
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Articles on Random Normal Matrix Theory

Cronvall, Joakim

2025

Link to publication

Citation for published version (APA):
Cronvall, J. (2025). Articles on Random Normal Matrix Theory. [Doctoral Thesis (compilation), Mathematics
(Faculty of Sciences)]. Lund University.

Total number of authors:
1

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://portal.research.lu.se/en/publications/2523a7d1-ff6d-4637-b237-07e7dc6e7044


Articles on Random 
Normal Matrix Theory
JOAKIM CRONVALL 

Lund University
Faculty of Science
Centre for Mathematical Sciences
Mathematics

 –  CE N T R U M  S C I E N T I A R U M  M AT H E M AT I C A R U M  –



Articles on Random Normal Matrix Theory



Articles on Random Normal
Matrix Theory

Joakim Cronvall

DOCTORAL THESIS
Thesis advisors: Docent Yacin Ameur

Faculty opponent: Professor Kurt Johansson

To be publicly defended, by due permisson of the Faculty of Science of Lund University, on Friday, the 13th
of June 2025 at 13:00, in the Hörmander lecture hall, Sölvegatan 18A, Lund, for the Degree of Doctor of

Philosophy in Mathematics.



D
O
K
U
M
EN

TD
A
T A

BL
A
D
en

lS
IS

61
41

21

Organization

LUND UNIVERSITY

Centre for Mathematical Sciences
Box 118
SE–221 00 LUND
Sweden

Author(s)

Joakim Cronvall

Document name

DOCTORAL DISSERTATION
Date of disputation

2025-06-13
Sponsoring organization

Title and subtitle

Articles on Random Normal Matrix Theory

Abstract

In this thesis, we investigate the random normal matrix model in which the eigenvalues correspond to the two-
dimensional Coulomb gas at inverse temperature β = 2. The thesis consists of seven papers concerning different
aspects of the random normal matrix model. The main topics of the thesis are asymptotics of the correlation
kernel, fluctuations of linear statistics, asymptotics of the partition function and disk counting statistics. In partic-
ular, we investigate these topics in the setting of disconnected droplets, where interactions between the different
components must be taken into account.

Key words

Random normal matrix model, Coulomb gas, Orthogonal polynomials

Classification system and/or index terms (if any)

Supplementary bibliographical information Language

English

ISSN and key title

1404-0034
ISBN
978-91-8104-535-2 (print)
978-91-8104-536-9 (pdf )

Recipient’s notes Number of pages

417
Price

Security classification

I, the undersigned, being the copyright owner of the abstract of the above-mentioned dissertation, hereby grant to
all reference sources the permission to publish and disseminate the abstract of the above-mentioned dissertation.

Signature Date 2025-04-28



Articles on Random Normal
Matrix Theory

Joakim Cronvall

DOCTORAL THESIS
Thesis advisors: Docent Yacin Ameur

Faculty opponent: Professor Kurt Johansson

To be publicly defended, by due permisson of the Faculty of Science of Lund University, on Friday, the 13th
of June 2025 at 13:00, in the Hörmander lecture hall, Sölvegatan 18A, Lund, for the Degree of Doctor of

Philosophy in Mathematics.



Mathematics
Centre for Mathematical Sciences
Box 118
SE-22100 LUND
Sweden

Doctoral Theses in Mathematical Sciences 2025:2
ISSN: 1404-0034

ISBN: 978-91-8104-535-2 (print)
ISBN: 978-91-8104-536-9 (pdf )
LuNfMA-1047-2025

© 2025 Joakim Cronvall

Printed in Sweden by Media-Tryck, Lund University, Lund 2025



Contents

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
Populärvetenskaplig sammanfattning . . . . . . . . . . . . . . . . . . . . . . v
List of publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii
Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Paper I: Szegő type asymptotics for the reproducing kernel in spaces of full-plane

weighted polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Paper II: The two-dimensional Coulomb gas: fluctuations through a spectral gap 87
Paper III: Free energy and fluctuations in the random normal matrix model with

spectral gaps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
Paper IV: On fluctuations of Coulomb systems and universality of the Heine

distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
Paper V: Random normal matrices: eigenvalue correlations near a hard wall . . . 231
Paper VI: Exponential moments for disk counting statistics at the hard edge of

random normal matrices . . . . . . . . . . . . . . . . . . . . . . . . . . 283
Paper VII: Disk counting statistics near hard edges of random normal matrices:

the multi-component regime . . . . . . . . . . . . . . . . . . . . . . . . 347





Acknowledgements

First and foremost I would like to thank my supervisor Yacin Ameur. I am deeply grateful
for all the support, encouragement and patience you have shown me during these years.
Working with you has been a pleasure and I have learned a lot from you.

I would also like to thank my co-authors Christophe Charlier and Jonatan
Lenells for fruitful collaboration. A special thanks to Christophe for being my co-advisor
and for all help and advice over the years.

To my second co-advisor, Tatyana Turova, who has followed me from student to PhD. Your
guidance and kindness has meant a lot. I have always felt that I have your support, for that
I am truly grateful.

I would also like to thank my high school teacher, Roger Bengtsson, without whom I would
not have considered studying mathematics. I thank Hannes, Max and Thomas, for being
great friends during my time as a student.

I thank all the people at KU Leuven who made my stay there so pleasant. I look forward
to coming back.

I want to acknowledge all my friends and colleagues at the department and elsewhere. A
special thanks to Adem, Alexandru, Anna-Maria, Aron, Bartosz, Dag, Emil, Erik, Erik,
Eskil, Evgeniy, Frej, Germán, Giang, Jaime, Jan, Jonathan, Jörg, Marvin, Mats, Olof,
Samuele, Sandra, Stefano, Thanos, Tien, Tom, Valentina and Wilhelm.

To Jorge, Alex and Raul for all the time we spent together, you have been the best of friends.

Finally, I thank my family. My dad for all his love and support. My sister and brother who
mean everything to me, and my nephew and niece.

Joakim Cronvall
Lund, April 2025

iii





Populärvetenskaplig sammanfattning

Inom matematisk fysik studeras fysikaliska fenomen med hjälp av matematiska modeller.
Målet är att kunna förklara och förutsäga fysikaliska beteenden utifrån mer elementära
principer.

Coulombgasen är en sådanmodell. Den beskriver laddade partiklar som repellerar varandra,
men som hålls samman av ett yttre elektriskt fält. Om antalet partiklar är mycket stort
blir det matematiskt svårt att beskriva de enskilda partiklarnas beteende. Coulombgasen
behandlar i stället partiklarna som ett enda stort system och ger en sannolikhetsteoretisk
beskrivning av partikelsamlingen. Konfigurationer med låg energi tilldelas hög sannolikhet,
medan konfigurationer med högre energi är mindre sannolika.

I denna avhandling behandlas en modell av slumpmässiga normala matriser, vars egen-
värden motsvarar Coulombgasen i ett plan vid en viss temperatur. När antalet partiklar är
mycket stort så dominerar konfigurationer vars energi är nära den minsta möjliga. Coulom-
bgasen formerar sig då i en droppe i planet för att minimera energin.

Artiklarna i avhandlingen behandlar flera olika aspekter av Coulombgasen. Ett centralt
ämne i avhandlingen är korrelationer mellan partiklar. Det är känt att korreltationenmellan
partiklar på olika ställen inne i droppen är mycket liten. Nära droppens rand är däremot
situationen en annan, även partiklar på olika delar av randen känner av varandra. I denna
avhandling beskriver vi hur dessa randkorrelationer ser ut i olika situationer.

Formen på droppen som bildas beror på det elektriska fältet. I vissa fält så kan droppen
bestå av flera olika separerade komponenter. Partiklarna på de olika komponenterna kän-
ner fortfarande av varandra och antalet partiklar i de olika komponenterna kan fluktuera.
Beskrivningar av hur dessa fluktuationer ser ut är ett annat viktigt ämne i avhandlingen.
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Preface





1 Introduction and background

The topic of this thesis is the random normal matrix model or the Coulomb gas
model in the determinantal case (i.e. at inverse temperature β = 2). Before
discussing some of the results obtained in this thesis, we define the model and
discuss some of its basic properties.

1.1 The Coulomb gas

The two-dimensional Coulomb gas is a model of n equally charged particles in
an external field with logarithmic interactions in the complex plane C. At the
mathematical level, it is a probability measure Pβ

n on the space of configura-
tions Cn. Given an external potential Q : C → R ∪ {+∞} we assign to each
configuration of points (z1, . . . , zn) ∈ Cn an energy Hn given by

Hn(z1, . . . , zn) =
∑
j ̸=k

log
1

|zj − zk|
+ n

n∑
j=1

Q(zj).

The energy consists of two terms, one is the Coulomb interaction between par-
ticles, the second is the interaction of the individual particles with the external
field. The measure Pβ

n is of Gibbs-type and defined by

dPβ
n(z1, . . . , zn) =

1

Zβ
n

e−
β
2
Hn(z1...,zn)dAn(z1, . . . , zn), (1)

where β > 0 is the inverse temperature and dAn denotes n-fold area measure
normalized so that the unit disk has area 1. The factor Zβ

n is a normalizing
constant making Pβ

n a probability measure. The convergence of the Zβ
n is ensured

by assuming that Q has sufficient growth at infinity

lim inf
|z|→+∞

Q(z)

log |z|2
> 1.

The random ensemble of points obtained from Pβ
n is what we refer to as the

two-dimensional Coulomb gas in potential Q at inverse temperature β.
The general temperature case is of great interest and displays rich features.

For example it can be seen that the Coulomb gas interpolates between Fekete
point configurations for β = +∞ [28, 30] and a Poisson point process for β = 0
[1].

This thesis is devoted to the case β = 2, for which the Coulomb gas is a
random matrix model. This case is especially rich with connection to orthogonal
polynomials, special functions, complex analysis and more. We will use the
simplified notation Pn and Zn when β = 2.
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1.2 Random normal matrix model

As we will see, for β = 2 the Coulomb gas has a lot of structure. In fact the
point process can viewed as eigenvalues of random normal matrices.

A normal matrix is a square matrix , M , over C commuting with its Her-
mitian adjoint, that is MM∗ =M∗M . The collection of n× n normal matrices
form a submanifold in Cn×n and inherits a Riemannian volume form which
we denote dMn. We define a probability measure Pn, on the space of normal
matrices, by

dPn(M) =
1

Zn
e−n trQ(M)dMn(M), (2)

where Zn is a normalizing constant and trQ(M), has the natural definition

trQ(M) =
∑

λ∈Spec(M)

Q(λ).

Here Spec(M) is the spectrum (the set of eigenvalues) ofM . The entries of such
a random matrix are of course not independent.

It is a remarkable fact that eigenvalues of a matrix picked with respect to
the measure Pn has the same distribution as a random sample of points from
the measure Pn. To see the connection we note that a normal matrix M , can
be diagonalized as M = UDU∗, where D is diagonal with the eigenvalues of
M as entries and U is a unitary matrix. The matrix U is unique up to right
multiplication by a diagonal unitary matrix. The following factorization from
[13] of the measure dMn makes the connection to the Coulomb gas at β = 2
clear

dMn = dUn

∏
j ̸=k

|zj − zk|πn dAn(zj), (3)

where {zj}nj=1 are the eigenvalues and dUn is the Haar measure on the group of
unitary matrices of size n× n.

If we rewrite the measure in (2) using the factorization of the measure dMn

from (3) it becomes clear that the eigenvalues from Pn have the same distribution
as a random sample from Pn. Because of this equivalence we will, throughout
the thesis, use the terms the random normal matrix model and the Coulomb
gas model at β = 2 synonymously.

1.3 The correlation kernel

The eigenvalues of the random normal matrix model form what is known as a
determinantal point process.

Since we are interested in a two-dimensional model, we restrict the discussion
to point processes in the complex plane C. A point process X on C is a random
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integer-valued Radon measure on C. We call the point process X simple if it
assigns (almost surely) at most measure one to singeltons.

The k-point correlation functions with respect to a reference measure µ are
(if they exists) the functions ρk : Ck → [0,∞) for k ≥ 1 such that for any finite
collection of mutually disjoint sets A1, . . . , An ⊂ C the identity

E
[ k∏
i=1

X (Ai)
]
=

∫
∏k

i=1 Ai

ρk(x1, . . . , xk) dµ(z1) · · · dµ(zk),

holds. We mention that the one-point function ρ1 has the natural interpretation
of the density of points with respect to the measure µ.

We say that a simple point process is a determinantal point process with
reference measure µ if there exists a measurable function K : C2 → C such that

ρk(z1, . . . zk) = det(K(zi, zj))
k
i,j=1,

for every k ≥ 1 and for all points z1, . . . , zk ∈ C. The function K is called
a correlation kernel. We refer to the book [22] for more information about
determinantal point processes.

The Coulomb gas (with β = 2) has precisely this structure. From the random
configuration {zj}nj=1 picked with respect to Pn we form a point process Xn by
placing a point mass at each point in the configuration, that is

Xn =
n∑

j=1

δzj .

It is not hard to see that the resulting point process is determinantal. Start by
rewriting the density of the measure Pn

e−Hn(z1,...,zn) =
∏
j ̸=k

|zj − zk|e−nQ(zj) = |det(Vn(z1, . . . , zn))|2
n∏

j=1

e−nQ(zj), (4)

where Vn is the Vandermonde matrix

Vn(z1, . . . , zn) = (zk−1
j )nj,k=1.

The Vandermonde determinant can be rewritten in terms of orthonormal poly-
nomials with respect to the measure e−nQ(z)dA(z). This will only change the
determinant by a multiplicative constant. That is

detVn(z1, . . . , zn) = cn · det(pj−1,n(zk))
n
j,k=1, (5)
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where pj,n is the orthonormal polynomial of degree j obtained by applying the
Gram-Schmidt process to the set {1, z, . . . , zn−1}. Plugging equation (5) into
(4) yields

e−Hn(z1,...zn) = |cn|2 · det(Kn(zj , zk))
n
j,k=1,

where the function Kn is given by

Kn(z, w) =
n−1∑
j=0

pj,n(z)pj,n(w)e
−n

2
(Q(z)+Q(w)).

It now follows that the measure Pn can be written as

dPn(z1, . . . , zn) =
1

n!
det(Kn(zj , zk))

n
j,k=1 dAn(z1, . . . , zn). (6)

(The factor 1
n! appears since the order of the zj matters for Pn but not for the

point process Xn.)
The formula (6) shows that the n-point correlation function ρn can be written

as a determinant of the function Kn. We can see that the same is in fact true for
any k-point correlation function (with k ≤ n) simply by integrating out (n− k)
variables and using the orthonormality of the polynomials. Hence the Coulomb
gas with β = 2 is a determinantal point process with correlation function Kn

with respect to the reference measure dA.
The correlation kernel Kn also has a natural interpretation as a reproducing

kernel. We denote the space of polynomials of degree less than n equipped with
the inner product from L2(C, e−nQdA) by Poln. This is a reproducing kernel
Hilbert space whose kernel we denote by kn(z, w). That is, for any p ∈ Poln we
have

p(z) =

∫
C

p(w)kn(w, z)e
−nQ(w)dA(w).

The kernel kn can be expressed in terms of the orthonormal basis {pj,n}n−1
j=0 of

the space Poln

kn(z, w) =

n−1∑
j=0

pj,n(z)pj,n(w).

It follows that the correlation kernel Kn is a weighted reproducing kernel in the
sense that

Kn(z, w) = kn(z, w)e
−n

2
(Q(z)+Q(w)).

The kernel Kn is one of the main objects of study in this thesis. The strong
link between random normal matrix theory and planar orthogonal polynomials
will be exploited throughout the thesis.
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1.4 Potential theory and equilibrium measure

The Coulomb gas, as a statistical physics model, becomes particularly interest-
ing in the thermodynamic limit, that is when the number of points n tends to
infinity. When the number of points becomes large, configurations close to the
minimal value of the energy Hn start to dominate the behaviour of the system.
At a macroscopic level we will see that the Coulomb gas minimizes the energy,
Hn, in the following way.

Consider the non-linear functional

IQ[µ] =

∫
C2

log
1

|z − w|
dµ(z)dµ(w) +

∫
C

Q(z)dµ(z), (7)

acting on the set of compactly supported Borel probability measures. The func-
tional IQ is called the weighted logarithmic energy and can be seen as a contin-
uous version of the energy Hn. It is well known from potential theory that for
Q ∈ C2 satisfying the growth condition

lim inf
z→∞

Q(z)− log |z|2 = +∞,

the minimizer of IQ is unique and takes the form

dσ(z) = 1S(z)∆Q(z)dA(z),

where S is a compact set called the droplet and ∆ = 1
4(∂

2
x+∂

2
y); see e.g. the book

[31] on weighted potential theory on C and [34] for an extension to Riemann
surfaces. The Coulomb gas tends to follow the equilibrium measure σ in the
sense that the random measure

1

n
Xn =

1

n

n∑
j=1

δzj ,

converges weakly in probability to σ; see e.g. [19].

1.5 The Ginibre ensemble

In 1965, Ginibre studied in [18] the ensemble corresponding to Q(z) = |z|2. The
corresponding ensemble is nowadays known as the Ginibre ensemble.

This ensemble is also related to a different type of matrix model with in-
dependent entries. Namely, consider an n× n matrix with independent entries
all of which have a complex Gaussian distribution with mean 0 and variance 1

n .
The n random eigenvalues of such a matrix have the same distribution as the
Coulomb gas with potential Q(z) = |z|2 and β = 2.
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Figure 1: A sample from the Ginibre ensemble with n = 1000.

The radial symmetry of Q implies that the monomials {zj}n−1
j=0 are orthogonal

in L2(C, e−n|z|2dA). In fact the orthonormal polynomials simply becomes

pj,n(z) =

√
nj+1

j!
zj ,

and the correlation kernel takes the form

Kn(z, w) = n

n−1∑
j=0

(nzw̄)j

j!
e−

n
2
(|z|2+|w|2).

The droplet in the Ginibre ensemble is the closed unit disk S = D and the
equilibrium measure is simply the uniform measure on D since ∆|z|2 = 1.

The convergence to the uniform measure on the unit disk holds also for
random entries that are not Gaussian. This is known as the circular law. It
actually true in a very general setting. If the entries of an n × n matrix are
assumed to be independent and identically distributed with mean 0 and variance
1
n , then the spectral measure converges almost surely to the uniform measure

8



on the unit disk. The theorem has a long history and we refer to [35] where
the theorem was proven under the minimal assumptions as stated here. If the
matrix entries are not Gaussian we lose the connection to random normal matrix
theory.

We also mention that for the Ginibre ensemble there is an exact correspon-
dence to non-interacting fermions in a plane with respect to a perpendicular
magnetic field; see e.g. [17].

For a more comprehensive survey of the Ginibre ensemble and related models
we refer to the recent book [9].

1.6 Rescaled kernel

We have seen that the Coulomb gas is completely determined by the correlation
kernel. Studying the correlation kernel therefore naturally becomes central in
the theory.

At the macroscopic level we have already seen that the density of the Coulomb
gas tends to follow the equilibrium measure σ minimizing the weighted logarith-
mic energy (7). For the one-point function ρ1(z) = Kn(z, z) this implies that

1

n
Kn(z, z) → 1S(z)∆Q(z), as n→ ∞.

In order to see the microscopic picture we can rescale the kernel around
a point z0 ∈ C. For a point z0 in the interior of the droplet S such that
∆Q(z0) > 0, the limiting kernel is universal, i.e. independent of Q and z0. It is
given by

G(ζ, η) = eζη̄−|ζ|2/2−|η|2/2,

and is the kernel of the infinite Ginibre ensemble found by Ginibre [18]. The
universality result was proven in a slightly different context by Berman [6] and
later for the random normal matrix model by Ameur, Hedenmalm and Makarov
[3].

For a boundary point the limiting kernel is different and describes the tran-
sition from the interior to the exterior of the droplet. The kernel was discovered
for the Ginibre ensemble by Forrester and Honner [15] and is given by

G(ζ, η) · 1
2
erfc(

ζ + η̄√
2

),

where erfc is the complementary error function. Universality of this kernel has
been given in different contexts in [5] using a rescaled Ward identity and in a
more general setting in [21] using asymptotics of planar orthogonal polynomials.

We see that the transition from the droplet to the exterior of the droplet
leads to a rapid Gaussian type decay in the particle density. What makes the

9



boundary case complicated is that the kernel is not localized. The approach
via orthogonal polynomials resolves this by considering the whole boundary at
once.

1.7 Fluctuation around the equilibrium measure

We have seen that the average of the Coulomb gas converges to the equilib-
rium measure. An important question is to study the fluctuations around this
equilibrium.

Given a function f : C → R we a associate a random variable tracen f , also
called a linear statistic, by

tracen : f 7→
n∑

j=1

f(zj),

where {zj}nj=1 are taken at random with respect to the measure dPn. We assume
that the function is smooth, say f ∈ C∞

0 .
The large n behaviour of the linear statistic tends to follow the equilibrium

measure in the sense that

1

n
En tracenf →

∫
C

f(z)dσ(z),

as n→ ∞. Fluctuations around the equilibrium measure, fluctn f , is defined by

fluctnf = tracen f − n

∫
C

f(z)dσ(z),

that is by removing the leading order term.
We now mention some tools used to study fluctuations. The normalizing

constant Zn defined in (1) is called that partition function and is intimately
connected with fluctuations of linear statistics. Consider a function f and the
perturbed potential

Qf (z) = Q(z)− s

n
f(z).

Let Zn,f be the partition function with respect to Qf and Zn the partition
function with respect to the unperturbed potential Q. The quotient of the two
can be written as

Zn,f

Zn
=

1

Zn

∫
e
s

n∑
j=1

f(zj)

e−Hn(z1,...,zn)dAn = En[e
s tracen f ],

10



where En is the expected value with respect to the measure Pn. This shows
that a good understanding of what effect a perturbation has on the partition
function gives us information about the moment generating function of tracen f .

Another important tool when studying fluctuations is the Ward identity.
This important identity can be deduced as follows. Consider a test function
ψ ∈ C∞

0 . For j = 1, . . . n, integration by parts gives the identity

En[∂ψ(zj)] = En[ψ(zj) · ∂jHn(z1, . . . , zn)], (8)

where ∂j denotes differentiation with respect to the j-th variable. Define the
three random variables In, IIn and IIIn as follows:

In[ψ] =
1

2

∑
j ̸=k

ψ(zj)− ψ(zk)

zj − zk
,

IIn[ψ] = n
n∑

j=1

∂Q(zj) · ψ(zj),

IIIn[ψ] =
n∑

j=1

∂ψ(zj).

A direct consequence of (8) is the following variant of the Ward identity

En[In[ψ]− IIn[ψ] + IIIn[ψ]] = 0. (9)

In physics, Ward identities are well known, see e.g; [37], and they play an
important role in conformal field theories; see [25] for a mathematical treatment.
The identity (9) was used in [4] to study limiting fluctuations of linear statistics.
Under some regularity conditions and assuming that the droplet is connected
the result from [4] shows that

fluctnf → N(ef , vf ),

as n→ ∞, whereN(ef , vf ) is a real Gaussian random variable. The expectation,
ef is given by

ef =

∫
S

∆f + f∆LdA+

∫
∂S

f N (LS) ds, (10)

where L(z) = log∆Q(z) and N is the Neumann’s jump operator (the definition
can be found in [4] or Paper IV). LS is the Poisson modification of L, that is
the function equal to L on the droplet S and harmonic in the complement. The
variance vf is given by

vf =
1

4

∫
C

|∇fS(z)|2dA(z), (11)

11



where fS is the Poisson modification of f .
Note that the variance of fluctn f is bounded. The convergence of fluctnf

is in this way different from the classical central limit theorem of independent
random variables where the variance grows like n.

The Gaussian convergence for the Ginibre ensemble was proven before in [29]
using the method of cumulants. The one-dimensional counterpart to the Ward
identity was used by Johansson [23] to study fluctuations of random Hermitian
matrices.

1.8 Hard edge and Balayage measure

From the Coulomb gas perspective it is natural to consider the point process
restricted to a compact set D ⊂ C. This is equivalent to letting the weight Q
be +∞ outside of D. For such a potential it even makes sense to consider the
unweighted case Q = 0 on D. In fact this is related to classical potential theory
as the equilibrium measure in this case is the probability measure minimizing
the logarithmic energy

I[µ] =

∫
D

log
1

|z − w|
dµ(z)dµ(w). (12)

It is well known that in this setting the extremizer is the harmonic measure
rooted at infinity of the component of Ĉ \ D containing ∞. The orthogonal
polynomials related to such a potential are also classical and asymptotics ap-
peared first in Carleman’s fundamental work [12]. The Coulomb gas confined
to such a set has been studied in e.g. [2, 24].

The weighted hard edge case, when Q ̸= 0, is much more complicated. In
general not even the potential theory is well understood. However in some cases
it is possible to give a good description. Consider a set G ⊂ S. We modify the
potential such that

Q̃(z) =

{
Q(z), z ∈ C \G
+∞, z ∈ G.

We refer to such a potential as a hard edge potential. Naturally the equilibrium
measure changes. No mass can be placed in G. By definition, the logarithmic
potential of a measure µ is

Uµ(z) =

∫
log

1

|z − w|
dµ(w), for any z ∈ C.

This function can be seen as the potential energy created by a charge distri-
bution µ. Assume that µ is supported in G. It is well known from potential
theory [31] that there exists a measure µ′ supported on the boundary ∂G with
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the same mass as µ such that Uµ(z) = Uµ′
(z) for z ∈ C\G. The measure µ′ can

be thought of as sweeping out the measure µ to the boundary, while keeping the
logarithmic potential. We call µ′ the balayage of µ onto ∂G. This generalizes
the idea behind the harmonic measure. The balayage of a point mass at z ∈ G
onto ∂G is precisely the harmonic measure in G rooted at z.

It turns out that the balayage describes the equilibrium measure with respect
to the hard edge potential Q̃. The equilibrium measure in potential Q restricted
to G, that is ν := 1G(z) ·∆Q(z)dA(z), is swept out to the boundary of G, while
the rest of the equilibrium measure is unchanged. Thus the resulting equilibrium
measure in potential Q̃ becomes

dσ = 1S\G dσ + 1G dσ = 1S\G∆QdA+ dν ′

where ν ′ is the balayage measure of ν. The boundary ∂G in this setting will be
called a hard edge to distinguish it from the natural boundary of the droplet in
a smooth potential which we will call a soft edge.

The equilibrium measure of (12) can also be thought of as the balayage
measure of a pointmass at ∞ onto the boundary ∂D. The idea of balayage goes
back to Poincaré; see [31] for a detailed treatment.
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2 Results

We now give a presentation of some of the results obtained in this thesis. We
point out that the results in this section might be stated in a slightly different
way than in the papers. Many results have been omitted. For the complete
picture we refer the reader to the individual papers.

2.1 Kernel asymptotics for a soft edge

2.1.1 Long-range correlations in the simply connected setting

In a pioneering work, Forrester and Jancovici [16] study long-range correlations
along the boundary of the droplet with respect to the elliptic Ginibre ensemble.
This ensemble may be realised as the random normal matrix model with the
quadratic potential

Q(z) = ax2 + by2, for z = x+ iy,

where a, b > 0. For this potential the droplet is an elliptic disk, and it is found
in [16] that for two distinct points z, w on the boundary ellipse, the correlation
kernel Kn(z, w) is large, of order

√
n. This is in sharp contrast with long-range

correlations in the bulk, which are exponentially small as n → ∞. It is also
conjectured in [16] that similar results should hold for a general potential Q.

In Paper I we verify the conjecture for a large class of potentials Q and find
an asymptotic formula for the corresponding correlation kernel. We need some
setup before stating the theorem.

We consider a potential Q with droplet S. We assume that the component
U of Ĉ \ S containing ∞ is simply connected and that Q is real-analytic in a
neighbourhood of ∂U . We also assume that the boundary ∂U is a real-analytic
Jordan curve. It follows from Sakai’s regularity theory [32] that these assump-
tions are not too restrictive.

S

U

Figure 2: Example of the droplet S (grey) and the exterior component U .
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Our main result from Paper I is expressed in terms of the reproducing kernel
of a certain Hardy space. Consider the space H2

0 (U) consisting of holomorphic
functions in U vanishing at infinity with the following L2-norm on the boundary

∥f∥2 =
∫
∂U

|f(z)|2(∆Q(z))−1/2ds(z),

where ds denotes the arclength measure. The reproducing kernel of the space
H2

0 (U) can be explicitly written as

S(z, w) =
1

2π

√
ϕ′(z)

√
ϕ′(w)

ϕ(z)ϕ(w)− 1
e

1
2
H(z)e

1
2
H(w),

where ϕ(z) : U → De (De = {z ∈ C : |z| > 1}) is the conformal map normalized
by ϕ(∞) = ∞ and ϕ′(∞) > 0, and H is a holomorphic function in U such that

ReH(z) =
1

2
log∆Q(z), z ∈ ∂U.

To make it unique we assume that ImH(∞) = 0.
To state our result we need to define one more function Q as the holomorphic

function in U with ReQ equal to Q on ∂U and with ImQ(∞) = 0.

Let δn =M
√

log logn
n whereM is a constant depending onQ. ByN(U, δn) we

denote a δn-neighbourhood of U . We have the following theorem from Paper I.

Theorem 2.1 Fix constants c > 0 and 0 < β < 1
4 . For z, w ∈ N(U, δn) such

that |z − w| > c we have

Kn(z, w) =
√
2πnS(z, w) (ϕ(z)ϕ(w))n e

n
2
Q(z)+n

2
Q(w) e−

n
2
Q(z)−n

2
Q(w)·(1+O(n−β)),

as n→ ∞.

Our proof uses the asymptotic formula for planar orthogonal polynomials of
Hedenmalm and Wennman [20, 21] and a technique involving summation by
parts, allowing us to obtain results extending across the boundary.

The kernel is of order
√
n but only in a thin band of width O(n−1/2) along

the boundary. This can be seen from the following expansion

2 log |ϕ(z)|+ReQ(z)−Q(z) = −2∆Q(z0)ℓ
2 +O(ℓ3),

where z0 is the closest point from z on ∂U and ℓ is the distance in the normal
direction of ∂U from z to z0.
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This gives a new manifestation of the boundary field that is seen when
studying fluctuations of linear statistics. In fact in [14] Forrester demonstrates
how the long-range correlations in the Ginibre ensemble can be used to prove
that the fluctuations of linear statistics converges to a Gaussian field on the
boundary (in addition to the independent Gaussian field in the bulk). As far as
we are aware, a rigorous proof of the fluctuation theorem using the asymptotics
of Theorem 2.1 has not been carried out, but it seems like an interesting direction
for future research.

2.1.2 Long-range correlations in doubly connected setting

In Paper I we used the asymptotic formulas for orthogonal polynomials from
[21] to study the long-range correlations along the boundary of a droplet. This
method relies heavily on the unbounded component U of the complement of
S being simply connected. For a multi-connected component of Ĉ \ S, the
orthogonal polynomials close to the boundary are not known in general. In fact
the only previously known asymptotic results for orthogonal polynomials in such
a setting was obtained for certain lemniscate ensembles, see [7] and references
therein.

In Paper II we study the long-range correlations in a doubly connected gap
created by a radially symmetric smooth potential. To be precise the potential
satisfies Q(z) = Q(|z|) which implies that also the droplet is radially symmetric.
We assume that there is a bounded doubly connected component in Ĉ\S which
we denote by G. From the radial symmetry of Q it is clear that G is an annulus,
i.e. there exists 0 < r1 < r2 < 0 such that

G = {z ∈ C : r1 < |z| < r2}.

For a radial potential the orthonormal polynomials are nothing but normalized
monomials. Although the structure of the polynomials is simple, the correlation
kernel has a rich structure. Interestingly, when considering long-range correla-
tions along the boundary, the asymptotics of the correlation kernel are again
described in terms of the reproducing kernel for a Hardy space.

The space depends on a parameter xn determined in the following way. Let
M = σ({|z| ≤ r1}), that is the mass of the inner component with respect to the
equilibrium measure. Now let xn = {Mn} =Mn−⌊Mn⌋ be the fractional part
of Mn.

We now explain how long-range correlations along the boundary of G can
be described in terms of reproducing kernels of a certain Hardy space. However,
rather than a space of analytic functions, the appropriate space turns out to
consist of multi-valued functions in the present case. Fortunately such spaces
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where already introduced by Widom [36] in his work on polynomials on systems
of Jordan curves. Let us define these spaces.

Consider multi-valued analytic functions on G with single-valued absolute
value. Assume a positive orientation of the boundary of G. The increment of the
argument along the inner boundary component (or the outer) determines a class
of multi-valued functions. We consider such multi-valued holomorphic functions
of class xn on G and let H2(G, xn) be the Hardy space of such functions with
norm

∥f∥2 =
∫
∂G

|f(z)|2(∆Q(z))−1/2ds(z).

The space has a reproducing kernel Sn(z, w). Note that Sn(z, w) depends on xn
and therefore also on n.

We can now formulate one of the theorems from Paper II in the following
way.

Theorem 2.2 Let z = eiθ1(rj +
t√

n∆Q(r1)
) and w = eiθ2(rk + s√

n∆Q(r2)
) with

j, k ∈ {1, 2} and t, s, θ1, θ2 ∈ R. Assume also that |z−w| ≥ c, for some constant
c > 0. Then we have the following asymptotics for Kn(z, w)

Kn(z, w) =
√
2πnSn(z, w) e

−t2−s2eiMn(θ1−θ2) +O(log5 n),

as n→ ∞.

In Paper II we did not make the connection to the Hardy space of multi-valued
function, but the statements are equivalent.

A similar behaviour as in the simply connected case appears here, where
there are lone-range correlations along the boundary in a band of widthO(n−1/2).
Again this shows that there is a boundary field. As we will see later, this field
is not (purely) Gaussian.

A special case of long-range correlations for a disconnected droplet has also
been studied for the lemniscate ensemble [11]. It would be interesting to see if
the asymtotics of the correlation kernel takes the same form as in Theorem 2.2.

2.1.3 One-point function

The one-point functionKn(z, z) measures the density of eigenvalues at z. We are
interested in the behaviour near a boundary point of the gap G. Since G is not
simply connected, even the leading order behaviour of the one point function was
unknown, but we verify that it has the expected error-function behaviour. What
is more interesting is the subleading term which includes geometric information
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about the gap and is in this sense non-local. Before stating the theorem we
define the Jacobi theta function θ(z; τ) by

θ(z; τ) :=
+∞∑

ℓ=−∞
e2πiℓzeπiℓ

2τ ,

for z ∈ C and τ ∈ i(0,+∞).
A result from Paper II states the following:

Theorem 2.3 Let G = {z ∈ C : r1 < |z| < r2} be a gap in the droplet S,
consider α ∈ [0, 2π) fixed and put

z = eiα
(
r1 +

t√
2n∆Q(r1)

)
.

As n→ +∞, the one-point function Kn(z, z) has the asymptotic expansion

Kn(z, z) = n∆Q(r1)
erfc(t)

2
+

√
n∆Q(r1)√
2π r1

e−t2

[
1

6
(t2 − 2)

+ r1
∂n∆Q(r1)

∆Q(r1)

(
1

2

√
πt erfc(t)et

2 − 1

12
(2t2 + 5)

)

+
log ∆Q(r2)

∆Q(r1)

4 log(r2/r1)
+

1

2 log(r2/r1)
(log θ)′

(
Mn+

log ∆Q(r2)
∆Q(r1)

4 log(r2/r1)
;

πi

log(r2/r1)

)]
+O(log4 n).

Here ∂n∆Q(r1) denotes the derivative of ∆Q in the normal direction of ∂G at
r1 pointing into G.

The theta function is periodic, θ(z + 1, τ) = θ(z, τ), and we see that the
asymptotics only depend on the fractional part of Mn, that is x. In the same
way as in Theorem 2.2 we see a pseudo-periodic behaviour of the kernel.

The subleading term is not known for a general potential Q. At the outer
boundary it was conjectured by Lee and Riser [27] that the subleading term is
universal and related to the curvature of the droplet. However as we observe
in Paper II the conjecture must be modified for potentials where ∆Q is non-
constant in a neighbourhood of the boundary.

2.2 Fluctuations

The fluctuation result from [4] requires the droplet to be connected. The proof
uses a decomposition of the test function f in the exterior component U of the
droplet. Since U is assumed to be simply connected, the function f can be
written as

f = f0 +Re g, (13)
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where f0 is zero on the boundary of the droplet and g is an analytic function in
Ĉ \ S. The decomposition is combined with a limiting form of Ward identity.
If an exterior component of the droplet is multi-connected, that is to say the
droplet is disconnected, this method fails. The decomposition in (13) does not
work since harmonic functions are no longer the real part of analytic functions.

2.2.1 Disconnected droplet

In Paper II, some first fluctuation results for a disconnected droplet are given.
Here the potential as well as the test function are assumed to be radially sym-
metric. In Paper III, the fluctuation result in the radial setting follows from
considering the partition function in a perturbed potential. Paper IV general-
izes the fluctuation results in Paper II and Paper III for disconnected droplets
in two ways. Firstly, the class of potentials is generalized, allowing for some
annular type gaps that are not radially symmetric. Secondly, the class of test
function includes all smooth and bounded functions.

The setting of Paper IV is more general, but we shall, for simplicity, assume
here that the potential is radially symmetric and that the droplet consists of two
components separated by an annulus G = {z ∈ C : r1 < |z| < r2}. Let f ∈ C∞

b

be a smooth and bounded test function. We assume for again for simplicity
that f is supported in a neighbourhood of the gap G, so that we do not need to
consider any other components of the complement of S other than G.

The proof again builds on a decomposition of the test function. However the
doubly connected gapG forces us to include one more term in the decomposition.
We write

f = f0 +Re g + c ω,

where as before f0 is zero on the boundary of G and g is an analytic function
in G. The new term ω is a smooth function equal to 0 on a neighbourhood of
the inner component and 1 on a neighbourhood of the outer component of the
droplet.

The fluctuations of the function ω measure the fluctuations of points between
the two components. As it turns out these fluctuations are not asymptotically
Gaussian. Instead they have a discrete normal distribution. That is an integer-
valued random variable Y with probability mass function

P(Y = j) =
1

C
θjq

1
2
j(j−1),

for every j ∈ Z, where θ > 0 and 0 < q < 1 are parameters and C is a
normalizing constant.

The fluctuation result from Paper IV in the setting of a radial potential
becomes the following:
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Theorem 2.4 Let f ∈ C∞ and let f = f1 + λω(z) where f1 is of the form
f0 +Re g. Then the cumulant generating function, Fn(t), of fluctn f satisfies

Fn(t) = FX(t) + FλYn(t) + o(1),

as n → ∞. Here X is a normal random variable with expected value ef1 and
variance vf1, given by (10) and (11). Yn is a discrete normal random variable

with parameters q = ( r1r2 )
2 and θn = ( r1r2 )

1+2xn

√
∆Q(r1)
∆Q(r2)

.

The discrete normal variable Yn depends on n through the parameter xn,
similarly to what we have seen before concerning the kernel asymptotics. Similar
behaviour has been seen for one-dimensional models; see [8].

2.3 Partition function

The normalizing constant Zn is called the partition function. The partition
function is a central object in statistical mechanics. For the Coulomb gas, it
incorporates a lot of important information.

In [37], Zabrodin and Wiegman made predictions about the asymptotic ex-
pansion of the free energy, logZn, for general β down to the constant order. The
predictions were based on computations in the setting of radial potential.

Recently a rigorous study of the partition function in a radial and strictly
subharmonic potential for β = 2 was carried out by Byun, Kang and Seo [10].
Although not matching perfectly, the predictions from [37] where not too far off.
What is shown in [10] is that the partition function has an asymptotic expansion

logZn = C0n
2 + C1n logn+ C2n+ C3 log n+ C4 + o(1),

as n → ∞, where all constants are given explicitly. The expansion down to C2

is treated for general β by Leblé and Serfaty [26]. The constants C1 and C3 are
independent of Q and of lesser interest. The first constant, the leading order
term, is equal to −IQ[σ] that is minus the weighted energy of the equilibrium
measure. This should not come as a surprise since the main contribution to the
partition function should come from configurations for which the energy Hn is
close to minimal. The constant C1 is related to the entropy of the equilibrium
measure. It is given by

C2 =
log(2π)

2
− 1− 1

2

∫
C

log(∆Q(z)) dσ(z).

The constant order term C4 is perhaps the most interesting one. It was
conjectured in [37] that C4 is related to spectral determinants via Polyakov-
Alvarez formula.
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In [10], the authors assume that the potential is globally subharmonic and
radially symmetric. These assumptions restrict the possible geometry of the
droplet: it will be wither a disk or an annulus. In Paper III we remove the
global subharmonicity assumption and consider radially symmetric potentials
that are allowed to be superharmonic in certain portions of the plane. This
means that the droplet may be disconnected with one or many annular spectral
gaps.

Most of the expansion that we obtain is the same as in [10], but the constant
order term changes. In fact there appears q-factorials related to the discrete nor-
mal appearing in the fluctuation theorems.those from the fluctuation theorems
from Paper II, III and IV. Using free-energy expansions we can re-prove some
results on fluctuations and we also obtain some new results.

2.4 Kernel asymptotics for a hard edge

In Paper V we study the correlation kernel near a hard edge. We start with the
Mittag-Leffler potential

Q(z) = |z|2b − 2α

n
log |z|, (14)

where b > 0 and α > −1. The droplet with respect to this potential is a disk,
namely S = {|z| ≤ b−1/2}. Then we modify the potential Q by letting it be +∞
in an annulus G = {z ∈ C : r1 < |z| < r2} inside the droplet. The new potential
is then

Q̃(z) =

{
Q(z), z /∈ G

+∞, z ∈ G.
(15)

We have seen that the modification of the potential has a dramatic effect on
the equilibrium measure. The measure in G is swept out to the boundary ∂G.
The radial symmetry means that the equilibrium measure with respect to the
potential Q̃ takes the form

dσ(z) = 1S\G(z)∆Q(z)dA(z) + ν1
ds1(z)

2π
+ ν2

ds2(z)

2π
,

where ν1 and ν2 are positive constants and ds1 and ds2 are the arclength mea-
sures on the two boundary components of G.

2.4.1 Long-range correlation

In PaperV we study long-range correlations along the hard edge, similar to what
was done in Paper I and II for soft edges. The result is surprisingly similar to
the soft edge case, however they take place on different scales. In the soft edge
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the boundary regime is of order O(n−1/2). For the hard edge system the points
that are pushed to the boundary form a hard edge regime of order O(n−1). The
long-range correlations are again described by the reproducing kernel Sn(z, w),
of a Hardy space H2(G, xn) of multi-valued analytic functions in G of class xn
with L2-norm

∥f∥2 =
∫

|z|=r1

|f(z)|2 1

ν1
ds1(z) +

∫
|z|=r2

|f(z)|2 1

ν2
ds2(z).

The parameter xn is determined in a similar way as in the soft edge case. It
is given by

xn = {nσ(|z| ≤ r1)− α} = nσ(|z| ≤ r1)− α− ⌊nσ(|z| ≤ r1)− α⌋.

We can now reformulate a result from Paper V in the following way.

Theorem 2.5 Let z = eiθ1(r1− t
ν1n

) and w = eiθ2(r2+
s

ν2n
) where s, t ≥ 0, then

Kn(z, w) = 2πnSn(z, w) e
−t−sei(nσ(|z|≤r1)−α)(θ1−θ2) + o(n),

as n→ ∞.

Notice that the kernel is exponentially decaying in s and t, that is the correla-
tions are decaying as the points moves in the normal direction to the boundary
into the droplet. This is different from the soft edge case where we saw in
Theorems 2.1 and 2.2 that the decay was Gaussian.

The radial symmetry of the potential makes it possible to find good asymp-
totics of the orthogonal polynomials and through them the kernel. In the case
of the Mittag-Leffler ensemble they are even expressed in terms of special func-
tions, such as the incomplete gamma function. Whether similar very precise
results such as Theorem 2.5 can be obtained for more general potentials is not
clear.

2.4.2 One-point function

While the balayage measure is only supported on the boundary of the gap, for
finite n, the hard edge contribution is living on a band of width O(n−1) around
the boundary. The local limit at a hard edge boundary point was studied by
Seo in [33] for a general radially symmetric subharmonic potential. The kernel
obtained by Seo was

K(z, w) =

1∫
0

te−t(z+w̄)dt · 1H+(z) · 1H+(w), (16)
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where H+ is the right half plane. To prove universality of this kernel beyond
the radial setting is an interesting open question.

In Paper V, besides long-range correlations, we perform a detailed analysis
of the one-point function at the hard edge. We consider again the potential from
(15) and rescale around a point on the hard edge. That is we define the point
z by z = eiα(r1 − t

ν1n
), with t ≥ 0. Then we obtain an asymptotic expansion

Kn(z, z) = C1n
2 + C2 n logn+ C

(n)
3 n+ C4

√
n+O(n2/5),

as n→ ∞. We give explicit formulas for the terms Cj . They are all constant in

n except for C
(n)
3 which is given in terms of a Jacobi theta function depending

on n through the parameter xn.

2.5 Disk counting statistics

In Papers VI and VII we study what is known as disk counting statistics. Both
papers consider the Mittag-Leffler potential Q from (14) with hard edges. In
Paper VI the potential is modified to be +∞ on the set {z : |z| > ρ} creating
one boundary with a hard wall. In Paper VII we study the potential Q̃ from
(15).

A disk counting statistics is a random variable N(R) equal to the number
of points in a disk of radius r centred at the origin. We observe that N(R) can
be written as

N(r) = tracen 1DR
,

where DR is a disk of radius R centred at the origin. We can in this way think
of N(r) as a very non-smooth linear statistic.

Consider now a collection of disk counting statistics {N(Rj)}mj=1. This is a
collection of dependent random variables. We form the joint moment generating
function

E
[ m∏
j=1

eujN(Rj)
]
, (17)

with u1, . . . um ∈ R. The radii Rj are rescaled around the hard edges. We study
the asymptotics of (17) as n → ∞ and obtain asymptotic expansions. As a
consequence we obtain several limiting theorems for the distribution of the disk
counting statistics.

For example, consider the potential Q̃ with a gap G = {z ∈ C : r1 < |z| < r2}
separating two components of the support of the equilibrium measure. If we let
m = 1 and R1 = r1, the random variable N(r1) counts the number of points
in the inner component of the equilibrium measure. The fluctuations of N(r1)
therefore measures the fluctuations of points between the two components. A
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corollary in Paper VII shows that this is again described by a discrete normal
random variable.

Remarkably the Weierstrass ℘-function appears in the formula for the co-
variance of N(rj) and N(rk) with the radii appropriately rescaled at the hard
edge.
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[34] Skinner, B., Logarithmic potential theory on Riemann surfaces. ProQuest
LLC, Ann Arbor, MI, 2015.

[35] Tao, T., Vu, V., Krishnapur, M., Random matrices: Universality of ESDs
and the circular law, Ann. Probab. 38 (2010), no. 5, 2023-2065.

[36] Widom, H. Extremal polynomials associated with a system of curves in the
complex plane, Adv. Math. 3 (1969) 127–232.

[37] Wiegmann, P., Zabrodin, A., Large N expansion for the 2D Dyson gas, J.
Phys. A 39 (2006), no. 28, 89338964.

26





Doctoral Theses in Mathematical Sciences 2025:2
ISBN 978-91-8104-535-2

ISSN 1404-0034


	384688_1_G5_Joakim C.pdf
	Tom sida
	Tom sida
	Tom sida




