of accurate prediction: Adaptive control in uncertain environments. Philosophy and the Mind
Sciences, 6. https://doi.org/10.33735/phimisci.2025.11780

©The author(s). https://philosophymindscience.org ISSN: 2699-0369

https://doi.org/10.1177/0959354319866258
https://doi.org/10.1177/0959354319866258
https://doi.org/10.1111/mila.12321
https://doi.org/10.1016/j.neuron.2017.06.011
https://doi.org/10.48550/arXiv.1612.03969
https://doi.org/10.1016/B0-12-227410-5/00161-7
http://prize.hutter1.net/
https://doi.org/10.1162/neco.1991.3.1.79
https://www.jstor.org/stable/4534267
https://www.jstor.org/stable/4534267
https://arcprize.org/blog/announcing-arc-agi-2-and-arc-prize-2025
https://arcprize.org/blog/announcing-arc-agi-2-and-arc-prize-2025
https://doi.org/10.48550/arXiv.2001.08361
https://doi.org/10.1007/s11229-017-1435-7
https://doi.org/10.48550/arXiv.2406.09246
https://doi.org/10.1016/j.tins.2004.10.007
https://doi.org/10.1038/nature14539
https://doi.org/10.1115/1.3645868
https://doi.org/10.48550/arXiv.0706.3639
https://doi.org/10.1109/PROC.1970.7545
https://doi.org/10.1109/PROC.1970.7545
https://doi.org/10.1016/0010-0285(77)90012-3
https://doi.org/10.1016/j.conb.2004.07.007
https://doi.org/10.1098/rsta.2019.0159
https://doi.org/10.1016/j.cognition.2020.104365
https://doi.org/10.1016/j.cognition.2020.104365
https://doi.org/10.1007/s11229-021-03140-5
https://doi.org/10.1007/s11229-023-04292-2
https://doi.org/10.1007/s11023-022-09595-w
https://doi.org/10.33735/phimisci.2025.11780
https://creativecommons.org/licenses/by/4.0/
https://philosophymindscience.org


Nina L. Poth, Trond A. Tjøstheim, and Andreas Stephens 26

Rajan, K., & Saffiotti, A. (2017). Towards a science of integrated AI and robotics. Artificial Intelligence, 247, 1–9. https :
//doi.org/10.1016/j.artint.2017.03.003

Rao, R. P., & Ballard, D. H. (1999). Predictive coding in the visual cortex: A functional interpretation of some extra-classical
receptive-field effects. Nature Neuroscience, 2(1), 79–87. https://doi.org/10.1038/4580

Redish, A. D. (2016). Vicarious trial and error. Nature Reviews Neuroscience, 17 (3), 147–159. https://doi.org/10.1038/nrn.2015.
30

Samuel, A. L. (1959). Some studies inmachine learning using the game of checkers. IBM Journal of Research and Development,
3(3), 210–229. https://doi.org/10.1147/rd.33.0210

Schulkin, J., & Sterling, P. (2019). Allostasis: A brain-centered, predictive mode of physiological regulation. Trends in Neu-
rosciences, 42(10), 740–752. https://doi.org/10.1016/j.tins.2019.07.010

Seth, A. K. (2014). A predictive processing theory of sensorimotor contingencies: Explaining the puzzle of perceptual pres-
ence and its absence in synesthesia. Cognitive Neuroscience, 5(2), 97–118. https://doi.org/10.1080/17588928.2013.877880

Seth, A. K. (2015). The cybernetic Bayesian brain: From interoceptive inference to sensorimotor contingencies. In T. Met-
zinger & J. M. Windt (Eds.), Open MIND (Vol. 35(T)). MIND Group. https://doi.org/10.15502/9783958570108

Shannon, C. E. (1948). A mathematical theory of communication. The Bell System Technical Journal, 27 (3), 379–423. https:
//doi.org/10.1002/j.1538-7305.1948.tb01338.x

Sprevak, M. (2020). Two kinds of information processing in cognition. Review of Philosophy and Psychology, 11(3), 591–611.
https://doi.org/10.1007/s13164-019-00438-9

Sprevak, M. (2024). Predictive coding I: Introduction. Philosophy Compass, 19(1), e12950. https://doi.org/10.1111/phc3.12950

Sprevak, M., & Smith, R. (2023). An introduction to predictive processing models of perception and decision‐making. Topics
in Cognitive Science, 1–28. https://doi.org/10.1111/tops.12704

Stephens, D. W., & Krebs, J. R. (1986). Foraging theory (Vol. 6). Princeton University Press.

Tiehen, J. (2023). Perception as controlled hallucination. Analytic Philosophy, 64(4), 355–372. https://doi.org/10.1111/phib.
12268

Tjøstheim, T. A., & Stephens, A. (2022). Intelligence as accurate prediction. Review of Philosophy and Psychology, 13(2), 475–
499. https://doi.org/10.1007/s13164-021-00538-5

von Uexküll, J. (2001). The new concept of umwelt: A link between science and the humanities. Semiotica, 134(1/4), 111–123.
https://doi.org/10.1515/semi.2001.018

Weir, A. A., Chappell, J., & Kacelnik, A. (2002). Shaping of hooks in New Caledonian crows. Science, 297 (5583), 981–981.
https://doi.org/10.1126/science.1073433

Whittington, J. C., Warren, J., & Behrens, T. E. (2021). Relating transformers to models and neural representations of the
hippocampal formation. arXiv preprint arXiv:2112.04035. https://doi.org/10.48550/arXiv.2112.04035

Wiener, N. (1948). Cybernetics: Control and communication in the animal and the machine. Wiley.

Wiese, W. (2015). Perceptual presence in the Kuhnian-Popperian Bayesian brain: A commentary on Anil K. Seth. In T.
Metzinger & J. M. Windt (Eds.), Open MIND (Vol. 35(C)). MIND Group. https://doi.org/10.15502/9783958570207

Wiese,W., &Metzinger, T. (2017). Vanilla PP for philosophers: A primer on predictive processing. In Philosophy and predictive
processing (Vol. 1). MIND Group. https://doi.org/10.15502/9783958573024

Zador, A., Escola, S., Richards, B., Ölveczky, B., Bengio, Y., Boahen, K., Botvinick, M., Chklovskii, D., Churchland, A., Clopath,
C., DiCarlo, J., Ganguli, S., Hawkins, J., Körding, K., Koulakov, A., LeCun, Y., Lillicrap, T., Marblestone, A., Olshausen,
B., … Tsao, D. (2023). Catalyzing next-generation Artificial Intelligence through NeuroAI. Nature Communications, 14,
1597. https://doi.org/10.1038/s41467-023-37180-x

Open Access
This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted
use, distribution, and reproduction in any medium, as long as you give appropriate credit
to the original author(s) and the source, provide a link to the Creative Commons license,
and indicate if changes were made.

Poth, N. L., Tjøstheim, T. A., & Stephens, A. (2025). Rethinking intelligent behaviour through the
lens of accurate prediction: Adaptive control in uncertain environments. Philosophy and the Mind
Sciences, 6. https://doi.org/10.33735/phimisci.2025.11780

©The author(s). https://philosophymindscience.org ISSN: 2699-0369

https://doi.org/10.1016/j.artint.2017.03.003
https://doi.org/10.1016/j.artint.2017.03.003
https://doi.org/10.1038/4580
https://doi.org/10.1038/nrn.2015.30
https://doi.org/10.1038/nrn.2015.30
https://doi.org/10.1147/rd.33.0210
https://doi.org/10.1016/j.tins.2019.07.010
https://doi.org/10.1080/17588928.2013.877880
https://doi.org/10.15502/9783958570108
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://doi.org/10.1007/s13164-019-00438-9
https://doi.org/10.1111/phc3.12950
https://doi.org/10.1111/tops.12704
https://doi.org/10.1111/phib.12268
https://doi.org/10.1111/phib.12268
https://doi.org/10.1007/s13164-021-00538-5
https://doi.org/10.1515/semi.2001.018
https://doi.org/10.1126/science.1073433
https://doi.org/10.48550/arXiv.2112.04035
https://doi.org/10.15502/9783958570207
https://doi.org/10.15502/9783958573024
https://doi.org/10.1038/s41467-023-37180-x
https://doi.org/10.33735/phimisci.2025.11780
https://creativecommons.org/licenses/by/4.0/
https://philosophymindscience.org

	Introduction
	Taking a predictive perspective
	Basics of PP
	Computational versus embodied PP
	Prediction and adaptive control

	Sophisticating adaptive control through accurate prediction
	Spatiotemporal depth
	Accuracy

	Artificial versus natural intelligence
	Generalisation at a cost
	Embodied intelligence and accurate re-concretisation

	Concluding remarks
	Acknowledgements

