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Abstract
Grain boundaries (GBs) play a fundamental role in determining the properties of polycrys-
talline materials, such as metals. However, many of these properties continue to elude pre-
cise characterization, both experimentally and computationally. This challenge stem from
the small spatial extent of GBs, the wide range of timescales associated with GB-related pro-
cesses, the strong anisotropy of GB properties and the great structural diversity and variation
in GB structures.

To aid in the understanding of these systems, this thesis investigates selected GB proper-
ties in bicrystalline systems using the phase field crystal (PFC) method. The PFC approach
bridges atomic-scale spatial resolution and diffusive time scales, while naturally incorporat-
ing elasticity and plasticity. Compared to other atomistic methods, PFC offers a relatively
efficient framework, enabling the systematic exploration of GB behavior.

In this work, the PFC method is employed to sample key GB properties — such as GB en-
ergy and migration velocity — as functions of various GB descriptors. Interactions between
GBs and second-phase particles (Zener pinning) are also examined. The results highlight the
strong anisotropy often observed in GB properties and demonstrate how PFC can serve as an
effective tool for investigating the variability of these properties and related processes. Fur-
thermore, PFC results are systematically compared to those obtained from other atomistic
methods, such as molecular dynamics, and are found to be in good agreement. Finally, the
model is extended to more complex crystal structures — beyond BCC and FCC — with
the diamond cubic structure used as a case study, demonstrating the potential of the PFC
method for exploring a broader class of crystalline materials.
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Popular science summary
Many materials, particularly metals like steel and copper, are composed of a repeating ar-
rangement of atoms known as an atomic lattice. This orderly structure is often disrupted,
however, by boundaries that can form during solidification or deformation. A useful analogy
is how water freezes on a car windshield during a cold winter day, forming small crystals that
grow outward from multiple starting points. As these individual grains expand, each with
slightly different orientation, they eventually meet and create grain boundaries — regions
where the crystallographic symmetry is interrupted. These grain boundaries play a crucial
role in determining the unique properties of metals and other crystalline materials.

This thesis focuses on the study of these grain boundary structures, particularly how they
can be explored using a simulation technique known as the phase field crystal (PFC) method.
This tool enables simulations at the atomic scale, offering valuable insights into the behavior
and properties of materials while enhancing our understanding of their nanoscale structures.
Additionally, PFC is efficient enough to simulate atomic phenomena over extended time
scales, making it especially useful for studying dynamic processes such as grain growth — a
phenomenon where some grains grow larger, while others shrink and are absorbed.

The research presented in this thesis examines both the static and dynamic properties
of small sections of single grain boundaries, with an emphasis on the variability of grain
boundary properties. Two primary aspects were investigated: grain boundary energy and
grain boundary structure. These studies were conducted both to compare PFC results with
established data and models, as well as to extend previous research. The findings revealed that
PFC simulations closely match existing data. Furthermore, the efficiency of the PFC method
allows for the study of a wider range of parameter variability, providing deeper insights into
grain boundary behavior.

These investigations are essential, as many larger-scale models, which do not directly
incorporate atomic-scale details, often neglect the variability in grain boundary properties.
This oversight can impact the accuracy and reliability of their results. The PFC method can
serve as a vital link in integrating crystallographic variability into models that depend on exter-
nal data repositories. By improving these repositories with more comprehensive data, larger-
scale models can be enhanced, leading to more accurate and reliable simulations of material
behavior at larger scales.
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Populärvetenskaplig sammanfattning
Många material, särskilt metaller som stål och koppar, består av ett regelbundet arrangemang
av atomer, ett så kallat atomgitter. Denna ordnade struktur avbryts dock ofta av gränser
som kan ha bildas under materialets stelning eller deformation. En användbar analogi är hur
vatten fryser på en bilruta under en kall vinterdag och bildar små kristaller som växer utåt
från flera startpunkter. När dessa individuella kristaller, alla med olika orientering, växer och
till slut möts, bildas korngränser. Dessa gränser definierar områden där den kristallografiska
symmetrin bryts och spelar en avgörande roll för metallers, och andra kristallina materials,
unika egenskaper.

Denna avhandling fokuserar på korngränsstrukturer och hur de kan utforskas med en
simuleringsteknik som kallas fasfältskristallmetoden (PFC-metoden). Detta verktyg möjlig-
gör simuleringar på en atomär nivå och ger värdefulla insikter i materialens beteende och
egenskaper, samtidigt som förståelsen för nanostrukturer fördjupas. PFC-metoden är dessu-
tom tillräckligt effektiv för att simulera atomära fenomen över längre tidsperioder, vilket gör
den särskilt användbar för att studera dynamiska processer såsom korntillväxt — ett fenomen
där vissa korn växer sig större medan andra krymper och till slut absorberas.

Forskningen som presenteras i denna avhandling undersöker både de statiska och dy-
namiska egenskaperna hos enskilda korngränser, med särskilt fokus på variationer i deras
struktur och energi. Två centrala aspekter har studerats: korngränsenergi och korngräns-
struktur. Undersökningarna genomfördes dels för att jämföra resultaten från PFC-metoden
med andra etablerade modeller och dels för att vidareutveckla tidigare forskning. Resultaten
visar att PFC-simuleringar stämmer väl överens med befintliga data. Dessutom möjliggör
metodens numeriska effektivitet en bredare utforskning av, bland annat, geometriska parame-
trar, vilket ger fördjupad förståelse för korngränsers beteende.

Dessa typer av undersökningar är viktiga eftersom många storskaliga modeller, som inte
direkt inkluderar detaljer på atomär nivå, ofta bortser från variationer i korngränsegenskaper.
En sådan förbiseelse kan påverka resultatens noggrannhet och tillförlitlighet. PFC-metoden
kan fungera som en viktig länk för att integrera kristallografisk variation i modeller som är
beroende av externa databaser. Genom att förbättra dessa databaser med mer omfattande
och detaljerad information kan storskaliga modeller utvecklas vidare, vilket i sin tur leder till
mer noggranna och tillförlitliga simuleringar av materialbeteende i större skala.
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Chapter 1

Introduction

“There is a crack in everything. That’s how the light gets in.”
– Leonard Cohen

This thesis explores crystalline systems at the atomic scale, with a particular focus on
grain boundaries. The study of grain boundaries and their role in material evolution is a
fundamental aspect of materials science. Although only a few atoms thick, grain bound-
aries significantly influence key mechanical and physical properties and processes, including
strength, ductility and diffusion [1]. Despite more than a century of research, dating back to
the early 20th century [2], many fundamental questions regarding grain boundary behavior
remain unresolved and elementary phenomena continue to elude precise characterization.

At its core, the study of crystalline systems involves analyzing atomic packing and the
formation of ordered patterns, where atoms tend to arrange themselves in energetically fa-
vorable configurations. However, many structural challenges observed at the atomic scale
also manifest at larger scales. This was demonstrated by Bragg and Nye in their bubble raft
experiment presented in [3], where bubbles suspended on a soap film reproduced features of
atomic arrangements and evolution in crystalline materials.

A related analogy is found in hard-sphere models, where steel spheres can be used to rep-
resent atoms. These systems encompass the classical problem of sphere packing as well as the
study of disordered states such as liquids [4, 5]. When steel spheres are placed in an inclined
container, agitated and then allowed to settle — mimicking the process of solidification — a
polycrystalline structure may emerge, characterized by regions of differing orientations and
relative displacements. A result of this process is shown in Fig. 1.1, where the arrangement
of steel spheres forms a 2D crystal structure, exhibiting multiple phases, including triangular
and square lattices, along with visible grain boundaries and vacancies.
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(a)

(b)

(c)

Fig. 1.1: Arrangement of steel spheres illustrating structural features also observed in atomic
systems. (a) Shows local packing with triangular and square symmetries, (b) displays a grain
boundary separating regions with different orientations and (c) highlights a vacancy in an
otherwise ordered lattice.

Just as the hard-sphere models and bubble raft experiments illustrate, atoms also tend to
pack and evolve into volumetric efficient configurations. Due to the interatomic potentials
between atoms, however, stacking in atomic systems may differ from that of rigid spheres.
Nonetheless, the processing history — including crystallization or plastic deformation —
often leads to the formation of defects such as grain boundaries, as also observed in Fig. 1.1.

These grain boundaries are associated with a grain boundary, or excess, energy that in-
creases the total energy of the system. If thermodynamic conditions permit, the system may
evolve toward a lower-energy configuration by reducing or eliminating these defects. The
relevance and motivation for studying grain boundaries and their evolution are discussed
further in Chap. 2.

Beyond the fundamental physics and characterization of grain boundaries, this thesis also
has a focus on the application of the phase field crystal (PFC) method as a computational
framework for their study. Traditional atomistic approaches, such as molecular dynamics
(MD) and density functional theory (DFT), provide detailed atomic-scale insights but are
constrained by their computational expense, restricting them to short timescales and small
domain sizes. MD, for instance, is inherently limited by the atomic vibrational frequency,
rendering time scales relevant to grain growth (hours) computationally intractable. Con-
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versely, mesoscale methods, such as traditional phase field (PF) modeling, capture long-term
material evolution but often rely on simplified representations of atomic-scale phenomena
that cannot be readily described through analytical functions.

The PFC method serves as a bridge between these two regimes by preserving atomic-scale
spatial resolution while operating on diffusive timescales. This capability makes it an effective
tool for investigating grain boundary structures, energy landscapes and dynamic evolution.
Further details on the PFC method, its development and mathematical formulations are pre-
sented in Chap. 3.

Throughout the appended papers, included at the end of this thesis, we have not only in-
vestigated the fundamental physics of grain boundaries but also systematically compared the
PFC method with other computational approaches, particularly MD. These comparisons
are crucial for validating PFC as a reliable tool for studying real material systems. Although
large-scale simulations have not been the primary focus of this work, the validation of grain
boundary properties at smaller scales establishes a foundation for future studies, enabling
the exploration of grain boundary phenomena at larger scales with increased confidence. A
summary of the appended papers, along with future perspectives, is presented in Chap. 4.

3





Chapter 2

Crystalline systems: Grains and the
boundaries that divide them

“God made the bulk; the surfaces were invented by the devil.”
–Wolfgang Pauli

A grain boundary is the region at the interface between two abutting crystal grains where
a structural mismatch arises due to differences in lattice orientation, displacement or atomic
arrangement. This is illustrated in Fig. 2.1, where a region in a metallic material is magnified,
first revealing a multitude of crystalline grains with different orientations. These grains can
vary significantly in size, with typical widths ranging from the millimeter scale down to just
a few nanometers [6]. Larger examples include single crystals produced for use in semicon-
ductors or turbine blades. Upon further magnification, the very thin region separating the
grains becomes visible, marking the location of the grain boundary.

This disruption of crystallographic periodicity results in a region with distinct energetic
and mechanical properties, with the nature and extent of these variations governed by the spe-
cific characteristics of the grain boundary. Despite being microscopic in scale, grain bound-
aries significantly impact material properties at the macroscopic level and can either enhance
or degrade performance depending on their structure and evolution. Specifically, grain bound-
aries act as barriers to dislocation motion [7], mediate atomic diffusion [8], influence electri-
cal resistivity [9] and affect a range of other mechanical properties.

This chapter will first, in Sec. 2.1, examine the topic of grain growth, introducing key
mechanical properties relevant to this thesis. Sec. 2.2 provides a description of atomic lattices,
followed in Sec. 2.3, by further details on grain boundary characterization.
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(a) mm-m

(b) `m-mm

(c) �̊-nm

Fig. 2.1: Magnifying a small domain in a piece of metal, as shown in (a), reveals a rich mi-
crostructure, seen in (b), where grains with different orientations are separated by thin grain
boundaries, highlighted in (c).

2.1 Grain boundary properties and dynamics
The geometric configuration of a grain boundary is fundamental to understanding its prop-
erties and behavior. To characterize the grain boundary shown in Fig. 2.1(c), consider the
simplified representation in Fig. 2.2. The relative orientation of the crystals in Fig. 2.2 is de-
scribed by 𝜃 = 𝜃𝐵 − 𝜃𝐴, whereas in more general cases, three rotation angles are required.
Additionally, two angles define the grain boundary plane normal 𝒏. Together, these param-
eters establish the boundary’s five macroscopic degrees of freedom (DOF). A more detailed
description of grain boundary orientations is provided in Sec. 2.3.

The consideration of these DOFs is essential, as many grain boundary properties — such
as grain boundary energy — exhibit strong anisotropy with respect to orientation [2], as also
demonstrated in Papers A–C. Interestingly, the variation in grain boundary energy across
different metals appears to be largely a matter of scaling [2, 10]. This suggests that insights
gained from studying one material with a given crystal structure can be transferred to another
material with the same structure. This approach has been applied in Papers A–C to compare
PFC results with those obtained from MD simulations.

Furthermore, grain boundary kinetics describe the migration of grain boundaries during
grain growth — a process central to the microstructural evolution of polycrystalline materi-
als, such as during the annealing of cold-worked metals. An illustrative example of grain
growth is provided in Fig. 2.3, corresponding to the polycrystal presented in Fig. 2.1. Despite
the significance of grain boundary migration, the underlying mechanisms that govern it re-
main only partially understood. This is largely due to the inherent complexity of the process,
which occurs at the atomic scale and progresses rapidly at elevated temperatures, making di-
rect experimental observations challenging. Computationally, resolving these processes with
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Fig. 2.2: Schematic representation of a grain boundary (shown in red) between two crys-
talline grains, A and B. The boundary is characterized by the orientations of the grains, 𝜃𝐴
and 𝜃𝐵, as well as the boundary normal 𝒏.

(a) (b) (c)

Fig. 2.3: (a)–(c) Illustrative example of grain growth at three consecutive time steps, showing
one grain growing at the expense of its neighbors.

both spatial and temporal fidelity is equally demanding, as conventional atomistic methods
such as DFT and MD are constrained by their computational cost, as mentioned in Chap. 1.

Although extensive studies have been conducted, both experimentally and through sim-
ulations, the results are often contradictory and lack a clear unified pattern, as highlighted
in [11]. One of the major challenges in studying grain boundary migration, or any grain
boundary-related phenomenon, is the sensitivity of these processes to small perturbations
in the system. Even minor modifications, such as the addition of solute atoms, can signifi-
cantly alter grain boundary properties such as mobility, leading to a complex behavior that
can be hard to predict [12]. Even a rough estimate, however, of whether a particular change
will increase or decrease grain boundary mobility remains highly beneficial for the design of
materials with specific microstructural properties, a field generally referred to as grain bound-
ary engineering [13].

At its core, grain boundary migration arises from the transfer of atoms between adjacent
grains — i.e., atomic diffusion — driven by thermodynamic forces that act to minimize the
system’s free energy. Consider a system composed of two neighboring crystal grains, 𝐴 and
𝐵, separated by a grain boundary, as illustrated in Fig. 2.2. The driving force for boundary
motion is then governed by the difference in Gibbs free energy,𝐺, between the grains, which
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induces a pressure gradient across the boundary, given by

𝑃 = − 1
𝐴

𝑑𝐺

𝑑𝑥
(2.1)

where 𝐴 is the area of the grain boundary [11]. This pressure gradient then dictates both the
direction and rate of grain boundary migration.

Several mechanisms contribute to the overall grain boundary pressure, each influencing
the migration velocity. For example, differences in dislocation density between grains create
energy gradients, while capillary forces arising from boundary curvature introduce additional
driving pressures [14], as discussed further in Sec. 2.1.1.

2.1.1 Curvature induced grain boundary pressure
The effect of curvature-driven grain boundary pressure was famously investigated by Her-
ring in [15], where he analyzed the energy difference associated with forming a hump on a
smoothly curved surface. He found that the local chemical potential, i.e., the change in Gibbs
free energy, induces a driving pressure given by

𝑃 = 𝜅1

(
𝛾 + 𝜕2𝛾

𝜕𝛼2
1

)
+ 𝜅2

(
𝛾 + 𝜕2𝛾

𝜕𝛼2
2

)
= 𝜅1Γ1 + 𝜅2Γ2 (2.2)

where 𝛾 is the grain boundary energy, 𝜅𝑖 = 1/𝑅𝑖 represents the principal grain boundary cur-
vatures (with 𝑅𝑖 denoting the radii of curvature) and 𝛼𝑖 are the corresponding grain bound-
ary inclinations. The associated grain boundary stiffness, Γ𝑖 , can be identified from Eq. (2.2)
as

Γ𝑖 (𝜃, 𝒏) = 𝛾(𝜃, 𝒏) + 𝜕2𝛾(𝜃, 𝒏)
𝜕𝛼2

𝑖

(2.3)

where 𝜃 is the relative rotation between the grains and the grain boundary normal 𝒏 =
𝒏(𝛼1, 𝛼2) is parameterized using the spherical angles (𝛼1, 𝛼2). For more general formulations
of Eq. (2.2), the reader is referred to [16–18].

It is evident from Eq. (2.2) that determining the driving pressure requires not only knowl-
edge of the grain boundary energy but also its second derivative with respect to the bound-
ary inclination. To incorporate grain boundary stiffness into non-atomistic simulations, an-
alytical functions have been developed and calibrated against large datasets, primarily de-
rived from MD simulations. These include the GB5DOF function, derived in [10] for face-
centered cubic (FCC) systems and the uGBE function, developed in [19] for body-centered
cubic (BCC) systems. Since both models rely on atomistic simulations using MD, their ac-
curacy depends on the ability to sample a wide range of grain boundary configurations.

Rather than relying directly on the complex analytical functions presented in [10] and
[19], some models adopt simplified representations of grain boundary anisotropy [20]. In
many cases, however, a constant grain boundary energy is assumed. Under this simplification,
and in the 2D case, Eq. (2.2) reduces to

𝑃 = 𝜅𝛾 (2.4)
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As a consequence of its simplicity, Eq. (2.4) naturally neglects many of the underlying
physical mechanisms that govern grain boundary behavior. The impact and importance of
incorporating anisotropy in simulations have been demonstrated, for example, in [21] for PF
simulations and in [22] using the level set method.

2.1.2 Grain boundary mobility
Regardless of the specific form of the driving pressure, if it is sufficiently high, it will induce
grain boundary migration. With the migration velocity often assumed to being proportional
to the applied driving pressure as

𝑣 = 𝑀𝑃 (2.5)

where 𝑀 is the grain boundary mobility parameter. This relationship does not, however, al-
ways hold, as additional factors such as temperature, impurity effects and structural anisotropy
can significantly influence the final migration rate. Moreover, grain boundary migration is
affected by a combination of metastable states, microstructural interactions and crystallo-
graphic orientation. Metastable states often inhibit boundary progression, introducing com-
plexities that many existing models struggle to capture due to the lack of analytical expressions
describing these conditions. Additionally, microstructural features such as second-phase par-
ticles, porosity and solute segregation can further impede boundary motion. These effects,
commonly referred to as pinning mechanisms, vary significantly depending on temperature,
grain boundary structure and solute concentration. The subject of pinning by second-phase
particles was investigated in Paper D.

The influence of grain boundary structure on migration behavior is further complicated
by crystallographic orientation. Recent studies suggest that absolute mobility is primarily
dictated by the full boundary crystallography rather than the specific driving force applied
[23]. This indicates that while thermodynamic driving forces play a role, the underlying
atomic structure of the boundary itself is the dominant factor in determining migration be-
havior. Similar studies to those conducted in [23] were employed in the context of PFC in
Paper C.

Finally, it is worth noting that Eq. (2.5) is often combined with Eq. (2.4) to form a simple
model of grain boundary migration. In light of recent experimental evidence, however, this
linear relationship between grain boundary velocity and curvature appears to be inaccurate,
as demonstrated in [24].

2.1.3 Grain boundary stiffness from capillary-wave theory
The grain boundary stiffness, introduced in Eq. (2.2), can be determined using capillary-wave
theory. In the approach presented by Buff et al. in [25], the distorted surface of an interface
was modeled using a Fourier series to describe equilibrium fluctuations. Their analysis, how-
ever, was based on an isotropic fluid with interface energy assumed to be independent of
boundary inclination — an assumption that does not hold for metals, as detailed in Sec. 2.1.1.

9



ℎ(G)

G!

\

Fig. 2.4: Fluctuating grain boundary profile taken from Paper A, illustrating how the height
ℎ varies periodically along the 𝑥-direction over a length 𝐿.

This limitation was later addressed by Fisher et al. in [26], who introduced the concept of
effective interface tension, which takes the same form as the stiffness defined in Sec. 2.1.1.

The capillary-wave theory, later also referred to as the capillary fluctuation method (CFM),
has been applied to the study of solid–liquid interfaces, as demonstrated in [27], and solid–
solid grain boundaries, as shown in [28]. In CFM, the profile of a quasi-2D interface is consid-
ered, such as the one shown in Fig. 2.4, which is taken from Paper A. By analyzing the energy
of such a boundary and expressing the contour surface as a Fourier series, it was shown in [27]
that the mean square amplitude of the Fourier modes follow as

⟨|𝑎(𝑘) |2⟩ = 𝑘𝐵𝑇

𝐿𝑊Γ𝑘2 (2.6)

where 𝑘𝐵 is the Boltzmann constant, 𝑇 is the temperature, 𝐿 is the grain boundary length,
𝑊 is the grain boundary width and 𝑘 is the frequency of the Fourier mode. The stiffness
can then be extracted from Eq. (2.6) by analyzing the power spectrum of equilibrium grain
boundary profiles, such as the one shown in Fig. 2.4, as a function of 𝑘 .

It must be noted, however, that Eq. (2.6) was derived under the small-slope approxima-
tion (𝑑ℎ/𝑑𝑥 ≪ 1), i.e., for small values of 𝑘 . Nonetheless, the applicability of Eq. (2.6)
has been further confirmed in [28,29] and was also demonstrated in Paper A to perform well
within the context of the PFC method. For a more detailed derivation of Eq. (2.6), the reader
is referred to [30].

Finally, it was argued in [27] that calculatingΓ is more practical than directly determining
𝛾, owing to the stronger anisotropy of the former. When using MD to compute 𝛾, long
averaging times are typically required, rendering its estimation less tractable.

2.2 The atomic lattice
Crystal systems, i.e., the atomic lattice structures, exist in various forms. Cubic systems, such
as simple cubic (SC), BCC, FCC and hexagonal close-packed (HCP), are particularly com-
mon in metals. The majority of studies presented in this thesis focus on either BCC or FCC
structures, as examined in Papers A–D, while Paper D specifically investigates crystals with
diamond cubic (DC) lattices.
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Fig. 2.5: FCC unit cell with a lattice parameter 𝑎 and its three Bravais lattice basis vectors:
𝒂1 = 𝑎[1/2, 1/2, 0], 𝒂2 = 𝑎[1/2, 0, 1/2] and 𝒂3 = 𝑎[0, 1/2, 1/2].

The rich collection of grain boundary structures arises from the fact that, unlike the
rigid spheres shown in Fig. 1.1, atomic systems do not always favor the highest packing fac-
tor (atoms per unit volume) arrangements, such as FCC or HCP. Due to factors such as
electronic bonding, orbital structure and other interatomic interactions, alternative config-
urations may exhibit lower energy for specific atomic species [31]. The range of possible
structures becomes even broader when considering multi-component systems. Although
this represents an important class of materials, the present thesis focuses exclusively on single-
component systems.

To describe the atomic arrangement of different systems, the crystallographic structure
is typically defined using the Bravais lattice, or direct lattice, with the basis vectors 𝒂1, 𝒂2 and
𝒂3, from which the lattice points are generated as

𝑹 = 𝑛1𝒂1 + 𝑛2𝒂2 + 𝑛3𝒂3 (2.7)

where (𝑛1, 𝑛2, 𝑛3) are integers. For the FCC lattice, illustrated in Fig. 2.5 using a cubic unit
cell, the Bravais lattice basis vectors are given by 𝒂1 = 𝑎[1/2, 1/2, 0], 𝒂2 = 𝑎[1/2, 0, 1/2] and
𝒂3 = 𝑎[0, 1/2, 1/2], where 𝑎 is the lattice parameter. In some cases, however, the Bravais
lattice is decorated with multiple atoms per lattice site. For example, the DC lattice preserves
the underlying FCC Bravais lattice but is decorated with two atoms at each lattice point, in
contrast to the single atom per point in the FCC structure shown in Fig. 2.5.

2.2.1 Reciprocal Lattice
Instead of describing a system using its Bravais lattice, as given in Eq. (2.7), it is sometimes
useful to consider its reciprocal lattice. While the direct lattice describes symmetry points in
real space, the reciprocal lattice characterizes symmetry planes in reciprocal space. To formal-
ize this, consider an atomic density field 𝑛(𝒓), where 𝒓 denotes a position in space. Assuming
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that 𝑛(𝒓) exhibits the periodicity of the crystal lattice, it can be expressed as a Fourier series
of the form

𝑛(𝒓) =
∑︁
𝑚

𝑎𝑚 exp(𝑖𝑮𝑚 · 𝒓) (2.8)

where 𝑎𝑚 are the Fourier coefficients and 𝑮𝑚 are the reciprocal lattice vectors. Due to the
periodic nature of the lattice, translating 𝒓 by any lattice vector 𝑹𝑛, as described by Eq. (2.7),
must yield the same function value, i.e. 𝑛(𝒓) = 𝑛(𝒓 + 𝑹𝑛). Therefore,

𝑛(𝒓 + 𝑹𝑛) =
∑︁
𝑚

𝑎𝑚 exp(𝑖𝑮𝑚 · (𝒓 + 𝑹𝑛)) =
∑︁
𝑚

𝑎𝑚 exp(𝑖𝑮𝑚 · 𝒓) exp(𝑖𝑮𝑚 · 𝑹𝑛) (2.9)

Since 𝑛(𝒓) = 𝑛(𝒓 + 𝑹𝑛), it follows that exp(𝑖𝑮𝑚 · 𝑹𝑛) must be unity. This condition is
satisfied if

𝑮𝑚 · 𝑹𝑛 = 2𝜋𝑝 (2.10)

where 𝑝 is an integer. Assuming that the reciprocal lattice vectors 𝑮𝑚 can be written in a
form comparable to Eq. (2.7), they take the form

𝑮𝑚 = 𝑚1𝒃1 + 𝑚2𝒃2 + 𝑚3𝒃3 (2.11)

where (𝑚1, 𝑚2, 𝑚3) are integers and (𝒃1, 𝒃2, 𝒃3) are the reciprocal basis vectors. It can then
be shown that choosing

𝒃1 = 2𝜋
𝒂2 × 𝒂3

𝒂1 · (𝒂2 × 𝒂3) , 𝒃2 = 2𝜋
𝒂3 × 𝒂1

𝒂1 · (𝒂2 × 𝒂3) , 𝒃3 = 2𝜋
𝒂1 × 𝒂2

𝒂1 · (𝒂2 × 𝒂3) , (2.12)

ensures that the orthogonality condition 𝒂𝑖 · 𝒃 𝑗 = 2𝜋𝛿𝑖 𝑗 is satisfied [32]. It is worth not-
ing that in crystallographic descriptions, the factor 2𝜋 is often omitted, as the convention
exp(2𝜋𝑖𝑮𝑚 · 𝑹𝑛) is commonly used instead [32]. Utilizing Eq. (2.12), the reciprocal lat-
tice vectors for the FCC lattice are found as 𝒃1 = 2𝜋[1, 1,−1], 𝒃2 = 2𝜋[1,−1, 1] and 𝒃3 =
2𝜋[−1, 1, 1], which correspond to a BCC lattice in reciprocal space.

2.3 Description and classification of grain boundaries
As mentioned in Sec. 2.1, the characterization of a grain boundary is primarily defined by five
macroscopic DOF: three describing the relative orientation between grains and two specify-
ing the orientation of the boundary plane. In addition, three microscopic DOF account for
the relative displacement of the adjoining grains. Beyond these geometric descriptors, factors
such as grain boundary density, local composition and other atomic-scale variations further
contribute to the characterization of grain boundaries. This extended set of DOF, beyond
the primary five, leads to a complex grain boundary energy landscape, with grain boundaries
exhibiting multiple distinct phases, sometimes referred to as complexions [33, 34]. Some of
the commonly used descriptions of crystal orientations and grain boundary characterization
are presented in Secs. 2.3.1–2.3.4.
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Fig. 2.6: Two unit cells defined by the basis vectors 𝒂1, 𝒂2 and 𝒂3. (a) Represents a cubic
lattice, while (b) shows a skewed unit cell forming a parallelogram prism. In both cases, a
plane with normal vector 𝒏 is shown in blue and 𝒗 denotes a direction vector.

2.3.1 Miller indices
A fundamental step in defining the DOF — particularly those related to orientation — in-
volves describing the crystallographic directions and planes. To this end, Miller indices are
commonly used to specify both directions and planes in crystal structures. To illustrate their
use, consider the two unit cells shown in Fig. 2.6, each defined by the basis vectors 𝒂1, 𝒂2 and
𝒂3. In this example, Fig. 2.6(a) represents a cubic unit cell, which also describes the FCC unit
cell shown in Fig. 2.5, whereas Fig. 2.6(b) depicts a skewed lattice in the form of a parallelo-
gram prism.

Within the Miller index system, directions are described using the smallest integer multi-
ples of the basis vectors, written as [ℎ𝑘𝑙], such that the direction is given by ℎ𝒂1 + 𝑘𝒂2 + 𝑙𝒂3.
For both unit cells, the vector 𝒗 = 0.5𝒂1 and is expressed using Miller indices as [100]. When
the components are single-digit integers, they are written without commas or spaces and neg-
ative values are indicated with an overline, such that −ℎ = ℎ̄ [32].

Lattice planes, on the other hand, are described by taking the reciprocals of the plane
intercepts along the basis vectors. In both unit cells, the blue plane intersects the 𝒂1 axis at
0.5𝒂1, while the remaining axes are considered to intersect at infinity. Thus, the Miller indices
for both planes are given by

(
1

0.5
1
∞

1
∞
)

=(200), which is scaled by 1/2 and written as (100).
Here, the use of parentheses indicates that the indices refer to a plane rather than a direction.

The orientation of the plane normal 𝒏 corresponds to integer multiples of the reciprocal
basis vectors, as defined by Eq. (2.12), and is specified by the Miller indices (ℎ𝑘𝑙) such that
𝒏 ∥ ℎ𝒃1 + 𝑘𝒃2 + 𝑙𝒃3 [35]. In the case shown in Fig. 2.6, both plane normals can be shown
to be parallel to 𝒃1. A special case arises for cubic lattices, where the reciprocal lattice is also
cubic and the basis vectors satisfy 𝒂𝑖 ∥ 𝒃𝑖 . In such cases, the direction [ℎ𝑘𝑙] is perpendicular
to the plane (ℎ𝑘𝑙).
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Due to lattice symmetry, certain directions or planes exhibit equivalent crystallographic
symmetries. For example, in the case shown in Fig. 2.6(a), the (100), (010), (001), (1̄00),
(01̄0) and (001̄) planes share the same symmetry and belong to the same {100} family of
planes. Similarly, the directions [100], [010], [001], [1̄00], [01̄0] and [001̄] are part of the
same ⟨100⟩ family of directions. These families are indicated by the use of different brackets:
{} for equivalent planes and ⟨⟩ for equivalent directions.

2.3.2 Symmetric tilt grain boundaries
In many cases, symmetric boundary types — such as symmetric tilt grain boundaries (STGBs)
— simplify the description of grain boundaries, as they exhibit equal but opposite rotations
relative to the boundary normal and share a common rotation axis. In the configuration
shown in Fig. 2.2, this corresponds to 𝜃𝐴 = −𝜃𝐵. STGBs are typically characterized by their
shared tilt axis and by a crystallographic plane that is parallel to the grain boundary plane.
For example, a (430) [001] tilt grain boundary refers to a configuration in which the crystal-
lographic plane (430) is parallel to the boundary plane and the common rotation axis [001]
is aligned in both grains and lies parallel to the grain boundary plane.

2.3.3 Misorientation
A grain boundary can also be characterized by a misorientation, defined as the rotation re-
quired to bring one crystal orientation into alignment with the other. In cases where the two
grains share a common rotation axis, the misorientation reduces to a single rotation about
that axis, which fully characterizes the relative orientation between the grains. For the con-
figuration illustrated in Fig. 2.2, the misorientation is therefore given by |𝜃𝐵−𝜃𝐴|. However,
due to the inherent symmetry of the crystal lattice, multiple crystallographic orientations
may be considered equivalent. As a result, a smaller rotation angle that yields the same rela-
tive crystallographic configuration can often be identified by applying symmetry operations.
This minimum-angle rotation is referred to as the disorientation.

2.3.4 Coincident site and displacement shift complete lattices
A special case arises when some of the lattice points of one crystal coincide with those of
another. These coincident points form a larger periodic structure known as the coincident
site lattice (CSL). An example of a CSL is shown in Fig. 2.7(a), where two square lattices,
represented by blue and green circles, share coincident points, highlighted in purple. These
coincident points form a larger periodic pattern, illustrated by the square cells connecting
the CSL points.

To quantify the degree of coincidence between lattices, the parameter Σ is defined as the
ratio of the total number of lattice points to the number of coincident sites within a unit cell
of the CSL. In the case shown in Fig. 2.7(a), this value is Σ = 5. While several studies have
attempted to correlate grain boundary energy with lattice coincidence, the Σ value has not
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(a) (b)

Fig. 2.7: (a) CSL lattice formed by two square lattices, with atoms shown in green and blue,
respectively, and coincident points marked in purple. (b) The corresponding DSC lattice.
Shifting one of the lattices by an integer multiple of the displacement vectors (red arrows) in
(b) preserves the CSL lattice shown in (a).

proven to be a reliable predictor of grain boundary properties, as also noted for the result
presented in Paper B and C [2].

An important property of the CSL is that shifting one of the lattices by a CSL basis vector
results in a configuration that preserves lattice coincidence. This is not, however, the small-
est possible displacement that maintains coincidence. As illustrated in Fig. 2.7(b), smaller
displacement vectors exist that also conserve the CSL structure. These vectors form the dis-
placement shift complete (DSC) lattice, defining the maximum set of lattice shifts required
to generate all unique configurations of relative lattice displacements. Notably, distinct de-
fect structures may arise from displacements smaller than those defined by the DSC lattice.
The DSC framework thus provides a systematic approach to characterizing grain bound-
ary multiplicities in terms of structure, grain boundary energy and other properties. This
approach was employed in Paper B to constrain the search space for possible grain bound-
ary structures, thereby reducing the computational effort required to identify distinct grain
boundary configurations.
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Chapter 3

Stabilization of periodic phases via
the phase field crystal method

“All models are wrong, but some are useful.”
– George E.P. Box

The PFC method is a computational framework that enables simulations with atomic-
scale spatial resolution while operating on diffusional time scales. Originally developed as an
extension of traditional PF models, the PFC formulation has also been shown — under suit-
able approximations — to be derivable from classical DFT (cDFT) theories [36]. Compared
to DFT, the PFC method offers a significant computational advantage by avoiding the need
to resolve sharp density peaks, thereby requiring lower spatial resolution. As a result, the PFC
model effectively bridges the gap between DFT and conventional PF methods, enabling the
study of key physical phenomena in a computationally efficient manner.

The objective of this chapter is to introduce the PFC method for a single-component
system. Sec. 3.1 presents the original PFC formulation, which forms the basis for the model
used in Paper A. This is followed, in Sec. 3.2, by a discussion on the connection between
PFC and cDFT, which provides the foundation for the model introduced in Sec. 3.3 and
applied in Papers B–E. Finally, the computational implementation, including a discussion
of the spectral method, is presented in Sec. 3.4, concluding this chapter.
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3.1 Phase fields and the extension to crystals
The PFC method originates from mean-field theories, including conventional PF models.
These models employ order parameters to represent different physical states or properties of
a system, such as distinguishing between crystalline and liquid phases [37]. The use of order
parameters enables the system’s free energy to be expressed in terms of averaged thermody-
namic quantities, without explicitly resolving atomic spatial fluctuations.

A key distinction between conventional PF models and the PFC method is that PF mod-
els typically involve scalar fields that are spatially uniform in equilibrium. In contrast, the
PFC field exhibits periodic spatial variations that reflect the underlying crystal lattice, allow-
ing for the explicit representation of atomic-scale density variations. An example of such a
density variation is shown in Fig. 3.1, where the maximum density peak positions have been
extracted by interpolation for a subsection of the domain, revealing the FCC crystal struc-
ture.

The foundational work on PFC can be traced back to 2002 with the seminal paper by
Elder, Katakowski, Haataja and Grant [38]. This development was based on earlier studies
of periodic mean field theories, which sometimes employed crystalline terminology, most
notably the free energy functional introduced in [39] for the study of convection, nowadays
known as the Swift-Hohenberg equation. Drawing inspiration from the Swift-Hohenberg
equation, Elder et al. [38] formulated the free-energy functional as

𝐹 [𝑛(𝒓)] =
∫
𝑉
𝑑𝒓

{
𝑛(𝒓) [(𝑞2

0 + ∇2
𝒓 )2 − 𝜖] 𝑛(𝒓)

2
+ 𝑛(𝒓)4

4

}
(3.1)

where the order parameter 𝑛 represents a conserved density field, 𝒓 denotes the spatial co-
ordinates and 𝑉 the volume of the domain. The parameters 𝑞0 and 𝜖 can be interpreted
as material-specific constants. Eq. (3.1) was chosen for its relative simplicity while still being
capable of producing periodic states. In [38], it was demonstrated that in 2D, Eq. (3.1) can sta-
bilize a uniform state, a striped phase and, more notably, a hexagonal phase. This hexagonal
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Fig. 3.1: Density field (left) and maximum density peak positions (right) for a density field
forming an FCC crystal lattice.
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phase exhibits a triangular packing structure, similar to that observed in the {111} crystallo-
graphic planes of FCC materials.

To illustrate why and how periodic solutions are stabilized by Eq. (3.1), consider again the
Fourier transform of the density field given in Eq. (2.8). As an example, taking the square of
this function yields

𝑛(𝒓)2 =
∑︁
𝑚1

∑︁
𝑚2

𝑎𝑚1𝑎𝑚2 exp(𝑖𝑮𝑚1 · 𝒓) exp(𝑖𝑮𝑚2 · 𝒓)

=
∑︁
𝑚1

∑︁
𝑚2

𝑎𝑚1𝑎𝑚2 exp(𝑖 (𝑮𝑚1 + 𝑮𝑚2

) · 𝒓) (3.2)

which represents another summation of plane waves, with wave vectors 𝑮𝑚1 + 𝑮𝑚2 , deter-
mining the direction and periodicity of the plane waves. For some choices of 𝑚1 and 𝑚2, the
condition 𝑮𝑚1 + 𝑮𝑚2 = 0 may hold. This special set of vectors is referred to as the resonant
modes, for which the summand remains spatially uniform with a constant value of 𝑎𝑚1𝑎𝑚2 .

From Eq. (3.1), it follows that an integration of Eq. (3.2) should be performed. Integrating
Eq. (3.2) over a finite volume𝑉 that exactly matches the periodicity of the density field𝑛 yields∫

𝑉
𝑑𝒓

∑︁
𝑚1

∑︁
𝑚2

𝑎𝑚1𝑎𝑚2 exp(𝑖 (𝑮𝑚1 + 𝑮𝑚2

) · 𝒓)
= 𝑉

∑︁
𝑚1

∑︁
𝑚2

𝑎𝑚1𝑎𝑚2 ∀ (𝑚1, 𝑚2) such that 𝑮𝑚1 + 𝑮𝑚2 = 0
(3.3)

from which it is evident that, for this specific choice of𝑉 , only the resonant terms contribute.
In cases where the integration volume does not precisely match the periodicity of 𝑛, the reso-
nant modes still scale linearly with𝑉 , while the non-resonant (oscillatory) terms — for which
𝑮𝑚1 + 𝑮𝑚2 ≠ 0 — fluctuate around zero due to phase cancellation.

In the general case of integrating 𝑛 raised to the 𝑖’th power over a periodic volume, the
integral evaluates to ∫

𝑉
𝑑𝒓𝑛(𝒓)𝑖 = 𝑉

∑︁
𝑚

𝑎𝑚 ∀ 𝑚 such that 𝑮𝑚 = 0 (3.4)

where 𝑚 = (𝑚1, . . . , 𝑚𝑖) and 𝑮𝑚 = 𝑮𝑚1 + · · · + 𝑮𝑚𝑖 . This demonstrates that the 𝑖’th
power of the density field is particularly sensitive to resonant modes of order 𝑖 and that these
resonant modes dominate the contributions to the free energy.

Moreover, the zero mode, 𝑮0 = 0, can combine with lower-order resonant modes and
therefore also appears in higher-order terms if its amplitude satisfies 𝑎0 ≠ 0. For example,
the third-order resonant condition 𝑮𝑚1 + 𝑮𝑚2 + 𝑮0 = 0 includes the second-order reso-
nant mode 𝑮𝑚1 + 𝑮𝑚2 = 0. Together, they contribute to a spatially uniform density field
with an amplitude of 𝑎𝑚1𝑎𝑚2𝑎0. Since 𝑎0 corresponds to the mean density, this provides a
mechanism by which the energy of different phases can be controlled through the average
density.
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Returning to Eq. (3.1), it is now evident that this formulation is sensitive to resonant
modes of the second and fourth degrees, as well as the third degree for nonzero mean den-
sity. While the resonant modes determine the angular dependence of the periodic phases,
the length scale is governed by the linear operator [(𝑞2

0 + ∇2
𝒓 )2 − 𝜖]. To understand this for-

mulation, consider a two-point correlation function𝐶2(𝒓1, 𝒓2), which relates two points, 𝒓1
and 𝒓2, in the density field and acts as a potential function for interactions. Assuming rota-
tional invariance, this function depends only on the distance 𝑟 between the points, such that
𝐶2(𝒓1, 𝒓2) = 𝐶2( |𝒓1 − 𝒓2 |) = 𝐶2(𝑟). Since the Fourier transform of a radially symmetric
function is also radially symmetric, as shown in [40], the Fourier transform of 𝐶2(𝑟) is de-
noted as �̂�2(𝑘), where 𝑘 = |𝒌 |. Expanding �̂�2(𝑘) in a Taylor series to fourth order around
𝑘 = 0 yields

�̂�2(𝑘) = 𝑐0 + 𝑐2𝑘
2 + 𝑐4𝑘

4 (3.5)

where odd-order terms are omitted, as their inclusion would introduce directional depen-
dence in the free energy, violating rotational symmetry [37, 41]. In real space Eq. (3.5) trans-
forms to

𝐶2(𝒓) =
(
𝑐0 − 𝑐2∇2

𝒓 ′ + 𝑐4∇4
𝒓 ′
)
𝛿(𝒓 − 𝒓′) (3.6)

where the gradients are taken with respect to 𝒓′ [36]. By rearranging Eq. (3.6), it follows that
if 𝑐0 = 𝑞4

0 − 𝜖 , 𝑐2 = −2𝑞2
0 and 𝑐4 = 1, then

𝐶2(𝒓) = [(𝑞2
0 + ∇2

𝒓 ′)2 − 𝜖]𝛿(𝒓 − 𝒓′) (3.7)

which is the same as in Eq. (3.1) and its reciprocal �̂�2(𝒌) is shown in Fig. 3.2 for 𝑞0 = 1. For
this choice, �̂�2(𝒌) exhibits a minimum at 𝑘 = 1, effectively setting the characteristic length
scale of the emergent phases. These considerations reveal that the quadratic term in Eq. (3.1)
is not only sensitive to the second-order resonant mode but also has its amplitudes weighted
by Eq. (3.5). Furthermore, the three quantities 𝑐0, 𝑐2 and 𝑐4 in Eq. (3.5) not only determine
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Fig. 3.2: Plot of Eq. (3.5) using 𝑐0 = 𝑞4
0 − 𝜖 , 𝑐2 = −2𝑞2

0, 𝑐4 = 1 and 𝑞0 = 1. The function is
shown for three different values of 𝜖 , each exhibiting a minimum at |𝒌 | = 1, which remains
independent of the value of 𝜖 .
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the lattice parameter of the periodic phase but can also be related to the bulk modulus of
the crystal [36]. The elastic effects of Eq. (3.7) are discussed further in Sec. 3.1.1. To analyze
the emergent phases described by Eq. (3.1) in more detail, the phase diagram is constructed
in Sec. 3.1.2.

Finally, it is noted that with the correlation function presented in Eq. (3.7), a triangular
phase can be stabilized in 2D, while a BCC phase can be stabilized in 3D. For other crystal
phases, such as FCC, additional modes must be included, which can be achieved by con-
sidering higher-order terms in the Taylor expansion in Eq. (3.5). Details on such correlation
functions are presented in Paper A. A different type of correlation function, also capable
of stabilizing FCC, is utilized in Papers B–D and is discussed in Sec. 3.3. For extensions to
more complex models capable of stabilizing, for example a DC phase, the reader is directed
to Paper E.

3.1.1 Elasticity
Although elasticity is not explicitly treated in the appended papers, it is implicitly accounted
for through the evaluation of grain boundary energy in Papers A–C, making it a relevant con-
sideration. To demonstrate how elastic effects are incorporated in Eq. (3.1), consider a simple
1D example where the density variation can be represented by a sinusoidal function, given by
𝑛(𝑥) = 𝑎 sin(𝑞𝑥), where 𝑞 denotes the wavenumber. Assuming the energy is minimized at
𝑞 = 𝑞0, a strained configuration can be represented by 𝑞 = 𝑞0(1 + 𝛽), where 𝛽 denotes the
strain.
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Fig. 3.3: Evaluation of strain-induced energy variation for a 1D periodic phase. (a) The den-
sity field for a unstrained, compressed and stretched state, where the strain has been amplified
by a factor of four to enhance visibility. (b) The mean energy difference from the unstrained
state as a function of the strain magnitude |𝛽 |. The simulation results are compared with the
analytical model given in Eq. (3.8) for 𝜖 = 0.15.
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The mean energy variation away from equilibrium, Δ𝐹, is obtained from Eq. (3.1) by
integrating over a periodic domain. By setting 𝑞0 = 1 and assuming 𝛽 ≪ 1, the resulting
elastic strain energy per unit volume appear as

Δ𝐹
𝑉

=
4
3
𝜖 𝛽2 (3.8)

which is consistent with the standard quadratic form characteristic of linear elastic materials.
The elastic modulus is then determined by the second derivative of Eq. (3.8) with respect to 𝛽,
yielding a value of 8𝜖/3. Consequently, the parameter 𝜖 directly governs the elastic modulus.

The energy can also be evaluated numerically, as shown in Fig. 3.3 for 𝜖 = 0.15 and 𝑞0 = 1.
Figure 3.3(a) shows a portion of the density field for the initial (unstrained) configuration, as
well as for the largest negative (compressed) and positive (stretched) strain states. The strains
have been scaled by a factor of four to enhance visibility. The corresponding energy as a
function of strain is presented in Fig. 3.3(b), along with the analytical model given in Eq. (3.8).
As shown, Eq. (3.8) provides a good fit for small values of 𝛽.

3.1.2 Phase diagram
To identify suitable model parameters, it is often helpful to examine the phase diagram. To
this end, two main approaches are commonly used for its construction: either by directly
minimizing Eq. (3.1) or, as done here, by assuming a few reasonable phases, optimizing their
amplitudes and comparing their energies. For Eq. (3.1), it is assumed that the system either
has a constant phase, 𝑛𝑐 (𝑥, 𝑦) = 𝑎0, a striped phase

𝑛𝑠 (𝑥, 𝑦) = 𝑎0 + 𝑎𝑠 sin(𝑞𝑠𝑥) (3.9)

or a triangular phase,

𝑛𝑡 (𝑥, 𝑦) = 𝑎0 + 𝑎𝑡

[
cos(𝑞𝑡𝑥) cos(𝑞𝑡 𝑦/√3) + 1

2
cos(2𝑞𝑡 𝑦/√3)

]
(3.10)

where 𝑎0 is the mean density, which is typically user-defined and used to control the active
phase. The density fields corresponding to the striped and triangular phases are shown in
Fig. 3.4. The associated density planes are also illustrated, highlighting the direction of the
reciprocal lattice vectors. While the striped phase exhibits a single density plane, the triangu-
lar phase displays three distinct planes.

By inserting these low-mode density approximations into Eq. (3.1), the free energy is then
determined by integration over a periodic volume𝑉 . Setting 𝑞0 = 1, the mean free energy for
the constant phase is given by

𝐹𝑐
𝑉

= (1 − 𝜖) 𝑎
2
0

2
+ 𝑎4

0
4

(3.11)
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Fig. 3.4: (a) Striped and (b) triangular phases, defined according to Eqs. (3.9) and (3.10),
respectively. The relationship between the density planes and the directions of the corre-
sponding reciprocal lattice vectors is also illustrated.

Setting 𝑞𝑠 = 1 for the striped phase ensures that its period matches the minimum of �̂�2,
as seen in Fig. 3.2. With this choice of 𝑞𝑠 , the mean free energy takes the form

𝐹𝑠

𝑉
=

𝐹𝑐

𝑉
+ 3𝑎2

0 − 𝜖

4
𝑎2
𝑠 +

3
32
𝑎4
𝑠 (3.12)

From Eq. (3.12), it is evident that the free energy is reduced to that of the constant phase
when 𝑎𝑠 = 0. For the triangular phase the minimum occurs at 𝑞𝑡 =

√3/2, which ensures that
the magnitudes of the reciprocal lattice vectors are equal to unity, as illustrated in Fig. 3.4(b).
With this choice, the free energy for the triangular phase is given by

𝐹𝑡
𝑉

=
𝐹𝑐

𝑉
+ 9𝑎2

0 − 3𝜖
16

𝑎2
𝑡 +

3𝑎0

16
𝑎3
𝑡 +

45
512

𝑎4
𝑡 (3.13)

The phase diagram is constructed using the common tangent construction. This process
is illustrated in Fig. 3.5 for two hypothetical phases, 1 and 2. The free energies of the two
phases, as functions of the mean density, are shown by the blue and green curves. For𝑎0 ≤ 𝑎1,
the system remains entirely in phase 1, whereas for 𝑎0 ≥ 𝑎2, it is entirely in phase 2. In the
intermediate region, where 𝑎1 < 𝑎0 < 𝑎2, the system energy can be lowered by decomposing
into a mixture of phases 1 and 2. The lowest possible system energy in this range corresponds
to the convex hull of the two free energy curves, shown by the red dashed line in Fig. 3.5. This
convex hull is constructed by identifying the common tangent, represented by the black solid
line in Fig. 3.5. The linear segment of this tangent, known as the coexistence line, defines a
region in which the system separates into domains of both phases, with mean densities 𝑎1
and 𝑎2, respectively, in proportions that preserve the overall mean density.

To illustrate how the common tangent construction is used in practice to generate the
phase diagram, consider again Eqs. (3.11)–(3.13). For a given value of 𝜖 , the corresponding
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tangent points are computed. This process is illustrated in Fig. 3.6(a), showing the coexis-
tence between striped–triangular and triangular–constant phases. Repeating this procedure
for multiple values of 𝜖 allows construction of the full phase diagram, shown in Fig. 3.6(b),
where the coexistence regions are highlighted in blue. The resulting diagram can then be used
to select values of 𝑎0 and 𝜖 that yield the desired phase or phases.

Phase 2
Phase 1
Phase 1+2

01 02

�
/+

00

Fig. 3.5: Common tangent construction for two hypothetical phases 1 and 2. At the coex-
istence line, represented by the linear section between 𝑎1 and 𝑎2, the two phases coexist by
decomposing the domain into regions of phase 1 with mean density 𝑎1 and regions of phase
2 with mean density 𝑎2. This decomposition reduces the total energy to the convex hull of
the free energy curves, shown by the red dashed line.
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Fig. 3.6: (a) Common tangent construction for Eqs. (3.11)–(3.13) with 𝜖 = 0.15. Common
tangents for the striped–triangular and triangular–constant phases are shown by the dotted
and dashed lines, respectively. (b) Resulting phase diagram with coexistence regions in blue.
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3.1.3 Modeling of dynamics
Usually, the objective is not simply to minimize the free energy, such as in Eq. (3.1), as this
would yield a domain consisting of a single, defect-free phase. Instead, the focus is often on
the evolution of defect structures and metastable states, particularly in the context of grain
growth. To mimic atomic-scale diffusive dynamics, the density field is evolved using con-
served dissipative dynamics. Starting from the continuity equation, the time evolution is
governed by

𝜕𝑛

𝜕𝑡
= −∇ · 𝒋 , (3.14)

where 𝒋 denotes the mass flux. The driving force for diffusion in the system can be expressed
as

𝒋 = −∇Φ (3.15)

where Φ is a general scalar potential field [42]. In the case of Fick’s first law, this potential
corresponds to the concentration, making the flux proportional to the concentration gradi-
ent. In the PFC framework, however, this potential is instead given by the chemical potential
𝜇, leading to

𝒋 = −𝑀∇𝜇 (3.16)

where 𝑀 is the mobility coefficient. Assuming a constant mobility coefficient and substitut-
ing Eq. (3.16) into Eq. (3.14) yields

𝜕𝑛

𝜕𝑡
= 𝑀∇ · ∇𝜇 = 𝑀Δ𝜇 (3.17)

The chemical potential is equal to the functional derivative of the free energy [37], lead-
ing to the final evolution equation for the density field as

𝜕𝑛

𝜕𝑡
= 𝑀Δ

𝛿𝐹

𝛿𝑛
(3.18)

This differs from the approach used in the Swift-Hohenberg case in [39], where

𝜕𝑛

𝜕𝑡
=
𝛿𝐹

𝛿𝑛
(3.19)

which is of a nonlocal form and does not correspond to atomic diffusion. Additionally, al-
ternative forms of the time evolution equation have been proposed, including those incorpo-
rating second-order derivatives to capture dynamics on different time scales [43–45]. In some
cases, a stochastic noise term is also added to Eq. (3.18) to account for thermal fluctuations
and to facilitate nucleation [37].

Inserting Eq. (3.1) into Eq. (3.18) yields an evolution equation for the system. This formu-
lation can then be used to study, for example, the growth of a solid phase into a liquid region,
as demonstrated for a BCC phase in Fig. 3.7. From Fig. 3.7(a) to Fig. 3.7(b), the progression
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Fig. 3.7: (a)–(b) Crystal growth of a BCC crystal phase into a liquid region at two consec-
utive time steps. The evolution is determined by Eq. (3.1) and Eq. (3.18), with parameters
𝑎0 = −0.25 and 𝜖 = 0.2, in accordance with the phase diagram in [46]. The density field
along the red line indicated in (b) is shown in (c), highlighting the diffuse solid–liquid tran-
sition.

of crystal growth is clearly visible. The density along the line indicated in Fig. 3.7(b) is shown
in Fig. 3.7(c). The resulting profile illustrates the transition from solid to liquid, revealing
that the interface is diffuse rather than sharp.

As a final demonstration, a density field is initialized with small crystalline seeds that
are allowed to grow into the surrounding liquid region, as shown in Fig. 3.8. By the end
of the simulation, grain boundaries have formed, consisting of dislocations, as illustrated in
Fig. 3.8(d). Further details on the implementation of the spectral method used to evolve the
density field are provided in Sec. 3.4.

3.2 Free energy functionals and their connection to density
functional theory

The previous section approached the PFC free energy functional from a mathematical per-
spective. However, as mentioned in the introduction, connections exist between PFC and
more physically motivated models, such as DFT. Due to the necessary simplifications of the
DFT equations, obtaining accurate physical properties from PFC free energy functionals,
whether of the Swift-Hohenberg type or others, has proved challenging. Nevertheless, deriv-
ing PFC from cDFT provides a conceptual framework for interpreting the variables present
in the free energy functional.

In general, cDFT postulates that the free energy of a system is a functional of its density.
The Helmholtz free energy is typically expressed as the sum of the ideal gas energy, 𝐹id, and
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an excess energy term, 𝐹exc, following

𝐹 [𝜌(𝒓)] = 𝐹𝑖𝑑 [𝜌(𝒓)] + 𝐹𝑒𝑥𝑐 [𝜌(𝒓)] (3.20)

where 𝜌 is the one-body density distribution [47]. The ideal gas energy represents the free
energy of a non-interacting system and is given by

𝐹𝑖𝑑 [𝜌(𝒓)] = 𝑘𝐵𝑇

∫
𝑑𝒓𝜌(𝒓) {ln

[
Λ3
𝑇 𝜌(𝒓)

] − 1
}

(3.21)

whereΛ𝑇 is the thermal de Broglie wavelength [48]. The second term in Eq. (3.20), the excess
free energy, accounts for interparticle interactions [47]. The excess energy can be expanded
in a functional Taylor series around a reference liquid density 𝜌𝑟𝑒 𝑓 , following [49], as

𝐹𝑒𝑥𝑐 [𝜌(𝒓)] = 𝐹𝑒𝑥𝑐 [𝜌𝑟𝑒 𝑓 ] +
∞∑︁
𝑛=1

1
𝑛!

∫
𝛿𝑛𝐹𝑒𝑥𝑐 [𝜌(𝒓)]∏𝑖=𝑛

𝑖=1 𝛿𝜌(𝒓𝑖)

�����
𝜌𝑟𝑒 𝑓

𝑛∏
𝑖=1

Δ𝜌(𝒓𝑖)𝑑𝒓𝑖 (3.22)

where Δ𝜌(𝒓𝑖) = 𝜌(𝒓) − 𝜌𝑟𝑒 𝑓 . The 𝑛-point direct correlation function𝐶𝑛 is then defined as

𝐶𝑛 (𝒓1, ..., 𝒓𝑛) ≡ − 1
𝑘𝐵𝑇

𝛿𝑛𝐹𝑒𝑥𝑐 [𝜌(𝒓)]∏𝑖=𝑛
𝑖=1 𝛿𝜌(𝒓𝑖)

�����
𝜌𝑟𝑒 𝑓

(3.23)
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Fig. 3.8: (a)–(d) The evolution of small crystalline grains exhibiting triangular phases, sim-
ulated using Eq. (3.1) with 𝜖 = 0.1 and 𝑎0 = −0.15, over linearly spaced time steps. In (d),
dislocations are visible at the interfaces between grains, forming the grain boundaries.
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and describes the potential energy of interactions between particles [36, 49]. Substituting
Eq. (3.23) into Eq. (3.22) allows the latter to be rewritten as

𝐹𝑒𝑥𝑐 [𝜌(𝒓)] = 𝐹𝑒𝑥𝑐 [𝜌𝑟𝑒 𝑓 ] − 𝑘𝐵𝑇
∞∑︁
𝑛=1

1
𝑛!

∫
𝐶𝑛 (𝒓1, ..., 𝒓𝑛)

𝑛∏
𝑖=1

Δ𝜌(𝒓𝑖)𝑑𝒓𝑖 (3.24)

Combined with the formulation for the ideal gas energy, Eq. (3.21), the free energy takes the
form

𝐹 [𝜌(𝒓)] = 𝑘𝑏𝑇

∫
𝑑𝒓𝜌(𝒓) {ln [Λ3𝜌(𝒓)] − 1} + 𝐹𝑒𝑥𝑐 (𝜌𝑟𝑒 𝑓 )

− 𝑘𝑏𝑇
∞∑︁
𝑛=1

1
𝑛!

∫ 𝑛∏
𝑖=1

𝑑𝒓𝑖𝐶𝑛 (𝒓1, ..., 𝒓𝑛)Δ𝜌(𝒓𝑖)
(3.25)

To ensure that the free energy remains invariant under translations and rotations, 𝐶1
must be a constant and is typically set to zero [49]. Following the approach in [50], Eq. (3.25)
is typically truncated at 𝐶2. Higher-order terms may be retained, however, to stabilize more
complex crystal structures—as shown for a DC crystal in Paper E. Furthermore, the inte-
grand of 𝐹id is also expanded in a Taylor series around 𝜌ref, following

𝜌 ln (Λ3𝜌) − 𝜌 ≈ 𝜌𝑟𝑒 𝑓 ln
(
Λ3𝜌𝑟𝑒 𝑓

) − 𝜌𝑟𝑒 𝑓 +
𝜌𝑟𝑒 𝑓

[
ln

(
Λ3𝜌𝑟𝑒 𝑓

)
𝑛 + 1

2
𝑛2 − 1

6
𝑛3 + 1

12
𝑛4 + O(𝑛5)

] (3.26)

where the reference to 𝒓 has been omitted for brevity and the dimensionless variable 𝑛 = (𝜌−
𝜌𝑟𝑒 𝑓 )/𝜌𝑟𝑒 𝑓 has been introduced. It is to be noted that although 𝑛 has been used to denote
the normalized density field here and in Sec. 3.1, Papers A and D use a different notations as a
consequence of the varying conventions in the literature. The variation in notation between
the appended papers is further discussed in Sec. 4.3.

By combining Eq. (3.25), truncated at𝐶2, with Eq. (3.26), the resulting expression for the
free energy becomes

𝐹 [𝑛] =𝐹𝑖𝑑 [𝜌𝑟𝑒 𝑓 ] + 𝐹𝑒𝑥𝑐 [𝜌𝑟𝑒 𝑓 ]+

𝑘𝐵𝑇𝜌𝑟𝑒 𝑓

∫
𝑑𝒓

[
ln

(
Λ3𝜌𝑟𝑒 𝑓

)
𝑛 + 1

2
𝑛2 − 1

6
𝑛3 + 1

12
𝑛4

]
−

𝑘𝐵𝑇𝜌
2
𝑟𝑒 𝑓

2

∫
𝑑𝒓1𝑑𝒓2𝑛(𝒓1)𝐶2(𝒓1, 𝒓2)𝑛(𝒓2)

(3.27)

where Δ𝜌 = 𝜌ref𝑛 has been used. Following the approach in Sec. 3.1, the two-point corre-
lation function is assumed to be isotropic, such that 𝐶2(𝒓1, 𝒓2) = 𝐶2( |𝒓2 − 𝒓1 |) = 𝐶2(𝑟).
Furthermore, constant terms and the term linear in 𝑛 are typically neglected [49]. With these
simplifications, Eq. (3.27) can be restated as

𝐹 [𝑛]
𝑘𝐵𝑇𝜌𝑟𝑒 𝑓

=
∫

𝑑𝒓

(
𝜁1

2
𝑛2 − 𝜁2

6
𝑛3 + 𝜁3

12
𝑛4

)
− 1

2

∫
𝑑𝒓1𝑑𝒓2𝑛(𝒓1)𝐶2(𝑟)𝑛(𝒓2) (3.28)
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where the parameters (𝜁1, 𝜁2, 𝜁3) have been introduced and 𝜌ref has been absorbed into 𝐶2.
Eq. (3.28) represents the standard form of the free energy functional used in many PFC im-
plementations. From this expression, various formulations of the PFC model can be derived,
including the Swift-Hohenberg equation introduced in Eq. (3.1). An alternative model, em-
ployed in Papers B–D, will be discussed next in Sec. 3.3.

3.3 The structural phase field crystal method
The structural PFC (XPFC) method was introduced in [51], drawing inspiration from DFT
and the free energy functional given in Eq. (3.28). In contrast to the Swift-Hohenberg for-
mulation in Eq. (3.1), which is limited to a fourth-order polynomial in Fourier space, the
two-point correlation function in XPFC is defined as a sum of Gaussian peaks.

As a starting point for constructing the XPFC correlation function, consider a perfect
crystal at finite temperature, where atoms vibrate about their lattice sites. Assuming that
atomic positions follow a Gaussian probability distribution, the probability density field 𝜌
in a 1D case can be written as

𝜌(𝑥) =
∑︁
𝑚

𝜌𝑚(𝑥) =
∑︁
𝑚

1√
2𝜋𝜎2

𝑣

𝑒
− (𝑥−𝑥𝑚 )2

2𝜎2
𝑣 (3.29)

where 𝜎𝑣 represents the vibrational amplitude of the atoms and 𝑥𝑚 is the position of the
𝑚’th atom [52]. The Fourier transform of Eq. (3.29) is then evaluated as

F [𝜌(𝑥)] (𝑘) = �̂�(𝑘) = 1√
2𝜋𝜎2

𝑣

∑︁
𝑚

∫ ∞

−∞
𝑒
− (𝑥−𝑥𝑚 )2

2𝜎2
𝑣 𝑒−𝑖𝑘𝑥𝑑𝑥 (3.30)

where F [𝜌] denotes the Fourier transform of 𝜌. Using the shift property of the Fourier
transform, F {𝑔(𝑥 − 𝑎)} = F {𝑔(𝑥)} 𝑒−𝑖𝑘𝑎, the Fourier transform of a Gaussian centered
at 𝑥𝑚 is given by

F [𝑒−𝛼(𝑥−𝑥𝑚 )2] (𝑘) =
√︂

𝜋

𝛼
𝑒−

𝑘2
4𝛼 𝑒−𝑖𝑘𝑥𝑚 (3.31)

where 𝛼 = 1/(2𝜎2
𝑣) has been introduced [53]. Thus, Eq. (3.30) appears as

�̂�(𝑘) = 𝑒−
𝜎2
𝑣𝑘

2
2

∑︁
𝑚

𝑒−𝑖𝑘𝑥𝑚 (3.32)

As a 1D case is considered here, the lattice positions are given by 𝑥𝑚 = 𝑎𝑚, where 𝑎 is
the lattice spacing, i.e., the lattice parameter. With this in mind, the sum in Eq. (3.32) can be
identified as the Fourier series representation of the Dirac comb function, such that

∞∑︁
𝑚=−∞

𝑒−𝑖𝑘𝑥𝑚 =
∞∑︁

𝑚=−∞
𝑒−𝑖𝑘𝑎𝑚 =

2𝜋
𝑎

∞∑︁
𝑚=−∞

𝛿(𝑘 − 2𝜋𝑚
𝑎

) (3.33)
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as shown, for example, in [53]. Substituting Eq. (3.33) into Eq. (3.32) yields

�̂�(𝑘) = 𝑒−
𝜎2
𝑣𝑘

2
2

2𝜋
𝑎

∞∑︁
𝑚=−∞

𝛿(𝑘 − 2𝜋𝑚
𝑎

) (3.34)

which thus represents a series of 𝛿-peaks corresponding to the periodic planes of the crystal
lattice. The pre-factor 𝑒−𝜎2

𝑣𝑘
2/2 causes the peaks to decay at a rate determined by the Gaussian

width and is identified as the Debye-Waller factor [32, 52].
A computational challenge associated with Eq. (3.34) is that, at low temperatures, the

presence of many higher-order peaks requires high spatial resolution to accurately resolve the
corresponding features. In [52], an analysis of the energy contributions from these peaks
demonstrated that the excess free energy is primarily concentrated in the first few peaks. This
finding suggests that truncating the correlation function to include only the lower-frequency
modes is a reasonable approximation. This insight led to the formulation of the correlation
function used in the XPFC method, proposed in [51], which serves as one of the defining
features of the model.

In the XPFC method, the two-point correlation function is defined in reciprocal space
using one or more Gaussian peaks, each corresponding to a symmetry plane of the crystal
lattice. Each Gaussian is characterized by three parameters: its position, height and width.
The position is determined by the 𝒌-vector associated with a symmetry plane, typically con-
structed from a subset of the smallest reciprocal lattice vectors that define the target crystal
structure. For a planar spacing of 𝜆𝑖 , the corresponding wave vector is given by 𝑘𝑖 = 2𝜋/𝜆𝑖 .
The width parameter, 𝛼𝑖 , which is proportional to the interface width, influences both the
elastic and surface energy properties [54]. Based on this, the Gaussian function correspond-
ing to the 𝑖’th peak is given by

�̂�2,𝑖 (𝑘) = exp
(
− (𝑘 − 𝑘𝑖)2

2𝛼2
𝑖

)
(3.35)

The use of a Gaussian function is motivated by the presence of interfaces, defects and
strains in the crystal structure, where the system is no longer accurately represented by per-
fect Dirac peaks, as in Eq. (3.34). Furthermore, following [52], the height of the peaks is
modulated by a Debye–Waller-like factor that accounts for temperature effects through the
effective temperature parameter, 𝜎𝑣 . Thus, the full correlation function for the 𝑖’th peak is
given by

�̂�2,𝑖 (𝑘) = �̂�𝑖 �̂�2,𝑖 (𝑘) = exp
(
− 𝜎2

𝑣𝑘
2
𝑖

2𝜌𝑖𝛽𝑖

)
exp

(
− (𝑘 − 𝑘𝑖)2

2𝛼2
𝑖

)
(3.36)

where 𝛽𝑖 is the number of planes within a given crystal family and 𝜌𝑖 is the atomic density of
those planes. The factor 2𝜌𝑖𝛽𝑖/𝑘2

𝑖 acts as an effective transition temperature, characterizing
the thermal sensitivity of the corresponding reciprocal mode [54].
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For multiple symmetry planes, the full two-point correlation function is defined as the
loci of all individual peaks, given by

�̂�2(𝑘) = max
𝑖

[
�̂�2,𝑖 (𝑘)

]
(3.37)

and is used to avoid peak broadening or shifts that may arise from summation, which could
otherwise alter the phase stability [52].

3.3.1 Directional correlation function
In all previous discussions on the correlation function, the focus has been on ensuring di-
rectional invariance. There are cases, however, where a directionally dependent correlation
function is desirable — for example, to identify crystal orientations or to apply an artificial
pressure differential across grain boundaries.

Using a formulation similar to that of Eq. (3.37), a directional two-point correlation func-
tion can be constructed to energetically favor a specific crystallographic structure and direc-
tion. An energy term incorporating such a directional correlation function was introduced
in [55], where the directional free energy is defined as

𝐹𝑑𝑖𝑟 = − 𝑘𝐵𝑇𝜌𝑟𝑒 𝑓

2

∫
𝑑𝒓𝑑𝒓′𝑛(𝒓)𝐻2(𝒓, 𝒓′)𝑛(𝒓′) (3.38)

which is analogous to the excess energy term in Eq. (3.28). In this case, however, the kernel
𝐻2(𝒓, 𝒓′) is directional, such that 𝐻2(𝒓, 𝒓′) = 𝐻2(𝒓 − 𝒓′) ≠ 𝐻2( |𝒓 − 𝒓′ |). The Fourier
transform of 𝐻2 is defined as

�̂�2(𝒌) = max
𝑖

[
ℎ𝑖 exp

(
− |𝒌 − 𝒌𝑖 |

2𝛾2
𝑖

)]
(3.39)
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Fig. 3.9: Examples of (a) �̂�2 as defined by Eq. (3.37) for a single mode and (b) �̂�2 as defined
by Eq. (3.39) for the lowest reciprocal vectors of a triangular phase. The inverse Fourier trans-
form of these functions are shown in Fig. 3.10.
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Fig. 3.10: (a) Inverse Fourier transform of �̂�2 and (b) �̂�2, both shown in Fig. 3.9, with the
corresponding density profiles along the indicated lines presented in (c) and (d), respectively.
The amplitude is normalized to the maximum value.

where ℎ𝑖 is the peak height, 𝛾𝑖 is the width and 𝒌𝑖 represents the target reciprocal vector. The
differences between �̂�2 and �̂�2 are illustrated in Fig. 3.9 for correlation functions that stabilize
a triangular phase, while their inverse Fourier transforms are shown in Fig. 3.10. These can be
compared to the resulting triangular phase shown in Fig. 3.4(b).

3.3.2 Wavelet filtering
Both the non-directional and directional XPFC correlation functions can be used to iden-
tify crystalline phases or even individual crystals. While the non-directional correlation func-
tion, Eq. (3.37), is sensitive to the crystal structure only, the directional correlation function,
Eq. (3.39), is also sensitive to orientation. These properties can be used to identify regions
that match a specific crystal structure and orientation by applying the wavelet transform,
following

𝜉 = (𝑋2 ∗ 𝑛)+ ∗ 𝐺 (3.40)

where ∗denotes a convolution,𝐺 is a Gaussian smoothing kernel and 𝑋2 denotes either𝐶2 or
𝐻2. When identifying crystal phases, 𝑋2 = 𝐶2 is used, whereas 𝑋2 = 𝐻2 is employed to detect
crystals with specific orientations. Furthermore, (·)+ denotes the positive part, where nega-
tive values are set to zero. This prevents negative values from canceling out positive contri-
butions when applying the smoothing kernel. As a result, the application of Eq. (3.40) yields
high values (or unity after normalization) at positions where the local structure matches that
of 𝑋2 and low values (or zero after normalization) where it does not.
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Fig. 3.11: Example of the normalized phase field 𝜉, its 𝜉 = 0.5 contour surface and an atom-
istic representation of a spherical particle surrounded by a liquid phase.

An example of the application of Eq. (3.40), shown after normalization, is presented
in Fig. 3.11. The figure illustrates a region forming a spherical particle, represented through
the extracted phase field obtained from Eq. (3.40), its corresponding contour surface and an
atomistic representation of the peak positions. As seen in Fig. 3.11, the normalized phase field
𝜉 offers a method for defining the grain boundary via its contour surface — for example, by
selecting 𝜉 = 0.5.

3.4 Numerical implementation using the spectral method
One of the key advantages of the PFC method is its numerical efficiency, much of which
stems from the use of spectral methods. These methods enable efficient parallelization, for
example, on GPUs. However, spectral schemes typically require periodic domains. In cases
where non-periodic boundary conditions are needed, alternative approaches such as the finite
element method (FEM) [56] or finite difference methods [57] can be employed.

Spectral methods are conceptually similar to FEM in that both utilize form functions to
describe spatial properties. Specifically, they are both types of weighted residual methods for
solving partial differential equations. Unlike FEM, however, where the form functions are
localized within elements, spectral methods employ global form functions that span the en-
tire domain. This distinction leads to different advantages and limitations: spectral methods
are highly efficient for structured, periodic domains, whereas FEM is well suited for handling
complex geometries [58].

One of the most widely used spectral methods is the Fourier spectral method, whose pop-
ularity stems from the efficiency of the Fast Fourier Transform (FFT) algorithm. Moreover,
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many physical problems naturally exhibit periodic behavior, making the periodicity require-
ment nonrestrictive in practice.

To apply the spectral method, the time evolution equation — such as that given in Eq. (3.18)
— must be expressed in reciprocal space. Various discretization schemes can be employed,
with the most straightforward one presented in Sec. 3.4.1. An alternative formulation is pre-
sented in [59] and was employed in Paper A.

3.4.1 Time integration using the semi-implicit method
In the semi-implicit scheme, linear terms are treated implicitly to reduce stability constraints,
while nonlinear terms are handled explicitly to avoid the computational cost of solving non-
linear equations at each time step [60]. This approach is commonly used in the context of
spectral methods [58].

To begin, Eq. (3.28) is inserted into Eq. (3.18), allowing the functional derivative to be
evaluated as

𝛿𝐹 [𝑛]
𝛿𝑛

= 𝑘𝐵𝑇𝜌𝑟𝑒 𝑓

(
𝑛 − 1

2
𝑛2 + 1

3
𝑛3 − 𝐶2 ∗ 𝑛

)
(3.41)

By substituting Eq. (3.41) into Eq. (3.18), and then applying the Fourier transform, the
evolution equation in reciprocal space is obtained as

𝜕�̂�

𝜕𝑡
= −𝑀𝑘𝐵𝑇𝜌𝑟𝑒 𝑓 𝑘

2
[
�̂� − 1

2
𝑛2 + 1

3
𝑛3 − 𝐶2�̂�

]
(3.42)

where 𝑛𝑖 denotes the Fourier transform of 𝑛𝑖 . Furthermore, the convolution theorem states
that the Fourier transform of a convolution is equal to the product of the individual Fourier
transforms, i.e., F { 𝑓 ∗𝑔} = 𝑓 �̂�. Applying the semi-implicit scheme to Eq. (3.42) then yields

�̂�𝑡+1 − �̂�𝑡

Δ𝑡
= −𝛽

[
�̂�𝑡+1 − 1

2
𝑛2𝑡 + 1

3
𝑛3𝑡 − �̂�𝑡+1𝐶2

]
(3.43)

where Δ𝑡 is the time step size and 𝛽 = 𝑀𝑘𝐵𝑇𝜌ref𝑘
2. Rearranging Eq. (3.43), the final time-

marching scheme is obtained as

�̂�𝑡+1 =
�̂�𝑡 + Δ𝑡𝛽 1

2𝑛
2𝑡 − Δ𝑡𝛽 1

3𝑛
3𝑡

1 + Δ𝑡𝛽(1 − 𝐶2)
(3.44)

Eq. (3.44) can be used to efficiently simulate processes such as the growth of a polycrystal,
as illustrated in Fig. 3.12. In this example, small particles are initially seeded and allowed to
grow until the entire domain becomes crystallized. The resulting grain boundary network,
extracted using Eq. (3.40), is shown in Fig. 3.12(d).
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Fig. 3.12: (a)–(d) Growth of an FCC polycrystal, illustrating the formation and evolution
of multiple grains over time. In (d), the final grain boundary network is visualized using the
wavelet filter defined in Eq. (3.40).

35





Chapter 4

Overview of appended papers

“Little by little, one travels far.”
–Mexican proverb

The papers reproduced at the end of this thesis constitute the core of this thesis. The ap-
pended papers, listed in Sec. 4.1 with author contributions detailed in Sec. 4.2, are presented
in a logical rather than chronological order. Papers A–C primarily focus on the variation
of properties with respect to grain boundary character. Papers C and D investigate migrat-
ing grain boundaries, while Paper E compares different models for the stabilization of grain
boundary structures in DC bicrystals. As the notation used in the papers varies slightly de-
pending on the reference material, a note on these differences is provided in Sec. 4.3. Some
future perspectives and final remarks close this chapter in Sec. 4.4.
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4.1 List of appended papers
The appended papers, reproduced at the end of this thesis, are listed below. All except Paper C
are based on peer-reviewed publications originally published in their respective journals. To
maintain consistency with the thesis format, the papers have been reformatted, which may
result in minor deviations from the published versions. Paper C is, at the time of writing,
under review. The appended papers are based on the following scientific publications:

Paper A
Kevin Hult Blixt and Håkan Hallberg, Evaluation of grain boundary energy, structure and
stiffness from phase field crystal simulations, Modelling and Simulation in Materials Science
and Engineering 30 (2022) 014002.

Paper B
Håkan Hallberg and Kevin Hult Blixt, Multiplicity of grain boundary structures and related
energy variations, Materials Today Communications 38 (2024) 107724.

Paper C
Kevin Hult Blixt and Håkan Hallberg, Phase Field CrystalModeling of Grain BoundaryMi-
gration: Mobility, Energy and Structural Variability, Under review

Paper D
Kevin Hult Blixt and Håkan Hallberg, Grain boundary and particle interaction: Enveloping
and pass-through mechanisms studied by 3D phase field crystal simulations, Materials & De-
sign 220 (2022) 110845.

Paper E
Kevin Hult Blixt and Håkan Hallberg, Phase field crystal modeling of grain boundary struc-
tures in diamond cubic systems, Physical Review Materials 8 (2024) 033606.

4.2 Own contribution
The papers appended to this thesis were all conceptualized and prepared with substantial
involvement from the author of this thesis. For papers A and B, key contributions were made
to the methodology, implementation, data analysis and manuscript preparation. For Papers
C, D and E, the author led the conceptualization, execution and primary writing, but still in
close collaboration with the co-author.
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4.3 A note on notation
Slight variations in notation occur throughout the appended papers. For clarity, the different
notations used for key properties are summarized in Tab. 4.1.

Tab. 4.1: Variations in notation for equivalent parameters used across the appended papers
and in Chap. 3. Here, F (𝑎) denotes the Fourier transform of 𝑎.

Property Chap. 3 Paper A Paper B Paper C Paper D Paper E

Density field 𝑛 𝜓 𝑛 𝑛 𝜓 𝑛

F (𝑎) �̂� �̃�k �̃�𝑘 �̃�𝑘 𝑎𝑘 �̂�

F (𝑎𝑖) 𝑎𝑖 �̃�𝑖𝑘 (̃𝑎𝑖)𝑘 (𝑎𝑖)𝑘 -

4.4 Future perspectives and final remarks
From the research presented in Papers A–E, it is clear that the study of grain boundaries is not
a straightforward endeavor, even in the relatively simple case of single-component bicrystals.
For instance, the energy variations shown in Papers A and B show that not only are the five
macroscopic DOF important, but microscopic variations also play a significant role. The
interplay between microscopic and mesoscopic DOF, however, was not fully explored and
represents a promising direction for future research.

Furthermore, the present work focuses exclusively on STGBs, which represent only a
small subset of the full range of possible grain boundary orientations. Understanding how
grain boundary energy and related properties vary across more general boundary types is es-
sential — particularly in the context of grain boundary migration, as explored in Paper C
— since mixed boundaries may exhibit distinct migration behaviors, such as the formation
of kinked or stepped structures [61]. Additionally, the different migration regimes observed
in Paper C merit further investigation to clarify the underlying mechanisms governing such
behavior. Extending the analysis to a broader range of grain boundary types would also be
directly relevant to the studies presented in Papers D and E.

Another important consideration is the extension of the investigation from bicrystals to
systems containing multiple grains. This would allow for the study of network constraints,
such as those imposed by triple junctions, which play a critical role in grain growth. Although
such effects are highly relevant, they were not addressed in the appended papers and represent
a valuable opportunity for future research and for which the PFC method could be well
suited.

To study more general boundaries and polycrystals, however, larger system sizes are re-
quired — especially when employing periodic boundary conditions. The largest systems
studied in this work were those presented in Paper D, comprising approximately 2.5 × 106
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atoms. A natural step toward enabling even larger domains is to utilize increased computa-
tional resources, for example, through multi-GPU setups. Alternatively, the computational
cost can be reduced by employing a coarse-grained representation of the density field, as done
in the Amplitude PFC (APFC) method introduced in [62]. This approach, though efficient,
often sacrifices accuracy. Recent developments, such as the model proposed in [63], attempt
to combine the strengths of both APFC and PFC approaches to achieve improved accuracy
in key properties, including grain boundary energy, and may prove to be a promising direc-
tion for PFC simulations of larger domains.

Another approach to increasing domain size is to relax the requirement of periodic bound-
ary conditions. This, however, is not possible with the Fourier spectral method used in this
thesis. Instead, alternative methods capable of handling non-periodic boundary conditions
— such as FEM — must be employed. The use of FEM for PFC simulations was demon-
strated in [64], although periodic boundary conditions were still applied in this specific case.
In addition, [63] introduces a real-space convolution-based method for applying Dirichlet
boundary conditions, offering a promising avenue for extending PFC simulations to non-
periodic domains.

Furthermore, in the application of the XPFC method in Papers B–D, little considera-
tion was given to the precise parameter selection for the correlation function. In fact, varia-
tions in peak amplitude and width are known to influence the relative elastic properties, as
demonstrated in [65]. Despite this, the estimated grain boundary energies were found to be
reasonable, suggesting that the exact parameter choice is not critical, all things considered.

An important consideration in all studies — particularly in Paper C — is the ability to
clearly define atomic positions, which is not a straightforward task within the PFC frame-
work. One potential approach to address this problem is to employ the vacancy PFC (VPFC)
method introduced in [66], in which negative values in the density field are energetically pe-
nalized. The VPFC formulation has also been shown to improve the stabilization of certain
defects, such as stacking faults [67]. However, before this model can be applied to studies
of grain boundary migration, the grain boundary energy would first need to be reevaluated
within the VPFC framework.

Finally, the study of more complex systems may also prove fruitful, as demonstrated in
Paper E, although this remains an initial investigation. Further research is needed to accu-
rately quantify grain boundary energies in such systems. The study presented in Paper E
was originally motivated by the aim of exploring the more complex case of multi-species per-
ovskites, inspired by the work presented in [68], which initially appeared to be a promising
direction. However, the model proposed in [68] was only shown to stabilize a single unit
cell. When extended to polycrystalline configurations, the resulting defect structures were
not physically plausible. Addressing this issue would have required the introduction of ad-
ditional interspecies interaction potentials. Consequently, the focus was first narrowed to
the Zincblende structure (a two-component DC lattice), as found in Al–Cu alloys, and later
further restricted to the comparatively simpler case of single-component DC lattices.
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Phase-field-crystal models for condensed matter dynamics on atomic length and diffusive time
scales: an overview. Adv. Phys., 61(6):665–743, 2012.

[50] T.V. Ramakrishnan and M. Yussouff. First-principles order-parameter theory of freezing. Phys.
Rev. B, 19:2775–2794, 1979.

[51] M. Greenwood, N. Provatas, and J. Rottler. Free energy functionals for efficient phase field
crystal modeling of structural phase transformations. Phys. Rev. Lett., 105:045702, 2010.

43



[52] M. Greenwood, N. Ofori-Opoku, J. Rottler, and N. Provatas. Modeling structural transforma-
tions in binary alloys with phase field crystals. Phys. Rev. B, 84:064104, 2011.

[53] A.D. Poularikas. Handbook of Formulas and Tables for Signal Processing. CRC Press, 1999.

[54] M. Berghoff and B. Nestler. Phase field crystal modeling of ternary solidification microstruc-
tures. Comput. Condens. Matter, 4:46–58, 2015.

[55] M. Greenwood, C. Sinclair, and M. Militzer. Phase field crystal model of solute drag. Acta
Mater., 60:5752–5761, 2012.

[56] V. Ankudinov. Structural phase-field crystal model for Lennard-Jones pair interaction potential.
Modell. Simul. Mater. Sci. Eng., 30(6):064002, 2022.

[57] J. Yang, J. Wang, and Z. Tan. A simple and practical finite difference method for the phase-field
crystal model with a strong nonlinear vacancy potential on 3D surfaces. Comput. Math. Appl.,
121:131–144, 2022.

[58] J. Shen, T. Tang, and L. Wang. SpectralMethods. Springer Berlin, Heidelberg, 2011.

[59] J. Mellenthin, A. Karma, and M. Plapp. Phase-field crystal study of grain-boundary premelting.
Phys. Rev. B, 78:184110, 2008.

[60] S.B. Biner. Programming Phase-FieldModeling. Springer International Publishing, 2017.

[61] R. Hadian, B. Grabowski, C.P. Race, and J. Neugebauer. Atomistic migration mechanisms of
atomically flat, stepped, and kinked grain boundaries. Phys. Rev. B, 94:165413, 2016.

[62] N. Goldenfeld, B.P. Athreya, and J.A. Dantzig. Renormalization group approach to multi-
scale simulation of polycrystalline materials using the phase field crystal model. Phys. Rev. E,
72:020601, 2005.

[63] M. Punke and M. Salvalaglio. Hybrid-PFC: Coupling the phase-field crystal model and its
amplitude-equation formulation. Comput. Methods Appl. Mech. Eng., 436:117719, 2025.

[64] E. Asadi and M.A. Zaeem. Quantifying a two-mode phase-field crystal model for BCC metals
at melting point. Comput. Mater. Sci, 105:101–109, 2015.

[65] J. Holmberg-Kasa, P.A.T. Olsson, and M. Fisk. Investigating elastic deformation of ordered
precipitates by ab initio-informed phase-field crystal modeling. Metals, 14(12), 2024.

[66] P.Y. Chan, N. Goldenfeld, and J. Dantzig. Molecular dynamics on diffusive time scales from the
phase-field-crystal equation. Phys. Rev. E, 79:035701, 2009.

[67] J. Berry, N. Provatas, J. Rottler, and C.W. Sinclair. Defect stability in phase-field crystal models:
Stacking faults and partial dislocations. Phys. Rev. B, 86:224112, 2012.

[68] E. Alster, D. Montiel, K. Thornton, and P.W. Voorhees. Simulating complex crystal structures
using the phase-field crystal model. Phys. Rev. Mater., 1:060801, 2017.

44



Bibliography
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