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provides novel insights into 5G beam management strategies for both long- and short-term channel predictions. This innovative approach introduces a
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© 2025 Dino Pjanić, unless otherwise stated.
This thesis is typeset using LATEX 2ε with the body text in Palatino and Goudy
Initials, headings in Helvetica, text in figures in Arial.

Frontispiece: Electromagnetic waves transmitted by a base station equipped
with a MIMO antenna system are shaped into beams. Copyright: Ericsson AB

Printed by Tryckeriet i E-huset, Lund University, Lund, Sweden.

No part of this thesis may be reproduced or transmitted in any form or by
any means without written permission from the author. Distribution of the
original thesis in full, however, is permitted without restriction.



“Att våga är att förlora fotfästet för en
sekund. Att inte våga är att förlora sig
själv.”

Sören Kirkegaard

iii





Abstract

T
he introduction of Multiple-Input Multiple-Output (MIMO) systems
has dramatically transformed wireless communication systems, in
particular in the Fifth Generation (5G) New Radio (NR) systems,

fundamentally changing how signals are transmitted and received. MIMO
technology deploys numerous antennas to transmit and receive multiple
data streams simultaneously. The presence of obstructions and scatterers in
wireless environments, varying in location, size, and shape, contributes to
a high-dimensional feature space. As user devices move, the interaction of
electromagnetic radio waves with surrounding objects and devices generates
distinct patterns, called spatial fingerprints. By analyzing the behavior
of the radio channel in real time through these spatial fingerprints and
their temporal evolution, MIMO systems unlock significant opportunities for
deeper insight into channel dynamics. These insights lay the groundwork
for previously unforeseen functionalities in the Radio Access Network (RAN)
domain of cellular networks, moving beyond the constraints of traditional
approaches based on mathematical models and solutions.

This thesis aims primarily to utilize channel measurements generated in
commercial MIMO systems to explore the underlying statistical structures
from real-time data, eliminating or mitigating the need for precise mathemat-
ical modeling. Recognizing that conventional solutions are unlikely to deliver
the performance enhancements required for future wireless networks, the
research presented in this thesis explores innovative approaches and tools to
push the boundaries of this field. Over the past decade, a new era of Machine
Learning (ML) and Artificial Intelligence (AI) techniques, particularly Deep
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Learning (DL), has emerged as a powerful alternative for designing and
optimizing wireless networks, as demonstrated in this thesis. The subsequent
chapters of this thesis begin with an introductory section that outlines the
theoretical background that serves as the foundation for the research topic.
This is followed by a collection of papers that detail the conducted studies.
The six papers included in this thesis encompass three key research areas: user
device clustering, user positioning, and traffic pattern-related predictions.

The first and fourth papers focus on user classification, or grouping, based
on channel fingerprints derived from measurement data. The first paper
explores the feasibility of using channel measurements as a data source to
classify users based on their spatial proximity, density, and velocity. In
contrast, the fourth paper demonstrates grouping based on user position and
direction using commercial 5G measurement data.

The second research area focuses on cellular positioning, with the second
paper among the first to demonstrate the feasibility of user positioning using
commercial 5G NR beam measurement data. Building upon the findings
of the second paper, the fifth paper refines positioning accuracy through an
attention-based AI model and advanced statistical post-processing techniques.
The results showcase a sub-meter level of positioning accuracy.

As part of the last research area, traffic pattern-related predictions, the
third paper proposed a customized cell handover prediction strategy for
dense urban environments. This work emphasizes a user-context-aware
handover process, with the aim of improving the efficiency and reliability of
handovers in complex network scenarios. Finally, the sixth paper provides
novel insights into 5G beam management strategies for long- and short-
term channel predictions. This innovative approach introduces a highly
accurate, attention-based prediction model capable of deriving the complete
downlink transmission chain in a commercial-grade 5G system. The model
demonstrates precise beam predictions extending far beyond coherence time,
specifically addressing the challenges posed by Non Line-of-Sight (NLOS)
environments characterized by complex, high-dimensional channel dynamics.
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Populärvetenskaplig sammanfattning

S
ocialt samspel och kommunikation är inneboende i människans
natur. Medan tidig mänsklig kommunikation huvudsakligen var
ansikte mot ansikte, har det de senaste två århundradena uppstått ett

behov av fjärranslutning över avstånd bortom räckvidden för den mänskliga
rösten. Denna efterfrågan ökade avsevärt under den industriella eran, vilket
drev utvecklingen av mer praktiska och allmäntillgängliga telekommunika-
tionssystem. Dessa framsteg ledde till uppfinningen av trådbundna teknolo-
gier, såsom telegrafen och senare telefonen. Dock hade trådbundna lösningar
begränsningar eftersom de krävde att användarna befann sig på specifika
platser vid bestämda tider för att skicka eller ta emot meddelanden eller
samtal. Denna brist på flexibilitet drev på sökandet efter globala lösningar
och banade väg för den sammanlänkade värld vi upplever idag. Utvecklingen
av trådlös cellulär kommunikation sträcker sig över århundraden och började
med grundläggande teorier om elektromagnetism på 1800-talet. Banbrytande
arbete, såsom Maxwells ekvationer och Hertzs experiment, lade grunden för
Marconis trådlösa kommunikation över långa avstånd via morsekod. Dessa
innovationer blev avgörande för modern vetenskap och ingenjörskonst och
visade på potentialen och fördelarna med trådlös kommunikation. Betydande
framsteg under 1900-talet gjorde många av dessa idéer praktiskt genomför-
bara, inklusive introduktionen av radioutsändningar och konceptualiseringen
av cellulära nätverk på 1940-talet, vilken fokuserade på trådlös röstkommu-
nikation.

Under 1980-talet lanserades första generationen av analoga nätverk, 1G,
följt av den digitala revolutionen på 1990-talet med 2G-nätverk, som intro-
ducerade förbättrad röstkvalitet, textmeddelanden och internetåtkomst. På
2000-talet möjliggjorde 3G mobilt bredband, medan 2010-talet inledde 4G-
eran, som erbjöd höghastighetsuppkoppling för dataintensiva applikationer.
Vid 2020-talet hade 5G-teknik introducerats, kännetecknad av ultralåg för-
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dröjning, massiv uppkoppling samt stöd för autonoma system och industriell
automation. Historien om trådlös kommunikation visar samspelet mellan
vetenskaplig innovation, teknologisk utveckling och samhällsbehov, vilket har
gjort uppkoppling till en grundpelare i det moderna samhället.

Introduktionen av avancerade antennsystem under den senare delen av
4G-eran markerade en avgörande utveckling genom användning av MIMO-
teknik. Dessa system öppnade nya möjligheter för att förstå kanalegenskaper.
En passande analogi för dessa system är ett stort astronomiskt observatorium
som använder en uppsättning teleskop spridda över hela världen för att
observera samma avlägsna objekt. Varje teleskop samlar in en unik del av
ljuset eller radiovågorna, påverkad av dess position och vinkel. Genom att
kombinera data från alla teleskop skapas en mer detaljerad och multidimen-
sionell bild, som överträffar vad ett enskilt teleskop kan åstadkomma.

Under de senaste åren har moderna mobilnät ställts inför nya krav utöver
den traditionella kommunikationen mellan användare och nätverket, inklu-
sive integrerad trådlös avkänning. Trådlös avkänning utnyttjar befintliga
kommunikationssignaler för att uppfatta och tolka omgivningen. Ur ett
nätverksperspektiv innebär detta att mobilnätsinfrastrukturen används för
att möjliggöra avkänning utan behov av dedikerade sensorer. Istället för att
enbart upprätthålla datakommunikation kan nätverket analysera signaler för
att upptäcka objekt, rörelser, användare och omgivande miljöförändringar.
Denna avhandling undersöker delvis olika aspekter av trådlös avkänning,
ett forskningsområde som fortfarande är i ett tidigt skede vid tiden för
skrivandet.

När denna avhandling skrivs genomgår telekommunikationsindustrin en
övergång mot nästa generation av nätverk, 6G, med fokus på terabit-
hastigheter, holografisk kommunikation och AI-drivna nätverk. Till skillnad
från traditionella kommunikationsparadigmer, som bygger på ett reaktivt
förhållningssätt där mottagare väntar på signaler, kommer kognitiva cellulära
nätverk att använda prediktiva funktioner för att förutse trafikbehov och
kommande händelser. Denna avhandling utnyttjar AI, som till skillnad från
traditionella programmerade system är adaptiv, probabilistisk och kapabel
att lära sig från data för att fatta autonoma beslut. Frågan om hur AI kan
möjliggöra kognitiva mobila nätverk genom användning av MIMO-baserade
"teleskop" för att förutsäga användares rörelsemönster eller radiokanalens
egenskaper, både på korta och långa tidshorisonter, behandlas i det följande.
AI-teknologi har en transformativ potential att revolutionera driften av mobila
nätverk genom att utnyttja historiska data för att möjliggöra intelligent,
autonom funktionalitet med minimalt mänskligt ingripande.
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Popular Scientific Summary

S
ocial interaction and communication are intrinsic to human nature.
While early human communication was primarily face-to-face, the
past two centuries have brought about a need for remote connectivity

over distances beyond the range of the human voice. This demand grew
significantly during the industrial era, driving the development of practical
and accessible telecommunication systems. These advancements led to the
invention of wired technologies, such as the telegraph and later the telephone.
However, wired solutions had limitations, requiring users to be in specific
locations at designated times to send or receive messages or calls. This
inflexibility spurred the quest for global solutions, paving the way for the
interconnected world we experience today. The evolution of wireless cellular
communication spans centuries, beginning with foundational theories of elec-
tromagnetism in the 19th century. Groundbreaking work, such as Maxwell’s
equations and Hertz’s experiments, laid the foundation for Marconi’s long-
distance wireless communication via Morse code. These innovations became
pivotal in modern science and engineering, showcasing the potential and
advantages of wireless communication. Significant milestones in the 20th
century made many of these ideas practical, including the advent of radio
broadcasting and the conceptualization of cellular networks in the 1940s,
which focused on wireless voice communication.

The 1980s saw the launch of the first analog networks, 1G, followed by
the digital revolution in the 1990s with 2G networks, which introduced
improved voice quality, text messaging and internet access. In the 2000s,
3G enabled mobile broadband, while the 2010s ushered in 4G, offering high-
speed connectivity to support data-intensive applications. By the 2020s,
5G technology emerged, characterized by ultra-low latency, massive device
connectivity, support for autonomous systems, and industrial automation.
The history of wireless cellular communication demonstrates the interplay
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of scientific innovation, technological progress, and societal needs, making
connectivity a cornerstone of modern society.

The introduction of advanced antenna systems in the late 4G era marked
a pivotal advancement, employing MIMO technology. These systems opened
new avenues for understanding channel characteristics. An apt analogy for
these systems is a large astronomical observatory employing an array of
telescopes scattered across the globe to observe the same distant object. Each
telescope collects a unique portion of the light or radio waves, influenced by
its position and angle. By combining the data from all telescopes, a more
detailed and multi-dimensional image is created, surpassing what a single
telescope could achieve.

In recent years, modern cellular networks have faced new requirements
beyond traditional communication between users and the network, including
integrated wireless sensing. Wireless sensing utilizes existing communication
signals to perceive and interpret the surrounding environment. From a
network perspective, this involves leveraging cellular infrastructure to enable
sensing without the need for additional dedicated sensors. Rather than solely
transmitting data, the network can analyze signals to detect object presence
and movement, user positioning, and environmental changes. This thesis
partly examines various aspects of wireless sensing, a field still in its early
stages at the time of writing.

At the time of this writing, the telecommunications industry is transitioning
toward the next generation of networks, 6G, focusing on terabit-level speeds,
holographic communication, and AI-driven networks. Unlike traditional
communication paradigms, which rely on a reactive approach where receivers
wait for signals, cognitive cellular networks will utilize predictive capabilities
to anticipate traffic demands and upcoming events. This thesis leverages AI,
which, unlike traditional programmed devices, is adaptive, probabilistic, and
capable of learning from data to make autonomous decisions. The question
of how AI can enable cognitive mobile networks by utilizing MIMO-based
"telescopes" to predict user movement patterns or radio channel characteris-
tics over both short and long time horizons is addressed in the following. AI
technology holds transformative potential to revolutionize cellular network
operations by leveraging historical data to enable intelligent, autonomous
functionality with minimal human intervention.
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Preface

T
his thesis represents the realisation of research conducted between
February 2019, when I joined the Industrial PhD program at Ericsson
Sweden, and May 2025. During this period, I was part of the Wireless

Communications Engineering group at Lund University, under the supervision
of Professor Fredrik Tufvesson and Principal Researcher Andres Reial at Ericsson.

STRUCTURE OF THE THESIS

This thesis comprises an introduction section that offers a high-level overview
of the research topic, including preliminary knowledge and an in-depth
discussion of three key pillars: cellular network architecture, wireless channel
modeling, and machine learning and artificial intelligence. The introduction
is designed to be self-contained, providing sufficient material for readers
interested in the research topic but with emphasis on topics covered by
the included papers. The thesis includes three conference papers and three
journal papers authored in collaboration with others, which were published in
or submitted to scientific journals and conference proceedings. These papers
are reprinted with permission from the publishers and form the main body
of the thesis. The concluding chapter summarizes the thesis and presents a
vision for future research in this field.

• INTRODUCTION
The primary focus of this thesis was to explore whether and how 5G
MIMO systems can be optimized using ML and AI, targeting various
aspects of network optimization across both the lower bands below 6 GHz
and the higher band around 30 GHz. Massive MIMO systems, with their
numerous antennas, provide unique opportunities to gain deeper insights
into channel behavior. By studying real-world channel behavior, most
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often through data collected from commercial systems, the viability of
spatial fingerprints and their temporal evolution were examined in detail.
The research specifically investigated how accurate user positioning can
be achieved by leveraging radio features inherent in the environment.
Additionally, it explored fingerprint-based machine learning approaches
that operate without explicitly modeling these radio features. The work
demonstrated that by utilizing the unique spatial fingerprints users create
at the base station, it is possible to achieve accurate predictions of channel
behavior, mobility patterns, and time-advance protocol messages. The
structure of this thesis is as follows:

– Chapter 1 provides a high-level overview of cellular networks and
their architecture, tracing the evolution from early 1G systems to
today’s advanced 5G networks.

– Chapter 2 introduces the theoretical foundations of wireless channel
modeling, which serve as the basis for the conducted research.

– Chapter 3 presents the fundamentals of MIMO systems.

– Chapter 4 delves into machine learning and artificial intelligence,
highlighting their applications in the wireless industry.

– Chapter 5 concludes the introductory section and outlines a vision
for future research directions.

• PAPERS
The six papers that constitute the main body of this thesis are reproduced
in the dedicated chapter and are listed below, accompanied by a brief
description of my contributions to each.

INCLUDED PAPERS

The following papers form the main body of this thesis and the respective
published or draft versions are appended in the back.

Paper I: D. Pjanić, A. Sopasakis, H. Tataria, F. Tufvesson, and A. Reial,
“Learning-Based UE Classification in Millimeter-Wave Cellular
Systems With Mobility”, IEEE International Workshop on Machine
Learning for Signal Processing, Oct. 2021, Gold Coast, Australia, doi:
10.1109/MLSP52302.2021.9596275.

▶ Research Contributions: The paper explores the clustering and
classification of UEs based solely on their network measurement reports,
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without relying on physical positioning or additional supporting information.
The findings demonstrate that it is possible to infer the mobility mode of
UEs through such an approach. Higher-layer channel measurement reports,
including time-evolving Channel State Information - Reference Signal (CSI-
RS) signals from dynamic millimeter-wave scenarios, can be utilized as input
to both traditional supervised and unsupervised machine learning methods for
UE classification based on velocity and mobility patterns. This classification
can, in turn, aid in predicting and optimizing radio resource requirements.
The work provides valuable insights into developing new beam prediction
mechanisms for mobility-aware MIMO scenarios. At the time, I didn’t realize
that we were conducting a study on wireless sensing. Furthermore, when
combined with positioning or trajectory estimation (the focus of Paper II and
V), these results could prove instrumental in preparing handovers (the focus
of Paper IV) and anticipating resource demands.

▶ Personal Contributions: This was my first hands-on experience with
machine learning, integrated with dimensionality reduction techniques like
Principal Component Analysis (PCA), a concept I had learned during the first
two years of my PhD studies. I originated the idea and also designed and
conducted all simulations, performed data collection, data post-processing and
analysis, authored the paper, and incorporated feedback from co-authors.

Paper II: A. Ráth, D. Pjanić, B. Bernhardsson, and F. Tufvesson, “ML-
Enabled Outdoor User Positioning in 5G NR Systems via Uplink SRS
Channel Estimates”, IEEE International Conference on Communication,
Rome, May 2023, doi: 10.1109/ICC45041.2023.10279249.

▶ Research Contributions: The paper originated from a master’s thesis that
I supervised. This paper marks an early exploration into commercial data
generated by a 5G base station processing uplink (UL) Sounding Reference
Signal (SRS) channel estimates, which served as the primary training dataset.
The BS handles a time series of SRS measurements that represent the angular
delay spectrum of the radio channel in the beam domain. We employed
supervised machine learning methods, using the UE’s GNSS-defined location
in space as the label. Despite several limitations related to the accuracy of the
ground truth positioning and the accessibility of the full bandwidth of SRS
measurement data, we successfully demonstrated that SRS channel estimates
are viable for UE positioning in commercial systems. This study is also
one of the first to show that the fingerprinted features of the surrounding
environment, captured in UL CSI based on commercial SRS measurements,
contain sufficient information for positioning, without relying on traditional
spatial parameters like Angle of Arrival (AOA) or Time of Arrival (TOA). In
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addition, this study is an example of wireless sensing for positioning.

▶ Personal Contributions: In addition to my supervisory responsibilities, I
developed the original research idea, defined the thesis scope, actively engaged
in discussions on ML modeling, and carried out all the measurements and
analyses. Obtaining UL SRS channel measurements from a commercial
5G BS presents significant challenges, especially when dealing with large,
complex data structures like SRS measurement samples. These measurements,
generated at millisecond intervals, are typically confined to the BS’s baseband
unit for internal use, with external access often restricted due to hardware
and software limitations. I modified the BS software and created a framework
to facilitate the transfer of data out of the baseband unit. Additionally, I
performed all post-processing on the raw SRS data before preparing it for ML
processing. Since Andre Ráth was the sole author of his master’s thesis, he was
granted the role of first author for the paper.

Paper III: D. Pjanić, A. Sopasakis, A. Reial, F. Tufvesson, “Early-Scheduled
Handover Preparation in 5G NR Millimeter-Wave Systems”, IEEE Open
Journal of The Communications Society, vol. 5, pp. 6959 - 6971, Oct. 2024,
doi: 10.1109/OJCOMS.2024.3488594.

▶ Research Contributions: This paper represents my first journal
manuscript utilizing simulated data from a commercial-grade simulator at
Ericsson, as in Paper I. The study primarily aimed to investigate the feasibility
of traffic predictions in 5G NR systems within dense cell deployments featuring
high-speed users. The handover preparation phase is widely regarded as the
most critical part of the handover process. The insights from this research
enable the development of a new handover preparation scheme, introducing
a novel, user-aware, and proactive approach to handover decision-making in
MIMO scenarios that account for user mobility. I designed the test scenarios,
conducted all simulations and data analyses, and authored the manuscript,
integrating feedback from my co-authors and reviewers. This work culminated
in the filing of two patent applications.

▶ Personal Contributions: I envisioned the research idea, designed the
test scenarios, ran all simulations, handled data post-processing and analysis,
and wrote the manuscript. I explored various machine learning models and
techniques to achieve the final results. Additionally, I integrated feedback from
my co-authors and reviewers.

Paper IV: D. Pjanić, K. E. Arslantürk, X. Cai, F. Tufvesson, “Dynamic User
grouping based on Location and Heading in 5G NR System”, IEEE
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Vehicular Technology Conference (VTC), Oct. 2024, Washington DC, USA,
doi: 10.1109/VTC2024-Fall63153.2024.10757679.

▶ Research Contributions: The positioning results from Paper II appeared
unsatisfactory, intuitively due to the limited bandwidth resolution of the SRS
measurements and the low accuracy of the GNSS data used as the positioning
ground truth. It seemed that positioning estimation accuracy could be
significantly improved. To validate this assumption, I initiated a master’s
thesis work, where we utilized a highly accurate GNSS device alongside a
higher-resolution bandwidth for collecting SRS channel measurements. With
the new, highly accurate UE position estimates generated by the combined
CNN/FNN ML model, we added a new dimension to our dataset: the heading
direction of the users. Using these two dimensions, we applied a clustering
model to dynamically group UEs while in connected mode. Furthermore,
this study also serves as an example of wireless sensing for positioning and
tracking. The work culminated in filing a patent application.

▶ Personal Contributions: As with Paper II, I conceptualized the
original research idea, defined the entire scope of the thesis, and performed
all measurements and analyses. I modified the BS software to support the
generation of high-resolution SRS channel measurements within a commercial
setup. I actively suggested the ML models to be deployed and analyzed the
results. In addition to my supervisory responsibilities, I created the figures and
wrote the paper, incorporating feedback from my co-authors and reviewers.

Paper V: G. Tian, D. Pjanić, X. Cai, B. Bernhardsson, F. Tufvesson,
“Attention-aided Outdoor Localization In Commercial 5G NR
Systems”, IEEE Transactions on Machine Learning in Communications
and Networking, vol. 2, Nov. 2024, doi: 10.1109/TMLCN.2024.3490496.

▶ Research Contributions: Building on the promising positioning results
from Paper IV, we simultaneously explored whether positioning accuracy could
be further improved by utilizing a Transformer architecture. Being highly
effective at capturing long-term dependencies and correlations, Transformers
are particularly well-suited for time-series applications, such as SRS channel
measurements, enabling accurate estimations. Furthermore, at the time
we initiated this work, only a few studies had examined Transformer
applications in the wireless research field, making our exploration innovative,
especially given the commercial setup. This work achieved highly accurate
UE positioning, with precision reaching sub-1 meter levels and is a further
example of wireless sensing for positioning purposes.
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▶ Personal Contributions: Guoda Tian and I contributed equally to this
paper. The decision to employ a new AI-based technology, the attention-driven
Transformer for this task was my idea, inspired by ChatGPT’s remarkable
evolution at the time, driven by its attention mechanism. I had a strong belief
that the advancements in generative AI were promising tools. As with Paper
III, I defined the test campaigns and routes, conducted all measurements, and
performed post-processing of the raw I/Q data collected at the 5G BS before
it was conveyed to the generative AI model. This also required modifying
the BS software to support the generation of high-resolution SRS channel
measurements.

Paper VI: D. Pjanić, G. Tian, A. Reial, X. Cai, B. Bernhardsson, F. Tufvesson,
“Illuminating the Path: Attention-Assisted Beamforming and Predictive
Insights in 5G NR Systems”, IEEE Transactions on Vehicular Technology,
submitted May 2025.

▶ Research Contributions: Before embarking on my PhD journey, as a
baseband software developer implementing beamforming functionality, I often
encountered challenges posed by the current models and algorithms used
to manage beamforming procedures. These methods were both time- and
energy-intensive, jeopardizing the efficiency of beamforming, particularly in
scenarios with many UEs in the system, where computational complexity
scaled linearly with the number of antennas in the MIMO system. In this
final paper, I had the opportunity to explore whether AI could assist a BS in
deriving the entire downlink transmission chain within a commercial-grade
5G system. For this purpose, the Transformer architecture, established in
Paper V, proved to be a suitable candidate for predicting the strongest beams
in a 5G NR system. The predicted downlink beams were specifically designed
to address the challenges of NLOS environments, which are characterized by
high-dimensional channel dynamics and signal variations caused by scatterers.
The presented beam prediction results showcased remarkable robustness,
even for long-term prediction horizons extending well beyond the channel
coherence time, by leveraging high-dimensional fingerprinted features. This
study in many ways overlaps with the concept of wireless sensing for network
optimization related to improving coverage, based on real-time environmental
data the network can automatically adjust its coverage strategy. The work
culminated in filing a patent application.

▶ Personal Contributions: I utilized the data from Paper V, incorporating
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additional post-processing tailored for this specific study and modified the
Transformer model to fit this task. I generated the figures, and wrote the paper.

RELATED WORK

A publication to which I contributed during the course of this thesis work,
but which is not included in the thesis itself, is listed below:

CONFERENCE CONTRIBUTIONS

Paper viii: I. Yaman, G. Tian, D. Pjanić, F. Tufvesson, O. Edfors, Z. Zhang,
L. Liu, “Adaptive Attention-Based Model for 5G Radio-based Outdoor
Localization”, https://doi.org/10.48550/arXiv.2503.23810, May 2025.
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Acronyms and Symbols

Here, important acronyms, abbreviations, and symbols are listed, which are
recurring throughout the thesis. Some abbreviations, which only occur in
a narrow context, are intentionally omitted; some abbreviations are used
in more than one way, but the context is always explicitly clarified in the
corresponding text. Some (compound) units are provided with prefixes to
reflect the most commonly encountered notations in the literature.

ACRONYMS AND ABBREVIATIONS

3G Third Generation

3GPP 3rd Generation Partnership Project

4G Forth Generation

5G Fifth Generation

6G Sixth Generation

AAS Advanced Antenna System

AGI Artificial General Intelligence

AI Artificial Intelligence

AOA Angle of Arrival

AOD Angle of Departure
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CIR Channel Impulse Response

CN Core Network

CNN Convolutional Neural Network

CSI Channel State Information

CSI-RS Channel State Information Reference Signal

CTF Channel Transfer Function

DL Deep Learning

DNN Deep Neural Network

DOA Direction of Arrival

DOD Direction of Departure

FDD Frequency-Division Duplex

FNN Feedforward Neural Network

FT Fourier Transform

gNB gNodeB

GNSS Global Navigation Satellite Systems

GOB Grid of Beams

GPS Global Positioning System

GSCM Geometry-Based Stochastic Channel Model

LOS Line-of-Sight

MIMO Multiple-Input Multiple-Output

ML Machine Learning
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NLOS Non Line-of-Sight

NLP Natural Language Processing

NN Neural Network

NR New Radio

OFDM Orthogonal Frequency Division Multiplexing

RAN Radio Access Network

RL Reinforcement Learning
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RNN Recurrent Neural Networks

RRC Radio Resource Control
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SRS Sounding Reference Signal

SU-MIMO Single User Multiple-Input Multiple-Output

SVM Support Vector Machine
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TDOA Time-Difference of Arrival
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1
Background and Overview of the

Research Field

“When wireless is perfectly applied the whole earth will be converted into a huge
brain, which in fact it is, all things being particles of a real and rhythmic whole. We
shall be able to communicate with one another instantly, irrespective of distance. Not
only this, but through television and telephony we shall see and hear one another as
perfectly as though we were face to face, despite intervening distances of thousands of
miles; and the instruments through which we shall be able to do this will be
amazingly simple compared with our present telephone. A man will be able to carry
one in his vest pocket.”

Nikola Tesla in 1926

T
he purpose of this chapter is to describe the evolution of cellu-
lar networks toward 5G and beyond. Years of research went into
perfecting the enhanced cellular broadband experience and 5G was

the latest technology, with 6G being standardized, at the time when this
thesis was being written. A 5G system enables user connectivity through
ultra-reliable and low-latency communications and the research presented
in this thesis addresses 5G from a perspective of RAN and many-antenna
technology such as MIMO systems. As the fundamental tool for addressing
the research questions presented later in this thesis, ML and AI are examined
and discussed.
Note: The terms user equipment UE, device and user are used interchangeably
in the following sections to refer to a mobile phone or wireless device.
In addition, the relatively recent shift in terminology from ML to AI has
gained momentum in recent years, primarily due to the remarkable success of
generative AI models such as chatGPT (2020) [1], DALL·E (2021–2023) [2], and
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AlphaFold (2021) [3]. These models show advanced capabilities, including
human-like text generation, AI-driven image synthesis from text descriptions,
and solving the long-standing protein-folding problem, which had remained
an open challenge in biology for more than 50 years. This thesis explores
and demonstrates the capabilities of generative AI models in the field of
wireless communications, and therefore, the terms ML and AI are used
interchangeably, as ML is a subfield within the broader domain of AI.

1.1 EVOLUTION OF CELLULAR NETWORKS

Cellular networks have been continuously evolving since their introduction
around the 1980s. In general, approximately every 10 years, a technology shift
towards a new generation has been introduced. Each generation of cellular
networks has advanced communication technology, focusing on speed and
capacity. The first two generations of cellular networks opted for an analogue
and later a digital co-called circuit-switched telephony. This technology
shares the same technical core as landline telephony, besides the wireless
communication between the user and the network. 1G, introduced in the
1980s [4], was the first generation of mobile networks, offering analog voice
communication. However, it had limited capacity. In the 1990s, 2G [5–8]
brought digital voice and SMS, improved voice quality, and first access to
internet via packet-switched data transmission [9]. With the introduction of
the 3rd and 4th generation of cellular networks, the focus shifted towards
mobile broadband connectivity. The 2000s saw the rise of 3G [10–12], which
enabled mobile internet and multimedia services such as video calls. We
became increasingly interconnected with others through the internet, even
outside our homes. With 4G in the 2010s [13–15], high-speed broadband
became a reality. The 5G, specified in [16,17] and described in detail in [18,19],
expanded the scope of use cases beyond the mobile broadband objectives
initially defined in 4G, primarily by leveraging NR technologies such as
MIMO systems, which facilitate enhanced data rates.

Based on the assessment of the continuously growing traffic in cellular net-
works, the targeted 5G user scenarios were significantly broader than those of
earlier generations of cellular networks. Before 5G, the main focus of cellular
communications was human-centric, from telephony to mobile broadband
services. To meet the increasing demands of increased data traffic triggered by
new services such as 3D video, holographic-type communications [20–22] or
Augmented and Virtual Reality (AR/VR) using the umbrella term Extended
Reality (XR), an enhanced mobile broadband was envisioned beyond 5G.
Figure 1.1 illustrates the progression of cellular network generations and the
anticipated future advances, as envisioned when this thesis was composed.
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Figure 1.1: The progression of cellular networks and future prospects envi-
sioned by Ericsson.

1.2 CELLULAR SYSTEM ARCHITECTURE

A cellular 5G network consists of a core and a Radio Access Network (RAN). The
RAN domain is responsible for all radio-related functionality of the cellular
network including radio resource handling, transmission protocols, channel
coding, scheduling, and different multi-antenna schemes.

1.2.1 CORE NETWORK DOMAIN

The Core Network (CN) is responsible for functions complementing the func-
tionality included in the radio access domain such as subscriber setup, authen-
tication, end-to-end connections etc. This architectural separation between the
two entities is driven by the fact that one 5G core network may serve multiple
5G radio access networks combined with other radio access technologies such
as 2G, 3G and 4G [23]. The architecture of cellular networks comprises
numerous sub-functions that are thoroughly detailed and standardized by the
3rd Generation Partnership Project (3GPP), primarily in [24], [25], and [26]. In
general, data flows in a cellular network are divided into control-plane and
user-plane. Control-plane is designed to ensure reliable communication and
manages signaling and network control functions, enabling seamless commu-
nication, mobility, authentication, authorization and service continuity. The
user-plane data is responsible for handling the actual data traffic between the
users and the network like handling packet routing and forwarding user data
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CORE NW 
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UPF

SMF
AMF

NEF
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AUSPUDM
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AF
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Figure 1.2: The high-level architecture of a cellular network consists of the
core network and radio access network. The radio node, gNB, serves various
wireless devices through MIMO antenna systems over the air interface. This
thesis focuses on optimizing radio communication between the gNB and
users, illustrated at the bottom of the figure.

packets through different network nodes (e.g., internet traffic, voice over IP,
video streaming).

Due to the complexity of cellular network architecture, only the most
significant functions are highlighted in this section as illustrated by Fig.
1.2. For a more comprehensive understanding, users are encouraged to
refer to the above-mentioned 3GPP specifications for further details. User-
plane functions in a 5G network primarily involve the User Plane Function
(UPF), which acts as a gateway to external data networks such as the internet.
The control-plane functions include the Session Management Function (SMF),
which is responsible for managing sessions and handling IP address allocation
for devices. Additionally, the access and Mobility Management Function
(AMF) manages control signaling between the core network and the user.
This includes key functions such as authentication, security, and idle-state
mobility management. A crucial distinction in 5G architecture is between
the non-Access Stratum (NAS) and Access Stratum (AS). NAS handles di-
rect communication protocols between UEs and the core network, ensuring
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session and mobility management, while AS operates between UEs and the
RAN, managing lower-layer functionalities such as radio resource control
and transmission scheduling. This layered approach ensures an efficient
separation of control and user traffic.

1.2.2 RADIO ACCESS NETWORK DOMAIN

In cellular networks, the RAN domain serves as a bridge between the UE, such
as smartphones, and the CN. A main component of a radio access network in
5G is a radio node called the gNodeB (gNB). The gNB is responsible for radio-
related functions in one or multiple cells such as radio resource management,
admission control, connections establishment etc. It is a common implemen-
tation that a single gNB covers a three-sector site where a base station handles
transmissions in three cells thus, a base station is a possible implementation
of, but not necessarily the same as gNB. A gNB incorporates a purpose-built
baseband hardware designed to handle the intensive signal processing and
computational tasks required in cellular networks, ensuring efficient com-
munication between user equipment UE and the network. This hardware is
optimized for high performance, low latency, and energy efficiency, enabling
seamless operation across different protocol layers in the network stack. As
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Figure 1.3: Multiple time scale operations of cellular networks.
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the wireless connection, or air interface, specifies how data is formatted,
transmitted, and received over Orthogonal Frequency Division Multiplexing
(OFDM), MIMO, and control channels, the RAN domain operates on multiple
time scales to manage communication effectively. These time scales are vital
for ensuring efficient resource allocation, synchronization, and meeting the
performance demands of diverse applications, all while dynamically adapting
to user needs and environmental conditions. Synchronizing operations on
these scales is critical for the advancement of modern 5G and future 6G
networks. The various time scales in cellular networks are illustrated in Fig.
1.3, highlighting that the RAN is responsible for the most critical aspect: real-
time signal processing. The focus of this thesis was on the RAN domain,
as it forms the most fundamental part of cellular networks. Its wireless
nature introduces the largest technical challenges, making it a pivotal area
for research and innovation.

1.3 AI IN CELLULAR NETWORKS: TRENDS AND FUTURE OUTLOOK

Cellular networks have traditionally operated as closed, self-sufficient sys-
tems, designed to provide users with wireless connectivity without the need
for interaction with other technologies. However, with the advent of late
2G developments, cellular networks began to integrate packet-switched data,
enabling the delivery of services over IP-based traffic through the internet.
This marked a significant shift, paving the way for more interconnected and
versatile communication systems. However, user needs have generally been
met through existing software and hardware technological solutions. These
solutions were built on robust mathematical and statistical models, which
have evolved alongside cellular networks to address the growing demands
for higher data transmission capacity. AI is transforming industries across
the globe, and telecom is no exception, on the contrary, it has the potential
to drive this transformation with other industries being a generator of one
of the largest datasets in the industry. The rise of 5G technology has faced
new capacity demands, driven by the vast number of devices connected
through cellular networks worldwide. These devices generate an immense
volume of data including images, videos, and text transmitted over the air
interface of the RAN domain. Notably, this data is inherently structured in a
format optimized for computational processing. This is also the starting point
for the rise of the ML and AI solutions being explored within the field of
telecommunication.

Future cellular networks will need to interact not only with other telecom-
munication systems, such as satellite-based systems [27, 28], but also with
systems that are not necessarily telecommunication-based, yet connected to
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the internet through a multitude of mobile devices. This will necessitate a
broader understanding of users’ contexts about their "ecosystem", extending
beyond the basic communication between a user and the mobile network
over the air. Understanding all these contexts will be an overwhelming task
that traditional methods for controlling data traffic will no longer be able to
handle. These will be especially difficult for a human to comprehend.

There is no doubt, that the greatest technical challenges will lie within the
radio access domain, the communication that occurs over the air interface,
i.e., between users and the network. Due to its wireless nature, which already
involves numerous challenges in the physical layer, radio communication will
need to meet new demands for latency, but, above all, for the data capacity
required to support all the connected, data-hungry devices that will increase
exponentially. The vision at the time of writing this dissertation revolves
around a world where the physical and virtual worlds converge and merge
into one, through various digital avatar-like solutions [29–31]. Everything in
the real, physical world as we know it today will have a counterpart in the
digital world [32]. Metaverse, and its vision studied in detail by [33–37], is
a collective term for a virtual space that merges physical reality with digital
environments, allowing people to interact, work, play, and socialize through
3D avatars and immersive XR technologies like VR and AR. Deep Learning is
expected to be one of the key technological enablers of 5G Advanced and 6G
by offering a new paradigm for the design and optimization of networks with
a high level of intelligence [38]. DL has already proven valuable in tough wire-
less communication problems, especially when it’s hard to model the system
or when the model’s complexity makes practical solutions difficult [39]. The
radio access domain of the network already operates within very short time
intervals, such as milliseconds and microseconds (Fig. 1.3), and to manage
these enormous amounts of data in short periods, ML/AI technologies will
be key players in handling the task [40]. To enable the convergence of the
physical and digital worlds, new and complementary support technologies
will be essential to aid decision-making, provide support, and ease the load on
the RAN domain. Hybrid approaches like cloud-based solutions are expected
to integrate AI/ML technologies to enhance the RAN. These approaches can
harness the computational capabilities of the cloud to process large-scale data
efficiently and offload tasks from native AI deployments in the RAN domain
of cellular networks.

1.4 RESEARCH QUESTIONS

The numerous antennas in a modern MIMO system, massive MIMO, ini-
tially proposed by Thomas Marzetta [41], provide unprecedented insights
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into wireless channel behavior offering a unique prospect within wireless
communication according to [42, 43]. By examining real channel behavior,
including spatial fingerprints and their evolution over time, we gain access
to details not observable in the pre-MIMO era. As described by Maxwell’s
equations, electromagnetic waves interact with their environment as they
propagate through media like air. These interactions depend on factors
such as wavelength, electrical conductivity, and the geometry of surrounding
objects. The majority of signal power is scattered along multiple directions
or paths, creating complex patterns as waves interact with various objects
in the environment. Instead of analyzing individual propagation paths,
an alternative approach involves examining sequences of received wireless
signals associated with specific physical locations. By capturing a time series
of measurements linked to these locations, fingerprinted patterns emerge,
which ML/AI models can interpret. This approach avoids the need for
complex and time-intensive calculations of physical channel parameters or
estimating individual signal paths. Numerous studies have demonstrated that
the theoretical predictions regarding spectral and energy efficiency were, to a
large extent, achievable in practice [44–46].

ML has a long history but has gained significant attention over the last
decade due to the increased availability of data and computational power.
When this thesis was initiated, the application of ML to the lower, physical
layers of radio networks remained relatively unexplored, with limited
studies on the topic especially those leveraging data from commercial 5G
systems. However, a few overview papers had examined related areas.
For instance, [47] analyzed the prediction of CSI in LTE systems using LTE
channel condition maps, demonstrating promising results in forecasting
channel conditions at specific physical locations based on historical data. [48]
employed Support Vector Machines [49] and Gaussian Processes [50] to
predict received signal strength over a long-term horizon. Meanwhile, [51]
investigated the challenge of predicting wireless channel features that are not
directly observable at a Base Station (BS), using machine learning techniques
driven by large-scale channel data. Additionally, [52] analyzed traffic patterns
in real 4G networks, implementing a Gaussian process-based predictor
to model traffic variations. The study demonstrated that wireless traffic
prediction could effectively reduce uncertainties in network demand and
supply.

This thesis investigates whether and how ML/AI can optimize the RAN
domain of cellular networks by leveraging fingerprinted radio features
derived from 5G MIMO systems, which are known for their complexity
even with reasonably sized antenna arrays. The research focuses on
various aspects of network optimizations via massive MIMO antennas,
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targeting lower frequency bands below 6 GHz and higher frequency bands
around 30 GHz. These commercially deployed bands exhibit distinct and
often contrasting propagation characteristics when interacting with their
surrounding environments. The primary focus of this thesis pivots around
addressing the following key questions and the proposed methods to tackle
them:

• Q1: Is it possible to achieve long and short-term channel predictions utilizing
historical channel measurements?
Method: Analysis of long-term channel behavior to improve channel
gain prediction based on historical channel estimates from the uplink
pilot signals.

• Q2: How to help mobility and traffic pattern estimation?
Method: Analysis of uplink and/or downlink channel estimates and
the large-scale parameters.

• Q3: Are handover predictions feasible?
Method: Analysis of whether uplink and/or downlink channel mea-
surements can enable new prediction methods.

• Q4: How to achieve physical and virtual UE positioning?
Method: Analysis of uplink and/or downlink channel estimates for
user positioning.

1.5 RESEARCH BOUNDARIES AND PRACTICAL RESTRAINTS

Telecommunication systems of commercial-grade are the product of extensive
academic and industrial research, and in most cases represent a compromise
between theoretical performance and practical limitations. This includes not
only technical constraints but also economic viability and product feasibility.
They represent a compromise between theoretical optimality and practical
constraints like: hardware limitations, deployment costs, spectrum availabil-
ity, and energy efficiency. Economic factors such as cost of infrastructure, user
equipment, and market dynamics play a major role in which technologies
have to persist. Consequently, certain technological solutions prevail over
others for example, TDD deployments have become more common than FDD
in many 5G NR deployments, especially above 2.5 GHz.

While millimeter-Wave (mmWave) frequency bands, like 28 GHz, offers
huge bandwidth and high data rates, in practice, sub-6 GHz (e.g., 3.5 GHz)
deployments today dominate because mmWave coverage is limited and short-
ranged. Due to this, the cost of dense mmWave deployment is higher,
which makes operators prioritize mid-band 5G first to balance coverage, cost,
and performance. On a related note, four of the included papers, II, IV,
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V and VI, utilize measurement data collected from a TDD MIMO system.
In these studies, different NN-driven ML/AI models applied fingerprinting
techniques to investigate positioning, location-based user clustering, and short
and long-term channel prediction tasks.

For Papers I and III, a simulated environment, operating with a 28 GHz
setup, was created to generate measurement data from a MIMO system. Paper
I investigates user clustering by analyzing measured channel patterns across
various traffic deployments in urban environments.

Paper III proposes a novel approach to optimize 5G handover procedures
using the historical MIMO measurement data described above. A neural
network-based model predicts incoming users by analyzing MIMO measure-
ment patterns along a predefined urban-inspired trajectory.
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2
Fundamentals of Wireless

Communications

T
his chapter provides a high-level overview of the technical challenges
faced by wireless communication systems and addresses these chal-
lenges at a fundamental level.

2.1 BASICS OF ELECTROMAGNETIC WAVE THEORY

Wireless communication is fundamentally based on the presence and utiliza-
tion of electromagnetic waves. By generating waves that propagate through
space, energy and information can be transmitted from one location to
another. The information is encoded by modulating the amplitude, phase,
and frequency of these waves. The electromagnetic spectrum, encompassing
both naturally occurring and artificially generated waves, spans a vast range
of frequencies and wavelengths. In 5G wireless communication systems,
frequencies typically range from some gigahertz to tens of gigahertz. A very
important characteristic of electromagnetic waves is that they can be added
together, or superimposed. The interaction of waves propagating in different
directions can lead to the formation of standing wave patterns, causing a sig-
nificant reduction in average field strength in certain regions, a phenomenon
known as fading, which is discussed in this section and illustrated in Fig. 2.1.
The basic concepts are extensively discussed in a book written by professor
Andreas Molisch [53], which also serves as a key technical reference for many
researchers in the field of wireless communications. Traditionally, fading has
posed a challenge to reliable wireless communication. A moving transmitter
or receiver will experience rapid time variations of the signal strength due
to the fading, often changing completely within a fraction of a second. This
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kind of fading is often referred to as fast fading, or small-scale fading, and
has always challenged reliable and efficient communication. However, the
increasing adoption of directional antennas, discussed in the next chapter,
which can differentiate between waves based on their propagation direction, is
transforming this challenge into an advantage. Properties of electromagnetic
waves can be constructively superimposed to enhance signal transmission and
reception.

=

+

+

Figure 2.1: Waves can be added together, or superimposed creating standing
wave patterns.

2.2 CHANNEL MODELING AND PROPAGATION

When electromagnetic waves travel from a transmitter to a receiver, they do
not always follow a single direct path. Instead, they propagate along multiple
distinct routes, referred to as Multipath Components (MPCs). This phe-
nomenon, known as multipath propagation, arises because signals can reflect
off surfaces, diffract around obstacles, and scatter in different directions before
reaching the receiver. In some cases, there may be a direct LOS connection,
but often the received signal consists of a combination of multiple indirect
paths. Each propagation path has unique characteristics, including signal
amplitude, propagation delay (travel time), Direction of Departure (DoD)
from the transmitter, and Direction of Arrival (DoA) at the receiver. One
crucial aspect of multipath propagation is that signals traveling along different
paths undergo varying phase shifts, which depend on the distances they have
covered. These phase shifts lead to constructive or destructive interference,
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meaning that the total received signal strength fluctuates dynamically as
the transmitter, receiver, or surrounding objects move. Since a conventional
receiver cannot differentiate between individual MPCs, it simply adds up,
creating a signal interaction called interference. Depending on how the phases
of the arriving signals align, interference can either amplify (constructive)
or weaken (destructive) the received signal. As a result, the total signal
strength varies over time. These fluctuations occur across time, space, and
frequency and also affect signal polarization—the orientation of the electric
field. The larger the range of directions in which propagation paths occur,
Angular spread, the more rapid the variations are. Angular spread describes
the range of directions from which signals arrive. In environments where
signals arrive from many different angles, fading patterns exhibit short-
distance fluctuations, with peaks and nulls often occurring within distances
of half a wavelength. Conversely, at a BS, which is typically positioned at an
elevated height for wider coverage, the angular spread is more limited. As
a result, the fading pattern is smoother, and the distance between peaks and
nulls becomes larger, as illustrated in Fig. 2.2. The multipath and angular

Large angular 
spread

Small angular 
spread

Figure 2.2: Multipath propagation. The receiver sees multiple copies of the
original transmitted signal in short succession with differences in arrival time
and power.

spread strongly impacts how antenna directivity can be used and whether
simple beam shapes are adequate or more irregular radiation patterns are
needed to optimize the communication. A multi-antenna system includes
methods and algorithms for acquiring information about complex and rapidly
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changing multipath conditions and using the degrees of freedom of large
antennas with dual-polarized elements. This way, they phase-shift different
MPCs such that they add constructively and enhance communication quality.
The fading variations are not only confined to time and space. Multi-antenna
techniques started as methods to mitigate the fading by adding diversity, but
have subsequently evolved to more directly take advantage of the multipath
channel by using the different propagation paths and polarizations as separate
and parallel communication channels through MIMO schemes.

2.2.1 PHYSICAL CHANNEL MODELING

The physical channel refers to the medium through which data and control
signals are transmitted over the air interface. Modeling the physical channel
is essential for understanding signal propagation, interference, and system
performance in real-world deployments. Unlike previous generations, 5G
operates across a wide frequency range (sub-6 GHz and mmWave bands)
and supports advanced features like massive MIMO, beamforming, and
ultra-dense networks. In summary, while the RAN air interface specifies
how data is formatted, transmitted, and received over OFDM, MIMO, and
control channels, the physical-layer channel models describe the statistical or
deterministic behavior of the propagation environment. Together, they form
the foundation for evaluating and optimizing radio-access performance from
link-level algorithms all the way up to system-level network deployments.
3GPP has defined various standardized models for 5G NR to ensure accurate
simulations and testing. Here, a few are mentioned to provide the reader
with a basic understanding of the theoretical field.

• Geometry-Based Stochastic Channel Models (GSCMs): GSCMs combine
geometry and stochastic elements to model wireless channels and
represent scatterers and MPC explicitly, rather than relying purely
on statistical models [54, 55]. These models provide realistic spatial
characteristics, such as angular spread, Doppler shift, and delay
dispersion.

• Cluster-Based Geometry Model: Is a subclass of GSCMs that represents
MPCs as being grouped into clusters and used for both sub-6 GHz
and mmWave frequencies. The channel is modeled as clusters of
MPCs, each containing multiple rays and includes both LOS and NLOS
components. The most significant feature of this widely used model
structure is that it supports spatial consistency, which means that the
channel changes smoothly over time as the user moves. In accordance
with the guidelines outlined in [56], Papers I and III employed a
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simulated system based on the specifications provided therein.

• Ray-Tracing Models: These models is used in high-precision simula-
tions for urban environments and it computes exact reflections, diffrac-
tions, and scattering based on environment geometry. It is particularly
important for mmWave frequencies where blockage effects are signif-
icant, as discussed in detail in [57, 58]. Today, both open-source [59]
and commercial ray-tracing simulation tools are available [60], with the
former frequently referenced in academic research for realistic wireless
propagation studies. Major telecommunications equipment providers,
such as Ericsson and Nokia, also possess their in-house simulation
software.
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3
Introduction to Massive MIMO

systems

M
ulti-antenna transmission is a fundamental feature of 5G NR and
this chapter provides an overview of multi-antenna transmission in
general. The use of multiple antennas at the receiver and/or trans-

mitter has been a key technology in cellular networks for over two decades,
despite antenna arrays first being introduced during World War II. Under-
standing MIMO systems is a challenging task, as it is an interdisciplinary field
that encompasses communication and information theory, signal processing,
propagation channel modeling, and antenna system design. In the following
sections, the fundamental principles of MIMO-based communications are
introduced, focusing on their core concepts without delving into the com-
plexities of each contributing discipline. In academic research, massive MIMO
is typically defined based on theoretical principles, emphasizing asymptotic
system properties where the number of base station antennas significantly
exceeds the number of served users. Academic studies often assume ide-
alized conditions, such as favorable propagation environments and channel
hardening, to explore fundamental limits and potential gains. In contrast, the
wireless industry adopts a more practical definition, focusing on deployable
massive MIMO solutions that account for real-world constraints, including
hardware limitations, power consumption, and deployment complexity. This
section primarily addresses massive MIMO from an industrial perspective,
emphasizing practical implementations, challenges and solutions.
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3.1 ANTENNA ARRAYS AS A KEY ENABLER OF MIMO TECHNOLOGY

As mentioned in chapter 2, wireless communication is fundamentally based
on the transmission and reception of radio waves using antennas which
serve as the tool of transmitting electromagnetic waves from one location and
capturing a portion of these waves at the receiving end. Once the wave has
been generated it will continue to propagate and radiate into the surrounding
space. The effectiveness with which antennas can radiate and capture waves is
fundamental to the wireless communication quality. All antennas are directive
to some extent, meaning that they are more effective in radiating waves
in certain directions and with certain polarizations. Antennas are usually
reciprocal, which means that an antenna has the same radiation pattern
when receiving as when transmitting. Pairs of antennas with orthogonal
polarizations are commonly used in wireless communications to transmit or
receive waves with arbitrary polarizations. Antennas that are small in relation
to the wavelength usually have low directivity and therefore spread their
radiated energy in many directions. Antennas that are large with respect to
the wavelength have more freedom in shaping the radiation pattern, such as
creating high directivity by focusing the transmitted energy in a narrow range
of directions. High directivity is very useful for improving the communication
quality but also presents a challenge since the transmission and reception
directions need to be carefully aligned. As radio waves travel between a
transmitter and a receiver, they experience path loss, which increases with
both distance and frequency which is particularly pronounced at higher
frequencies making the use of directive antennas even more crucial. In cellular
networks, where mobile devices are scattered in different directions relative to
the base station and have random orientations, fixed directional antennas are
impractical. Instead, antenna arrays composed of numerous small antenna
elements enable highly directive transmission by adjusting the phase, and
potentially the amplitude of signals applied to each element.

With the introduction of massive MIMO these capabilities can be dynami-
cally adapted to the spatial distribution of multiple mobile users, traffic pat-
terns, and the diverse propagation paths between transmitters and receivers.
Massive MIMO is a concept in which multi-antenna techniques leverage a
large number of antennas to enable dynamically adaptable input and/or
output signals. Additionally, a massive MIMO solution refers to the practical
implementation of this concept, encompassing both hardware components
(such as massive MIMO radio units) and software elements (such as massive
MIMO signal processing features and beamforming algorithms). Massive
MIMO generally uses planar antenna arrays of dual-polarized element pairs
divided into subarrays as depicted in Fig. 3.1 (a). Orthogonal polarizations
(like ±45 degrees, or 0/90 degrees), systems can significantly improve spectral
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Figure 3.1: Antenna array (a) equipped with cross-polarized antenna ele-
ments. Beamforming weights control the relative phase shifts between an-
tenna elements, which enables that transmitted waves combine constructively
at the intended receiver while minimizing interference in other directions (b).

efficiency [61]. This technique effectively allows for the transmission of
multiple layers of information over the same channel. In NLOS conditions,
the isolation between the two polarizations can be especially advantageous.
Unlike traditional single-antenna systems, these antenna arrays are a fun-
damental enabler of 5G and future 6G wireless networks and allow precise
radio energy steering through beamforming, which enhances data rates and
extends transmission range by directing power toward the intended receivers.
By transmitting copies of the same signal and appropriately adjusting the
different amplitudes and delays from all the elements it is possible to control
the radiation pattern. By dynamically adjusting the beamforming weights, the
transmission beam can be directed toward a specific user or spatial region,
enhancing signal strength and reception quality. In contrast, destructive
interference can be utilized to suppress unwanted signals, thus improving
overall network efficiency and minimizing interference between users. This
process is illustrated in Fig. 3.1 (b), assuming a free-space channel and the
simplest case with two antennas. The electromagnetic field generated by an
antenna array results from the superposition or summation of contributions
from individual antenna elements. This means that a beam can be formed by
transmitting the same signal from multiple antennas. Since signal propagation
takes time, the receiver receives multiple delayed versions of the transmitted
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signals. These signals combine in the air and embody a summed signal at
the receiver side. If all signals arrive at the receiver with identical phase,
they add up constructively, resulting in maximum signal strength and gain.
Conversely, if the signals are entirely out of phase, they cancel each other out,
producing a zero signal and no gain. For intermediate directions, the phase
differences cause the signal strength to vary between zero and the maximum
gain. In 5G massive MIMO systems, the delays needed are small, and a delay
of a signal is equivalent to a phase shift of the signal. A complex number,
or weight may therefore represent the amplitude and the delay adjustment
of a signal. The set of weights for all the antennas is often collected in a
beamforming weight vector, where each element of this vector represents the
delay and amplitude of that specific element. Additionally, it is important
to note that the array, like any antenna, can also be used for reception. This
enables the amplification of desired signals arriving from specific directions
while simultaneously suppressing or nulling interfering signals from other
directions.

Another significant advantage of multi-antenna deployments is their ca-
pability to enhance signal diversity. Simply put, multiple antennas can be
deployed at one end of the communication link typically at the BS. In the case
of uplink transmission from a single-antenna UE, the BS’s multiple antennas
can receive multiple versions of the same signal through independent propa-
gation paths, improving the reliability of signal reception in rich scattering
environments. This technique is known as receive diversity. Conversely,
transmit diversity enhances the reliability of signal reception by leveraging
multiple antennas at the transmitter side, typically the BS, to send redundant
copies of the signal over different paths. This helps mitigate deep fades and
ensures that at least one copy of the transmitted signal reaches the receiver
with sufficient quality.

It is worth noting that concepts formerly called Advanced/Active Antenna
Systems (AAS) closely resemble or align with massive MIMO, which is a com-
bination of a Massive MIMO radio and a set of Massive MIMO features [62].
While the terms are sometimes used interchangeably, AAS is often seen as
an industry-driven term for deployable multi-antenna solutions. In contrast,
massive MIMO is more rooted in academic and theoretical discussions.

3.2 SIGNAL MODEL AND PROCESSING

In a MIMO configuration, a base station equipped with N multiple antennas
communicates with K users, each having one or more antennas [63]. In
general, any linear multi-antenna transmission scheme with NL layers, rep-
resented by the vector x̃, being mapped to NT transmit antennas, represented
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Figure 3.2: General model of MIMO transmission mapping of NL layers to NT
antennas according to [23].

by the vector ỹ, can be modelled as a multiplication with a matrix W of size NT
x NL according to Fig. 3.2. This general model applies to most cases of MIMO
transmission. However, the specific implementation of the matrix W within
the physical transmitter chain can vary, influencing system performance and
design considerations [23]. Beamforming, which is the function that maps in-
formation signals to multiple antennas, can be implemented in different ways.
A key design choice is whether the signal processing should be implemented
using analog or digital components, which directly impacts the architecture
of the transmitter chain, as illustrated in Fig. 3.3 (a) and (b). The transmitter
chain refers to the sequence of components and processing stages responsible
for generating, modulating, amplifying, and transmitting the radio signals
from the baseband to the antenna elements. In antenna arrays, the transmitter
chain must carefully coordinate the signals across multiple antenna elements.
The placement of the beamforming matrix W in the chain is crucial. For
digital beamforming, the matrix is applied at the baseband before Digital-
to-Analog Conversion (DAC), while for analog beamforming, the matrix is
applied at the RF stage before amplification. The primary disadvantage of

W
DAC
DAC

DAC

y1
y2

yNT

DAC
DAC

DACxN

x2

L

x1 y1
y2

yNT

W

(a) (b)

x1
x2

xNL

Figure 3.3: Analog (a) vs Digital (b) MIMO processing.
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digital beamforming is its high implementation complexity, as it requires a
dedicated DAC for each antenna element. This may increases the hardware
cost, making it more expensive compared to analog beamforming, where a
single RF chain can control multiple antenna elements.

3.3 MASSIVE MIMO TECHNIQUES

Three multi-antenna technology components contribute to the increased per-
formance of massive MIMO, beamforming, nullforming and spatial multi-
plexing. These technologies apply to both downlink and uplink and are
briefly introduced below.

3.3.1 BEAMFORMING

A massive MIMO radio is a hardware unit that includes the antenna array
along with a large number of radio transmitter and receiver chains. Massive
MIMO features can be implemented in the massive MIMO radio itself, in the
baseband unit, or distributed between both, as illustrated in Fig. 3.4. The
beam pattern can either be static or dynamic, depending on the deployment
scenario. UE-specific beamforming dynamically adapts the beam pattern in
both time and frequency, tailoring transmission for each user to optimize
signal quality and reduce interference. Static beamforming, in contrast,
maintains a fixed beam pattern over time.

• Static beamforming: In cellular networks, a static beam pattern in the
elevation domain is common. For instance, a single-column antenna
with a fixed beam pattern—characterized by a narrow main lobe in the
vertical plane and broad sector coverage in the horizontal plane is often
deployed to serve all UEs in a cell. To achieve effective beamforming
gains with a fixed beam system, the targeted UEs must be positioned
close to the peak of the beam; otherwise, the beamforming gain declines
rapidly. In rooftop deployments and large cells, this condition is often
well met in the vertical domain for a significant portion of UEs. From
the BS’s perspective, many UEs are located near the horizon, leading
to a relatively small vertical angular spread. However, the spatial
distribution of UEs in the horizontal domain is typically much wider
and more uniform across the sector. As a result, static beamforming in
the horizontal direction is less effective either requiring a wide beam
to encompass all UEs, which reduces beamforming gain, or a narrow
beam that fails to reach most users.
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Figure 3.4: Ericsson purpose-built baseband hardware and functionality
across protocol layers.

• UE-specific beamforming: A significant advantage of massive MIMO
systems is their capability to generate UE-specific beams directed to-
ward individual users. This requires dynamic adaptation of the beam
pattern to suit each UE in real-time, allowing for a narrow, and focused
beam that can track user movement. Unlike static beamforming, BS
ensures that each UE benefits from a dedicated beam with a strong and
high-gain peak resulting in higher SINR levels.

3GPP has standardized advanced beam management techniques to dynami-
cally control and direct beams toward users dispersed in different directions
[64, 65]. The difficulties of 5G beam management, only outlined in these
specifications, are left for those eager to explore, including research studies
such as [66–70]. However, due to the limited scope of this work, only the
fundamental theory behind beamforming is considered.

3.3.2 SPATIAL MULTIPLEXING

Antenna arrays can be used to transmit multiple streams, or layers, simul-
taneously with different beam weights on the same time-frequency resource.
This is referred to as spatial multiplexing, and the streams of data symbols
multiplexed are referred to as layers. There are two basic use cases:
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• Single-user MIMO (SU-MIMO), where multiple layers are transmitted
to a single user. This requires a multipath propagation channel as well
as a receiver with multiple receiver antennas.

• Multi-user MIMO (MU-MIMO) where multiple layers are transmitted
to different users in different directions.

3.3.3 NULLFORMING

Nullforming is a beamforming technique aimed at reducing or eliminating
signal transmission in certain directions. By carefully shaping the radiation
pattern to introduce nulls or low-gain regions in areas where interference-
sensitive transceivers are positioned, nullforming helps mitigate unwanted
signal interference. This approach is predominantly applied in downlink
transmissions to enhance overall network performance.

3.4 CHANNEL STATE INFORMATION IN MIMO SYSTEMS

The network must first acquire channel knowledge to effectively perform
beamforming, nullforming, or spatial multiplexing. CSI refers to the
knowledge of the properties of the communication channel. It includes
parameters like signal strength, amplitude, phase, noise levels, interference,
and other metrics that affect the transmission quality. The receiver produces
complex-valued estimates per subcarrier for OFDM systems after performing
down conversion. CSI can be obtained through various methods, but each
comes with a cost, typically in increased signaling overhead. Since the radio
channel is a finite resource, different trade-offs are required depending on
the network’s primary objective, such as enhancing coverage, increasing
capacity, or maximizing throughput. A challenge in massive MIMO systems
is the availability of CSI. The 3GPP standard defines various sounding and
feedback methods [71], but different UEs may support different capabilities
and CSI acquisition modes. As a result, the network must support multiple
CSI acquisition methods. The process of acquiring CSI differs between
Frequency-Division Duplex (FDD) and Time-Division Duplex (TDD) systems.
Unlike TDD, where uplink and downlink share the same frequency and
reciprocity can be leveraged to estimate CSI, FDD operates on separate
frequencies for uplink and downlink. As a result, reciprocity cannot be
directly applied, and alternative CSI acquisition methods must be used.
These methods are primarily classified into codebook-based approaches, each
offering distinct advantages and limitations.
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• Codebook-Based Beamforming: The user measures the channel and
selects the best beam from a predefined set of beamforming vectors,
known as a codebook. This method is robust and effective even in
environments with limited channel reciprocity. However, it requires
feedback from the user, which introduces signaling overhead. To
mitigate this, an implicit feedback mechanism is employed, where
a predefined set of candidate beamformer, referred to as a precoder
codebook, is specified in the 3GPP standard [71]. The user then
recommends the beamformer that best matches the measured downlink
channel based on CSI-RS, allowing the base station to apply the most
suitable beamforming configuration. Since codebook-based feedback
provides the base station with only the dominant downlink channel
direction, it is particularly well-suited for SU-MIMO transmission.
While it can still be used for MU-MIMO in certain scenarios such as
with well-separated users. As a result, FDD systems, which rely on
codebook-based beamforming, typically achieve higher efficiency in
SU-MIMO compared to MU-MIMO deployments. Also, codebooks are
often based on a Grid of Beams (GoB) precoders.

• Reciprocity-Based Beamforming: In TDD systems, channel reciprocity
enables the BS to estimate the downlink channel from uplink
transmissions, eliminating the need for explicit feedback. Instead
of relying on UE-reported measurements, the BS acquires downlink
CSI by analyzing the uplink channel, with the UE transmitting a
Sounding Reference Signal (SRS). This approach is particularly efficient
in dynamic environments but requires precise calibration of transceivers
to ensure accurate reciprocity. While the propagation channel itself is
reciprocal, the transceiver hardware introduces non-reciprocal effects
that must be compensated for. The key advantage of reciprocity-based
beamforming is that the full channel information, including small-scale
fading characteristics, is available at the transmitter. This provides
the base station with highly detailed channel information in both the
spatial and frequency domains, allowing for advanced and adaptive
beamforming techniques. However, a notable limitation is that the
entire downlink bandwidth must be sounded in the uplink for each
UE antenna. Given that most UEs are equipped with only one or
two transmit chains but have up to four receiver antennas, proper
SRS antenna switching functionality is required to ensure that all UE
antennas can be sounded. Additionally, each UE must be allocated a
dedicated SRS resource, but these resources are limited from an air
interface perspective. In scenarios with a high number of connected
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users, not all UEs may receive an SRS allocation. Therefore, SRS
resources should be prioritized for users who would benefit the most
from reciprocity-based beamforming to maximize system efficiency.

CSI can be classified based on its level of detail. It may include short-term
(small-scale) channel characteristics or be limited to long-term (large-scale)
properties. TDD reciprocity, which captures small-scale fading dynamics,
exemplifies short-term CSI, whereas FDD reciprocity primarily provides long-
term CSI. While short-term CSI offers more detailed insights into the channel,
its reliability depends on a sufficiently strong signal, making it less effective in
poor coverage areas. Nevertheless, when coverage conditions permit, short-
term CSI enables better system performance.

The 5G mid-band (below 7 GHz, TDD) is a key enabler for 5G deployments,
as it meets system performance requirements while allowing for practical
antenna array sizes. While both codebook-based and reciprocity-based CSI
acquisition methods have been investigated in this thesis, a significant portion
of the research has been conducted in a commercial 5G TDD system operating
in the mid-band frequency n77 and n78, as specified in [72], primarily
focusing on SU-MIMO scenarios. To fully grasp the interaction between NR
physical channels and massive MIMO, relevant 3GPP specifications outline
the physical layer, measurement methodologies, and beam management in
[73–75].
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4
Machine Learning and Artificial

Intelligence

“We are drowning in information and starving for knowledge.”

Rutherford D. Roger

T
his chapter provides a brief overview of the most important principles
of ML which, as a subset of AI, focuses on learning patterns from
data and making predictions. AI is a broader field that aims to create

systems that can perform tasks requiring human-like intelligence, such as
understanding language, recognizing images, etc.

With the emergence of computers and the information age, the ability to
solve statistical problems has grown exponentially in both size and com-
plexity. Vast amounts of data are generated in numerous domains, with
telecommunication systems forging one of the biggest data amounts, creating
a demand for systems capable of learning from data. Fundamentally, ML
and AI technologies are rooted in statistical principles to uncover patterns
and relationships within data, with the primary goal of extracting meaningful
insights by recognizing patterns, correlations, or underlying structures [76].
It is essentially about understanding "what the data says" with increased
emphasis on the use of computers to statistically estimate complex tasks.
The author perceives ML and AI as a successful fusion of statistical methods,
computational power, and knowledge representation. While many aspects of
statistical learning have been established for decades, as thoroughly discussed
in [77], the rapid advancements in hardware and computational capacity over
the past decades were previously unimaginable, enabling the breakthroughs
seen today. Since computation plays a critical role in processing and analyzing
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large datasets, much of the modern development in ML and AI has been
driven by researchers from disciplines outside traditional statistics, such as
computer science and engineering. Writing an introductory section on ML
and AI is challenging due to the fast growth and evolution of the field over
the years. It is impossible to cover the entire field in substantial depth within
the scope of a PhD thesis like this. However, to provide an overview, this
section emphasizes the most commonly used methods and algorithms that
were explored throughout the research presented in this thesis.

4.1 MACHINE LEARNING BASICS

The main ingredients of ML are tasks, models and features, and how these
link to each other is illustrated in Fig. 4.1.

• Feature: A collection that has been quantitatively measured from some
object/event/domain. Features determine much of the success of
an ML application and directly affect the quality of the ML output.
Features can be thought of as a kind of measurement that can be
performed on any instance. As measurements are often numerical,
commonly features are represented as real numbers.

Features
Data

Model

Output

Training Data

Task

Learning Algorithm

Figure 4.1: General overview of a machine learning model addressing a given
task according to [78].
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• Task: A task is an abstract representation of a problem to be solved.

• Learning Algorithm: A machine learning algorithm that is able to learn
from data [80].

• Model: A model is a central concept and represents what has been
learned from data to solve a given task.

An important distinction is made between tasks and learning problems:
Tasks are addressed by models, whereas learning problems are solved by
learning algorithm that produces models, according to [78].

4.1.1 TYPES OF MACHINE LEARNING

ML uses data and algorithms to mimic human learning, allowing machines
to improve over time and enhance their accuracy in making predictions, clas-
sifications, or extracting data-driven insights. Figure 4.2 contrasts traditional
programming with the ML/AI approach. The key distinction between tradi-

Software Algorithms
- Decision Making -

Rule Based Machine Learning
Artificial Intelligence

Rule

If, Then, Else Statistical reasoning

Data-driven
Probabilistic

No Learning
Supervised
   Learning

Unsupervised
    Learning

Reinforcement
     Learning

Human-crafted logic
Deterministic

Classification Regression

Support Vector Machines
Gradient Boosting Machines

Decision Trees
Linear Regression

NN

Clustering

Hierachical

NN

K-Means

Indirect
Learning

Explicit Model

  Direct
Learning

Policy Gradient

Temporal Difference

Q-Learning

Transformers

Figure 4.2: General overview of types of learning for machine learning models
according to [79]. Machine learning involves showing a large volume of data
to a machine so that it can learn and make predictions, find patterns, or
classify data. The types of learning explored and utilized in this thesis are
highlighted in green.

31



Moving Towards Cognitive Radio Access Networks:
Transforming MIMO Complexities Into Opportunities

tional programming and ML lies in their methodologies for problem-solving.
Traditional programming requires a programmer to explicitly define rules and
instructions that dictate how a computer processes input data to generate
the desired output. This approach demands a deep understanding of the
problem and a well-defined method to encode the solution in a programming
language. Since it relies on predefined logic, the output quality is determined
mainly by the programmer’s ability to anticipate all possible scenarios. In
contrast, ML eliminates the need for explicitly defined rules. Instead, a model
is trained on large datasets, allowing it to recognize patterns and relation-
ships that enable decision-making without being explicitly programmed for
every possible case [79]. This data-driven approach is especially valuable
for solving complex problems where defining explicit rules is impractical
or infeasible. The effectiveness of an ML model depends heavily on the
quality and quantity of training data, as these factors significantly influence its
accuracy and performance. An interesting aspect of these two approaches is
the predictability of the generated outcome. In traditional programming, the
result is highly predictable if the inputs and the logic are known. For decades,
well-established mathematical models of wireless channels have served as
the foundation for software development in telecommunications systems,
ensuring they meet the necessary requirements for reliable and in a way
predictable communication. In the case of ML, the outcomes of predictions
or decisions can sometimes be less interpretable, particularly with complex
models such as Deep Neural Networks (DNN). However, when trained on
well-structured and well-understood data, these models can effectively learn
and adapt. This adaptability is essential for the future of cellular networks.

4.1.2 SUPERVISED LEARNING

Supervised learning [81] is a fundamental branch of ML where a model learns
from labeled data. In this approach, the training dataset consists of input-
output pairs, where each input (feature set) is associated with a corresponding
correct output (label or ground truth) that the model aims to iteratively learn,
i.e how to map inputs to the proper outputs by minimizing a predefined error
function. From a statistical perspective, this means that we have the outcomes
for all experiments within the training set. This method typically involves
dividing the complete dataset into distinct subsets: a training set for model
learning, a validation set to assess the model’s generalization ability, and a
test set, which is used after training to evaluate the model’s accuracy.

4.1.3 UNSUPERVISED LEARNING

This type of learning relies solely on sample data from the problem domain
without prior knowledge or predefined labels to guide the learning process
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[82]. A model learns patterns, structures, or relationships in data without
labeled outputs. Unlike supervised learning, where the model is trained
with input-output pairs, unsupervised learning works with unstructured or
unlabeled data and finds hidden patterns or clusters within it. Essentially,
unsupervised learning has no prior knowledge of the class or value of any
sample, it shall infer it automatically. Solving the task involves grouping items
based on similarities or shared characteristics, as there is no prior information
about predefined classes available.

4.1.4 REINFORCEMENT LEARNING

Reinforcement Learning (RL) [83, 84] has recently demonstrated remarkable
capabilities in the field of wireless communications. Unlike supervised
learning, RL does not rely on labeled datasets but instead operates through
interaction with an environment. It is built on key concepts such as an
agent, an environment, and an optimal policy. The learning process is goal-
driven, where the agent continuously interacts with the environment, learning
through trial and error by maximizing rewards and minimizing penalties. The
ultimate objective is to develop an optimal policy that maximizes cumulative
rewards over time.

4.2 MACHINE LEARNING ALGORITHMS EXPLORED

In general, ML/AI-based algorithms are computational methods that enable
systems to learn from data, recognize patterns, and make decisions with
minimal human intervention. They may serve different applications, from
predictive analytics to computer vision, speech recognition, and autonomous
systems. However, selecting the appropriate ML algorithm for a given task
depends on various factors such as the problem type, data availability, and
the nature of the decision-making process. Below is a brief summary of the
ones explored in this thesis.

4.2.1 CLUSTERING

Humans naturally categorize objects, people, and behaviors into groups based
on shared characteristics. Similarly, in ML, technique known as clustering is
a fundamental unsupervised learning method that organizes unlabeled data
into groups based on common, defining features [85]. This approach helps
identify inherent structures within the data by grouping similar components
jointly without prior knowledge of their classifications unlike supervised
learning, where models learn from the labelled data, clustering algorithms
operate without predefined labels.
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4.2.2 NEURAL NETWORKS

The concept of Neural Networks (NNs) was first introduced in [86, 87] as
a computational approach aimed at mathematically modeling information
processing in biological systems. Neural networks are engineered systems
inspired by the workings of the human brain, where interconnected units,
or neurons, process information in layers. The term Deep Learning (DL) [80]
has since evolved beyond its initial neuro-scientific roots to encompass a wide
range of advanced learning architectures. Within this framework, Artificial
Neural Networks (ANNs) represent a specific type of NN, consisting of
artificial neurons organized into multiple layers as illustrated in Fig. 4.3. At
each layer, the output of a node depends on inputs from preceding layers, the
corresponding weights and biases. The optimization process involves fine-
tuning all hyperparameters, specifically the weights and bias terms within
each layer, to minimize the losses. The broader NN category includes diverse
architectures such as Recurrent Neural Networks (RNNs) [88] and Temporal
Convolutional Networks (TCNs) [89], which take inspiration from biological
neural functions, but are designed for specialized computational tasks.

Hidden layer
Input layer Output layer

X1

X2
WW

Bias Bias

WW

WW

WW

WW

WW

WW

WW

WW
WW

WW

WW

Y1

Y2

Bb

Bb

Bb

Bb

Bb

Figure 4.3: Illustration of an ANN. The input, hidden, and output variables
are represented by nodes and the weight parameters are represented by links
between the nodes (neurons). Bias b is equivalent to the intercept in linear
models, it is an additional parameter used to adjust the output along with the
weighted sum of the inputs to the neuron. Arrows denote the direction of
information flow through the network during forward propagation.
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4.2.3 TRANSFORMERS

            Attention            

 CSI
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Hidden States

Token-To-Token
Interaction

Z

Wk K  Keys

Wq

Wv V  Values

Q Queries

Figure 4.4: Attention mechanism: Instead of processing all input information
equally, attention assigns different weights to different elements, enhancing
the model’s ability to capture dependencies, even across long sequences.

Transformer models, as suggested by [90], have emerged as powerful tools
for tackling a wide range of tasks. Originating in Natural Language Process-
ing (NLP), transformers utilize a unique mechanism known as self-attention,
see Fig. 4.4, enabling them to capture long-range dependencies more effec-
tively than traditional RNNs. The attention mechanism is a core technique,
particularly in deep learning models like Transformers, that allows a model
to focus on the most relevant parts of input data when making predictions.
This makes transformers especially suitable for analyzing long sequences
in time-series data, such as CSI measurements influenced by user mobility
patterns and surrounding scattering characteristics in wireless environments.
Transformers may be classified as AI because they demonstrate capabilities
like reasoning, generating human-like text, and answering complex queries
in a new way that we did not see before. However, while it is an ML-
driven AI system, it is still narrow AI (focused on specific tasks) rather
than artificial general intelligence (AGI) which would match human cognitive
abilities across all domains.

35



Moving Towards Cognitive Radio Access Networks:
Transforming MIMO Complexities Into Opportunities

4.3 WIRELESS CHANNEL AS INPUT TO ML MODELS

A cornerstone for producing high-quality ML and RL models is access to good
data. Currently, there are many mechanisms for the generation, collection and
analysis of data from the RAN. An example is debug and trace data, which
includes detailed information about the internal RAN system state. The latter
data is often generated on demand in a real system, which was also the case
for the majority of the research publications presented in this thesis. Being the
major tool for research presented in this thesis, the input data into the ML/AI
model has a pivotal role. It was of the highest significance to understand the
measurement data of the wireless channel and its characteristics. The letter, of
course, applies in general to any problem to be solved by an ML/AI model as
quality, quantity, and relevance of input data are crucial for the performance.
High-quality data can lead to better predictions and more effective decision-
making processes. Consequently, proper data pre-processing and cleaning
techniques are essential to maximize the efficacy of ML applications in the
wireless domain. Input data in wireless systems encompasses a diverse range
of information, from channel metrics to user behavior, and understanding this
data is key to leveraging ML effectively.

4.3.1 CHANNEL TRANSFER FUNCTION

The Channel Transfer Function (CTF) is fundamental in wireless communi-
cations, describing the frequency-domain characteristics of a channel and
how signal components are altered during transmission. Accurate channel
knowledge is essential for designing robust wireless communication systems.
However, precise CTF estimation is challenging due to the dynamic and
complex nature wireless channel, which exhibits variations across frequency
and spatial domains. To address this, advanced channel estimation algorithms
are required to efficiently process large volumes of data and adapt to highly
dynamic environments.

4.3.2 CHANNEL IMPULSE RESPONSE

The Channel Impulse Response (CIR) is a function that describes how a wireless
channel responds to an impulse signal, which is a very short and high-energy
signal, see Fig. 4.5. CIR and CTF are Fourier pairs and are both complex-
valued. The CIR captures the amplitude, phase, and delay of the multipath
components that reach the receiver after reflecting, refracting, or scattering
from the environment. The CIR can be measured by sending a known impulse
signal from the transmitter and recording the received signal at the receiver.
It is also used to evaluate the quality and capacity of the wireless channel,
as well as to design and implement wireless techniques, such as modulation,
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coding, and beamforming.
Frequency domain analysis involves transforming the CIR into the frequency
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Figure 4.5: The CIR plot represents the different paths the signal takes. The
timing or position of each spike on the x-axis shows the delay for that path.
The height of the spike on the y-axis indicates the amplitude or strength of
that path.

domain by using the Fourier transform (FT), which gives the CTF. Statistical
analysis involves the use of probabilistic models to describe the distribution
and correlation of channel parameters. This can be used to estimate the chan-
nel capacity. Using the CIR, the transmitter or receiver can adjust the phase
and amplitude of signals from multiple antennas to form a directional beam
that maximizes the channel gain and minimizes the channel interference.

4.3.3 FINGERPRINTING

Fingerprinting, within the wireless domain, draws an analogy to scene
understanding in other fields. Location fingerprinting refers to techniques
that match the specific characteristics of a signal that are dependent on the
user’s location [91], as shown in Fig. 4.6. In general, two approaches are
used for sensing, localization, user tracking, there are two broad strategies in
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Figure 4.6: The users position significantly affects the location-dependent
fingerprints.

wireless systems:

• Parametric approach: Is based on known mathematical models of
the radio channel. This approach assumes specific parameters, e.g.,
AoA, time delay, or Doppler shift. The fingerprinted features can be
extracted from the CTF and common examples include Received Signal
Strength (RSS), the CIR beam matrices etc. The parametric approaches
rely on predefined models of the environment and can provide a more
structured way to estimate user location based on a model [92–96].
The estimation quality of this approach depends on how accurately
these models capture the real-world conditions in the scenario. The
localization accuracy may suffer if the model does not align well with
the actual conditions hence requires accurate modeling.

• ML approach: This method uses data-driven techniques to learn and
recognize environmental signal patterns [97, 98]. Instead of modeling
the environment explicitly, a database of "fingerprints" is created
by measuring beam-space signals at known locations or conditions.
ML-based fingerprinting techniques adapt to more complex, dynamic
environments by learning patterns in the data. Using fingerprinting,
ML-based approaches can, for instance, predict the location of the
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user based on these learned signal characteristics. However, they do
come with the challenge of requiring large, diverse datasets and may
struggle to generalize to new, unseen conditions. The downside is that
performance may degrade as the environment changes, especially if
the conditions during deployment differ significantly from those in the
training phase.

Note: Throughout the following text, the terms space and domain are used
interchangeably when referring to antennas and beams.

4.3.4 A NOTE ON SRS DATA

As noted in the final section of the Introduction chapter, Papers II, IV, V, and
VI use measurement data obtained in a commercial 5G TDD NR system. A
shared characteristic across these papers is that the collected SRS measure-
ment data consists of a time series of uplink measurements that have been
transformed from the antenna domain into the beam domain. This approach
utilizes the data being processed at a later stage of the signal processing chain,
once the channel parametric processing is complete within the baseband unit
illustrated in Fig. 3.4. When a radio signal is transmitted or received using a
MIMO array, the initial representation of the signal is in antenna space, where
each antenna element processes the data independently. However, in systems
with large antenna arrays, it is often beneficial to transform the signal into
the beam space or angular domain. The beam space transformation involves
applying a mathematical operation, typically a discrete Fourier or similar
spatial transformation. The idea is to combine the signals from different
antennas to form beams pointing in specific directions which in LOS scenarios
directly translates into the geographical location of users.

In the above-mentioned studies, the fingerprinting approach was applied
by collecting beam-space signals at known locations or conditions. Various
NN-driven ML/AI models were trained on these fingerprints to recognize
patterns and explore UE positioning, location-based user clustering, and both
short- and long-term channel prediction tasks. The SRS is primarily used for
uplink CSI estimation to support tasks such as beam management, uplink
scheduling, and uplink optimization, the angular information captured in the
SRS dataset after transformation into the beam domain can also be used for
UE localization. A noteworthy aspect is that SRS data is typically transmitted
by the UE while in connected mode that is, after an active signaling connection
with the BS has been established via the Radio Resource Control procedure
[99]. This effectively makes SRS-based positioning a form of active sensing.
Moreover, the requirement for an active connection is requirement for the BS
to be able to reliably perform user positioning.
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When it comes to other signals suitable for positioning applications, there is
also DL Positioning Reference Signal (PRS) introduced in [100] to help the NW
determine user positions by measuring time differences (like OTDOA) based
on signals sent by multiple cells. The network can determine the UE position
using different estimation methods, such as precise measurements of ToA,
TDoA, and AoA key parameters for location estimation. PRS is transmitted in
a structured pattern across multiple frequency and time resources, allowing
the UE to measure arrival times from different transmission points. These
measurements are then processed to estimate the UE’s location with sub-
meter accuracy. The flexible allocation of PRS in the time-frequency grid helps
minimize interference and improve robustness in multipath environments.
In 5G, PRS is particularly important for Ultra-Reliable and Low-Latency
applications (URLLC) such as autonomous driving, emergency response, and
industrial automation, where accurate location tracking is essential. PRS
is specifically designed to deliver the highest possible levels of accuracy,
coverage, and interference avoidance and suppression. To design an efficient
PRS, special care was taken to give the signal a large delay spread range,
since it must be received from potentially distant neighboring base stations
for position estimation. A key difference from SRS is that the UE can use
PRS for positioning in both idle and connected modes, depending on the
specific positioning scenario. Since idle mode consumes less battery, it is
more favorable from the UE’s perspective compared to the active signaling
required for uplink SRS transmissions.

This thesis did not explore the positioning capabilities offered by PRS
pilots, which continues to be a promising area for future research, as it
relies on measurements from multiple receiving base stations involved in the
positioning process to enhance positioning accuracy. As of the writing of
this thesis, the majority of the studies have used simulated environments as
discussed in [101, 102], and no prior studies have utilized PRS data generated
in a commercial 5G NR system. At the time of writing this thesis, most studies
still rely on simulated environments, [101, 102], and no prior work has used
PRS data obtained from a commercial 5G NR system. However, the findings
in this thesis suggest that as RAN continues to evolve, integrating PRS with
machine learning and AI-enhanced signal processing will further improve
positioning accuracy down to the centimeter level.

Beyond positioning, Paper VI demonstrated that both long-term and short-
term DL channel predictions can achieve high accuracy, highlighting the
versatility of 5G SRS measurements.
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Conclusions and Outlook

M
anaging cellular network complexity has long been an active area of
research, and with the advent of 6G deployments featuring terabit-
level data rates, XR, holographic communication, IoT, and more this

challenge will become even more critical. To meet these demanding require-
ments, the integration of automation and AI-based solutions is increasingly
seen as essential, offering transformative potential to revolutionize cellular
network operations. Moreover, the remarkable success of MIMO systems
has inspired extensive research into leveraging multi-antenna configurations
to better understand radio channel dynamics and their interactions with the
environment during signal propagation, a topic I explored in depth during my
PhD journey. This chapter concludes the thesis by summarizing its research
contributions, speculating on potential future applications, and discussing key
challenges and open issues for future research directions.

5.1 RESEARCH CONTRIBUTIONS

While cellular networks have been around for more than half a century, AI
technology is still in its early stages. Over the past 2-3 years, AI has shown
tremendous progress, with applications like generative chatGPT, which can
sometimes be difficult to fully grasp. Cellular networks, previously isolated
from external technologies, are now evolving to support integration with
innovations like AI and ML [103–105], aligning with a broader vision of
openness. This cross-pollination has the potential to elevate cellular wire-
less technology to remarkable technical heights, revolutionizing the way we
communicate, heights we can likely only speculate about today.
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Despite its complexity, we demonstrate that the MIMO-enabled RAN
domain offers significant potential to help cellular networks become more
autonomous and cognitive. This thesis scratches the surface of opportunities,
showcasing a few potential optimization approaches by utilizing fingerprinted
radio features in measurement data.

5.2 FUTURE PERSPECTIVES OF MIMO AND AI IN CELLULAR NETWORKS

The results presented in this thesis demonstrate that the cross-domain inter-
play between RAN and AI/ML is not only a successful approach but also
an undeniable cornerstone for the future of cellular communications, with
MIMO systems providing the perfect "lens" to investigate and advance cellular
radio technologies. However, current cellular deployments come with several
constraints, and the research on integrating AI/ML in cellular communication
system design is still in its infancy, and many key issues are still open. In
the following, I discuss several potential directions for future study, based
on experiences and constraints that I encountered throughout my research,
identifying and highlighting the most noticeable ones, summarized as follows.

5.2.1 DATA COLLECTION AND DATA-PROCESSING ASPECTS

Most of the publications included in this thesis are based on real-life data
collected from commercial 5G systems. As the 5G architecture shares many
similarities with previous generations of cellular networks, accessing data
within the RAN domain remains a highly demanding and time-consuming
process. As earlier mentioned, commercial 5G BS impose significant limita-
tions when retrieving data, which is typically confined within the baseband
unit of the BS for internal processing. External access to these data is often
restricted by hardware and software constraints.

These limitations required extensive and time-consuming efforts to estab-
lish software pipelines for data collection, requiring significant human inter-
action. A substantial portion of the time was spent on preparation and post-
processing of data before the AI/ML models could be engaged for training.
This approach will not be sustainable for future cellular networks, which are
envisioned to be fully autonomous and operate without human intervention.
In addition, a more comprehensive perspective on AI/ML applications will be
essential, where distributed AI/ML solutions, such as those explored in this
thesis, will need to interact extensively with other centralized components of
the network to achieve fully autonomous and cognitive behavior.
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5.2.2 INTEGRATION OF NATIVE AI/ML TECHNOLOGIES

Network efficiency and generalization challenges have been extensively dis-
cussed in the context of AI/ML-assisted communication systems, with gen-
erative AI architectures being particularly affected. These issues, especially
the high computational and memory complexity driven by the self-attention
mechanism, may hinder the broader adoption of generative AI. Algorithmic
efficiency and resource optimization in AI development will become increas-
ingly important, especially when integrated into systems like cellular net-
works. Rather than relying solely on brute-force computation, achieving high
performance with significantly fewer resources will be crucial, challenging
the traditional notion that larger models and datasets are always superior.
This paradigm shift will promote the development of more innovative and
sustainable approaches. With growing concerns about the carbon footprint of
AI, adopting sustainable AI technologies will be essential to reduce energy
consumption and minimize the use of computational resources with fewer
environmental impacts.

In this thesis, the training and evaluation of AI/ML models, based on
commercial data, were performed offline, meaning that none of the solutions
presented here have been deployed in real networks as of yet. That being
said, for the successful integration of AI architectures in future networks,
it is essential to optimize their computational efficiency and generalization
capabilities through tailored AI/ML architectures for wireless applications,
supported by dedicated hardware resources. This requires a thorough eval-
uation of AI’s real-time performance. Leveraging fast GPUs or purpose-
built hardware will be vital in minimizing delays and ensuring efficient
operation within commercial cellular networks. Also, hybrid approaches,
such as cloud-based solutions, are likely to incorporate AI/ML technologies to
enhance and support the RAN. These approaches can leverage the scalability
and computational power of the cloud to process large-scale data, enabling
advanced AI/ML-driven functionalities like network optimization, real-time
decision-making, and predictive analytics. This integration can address the
growing complexity of cellular networks.

5.2.3 DATA INTEGRITY AND AI/ML TRUSTWORTHINESS

Trust and reliance on modern telecom systems are widespread. However,
the adoption of AI introduces new risks widely discussed as this thesis is
been written. How this is going to be regulated is not clear yet and is a
subject discussed outside of the wireless research field as well. To realize the
full potential of AI, trustworthiness is a prerequisite and shall be built into
the system by design, addressing aspects spanning from explainability and
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human oversight to security and built-in safety mechanisms. A clear example
of this is the positioning studies presented in Papers II, IV, and V. In these
studies, the location of the UE was estimated using fingerprinted features
derived from channel measurement data. However, this approach indirectly
exposed the user’s geographical position, which is typically not exchanged
between the UE and the network. Given the sensitive nature of positioning
information and its close association with personal privacy, such data must
always be handled with the utmost caution. The final word on how AI/ML
technologies should be regulated has yet to be spoken, and it will eventually
become a research field of its own in the future.

5.2.4 BEYOND 5G AND 6G VISION

Smartphone-based video streaming has historically dominated mobile net-
work traffic. The smartphone-driven app economy has already transformed
daily life, from banking to shopping to healthcare. As technology advances,
XR and AI hold the potential to extend this digital revolution, offering
immersive experiences that go beyond screens and integrate digital objects
into the physical world, as illustrated Fig. 1.1. The evolution of XR and AI
technologies will push network capabilities, particularly within the challeng-
ing RAN domain, far beyond current limits. These immersive and interactive
applications will demand the real-time transmission of vast volumes of data,
ultra-low latency to ensure seamless interactivity, and dynamic adaptability
to manage fluctuating demands from multiple users in shared digital envi-
ronments. 6G will play a pivotal role in enabling next-generation experiences,
while 5G technology provides a strong foundation for transitioning into the
6G era to meet the demands of future society.

Another aspect that will add significant complexities to the RAN is the
integration of high-band and ultra-high frequency bands, such as those in the
terahertz range. These frequency bands, which extend beyond the millimeter-
wave frequencies commonly used in 5G, offer tremendous potential for
massive data throughput and ultra-low latency communication. However, at
the time this thesis is being finalized, terahertz frequencies exhibit significant
challenges, primarily related to propagation and coverage. These challenges
will require sophisticated antenna arrays bringing increased complexity in
RAN architectures. Overcoming these limitations will necessitate the devel-
opment of advanced signal processing techniques, with the integration of
AI/ML technologies being essential for the management of these networks.
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Abstract

Millimeter-wave cellular communication requires beamforming procedures that
enable alignment of the transmitter and receiver beams as the user equipment (UE)
moves. For efficient beam tracking it is advantageous to classify users according to
their traffic and mobility patterns. Research to date has demonstrated efficient ways
of machine learning based UE classification. Although different machine learning
approaches have shown success, most of them are based on physical layer attributes
of the received signal. This, however, imposes additional complexity and requires
access to those lower layer signals. In this paper, we show that traditional supervised
and even unsupervised machine learning methods can successfully be applied on
higher layer channel measurement reports in order to perform UE classification,
thereby reducing the complexity of the classification process.

Index Terms— 5G, classification, beam management, machine learning, millimeter-
wave, mobility.

1. INTRODUCTION

In wireless communication systems, optimization of the radio access network
(RAN) has always been an important area [1, 2]. In the context of fifth-generation
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(5G) systems, a key issue from a network performance viewpoint is how the RAN can
adapt to the dynamic radio environment [3]. Irrespective of the deployment mode of
5G systems, it is understood that massive multiple-input multiple-output (MIMO) is
expected to be the workhorse of its RAN front-haul at the cellular base stations (BSs)
[3]. In the 24.250 - 52.6 GHz band, analog or digital beamforming in both azimuth
and elevation domains is typically used to increase the received signal levels. The
beamforming procedure provides access to control and payload signals for network-
level decision making. By studying the characteristics of these signals to/from each
UE, spatial fingerprints unique to each UE can be found [4]. In the related literature,
spatial fingerprinting has been used in conjunction with classical machine learning
(ML) methods for UE localization via the learned “features” of the environment [5],
or by direct matching [6] without learning the environment features. The authors
in [7] train a six-layer fully connected network on real-time observations at sub-6
GHz bands to predict beamforming weight coefficients and blockages, while the
study of [8] demonstrates the use of a simple, feed-forward neural network for band
assignment to different UEs. While [9] surveys an extensive list of related literature,
the vast majority of the works in the literature only consider physical layer (PHY)
properties of the transmitted/received signal and do not capture the interaction of the
PHY with the data link and media access control layers of the system. In reality, these
higher system layers greatly manipulate the PHY signals seen to/from the phased
array ports which capture the physical amplitude and phase properties, as well as
embed protocol level detail for RAN performance optimization.

Considering a cross-layer perspective, this paper investigates whether classical
ML methods are capable of classifying UEs into different groups by simultaneously
processing layer 2 (L2) uplink channel state information-reference signals (CSI-RSs).
A key consideration in our analysis is that of UE mobility, thus making the CSI-RSs
time varying for each UE. We consider different mobility patterns of the UEs in a
typical urban setting and include movements such as walking, cycling, and traveling
with cars or public transportation. The objective is to investigate the use of learning
algorithms towards UE classification based solely on the reported narrow beams
and corresponding Reference Signal Received Power (RSRP) values in dynamic
millimeter-wave (mmWave) scenarios. Previous studies on beam management have
mostly focused on best beam predictions [10] and have not dealt with combining
RSRP measurements across multiple wide beams and the corresponding narrow
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beams [11]. In particular, we employ both supervised and unsupervised methods
such as tSNE [12] and K-means clustering [9], combined with principal component
analysis (PCA) in order to classify the UE types. Furthermore we train a number of
decision tree classifiers in order to further explore whether it is indeed possible to
characterize the modality (i.e. pedestrian, car etc) from the measurement reports.

Our analysis here assumes line-of-sight (LOS) propagation at a center frequency
of 28 GHz across a 100 MHz bandwidth. There are several reasons for this: First,
one of our objectives is to assess whether unsupervised learning is able to detect
different UE types given their individual time evolving CSI-RS reference signals.
Second, the majority of the existing studies (see earlier references) confine their
focus to PHY parameters and do not consider the effects of PHY-higher layer co-
design since it is difficult to decouple the PHY effects from higher layers once
certain access control and protocol-level decisions are made. Finally, the results
can be useful for approximating the achievable performance obtained by very sparse
mmWave channels, since the consensus is that there only seems to be a few dominant
multipath components which are active [1, 2]. We note that since our target is to
study UE classification at standardized mmWave frequencies, bands outside the one
mentioned above is not within the direct scope of the study and hence conclusions
made here can not be extrapolated to other frequencies.

2. SIMULATED SYSTEM DESCRIPTION AND METHODOLOGY

We now describe the commercial grade simulated system which is responsible
for generating our data. Unlike previous works, we consider a radio system simula-
tor supporting detailed beam management procedures compliant with standardized
5G systems at mmWave frequencies [13]. As a result, we are able to simulate a
commercial grade 28 GHz phased array antenna module (PAAM) in BS type 1-
O configuration containing 192 cross-polarized elements distributed across 8 rows
and 12 columns. Analog beamforming capability is modelled with horizontal and
vertical inter-element spacings fixed to 0.5 λ and 0.7 λ with each cross-polarized
element having a direction-specific gain pattern given in [14]. The PAAM is tuned
for operation within a bandwidth of 100 MHz (standards compliant). The generated
grid-of-beams (GoB) from the PAAM is depicted in Fig. 1 yielding a total of 12
wide beams (WB) and 136 narrow beams (NB).

The simulated three-dimensional area deploys a single site with one hexagon
shaped sector having a radius of 200 m. The BS is deployed in the corner of the
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Figure 1: Generated GoB with fixed wide/narrow beam numbering. Conceptual
overview of beam refinement procedure: During a typical P2 procedure and with
the help of incoming UE measurement reports, NB tracking is performed within the
current WB and if RSRP of the best NB is higher than the currently serving NB, a
beam switch is initiated. Note: UEs are moving in front of the BS along their lane
in same direction as the depicted arrow.

Figure 2: (Top) Site model. The UEs are placed in LOS moving along two different
lanes. (Bottom) An example of narrow-beam coverage showing a subset of beams
present in the horizontal plane at a given time instant (as depicted in Fig. 1).
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hexagon as depicted in Fig. 2, with height of 30 m having an overall field-of-view
of 120◦ in the azimuth and 40◦ in elevation. No mechanical downtilt of the BS is
assumed. A protection radius of 5 m is kept from the BS periphery where no UEs
can be located within 5 m from the BS. Prior to data collection, two UE mobility
patterns have been designed, namely slow and fast moving UEs. The first group
mimics pedestrian and bicycle while the latter one mimics vehicular UEs such as,
motorcycle, car and bus, 5 main classes in total. In addition, user specific mobility
patterns have been modelled, presenting a pavement and a street. In order to reduce
built-in bias in our data sets, randomness was applied to the starting points as well as
UEs movement trajectory. The UEs are moving from left to right in front of the BS
having free LOS propagation. Velocities and spacing between UEs are modelled in
a way that corresponds to their mobility pattern, as depicted in Fig. 2. For instance,
a car carrying two persons is represented by two UEs physically separated by one
meter and moving together at the same time and velocity. The height of each UE is
set to 1.5 m. During simulations UEs emerge at predefined starting points along their
route and continue moving to the endpoint covering the entire length of the route. In
contrast to those, some UEs would emerge at intermediate points and thereby cover
just fraction of the entire route. A predefined number of pedestrian UEs is scheduled
to cross the street simulating northward movement away from the BS. During the
simulation multiple parameter settings are triggered and evaluated for different loads
of UEs, and several seeds are used to ensure statistical confidence. Fig. 2 shows
narrow beam coverage with corresponding numbering/indexing across the simulated
geographical area (as generated from the system explained in Fig. 1). We note the
above was done in conjunction with uplink file transfer protocol traffic patterns.

3. PROBLEM DEFINITION AND FORMULATION

Maintaining good radio link reliability is a key challenge for mmWave communi-
cation systems, especially when mobility is incorporated. Directional links, however,
require fine alignment of the transmitter and receiver beams, achieved through a
mechanism known as beam management [15]. In line with [16], three downlink
layer 1/2 (L1/L2) beam management procedures, commonly known as P1, P2 and
P3 are involved. In this study, our primary focus was on the P2 procedure which
handles beam tracking at the BS (a.k.a. gNB). Note that tracking refers to gNB
refining beams (e.g., sweeping through all the narrow beams over a small range)
where UEs detect the best (service) beam and report its index to gNB. As illustrated
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in Fig. 1, the P2 CSI-RS measurements were performed by the moving UEs (as
specified in [17]) for all NB within the same WB (synchronization signal block
(SSB) beam) and the reported RSRP measurements were collected.

A considerable amount of literature has been proposing different ML approaches
for classification of UEs, mostly applied on data sets generated on physical radio
channel attributes such as: e.g., precoding schemes, modulation scheme [18] or
channel covariance [19]. As UEs tend to move along predefined routes in the physical
environment while establishing fingerprints at the BS, e.g. by channel measurement,
we argue that using L2 report data-sets can be advantageously utilized in order to
simplify the UE classification due its less complex nature compared to physical
channel parameters. This approach opens up for new ways of learning from UE
mobility patterns and thereby possibly prevent UEs from ending up in unfavorable
radio channel conditions.

4. UN/SUPERVISED LEARNING FRAMEWORK

To perform our analysis we utilize the fact that mmWave communication is
sensitive to UE motion. We explore whether machine learning methods can learn
motion characteristics and perhaps even users intent from RSRP measurements as
reported on different narrow-beams. One difficulty is that our measurement report,
as in real life, is typically ill-balanced. Therefore, in the case of K-means, we first
perform Principal Component Analysis (PCA) in order to uncover the clustering
structure of our data in an unsupervised setting. We use 50 components for the PCA
which accounts for 97% of the cumulative explained variation. In order to ascertain
the number of clusters K we employ the elbow method [20] and subsequently explore
classification of UEs into the main five classes comprising our data: pedestrian,
bicycle, car, bus and motorcycle.

In the subsequent analysis, we explicitly avoid comparing multiple unsupervised
classification methods and questions about optimality of one approach over another.
Our primary objective is to understand whether it is feasible to utilize knowledge
of the time evolving CSI-RS signals for classifying different UEs. Such information
can then be used for predicting and optimizing their radio resource requirements.
As such, from a ML viewpoint, we opt for the simplest combination of the K-
means clustering with PCA, rather than a more complex supervised or unsupervised
learning approach based on deep learning methods. We point out that while these
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are extremely interesting directions, we cover them in detail in a follow up extension
of this paper.

A. Feature extraction and the data
Each UE measurement report contains 12 RSRP CSI-RS measurements together

with their corresponding narrow-beams and arrives on a approximate 40 ms basis.
The total number of such reports, which essentially indicates the size of our dataset,
is highly dependent on the duration of simulation, as well as the UE velocities as
described in Section 2. Identity information such as the UE identity number, UE
location and time are not exposed to the ML algorithm but rather used as labeled
references when interpreting results of classification. When dealing with incomplete
and unbalanced data sets a number of approaches are possible. To counter the data
imbalance we employ PCA as a pre-processing step. As explained previously, we
apply PCA with 50 components which accounts for 97% of explained variation in
the data. Furthermore, due to data inhomogeneity we apply feature scaling where
the range of each feature is normalized so that it contributes proportionately. This
approach is essential since the clustering methods calculate distances between data
points. Subsequently the two features, RSRP and corresponding narrow-beams, are
stacked on top of each other representing one single UE fingerprint at the base
station at a certain report time. In tests, not presented here, we observed that having
only RSRP or only the narrow beam indices as input to our ML model results in
degradation of the classification rate.

5. RESULTS AND DISCUSSION

We now present results from both unsupervised and supervised ML models to-
wards our goal: UE classification from their signals. As discussed in Section 2, our
data consists of 5 main classes, with sub-classes (groups), of UEs according to their
mobility pattern. We first train our algorithm to detect all 5 classes. The results are
presented in Fig. 3. There is significant overlap between the different classes which
may not be so surprising given how similar UEs must look for groups such as cars
and busses or pedestrians and cyclists. This underscores the need to explore whether
we can learn to identify larger groups such as for instance slow and fast movers. We
will undertake this task next. Using the sama data from Fig. 3 a similar although
perhaps more intriguing result emerges when we set K = 2 groups. Specifically we
observe in Fig. 4 that some separation exist between fast (cars, busses, motorcycles)
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Figure 3: K-means clustering results for all 5 classes of UEs. Training on 5 groups:
165 bicycles, 180 buses, 320 cars, 130 motorcycles and 424 pedestrians. Class
separation is not obvious at this scale but shows pattern similarities may exist between
classes of slow movers or classes of fast movers.

and slow (bicycles and pedestrians) moving UEs. The overlap has now reduced
significantly when only grouping into 2 groups. We explore this initial result further
below.

A. Slow-moving UEs - pedestrians vs bicycles
It is not surprising, especially based on the baseline results of Fig.4, that velocity

of a given UE can be a good indicator as to whether it should be classified as a
car or a pedestrian. Differentiating however between similarly moving UEs should
be more challenging. We undertake this task in an unsupervised setting for now
by examining a mixed group of 589 UEs consisting of 424 pedestrians and 165
bicycles. We note that UEs in that dataset move along identical trajectories on the
pavement with either small or no variation and ending/starting locations unrelated
to their group type. We also note that some of the pedestrians will also cross the
street while the bicycles do not. We train on this data with a PCA method followed
by K-means as discussed earlier. The results in Fig. 5 show a rather clear separation
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Figure 4: K-means clustering results for all 5 classes of UEs. Training on 2 groups:
fast 630 (cars, busses, motorcycles) versus 589 slow-moving (bicycles, pedestrians)
UEs.

between the two classes of users with a surprisingly small overlap even though the
2 groups have almost similar moving velocities. Specifically, we observe a clear
diagonal linear yet separated trend in the majority of the data - we should point out,
that the clustering space is non-dimensional and has no physical meaning. We also
note an interesting cluster of pedestrians at the top left corner of that figure which
seems to defy the overall pattern. To better understand this cluster we then train our
algorithm on the single group of 424 pedestrians from Fig. 5 while requiring that
K = 2 once again. The results presented in Fig. 6 verify that the majority of that
sub-group is attributed to the street-crossing pedestrians. The results therefore show
that identification and separation among all classes and even sub-group of the slow
UEs could be possible.
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Figure 5: K-means clustering results for slow-moving UEs. Training on 2 groups:
165 bicycles versus 424 pedestrians. Compare with Fig. 6 where pedestrians are
further distinguished into crossing/non-crossing the street.
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Figure 6: K-means clustering results after training on just the class of pedestrian
UEs in Fig. 5. Training on 2 groups: 182 pedestrians non-crossing the street versus
242 crossing the street. Pedestrians crossing the street seem to be mainly responsible
for that single cluster.
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B. Classification
We now train a number of different decision tree type (supervised) classifiers in

order to identify specific UE mobility classes based on this data. Furthermore we
task the classifiers to distinguish modality with high probability (see Table 1) based
on only a short (40 ms) sequence of RSRP and narrow-beam numbers reported from
each UE. We present a list of the most successful of those and the respective type
of UE data used for their training in Table 1. Our main metric for success or failure
here is the miss-classification rate on unseen data. The best classifier, the Extra Trees
Regressor, achieves a miss-classification rate of 2%. Overall we found that training

Classifier Data used Miss-Classif %.
Extra Trees Regres. Ped-nc, Car, MC 1.8
Extra Trees Regres. Ped-cr, Car, MC 2.2
Extra Trees Regres. Ped, Car, MC 5.2
Ada Boost Regres. Ped, Car, MC 8.1

Table 1: Decision trees and respective miss-classification rates. Data distribution
used: All pedestrians 424 (Ped), 242 Pedestrians crossing (Ped-cr) and 182 non-
crossing (Ped-nc). 320 Cars and 130 MC=Motorcycles.

Figure 7: tSNE clustering results. 242 pedestrians crossing street vs 182 non-
crossing. As expected, due to short (40ms) reporting the non-crossing are miss-
identified.

a classifier to distinguish the pedestrians crossing the road from those not crossing
(see also clustering Fig. 7) was the most difficult task. That however was expected
since we essentially requested an impossible task from the classifier. The fraction of
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pedestrians who eventually cross the street do so only for a brief part of their motion
and until that moment they would be indistinguishable from pedestrians intending not
to cross the street. Thus the classifier, based on the information it receives, correctly
identifies those pedestrians as part of the non-crossing group. It is therefore not
surprising that the classifier was not able to detect that particular sub-group of UEs
based on the short (40 ms) history of the training sequence provided.

6. CONCLUSIONS AND FUTURE WORK

We identified ways of classifying UEs in dynamic millimeter wave scenarios by
employing conventional ML techniques on CSI-RS measurements. This initial study
in clustering and classification of UEs based on their network measurement reports
alone, without considering physical positioning or other supporting information,
shows that it is possible to infer the mobility mode of the UEs with some success.
The work presented here offers insights towards new beam prediction mechanisms in
mobility-aware MIMO scenarios. These results together with trajectory forecasting
(future research) could in turn provide useful information when preparing hand-over
and expected resource demands in order to ease and avoid operational bottlenecks.
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Abstract

Cellular user positioning is a promising service provided by Fifth Generation New Radio
(5G NR) networks. Besides, Machine Learning (ML) techniques are foreseen to become an
integrated part of 5G NR systems improving radio performance and reducing complexity. In
this paper, we investigate ML techniques for positioning using 5G NR fingerprints consisting
of uplink channel estimates from the physical layer channel. We show that it is possible to
use Sounding Reference Signals (SRS) channel fingerprints to provide sufficient data to infer
user position. Furthermore, we show that small fully-connected moderately Deep Neural
Networks, even when applied to very sparse SRS data, can achieve successful outdoor user
positioning with meter-level accuracy in a commercial 5G environment.

Index Terms

5G, beamforming, deep neural network, machine learning, positioning, sounding
reference signal, radio access network, localization

I. INTRODUCTION

For many years, User Equipment (UE) positioning has been accomplished with Global
Navigation Satellite Systems (GNSS), assisted by cellular networks. Besides aiming to
achieve reliable and low-latency wireless connectivity, high-accuracy positioning enabled
through 5G could coexist and complement existing GNSS-based systems on 5G-capable
smart devices. However, GNSS technology is based on unicast transmission and user
position is not directly accessible by cellular networks. The latest features within 5G

This work is partially sponsored by the Swedish Foundation for Strategic Research and Ericsson AB.
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beam forming technologies drive a distinctive need to acquire accurate user location via
radio access interface for location-dependent network functionalities such as beam forming
algorithms etc. It is expected that in dense urban area deployments, sub-meter mean
positioning accuracy can be achieved [1], [2]. New 3GPP releases are expected to further
specify methods for sub-meter accuracy [3]. A range of positioning methods, both downlink
(DL)-based and uplink (UL)-based, are used. For radio-based positioning, there is typically
a need for specific signals on which a receiver can measure/estimate channel characteristics
of interest. This is often expressed as channel sounding. Channel State Information (CSI)
for the operation of massive multi-antenna schemes can be obtained by the feedback of CSI
reports. In a TDD system, the UL channel can be estimated based on SRS transmitted from
each UE for which the base station (BS) estimates the DL channel by exploiting channel
reciprocity [4], [5]. UL channel estimation includes estimating the Time of Arrival (ToA),
the received power, and the Angle of Arrival (AoA) - all being parameters from which the
position of the User Equipment (UE) can be estimated. As defined in 3GPP [5], the SRS
is a UL Orthogonal Frequency Division Multiplexing (OFDM) symbol with a Zadoff–Chu
sequence on its subcarriers, known by both the UE and BS.

Positioning by radio signals is enabled through methods such as fingerprinting or
model-based estimation using signal features [6]. The multi-path information of the
environment is embedded in the CSI data, and hence the CSI can be used to characterize
the radio environment. Examples of CSI-based indoor positioning were presented in [7],
[8] while researchers in [9] and [10] demonstrated UE positioning via beam information
from Reference Signal Received Power (RSRP). The work presented in [11] shows that
the statistics of the wireless channel in Long Term Evolution (LTE) can be used to
create a positioning solution even in non Line-of-Sight (NLoS) conditions through an
azimuthal-delay representation of the wireless channel. Another LTE DL reference signal-
based approach [12] demonstrates that multipath effects can be utilized advantageously
to estimate not only user position but also orientation through wireless fingerprinting.
In related literature, spatial fingerprinting in conjunction with classical machine learning
(ML) methods enables UE localization via learned features of the environment [13].
Recent positioning-related results in [14], [15], also applicable to mmWave networks,
target localization accuracy in cases where either the network is optimized for positioning
applications or the positioning algorithm is tailored to the particular network geometry. One
of the few studies exploring a UL-based method is [16] where simulated UL SRS channel
estimates are utilized to investigate the feasibility of SRS estimates for 3D positioning based
on joint angle-time estimation and expectation-maximization. Another UL-based method
was presented in [17], where indoor positioning through simulated UL SRS signals in LTE-
FDD was presented. While the vast majority of the studies above rely on various DL-based
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methods for user positioning, we opt to demonstrate a novel ML-powered method using
UL channel estimates from SRS transmissions generated in a real-world 5G base station
(gNodeB). To the best of the authors’ knowledge, there is no prior work on this matter.
The main contributions of this paper can be summarized as:

We demonstrate that UL SRS-obtained channel estimation in the BS provides sufficient
information to regress for UE position through Deep Neural Networks (DNN). In this study,
we consider sparsity to be defined as using channel estimate information from only a small
fraction of the available Physical Resource Blocks (PRBs). Data sparsity enables minimal
data processing overhead and the use of DNNs that are both low-power and moderately
shallow, which reduce the risk of causing potential delays and capacity overloads, necessary
for real-time Layer 1 processing where decisions must be made in milliseconds.

Furthermore, in contrast to the majority of prior studies, we prove the viability of SRSs
collected in a real commercial 5G NR network setup instead of a simulated environment
or non-commercial setup. From a technology perspective, ML is about improving network
decision-making capability and allowing it to learn from patterns [19]. The latter urges
designing ML-powered methods for real-time operations with the capability to solve
complex and unstructured problems using data collected at L1-L2 interaction between BS
and UE. Decisions need to be made near where data is generated [20].

II. DATA COLLECTION AND METHODOLOGY

To establish an ML-driven proof-of-concept (POC) for positioning using channel estimates
from UL physical layer (L1) channel SRSs, we employ a commercial-grade 5G radio
system compliant with 5G NR 3GPP 38.104 Rel15 [18]. A commercial-grade Phased Array
Antenna Module (PAAM) is utilized in a BS operating at the center frequency of 3.85 GHz
with a 100 MHz bandwidth. We used a proprietary 5G-capable, Android-based test UE,
with user motion in different mobility patterns at a distance of approximately 70 m from the
roof-top antenna. We opt to extract the channel estimates from the BS baseband unit, which
processes the time-varying SRS reports as per the SRS feedback loop structure depicted in
Fig. 1. The general thought behind positioning with UL channel estimates is that a physical
location under similar network conditions roughly corresponds to a specific SRS-generated
channel matrix estimate. In other words, different locations in space have distinct channel
fingerprints. Continuous data collection was specifically chosen for this study to mirror
realistic navigation conditions. The SRSs are designed to cover the full bandwidth, where
the resource elements are spread across the different symbols to cover all subcarriers. In the
proprietary baseband hardware unit, the internal beam-space representation of the channel
can be extracted and post-processed after ensuring that the UE had high data-rate signalling
throughout the channel measurements through 4K video streaming.
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Fig. 1. UL SRS transmission from a UE; The BS obtains Sounding Reference Signals (SRS) containing
channel information data from the UE. The SRS is designed to cover the full bandwidth, where the resource
elements are spread across the different symbols to cover all sub-carriers. Therefore, SRS is designed with
a comb-based pattern.

The SRS-derived channel estimates are stored in a complex-valued matrix structure,
which henceforth is referred to as a channel matrix. For every SRS sampled from a
specific UE, the BS channel matrix contains channel estimates of 64 directional BS antenna
elements (directions) for each UE antenna and PRB container. The test UE supports a 1/2/4-
antenna configuration, of which the 4-antenna configuration was used during our testing.
Furthermore, the 100 MHz Time-Division Multiplexing (TDD) configuration supports 273
PRBs, which in the BS are then allocated to containers with a configurable number of 2, 4,
or 8 PRBs per container. In our setup, 2 PRBs were enabled per container. Therefore, there
were 137 frequency channels configured, each containing two adjacent PRBs. The channel
matrices retrievable from the BS thus contained one complex value/antenna direction
for every PRB container and UE/BS antenna pair. In summary, the retrievable channel
estimate H from our experimental setup consists of a complex-valued matrix with up to
137 frequency channels, 64 BS antennas and 4 UE antennas. Together, the upper limit
for data extraction in our experimental setup consists of 35072 complex values per SRS
transmission.

Max [Cap (H)] =Max [NChNtxNDir] = 137 · 4 · 64, (1)

where NCh is the number of channels, Ntx is the number of UE antennas and NDir

number of BS antenna elements. With 35072 complex values extracted potentially every
few milliseconds, the internal data amount handled becomes a major concern. Due to data
rate constraints during data logging, we first aimed to explore how a small data amount is
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sufficient for meter-level positioning. Only 3 containers with 2 PRBs each were retrieved,
hence 768 input features, or in other words, 12 of what we term sub-channel matrices,
denoted as H8×8. Using only a sparse 768 of the potential 35072 values does not prevent
positional information from being extractable from the SRS-obtained channel estimate. As
shown later in the paper, 768 features still present a unique opportunity for ML frameworks
to learn and later regress for the UE position. Furthermore, since SRS measurements are
periodic for a given 5G NR waveform numerology, they present an ideal opportunity for ML
frameworks to utilize for UE localization. The resulting single-measurement data matrix
had a dimensionality as follows:

HNCh×NTX×Nψ,h×Nψ,v
= H3,4,8,8. (2)

Channel matrices may also be expressed as in (3),

H(NCh·NTX)×Nψ,h×Nψ,v
= H12,8,8. (3)

To utilize the entire 100 MHz bandwidth, the three PRB containers chosen were the lowest,
middle, and highest sub-channels. This represents solely 2 % of the total number of possible
sub-carriers. The final logging aspect is that of time. In this case, two timestamps are
logged: the frame number corresponding to the actual network time, and the UTC time-
stamp corresponding to the time a given SRS dataset was collected and written to the log,
used to regress UTC-timestamped GNSS position to channel fingerprints. To decide the
geographic area to conduct the measurement campaign in, a few aspects were considered.
First and foremost, as the training process is based on GNSS data in our setup, the GPS
signal had to be preferably unobstructed throughout the route. To investigate the validity
of the proposed ML approach, both LoS and NLoS scenarios were investigated. Three
predefined routes were used as the baseline for positioning: a square-shaped area of the
dense walk for the training set with a natural random-walk validation and test dataset, an
LoS path training set for positioning in the larger area along a predictable path, and an
NLoS path data nearby to compare LoS and NLoS effects, as depicted in Fig. 2. Both the
rooftop LoS scenario and the ground-level NLoS scenario, respectively henceforth referred
to as LoS-A and NLoS-A. The square-shaped area of the dense walk data will be termed
LoS-D. The UE moved at the standardized pedestrian velocity of 3 km/h in all the scenarios.
We remark here that our target was to study pedestrian velocities, velocities higher than
pedestrian ones were not within the direct scope of this study hence conclusions made here
shall not be extrapolated to those.

We collected three distinct datasets for each scenario: training, validation, and test.
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Fig. 2. The pre-defined measurement routes in a SU-MIMO scenario: A 2-story, 10 m high garage building
where the red line on the top of the building is the LoS route. The blue line is representing the ground-level
route where the surrounding buildings block and reflect the signal from a 20 m high rooftop antenna causing
NLoS propagation. The vivid green square shows the region for the LoS dense-walk route. The general
coverage area is illustrated in light yellow color whereas yellow-colored narrow beams were generated by
the BS equipped with a 64-antenna element array.

These datasets were collected in different acquisition sessions with identical measurement
setups. In the LoS-D scenario, the training, validation and test dataset collection happened
on the same day; for the LoS-A scenario the training dataset collection was done a week
before the test and validation dataset collection, which happened on the same day. For the
NLoS-A datasets, the training and validation datasets were collected on separate days of the
same week, while the test dataset was collected a month later. We would like to emphasize
that the test datasets were not touched by either the model or the data processing pipeline
before results were evaluated, and were not factored in during model selection either.
However, manual data analysis and processing were conducted by the authors on the test
data before model evaluation to examine data validity.

III. DATA PROCESSING PIPELINE

A. SRS Data

With the SRS-derived raw dataset obtained from the baseband module in BS, the next
step was retrieving the H12×8×8 matrices from the data logs. The SRS-derived channel

80 Paper II ©2023 IEEE



UE
Reference

Physical
Resource

Block
UE Antenna gNodeB

Antenna Exponent

0x00000100 67 1 0-7 3

CH
Estimate

1st 
(complex)

0x0018ffff

CH
Estimate

2nd
(complex)

0xffc8ff23

CH
Estimate

8th
(complex)

0x00acff9e

0x00000100 67 1 8-15 30x00bbffbf 0xffae00d0 0xfe5cfe22

0x00000100 67 1 56-63 30x00100000 0x00290061 0x0011ff73

Fig. 3. The format of a single dataset instance, containing the SRS channel estimate for a single frequency
channel and UE antenna.

estimate dataset is generated per SRS measurement occasion, meaning per cell, symbol,
and UE antenna. It is stored in 1-12 subchannel/UE antenna pair order for all BS antenna
directions, down to millisecond intervals. Channel estimates are represented as 4 hex
digits for the real and the imaginary components. A representation of the dataset format
can be seen in Fig. 3. We consider the System Frame Numbers (SFN) numbers from
a repeating sequence of 0 to 1023 throughout the measurement. The series of channel
matrices H12×8×8[SFN ] are then stored in a 4D matrix [H12×8×8]Ndata

, where Ndata is the
number of unique SFN during which at least one sub-channel matrix was measured. The
first step in feature selection is then separating the phase and amplitude of the complex
channel matrices.

1) Phase component: Comparing the phase in the extracted data to the phase in the
raw channel matrix in our experimental setup, we find that the gNodeB’s built-in beam-
domain transformation uses the received signal phase. The ML system then obtains data
with the angle of departure from the gNodeB already utilized. The remaining information
in the phase of the complex numbers in the ML input data is discarded in this work due
to its dynamic nature.

2) Amplitude component: The extracted data amplitude should contain meter-scale
positional information arising from large-scale fading. An underlying assumption is that in
both LoS and NLoS cases, the amplitude transfer function of a radio signal depends on
environmental geometry, with amplitude thereby acting as a slowly-varying correlate to a
position. This will then be visible in the extracted data from the BS - the periodicity of
position as the path is walked back-and-forth on is expected to result in a similar periodicity
in the recorded complex amplitude. On the NLoS-A dataset, for example, there are 5 back-
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and-forth cycles on the NLoS path seen in Fig.2. The expectation is then that certain
outputs will have very visible periodicity, e.g. as confirmed in Fig.4. This becomes more
clear when the amplitude for all the outputs in a single sub-channel matrix is examined,
as per Fig.5.

Fig. 4. A snapshot of the complex amplitude output of a single direction h[8,5] in a sub-channel matrix Hi

of the NLoS-A1 database. The red curve shows the amplitude smoothed over 100 samples.

Fig. 5. The mean complex amplitude of all the outputs in a sub-channel matrix Hi of the NLoS-A2 database.
The amplitude of the outputs varies over 5 periods with the periodicity expected from the path dataset. The
blue curve shows the moving average of the amplitude over 100 samples.

B. GNSS Data

A commercial UE was used to record GNSS data with an open-source android app to
interface with the Android GNSS API. The app obtained GNSS-INS (Inertial Navigation
System Position Navigation Timing estimates at a 1 Hz sample rate. The UE model was
running OxygenOS 11 with Dual-band Multi-Constellation GNSS rated at 3.5 ± 0.5 (m)
horizontal accuracy.
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C. Combined Data

To use the extracted complex-amplitudes of the sparse channel matrices [H12×8×8]Ndata

as input for position regression with ML, further processing is required. As not all sub-
channel matrices are updated during SRS transmission, the missing channel estimate values
for any given sample time must be somehow represented for the DNN. Filling in the missing
channel-matrix values for any given H[τ ] extracted channel matrix at sample-time ’τ ’ is
the first step in our data pre-processing pipeline. The simplest method for filling in missing
data without using future values or known priors is forward-filling the latest known values.
Forward-filling for the channel matrix H is visualized in Fig. 6. During our measurements,
on average 6 of the 12 channel sub-matrices were refreshed every SRS sample, and we
observed a variable delay between samples of approx. 35-110 ms, with a higher sample
rate in NLoS conditions and a lower sample rate in ideal LoS conditions. This refresh rate
was high-enough that unless a connection drop is observed, most sub-channel matrices
only persisted for under half a second. For data normalization in this study, only linear
scaling was utilized, with improvements in this area left for future work. This was done
using min-0 max-1 scaling of the datasets by simple division. The normalization factor
was determined by obtaining the maximum amplitude present in the training data, thereby
preventing the contamination of the validation and test datasets. Furthermore, we found
that taking the square root and fourth root of the channel matrices substantially improved
validation positioning results. The exact cause of this performance improvement is unclear
and may be the topic of future investigation. However, the maximal benefit was achieved
for NLoS scenarios when both square- and fourth root of the input data was used. For the
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Fig. 6. Using forward-filling on channel matrices H12×8×8[SFN ]. For any sub-channel matrix H at SRS
sample-time τ , if a value is not given by the current SRS then the most recent known value for that sub-
channel matrix is used instead.
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LoS scenarios, the fourth root was of unclear benefit.

The square-root and fourth-root concatenation came at the cost of doubling the number
of input parameters to the network, to 1524 in total. However, this many parameters as
input for a fully-connected network could lead to overfitting. From the assumption that
location is mostly independent of UE orientation, reducing the number of input parameters
can be achieved with low performance penalty by only taking one Hi sub-channel-matrix-
equivalent as input for every sampled frequency channel. With an eye for future scalability
w.r.t. different configured UE antenna numbers, this would also enable ML systems input
parameter counts to be independent of different UE antenna configurations and models.

For this reason, we take the average per direction of the sub-channel-matrices Hi

belonging to the same frequency channel. This enables dimensionality reduction without
losing frequency-channel information: (4).

HmUE
3×8×8 =

1

NTX

NTX∑

i=1

HUEantenna=i
NCh×Nψ,h×Nψ,v

(4)

To assign positioning ground truths to the channel matrix data HmUE
3×8×8, the UTC timestamp

of both the SRS Channel matrix data and the UE position output is used. First, the two
datasets are synchronized. Linear time-interpolation from the GNSS-position data is used to
create interpolated trajectories, through which the ’ground truth’ PEN coordinate pairs for
each channel matrix is generated, which can be converted to local PXY coordinates. Finally,
all channel matrices that fall outside the bounds of the GPS measurement are discarded. The

Fig. 7. Assigning position to channel matrices H12×8×8[SFN ] using shared UTC timestamps with the GNSS
dataset and simple linear interpolation. Also shown is the GNSS-based navigation position fix deviation from
the ’true’ pedestrian trajectory.
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position interpolation process is shown in Fig. 7. GNSS inaccuracy is partially modelled
during the training process by injecting Gaussian noise of similar magnitude as the GNSS
measurement onto the training data Ptrain every epoch during the DNN training process.
This also functions as output regularization.

IV. PROPOSED MACHINE LEARNING FRAMEWORK

In this section, we describe the network architecture used for learning and discuss some
design aspects. The proposed system architecture is illustrated in Fig. 8, where the fully
connected Deep Neural Network (DNN) uses features from the SRS dataset as input to
regress for local PXY position. To demonstrate a real-time POC ML-driven positioning

Fig. 8. The 3-block fully connected DNN used in this study along with the input pipeline and intended
output. The per-layer dropout used while training is also shown.

with minimal computing overhead, only small moderately deep fully-connected DNNs were
tested. Architectures with up to 15 layers at a maximum of 128 artificial neurons (ANs)
per layer after the input and first hidden layers were non-comprehensively searched. Of the
tested DNNs, the best-performing architecture on the validation data was selected, with no
tuning or selection done using test data. Network architecture was unchanged between the
ML models for the different datasets. For the final hyperparameter search, three discrete
blocks of fully-connected layers were defined, each with the rectified linear unit (ReLU)
activation functions and varying AN and layer counts within a limited range.

1) Input block: The input block serves to take the input data through subsequent
shrinking layers into a parameter bottleneck, compressing the data.
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2) Center block: The expectation is that the process block takes the reduced dimensions
from the input block and feeds it through identical fully-connected layers, processing
the lower-dimensional representation further.

3) Positioning block: The expectation is that the positioning block takes the center
block’s output and finally narrows it down to two dimensions to regress for a position.
Note that the last layer has two outputs corresponding to a position’s local X and Y
coordinate pair (PXY ).

This design choice originated from our testing where introducing a bottleneck of 20-40
fully-connected ANs per layer for all but the first two layers reduced overfitting while
having a wide input and first hidden layer improved general performance. The overall
number of hidden layers was also kept low, as increasing layer counts over 7 did not
discernibly affect validation performance.

Finally, the minimized loss for the network is the Mean Euclidean Distance Loss
(MEDL), which can be expressed as:

MEDL =
1

Ns

Ns∑

τ=1

∥PXY [τ ]− fθ
(
HmUE [τ ]

)
∥1, (5)

where fθ is the ML model with θ optimizable parameters, PXY [τ ] the interpolated GNSS
coordinates for sample-time τ , and Ns is the number of time-samples in a batch. The loss
was minimized with an ADAM [21] optimizer using PyTorch on a CUDA-capable GTX
2060.

V. RESULTS AND DISCUSSION

To summarize our results shown in Table I, we obtain an approximate mean euclidean
distance of 3-9 m as compared to the GNSS data when evaluated on test data, with accuracy
depending mostly on data conditions. We note again that model selection or parameter
optimization was not done on test data. During validation, it became apparent that data
character changed between the training datasets in LoS-A and the validation datasets,
potentially explaining the degraded performance compared to LoS-D, where no domain
change was observed.

TABLE I
MEAN EUCLIDEAN ERROR IN METERS FOR EACH DATASET

dataset name validation dataset test dataset
LoS-D 2.8 (m) 3.3 (m)
LoS-A 9.2 (m) 9.7 (m)

NLoS-A 7.3 (m) 8.1 (m)
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These results compare favourably to results found in the literature on most outdoor
positioning systems using similar DL/UL-based positioning approaches and density real-
world data. The NLoS data accuracy indicates this method’s viability for positioning in
a real-world environment. We note that the precise effects on the SRS channel matrices
of non-pedestrian tracking at high velocity and, e.g., users in a vehicle have not been
tested. As an example, forward-filling introduces data from previous sample times. For
scenarios where significant distance may be travelled between SRS samples, alternatives
to forward-filling might be needed e.g. using only the latest SRS as a partial data point.
As an extension of this work, we show a proof-of-concept in [22] where the same datasets
and ML pipeline introduced in this paper are extended with simulating pedestrian motion
through particle filtering, improving mean accuracy to around 5-6 m for NLoS scenarios.

To summarize, this study demonstrates the practical viability of UL SRS channel
estimates in a realistic outdoor NLoS propagation environment. In contrast to other studies
employing multi-antenna arrays at the receiver side, we use a commercial-grade, 4-antenna-
equipped UE.

VI. CONCLUSIONS AND FUTURE WORK

We have shown some of the potentials of DNNs for outdoor user positioning in 5G
NR systems using UL SRS channel estimates in a very sparse data sampling regime. The
results presented show sub-10 m of mean accuracy for all test scenarios, despite an already
inherent ground-truth horizontal positioning inaccuracy of 3.5 ± 0.5 m in the GNSS dataset.
A more accurate GNSS positioning setup for training data should substantially improve
results. Similarly, a higher SRS sampling rate should also improve the positioning results
significantly. For future research, the phase of the SRS channel estimates could be a possible
feature source to explore. Finally, considering the simplicity of the DNN model we used
could also be interesting, as more sophisticated models may further improve accuracy.
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Abstract

The handover (HO) procedure is one of the most critical functions in a cellular
network driven by measurements of the user channel of the serving and neighboring
cells. The success rate of the entire HO procedure is significantly affected by the
preparation stage. As massive Multiple-Input Multiple-Output (MIMO) systems with
large antenna arrays allow resolving finer details of channel behavior, we investigate
how machine learning can be applied to time series data of beam measurements in
the Fifth Generation (5G) New Radio (NR) system to improve the HO procedure.
This paper introduces the Early-Scheduled Handover Preparation scheme designed
to enhance the robustness and efficiency of the HO procedure, particularly in sce-
narios involving high mobility and dense small cell deployments. Early-Scheduled
Handover Preparation focuses on optimizing the timing of the HO preparation phase
by leveraging machine learning techniques to predict the earliest possible trigger
points for HO events. We identify a new early trigger for HO preparation and
demonstrate how it can beneficially reduce the required time for HO execution
reducing channel quality degradation. These insights enable a new HO preparation
scheme that offers a novel, user-aware, and proactive HO decision making in MIMO
scenarios incorporating mobility.
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Index Terms

Beam Management, Handover Control Parameters, Measurement Event A3, Han-
dover Preparation, ML, mmWave, Mobility Robustness Optimization.

I. INTRODUCTION

TO ensure seamless user mobility between neighboring cells, the handover (HO) mech-
anism is defined in the 3GPP specification 38.300 [1], from the First Generation (1G)

onward. Reliable communication during the mobility of user equipment (UE) is crucial,
and HO management is a key capability [2]. During HO, control messages are exchanged
between the UE and the serving Base Station (BS) under predefined conditions. However,
since these messages are sent over the air interface, they may be initiated when the radio
link faces severe attenuation and various propagation issues such as noise and interference.
A robust HO mechanism is essential to maintain user mobility under these conditions;
otherwise, user mobility is compromised.
To address these challenges, each generation of cellular networks has refined the HO proce-
dure while maintaining its core functionality, which consists of three phases: preparation,
execution, and completion. The preparation phase, as the initial step of the HO procedure,
typically occurs when the signal quality of the serving cell is low and interference from
neighboring cells is high. This makes the UE exposed to Handover Failure (HOF) and
Radio Link Failure (RLF), therefore, among the three phases, HO preparation is the most
vulnerable [3].
The existing event-driven 5G HO procedure requires the participation of both UE and
BS during its preparation phase. In the initial part of this phase, the UE is primarily
responsible for measuring the quality of the channel of the serving and neighboring cells
and reporting when a measurement event is fulfilled. More precisely, an offset value and a
hysteresis value, jointly called the HO margin (HOM), determine when an entry criterion
of a measurement event is fulfilled, depicted as Step 2 in Fig. 1, where the intrinsic delay
of the Time-to-Trigger (TTT) timer bridges Steps 2 and 3. The HOM is the most significant
parameter to control the HO decision [4]. The TTT timer and HOM comprise a tightly
coupled setting named HO Control Parameters (HCP) which determine when an HO event
(HE) is fulfilled, depicted as step 3 in Fig. 1, and thus impact the initial timing of an HO
preparation phase. For optimal initiation of the HO preparation phase, it is essential to
adjust the HO timing to each user’s specific mobility pattern and current radio conditions.
Fig. 1 also illustrates how the traditional HO preparation mechanism assigns a passive and
disadvantageous role to the BS, making it unaware of imminent HO events and thus prone
to initiate an HO too late.
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Fig. 1. Interplay between UE and NW during the handover HO preparation phase.

A. A3 Handover Event

In this section, we examine the core components of an HO event-triggered mechanism, as
specified in 3GPP 36.133 [4], and clarify how HCPs interact.
1) Handover Control Parameters: The A3 and A5 events, illustrated in Fig. 2 and 3,
embody the signal quality of the serving cell and neighboring cells using the reference
signal received power (RSRP) metric. Event A5 provides a handover triggering mechanism
based on absolute measurement results. Only the A3 event evaluates a relative comparison
between the signal quality of the serving cell and that of neighboring cells, making it
adaptable to varying network conditions. As we focus on an intra-frequency HO scenario,
we chose the most widely used A3 event whose entry criterion fulfillment, hereafter referred

Entry criterion fulfilled

Neighboring cell

Fig. 2. A3 Event. The quality of neighboring cells exceeds the quality of the serving cell by
an offset value. A3 event entry criterion fulfillment (T0) throughout the TTT duration (A3).
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to as T0, is given by the inequality (1) where RSRPTarget and RSRPServing are long-term
averaged Layer3-filtered measurements from the serving and neighboring cells, respectively.

RSRPTarget > RSRPServing +HOM. (1)

2) Handover Margin: Any inappropriate HOM settings between low and high may lead
to a ping-pong effect or high Radio Link Failure rate. The HOM setting is set at the cell
level, which means that all users within the cell will apply the same HOM. Preferably,
the adjustment of the HOM settings shall be adapted individually concerning each user’s
context such as velocity, mobility pattern etc [5]. Even though the HOM determines the
T0 fulfillment it can not be entirely decoupled from the TTT functionality in the context
of event-triggered HO optimizations.
3) Time-To-Trigger: Upon T0 fulfillment, the UE awaits TTT expiry before reporting HE
fulfillment to the BS, hereafter referred to as A3, and as illustrated in Fig. 2. The TTT timer
has been introduced in previous generations of cellular networks and inherently introduces
a time delay. If the TTT value is too large, it may cause connection interruption and an
HOF. Conversely, too small a value can prevent long delays but lead to an increased HO
ping-pong or unnecessary HO.
Given the discussed background, sub-optimal HCP settings can negatively impact the
optimal timing for HE and reduce the overall HO success rate.

B. Related Work

The HCP parameters heavily influence the timing of the HO preparation phase, and numer-
ous techniques have been developed to ensure that the HO is initiated at the most optimal
moment. The number of potential HO regions inevitably increases in dynamic mmWave
environments characterized by reduced cell coverage and multi-beam architecture requiring
smaller cell sizes. An HO region is the distance between the HO event trigger point and
the Physical Downlink Control Channel (PDCCH) outage point [6]. The handover failure
(HOF) rate is directly proportional to the UE mobility speed and inversely proportional to
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the size of the HO region. The HOF rate can be reduced by expanding the hypothetical HO
region through careful tuning of HCP parameters, which must account for varying network
deployments, cell sizes, user velocities, and mobility patterns.
Unlike previous research, we dissect the event-triggered mechanism and explain how

to distinguish it into two chronological occurrences, advancing the timing of the HO
preparation phase. Our machine learning (ML)-assisted method decouples these events
by predicting the earliest T0 based on changes in the signal patterns of the UE beam
measurements. From a network perspective, our solution claims insights into steps 2-3
illustrated in Fig. 1.
We briefly shed light on the strengths and limitations of two key optimization techniques
that represent the most relevant related research, namely Conditional Handover and Mobility
Robustness Optimization.

Conditional Handover (Conditional HO), introduced by 3GPP in 5G Release 16 [1]
decouples the base station (BS) preparation and HO execution phases, reducing the number
of HOFs by allowing the UE to decide when to initiate the HO. Unlike baseline 5G HO
schemes, Conditional HO employs early HO preparation to mitigate the risk of a critical
signal quality drop between the UE and the BS. The authors of [7] propose an improved
conditional HO scheme that uses trajectory prediction to prepare the BSs along the path of
the UE. In contrast, [8] explores ways to improve early preparation success by predicting
the next BS during Conditional HO. These techniques aim to optimize the timing of the HO
preparation phase by shifting the responsibility entirely to the UE. However, Conditional
HO introduces significant signaling overhead during the HO preparation phase, particularly
in dense cell deployments with high HO frequency [9]. However, the Conditional HO
technique has some disadvantages and challenges that must be addressed.
Signalling Overhead: Conditional HO requires the network to pre-configure multiple target
cells for a potential handover, which adds complexity to network management.
HO Decision-Making: The decision logic for triggering a handover becomes more complex,
as the UE has to monitor multiple candidate cells and decide which one is optimal under
changing conditions.

Mobility Robustness Optimization (MRO) approaches fall under the HO self-optimization
technique family, which aims to automate HCP settings with minimal human intervention.
Approaches include optimizing HCP parameters individually, considering trade-offs, or
treating them as a unified entity [11] - [30]. Studies like [31], [32] emphasize the need
to adapt HCPs in millimeter-wave (mmWave) deployments with dense small cells. These
studies propose algorithms to adjust HCPs based on RSRP and UE velocity, continuously
refining these parameters after each measurement report. However, despite improvements
in performance metrics, these solutions present notable challenges.
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Signalling Overhead: MRO requires ongoing adjustments to HCPs based on real-time
network conditions, which can occasionally result in HO failures or unnecessary HOs.
Additionally, MRO solutions often rely on generalized approaches that may overlook the
specific UE context such as mobility patterns or velocity, leading to suboptimal performance
in certain scenarios.
HO Decision-Making: The self-optimization process could lead to either too aggressive or
too conservative HO decisions, further contributing to handover failures or an increase in
unnecessary handovers.
Inaccurate Handover Predictions: MRO algorithms rely on predictive models to optimize
handovers. If user mobility patterns or network conditions change suddenly or unpre-
dictably, the system might make inaccurate predictions.
It is evident that optimizing the timing of the HO preparation phase is a recurring focus

in much of the research conducted in this area. In the following sections, we explain
how the proposed Early-Scheduled Handover Preparation (ESHOP) scheme addresses the
advantages above and limitations identified in related research, as well as those within
the ESHOP framework itself. Regarding MRO techniques, continuous adjustment of HCPs
requires frequent signaling in the downlink via measurement radio resource reconfiguration,
which significantly increases power consumption on the UE side [33]. This issue becomes
particularly pronounced at high UE velocities and in small cell deployments with frequent
HOs. Furthermore, these solutions assume that the UE’s velocity is known, a parameter that
is typically not tracked by cellular networks. Our solution also relies on dedicated signaling
toward the UE and is sensitive to sudden and unpredictable changes in UE mobility patterns.
Unlike traditional approaches, however, our solution can learn from measurement data,
improving handover robustness even in the face of unexpected events.
When optimizing the HO preparation phase, Conditional HO complicates decision-making
by triggering multiple target cells. In contrast, our study employs a different approach to
optimize the timing of the HO preparation phase and reduce signaling overhead. Instead of
explicitly estimating individual UE paths or velocities using conventional wireless channel
modeling, we utilize a technique that associates a series of radio channel measurements
with physical locations through channel fingerprinting. These fingerprinted features, based
on each user’s trajectory and velocity, enable us to analyze the time series of relationships
between these variables, forming the foundation of our study. This approach allows the
ESHOP scheme to trigger HO preparation in a just-in-time manner.

C. Contributions

• Predictive Timing: By accurately predicting the timing of the T0 fulfillment, the
ESHOP scheme allows the network to initiate HO preparation in advance and ensures
that the preparation phase begins at the most appropriate time. This proactive approach
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contrasts with traditional reactive methods that wait for the subsequent A3 fulfillment
to be met and reported by UE before initiating HO preparation.

• Enhanced HO Regions: The proposed ESHOP scheme proactively expands the hypo-
thetical HO region by initiating the preparation phase earlier. This expansion allows
for more time to manage the HO process, thereby minimizing the risk of users expe-
riencing signal degradation or loss of connectivity during the HO. This is particularly
beneficial in dynamic mmWave environments characterized by small-cell deployments.

• Dynamic HO Preparation: The ESHOP scheme dynamically adjusts the timing of the
HO preparation phase. This user-centric approach enables flexibility in accommodating
rapid changes in the radio environment, thereby enhancing the robustness of the HO
process.

II. SIMULATED MODEL SETUP

To demonstrate the primary goal of this investigation, which is the feasibility of using beam
measurements for HO predictions, this study employs an extremely simplified mobility
model as a proof of concept. We acknowledge that the simulated system does not represent
a typical urban 5G network deployment, such as a crowded metropolitan area. Despite its
simplicity, the system model effectively presents fundamental HO-related issues in a small-
cell network deployment, and the simulations provide a realistic HO procedure using a radio
system that supports detailed beam management that is compliant with standardized 5G
NR systems at mmWave frequencies [34]. We simulate a commercial-grade Phased Array
Antenna Module in a BS operating at a center frequency of 28 GHz over a 100 MHz
bandwidth. The 5G NR frame numerology is set to a 120 kHz subcarrier spacing with
a slot duration of 125 µs (8000 slots per second). We simulate a three-dimensional area
with a single site containing three cells, with the BS deployed in the center of three cells
shaped as hexagons, as shown in Fig. 4 (b). Due to the small cell deployment, the coverage
extends only over a fraction of each hexagon, since dense cell deployments typically allow
limited freedom of movement within a cell. As depicted in Fig. 4 (a), the UE trajectory
follows a circular but individually randomized path centered around the BS with a 50-
meter radius, modeling a dense small-cell deployment that results in rapid and frequent
HOs. The circular trajectory simultaneously presents a variety of instantaneous movement
angles in relation to the base station position, emulating a mix of user movement patterns in
a practical deployment. UEs appear along the circular trajectory at random starting points,
causing variability in the timing of the next HO.

To reveal the necessity of initiating the HO preparation at its earliest stage, we simulate
users traveling through multiple cells, spending only a short time within each cell along its
trajectory. The circular trajectory ensures that the user crosses all three cell borders during
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a single simulation duration, with each crossing occurring at slightly different angles and
times, depending on the randomness of the UE’s movement along the path. Cell border
crossings are influenced by cell coverage overlap and potential HO opportunities. Users
move at constant speeds of either 25 or 31 m/s, which significantly alters the dynamics
between the BS and the user in terms of rapidly changing channel quality which is
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HO command sent to UE 1
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UE 2 entered A3 HO event condition

UE 2 entered A3 HO event condition

UE 2 entered A3 HO event condition

HO command sent to UE 2

HO command sent to UE 2

HO command sent to UE 2

Sector border

Fig. 4. Top view of random individual trajectories generated by five distinct users (a), 5G NR
site deployment with the base station located at the corners of three adjacent cell sites, each
shaped as a hexagon and depicted in dark blue (b). Users move along individually randomized
circular trajectories at constant velocities of 25 m/s (v1) or 31 m/s (v2).
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captured by the measurement reports sampled periodically at constant time intervals of
40 ms. During the simulations, the UEs are in radio resource control connected mode
and engage in active UL-centric signaling towards the BS. The lifetime of each UE is
recorded from the start to the end of the simulation. Parameter settings were evaluated for
different UE loads using the HO-related parameters listed in Table I. Multiple seeds were
used to ensure statistical confidence. Both Line-Of-Sight (LOS) and Non LOS propagation
scenarios were included, as per the guidelines in [35]. As this study focuses on time
predictability using historical RSRP values at standardized mmWave frequencies, bands
outside these specified frequencies are beyond the scope of this study, and the conclusions
should not be extrapolated to other frequencies.
From a UE perspective, an NR cell is defined by the physical transmission of a specific

Synchronization Signal Block (SSB), which contains a physical cell identifier at a particular
frequency. The BS transmits SSB beams periodically, with a TSS of 10 ms. These beams
are arranged in a grid of 3 in azimuth and 4 in elevation, resulting in NSSB = 12 beams,
as depicted in Fig. 5. The SSB beams are static and wide, always pointing in the same
direction, forming a grid that covers the entire cell area. This makes them suitable for
cell-level mobility evaluations. An HO occasion is dynamically defined by the rapidly
changing mmWave radio environment conditions, fingerprinted in a time series of SSB
beam measurements specific to each UE’s movement pattern on UE trajectory, location and
velocity. This is particularly notable as individual circular trajectories may be separated by
tens of meters, as illustrated in Fig. 4 (a). Demonstrating robust behavior of the method
at higher speeds also suggests corresponding or further improved performance at lower
speeds, assuming that model is trained with corresponding data patterns at various speeds.
As UEs move around the BS, they search for and measure the qualities of these beams,
maintaining a set of candidate beams from multiple cells. A combination of a physical cell
identifier (cell ID) and beam identifier (beam ID) differentiates beams from each other.

TABLE I. Simulated handover parameters

Parameter Value
measurementType A3

timeToTrigger 0.04 (s)
hysteresis 0 and 1 (dBm)

reportInterval 0 (s)
reportAmount 1

offset 3 (dBm)
measurementQuantity RSRP
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Fig. 5. 2D projection of RSRP distribution generated by the 4x3 SSB wide beam pattern.

III. PROPOSED ESHOP SCHEME

In this section, we examine the incentives underlying the introduction of ESHOP and
explain the application area of our TCN-driven model, which offers several benefits worthy
of close evaluation. Before the UE triggers an HE, it measures the signals of the serving
cell and neighbor cells over the 5G NR air interface evaluating whether any measured
signals satisfy the entry criterion fulfillment of a HE, T0, as highlighted in green in Fig.
6. The ESHOP aims to increase the robustness of the HO preparation phase by utilizing
the time window between T0 and A3, where A3 marks the start of both the potential HO
region and the legacy HO preparation phase. These two events are time-bridged by the TTT
value, as highlighted in yellow in Fig. 6. The most significant component of the ESHOP
scheme is the Time to Entry Criterion Fulfillment (TEF), i.e. the remaining time until T0.
Being a predictive measure, TEF estimates the time at which the T0 will be met allowing
the network to initiate HO preparation well in advance, thereby reducing the likelihood
of HOFs and improving overall network performance. The ESHOP scheme enables a user
context-aware detection of incoming T0 occasions. It establishes a new starting point for
both the potential HO region and the HO preparation phase, scheduling them earlier by
exactly the TTT duration. As developed in detail later in Section IV, we aim to contain the
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Fig. 6. Principals of ESHOP scheme and its most significant component, Time To Entry
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HO decision procedure between source and target cells within the TTT window thereby
early-triggering the HO preparation phase. The ESHOP relies on the capability of the data
set to capture the fingerprinted features based on each user’s trajectory and velocity and
allows us to study the time series of relationships between these. As shown in Fig. 2 and
6, the HO hysteresis setting, as part of the HOM, impacts the timing of T0 and pushes it
along the time axis and the UE trajectory, e.g, when set negative it triggers HO preparation
earlier risking a ping-pong effect. Conversely, a late-triggered HO preparation risks RLF
and HOF. An obvious tradeoff between HO failures and ping-pongs is strongly related to
the UE velocity whereas an expansion of the potential HO region is a possible solution
[37]. Note that in the leading boundary of a traditional HO region, the A3, may be pushed
in both directions, along the UE’s trajectory depending on the hysteresis setting. The same
is valid for the new leading boundary T0 separated from A3 via the TTT timer. The
latter alludes to the essence of the ESHOP scheme and the underlying data set containing
fingerprinted information about e.g.; hysteresis setting as well its co-relation with the UE’s
trajectory and velocity. This fact alleviates the need for additional optimizations of HOM
parameters and allows for focusing on utilizing the TTT timer’s duration for signalling time
savings. Purposely, TTT duration was kept constant throughout this study. As a gNodeB
remains unaware of an imminent A3 occasion in the legacy HO procedure, the ESHOP
scheme addresses this by assigning an active role to the gNodeB, enabling it to predict the
remaining time to TO via the ML-inferred TEF metric.
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IV. ENHANCEMENTS FOR HO ROBUSTNESS

This section demonstrates how the ESHOP scheme can be applied on the network side to
enhance the robustness of the 5G HO. The HO procedure involves various levels of internal
signaling between network nodes, with intra-gNB communication being the simplest in
terms of signaling complexity. Figures 7 and 8 illustrate the general signaling order for
both intra-gNB and inter-gNB communication. Upon fulfillment of the A3 event, the HO
preparation is triggered. As part of the HO decision, the serving cell exchanges the UE’s
context with the candidate cells, and based on available resources, the target cell performs
admission control to determine if it can accommodate the incoming UE. If admission is
granted, an HO acknowledgment is sent to the source node, including an HO command
conveyed in the downlink to the UE. As described in Section III, the ML model continuously
predicts the remaining time approaching T0 via TEF metric, represented as a countdown.
The different stages of the proposed ESHOP scheme for intra-gNB and inter-gNB HO
scenarios are illustrated in Figures 7 and 8. In the following, we exemplify the ESHOP
scheme depicted in Figure 7; the same principles apply to Figure 8.

• Step 1: The BS continuously receives beam measurement reports for the serving cell
and neighbor cells for each active UE. With the aid of the incoming measurement
reports, the ML model predicts the remaining TEF time based on its training experi-
ence and evaluates whether to proceed with an early triggering of the HO preparation
phase. The incoming HO event criterion fulfillment ideally results in a continuously
decreasing TEF value, approaching T0. Once T0 is reached, the next step is initiated.

• Step 2: An A3 event is expected to be reported by the UE after TTT expiry. The BS
utilizes the TTT duration for early activation of the HO preparation phase, starting
with the HO decision-related procedures such as steps 3b, 4, and 5. At this stage the
source gNB decides whether to prepare the target cell in advance. If the target cell is
prepared, the next step is initiated.

• Step 3: Upon TTT expiry, an A3 event is expected to be reported by the UE.
Note: In case the ESHOP prediction fails suggesting that UE does not report an
A3 event fulfillment, the subsequent steps are not executed, and the current ESHOP
scheme is aborted, allowing the BS to fall back to the legacy HO preparation procedure.

• Step 6-8: Based on already prepared HO decision-related signalling in the previous
step, the remaining signalling of the HO procedure is carried out.

The ESHOP demonstrates the capability to mitigate HO failures induced by often sub-
optimal HOM settings. Considerable time savings are achieved during the HO preparation
phase by performing the most time-consuming signalling during the TTT time window. The
remainder of this paper presents the feasible time savings achieved through this approach,
paving the way for a higher success rate in the HO preparation phase, especially in the
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mmWave frequency bands [44]. For the ESHOP scheme in Fig. 7, we note that including
the signaling step 6 within the scope of the ESHOP scheme would cause the TTT abortion
according to [33]. The same applies to Step 7 in Fig. 8. Therefore, we confine the signalling
optimizations within the proposed ESHOP scheme signalling scopes. Nevertheless, the BS
retains the flexibility to cancel the ESHOP scheme at any time and revert to the legacy HO
preparation procedure if necessary. In addition, when ESHOP fails to predict the fulfillment
of the A3 event (Step 3), even though the BS can fall back to the legacy procedure, this

Paper III ©2024 IEEE 105



results in unnecessary HO preparation signaling which is the most significant disadvantage
of the proposed HO scheme.
Finally, the findings of this study are limited to the simulated dataset generated based on

the system described in Section II. In contrast, real network deployment would necessitate
a larger dataset encompassing various mobility patterns adding more complexity when
training the proposed ML model. However, the small-cell network deployments allow only
for limited mobility patterns, confined to a specific coverage area, lending credibility to
our model setup despite its simplicity.

V. MACHINE LEARNING FRAMEWORK

This section clarifies how ML algorithms can beneficially discover cell relationships be-
tween serving and neighboring cells to improve the robustness of the 5G HO preparation
phase. Robust mobility management in advanced 5G deployments is challenging due to
the unpredictable nature of user mobility patterns. To address this, machine learning (ML)
algorithms have proven efficient in analyzing traffic and network data, and they are expected
to be essential for improving 5G performance and robustness. ML-based technologies’
ability to optimize parameters across multiple layers and identify patterns over complex
time series has garnered significant attention in the wireless industry, as they hold the
potential to revolutionize wireless network design and deployment. In realistic scenarios
involving mobility, either in the propagation channel or due to UE movement, a massive
number of signal observations are generated at each port of the gNodeB’s MIMO antenna
array. Consequently, the radio access network acquires, computes, and processes substantial
amounts of data between layers 1 and 3. This implies that ML is ideally applied at higher
system layers, utilizing signal observations from layer 1. For real-time HO prediction, it is
preferable to select ML algorithms that can handle compute-intensive problems without
compromising the baseband processing capacity. Thus, we chose to explore Temporal
Convolutional Networks (TCN).

A. TEMPORAL CONVOLUTIONAL NETWORK

One significant application of neural networks is sequence modeling, specifically time series
analysis, which involves capturing temporal structures in data for the purpose of making
time-series predictions. Temporal Convolutional Networks (TCNs) excel in prediction tasks
that involve time series data with complex patterns, making them an ideal choice over
recurrent neural networks (RNNs). TCNs offer several advantages: they avoid the common
drawbacks of RNNs, such as the exploding/vanishing gradient problem and inadequate
memory retention. Additionally, TCNs enhance performance by enabling parallel com-
putation of outputs, unlike RNNs. A key feature of TCNs is their causal nature, which
ensures that an element in the output sequence relies only on preceding elements in the
input sequence. This causality allows for direct conclusions between input and output,
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something typically not achievable with most machine learning architectures. TCNs are
implemented as residual blocks, which further boosts their learning capabilities and enables
them to outperform other deep learning networks.
In the following, we explore the basic building blocks that a TCN consists of, and how
they all interplay.
1) Sequence modeling: A sequence modeling network is any function given by

f : Xn −→ Yn (2)

that can be described as a function f that maps a given input sequence x ∈ Rn =

[x0, x1, ..., xn−1] to a corresponding output sequence ỹ ∈ Rn = [y0, y1, ..., yn−1] such that

ỹ = f(x) (3)

In predicting task, each element yt for a specific time index t (0 ≤ t ≤ n) can be calculated
based on the input vector x̂ ∈ Rt = [x0, x1, ..., xt−1] that collects data that has been previously
observed. In other words, the function f is causal which means that it does not depend on
any future input xt+1. In this paper, a neural network aims to solve a sequence modelling
task so that the predicted output ỹ approaches its ground truth y ∈ Rn. To measure the
prediction quality, the following loss function LRMSE is applied

LRMSE(yt, ỹt)) =

√√√√
t∑

i=1

(yi − ỹi)2

t
, (4)

where RMSE is defined as in (13).
2) Causal Convolutions: The TCN generates an output of the same length as the input and
no data exposure from the future into the past time steps is allowed. The basic convolution
relies on a causal input and filter, which makes it inappropriate for sequence modeling
tasks, since the convolution operation depends on future time steps. The architecture of
TCN is an extended model of a one-dimensional (1D) convolutional neural network (CNN)
consisting of stacked convolutional layers and can be described as

F (xt) =

k∑

p=0

f [p]x[t− p], (5)

where k is the size of the filter with an input sequence of length n that returns a sequence
of length n − k + 1 applied at time t. The zero padding of length k − 1 appended at the
beginning of the sequence ensures the equal length of input and output. In other words, a
casual convolution is used to prevent leakage from the past into future steps.
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3) Dilated Convolutions: A dilated convolution is based on the causal convolution model
with a slight modification via the so-called dilation factor d as defined below.

F ′(xt) =
k∑

p=0

f [p]x[t− (d · p)]. (6)

A dilated convolution, as shown in Fig. 9, allows a network to understand the dependencies
of previous steps and exponentially increase the receptive field by expanding the dilation
factor over all layers.
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Fig. 9. A dilated causal convolution with dilation factors d = 1, 2, 4 and filter size k = 3.
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4) Residual Connections: The mechanism of a residual block is illustrated by Fig. 10. In
accordance with Fig. 10, the output of the network ỹ ∈ Rn can be expressed as

ỹ = frelu(x+ F(x)), (7)

By applying the activation function frelu to the each element xi in x, we get

frelu(xi) = max(0, xi) (8)

VI. RESULTS AND EVALUATION

We explore the potential of the ESHOP scheme using data generated from extensive
simulations conducted within the system framework described in Section II. The simulated
channel quality estimator for Layer 3 RSRP incorporates filtering based on the SSB beam-
specific configuration, as part of the higher-layer radio resource management in 5G NR,
following 3GPP standards [1] [33]. This filtering aims to eliminate the effects of fast
fading and disregard short-term variations. The resulting measurement reports are sampled
periodically at predefined time intervals of 40 ms resolution, providing averaged long-term
RSRP measurements. Each beam measurement report comprises 12 pairwise samples of
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Fig. 11. Data set structure. L3-filtered RSRP beam measurements collected with a 40 ms
reporting periodicity contain 12 RSRP values for each SSB beam. Between two HO occasions,
these 40 ms measurement snapshots are reduced to the strongest beam for each cell, forming a
time series of channel measurements including the corresponding time to the next HO occasion
as the prediction target.

the best RSRP and beam ID per cell. Initially, the time series of measurement reports
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yields a dimension of 3 cells x 12 beam ID/RSRP pairs, collected from the serving and the
two neighboring cells. Subsequently, the dataset is reduced to an input vector containing
only 6 features, such as the best RSRP with the corresponding SSB beam ID for each of
the three cells, as illustrated in Fig. 11. All UE measurements are logged with the UE’s
simulated lifetime timestamps. Throughout each UE’s simulated lifespan, spanning from the
simulation’s start to its end, we document the occurrence of T0, which is then converted into
a countdown format. During ML model training, these timestamps serve as the prediction
target, indicating the time remaining until the next T0 event, presented as a countdown.
Our evaluation is centered on enhancing the robustness of the HO preparation phase.
Consequently, we restrict data collection to the moment of HO command transmission,
disregarding the actual HO outcome. Additionally, if T0 is not maintained for the entire
duration of the TTT timer, leading to an A3 event, the associated measurements are
excluded. Only measurements preceding the actual start of the HO procedure are considered.
It’s important to note that our approach, which relies on historical RSRP data, should not be
seen as a limitation of our system or the proposed contribution. By incorporating historical
RSRP data alongside the corresponding beam ID, our method ensures the effective linkage
of the UE’s trajectory and velocity with the measured attributes of the received signal.
Given that the SSB beams remain static in terms of horizontal and vertical radio coverage,
this approach inherently captures fingerprinted HCPs within the dataset, particularly those
settings that have successfully satisfied the T0 occasion.

A. TCN MODEL PERFORMANCE

The employed, relatively simple ML model, consists of a single TCN layer with a kernel
size of 11 and incremental dilations with sizes 1, 2, 4, 8, 16, 32, 64. This TCN layer is followed
by three dense neural network layers of size 32, 16 and 8. There are only 590209 total
parameters that need to be trained in this network. To evaluate the performance of the
ML model the following metrics were used. Residual Mean Square Error R-Squared R2 is
calculated by comparing the Sum of Squares of Errors (SSE) to the Total Sum of Squares
(SST) (9), Explained Variance Score (EVS) (10), Mean Absolute Percentage Error (MAPE)
(11), Mean Absolute Error (MAE) (12) and Root Mean Squared Error (RMSE) (13).

R2 = 1− SSE

SST
(9)

EVS = 1− V ar(y − ŷ)

V ar(y)
(10)

MAPE =
1

n

n∑

i=1

| yi − ŷ |
yi

(11)
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MAE =
1

n

n∑

i=1

| yi − ŷ | (12)

RMSE =

√√√√
n∑

i=1

(yi − ŷ)2

n
, (13)

with y being predicted values and ŷ the observed ones with results presented in Table II.

TABLE II. Averaged performance metrics for Fig. 12.

Metrics
Scenario LoS

TCN
NLoS TCN

Explained
Variance Score

0.934 0.897

Mean Absolute
Percentage Error

(%)

9.27 9.96

Mean Absolute
Error

0.134 0.113

Root Mean
Squared Error (s)

0.142 0.158

R-Squared (R2) 0.929 0.886
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(a) LoS data from TCN model.
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(b) Non-LoS data from TCN model.

Fig. 12. Predicted vs. actual time to A3 event entry criterion fulfillment. 5000 epochs, UE
velocity 25 m/s and Hysteresis = 1 dBm.

The results demonstrate that ML algorithms effectively capture the characteristics and corre-
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lations among UE velocity, trajectory, and historical RSRP measurements while integrating
the HO parameters with relatively low error rates, as depicted in Fig. 12 (a) and 12 (b) and
summarized in Table II. Notably, while we opted to present results for a single velocity,
the TCN framework yields comparable outcomes for both user velocities across accuracy
and loss metrics.
The primary goal of this work was not to identify the fastest ML method but to demonstrate
the feasibility of the ESHOP scheme, however, we acknowledge that in scenarios requiring
extremely low latency, such as millisecond-level handover processes, the computational
complexity of TCNs could pose a limitation. For highly time-sensitive applications, a
thorough assessment of TCNs’ real-time performance is essential. As deploying TCNs
in real-time systems might be challenging, the use of fast CPUs, GPUs, or specialized
hardware can help avoid significant delays. Additionally, TCNs might be more feasible
for systems that make predictions based on shorter data sequences, such as those found in
small-cell deployments with high UE velocity, where short but frequent handovers occur.
Notably, although not presented in this study, we also explored other machine learning
methods, such as Decision Trees [45], which can deliver comparable results to TCNs
while offering much faster deployment.
When faced with challenges in obtaining sufficient and diverse data, the model’s behavior
might not be reliable in unique scenarios where data is lacking. However, by collecting data
across various cell deployment classes and user movement patterns, the model’s ability to
generalize across different conditions would be enhanced.

B. ESHOP SCHEME PERFORMANCE

This section evaluates how the ESHOP approach can reduce the likelihood of UE encoun-
tering potential PDCCH outage areas at the far end of the HO region by initiating the early
parts of the HO preparation stage. Our fingerprint-based approach indirectly incorporates
HCP configuration, enabling user context-aware HO optimization. As a result, we refrain
from comparing multiple HCP configuration settings or determining the optimality of one
approach over another. Instead, our focus is on understanding the behavior and impact of
the ESHOP scheme in various scenarios. Even without instantly optimized HCP parameters,
we can demonstrate the viability of our innovative approach. Due to their relatively high
velocity, users enter the HO region where radio conditions may deteriorate significantly,
increasing the likelihood of transmission failure for measurement reports or HO commands.
This situation is especially likely in denser cell deployments with reduced HO region size. In
such mobility scenarios, it is crucial to anticipate impending HOs, as existing HO robustness
mechanisms are prone to failure due to their reactive nature, partly caused by the inherent
TTT delay. Figure 13 highlights the importance of user context-aware HO optimization,
given that the network lacks control over UE-triggered events. The horizontal dashed lines
indicate the average times between A3 fulfillments for two different hysteresis settings,
which are, as expected, highly dependent on UE velocity. As velocity increases, the time
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Fig. 13. Expanded handover region and the A3 event dynamics associated with different UE
velocities. Due to ML-inferred A3 event entry criterion fulfillment, T0 is the new earliest HO
trigger instead of the traditional A3 event fulfillment.

difference between the two events decreases, nearly merging into a single point in time. This
observation provides crucial insights into the impact of UE velocity on the distance covered
between consecutive UE measurement report intervals. High velocity renders static HCP
settings, such as HO hysteresis, ineffective. This underscores the need to advance the start
of the handover preparation phase and emphasizes the urgency for context-aware mobility.
The value of the ESHOP scheme’s ability to pinpoint the T0 occasion, regardless of UE
velocity, is evident.
The time spent in the HO region, by definition, does not include the TTT duration. In

the legacy HO procedure, the TTT interval is often a period of inactivity, during which
no signaling occurs until a potential HO event is triggered. However, during this time,
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Fig. 14. Serving cell RSRP degradation mitigated by the ESHOP 40 ms after A3 fulfillment.

signal quality indicators such as the RSRP metric can significantly degrade, potentially
leading to RLF if the UE cannot maintain a stable connection with the serving cell long
enough to complete the handover to the target cell. As illustrated in Figures 7 and 8, the
ESHOP scheme effectively anticipates the HO preparation by exactly the TTT duration
and integrates HO decision-related signaling into the TTT interval. This approach is the
cornerstone of the ESHOP scheme as it parallelizes the most time-consuming part of the
HO preparation process with the TTT execution. Consequently, the HO command can be
sent immediately upon A3 event fulfillment, whereas in conventional HO procedures, this
would be delayed by HO decision-related signaling. By reducing the overall HO signaling
time, ESHOP helps maintain higher RSRP levels, which is particularly crucial in high-
speed UE mobility scenarios. Figure 14 shows the observed channel degradation from A3
fulfillment until HO decision signaling is executed, approximately 35-40 ms. Even though
the observed RSRP metrics are closely tied to the mobility scenarios modeled in Section II,
they underscore that rapid UE movement can result in sudden RSRP degradation, causing
the signal quality to deteriorate too quickly for the handover process to be completed
successfully. By doing so, it helps maintain stable signal quality, preventing the rapid
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deterioration that could otherwise compromise the handover process. In particular, the
extreme RSRP degradation cases depicted in the upper part of Fig. 14, with a cumulative
probability close to the 98th percentile, would likely result in RLF and HOF. Maintaining
an adequate RSRP level is a primary and direct benefit of ESHOP’s ability to parallelize
HO-related signaling procedures.
We highlight that the mobility scenarios modeled in the system described in Section II

concentrated on intra-gNodeB mobility and did not include HO decision-related signal-
ing. To assess the performance of the ESHOP scheme, we used measurements from a
commercial-grade 5G test network as a reference. The measured signaling times averaged
between between 15-35 ms for legacy procedures as shown in steps 2-4, Fig. 7 and steps
2-5, Fig. 8 which fits entirely within the shortest specified TTT duration of 40 ms.

VII. CONCLUSIONS

This study demonstrates how the ESHOP scheme mitigates serving cell RSRP degradation
within the HO region by initiating the HO preparation phase earlier. We focus on simple
deployments and mobility scenarios to highlight the novel approach presented, specifically
targeting small-cell deployments due to their frequent HOs, which are not as prevalent
in large-cell networks. The dense, small-cell model results in rapid and frequent HOs,
providing a robust test of the proposed algorithm. In contrast, larger network deployments
would complicate the analysis due to their complexity and the challenges in generating,
collecting, and processing measurement data, exceeding the scope of this study.
The proposed ESHOP scheme reduces or removes the forced inactivity by parallelizing the

HO preparation and the TTT intervals, and reduces instances of severe link degradation
and HO failures. Hence, a user experiences more stable connections and increases the
5G NR network capacity. Allthough our study focuses on A3 events, the deployed ML
model can be trained on any predefined HO event due to its flexible implementation.
The proposed ESHOP scheme is designed for the network side, however, its predictive
capabilities for upcoming handover events can beneficially be integrated on the UE side,
enhancing techniques such as Conditional HO.
Future studies should combine narrow-beam Channel State Information Reference Signals

(L1-RSRP) with wide-beam SSB (L3-RSRP) measurements at the cell edge to enhance
data resolution by capturing both levels of beam measurement information. We encourage
future handover optimization studies to implement multiple instances of the ESHOP scheme
across various network nodes, allowing them to share insights related to load balancing and
handover coordination. Protocols like Xn facilitate communication between base stations,
enabling these nodes to optimize both user experience and network efficiency. This approach
would promote a more comprehensive and effective handover optimization strategy across
the network.
Additionally, we believe that attention-enabled generative AI models could significantly
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enhance the ESHOP framework. Attention models, particularly Transformer-based architec-
tures, generally outperform TCNs for tasks that involve capturing long-range dependencies,
which are likely to occur in more complex network environments. Their ability to model
long-term dependencies and correlations makes Transformer-based models ideal for time
series applications, such as forecasting. Since the proposed ESHOP model relies on the
dataset’s capacity to capture key fingerprinted features, such as a user’s trajectory and
velocity, incorporating a Transformer-based model for trajectory analysis could potentially
improve the accuracy of the ESHOP framework. Although deploying Transformer-based
models in commercial systems may pose challenges, GPUs or specialized hardware can
help mitigate delays, particularly in complex commercial network environments.
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Abstract

User grouping based on geographic location in fifth generation (5G) New Radio (NR) systems
has several applications that can significantly improve network performance, user experience, and
service delivery. We demonstrate how Sounding Reference Signals channel fingerprints can be used
for dynamic user grouping in a 5G NR commercial deployment based on outdoor positions and
heading direction employing machine learning methods such as neural networks combined with
clustering methods.
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I. INTRODUCTION

The need for User Equipment (UE) positioning in cellular networks dates back to their early
generations, initially driven by requirements for emergency call localization. Precise geographical
localization capabilities have been a subject of research for decades. Although most existing
localization solutions are enabled by Global Navigation Satellite Systems (GNSS), there is
an increasing need for standalone positioning capabilities within fifth-generation (5G) cellular
systems. GNSS technology can be unreliable in dense urban environments due to shadowing,
multipath propagation, and poor satellite coverage [1], [2]. Driven by various use cases such as
smart factories, autonomous vehicles, and sensing, cellular UE positioning has emerged as a key
service provided by 5G networks. Recent research has advanced 5G outdoor positioning to very
accurate solutions, broadly classified into two categories: conventional signal processing [3]–[5],
and Machine Learning (ML) based methods [6]–[8]. Signal processing methods, which use Time
of Arrival (ToA), Angle of Arrival (AoA), and Time Difference of Arrival (TDoA), require the
estimation of radio channel parameters between UE and base stations (BS). In contrast, ML-based
methods rely on pre-processed data for training.

However, many essential 5G functionalities, such as mobility management, network planning,
and data analytics [9] cannot depend on GNSS services and must rely on internal positioning

This work is partially sponsored by the Swedish Foundation for Strategic Research and Ericsson AB.
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capabilities. As positioning techniques in 5G new radio (NR) systems evolve, position-based user
grouping becomes the next logical step, enhancing the ability to capture spatial relationships
alongside grouping based on channel conditions. This approach could significantly benefit key
5G functions, including:

• Network Resource Optimization: Load balancing can use geographical UE grouping to
comprehend UE distribution across different cells, avoiding congestion. Spectrum efficiency
improves by grouping UEs based on cell location, allowing more efficient frequency reuse
and interference management.

• Enhanced Mobility Management: Handover optimization benefits from understanding the
movement patterns and behavior of the UE. The network can anticipate handovers and prepare
target cells in advance, reducing handover failures and maintaining service continuity. Context-
aware services can provide UEs with relevant information and services based on their current
geographical position.

• Quality of Service Improvement: Using beamforming in targeted areas, beamforming tech-
niques can be optimized to enhance signal quality and data rates.

• Network Planning: Infrastructure deployment can leverage geographical data to guide the
placement of new BSs, small cells, and other network infrastructure. Capacity planning can
anticipate areas and times of high UE densities, helping to manage demand.
There are significant research gaps in location-based UE clustering within the 5G NR

system. The authors of [10] explored the classification of UEs in dynamic millimeter-wave
scenarios using conventional ML techniques on simulated CSI-RS measurements without directly
considering physical positioning. The study in [11] proposes dynamic UE-group-based interference
management by adjusting data transmission powers in small cell deployments. As a reference, our
study utilizes a high-resolution uplink (UL) Sounding Reference Signal (SRS) dataset, recently
showcased in a highly accurate positioning model [12]. This model outperforms previous studies
by regressing UE positions using an attention-based approach. The major contributions of this
paper are as follows:

• We propose an accurate outdoor positioning model that utilizes SRS channel estimates to infer
the actual user position and the Course Over Ground (COG) or heading direction.

• To the best of our knowledge, this is the first study to introduce geographical-based user
grouping through clustering methods in a commercial 5G system.

II. SYSTEM MODEL AND DATA COLLECTION

The fundamental concept behind positioning with UL SRS channel estimates is that a specific
physical location under similar radio channel conditions corresponds to unique SRS-generated
channel estimates. Each UE transmit antenna acts as a resource where channel measurements
are gathered by the numerous antennas of the massive Multiple-Input Multiple-Output (MIMO)
receiver in the UL. At the BS end, a MIMO system enables improved channel measurements
across multiple frequency resource instances of the entire bandwidth, incorporating the UE location
information via AoA, ToA and TDoA. We consider a commercial 5G NR Time Division Duplex
(TDD) system in a single-user massive MIMO scenario, where the BS processes a time series
of SRS measurements that capture the angular delay spectrum of the radio channel in the beam
domain. At time t, the UE, equipped with MUE antenna elements, transmits an UL pilot signal.
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This pilot signal reaches the BS at an azimuth arrival angle ϕ and an elevation angle θ. The BS is
equipped with MBS antennas, half of which is vertically polarized and the other half horizontally
polarized. We suppose that the number of multipath components is P , and denote τp,t as the time
delay between UE and BS w.r.t. the p-th path at time t, and ζp,m,t denotes the complex amplitude
of each multipath component. The BS utilizes all vertical-polarized antennas to form NV beams,
the response of the i-th beam w.r.t. the p-th path is ψV,i(ϕp, θp, f), where f denotes frequency, and
ϕp and θp represent the azimuth and elevation arrival angles for the p-th multipath, respectively.
Another set of NH beams uses all horizontal polarized antennas, and the response of the i-th beam
is ψH,i(ϕp, θp, f). For the m-th UE antenna, the propagation channel is modeled for each beam at
time index t as

hV,i,m,t(f) =

P∑

p=1

ψV,i(ϕp, θp, f)ζp,m,t exp{−j2πf τp,t}

hH,i,m,t(f) =

P∑

p=1

ψH,i(ϕp, θp, f)ζp,m,t exp{−j2πf τp,t}.
(1)

By collecting all hV,i,m,t(f) and hH,i,m,t(f) for the F subcarriers, we formulate two beam space
matrices of the Channel Transfer Functions (CTFs), HV,m,t ∈ CNV×F and HH,m,t ∈ CNH×F at
time t, which correspond to the vertical and horizontal polarized antenna groups, respectively. We
further define the matrix Ht ∈ CN×F =

[
HT

H,1,t,H
T
V,1,t, ...,H

T
H,MUE,t

,HT
V,MUE,t

]T that combines the
channel matrices of all UE antennas as N =MUE (NH +NV) that depends on the UE position and
therefore meets the criteria needed to perform ML-based localization.

A. Outdoor 5G NR measurement campaign
To assess our localization pipeline, we conducted an outdoor measurement campaign in a

parking lot near the Ericsson office in Lund, Sweden. Fig. 1 shows photos of the BS antenna
and measurement locations. Throughout the campaign, a commercial UE was placed on top of
a test vehicle alongside a high-performance GNSS receiver, providing ground truth reference
with centimeter-level positioning accuracy and COG parameter featuring GNSS multi-band and
multi-constellation support. To ensure uninterrupted SRS transmission, the UE remained in a
connected state while simultaneously downloading data at a rate of 750 Mbit/s. The UL SRS pilot
signals were received and processed by a commercial Ericsson 5G BS in TDD mode, operating
in the mid-band at a center frequency of 3.85 GHz, compliant with the 5G NR 3GPP standard
38.104 Rel15 [13]. The BS was equipped with an integrated radio with 64 transmitters/receivers
(TX/RX) and 32 dual polarized antennas. For digital beam forming, the 64 TX/RX formulate
64 beams in DL/UL respectively. As illustrated in Fig. 1, our measurement campaign includes
two distinct scenarios: Line-of-Sight (LoS) and non Line-of-Sight (NLoS). In both scenarios,
the velocity of the test vehicle was approximately 5 m/s. The trajectory for each of the two
measurement scenarios consists of 4 laps with 4 different UE mobility patterns: clockwise,
clockwise random, anticlockwise, and anticlockwise random. This approach creates four distinct
movement trajectories for each scenario, which makes them suitable for clustering. As UEs move,
the clockwise and anticlockwise patterns cause them to dynamically move towards or away
from each other, while the random trajectories introduce additional variation to the geographical
distribution of the UEs. To increase the total number of UEs in each scenario, the data generated
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Fig. 1: The 5G NR base station was installed on top of a 20-meter-high building. During this measurement
campaign, a test vehicle traversed two predefined routes: A 10-meter-high garage path for LoS measurements
and a ground-level path for NLoS measurements below the base station building. Each route features four
different movement patterns. Thinner lines depict random trajectories.

during the 4 laps were divided in half, resulting in an additional 4 virtual users, totaling 8 users
with 2 laps in each scenario.

B. Signal Processing Pipeline

As illustrated in Fig. 2, the SRS channel estimates cover 273 Physical Resource Blocks (PRBs)
over a 100 MHz bandwidth. Each channel snapshot comprises 273 PRBs for all 64 beams based
on SRS reporting periodicity of 20 ms. The PRBs are grouped in adjacent pairs and averaged by
downsampling, taking the mean value of the sampled data points resulting in 137 PRB Subgroups
(PRSGs). Downsampling was performed on every third PRSG, resulting in a total of 46 PRSGs.
The UE, equipped with 4 antennas (i.e., 4 UE layers), transmits the SRS pilots. We recorded the
SRS pilots from 2 UE layers at a time, forming two channel transfer function matrices H1,H2 ∈
CN×F . We define a matrix H′ ∈ C2N×F to collect those two matrices, specifically, H′ = [H1,H2]

(with N = 64, F = 46). After initial processing, the final CTF snapshot for 64 gNodeB antennas and
two UE layers has a dimension of 1x128 amplitude instances, as depicted in Fig. 2, collected and
averaged over 46 PRSGs for each gNodeB antenna. Gathering UL SRS channel measurements in a
commercial 5G NR BS faces constraints when retrieving data-rich structures such as SRS channel
measurement samples. The extensive SRS data, generated at millisecond intervals, typically reside
within the BS’s baseband entity, primarily for internal processing. However, accessing these data
externally may be impeded by hardware and software constraints. As not all PRSG values are
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Fig. 2: SRS data stream collection and pre-processed CTF dataset.

updated during SRS transmission, it is necessary to represent the missing channel estimate values.
To ensure the validity of the CTF for missing PRSGs, we employ the simplest method, such as
forward-filling, using the latest known values.

III. PROPOSED ML-BASED CLUSTERING FRAMEWORK

ML-driven UE grouping framework is illustrated in Fig. 3 consisting of two sequential blocks:
1) Positioning block: This block is designed to achieve precise positioning and incorporates

a Convolutional Neural Network (CNN) [14] in conjunction with a Feedforward Neural
Network (FNN) [15]. Both networks utilize features extracted from the SRS dataset as input
to regress the local PXY position, along with COGDEG.

2) Clustering block: Leveraging the highly accurate positioning block, we utilize nonparametric
clustering methods that do not require a pre-setting of the number of clusters, namely Density-
Based Spatial Clustering of Applications with Noise (DBSCAN) [16] and Hierarchical
clustering [17] for the UE grouping.

A. DBSCAN
DBSCAN uses tree techniques called dendograms [18], a tree-structured graph, and groups

points into clusters based on their density, identifying areas with a high data point density separated
by regions of low density. Since dendograms use features only indirectly as the basis for distance
calculation, they partition the given data rather than entire instance space, and hence represent
descriptive clustering rather than predictive one. This makes DBSCAN especially qualified for
handling clusters of arbitrary shapes and sizes, even in noisy data. DBSCAN requires two

Paper IV ©2024 IEEE 127



C
on

vo
lu

tio
na

l b
lo

ck
Fi

lte
rs

 =
 1

28

Kernel size = 3

Po
ol

in
g 

bl
oc

k
Po

ol
 s

iz
e 

= 
2

C
on

vo
lu

tio
na

l b
lo

ck
Fi

lte
rs

 =
 6

4
XFNN [T]

DEGFNN[T]

D
en

se
 b

lo
ck

32

XAVG [T] = MEAN (XCNN [T], XFNN [T]) 

YAVG [T] = MEAN (YCNN [T], YFNN [T]) 
DEGAVG[T] = MEAN (DEGCNN[T], DEGFNN[T]) 

XCNN [T]

DEGCNN [T]
 YCNN [T]

XPRED [T] = MEAN (XAVG [T], XPRED [T-1]) 

YFNN [T]

YPRED [T] = MEAN (YAVG [T], YPRED [T-1]) 
DEGPRED [T] = MEAN (DEGAVG [T], DEGPRED [T-1]) 

CNN

FNN

N=1024
512

256
128 64

32

Po
ol

in
g 

bl
oc

k

Po
ol

 s
iz

e 
= 

2

Flatten

N=128 64

Clustering

H1x128 [T]

NORM

Linear scaled [0,1]

H1x128 [T]

Linear scaled [0,1]

TX 0/1

TX 2/3

46
65
64

1

128128

65

1

64

46
65
64

1

128128

65

1

64

46
65
64

1

128128

65

1

64

46
65
64

1

128128

65

1

64
65
64

1

128128

65

1

64

Fig. 3: The architecture of the ML-driven grouping framework along with the input pipeline and intended
output. The output of the positioning model is averaged with the previous prediction as a post-processing
step and normalized before forwarding it to the clustering algorithms for user grouping.

parameters: epsilon (eps) and the minimum number of samples MinPts. The eps represents the
radius around a data point, and MinPts the minimum number of data points within eps to form
a dense region.

B. Hierarchical clustering

Hierarchical clustering has the distinct advantage that any valid measure of distance can be
used. In hierarchical clustering, deciding which clusters to combine or where to split requires a
measure of dissimilarity between sets of observations. Most methods achieve this by using an
appropriate distance threshold, such as the Euclidean distance, between individual observations
in the dataset. As there is a need to measure how close two clusters are, a linkage criterion is
employed, which is a general way to turn pairwise point distances into pairwise cluster distances.
Our model used the WARD linkage criterion defined as:

∆(A,B) =
µAµB

µA + µB
∥m⃗A − m⃗B∥2 (2)

where A and B are two sets of observations with a centre of cluster i denoted as m⃗i and the
number of points in it as µi. Tables I and II summarize the hyperparameter settings of the ML
model illustrated in Fig. 3.

IV. RESULTS AND DISCUSSION

The accuracy of the positioning block is summarized in Table III and Fig. 4 demonstrating a
sub-1 m accuracy level of precision and sub-9 ° heading direction.
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TABLE I: Hyperparameters employed by the positioning block

Layers Activation Batch s. Epochs Optimizer Loss f.

FNN
8 ReLU 64 200 ADAM MSE

CNN
2 ReLU 64 200 ADAM MSE

TABLE II: Parameters employed by the clustering block

Hyperparameter DBSCAN
Distance Metric Euclidian

eps 0.5, 0.6
minPTS 1

Algorithm Auto
Hyperparameter HIERARCHICAL
Distance Metric Euclidian

Distance Threshold 0.5, 1.0
Compute Full Tree Auto
Linkage criterion Ward

Based on the highly accurate performance of the proposed positioning block, the subsequent
clustering block aims to partition all points in the dataset into groups of similar objects,
where the notion of similarity is highly domain-dependent. As illustrated in Fig. 3, the two
positioning features (X and Y coordinates) and the heading feature (°) were input into the
clustering block. To address the dynamic nature of cellular networks, which incorporate UE
mobility, non-parametric clustering algorithms using various hyperparameter values are deemed
more suitable than parametric ones. Assessing the quality of user clustering in a 5G system
requires understanding how well the clustering meets the specific criteria of various network
functionalities. The goal of this study is not to define the best clustering hyperparameters, as these
are highly dependent on specific network function domains. Therefore, we refrain from optimizing
the clustering parameter settings or determining the optimality of one approach over another.
Instead, we focus on demonstrating the potential of the proposed user grouping framework. We
envision it as an internal capability of the 5G system, primarily for use cases requiring real-time
user localization, such as beamforming, handover, or cell interference management when the UE
remains connected. This also implies that users will be dynamically added to and removed from
the clusters as they enter or exit the cell.

To underscore the heading feature’s significance, we conduct user grouping based on estimated
position alone and, in the subsequent step, include the heading feature. Figures 5, 6, 7, and
8 present some time aligned comparison results of UE grouping based on various parameter
settings, where each UE is represented by an arrow indicating its regressed direction and location.
Colors are used to distinguish between different UE clusters. Our approach, besides the novel
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Fig. 4: Positioning and COG errors.

TABLE III: Performance of the positioning block

Scenario Metric X (m) Y (m) Heading (°) Dist. (m)

CLOCKWISE

LoS RMSE 0.2 0.23 7.1 0.3
R2 Score 0.99988 0.99976 0.995 NA

NLoS RMSE 0.53 0.35 6.33 0.64
R2 Score 0.9998 0.9998 0.993 NA

CLOCKWISE RANDOM

LoS RMSE 0.29 0.35 8.97 0.454
R2 Score 0.9997 0.9995 0.99 NA

NLoS RMSE 0.52 0.39 5.8 0.65
R2 Score 0.9997 0.9994 0.996 NA

ANTICLOCKWISE

LoS RMSE 0.23 0.21 8.36 0.31
R2 Score 0.9998 0.9998 0.993 NA

NLoS RMSE 0.53 0.75 8.76 0.92
R2 Score 0.9997 0.998 0.991 NA

ANTICLOCKWISE RANDOM

LoS RMSE 0.26 0.26 8.56 0.36
R2 Score 0.9998 0.9997 0.993 NA

NLoS RMSE 0.48 0.44 8.37 0.65
R2 Score 0.9998 0.9991 0.991 NA
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location-based user grouping itself, successfully incorporates the heading direction feature, which
becomes particularly interesting for cases such as user movement predictions, dynamic adjustment
of beamforming patterns, etc. For more detailed positioning and clustering results, we refer to the
work conducted in [19] which used the same datasets and ML pipeline introduced in this paper.

Fig. 5: LoS clustering results based on position

Fig. 6: LoS clustering results based on position and heading
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Fig. 7: NLoS clustering results based on position

Fig. 8: NLoS clustering results based on position and heading

V. CONCLUSIONS AND FUTURE WORK

By leveraging geographical positioning and heading direction, the proposed UE grouping
framework can significantly enhance operational efficiency across various functional domains in
5G, some of which may not yet be fully realized. Future work could involve transitioning from
2-dimensional to 3-dimensional coordinate-based positioning, adding an extra dimension to the
clustering method and making user grouping even more suitable for network functionalities such as
beamforming. Integrating heading direction into user grouping and network management enables
5G systems to provide more intelligent location-based user grouping services.
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Abstract

The integration of high-precision cellular localization and machine learning (ML)
is considered a cornerstone technique in future cellular navigation systems, offering
unparalleled accuracy and functionality. This study focuses on localization based on
uplink channel measurements in a fifth-generation (5G) new radio (NR) system. An
attention-aided ML-based single-snapshot localization pipeline is presented, which
consists of several cascaded blocks, namely a signal processing block, an attention-
aided block, and an uncertainty estimation block. Specifically, the signal processing
block generates an impulse response beam matrix for all beams. The attention-aided
block trains on the channel impulse responses using an attention-aided network,
which captures the correlation between impulse responses for different beams. The
uncertainty estimation block predicts the probability density function of the user
equipment (UE) position, thereby also indicating the confidence level of the local-
ization result. Two representative uncertainty estimation techniques, the negative log-
likelihood and the regression-by-classification techniques, are applied and compared.

This work has been funded by Ericsson AB, the Swedish Foundation for Strategic Research,
and partly by the Horizon Europe Framework Programme under the Marie Skłodowska-Curie grant
agreement No. 101059091.
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Furthermore, for dynamic measurements with multiple snapshots available, we com-
bine the proposed pipeline with a Kalman filter to enhance localization accuracy.
To evaluate our approach, we extract channel impulse responses for different beams
from a commercial base station. The outdoor measurement campaign covers Line-
of-Sight (LoS), Non Line-of-Sight (NLoS), and a mix of LoS and NLoS scenarios.
The results show that sub-meter localization accuracy can be achieved.

Index Terms

5G New Radio, Sounding Reference Signal, self-attention, uncertainty estimation,
radio-based positioning

I. INTRODUCTION

RADIO-based positioning is envisioned to pave the way for numerous so-
phisticated yet practical applications, including vehicle navigation, intelligent

traffic management, and autonomous driving [1]–[7]. In contemporary 5th generation
mobile network (5G) systems, there is a pronounced demand for precise localization
capabilities. Currently, most localization-aware applications are facilitated by Global
Navigation Satellite Systems (GNSS). However, the effectiveness of these systems
is limited by many factors, such as shadowing, multipath propagation, and clock
drifts between the GNSS transmitter and receiver [8]. Consequently, there is an
increasing need to investigate cellular-based technologies and seamlessly integrate
those techniques into existing localization systems.

Existing cellular-based localization methods can be broadly classified into two
categories, namely conventional signal processing methods [7], [9]–[15], and ma-
chine learning (ML) based methods [16]–[24]. Conventional signal processing meth-
ods, such as Time of Arrival (ToA), Angle of Arrival (AoA), and Time Difference
of Arrival (TDoA), require the estimation of essential channel parameters, such
as signal propagation time between user equipment (UE) and base stations (BS).
In the next step, the location of the UE can be estimated using these parameters.
Although some of these methods have reached maturity, they can be constrained by
calibration needs and algorithmic complexities [7]. On the other hand, ML methods
present a promising solution but require access to data for training and a radio
environment with enough unique features that can be learned. To implement an
ML-based localization approach, the initial step involves obtaining various channel
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fingerprints, such as the raw transfer function [21], [22], received signal strength
[16], angle-delay spectrum [17], [20], [23] and/or covariance matrix [18], [19].
These fingerprints then serve as input for the ML algorithms. It should be noted that
an effective method of combining several different fingerprints has the potential to
significantly increase the localization accuracy, see [18], [19]. ML-based localization
algorithms can also be divided into two categories, namely classical ML approaches
such as K-nearest neighbors (KNN) [19], Gaussian process regression [16], adaptive
boosting [18], and deep learning based approaches, such as fully connected neural
networks (FCNN) [22], [23], convolutional neural network [16], [18], [24], [25],
and attention-aided networks [21]. In particular, the attention-aided approach holds
significant promise, as its embedded attention mechanism enables ML algorithms
to recognize relationships between different input feature vectors, irrespective of
their actual spatial or temporal separation among those vectors. This mechanism
is also the core of widely used transformer techniques, producing fruitful results
in various domains such as language translations, image recognition, and speech
recognition [26]. Another crucial aspect for localization is uncertainty prediction,
which is particularly important in life-critical tasks such as autonomous driving.
This research problem has been initially tackled by previous works [19], [27],
which provide not only the estimated location coordinates but also the corresponding
variances using the negative log-likelihood (NLL) loss function.

However, to the best of our knowledge, there are still notable research gaps.
Primarily, the application of attention-aided localization algorithms in 5G new radio
(NR) systems represents a novel, yet unexplored, area. Secondly, the NLL uncertainty
estimation technique assumes a Gaussian distribution for the estimation error of the
UE position. However, such an assumption often diverges from reality. Consequently,
it becomes crucial to explore further uncertainty estimation methods capable of
estimating distributions other than Gaussian. To address the issues stated above, we
propose a novel localization pipeline and evaluate it using data from a commercial
5G NR BS. Very few studies in the literature have been conducted on commercial
grade 5G NR systems. Our research contributions are listed as follows:

• We apply attention-aided neural networks as the backbone to perform localiza-
tion, we also demonstrate the advantages of this network in terms of localization
accuracy.

• We apply a novel regression-by-classification method that can predict the uncer-
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tainty of localization estimates. Compared with the NLL approach, this approach
provides better uncertainty estimation since it is not bounded by the assumption
of Gaussianity.

• We further enhance localization accuracy by applying a Kalman filter to exploit
temporal correlation between multiple channel snapshots, which smoothes the
estimated trajectory.

• Finally, we verify the novel ML-powered pipeline with real measurement data
obtained using a commercial 5G NR test setup, covering both Line-of-Sight (LoS)
and non-Line-of-Sight (NLoS) scenarios. The results show that our approach
achieves submeter-level localization accuracy.
Our initial outdoor UE localization results have been presented in the conference

paper [28]. Differ from [28], we utilize a higher subchannel resolution of the UL
SRS channel estimates and a high-accuracy GNSS receiver. Furthermore, we apply
more advanced ML approaches such as attention mechanisms and uncertainty esti-
mation algorithms. Compared with [28], the localization accuracies have significantly
improved.

The remainder of this paper is organized as follows. Section II introduces the
signal model and discusses the selected fingerprints. In Section III, we elaborate on
the localization algorithms. Section IV illustrates the measurement campaign and
Section V presents the results. Finally, conclusive remarks are included in Section
VI.

II. SYSTEM MODEL AND DATASET GENERATION

We consider a commercial 5G NR system in a single-user massive Multiple-Input
Multiple-Output (MIMO) scenario, where the BS processes uplink (UL) Sounding
Reference Signal (SRS) data. The system utilizes orthogonal frequency division
multiplexing (OFDM) with F subcarriers, and the SRS data is a time series of
UL measurements in the beam domain. With this approach, we essentially capture
the angular delay spectrum of the radio channel, an approach that has been shown
to be advantageous for accurate localization based on ML [20], [29]. The BS is
equipped with MBS antenna ports, half of which is vertically polarized and the
other half horizontally polarized, while the UE is equipped with MUE antenna ports.
We suppose that the number of multipath components is P , and denote τp,t as the
time delay between UE and BS w.r.t. the p-th path at time t, and αp,m,t indicates
the complex coefficient of each multipath component. The BS utilizes all vertical-
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polarized antennas to formulate NV beams, the response of the i-th beam w.r.t. the
p-th path is βV,i(ϕp, θp, f), where f denotes frequency, and ϕp and θp represent the
azimuth and elevation arrival angles for the p-th multipath, respectively. Similarly,
another NH set of beams uses all horizontal polarized antennas, and the response
of the i-th beam is βH,i(ϕp, θp, f). For the m-th UE port, the propagation channel
model for each beam at time index t can be formulated as

hV,i,m,t(f) =
P∑

p=1

βV,i(ϕp, θp, f)αp,m,t exp{−j2πf τp,t}

hH,i,m,t(f) =
P∑

p=1

βH,i(ϕp, θp, f)αp,m,t exp{−j2πf τp,t}.
(1)

By collecting all hV,i,m,t(f) and hH,i,m,t(f) for the F subcarriers, we can formulate
two beam space matrices of the channel transfer function (CTF), HV,m,t ∈ CNV ×F

and HH,m,t ∈ CNH×F at time t, which correspond to the vertical and horizontal
polarized antenna groups, respectively. We further define matrix Ht ∈ CN×F =[
HT

H,1,t,H
T
V,1,t, ...,H

T
H,MUE,t

,HT
V,MUE,t

]T
that combines channel matrices of all UE

antenna ports. Specifically, N = MUE(NH + NV). This matrix depends strongly
on the UE position, therefore they can be selected as raw channel fingerprints to
perform ML-based localization.

III. THE ML-BASED LOCALIZATION APPROACH

In this paper, our study focuses on car navigation applications, where two-
dimensional (2-D) localization is adequate for most scenarios. However, a similar
approach can be extended to three-dimensional (3-D) coordinate-based localization
by altering the dimension of the output layer in our neural network. The ML-based
localization pipeline, as described in Fig. 1, consists of five sequential blocks. First,
the raw CTF Ht is fed into a data cleaning block to evaluate the validity of the
input data. After this, valid CTFs are forwarded to a digital signal processing block
to generate an impulse response beam matrix Gt ∈ CN×F . The amplitudes in this
matrix then serve as input to a deep neural network, which incorporates a self-
attention mechanism at its core. The network’s final layer outputs an estimated
probability density function (PDF) representing the location, thereby facilitating
uncertainty estimation. To further enhance localization accuracy, a filter may be
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Fig. 1: The ML-based localization pipeline for the 5G NR system.

applied after the final layer of the pipeline, provided that information from multiple
snapshots is available.

A. The attention mechanism

1) Fundamental basics of the attention operation
An example of the attention block is illustrated in Fig. 2, which takes a matrix

X ∈ RA1×A2 as the input, generating the output matrix Z ∈ RA1×A3. Initially, X are
multiplied by three matrices, namely, the query matrix Wq ∈ RA2×A3, the key matrix
Wk ∈ RA2×A3 and the value matrix Wv ∈ RA2×A3. The multiplication operations
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Fig. 2: An illustration of basic attention mechanism to generate zj and same mechanism can
be applied to generate Z.

yield three matrices Q,K,V ∈ RA1×A3, specifically,

Q = XWq, K = XWk, V = XWv. (2)

In the self-attention mechanism, the query (Q) and key K matrices play a crucial
role in determining the relevance of each row vector in the matrix X to the other
row vectors. The elements of these three matrices act as hyperparameters that can be
fine-tuned during the training process. The second step is to calculate the pairwise
correlations between all columns of matrices Q and K, resulting in a new matrix
A ∈ RA3×A3, specifically,

A =
1√
A2

QTK. (3)
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These correlations reflect the similarities between each pair of row vectors in X.
We then apply the softmax operation to normalize A and obtain another matrix
Ã ∈ RA3×A3. Each element Ãi,j is positive and the sum of all the elements in each
column is equal to 1. Specifically, Ãi,j is calculated as

Ãi,j =
expAi,j∑
k expAi,k

. (4)

Finally, the output matrix Z is calculated as

Z = VÃ, (5)

where each column of Z represents a weighted sum, and the weights are determined
by the corresponding column in Ã. In addition to the fundamental attention operation,
we further introduce the multi-head attention mechanism that can improve model
capabilities. This mechanism employs a total of P attention heads, each associated
with sets of query matrices (W1

q , ...,W
P
q ), key matrices (W1

k, ...,W
P
k ), and value

matrices (W1
v, ...,W

P
v ). The multi-head attention mechanism operates in P steps.

In the initial step, the matrices W1
q ,W

1
k,W

1
v are applied to the input matrix X

following equations (2)-(5), resulting in the output Z1 ∈ RA1×A3. This process is then
repeated P − 1 times, generating additional output matrices Z2, ...,ZP ∈ RA1×A3.
Finally, we concatenate all output matrices obtained from each step, formulating a
matrix Ztl ∈ RA1×PA3. The final output matrix Z′ ∈ RA1×A2 can then be expressed
as

Z′ = ZtlWO, (6)

where WO ∈ RPA3×A2 is another hyperparameter matrix.
2) Positioning encoding
It is important to note that the attention mechanism neglects the inherent sequence

order of the input vectors in X. Consequently, when employing such a mechanism,
particularly for tasks dependent on the order of vector arrangement, it is imperative
to apply a positioning encoding technique to incorporate and preserve this sequential
information. The idea of positioning encoding is to add another fixed matrix Xk ∈
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RA1×A2 to X [26], a standardized positioning encoding matrix Xk is

Xk(x, y) = sin
( x

10000y/A2

)
, for odd y;

Xk(x, y) = cos
( x

10000(y−1)/A2

)
, for even y.

(7)

The matrix Xk is fixed and will not be fine-tuned during the training process. The
advantages of using cosine and sine structures are as follows:

• The values of the sine and cosine functions are bounded between −1 and 1,
providing stable input magnitudes for the model.

• The smooth variation of sine and cosine functions allows the model to capture
gradual changes in positions.

• The use of sine and cosine functions, as given by Eq. (7), ensures that each
position is uniquely encoded.

3) Residual mechanism, Layer normalization and position-wise FCNN
After collecting the matrix Z′, we add the input matrix X to Z′ to obtain the

matrix Z̃ ∈ RA1×A2. We apply the residual mechanism since it preserves the original
information of the input matrix. The matrix Z̃ is then fed to a layer normalization
block, which first vectorizes Z̃ into a vector z̃ ∈ RA1A2. Subsequently, each element
z̃i in z̃ is scaled to derive a new vector ẑ ∈ RA1A2 as in [26], specifically,

ẑi = γ
z̃i − µ

σ
+ β, (8)

where µ and σ2 represent the mean and variance of vector z̃. The parameters γ and
β denote the amplitude scaling and the bias, respectively. By default, γ = 1 and
β = 0, although these parameters can be adjusted as learning hyperparameters. We
then reformulate ẑ into a matrix Ẑ ∈ RA1×A2. To enhance the capacity to capture
nonlinear relationships, we feed the output matrix Ẑ into a pointwise FCNN to get
Ẑ′ ∈ RA1×A2 [26], specifically,

Ẑ′ = W2fRelu(W1 Ẑ+B1) +B2, (9)

where fRelu(.) represents the rectifier activation function, and W1,W2,B1,B2 are
hyperparameter matrices, and the bias matrices B1,B2 are optional. After collecting
Ẑ′, we apply the same residual mechanism and layer normalization to derive Z̆ ∈
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RA1×A2. Finally, Z̆ is vectorized and fed into another FCNN. Such an operation can
also help to match the vector sizes for possible subsequent blocks.

B. Data cleaning and signal processing

The collection of UL SRS channel measurements in a commercial 5G NR BS
builds limitations when retrieving data-intense structures such as SRS channel mea-
surement samples. The vast amounts of SRS data generated at milliseconds level are
normally enclosed within the baseband entity of a BS and primarily intended for
internal processing, whereas external access to these data sets may be compromised
by hardware and software restrictions. To mitigate these challenges, it is essential
to equip our pipeline with the ability to discern the validity of the input data. As
retrieving all the necessary data in a complete format has been challenging, we
implemented a threshold that defines a cut-off point for discarding datasets when
insufficient information has been retrieved from the BS and introduced a data-
cleaning block to pre-process the measurement data. Its primary objective is to
determine whether the raw transfer function is valid or invalid. A raw transfer
function is labeled invalid under the following conditions:

• Insufficient CSI in the beam or frequency domain: the number of non-zero
elements in Ht is lower than a given threshold.

• Update failure: the values of all subcarriers or all beams remain the same.

After filtering out all invalid data, the next step is to process the raw CTF to
generate impulse response beam matrices. To suppress the side lobes, we apply
Hann windowing across all rows of the matrix Ht to obtain matrix Ĥt ∈ CN×F .
The F -length Hann window in the frequency domain is given by

w[f ] = sin2
(
πf

F

)
, f = 0, . . . , F − 1. (10)

After the windowing operation, the impulse response beam matrix Gt is produced by
performing the inverse discrete Fourier transform along each row of Ĥt. Given the
potential difficulty in achieving a stable phase for Gt, here we opt to use its amplitude
|Gt| as the training fingerprint, although this means throwing away potentially useful
information.
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C. Single-snapshot localization

We hereby introduce our single-snapshot localization approach, which focuses on
performing the localization task using only a single channel sample of the received
transfer function, generated at an SRS reporting periodicity of 20 ms containing
64 symbols, transformed from antenna to beam space. The proposed positioning
model analyzes the time series of these samples. As illustrated in Fig. 1, the ar-
chitecture comprises multiple attention-aided blocks, followed by an output layer
that has three alternatives corresponding to three loss functions, namely the Mean
Square Error (MSE), NLL, and Regression-by-classification loss functions. We use
pi = [px,i, py,i]

T to represent the 2-D ground truth of the moving UE at the i-th
position. Notably our approach can be readily adapted for 3-D localization.

1) Alternative 1: MSE loss function
This approach directly estimates the UE locations by setting a 2-D regression

head at the output layer of the last attention block. Let fMSE(.) denote the overall
function and vector θ2 all hyperparameters, p̂i = [p̂x,i, p̂y,i]

T the estimated i-th UE
locations generated by fMSE(θ2, |Gt|), the loss Ψ1 can be expressed as

Ψ1 =
1

Ntr

∑

i∈Ω′
tr

||p− p̂||2F , (11)

where Ω′
tr and Ntr denote the training set and the number of training samples,

respectively, and ||.||F denotes the Frobenius matrix norm.
2) Alternative 2: NLL loss function
Unlike the first approach, this method employs the NLL criterion, which models

the estimated UE position as a multivariate Gaussian distribution defined by its
mean p̆ = [p̆xi

, p̆yi]
T and variance σ̆2

i = [σ̆2xi
, σ̆2yi]

T . Consequently, a 4-dimensional
regression head is required at the output layer. Similar to [19], the NLL loss Ψ2 is
expressed as

Ψ2 =
1

2Ntr

∑

i∈Ω′
tr

( log σ̆2xi
σ̆2yi

2
+

(pxi
− p̆xi

)2

2σ̆2xi

+
(pyi − p̆yi)

2

2σ̆2yi

)
. (12)

3) Alternative 3: Regression-by-Classification (RbC)
The core of this approach [30], [32] lies in converting a regression task to a

classification task. This is achieved by first defining a feasible range for the target
parameter and then dividing this range into discrete bins. For the localization task,
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the lower and upper bounds of the UE x-coordinates are denoted as Blw,x and Bup,x,
respectively. Similarly, Blw,y and Bup,y represent the bounds for the y-coordinates.
To accomplish this discretization, we divide the x-coordinate range into Lx equally
sized bins. The y-coordinate range is divided into Ly bins in a similar fashion. For
each bin, we denote l̄x,k and l̄y,k as the lower endpoint values of the k-th interval
for the x- and y-coordinates, respectively.

Unlike the NLL method, RbC does not inherently model the output probability
as a Gaussian distribution. Instead, it estimates the probability and bias values of
each bin for both the x- and y-coordinates. The bias value can be used to reduce
the quantization error. To this end, in total 4 vectors are generated: the probability
vectors ωx ∈ RLx and ωy ∈ RLy , as well as the deviation vectors dx ∈ RLx and
dy ∈ RLy . Note that ωx refers to the probability vector corresponding to a specific
position, and there are Ntr instances of ωx when considering the entire training
dataset; the same applies to ωy. It is crucial to apply a softmax operation as shown
in (4) when generating ωx and ωy to ensure that the elements within each vector
sum to 1. One special case for deviation vectors is when all Lx elements in dx have
the same value, and the same for dy. In other words, a uniform shift is applied to
the probability density function, which also aids in the reduction of the output vector
dimensions. We denote ωx,k and dx,k as the k-th elements of ωx and dx, similarly
for ωy,k and dy,k. Inspired by [30], the η-norm loss Ψη

3 is formulated as

Ψη
3 =

1

2Ntr

∑

i∈Ω′
tr

(
||

Lx∑

j=1

ωx,j,il̄x,j,i − px,j,i + dx,j,i||η

+ ||
Ly∑

j=1

ωy,j,i l̄y,j,i − py,j,i + dy,j,i||η + γ1||dx||+ γ2||dy||
)
. (13)

Here, η is usually chosen as η = 1 or η = 2, which corresponds to the Taxicab and
Euclidean norms, respectively. Two penalty terms, γ1||dx|| and γ2||dy||, are added
to the cost function. The estimated coordinate p̂RbC

i = [p̂RbC
x,i , p̂

RbC
y,i ] ∈ R2 is then
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given by

p̂RbC
x,i =

∑

j

ωx,j,il̄x,j,i + dx,j,i,

p̂RbC
y,i =

∑

j

ωy,j,il̄y,j,i + dy,j,i. (14)

4) Comparison between different uncertainty estimates
Our previous work [19] used the NLL score in the test data set to assess the

effectiveness of uncertainty estimation. However, applying the same criterion to
evaluate the RbC method presents challenges because of the non-Gaussian nature
of its output. To address this challenge, another criterion named Area Under the
Sparsification Error (AUSE) [31], [33] is used. Sparsification is a way to assess the
quality of uncertainty estimates. It works by progressively discarding fractions of
the predictions that the model is most uncertain about and verifying whether this
corresponds to a proportional decrease in the remaining average endpoint error. To
calculate AUSE, the first step is to compute the discrete entropy uH based on the
predicted probability. In the following discussion, we illustrate this process using the
predicted ωx,i vector for the x-coordinate as an example, noting that the result can
be readily extended to the y-coordinate. The entropy uH,x,i for ωx,i is given by [32]

uH,x,i(ωx,i) = −
Lx∑

k=1

ωx,k,i logωx,k,i. (15)

To enable a fair comparison between the NLL and RbC methods, we need to
discretize the predicted Gaussian distributions determined by p̆ and σ̆2i . To this end,
the x-axis is segmented into Lx bins. As detailed in [34], the value for the k-th bin
of the discretized function, denoted p̆x,k, is calculated as

p̆dsx,k =

1
σ̆k

exp(− (p̆x,k−l̄k)
2

2σ̆2
k

)
∑

j
1
σ̆j

exp(− (p̆x,j−l̄j)2

2σ̆2
j

)
. (16)

We now organize the discrete entropies for the Nts testing samples calculated from
(15) in descending order to form the vector uH,x ∈ RLx. Similarly, we calculate
the absolute errors between the estimated values p̂Ws

x,i and the ground truth px for
all testing samples, arranging these errors in descending order to create the vector
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ξx ∈ RLx. Let ξmax be the maximum absolute error. We scale all elements in uH,x

by a factor such that the first element of the resulting vector ûH,x equals ξmax.
Next, we define a sparsification function s(φ), which is calculated by removing

the initial φ-fraction of samples from ûH,x and averaging the remaining data, with
φ ranging from 0 to 1. A similar process is applied to ξx, which yields the oracle
function g(φ). Finally, AUSE is calculated as

AUSE =

∫ 1

0
|s(φ)− g(φ)|dφ, (17)

which represents the area between the sparsification and the oracle curves. A smaller
area indicating a better uncertainty estimator.

D. Kalman-Filter-based trajectory smoothing

To further improve the localization accuracy, we exploit the temporal correlation
between successive positions by applying a Kalman filter as a straightforward method
for trajectory smoothing. The BS can select the appropriate motion model based
on several factors, including the sampling rate of channel snapshots, the vehicle’s
velocity, and the availability of velocity or acceleration parameters. In this paper,
we introduce the constant velocity model as the simplest option. This model is
effective for scenarios with low vehicle speed and a high sampling rate. However,
the same concepts can be extended to more advanced models that account for changes
in velocity or even acceleration. While these advanced models may deliver better
performance, especially in high-speed scenarios, they also require more complex
hardware. More detailed information see be refered to [35].

We define a vector ξt ∈ R4 = [px,t, vx,t, py,t, vy,t]
T to represent the UE position

and velocity at time t, where vx,t and vy,t denote the speed in the x and y-directions,
respectively. The state-space model for the UE is given by

ξt = Fξt−1 + λt, (18)

where F ∈ R4×4 denotes the state-transition matrix, while λt ∈ R4 the additive
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noise. Specifically,

F =




1 0 ∆t 0

0 1 0 ∆t

0 0 1 0

0 0 0 1


 , (19)

where ∆t denotes the time differences between snapshots. We then define Ξt ∈ R4×4

as the covariance matrix of ξt. The relationship between Ξt and Ξt−1 can be written
as

Ξt = FΞt−1F
T +Λ, (20)

where Λ ∈ R4×4 is the covariance matrix of the noise vector λt. We further denote
p̆t ∈ R2 = [p̆t,x, p̆t,y] as the predicted UE position and express the observation model
as

p̆t = Φtξt + ζ, (21)

where ζ ∈ R2 represents observation noise and Φt =

[
1 0 0 0

0 1 0 0

]
. Given the error

signal et = p̂t − p̆t, the state vector ξ+t is updated as

ξ+t = ξt + Γtet. (22)

In (22), Γt represents the Kalman gain matrix, which balances the predictions from
the state-space model and the ML-based pipeline, specifically,

Γt = ΞtΦ
T
t

[
ΦtΞtΦ

T
t +R

]−1
, (23)

where R is the covariance matrix of ζ. After computing Γt, the covariance matrix
Ξt is updated using

Ξ+
t = (I− ΓtΦt)Ξt, (24)

where I denotes the identity matrix. By applying the process outlined by (18)-(24),
we can significantly mitigate the impact of prediction outliers, as will be further
illustrated in Section V.

IV. OUTDOOR 5G NR MEASUREMENT CAMPAIGN

To evaluate our localization pipeline, an outdoor vehicular measurement cam-
paign was conducted at a parking lot outside of the Ericsson office in Lund, Sweden.
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Photos of the test vehicle, the BS antenna, the UE as well as the measurement areas
are presented in Fig. 3.

A. Introduction to the measurement campaign

D

A

DB

C

III

II
I

BS

UEGPS

(a) (b) (c)

Fig. 3: The 5G NR BS was equipped with an antenna integrated radio with 64 transmitters
and receivers, placed on top of a 20 m high building. In this measurement campaign, a
vehicle moves along three pre-defined routes: I A route on a 10 meter-high garage for LOS
measurements. II: A ground-level route for NLoS measurements below the building of the
BS. III: A ground-level route for combined LoS and NLoS measurements. (a) GPS and UE,
(b) Measurement Scenario, (c) Measurement van.

During the measurement campaign, the test vehicle carried a GNSS receiver, and
a commercial UE, see Fig. 3(a). Centimeter-level ground truth positioning accuracy
was achieved using a Swift Duro high-performance GNSS receiver with real time
kinematics technology, GNSS multi-band and multi-constellation support. To ensure
that the UE remained in connected state, it simultaneously downloaded data at a 750
Mbit/s rate enabling continuous SRS UL transmission. The UL SRS pilot signals
were received and processed by a commercial Ericsson 5G BS operating in mid-band
at 3.85 GHz center frequency. The BS was compliant to the 5G NR 3rd Generation
Partnership Project (3GPP) standard 38.104 Rel15 [36] and equipped with a time
division duplexing (TDD) antenna integrated radio with 64 transmitters/receivers
(TX/RX) consisting of 32 dual-polarized antennas covering a 120 degree sector. As
for digital beam forming, 64 TX/RX formulate 64 beams in downlink (DL) and UL
respectively. As illustrated in Fig. 4, the SRS channel estimates are reported for 273
physical resource blocks (PRBs) over a 100 MHz bandwidth. Each channel snapshot
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Fig. 4: SRS data collection and CTF generation. I/Q means in-phase/quadrature.

contains the 273 PRBs for all 64 beams. The PRBs are grouped and averaged in pairs,
resulting in 137 Physical Resource Blocks Sub Groups (PRSG). Down sampling was
done so that every third PRSG was further used generating 46 PRSGs in total. The
UE was equipped with 4 antenna ports, i.e. 4 UE layers, sounding SRS pilots.
Due to the capacity of our data-streaming system, the BS recorded the channel
responses of 2 UE antenna ports which formulate two channel transfer function
matrices H1,H2 ∈ CN×F . We define a matrix H′ ∈ C2N×F to collect those two
matrices, specifically, H′ = [H1,H2] (N = 64, F = 46). As illustrated in Fig.
3, our measurement campaign comprises three distinct scenarios: LoS, NLoS, and
a mixed scenario. In all scenarios, the velocity of the vehicle is approximately 15

km/h. The trajectory for each of the three measurement scenarios consists of 5 laps.
In the LoS scenario, the test vehicle drove at an open parking lot, while in the
NLoS scenario, the vehicle was driving next to a tall building that obstructed the
LoS path. As for the mixed scenario, NLoS conditions occurred when the LoS was
blocked by the water tower. For all three measurements, the BS station recorded
channel snapshots with 20 ms periodicity, resulting in T1 = 22000, T2 = 24603
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and T3 = 27087 channel snapshots. We formulate three tensors ALoS ∈ CT1×2N×F ,
ANLoS ∈ CT2×2N×F , Amix ∈ CT3×2N×F to collect all snapshots. Those three tensors
are normalized by multiplying each with a scalar so that their Euclidean norms equals
TiMN , where i = 1, 2, 3.

B. Measured propagation channel characteristics

In Fig. 5, we illustrate the range of single-frequency point SNR across three
typical scenarios. As shown in the figure, most SNR samples in the LoS (Line-of-
Sight) scenario are concentrated between 14.2 and 21.6 dB, with a median value of
17.6 dB. Similarly, in the mixed scenario, most of the SNR values fall within the
range of 14.3 dB to 19.6 dB, with a median of 17.2 dB. In contrast, the NLoS (Non-
Line-of-Sight) scenario exhibits significantly lower SNR values, ranging from 9.4

dB to 16.9 dB, with a median of 12.3 dB. It is important to note that our processing
pipeline can achieve approximately 15 dB gain through antenna beamforming. To
futher display the measured channel property, we choose four UE positions (positions
A-D, see Fig. 3 (b)) from the three measurement scenarios and show representative
channel impulse responses (CIR) in Fig. 6 (a)-(d). To be specific, Fig. 6 (a) illustrates

LoS NLoS Mixed
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SN
R

 (d
B

)

Single-frequency-point SNR for three scenarios

Fig. 5: Single-frequency-point SNR for three scenarios.
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Fig. 6: CIR and relative power of all 128 beams of four locations (a) LoS at point A, (b)
NLoS at point B, (c) LoS at point C, (d) NLoS at point D. Beam diagrams are arranged as
follows: row 0− 3 and row 4− 7 represent the 32 vertical and 32 horizontal-polarized beams
respectively for UE layer 1; row 8−11 and row 12−15 represent the co-polarized beams for
UE layer 2. Beam index is 8 ∗ (i− 1) + j, where i and j denote the row and column index
respectively. We select the first 4 strongest beam and plot the relative amplitude of CIR. The
strongest beam among all figures (a)-(d) is normalized to 0-dB. The relative amplitude refers
to the power difference of a specific beam to the strongest beam among all 4 figures.

a typical LoS scenario where a dominant LoS path can be seen from both the
CIR and the beam patterns. Few beams exhibit dominant power levels, while others
remain comparatively weaker. Although few NLoS-paths can still be observed, their
strengths are much weaker compared to the direct path. This is because the UE is
located in an open parking lot, where the reflected signals from other buildings are
relatively weak. From the beam power pattern, one can observe the signal strength
variations of different BS antenna polarizations and UE transmission layers as well.
In contrast, Fig. 6 (b) displays NLoS channel characteristics where the BS captures
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several reflected paths and there is no path with a dominant power. Thus, the signal
strength in Fig. 6 (b) is lower compared to the case in Fig. 6 (a). Fig. 6 (c) and
Fig. 6 (d) present the measured channels in a mixed scenario, where more local
scatters surround the UE. The distance between UE position C and the BS is greater
than that of UE position A, resulting in a decrease in the strength of the received
LoS signal. Nevertheless, the BS is capable of detecting stronger reflective paths
in addition to the LoS path, attributed to reflections from surrounding buildings.
Similarly, in Fig. 6 (d), a rich number of multipath components can be observed in
both the CIR and the beam pattern, despite the LoS path being obstructed.

We focus on simple deployments and mobility scenarios to showcase the novel
approach, specifically targeting typical urban and rural environments, including LoS,
NLoS, and mixed scenarios common in commercial networks. The dense, controlled
test scenarios provide a robust evaluation of the proposed positioning algorithm. In
contrast, larger network deployments would increase complexity and pose significant
challenges in data generation, collection, and processing, which fall beyond the scope
of this study.

V. RESULTS AND DISCUSSION

In this section, we evaluate our ML-based localization pipeline using the mea-
surements. We initially compare the single-snapshot localization performance for
different ML algorithms under different scenarios. Then, we demonstrate the perfor-
mance gain achieved by smoothing multiple position estimates with a Kalman filter.

A. Single snapshot localization

Our approach starts with assessing the validity of the input channel snapshot,
as outlined in Section. III. B. The first criterion, related to the CTF matrix Ξ,
employs a cut threshold set at 3500 out of 5888 (128 × 46) available physical
resource elements, approximately 60%, so that the channel information is sufficient.
With such threshold setting, signal paths can be clearly visualized from the channel
impulse responses. After discarding snapshots with insufficient data, we generate
the amplitude of impulse response beam matrix |Gt| and feed it to the attention-
aided localization block. This block, with detailed parameters in Table. I, comprises
three cascaded sub-blocks. Initially, positioning encoding is applied to |Gt| using
(7). Subsequently, a layer normalization procedure follows according to (8). The

156 Paper V ©2024 IEEE



TABLE I: Overview of our ML-based single snapshot localization pipeline

Item Network Structures or Parameters
Input Features Amplitude of CIRs for all beams

Network Output Estimated position labels or probabilities
Intermediate block 1 Residual 2-Heads Self-attention Network
Intermediate block 2 Residual Position-wise FCNNs
Intermediate block 3 3 cascaded ordinary FCNNs

Time Complexity NF 2

normalized matrix is then input into a simple 2-head self-attention block with a single
self-attention layer, generating matrix Z′ via (2-6). The pairwise correlation values
in matrix A reflect the similarities between each pair of row vectors in Ht in the
beam domain, which provides valuable information for UE localization. Considering
the simplicity of future hardware implementation work, the exact parameter settings
are displayed as follows: A1 = 128, A2 = 46, A3 = 64. After the Add & Norm
operation, the output is transferred to the second sub-block, consisting of two FCNNs
with sizes W1 ∈ 46 × 128 and W2 ∈ 128 × 46. Following this, the output matrix
of the second sub-block is vectorized to yield a vector of length 5888. This vector
is fed into the last FCNN sub-block, with sizes as given in Table II. Network sizes
are shown in Table II, and they vary based on the selected cost functions. As seen in
Table II, the neural network requires more resources when RbC is used as the cost
function. This is because RbC needs to calculate the probability of each bin in the
final layer, rather than simply estimating the 2-D position of the UE. Despite this,
the size of all three networks remains under 10 MB, classifying them as lightweight
neural networks. As illustrated in We compare the localization performance when
using three different loss functions and in three typical scenarios. As illustrated, the
output matrix of the second intermediate block is first vectorized and fed to the input
layer of the third sub-block, which consists of 2-3 FCNNs depending on the choice
of loss functions. When the loss function RbC is used, its corresponding network
delivers the probability of all Lx and Ly bins. In scenario I, Lx = Ly = 200 while
in the other two scenarios Lx = Ly = 100. The deviation vectors dx and dy are set
as: dx = δx1,dy = δy1, where 1 denotes the all-ones vector, δx and δy denote the
deviation value of the x- and y-axis, respectively. Accordingly, the output dimension
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TABLE II: Structures and parameter settings of the third FCNN sub-block using three
different loss functions. Lr: Learning rate.

Items
Loss F.

MSE NLL RbC

Input layer size 5888× 1 5888× 1 5888× 1
Hidden layer 1 5888× 32 5888× 32 5888× 128

Hidden layer 2 32× 2 32× 2 128× L̃
Batch size 64 64 64

Lr: LoS (4 laps) 0.0006 0.0006 0.0006
Lr: NLoS (4 laps) 0.0006 0.0006 0.0006
Lr: Mixed (4 laps) 0.0006 0.0006 0.0006
Lr: LoS (2 laps) 0.0002 0.0002 0.0002

Lr: NLoS (2 laps) 0.0001 0.0001 0.0001
Lr: Mixed (2 laps) 0.0002 0.0002 0.0002

Learning Epoch 500 500 500
Dropout Rate 0.05 0.05 0.05
Cost function (11) (12) (13)
Network Size 1.137 MB 1.138 MB 7.44 MB

L̃ equals Lx + Ly + 2. The penalty term γ1 and γ2 are set as: γ1 = γ2 = 1. In
addition, the Euclidean norm loss function is utilized, i.e. η = 2.

1) Comparisons of different uncertainty estimations
Fig. 7 compares the positioning accuracy of our single-snapshot localization

pipeline using three loss functions in three scenarios under different training densities.
As shown, the RbC method outperforms the other two methods in all three scenarios
and under both high and low training densities. Compared to the other two methods,
RbC learns better the non-Gaussian probability distribution of the UE position,
while the performance of the NLL method is constrained by its underlying Gaussian
assumption, and the MSE method does not estimate uncertainty. The performance
of these three methods differ less in the LoS scenario and high training density,
because the estimated UE position has less uncertainty in this situation. However,
in other scenarios or lower training density, the uncertainty of the estimated UE
position increases due to reduced SNR or training samples. Consequently, an ac-
curate uncertainty estimation is more essential, and thus the RbC method performs
much better. At both high and low training densities, our pipeline performs best in
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Fig. 7: Positioning errors of different training densities in the three scenarios: (a) LoS, (b)
NLoS, (c) Mixed.

LoS scenarios, the mixed scenario ranks 2nd, while the localization performance in
the NLoS scenario is the worst. We postulate that in the LoS scenario, the much
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Fig. 8: Sparsification curves of NLL and RbC methods under high training density (4 laps
as training data) and across three scenarios: (a) LoS, (b) NLoS, (c) Mixed. EPE: Endpoint
error.

higher SNR contributes to very good positioning accuracy. To further compare the
uncertainty estimation quality of the NLL and RbC methods, we demonstrate the
sparsification and oracle curves of the probability density functions of the estimated
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UE-x and y coordinates under high training density in Fig. 8. Specifically for the
NLL method, we discretize the predicted Gaussian functions to achieve the same
number of discrete bins as the RbC method, according to (16). The AUSE values for
all training densities are calculated according to (17) and are displayed in Table III.
To reduce the effect of outliers, the starting point of the sparsification and oracle
curves equals 99% of the positioning error. As depicted in Fig. 8, the discrepancies
between the sparsification (entropy) and oracle curves are significantly reduced in all
three scenarios when the RbC method is used. This improvement is reflected in the
improved AUSE values presented in Table III. These findings underscore the quality
of the uncertainty estimation achieved with our approach.

We finally compare the NLL method to another popular approach, the Monte
Carlo (MC) dropout method [37]. This technique estimates uncertainty by applying
dropout to a trained neural network. During testing, the network is evaluated multiple
times, with a percentage of neurons randomly deactivated on each run. This random-
ness results in slightly different predictions on each evaluation. The mean of these
predictions provides the final estimate, while the variance among them represents

TABLE III: AUSE values of two uncertainty estimation algorithms under different training
densities across three channel scenarios.

NLL-x RbC-x NLL-y RbC-y
LoS (4 laps) 0.480 0.179 0.351 0.163

NLoS (4 laps) 0.579 0.427 0.704 0.548
Mixed (4 laps) 1.428 0.616 1.543 0.325
LoS (2 laps) 1.951 0.968 2.023 1.181

NLoS (2 laps) 3.816 1.868 3.407 2.475
Mixed (2 laps) 4.682 0.809 3.540 1.138

TABLE IV: Negative-log-likelihood values of MC Dropout methods compared with NLL.

LoS (4 laps) NLoS (4 laps) Mixed (4 laps)
NLL -0.144 0.069 0.066

MC dropout 2.142 0.014 0.138
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Fig. 9: Structure of the residue network.

the uncertainty. Using this approach, we evaluate our pipeline with MSE as the cost
function. During testing, the dropout rate is set to 0.05, and for each input Gt,
the network is evaluated 50 times, after which we compute the mean predictions
p̃ = [p̃xi

, p̃yi]
T and variances σ̆i2 = [σ̆2xi

, σ̆2yi]
T . Four laps are used for training,

with the remainder allocated for testing. To assess performance, we calculate the
negative log-likelihood (NLL) score of the MC dropout and NLL methods on the
testing dataset, according to (12). The results are presented in Table IV. As shown,
the MC dropout method performs similarly to the NLL method in both NLoS and
Mixed scenarios. However, under the LoS scenario, the MC dropout method shows
overconfidence, with a significantly lower estimated variance compared to the NLL
method. We attribute this to the fact that MC dropout primarily captures uncertainty
related to the network’s weights, but it does not fully account for other sources of
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Fig. 10: Comparison between positioning error of our pipeline and a residue neural network
under three different scenarios. (a) LoS, (b) NLoS, (c) Mixed. For all three scenarios, two
laps are used for training and the rest for testing.

uncertainty, such as model misspecification or uncertainty in the underlying data
distribution.

2) Compare with the start-of-the-art
We compare performances of our approach with a residue neural network (ResNet),

which is widely used in solving regression and classification tasks. The structure and
parameter settings of the neural network are illustrated in Fig. 9. As seen in Fig. 9,
the residue network consists of two residue blocks, followed by three fully connected
layers. The time complexity of this model is O(N max(F 2, FN,N 2)). Dropout is
also applied to avoid overfitting and Leaky ReLU (with negative slope −0.3) is
selected as the activation function. The learning rate is set as follows: LoS 0.00001,
NLoS 0.00005 and Mixed 0.00005. Fig. 10 illustrates the localization errors of
attention-aided and ResNet based pipeline under all three scenarios. Channel data of
two laps are selected as training and the rest three laps are used for testing purposes.
Compared with the residue network, our transformer-based approach performs better
under both LoS and NLoS scenarios, if MSE is selected as the loss function.
Localization accuracy can be further significantly improved, if we use RbC approach
to estimate uncertainty. We postulate that compared with the state-of-the-art, our
processing pipeline benefits both from the attention mechanism and the advanced
uncertainty estimation algorithms.

B. Smoothing the trajectory by Kalman filtering

Next, we investigate the performance when using a Kalman filter for smoothing
within our pipeline. To clearly visualize the effect of the Kalman filter, we apply a
low training density, using two laps for training and one lap for testing. First, the
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TABLE V: Parameter settings and rooted mean square errors (RMSE) when applying the
Kalman Filtering

ϵ1 ϵ2 RMSE (m), before filter RMSE (m)
LoS 0.05 1.2 0.99 0.93

NLoS 0.05 1.2 2.00 1.76
Mixed 0.05 1.2 1.01 0.82

validity of each channel CSI is assessed by the data cleaning block. All test channel
samples classified as valid are then utilized for evaluation. Similarly to Section V.B,
we apply an attention-aided block as the backbone and the output layer utilizes the
RbC uncertainty estimation. For simplicity, the matrix Λ in (20) and the matrix R

in (23) are set as
Λ = ϵ21I, R = ϵ22I, (25)

where ϵ1 and ϵ2 denote the standard deviation, which indicates the state and obser-
vation noise levels, respectively. Their exact values for the three scenarios are listed
in Table V. Fig. 8 shows the predicted UE trajectories both with (right) and without
(left) the Kalman filter for the three scenarios. The MSE between the predicted
trajectories and their ground truths is shown in Table. V. As expected, the results
demonstrate a significant improvement with the inclusion of the Kalman filter: the
trajectories become considerably smoother, and outliers are mitigated to a large
extent. Consequently, there is a substantial enhancement in localization accuracy,
particularly evident in NLoS and mixed propagation scenarios. This improvement
can be attributed to the ability of the Kalman filter to utilize relationships between
different snapshots, which effectively balances the newly predicted UE position with
previous positional states, leading to more accurate localization.

VI. CONCLUSIONS

In this paper, machine learning is applied to a 5G NR cellular system for UE
localization. A novel ML-based localization pipeline is presented, which utilizes
attention-aided techniques to estimate UE positions by employing impulse response
beam matrices as channel fingerprints. In addition, we implement two uncertainty
estimation techniques, namely the NLL and RbC methods, to estimate the probability
density function of the UE position error and compare their performances. Finally,
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Fig. 11: Comparison between the raw (the left) and Kalman-filtered trajectory (a) LoS, (b)
NLoS, (c) Mixed.

a Kalman filter is applied to smooth consecutive position estimates. To evaluate
our pipeline, an outdoor cellular 5G measurement campaign was conducted at 3.85
GHz with a 100 MHz bandwidth, covering both LoS and NLoS scenarios, achieving
submeter-level localization accuracy. The measurement results indicate several key
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findings: 1) The attention-aided block shows promising potential to deliver high-
precision localization accuracy. 2) The RbC uncertainty method outperforms the
traditional NLL method, particularly with low training density or in more complex
channel propagation scenarios. This advantage likely stems from the fact that the RbC
method is not constrained by a Gaussian assumption on position errors. 3) Applying a
Kalman filter to smooth consecutive position estimates significantly reduces position
outliers, thereby enhancing localization accuracy. In future work, we plan to increase
the diversity of our training data and expand the evaluation scenarios by testing our
approach in various urban environments. Additionally, we will explore combining
model-based and data-driven methods to further enhance the generalizability and
robustness of our approach.
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APPENDIX: LIST OF ABBREVATIONS

Abbreviation Definition
2-D Two-Dimensional
3-D Three-Dimensional

3GPP 3rd Generation Partnership Project
5G Fifth Generation

AoA Angle of Arrival
AUSE Area Under the Sparsification Error

BS Base Station
CIR Channel Impulse Response
CSI Channel State Information
CTF Channel Transfer Function
DL Downlink
EPE Endpoint Error

FCNN Fully Connected Neural Network
GNSS Global Navigation Satellite Systems
KNN K-Nearest Neighbors

Lr Learning Rate
LoS Line-of-Sight
MC Monte Carlo
ML Machine Learning

MSE Mean Square Error
NLL Negative Log Likelihood
NLoS None Line-of-Sight

NR New Radio
OFDM Orthogonal Frequency Division Multiplexing
PRB Physical Resource Block

PRSG Physical Resource Blocks Sub Groups
RbC Regression-by-Classification
Rel Release

RMSE Rooted Mean Square Error
RX Receivers

SNR Signal-to-noise Ratio
SRS Sounding Reference Signal
ToA Time of Arrival
TDD Time-division Duplexing

TDoA Time Difference of Arrival
Tx Transmitters
UE User Equipment
UL Uplink
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“Survey of Cellular Mobile Radio Localization Methods: From 1G to 5G,”
IEEE Commun. Surv. Tutor., vol. 20, no. 2, pp. 1124–1148, 2018, doi:
10.1109/COMST.2017.2785181.

168 Paper V ©2024 IEEE



[8] A. Grenier, E. S. Lohan, A. Ometov, and J. Nurmi, “A Survey on Low-Power
GNSS,” IEEE Commun. Surv. Tutor., vol. 25, no. 3, pp. 1482–1509, Jan. 2023,
doi: 10.1109/comst.2023.3265841.

[9] A. Hu, T. Lv, H. Gao, Z. Zhang, and S. Yang, “An ESPRIT-Based Approach
for 2-D Localization of Incoherently Distributed Sources in Massive MIMO
Systems,” IEEE Journal of Selected Topics in Signal Processing, vol. 8, no. 5,
pp. 996–1011, Oct. 2014, doi: 10.1109/JSTSP.2014.2313409.

[10] X. Zeng, F. Zhang, B. Wang, and K. J. R. Liu, “Massive MIMO for High-
Accuracy Target Localization and Tracking,” IEEE Internet of Things Journal,
vol. 8, no. 12, pp. 10131–10145, Jun. 2021, doi: 10.1109/jiot.2021.3050720.

[11] X. Li, E. Leitinger, M. Oskarsson, K. Åström, and F. Tufvesson, “Massive
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approach presented introduces a precise, attention-based prediction model that derives
the entire downlink transmission chain in a commercial grade 5G system. The predicted
downlink beams are specifically tailored to handle the complexities of none line-of-sight
environments known for high-dimensional channel dynamics and scatterer-induced signal
variations. This novel method introduces a paradigm shift in utilizing environmental and
channel dynamics in contrast to conventional procedures of beam management, which
entails complex methods involving exhaustive techniques to predict the best beams. The
presented beam prediction results demonstrate robustness in addressing the challenges
posed by signal-dispersive environments, showcasing great potential in mobility scenarios.

Index Terms

Beam Management, Beam Prediction, Beamforming Weights, 5G New Radio, Self-
Attention, Sounding Reference Signal.

I. INTRODUCTION

Beamforming is a signal processing method that directs radio energy through the
channel toward a targeted receiver. Massive multiple-input multiple-output (MIMO) is an
advanced antenna technology that provides high flexibility in beamforming due to the many
radio frequency chains it employs [1]. By adjusting the phases and amplitudes, the system
can create constructive interference in the desired area and destructive interference in others.
This approach enables focused beams toward specific receivers, enhancing signal strength
and providing greater spatial diversity and multiple data streams. To sustain effective beam-
forming, especially with moving users, the system requires precise channel state information
(CSI), which reflects the current characteristics of the communication channel between
the transmitter and receiver. Beamforming performs best in line-of-sight (LoS) scenarios,
where there is an unobstructed path between the transmitter and receiver. In contrast, None
LoS (NLoS) scenarios, such as urban environments with numerous obstructions, present
significant challenges. In these cases, as users or obstacles move, signals often reflect
off surfaces, resulting in multipath propagation, which demands advanced algorithms and
precise CSI processing to dynamically match the instantaneous multipath propagation. This
makes it particularly difficult to maintain accurate real-time CSI estimates for multiple
beams, especially in scenarios involving high-mobility users such as vehicles. In NLoS
environments with rapid changes or where CSI is noisy or incomplete, a reduced beam
set allows the system to focus on the most reliable beams or those contributing the most
signal energy, rather than trying to support numerous weak or scattered beams. Prediction
of the strongest beams and beam reduction are closely interrelated, as both help to improve
5G beam management (BM) [2]. They are recognized as resource optimization strategies
in MIMO systems, aiming to minimize the number of active beams or spatial streams
employed during transmission or reception.
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Recently, advances in machine learning (ML) and artificial intelligence (AI), particularly
deep neural networks (DNNs) such as transformer models introduced [3], have emerged as
powerful tools to tackle a wide range of tasks. Originating in natural language processing
(NLP), transformers utilize a unique mechanism known as self-attention, enabling them to
capture long-term dependencies more effectively than traditional recurrent neural networks
(RNNs). This makes transformers especially suitable for analyzing long sequences in time
series data, such as CSI measurements influenced by UE mobility patterns and surrounding
scattering characteristics in wireless environments. In this paper we study beam prediction
in 5G NR systems based on attention models and channel fingerprints.

The rest of the article is organized as follows: the next section outlines the motivation
for this study and provides an overview of key ML/AI applications in BM within 5G
communication systems. Subsequently, we propose a transformer architecture with an
attention-based model tailored for BM, with a focus on downlink beam predictions. Finally,
we evaluate the performance of the proposed model with a particular emphasis on long-term
beam prediction in demanding NLoS environments.

In wireless systems, coherence time refers to the period during which the channel
impulse response or the transfer function, both with respect to phase and amplitude, remain
relatively stable. Hence, CSI acquisition must be processed at millisecond level to track
channel dynamics during mobility under varying environmental conditions. In legacy BM
techniques, primarily employed in millimeter-wave (mmWave) communications, the base
station (BS) transmits reference signals (RSs) and configures UEs to measure and report
them. These measurements, along with associated reporting, impose significant overhead, a
challenge that becomes particularly pronounced in dynamic and dispersive NLoS scenarios.
Predictive methods, such as AI-assisted beam predictions, present a promising solution to
reduce the reliance on continuous RS transmissions and measurements, addressing the
limitations of traditional parametric models and solutions to meet the required capacity
and performance improvements [4]. Furthermore, conventional mathematical approaches to
beam management often rely on idealized assumptions, such as pure additive white Gaus-
sian noise, which may not accurately reflect real-world conditions [5], creating opportunities
for AI/ML models to capture and model complex nonlinear factors effectively. Advances
in AI and ML have introduced a transformative perspective to 5G NR standardization
[6] [7], particularly through Release-18 [8], which explores AI/ML-driven approaches
to address scalability issues of MIMO systems such as increased antenna array sizes.
The authors of [9] and [11] provide an overview of current standards in relation to
AI / related to AI / ML techniques. Many of the suggested methods replace traditional
sequential beam sweep with predictive algorithms operating in the temporal and spatial
domains; detailed insights are provided in [12] - [14]. Key use cases, such as CSI feedback,
beam management, and positioning, capitalize on the channel’s temporal stability within
the coherence time to reduce complexity. Recent research demonstrates the feasibility of
short-term beam predictions using variations in the angles of arrival (AoA) and departure
(AoD) in mobile environments. Hybrid approaches [15] - [19] leverage prior low-frequency
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channel information to predict optimal mmWave beams, reducing training overhead. In
general, these approaches illustrate how the use of spatial channel characteristics in the
sub-6 GHz band can simplify the complexity of the mmWave beam prediction encountered
at mmWave frequencies. Different cross-domain approaches are also proposed in [20],
using LidarDAR sensors to improve time-domain beam prediction, while the authors of
[21] employ multipoint radar sensing to enhance beam tracking.

However, most recent BM studies rely on simplified LoS-dominant scenarios, often
using simulated data as input of AI/ML models. In LoS environments, the best beam
generally remains stable, suggesting that beam predictions could feasibly extend beyond
coherence time if the UE follows a predictable movement trajectory. Another significant
aspect is the fact that short-term prediction faces limitations: coherence regions typically
span only a few decimeters or centimeters, depending on the frequency band, restricting
prediction to brief intervals. We foresee advantages in longer-term beam predictions, where
fingerprinting approaches can be explored by leveraging spatial and historical data patterns
that indirectly incorporate AoA and AoD information through high-dimensional features.
While fingerprinting is well-suited for stable and predictable radio channel environments, it
requires robust augmentation with adaptive algorithms to handle the complexities of NLoS
and dynamic scenarios effectively. However, in dispersive, NLoS environments even when
the UE’s trajectory is approximately known, the optimal beam prediction becomes highly
sensitive to precise UE locations, often down to fractions of a wavelength.

Since the UE position inherently correlates with the best beam, this spatial information
becomes a key factor in our prediction. The proposed attention-based solution adaptively
learns the features of the measured UL channel and captures the features of the propa-
gation characteristics, such as UE locations and surrounding environmental structures. In
subsequent sections, we compare the energy efficiency based on the beam predictions of
the proposed attention-based model. This involves evaluating the total energy of the full
beam array against the energy represented by the predicted subset, providing insights into
how efficiently the subset captures the beam energy relative to the entire array.

A. Contributions
• We present an accurate attention-based model for beam prediction that utilizes UL

channel estimates from a commercial 5G system to derive the entire DL transmission
chain, specifically tailored to handle the complexities of NLoS environments.

• The novel approach introduced here enables accurate beam prediction far beyond the
coherence time by utilizing high-dimensional fingerprinted features. These features
predict temporal changes in the AoA and AoD, offering a more robust solution for
dynamic and complex wireless environments.

II. SYSTEM MODEL AND PROBLEM FORMULATION

In our single-user massive MIMO setup, the BS uses orthogonal frequency division
multiplexing (OFDM) with F subcarriers. At time t, the UE transmits an SRS pilot
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signal using MUE antennas. The BS has MBS antennas, evenly split between vertical and
horizontal polarization. Furthermore, let P denote the number of multipath components,
τp,t represent the time delay for the p-th path between the UE and BS, and αp,m,t indicate
the complex coefficient of the p-th multipath component at time t. UE transmits a pilot
signal that reaches the BS antenna array at an azimuth arrival angle ϕp and an elevation
angle θp for the p-th multipath component, respectively. All vertically polarized antennas
are used to form MV t

bm beams, with the response of the i-th beam given by βV,i(ϕp, θp, f),
where f represents the pilot signal frequency. Similarly, horizontally polarized antennas
generate MHz

bm beams, with the response of the i-th beam defined as βH,i(ϕp, θp, f). The
total number of beams is Mbm = MV t

bm +MHz
bm . Consequently, for the m-th UE antenna

the propagation channel model at time t for each beam is:

hV,i,m,t(f) =
P∑

p=1

βV,i(ϕp, θp, f)αp,m,te
−j(2πf τp,t)

hH,i,m,t(f) =
P∑

p=1

βH,i(ϕp, θp, f)αp,m,te
−j(2πf τp,t).

(1)

By aggregating hV,i,m,t(f) and hH,i,m,t(f) from the F subcarriers, we construct two
channel transfer functions (CTF), HV,m,t ∈ CMV t

bm×F and HH,m,t ∈ CMHz
bm ×F representing

the vertical and horizontal polarized antennas, respectively, at time t. These matrices are
strongly influenced by the UE’s position, making them effective raw channel fingerprints
for predicting DL beamforming weights, as the beam direction explicitly depends on
the UE’s location and implicitly on the CSI. Finally, for all UE antennas, the com-

bined channel matrice is HUL,t ∈ CN×F =
[
HT

H,1,t,H
T
V,1,t, ...,H

T
H,MUE,t

,HT
V,MUE,t

]T
, where

N =MUEMbm. In the subsequent stage of the signal processing chain in a time division
duplex (TDD) system, the beamforming weights are determined using minimum mean
square error (MMSE) channel estimator algorithm (2). These algorithms are designed to
optimize the signal strength in the desired direction while minimizing interference. In a
system with MBS antennas, the DL CTF can be estimated using the complex conjugate
of the UL channel matrix, exploiting the reciprocity principle inherent in TDD systems,
ĤDL = H∗

UL.
ĤDL = (HH

ULHUL +σ2I)−1HH
UL. (2)

where HH
UL denotes conjugate transpose of the channel matrix, σ2 noise variance, and I

identity matrix.

The MMSE calculation detailed in (2) is computationally intensive. In practice, only
a small subset of beamforming weights in the matrix HDL constitute beams that account
for the majority of the beamforming energy. Predicting the strongest beams for future time
instances can help reduce both energy consumption and computational load. However, it
is challenging to accurately predict HUL and eventually HDL for future time instances,
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especially when the time gap exceeds the channel coherence time. This is because the
further the prediction is, the more difficult it becomes to model the channel dynamics with
high precision. This drives the need to explore non-traditional approaches, such as AI-
based algorithms, to predict the strongest beams in advance. The proposed attention-based
model learns a functional relationship ψ = f(HUL,t,∆t), where ψ ∈ Rn represents the n
strongest beams in the predicted matrix ĤDL, and ∆t denotes the time difference between
current and future snapshots.

III. METHODOLOGY

CSI acquisition in time TDD systems can benefit from channel reciprocity, meaning
that the uplink (UL) and downlink (DL) channels are related since both use the same
frequency band. This allows for estimating the CSI on the UL and applying it to the
DL beamforming. For example, a BS equipped with 64 transceivers can leverage a single
uplink pilot to estimate the full 64-dimensional channel across the entire bandwidth. This is
facilitated by the transmission of sounding reference signals (SRS) from the multiantenna
UE, enabling the BS to estimate the DL channel and compute DL beamforming weights
(BFWs). These weights, represented as complex coefficients, are applied to the BS’s MIMO
antenna elements to control signal direction and shape by adjusting the amplitude and phase
of the DL signal.

A. Dataset collection
To enable TDD-based downlink beam prediction using UL SRS channel estimates, a

commercial grade 5G BS was used, compliant with 3GPP standards [22] - [29] for radio
resource management, physical layer considerations and beam measurement procedures.
The BS operated at a center frequency of 3.85 GHz with a bandwidth of 100 MHz and
was equipped with a rooftop-mounted phased array antenna module (PAAM) comprising
64 cross-polarized antenna elements. A 5G-capable UE was kept connected while simulta-
neously downloading data at a sustained rate of 750 Mbit/s to maintain continuous UL SRS
transmission throughout the measurements. The baseband unit of the BS processed the time-
varying SRS reports to extract channel estimates, operating initially in the antenna element
domain. The SRS data received, represented as complex samples, underwent additional
unpacking from 16-bit floating-point format to 2xSQ15. The pre-processing steps included
undoing the normalization of the SRS channel estimates averaged over the physical resource
blocks (PRB) pairs to derive estimates for each PRB and beam. Finally, the processed SRS
samples were transformed into the beamspace domain using a fast Fourier transform (FFT),
producing a time series of beam measurements.

The measurement campaign encompassed two distinct propagation scenarios, LoS and
NLoS, as illustrated in Fig. 1, as these provided a range of challenging environments to
evaluate the proposed approach. Data collection was performed on these two approximately
rectangular routes. Each route was repeated over five laps, serving as baselines for analysis.
All measurements were performed using a test vehicle moving at a steady velocity of
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Fig. 1. A BS placed at a 20 m high rooftop. SU-MIMO scenario was tested in the two
pre-defined measurement routes: A: The roof of a 10 m high garage building was used for
LoS propagation measurements with a strong dominant path along the entire route. B: A
ground-level route where the signals reflect off multiple surfaces and surrounding buildings
block the signal causing NLoS propagation.

15 km/h (4.2 m/s). The approach of comparing two fundamentally opposite propagation
scenarios serves to establish a simplified baseline with the LoS scenario while contrasting
it with the more complex NLoS scenario. The NLoS scenario introduces a non-trivial
relationship between the UE trajectory and the scatterers, collectively influencing the
optimal beam direction. The prediction method relies on repetitive UE movement paths,
emulating a car traveling along a road or a robot/machine following a specific route
in a factory setting. These scenarios provide consistent movement patterns that can be
effectively captured during model training and utilized during inference, allowing the model
to represent the dominant candidate beam paths. However, it is important to note that the
optimal beam may still vary between different movement realizations during inference.
However, in practice, most commercial site deployments exhibit predictable UE movement
patterns due to the static nature of the surrounding environment, which further supports
the feasibility of this approach.

B. Signal Processing Framework
This section outlines the BS processing of the UL SRS channel estimates, which

form the primary training data set. The BS handles a time series of SRS measurements,
representing the angular delay spectrum of the radio channel in the beam domain. Simul-
taneously, a parallel computation determines the corresponding DL BFWs using MMSE-
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based algorithms, as described in Section II. In this study, the UL SRS data serve as the
input for the Attention-aided model, while the prediction task focuses on the generated DL
beams, as detailed in the following chapters. As illustrated in Fig. 2, the UL SRS channel
estimates span 273 PRBs within a 100 MHz bandwidth. Each channel snapshot includes
data for all 64 beams across these PRBs, based on an SRS reporting interval of 20 ms. To
reduce complexity, the PRBs are grouped into adjacent pairs, with the average value of each
pair calculated by downsampling. This process results in 137 PRB subgroups (PRSGs).
Further refinement is achieved by grouping every three consecutive PRSGs, where the first
PRSG is downsampled, and the second and third are interleaved. This approach ultimately
yields 46 PRSGs. The UE, equipped with four antennas (corresponding to four UE layers),
is responsible for transmitting the SRS pilot signals. The SRS pilots recorded from all
four UE layers form CTF matrices H1,H2,H3,H4 ∈ CN×F . The matrix H′ ∈ C4N×F

contains all four matrices, specifically H′ = [HT
1 ,H

T
2 ,H

T
3 ,H

T
4 ]

T . After further processing,
the final 20-ms-based CTF snapshot is structured with 4 x [4 x 46] dimensions, representing
amplitude instances. This data is collected for the 64 BS antennas and four UE layers in
46 PRSGs, as illustrated in Fig. 2.

Obtaining uplink UL SRS channel measurements in a commercial 5G BS introduces
significant challenges, particularly when working with large, complex data structures like
SRS measurement samples. These measurements, generated at millisecond intervals, are
typically confined to the baseband unit of the BS for internal operations, with external
access often limited by hardware and software restrictions. Moreover, since not all PRSG
values are updated during UL SRS transmissions, it becomes essential to account for and
address missing channel estimate values. To ensure the reliability of the collected UL
CTF, the processing pipeline must include mechanisms to verify the validity of input data
and handle incomplete PRSGs effectively. SRS channel estimates are classified as valid
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Fig. 2. Beamforming weights generation based on SRS channel estimates.
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only if all PRSGs and UE transmit antennas have successfully transmitted SRS during a
given discontinuous reception (DRX) cycle. Each PRSG comprises two PRBs, so channel
estimates are derived by averaging the PRB pairs for every PRSG and beam. Validation
of the raw UL CTF matrix involves a two-step process. The matrix is deemed invalid if
it meets any of the following criteria based on the number of missing subcarrier samples
(represented as zero elements):

• Insufficient CSI snapshots in the beam and frequency domain: the number of non-zero
elements in Ht is lower than a given threshold of 60%.

• Updating procedure stalling: The values at all sub-carriers or all beams remain the
same compared to the previous reporting interval.

Note: In cases where the UL CSI was determined to be insufficient, the calculation of
DL BFWs was halted.
After discarding all invalid data, the next step is to process the raw UL CTF to generate
impulse response beam matrices. To suppress the side lobes, we apply Hann windowing
in all rows of the matrix Ht to obtain matrix Ĥt ∈ CN×F . The F -length Hann window in
the frequency domain is given by:

w[f ] = sin2
(
πf

F

)
, f = 0, . . . , F − 1. (3)

After the windowing operation, the impulse response beam matrix Gt is produced by
performing the inverse discrete Fourier transform along each row of Ĥt. Given the potential
difficulty in achieving a stable phase for Gt, here we opt to use its amplitude |Gt| as the
training feature, although this means discarding potentially useful information.
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Digital beamforming involves the adjustment of antenna weights during the digital
baseband processing. The independently calculated DL BFWs are applied to the downlink
signal after transforming them from the beam domain to the antenna domain. In this process,
each antenna in the array is assigned a specific phase and amplitude as determined by the
computed weights. The PAAM explained above generates a grid-of-beams (GoB), forming
a structured set of beams that span the coverage area. Each beam represents a spatially
focused transmission or reception pattern, enabling efficient signal delivery to or from
specific UE locations. As illustrated in Fig. 3, the GoB structure yields 64 distinct beams,
providing precise control over the signal direction and maximizing spatial selectivity.

IV. TRANSFORMER ARCHITECTURE

The transformer architecture, introduced in [3], has served as the foundation for nu-
merous state-of-the-art models in natural language processing, thanks to its ability to
effectively process input sequences and generate accurate output sequences. Unlike tra-
ditional methods that analyze tokens sequentially, transformers relate each token to all
others within a sequence. Their self-attention mechanism replaces sequential processing
with parallel computation, distinguishing them from recurrent neural networks (RNNs) [30]
and convolutional neural networks (CNNs) [31]. Using parallelism, transformers efficiently
capture long-range contexts and dependencies across distant positions in input or output
sequences.

The transformer is a deep neural network (DNN) model [32] composed of multiple
layers with a uniform architecture. These layers are organized into stacks that differ from
those in classical DNN models. Each stack, which can function as an encoder or a decoder,
operates from bottom to top. The input and output sequences are transformed into vectors

Layer 1
FeedForward Network    

Self-Attention            

Layer n
FeedForward Network

Self-Attention            

Input embedding

Multi-Head
            Attention            

FeedForward 

Add + Normalization

Add + Normalization

Positional encoding

Residual

Residual

Fig. 4. A stacked architecture of computational encoder layers. The proposed model deploys
3-layer architecture.
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of dimension d through embedding and positional encoding layers. Each layer sequentially
passes its learned representations to the next layer until the final prediction is achieved.
In particular, each layer comprises sublayers, all of which share an identical structure
across different layers, enhancing hardware optimization. In its original design, the trans-
former includes two key sublayers: a self-attention sublayer and a feedforward network,
as depicted in Fig. 4. The self-attention sublayer is further divided into n independent and
identical components, called heads. The transformer architecture was originally designed
for sequence-to-sequence tasks such as machine translation, and both encoder and decoder
blocks were soon adapted as standalone models. Although there are hundreds of different
transformer models, most of them belong to one of three types; encoder-only, decoder-only
or encoder-decoder. In this study, we chose the encoder-only architecture to predict the best
beams.

A. Input Embedding
The input embedding sublayer converts the input tokens to vectors of dimension dmodel.

Many embedding methods can be applied to the tokenized input. The later proposed model
applies a simple lookup table that stores embeddings of a fixed dictionary and size. This
module often stores word embeddings and retrieves them using indices. The input of the
module is a list of indices, and the output is the corresponding word embeddings.

B. Positional Encoding
The idea behind positional encoding (PE) is to preserve sequential information in the

input data sequence. This is achieved by adding value to the input embedding instead
of having additional vectors to describe the position of a token in a sequence. Positional
embedding provides sine and cosine functions that generate different frequencies for the
PE for each entry i of the dmodel entries in the PE vector:

PE(pos 2i) = sin

(
pos

100002i/dmodel

)

PE(pos 2i+ 1) = cos

(
pos

100002i/dmodel

)
.

(4)

The sine function is applied to the even numbers and the cosine function to the odd numbers.
These vectors follow a specific pattern that the model learns, which helps it determine
the position of each token or the distance between different tokens in the sequence. In
addition, positioning ensures meaningful distances between the embedding vectors once
they are projected via dot-product operations in the attention mechanism.

C. Encoder Stack
As shown in Fig. 4, the encoder consists of a stack of n layers, each comprising two

primary sublayers: a multihead self-attention block and a position-wise fully connected
feed-forward network. To facilitate deeper models, a residual connection is applied around
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each of these sublayers, followed by layer normalization. Specifically, each sublayer, de-
noted as sublayer(x), includes a residual connection that transports the raw input x of
the sublayer directly to the normalization function of the layer. This ensures that critical
information, such as positional encoding, is preserved throughout processing. The output
dimensions of all sublayers, as well as embeddings, are of size dmodel which has a significant
consequence, for example, all key operations are dot products. As a result, the dimensions
remain stable, which reduces the number of operations.

D. Self-Attention
At the core of Transformers lies the self-attention mechanism. The input of a Trans-

former consists of a sequence of contiguous tokens, each represented as a vector in an
embedding matrix. As part of the self-attention process, three projection matrices Wq, Wk,
and Wv transform each input embedding vector into three distinct vectors: the Query, Key,
and Value. For each token, its corresponding Key vector is compared to the Query vectors
of all other tokens by computing dot products. This calculation provides a measure of
similarity between Queries and Keys, forming the foundation of the attention mechanism.
A Softmax function is then applied to normalize these similarity scores, amplifying the
most relevant relationships. The softmax function is defined as below (5)

Attention(Q,K,V) = softmax
(
QK⊤
√
dk

)
V, (5)

where Q, K and V are representation matrices. In addition, dk represents the dimensionality
of the Key vectors and

√
dk is a scaling factor to prevent large values in the dot product.

The softmax expression on the right-hand side of equation (5) normalizes the similarity
scores into probabilities. The resulting matrix, known as the self-attention matrix, captures
the contextual relationships between the tokens. This process is performed multiple times
in parallel, using several independent sets of projections, resulting in a multi-head atten-
tion layer that enhances the model’s ability to capture complex patterns across the input
sequence.

V. PROPOSED TRANSFORMER FRAMEWORK

The implemented Transformer model deploys a 3-layer, encoder-only architecture to
predict the time series of DL beams based on UL SRS channel estimates. The paired data
sets consist of the input UL channel impulse response (CIR) data, fed into the encoder,
and the corresponding DL beam TF serving as the target dataset, described in detail in
Section IV. The model is trained by minimizing the error between the encoder’s output
and the target DL beams. The input data, represented as the UL CIR beam matrix Gt ∈
CN×F , provides amplitude values used as input of a DNN equipped with an attention
mechanism, while Bt ∈ CN×F represents the DL TF. The attention-based model processes
the input sequence to produce a rich numerical representation optimized for translating
UL SRS channel estimation data into DL beam predictions. The architecture leverages
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bidirectional attention, where the representation of a given token considers both preceding
and succeeding tokens in the sequence. This property is particularly well-suited for time-
series data, as it captures the temporal dependencies in channel measurement sequences
effectively. The attention-based beam prediction pipeline, as described in Fig. 5, consists
of an encoder-only deployment that comprises multiple attention-aided blocks, followed by
an output layer that employs a loss functions, namely the Mean Square Error (MSE). We
use ηi = [ηbm1,i, ..., ηbm64,i]

T to represent the CTF of the DL beam as the ground truth of
the moving UE at position i. This approach directly estimates the 64 DL beams by setting
a regression head in the output layer of the last attention block. Let fMSE(.) denote the
overall function and vector θ2 all hyperparameters, ηi = [ηbm1,i, ..., ηbm64,i]

T the estimated
i-th 64-sized beam set generated by fMSE(θ2, |Gt|), the loss ℓ can be expressed as

ℓ =
1

Ntrain

∑

i∈Ω′
train

||ηi − η̂i||2F , (6)

where Ω′
train and Ntrain denote the training set and the number of training samples,

respectively, and ||.||F denotes the Frobenius matrix norm.
As illustrated in Fig. 5, an attention head operates in two key steps. First, as detailed

in Section IV, the attention mechanism computes the keys K and queries Q from the input
data. This process evaluates the relevance of each query vector Q with respect to all key
vectors K, generating an energy score that reflects their importance. Or, simply explained
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how much attention should a token pay to another token in the input sequence. A Softmax
transform normalizes and further accentuates the high similarities, and the resulting matrix
is called self-attention.
Next, the mechanism introduces a separate feature representation vector called values V
that is combined with the attention weights (calculated from the dot products of Q and
keys K) to produce the so-called hidden states. These hidden states represent a weighted
sum of the values, highlighting the most relevant information. Notably, Q, K and V are all
derived from the same input sequence, ensuring that the attention mechanism captures a
rich and comprehensive representation of the data. The process is repeated multiple times
with multiple attention layers, resulting in a multi-head attention layer. The final hidden
states are combined into final hidden states by using a linear layer.

VI. RESULTS AND DISCUSSION

This section evaluates the AI-based prediction pipeline. We start by assessing the
data cleaning process to ensure the retention of sufficient channel information. Next, we
assess the beam energy by quantifying the predicted DL beamforming performance. This
involves analyzing the energy distribution within the selected beam subsets across different
prediction time horizons, providing information on the effectiveness of the prediction model
in maintaining energy efficiency and accuracy over time.

A. Single snapshot channel represenatation
As detailed in Section III-A, the BS recorded channel snapshots for two propagation sce-

narios, LoS and NLoS, resulting in T 1 = 22000 and T 2 = 24603 snapshots, representing
time instances, collected on a 20 ms time resolution basis. These snapshots are structured
into two tensors, ALoS ∈ CT 1×N×F and ANLoS ∈ CT 2×N×F , where each subset of four
adjacent snapshots corresponds to the signals transmitted by four UE antennas (layers).
Each tensor is normalized by multiplying with a scalar such that its Euclidean norm is equal

TABLE I. Architectural overview of the proposed encoder-only model.

Model entity Network Structures or Parameters
Input Features Amplitude of CIRs for all beams

Network Output Estimated DL TF for all beams
Intermediate block 1 Residual 3-head Self-Attention Layer
Intermediate block 2 Residual Position-wise FCNNs
Intermediate block 3 3 cascaded ordinary FCNNs

Encoder layers 3
dmodel 46

Batch size 64
Optimizer Adam

Learning Epochs 2500
Time Complexity NF 2
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TABLE II. Overview of the last FCNN sub-block.

Model entity Dimensions
Input layer size 2944× 1
Hidden layer 1 2944× 64
Hidden layer 2 64× 32
Hidden layer 3 64× 64
Cost function (6)

to TiMN , where i = 1, 2. Following the validation of the input channel snapshot described
in Section III-B, a single UL CTF matrix instance Ξ instance ν applies a cut threshold of
approximately 60%, yielding 1766 of the 2944 (64×46) components, corresponding to 64
BS antennas in 46 PRSG. This ensures that adequate channel information is retained. The
amplitude of the UL CIR beam matrix, |Gt|, is then derived and passed to the attention-
aided prediction block. The prediction block architecture, described in Table I, comprises
three cascaded sub-blocks, providing the foundation for downstream processing. Initially,
position encoding is applied to |Gt| as described in (4), followed by layer normalization.
The normalized matrix is then fed into three parallel self-attention blocks, each comprising
a single self-attention layer, as illustrated in Fig. 5, to produce the output matrix Z via
(5). These multi-head attention layers process a sequence of size T (single snapshot), with
each head projecting the feature dimensions 1766 into smaller subspaces to compute the
query Q, key K, and value V representations. After the Add & Normalization process,
as depicted in Fig. 4, the output is transferred to the second sub-block, consisting of two
position-wise fully connected neural networks (FCNNs) with sizes W1 ∈ 46 × 64 and
W2 ∈ 64× 46. Following this, the output matrix of the second sub-block is vectorized to
produce a vector of original length 2944. This vector is fed into the last FCNN sub-block,
with sizes defined in Table II. This entire computational process is repeated across all three
layers of the encoder block, adhering to the architecture depicted in Fig. 4.

As detailed in Section V, the model uses a paired dataset, where the input UL CIR
data is processed by the encoder and the corresponding DL beam TF, |Bt|, serves as the
ground truth. The model training optimizes, via Adam optimizer, the encoder’s output by
minimizing the error relative to the target DL beam TF. The model’s final predicted output
represents the beam energy levels across all 46 PRSG subcarriers and 64 antennas of the
BS. It encapsulates the total energy distribution across the frequency and spatial domains
and reflects the combined radiated energy output of the beamforming system, integrating
contributions from each antenna and subcarrier.

B. Beam Energy Evaluation Methodology
The cumulative power across the predicted beam subset is the main subject of investiga-

tion to predict the total power expected in a series of predicted beams. In this study, instead
of ranking the beams by their indices, we focus on selecting the strongest beams within

Paper VI ©2025 IEEE 189



each subset, meaning the indices of the predicted strongest beams may not always align
with those in the ground truth dataset. Ranked by their expected power (e.g., strongest to
weakest), the cumulative power is the sum of the power contributions of individual beams
in a beam subset is defined as

Pcumulative(n) =
n∑

i=1

Pi, (7)

where Pcumulative(n) is the cumulative power of the first n predicted beams, and Pi is the

T0

ESTIMATION PREDICTION WINDOW

            AI 
           

t

SRS CIR

T1 Tn T+20ms T+40ms T+n ms

Predicted Strongest BeamsEstimated Strongest Beams

BFW CTF

Fig. 6. Subsets of n strongest beams are selected for future transmission from the predicted
beam-domain set.

power of the i-th beam. This cumulative metric can help quantify how well the predictions
capture the total power available in the full set of beams, providing insights into how quickly
the cumulative power saturates with increasing beams and helping determine the optimal
subset size for energy-efficient operation. When comparing the energy of the complete set
with a subset, N , to a subset n, where n ∈ N , discrete subsets of beams are selected
with sizes n = [4,8,16,32]. Here, N represents the total energy from all beams within the
antenna system, serving as a benchmark for evaluating the energy output. This approach
enables a systematic assessment of the trade-offs between beam subset size and energy
efficiency while maintaining the predictive accuracy of the system. The energy of the best
beams predicted by the suggested attention-based model, with its concept shown in Fig 6,
is associated with the location of the UE. Determining the significance of the subset relative
to the whole is valuable for beam prediction, which is highly related to the mobility of
UE and scatterers.

In commercial deployments, threshold levels can be used to define the minimum beam
subset size corresponding to the optimal energy levels, allowing the subset size to adapt
dynamically rather than being restricted to the predefined discrete sizes considered in this
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study.
Statistical measures reduce extensive data sets to a single value, offering only one

perspective on model errors by emphasizing specific aspects of model performance. To
evaluate the performance of the proposed attention-assisted model, which uses time series
data as input, we selected percentage-based error metrics such as the mean absolute
percentage error (MAPE) (8) and the weighted mean absolute percentage error (WMAPE)
(9). MAPE quantifies the average magnitude of the error, while WMAPE, a variant of
MAPE, adjusts the error calculations by incorporating real values or weights.

MAPE =
1

n

n∑

i=1

| yi − ŷ |
|yi|

× 100% (8)

WMAPE =

∑n
i=1 |yi − ŷi|∑n

i=1 |yi|
× 100% (9)

C. Evaluation of Estimation Results
While the primary focus of this study is to enhance BM by predicting sets of best

beams, we also underscore a significant capability of the proposed model: the accuracy
of DL transfer functions estimation via BFWs generated by the MMSE algorithm. As
described earlier, BFWs are applied to the base station’s MIMO antenna elements to shape
and steer the signal by adjusting its amplitude and phase in the DL. Fig. 7 illustrates the high
accuracy of the attention-based model in the LoS (right) and NLoS (left) scenarios. This
result establishes a solid foundation for precise beam prediction in the DL. Furthermore, it
highlights an important capability to generate BFWs, traditionally computed within the base
station’s baseband hardware, a process known for its intensive computational and hardware
resource demands. These requirements are particularly challenging in multi-user MIMO
scenarios, where the computational complexity grows linearly with the number of antennas
at both the base station and user equipment. The NLoS results underscore the importance
of focusing on a beam set, given the significant reduction in total energy caused by the

Fig. 7. LoS/NLoS comparison: Beam energy contributions of the estimated subsets relative
to the total test data.
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dispersive characteristics of NLoS propagation. Moreover, it provides valuable information
to establish suitable energy threshold levels to guide beam prediction strategies effectively.

D. Evaluation of Prediction Results
The attention-based model enables long-term prediction of best beam candidate subsets

for UEs following predictable movement paths, leveraging historical SRS data transmitted
by the UE in the UL. These predictions extend over timelines spanning multiple sec-
onds, equivalent to several hundred wavelengths. This allows for simplifying the BM
procedure for future time instances by allocating BM CSI-RS resources and configuring
UE measurements solely for the beam subset identified by the prediction algorithm. As
described in Section III-A, the NLoS scenario involves numerous scatterers with varying
locations, sizes, and shapes, creating a high-dimensional feature space. These scatterers
collectively influence the optimal beam direction, making it challenging to accurately
model the complex scattering characteristics. However, the proposed model exhibits strong
prediction accuracy, particularly for larger beam subsets, such as n = 16, 32, ranked
according to their expected power (e.g., strongest to weakest), the power in the weakest
beams is expected to be very low compared to the cases of n = 4, 8, as Fig. 8 and
Fig. 9 illustrate. The latter observation is particularly emphasized in Fig. 9 (d), where
the attention model exhibits reduced prediction accuracy for larger beam subsets, such
as 16 and 32 compared to Fig. 9 (a) for instance. This outcome is expected, given the
long-term perspective that extends well beyond the coherence time window, corresponding
to hundreds of multiples of λ-wavelengths. However, since these findings enable beam
prediction well in advance, they have the potential to fundamentally transform the way 5G
networks manage BM resources.

(a) 20ms, distance covered: 1.04λ (b) 40ms, distance covered: 2.08λ

Fig. 8. NLoS comparison: Beam energy contributions of the predicted subsets within short
prediction windows
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(a) 1000ms, distance covered: 52λ (b) 2000ms, distance covered: 104λ

(c) 10000ms, distance covered: 521λ (d) 15000ms, distance covered: 781λ

Fig. 9. NLoS comparison: Beam energy contributions of the predicted subsets within long
prediction windows

VII. CONCLUSIONS

We explored the application of transformers in massive MIMO beam prediction and
demonstrated their competitive performance using datasets derived from commercial 5G
systems. The proposed approach incorporates spatial and environmental factors, such as
multipath scattering and predictable movement patterns, enabling the model to maintain
high prediction accuracy even when temporal correlations diminish. This represents a
significant advancement in 5G beam management, showcasing accurate beam prediction
beyond coherence time, thereby overcoming the limitations of traditional methods con-
strained by coherence-time boundaries. The number of CSI-RS resources allocated for each
BM measurement and the CSI-RS reporting rate can be significantly reduced compared to
legacy BM operations. This reduction may enhance the DL spectral efficiency by preserving
resources for data transmission and/or mitigating interference in the DL. In addition, it helps
to meet the processing demands of the UE and improves the energy efficiency of the UE.
We acknowledge the repetitive nature of the selected UE trajectory and the UE antenna
orientation toward the BS, as the UE was firmly mounted on the roof of the test vehicle.
Although these factors reduced radio channel variations, the feasibility of attention-aided
models for long-term beam prediction is still demonstrated. Another important considera-
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tion is the computational complexity of transformer models, which may pose a limitation.
Thorough evaluation of their real-time performance is essential, and using fast GPUs or
specialized hardware can help minimize delays, ensuring efficient operation in commercial
deployments.
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