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σij,j + bi = ρäi,

σij,j σij bi
ρ äi

i

δai

Ω∫
Ω
δaiσij,j dV +

∫
Ω
δaibi dV =

∫
Ω
ρδaiäi dV,

Ω

δaiσij,j

δaiσij,j = (δaiσij),j − δai,jσij ,

∫
Ω
δaiσij,j dV =

∫
Ω
(δaiσij),j dV −

∫
Ω
δai,jσij dV.

∫
Ω
δaiσij,j dV =

∫
∂Ωt

δaiti dS −
∫
Ω
δai,jσij dV,

δai = 0



ti = σijnj ∂Ωt nj

∫
∂Ωt

δaiti dS −
∫
Ω
δai,jσij dV +

∫
Ω
δaibi dV =

∫
Ω
ρδaiäi dV,

δai
δai = 0 ∂Ω

ai
a = N(x)u(t) N(x)

x u(t)

u ä = N(x)ü

δa = N(x)c
c

ρ

∫
Ω
NᵀN dV︸ ︷︷ ︸
M

ü+

∫
Ω
BᵀDB dV︸ ︷︷ ︸

K

u =

∫
Ω
Nᵀb dV +

∫
∂Ωt

Nᵀt dS︸ ︷︷ ︸
p(t)

.

M
K

B
D

p(t)

Mü+Ku = p(t),

B = ∇N N



l
t

r

σij = Dijklεkl,

σij Dijkl

εkl

σ = Dε = DBu,

σ D
Dijkl ε

⎡⎢⎢⎢⎢⎢⎢⎣

σl
σt
σr
σlt
σlr
σtr

⎤⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎣

1/El −νtl/Et −νrl/Er 0 0 0
−νlt/El 1/Et −νrt/Er 0 0 0
−νlr/El −νtr/Et 1/Er 0 0 0

0 0 0 Glt 0 0
0 0 0 0 Glr 0
0 0 0 0 0 Gtr

⎤⎥⎥⎥⎥⎥⎥⎦

−1 ⎡⎢⎢⎢⎢⎢⎢⎣

εl
εt
εr
γlt
γlr
γtr

⎤⎥⎥⎥⎥⎥⎥⎦ ,

D = C−1



Ei ∈ {l, t, r} Gij ∈ {l, t, r}
νij ∈ {l, t, r} i

j

νij
Ei

=
νji
Ej

,

νij

νij = −εj
εi
.



p− pi = Mu̇,

p pi

pi = Cu̇+Ku,

C u̇

Mü+Cu̇+Ku = p(t).

C = M

N−1∑
j=0

aj
(
M−1K

)j
N



u0 = 0 v0 = 6 ωn = 5.0

ωd = ωn

√
1 − ζ2

γ =
2 · mean(ζ) ζ

j = 0, 1

C = a0M+ a1K,

a0 a1

ζj =
1

2

(
a0
ωj

+ a1ωj

)
, j = 1, 2,



ζj ωj

180◦

C = iγK

i γ K

γ = 2ζ,

ζ

C = (2ζjωjMj), j = 1, 2, . . . , N,

Mj

Mü+Ku = 0,

(
K− ω2

jM
)
φj = 0, j = 1, 2, . . . , N.



ωj j φj
N

r � N

Φ = [φ1, φ2, φ3, · · · , φr]

Ψ = Φ

(
1√

(ΦᵀMΦ)

)
.

u(t)

u(t) = Ψη =

r∑
j=1

ψj ηj(t),

ηj(t) j
r r �

N

Mη̈ +Cη̇ +Kη = p(t),

M = ΨᵀMΨ, C = ΨᵀCΨ, K = ΨᵀKΨ, p(t) = Ψᵀp(t).

ΨᵀMΨ = I, ΨᵀKΨ = Λ = (ω2
i ),

I Λ
ω2
i



m = 1 c = 2ζMnωn ωn = 2πf
k = 103

β
ρ∞

β



u(t) =

Nω∑
t=−Nω

Ū(ω) eiωt,

ω

(−ω2M+ iωC+K
)
Ū(ω) = p̄(ω), ω ∈ R,

Z(ω)

Z(iω) = −ω2M+ iωC+K.

Ū(ω) = Y(iω)p̄(ω),

Y(iω)

Y(iω) = Z(iω)−1 =
(−ω2M+ iωC+K

)−1



1/k 1/ωc
1/(ω2m)

V(iω) = iωY(ω),

H(iω) = −ω2Y(ω).





n > 3

MAC(ψr, ψs) =
|ψHr ψs|2(

ψHr ψr
) (
ψHs ψs

) ,
ψr, ψs

H

fs ≥ 2fmax





p(t)
w[p(t)] x(t) w[x(t)]

P (ω) = F [p(t)] =

∫ ∞

−∞
p(t) e−i2πft dt,

X(ω) = F [x(t)] =

∫ ∞

−∞
x(t) e−i2πft dt,

P (ω) X(ω)
p(t) x(t)

i j
j

i



p(t) x(t)
P (ω) X(ω)

ω

X(ω)P (ω) = H(ω)P (ω)P (ω) −→ H1(ω) =
X(ω)P (ω)

P (ω)P (ω)
=

GPX(ω)

GPP (ω)
,

X(ω)X(ω) = H(ω)P (ω)X(ω) −→ H2(ω) =
X(ω)X(ω)

X(ω)P (ω)
=

GXX(ω)

GXP (ω)
,

H1 H2

GPX(ω) GXP (ω)
GXX(ω) GPP (ω)

H1 H2

H3(ω) =
√

H1(ω) ·H2(ω) =

√
GXX(ω)

GPP (ω)

GXP (ω)

|GXP (ω)| .



H1 H2 H3

H1 H2 H3

γ2(ω) =
|GPX(ω)|2

|GPP (ω)| |GXX(ω)| , 0 ≤ γ2(ω) ≤ 1,



Vij(ω) =

∫
ω
Hij(ω) dω =

Hij(ω)

2πfj
,

Yij(ω) =

∫∫
ω
Hij(ω) dω =

Hij(ω)

(2πfj)2
,

Vij(ω) Yij(ω)
Hij ω

λk = −ζkωn,k ± iωd,k ζk

ωn,k iωd,k

Y (iω) = Z(iω)−1 =
1

(−ω2m+ iωc+ k)
,

k

Y(iω) =
∑
k

(
Ak

iω − λk
+

Ak

iω − λk

)
,



λk λk

λk, λk = −ζkωn,k ± iωn,k

√
1− ζ2k = −ζkωn,k ± iωd,k.

ωn,k ωd,k
ζk

Ak Ak

Y(iω) =
∑
k

Qkψkψ
ᵀ
k

iω − λk
+

Qkψkψ
H
k

iω − λk
,

ψk ψk Qk Qk

ω = 2πf

V(iω) =
∑
k

iω

(
Qkψkψ

ᵀ
k

iω − λk
+

Qkψkψ
H
k

iω − λk

)
,

H(iω) =
∑
k

−ω2

(
Qkψkψ

ᵀ
k

iω − λk
+

Qkψkψ
H
k

iω − λk

)
,

z

φj(ω) =
180

π
tan−1

(�(Hj(ω))

�(Hj(ω))

)
.





R(k)
f (θ) = r

(k)ᵀ

f W
(k)
f r

(k)
f =

Nj∑
j=1

W
(k)
f,jj

(
|f̃j − f

(k)
j (θ)|/f (k)

j (θ)
)2

,

rf
f̃j fj(θ)

θi ∈
{1, 2, . . . , p} W

(k)
f

Nj

k



R(k)
ψ (θ) = r

(k)ᵀ

ψ W
(k)
ψ r

(k)
ψ =

Nj∑
i,j=1

W
(k)
ψ,jj

[
1− diag

(
MAC(k)

(
ψ̃i,ψ

(k)
j (θ)

))]
,

rψ

MAC(k)
(
ψ̃i,ψ

(k)
j (θ)

)
=

|ψ̃H
i ψ

(k)
j (θ)|2(

ψ̃
H
i ψ̃i

)(
ψ

(k)H

j (θ)ψ
(k)
j (θ)

) ,
ψ̃i ψj H

R(k)(θ) =

Nj∑
j=1

W
(k)
f,jj

(
|f̃j − f

(k)
j (θ)|/f (k)

j (θ)
)2

+

Nj∑
i,j=1

W
(k)
ψ,jj

[
1− diag

(
MAC(k)

(
ψ̃i,ψ

(k)
j (θ)

))]
,

Wf,jj Wψ,jj



M(k)(θ) =

nel∑
e=1

M(k)
e (1− δme ) = M0 −

nel∑
e=1

M(k)
e δ

m
e ,

K(k)(θ) =

nel∑
e=1

K(k)
e (1− δke) = K0 −

nel∑
e=1

K(k)
e δ

k
e ,

M
(k)
0 K

(k)
0

δme , δ
k
e

k
nel

(P)

⎧⎪⎨⎪⎩ θ ∈ R3

R(θ),

θ ∈ {E1, G12 = G13, G23},

R(θ)

R(θ) =

Nj∑
j=1

W
(k)
f,jj

(
|f̃j − f

(k)
j (θ)|/f (k)

j (θ)
)2

+

Nj∑
i,j=1

W
(k)
ψ,jj

[
1− diag

(
MAC(k)

(
ψ̃i,ψ

(k)
j (θ)

))]
.



z(θ)

M(k), θ(k)

z̃

f(z̃, z(θ(k)))

θ�

z̃ z(θ) M(k) θ(k) θ�

k k

p+1 R
p p



x2+y2−4x−6y+5 = 0
R

2

R
2

El Glt = Glr Grt

θ�

Relative frequency difference =
|f̃j − fj(θ

�)|
fj(θ

�)
, j = 1, 2, . . . , Nj ,



f̃j fj(θ
�)

Nj

j

MAC
(
ψ̃i,ψj(θ

�)
)
=

|ψ̃H
i ψj(θ

�)|2(
ψ̃

H
i ψ̃i

) (
ψH
j (θ

�)ψj(θ
�)
) , j = 1, 2, . . . , Nj ,

ψ̃j ψj(θ
�)

Nj

MAC > 0.8



θ0, M0, K0, f̃ , Ψ̃, ε, γs = δic = δoc = 1/2, δr = 1, δe = 2
R(θ0)

i = 1 p
θi = θ0i + ε � θ
M(θ) K(θ)
R(θ)

‖θ(k) − θ(k−1)‖ > 1× 10−2

R(θ0) ≤ R(θ1) ≤ · · · ≤ R(θp)
θc =

∑p−1
i=0 θ

i/p �
θr = θc + δr(θc − θp) �
R(θ0) ≤ R(θr) < R(θp−1)
Yk+1 ← {θ0,θ1, . . . , θp−1,θr}

R(θr) < R(θ0) �
θe = θc + δe(θc − θp)
R(θe) ≤ R(θr)
Yk+1 ← {θ0,θ1, . . . , θp−1,θe}

Yk+1 ← {θ0,θ1, . . . , θp−1,θr}

R(θr) ≥ R(θp−1) �
R(θr) < R(θp) �
θoc = θc + δoc(θc − θp)
Yk+1 ← {θ0,θ1, . . . , θp−1,θoc}

R(θr) ≥ R(θp) �
θic = θc + δic(θc − θp)
Yk+1 ← {θ0,θ1, . . . , θp−1,θic}

�
Yk+1 ← {θ0 + γs(θi − θ0) i ∈ {1, 2, . . . , p− 1}}

θ(k) = Yk+1 �

θ� = θ(k)

θ�





x1 x2

{
x1

x2

}
∼ N

({
μ1

μ2

}
,

[
Σ11 Σ12

Σ21 Σ22

])
,

μ Σ

p (μ2 | μ1,x1,x2) ∼ N
(
μ2|1,Σ2|1

)
,

μ2|1 = Σ21Σ
−1
11 x1,

Σ2|1 = Σ22 −Σ21Σ
−1
11 Σ12.

k(x1, x2) = exp

(
− 1

2l2
‖x1 − x2‖2

)
,

l
‖x1 − x2‖



y(k)(θ) =
([

K(k)(θ)− ω
(k)2

j (θ) M(k)(θ)
]
ψ

(k)
j (θ) = 0

)
, j = 1, 2, . . . , Nj ,

j k
k θi ∈ {1, 2, . . . , p}

M(θ)

y(k)(θ) = {ω(k)
1 (θ), ω

(k)
2 (θ), . . . , ω

(k)
Nj

(θ);ψ
(k)
1 (θ),ψ

(k)
2 (θ), . . . ,ψ

(k)
Nj

(θ)}.

θ ρ
El Glt = Glr

Grt

Relative Difference =
x− μ(x)

μ(x)
,

μ(x)

x ∼ N (μ(x), σ2),



μ(x) σ2

p(x|μ(x), σ) = 1√
2πσ2

exp

(
−(x− μ(x))2

2σ2

)
,

x

F (x) =
∑ 1√

2πσ2
exp

(
−(x− μ(x))2

2σ2

)
.

M(θ)

y±(θ) = M(θ±),
yμ(θ) = M(θμ),

θμ ∈ {θμ1 , θμ2 , . . . , θμNj
}

θ± ∈ {θ−1 , θ−2 , . . . , θ−Nj
; θ+1 , θ

+
2 , . . . , θ

+
Nj

}

y±(θ) = {ω−
1 , ω

−
2 , . . . , ω

−
Nj

,ψ−
1 ,ψ

−
2 , . . . ,ψ

−
Nj

;

ω+
1 , ω

+
2 , . . . , ω

+
Nj

,ψ+
1 ,ψ

+
2 , . . . ,ψ

+
Nj

},
yμ(θ) = {ωμ1 , ωμ2 , . . . , ωμNj

,ψμ1 ,ψ
μ
2 , . . . ,ψ

μ
Nj

}.

S±
j,ω(θ) =

y±
j,ω(θ)− yμj,ω(θ)

yμj,ω(θ)
,

S±
j,ψ(θ) =

MAC
(
ψ±
j (θ), ψ

μ
j (θ)
)
−MAC

(
ψμj (θ), ψ

μ
j (θ)
)

MAC
(
ψμj (θ), ψ

μ
j (θ)
) .



ψμj (θ) ψ
−
j (θ) ψ+

j (θ)

j







⎡⎣M(s)
ii M

(s)
ib

M
(s)
bi M

(s)
bb

⎤⎦⎧⎨⎩ü
(s)
i

ü
(s)
b

⎫⎬⎭+

⎡⎣K(s)
ii K

(s)
ib

K
(s)
bi K

(s)
bb

⎤⎦⎧⎨⎩u
(s)
i

u
(s)
b

⎫⎬⎭ =

{
0i

p
(s)
b

}
,



i b
s

M̆ = diag(M(1), . . . ,M(Ns)) =

⎡⎢⎣M
(1)

M(Ns)

⎤⎥⎦ ,

K̆ = diag(K(1), . . . ,K(Ns)), p̆ =

⎧⎪⎪⎨⎪⎪⎩
p(1)

p(Ns)

⎫⎪⎪⎬⎪⎪⎭ ,

Ns

L

u(s) = L(s)ug,

L(s)

u(s) ug

Mg = LᵀM̆L =

[
Mii Mib

Mbi Mbb

]
,

Kg = LᵀK̆L =

[
Kii Kib

Kbi Kbb

]
,

pg = Lᵀp̆ =

{
pi

pb

}
,

Mg Kg pg

Mgüg +Kgug = pg.



(
K

(s)
ii − ω

(s)2

i,j M
(s)
ii

)
ψ

(s)
i,j = 0, j = 1, 2, . . . , N

(s)
i,d ,

ω
(s)2

i,j ψ
(s)
i,j j

N
(s)
i,d

Ψ
(s)
i,d =

[
ψ

(s)
i,1 ψ

(s)
i,2 ψ

(s)
i,3 . . . ψ

(s)
i,d

0 0 0 . . . 0

]
.

ui = −K
(s)−1

ii K
(s)
ib ub.

{
ui

ub

}(s)

≈
[
−K

(s)−1

ii K
(s)
ib

I(s)

]
u
(s)
b .

u(s) ≈ T̄
(s)
CB

{
ηi,d
ub

}
, T̄

(s)
CB =

⎡⎣Ψ(s)
i,d −K

(s)−1

ii K
(s)
ib

0 I
(s)
bb

⎤⎦ .
ηi,d



T̄
(s)ᵀ
CB

M̂(s) ̂̈u+ K̂(s)û = p̂(s),

M̂(s) = T̄
(s)ᵀ
CB M(s)T̄

(s)
CB =

⎡⎣ Î
(s)
ii M̂

(s)
ib

M̂
(s)
bi M̂

(s)
bb

⎤⎦
K̂(s) = T̄

(s)ᵀ
CB K(s)T̄

(s)
CB =

⎡⎣K̂(s)
ii 0

(s)
ib

0
(s)
bi K̂

(s)
bb

⎤⎦ ,
p̂(s) = T̄

(s)ᵀ
CB p(s) =

⎧⎨⎩0̂
(s)
i

p̂
(s)
b

⎫⎬⎭ ,

M̂g
̂̈ug + K̂gûg = p̂g.

u(s) ≈ T̄
(s)
ECBu

(s)
b , T̄

(s)
ECB =

[
T̄

(s)
CB + T̄

(s)
R

]

T̄
(s)
R =

[
0 F

(s)
rs

[
−M

(s)
ii K

(s)−1

ii K
(s)
ib +M

(s)
ib

]
0 0

]
M̄

(s)−1

CB K̄
(s)
CB,

F(s)
rs = K

(s)
ii −Ψ

(s)
i,dΛ

(s)−1

i,d Ψ
(s)ᵀ
i,d , Λ

(s)
i,d = Ψ

(s)ᵀ
i,d K

(s)
ii Ψ

(s)
i,d ,

F
(s)
rs Λ

(s)
i,d



T̄
(s)ᵀ
ECB

M̄(s) ¨̄u+ K̄(s)ū = p̄(s),

M̄(s) = T̄
(s)ᵀ
ECBM

(s)T̄
(s)
ECB =

⎡⎣ Ī
(s)
ii M̄

(s)
ib

M̄
(s)
bi M̄

(s)
bb

⎤⎦
K̄(s) = T̄

(s)ᵀ
ECBK

(s)T̄
(s)
ECB =

⎡⎣K̄(s)
ii K̄

(s)
ib

K̄
(s)
bi K̄

(s)
bb

⎤⎦ ,
p̄(s) = T̄

(s)ᵀ
ECBp

(s) =

⎧⎨⎩0̄
(s)
i

p̄
(s)
b

⎫⎬⎭ .

M̄g ¨̄ug + K̄gūg = p̄g.



ub ≈ Ψb,dηb,d,

Ψb,d ηb,d

(
Kbb − ω2

b,jMbb

)
ψb,j = 0, j = 1, 2, . . . , Nb,d,

Nb,d � Nb Nb

ūg ≈ T̄IR1

{
ηi,d
ηb,d

}
, T̄IR1 =

[
Ii,d 0i,d
0b,d Ψb,d

]
,

ηi,d ηb,d
Ψb,d

T̄ᵀ
IR1



̂̄Mg
̂̄̈ug +

̂̄Kg ̂̄ug = ̂̄pg

̂̄Mg = T̂ᵀ
IR1M̂gT̂IR1,

̂̄Kg = T̂ᵀ
IR1K̂gT̂IR1, ̂̄pg = T̂ᵀ

IR1p̂g.

ub ≈ Ξηi,d +Ψb,dηb,d,

Ξ
ηi,d ηb,d

Ψb,d



ūg ≈ T̄IR2

{
ηi,d
ηb,d

}
, T̄IR2 =

[
Ii,d 0i,d
Ξb,d Ψb,d

]
, Ξb,d = −K̄−1

bb K̄bi,

K̄bb K̄bi

T̄ᵀ
IR2

¯̄Mg
¨̄̄ug +

¯̄Kg ¯̄ug = ¯̄pg

¯̄Mg = T̄ᵀ
IR2M̄gT̄IR2,

¯̄Kg = T̄ᵀ
IR2K̄gT̄IR2, ¯̄pg = T̄ᵀ

IR2p̄g.
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A B S T R A C T

Experimental Modal Analysis (EMA) plays a crucial role in understanding the dynamic responses
of structures to vibration by extracting their modal parameters such as natural frequencies and
modal damping and vibration modes. These parameters are essential for assessing structural
performance and identifying potential vulnerabilities. As the construction industry embraces
sustainable materials, Cross-laminated Timber (CLT) has become a sustainable alternative to
traditional materials like reinforced concrete and steel. However, the inherent variability of
wood, resulting from factors such as growth conditions, fibre structure, and moisture content,
introduces significant fluctuations in the dynamic response of CLT. This variability presents
challenges in the broader application of CLT in construction. Despite its increasing use in
multistory buildings, a comprehensive assessment of its vibrational characteristics remains
incomplete. This study addresses this gap by identifying the dispersion in CLT’s transfer
functions and modal parameters through EMA. A CLT slab was divided into 24 nominally
identical beam-like substructures, composed of outer layers of Norway spruce and a middle
layer of Scots pine. EMA was performed in a broad frequency spectrum along three principal
directions, revealing notable variability in resonance frequencies, modal damping, and vibration
transfer functions. The study also examines the distinct characteristics of the bending, torsional,
and axial vibration modes, providing deeper insights into the variability between the different
modes. The findings of this article contribute to a more refined understanding of the dynamic
properties of CLT and their associated variability.

1. Introduction

Over recent decades, Experimental Modal Analysis (EMA) has become a crucial methodology for understanding and characteris-
ing the dynamic behaviour of vibrating structures. The methodology gained prominence with the advent of the computer-based
Fourier transform, known as the Fast Fourier Transform (FFT) [1]. EMA has since evolved into a fundamental technique in
experimental dynamics, enabling the decomposition of vibration signals into a set of modal parameters that highlight the frequency-
dependent performance and vulnerabilities of structures. In EMA, vibration signals are generated by rate-dependent input forces —
mechanical, acoustic, thermal, or electrical — that excite structures and the corresponding output responses. The performance of a
structure is described using frequency-dependent characteristics, such as inertance, mobility, and compliance. Vulnerabilities arise
during resonance events, where the vibration amplitude increases significantly. The vibration amplitude during a resonance event
is primarily controlled by the structure’s energy dissipation characteristics, which often arise due to friction or the conversion of
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vibration energy into thermal energy, and is quantified as modal damping. At each resonance event, the structure exhibits a specific
mode shape or a natural mode. Hence, for each resonance event, there is a natural frequency, modal damping, and mode shape.
These parameters are determined through the analysis of input–output signals, transformed into the frequency domain, and estimated
using modal estimation techniques, for example, [2–4]. Understanding the modal characteristics of structures has become important
as the global focus shifts toward sustainable and innovative structural design solutions. This understanding is particularly important
in the optimisation of structural performance by improving damping mechanisms, minimising vibration amplitudes, and preventing
the occurrence of resonances.

In the field of structural engineering, Engineered Wood Products (EWPs) have emerged in recent decades as sustainable and low
carbon emissions alternatives to traditional construction materials, such as reinforced concrete and steel, which are considered
carbon-emission-intensive materials [5–7]. Among these, Cross-Laminated Timber (CLT) has gained significant popularity as a
structural element in the construction industry. CLT is produced by stacking layers of lumber boards in a crosswise pattern,
with adjacent layers orientated at a 90-degree angle. These layers are bonded using polyurethane adhesive, creating a composite
that combines the strength and dimensional stability of wood with improved load-bearing capabilities [8–11]. Hence, large
constructions use CLTs as load-bearing slabs and shear panels. However, wooden structures have a low mass-to-stiffness ratio
compared to their traditional counterparts, making them more susceptible to vibrations and sound transmission. Wood as a material
also exhibits variability in its mechanical characteristics, mainly due to differences in growing conditions, fibre structure, and
moisture content [12–15]. In addition, the mechanical characteristics of wood are influenced by natural defects such as knots [16],
splits [17], and moisture-induced distortions, as further elaborated by Ormarsson [18]. The variability in macro- and microstructure
characteristics of wood, particularly in the assembled lumber boards constituting the CLT, introduces diverse variations in the
structure’s behaviour. To reduce this variability and due to insufficient comprehensive knowledge, the CLT manufacturing sector
produces laminated components using lumber boards where significant visible defects are removed and the remaining minor
imperfections are spread over a larger volume. This process aims to achieve a more uniform material distribution on a larger scale,
thus mitigating the inherent heterogeneity of wood, as noted by Steiger et al. [19]. However, this process may result in significant
material loss, as natural defects are an inherent part of wood. The extent of this material loss, while variable, remains a potential
drawback of current CLT manufacturing practices.

In recent years, several efforts have been made to gain in-depth knowledge concerning the dynamic behaviour of CLT slabs
and buildings. Kawrza et al. [20] conducted transverse EMA on a large-scale CLT slab with point-supported boundary conditions
and a dense measurement grid comprising 651 points. Data collection spanned 10 h, with actual measurements being performed
over 2 days. The modal parameters of the CLT were found to exhibit variability due to environmental influences. This variability
contributes to the dispersion observed in the modal parameters of CLT. Faircloth et al. [21] performed transverse EMA on CLT
panels to investigate the influence of boundary conditions. Their study examined six different boundary conditions and concluded
that a freely supported system provided higher resolution results, with an error of less than 10% compared to a corresponding
Finite Element (FE) model, in addition to offering advantages in terms of simplicity of setup. Kawrza et al. [22] also identified the
modal parameters of a CLT floor during three construction stages, observing variability, which was subsequently used to update a
corresponding FE model. Furthermore, EMA has been used to determine the modal properties of multi-story buildings with different
wood frame configurations [23]. Additional research has addressed model updating for CLT buildings [24,25], hybrid wood–concrete
building models [26], and hybrid CLT–concrete composite floors [27] using EMA as reference. Further studies have focused on the
numerical validation of the EMA results for CLT slabs under various boundary conditions, as demonstrated in [28]. Ljunggren [29]
performed transverse EMA on different CLT specimens, including standard spruce CLT panels, densified spruce and birch CLT panels,
and CLT panels with intermediate elastic layers. Modal parameters related to five out-of-plane vibration modes were extracted in
the lower frequency range, which exhibited variability. However, the study did not explore vibration characteristics in the in-plane
and axial directions. These directions are particularly relevant given CLT’s frequent use as shear walls and stabilisation elements in
multi-story buildings. Recently, results from thirteen months of operational monitoring of an eight-story building were published
in [30], indicating dispersion in natural frequencies and damping ratios throughout the measurement period, resulting from factors
such as moisture content and temperature fluctuations. Although these studies provide valuable information, they are often limited
by the number of samples tested, the influence of specific boundary conditions used, and a narrow focus on the lower-frequency
spectrum. Therefore, despite the availability of the research articles discussed above, a comprehensive understanding of the vibration
characteristics of CLT and its associated variability remains incomplete. To address this gap, a thorough investigation into the
variability of the modal characteristics of CLT is essential, particularly in the in-plane and axial directions across a broad frequency
spectrum, to comprehensively evaluate the variability in its modal parameters, using comparable specimens. The lack of knowledge
regarding this variability can present challenges in the design of CLT structures, especially in light of the discrepancies identified
in recent studies. For example, research by the authors [12] found that the dynamic orthotropic properties of CLT (including the
substructures explored here), determined through model updating with EMA as a reference, differ from the values provided by
the SS-EN 338:2016 code [31], commonly used in structural design. These discrepancies suggest that design practices based on
current standards may not fully capture the dynamic behaviour of CLT, potentially leading to either over- or underestimation
of its vibrational performance. Given the growing use of CLT in mid- and high-rise buildings, such discrepancies could result in
less-than-optimal designs, particularly under dynamic loading conditions such as wind or seismic events.

In response to the lack of a comprehensive understanding of the variability in the modal characteristics of CLT, this study provides
a detailed investigation of the dynamic properties of 24 nominally identical CLT beam-like substructures, extracted from a slab, using
EMA in the three main directions, covering a wide frequency range up to 2 kHz. To acquire high-resolution data, a measurement
grid consisting of 𝑛 > 3 points per wavelength was selected, and the measurements were performed under free-free conditions to
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Table 1

Orthotropic material properties of lumber boards of strength class C35 from [31,32]. The subscripts x, y, and z are respectively consistent with the orthotropic
orientations of wood in longitudinal, radial and tangential directions. The density 𝜌 corresponds to the mean density value of the beams.

𝜌 (kg/m3) 𝐸x (MPa) 𝐸y (MPa) 𝐸z (MPa) 𝐺xy (MPa) 𝐺xz (MPa) 𝐺yz (MPa) 𝜈𝑥𝑦 (–) 𝜈𝑥𝑧 (–) 𝜈𝑦𝑧 (–)

473 13,000 262 430 810 810 57 0.48 0.42 0.28

Fig. 1. Schematic illustration of the Experimental Modal Analysis (EMA) setup for the CLT beams, featuring 11 × 2 transversal, 11 × 2 lateral, and one
axial excitation point. The axial excitation point is located in the centre of the cross section on the hidden side of the beam. The dimensions are as follows:
length (l) × width (w) height (h) = 2 m × 0.12 m × 0.12 m. Each layer has a thickness of 40 mm.

eliminate uncertainties arising from boundary conditions. The tests were carried out in a laboratory with a stable climate, leading to
variability of the moisture content in the substructures ranging from 9.1% to 10.5%. Although the geometric dimensions of the tested
specimens are not typical for standard CLT applications, they were intentionally selected to ensure consistency across all tests and
comparability of the results. The study’s findings include a detailed analysis of the variability in vibration transfer functions, natural
frequencies, and damping associated with the three main directions. A distinction is also made regarding the variability in the modal
parameters associated with different types of modes, i.e., bending, torsional, and axial modes. Furthermore, the article provides the
necessary mathematical derivations, a detailed experimental procedure, and a rigorous evaluation of variability through confidence
intervals, the Frequency Response Assurance Criterion (FRAC), and relative differences in natural frequencies and damping between
vibration modes. These findings offer valuable information to advance the understanding of the dynamic characteristics of CLT,
providing a detailed understanding of the dispersion in the inherent modal characteristics of nominally identical CLT substructures.

The remainder of this paper is organised as follows: Section 2 presents a detailed experimental framework and the corresponding
mathematical derivations. Section 3 discusses the experimental results along with their statistical variations. Finally, Section 4
provides the concluding remarks.

2. Experimental modal analysis

This section details the experimental framework used in this study, beginning with the experimental design, addressing practical
considerations, and concluding with the post-experimental data processing along with evaluation metrics. The objects tested here
comprise 24 CLT beam-like substructures cut from a large CLT slab, where each beam is one lamella wide, Fig. 1. The substructures
comprise two covering layers of Norway Spruce and an intermediate layer of Scots Pine.

2.1. Experimental design

The beams were modelled and numerically discretised using FE brick elements with quadratic interpolation to determine the
experimental excitation locations. The orthotropic mechanical properties corresponding to the mean density value of the beams,
as detailed in Table 1, were assigned to the FE model. A conventional tie coupling between the top-mid-bottom layers (along the
z-axis) was considered, whereas no coupling between the individual intermediate boards (along the x-axis) was considered. This
reflects the presence of adhesive glue between the upper intermediate and lower layers, whereas the individual intermediate layers
are not glued, Fig. 1. Accordingly, the undamped homogeneous equations of motion were derived as follows:

𝐌�̈�(𝑡) +𝐊𝐱(𝑡) = 𝟎, (1)
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Fig. 2. Illustration of autoMAC matrices comparing (a) six out-of-plane bending, (b) six torsional, and (c) six in-plane bending modes. The modes are compared
with themselves for orthogonality check and validation of the experimental excitation grid.

where 𝐌 ∈ R
𝑁×𝑁 is the lumped mass matrix and 𝐊 ∈ R

𝑁×𝑁 is the positive semi-definite stiffness matrix. The rate-dependent nodal
accelerations and displacements are collected in �̈� ∈ R

𝑁×1 and 𝐱 ∈ R
𝑁×1, respectively. As the experiments were intended to be

carried out in the absence of boundary conditions, Dirichlet conditions were not imposed on the system matrices. The numerical
natural frequencies and modes were determined by solving the following eigenvalue problem:(

𝐊 − 𝜆𝑗𝐌
)
𝝍 𝑗 = 𝟎, 𝑗 = 1, 2,… , 𝑁, (2)

where 𝜆𝑗 is the 𝑗th eigenvalue and 𝝍 𝑗 is the corresponding conjugate eigenmode. The corresponding natural frequencies, in Hz, can

be computed using the simple relation 𝑓𝑛 =
√

𝜆∕2𝜋, in which
√

𝜆 = 𝜔𝑛 is the angular frequency in rad/s. The natural frequencies are
used to design the excitation frequency spectrum whilst the modes were used to design the excitation grid. The beams, due to their
slenderness resonate frequently in the transversal (out-of-plane) and lateral (in-plane) directions. Therefore the modal coordinates
were categorised into three modal matrices, with 𝜳 𝑜 containing out-of-plane bending modes, 𝜳 𝑡 containing torsional modes, and
𝜳 𝑖 containing in-plane bending modes. The modal coordinates of 𝜳 𝑜 and 𝜳 𝑡 were extracted from the top-surface (xy plane) nodes
of the beams whereas the modal coordinates in 𝜳 𝑖 were extracted from the lateral surface (xz plane) nodes of the beams, Fig. 1.
The structure of the modal matrices follows:

𝜳 𝑜 =

⎡⎢⎢⎢⎢⎢⎣

𝜓𝑜,11 𝜓𝑜,12 … 𝜓𝑜,16

𝜓𝑜,21 𝜓𝑜,22 … 𝜓𝑜,26

⋮ ⋮ … ⋮

𝜓𝑜,𝑛 𝜓𝑜,𝑛 … 𝜓𝑜,𝑛

⎤⎥⎥⎥⎥⎥⎦
, 𝜳 𝑡 =

⎡⎢⎢⎢⎢⎢⎣

𝜓𝑡,11 𝜓𝑡,12 … 𝜓𝑡,16

𝜓𝑡,21 𝜓𝑡,22 … 𝜓𝑡,26

⋮ ⋮ … ⋮

𝜓𝑡,𝑛 𝜓𝑡,𝑛 … 𝜓𝑡,𝑛

⎤⎥⎥⎥⎥⎥⎦
𝜳 𝑖 =

⎡⎢⎢⎢⎢⎢⎣

𝜓𝑖,11 𝜓𝑖,12 … 𝜓𝑖,16

𝜓𝑖,21 𝜓𝑖,22 … 𝜓𝑖,26

⋮ ⋮ … ⋮

𝜓𝑖,𝑛 𝜓𝑖,𝑛 … 𝜓𝑖,𝑛

⎤⎥⎥⎥⎥⎥⎦
, (3)

where the subscript 𝑛 denotes the total number of reference coordinates. Reference coordinates were selected so that 𝑛 > 3 points
per wavelength [33]. Other researchers have also proposed methods for the selection of optimal reference coordinates using Fisher’s
information matrix, e.g., the work by Kammer [34] and Linderholt and Abrahamsson [35]. To validate the excitation grid, which
contains 22 transverse and 22 lateral excitation points, as shown in Fig. 1, a similarity check between the modes of interest was
calculated using the Modal Assurance Criterion (MAC), [36]. MAC is a quantitative tool for comparing orthogonality between two
modes, returning zero for absolute orthogonality and one for identical modes. The MAC value is calculated using the following
equation:

MAC(𝝍 𝑟,𝝍𝑠) =
||𝝍𝐻

𝑟 𝝍𝑠
||2(

𝝍𝐻
𝑟 𝝍 𝑟

) (
𝝍𝐻

𝑠 𝝍𝑠

) , (4)

where 𝝍 𝑟 and 𝝍𝑠 are the mode shape vectors of the 𝑟th and 𝑠th modes, respectively, and𝐻 denotes the Hermitian (complex conjugate
transpose) of the vector. The MAC was computed for all three modal matrices in (3) resulting in excellent orthogonality with
MAC𝑟𝑠 < 0.2 for 𝑟 ≠ 𝑠, Fig. 2. In addition to the excitation points in the xy plane and the xz plane, an additional axial point on the
yz plane was included in the measurement design. Since the axial point comprises one coordinate, it was not included in the MAC
evaluation.

The sampling frequency range was designed to follow the Nyquist–Shannon sampling theorem [37], namely 𝑓𝑠 ≥ 2𝑓max with
3200 samples in the time domain. Hence, a maximum frequency of 2 kHz was reached.

2.2. Experimental setup

The beams were discretised with an excitation grid comprising 22 points in the xy plane, 22 points in the xz plane, and one point
in the yz plane, as designed in the previous section, Fig. 1. Steel washers (weighing about 3 grammes each) were glued to the beams
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Fig. 3. Visualisation of (a) joint distribution between density and moisture content, (b) histogram with kernel density function of density values, and (c)
histogram with kernel density function of moisture content values of the beams. The density values are nearly normally distributed, whereas the moisture
content demonstrates a skewness of −1.57.

at the excitation points to reach a higher frequency range. The beams were suspended from the laboratory ceiling using bungee
cords to achieve free-free boundary conditions. This setup ensures that the vibration energy imparted to the structure via excitation
force remains until it naturally decays due to energy leakage (damping) [33]. Previous research by Carne et al. [38] has indicated
damping sensitivity due to support conditions. Hence, as a rule of thumb, the suspending bungees were chosen to be soft enough to
produce rigid body modes far below a tenth of the fundamental natural frequency. The laboratory environment offered during the
measurement campaign a variation in relative humidity ranging between 40 and 45% and a temperature variation ranging between
18 and 20 centigrade.

Before measurements were performed, the geometric dimensions and weights of the beams were documented. The density of
each beam was calculated by dividing its weight by the measured volume of the midsection. In addition, the moisture content of
each beam was measured at both ends and in the middle, between two layers. These values were averaged to determine the moisture
content of each beam. The joint distributions of density and moisture content, along with their individual distributions and their
respective mean and standard deviation, are presented in Fig. 3.

A single-input–single-output (SISO) approach was chosen, using an impact hammer with a sensitivity of 22.7 mV/N and
an aluminium tip [39]. The acceleration response at each excitation point was measured using a corresponding uniaxial cubic
charge piezoelectric accelerometer with a sensitivity of 0.316 pC/ms−2 (picocoulombs per unit of acceleration) [40]. The cubic-
charge accelerometers were chosen due to their low sensitivity to extraneous environmental effects. Consequently, three uniaxial
accelerometers were used to measure acceleration along the x, y, and z axes, and were placed as shown in Fig. 1.

Accelerometers are piezoelectric sensors that detect base motion and convert it into an electrical signal proportional to the
detected motion. The signal conditioners within these transducers convert the electrical signal into an analogue voltage that is a
continuous function of time. To facilitate further processing, analogue signals from the transducers must be filtered and sampled to
avoid aliasing before digitisation. Consequently, a data acquisition system was used to perform these tasks [41]. Detailed information
on practical data acquisition can be found in a recent work by Allemang and Avitable [42].

A square and an exponential window were applied to the input and response signals to minimise spectral leakage in the FFT
when transforming the time domain into the frequency domain to compute FRFs, [1,43]. These windows enforce zero boundaries to
the signals since the FFT assumes the periodicity of the signals outside the windows. However, the true nature of transient signals
is non-periodic, but rather short-duration events with high energy content.

A three-excitation averaging approach was used to minimise signal leakage and mitigate uncertainties associated with environ-
mental noise. Concurrently, the coherence of the input–output signals was monitored to ensure that the input energy corresponded
closely to the output response, with exceptions noted for antiresonances characterised by very low response. The estimation of the
FRFs and their associated coherence will be elaborated in the next section.

2.3. Estimation of frequency-response functions

Each measurement point is energised and its associated response is measured individually considering a SISO approach.
Therefore, each point measurement can be considered as a single degree of freedom (SDOF) system, for which the numerical equation
of motion can be formulated as:

𝑓 (𝑡) = 𝑚�̈� + 𝑐�̇� + 𝑘𝑥, (5)

where the input force 𝑓 (𝑡) is balanced by internal forces comprising mass 𝑚 and its associated acceleration ẍ, energy leakage forces
comprising damping constant 𝑐 and its associated velocity �̇�, and potential energy comprising stiffness 𝑘 and displacement 𝑥. The
equilibrium in (5) can be expressed in the frequency domain considering the harmonic energising of the system,

𝐹 (𝜔) = 𝑍(𝜔)𝑋(𝜔), 𝑍(𝜔) = (𝑘 + 𝑗𝜔𝑐 − 𝜔2 𝑚), (6)
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Fig. 4. Bode plot of Frequency Response Functions (FRFs) computed using 𝐻1, 𝐻2, and 𝐻3 procedures in (16) and (17).

where 𝑍(𝜔) is the dynamic stiffness of the system and its inverse is dynamic compliance, 𝐹 (𝜔) is the energising force, and 𝑋(𝜔)
is its’ response conjugate. The frequency response function of the system, that is, the frequency response per unit force, can be
determined as a ratio between output and input:

𝐻(𝜔) = 𝑍(𝜔)−1 = 𝑋(𝜔)
𝐹 (𝜔)

= 1
𝑘 + 𝑗𝜔𝑐 − 𝜔2𝑚

. (7)

In the frequency domain, vibration control is often characterised by three distinct stages corresponding to different frequency
regimes where stiffness, damping, and inertia dominate the system’s response. In the low-frequency range, the stiffness control
is dominant, where the system behaves like a spring and the stiffness 𝑘 primarily governs the impedance 𝑍(𝜔), resulting in low
displacement. As frequency increases, the system enters a critical middle-frequency frequency range where damping 𝑐 plays a key
role in controlling vibration. Here, energy dissipation due to damping 𝑗𝜔𝑐 is the most effective, reducing the amplitude of oscillations
by absorbing vibrational energy. In the high-frequency regime, the inertial effects −𝜔2 𝑚 dominate the response, where the mass
𝑚 of the system resists acceleration, leading to a decrease in the effectiveness of vibration control. This phase is characterised by a
decrease in displacement as the system becomes mass-controlled. Together, these three stages reflect the balance between stiffness,
damping, and inertia in a dynamic system, influencing the approach to vibration mitigation.

Considering the measurements, the energising impulse force 𝑓 (𝑡) is a transient high-energy signal with a short duration measured
in the time domain. Similarly, its associated response 𝑥(𝑡) is measured in the time domain. As described in the previous section,
both 𝑓 (𝑡) and 𝑥(𝑡) are signals observed within specific time windows. In the time domain, the response can be related to the input
force via Duhamel’s convolution as:

𝑥(𝑡) = ∫
∞

−∞
ℎ(𝑡 − 𝜏)𝑓 (𝜏) 𝑑𝜏, (8)

where ℎ(𝑡− 𝜏) is the impulse response function of the system, describing the response at time 𝑡 due to an impulse energising at time
𝜏, independent of the excitation [44]. The integral in (8) concerns all incremental impulses at times 𝜏 before the final time 𝑡, [44].
The expression in (8) after integration results in:⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝑥1(𝛥𝑡)
𝑥2(𝛥𝑡)
𝑥3(𝛥𝑡)

⋮

𝑥𝑁 (𝛥𝑡)

⎫⎪⎪⎪⎬⎪⎪⎪⎭
=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

ℎ11(𝛥𝑡) 0 … 0 0
ℎ21(𝛥𝑡) ℎ22(𝛥𝑡) … 0 0
ℎ31(𝛥𝑡) ℎ32(𝛥𝑡) ℎ33(𝛥𝑡) 0 0

⋮ ⋮ ⋮ ⋱ 0
ℎ𝑁1(𝛥𝑡) … … 0 ℎ𝑁𝑁 (𝛥𝑡)

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝑓1(𝛥𝑡)
𝑓2(𝛥𝑡)
𝑓3(𝛥𝑡)

⋮

𝑓𝑁 (𝛥𝑡)

⎫⎪⎪⎪⎬⎪⎪⎪⎭
, (9)

where 𝛥𝑡 denotes the time interval for the discretisation as the analogue signals are digitised, and 𝑁 denotes the total number of
time points. The discretised convolution in (9) can be simply expressed as:

𝐱(𝑡) = 𝐇(𝑡) 𝐟 (𝑡). (10)

The expression in (10) introduces an important concept, namely relating the response of the system 𝐱(𝑡) to the energising force
𝐟 (𝑡) using the impulse response function 𝐇(𝑡). The impulse response function represents the system’s time-dependent resistance to
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excitation; analogous, for example, to the resistance of a multistorey building under severe motion-induced wind loads or the thermal
conductivity of nuclear reactor components exposed to high-temperature loads.

The auto-correlation of the input and output signals in the time domain can be computed using:

𝑅𝑓𝑓 (𝜏) = E[𝑓 (𝑡), 𝑓 (𝑡 + 𝜏)] = lim
𝑇→∞

1
𝑇 ∫𝑇

𝑓 (𝑡)𝑓 (𝑡 + 𝜏) 𝑑𝑡, (11a)

𝑅𝑥𝑥(𝜏) = E[𝑥(𝑡), 𝑥(𝑡 + 𝜏)] = lim
𝑇→∞

1
𝑇 ∫𝑇

𝑥(𝑡)𝑥(𝑡 + 𝜏) 𝑑𝑡, (11b)

where E denotes expected value, 𝜏 is the time delay (or lag) which shifts the signal in time, and 𝑇 denotes observation time. The
limit as 𝑇 approaches infinity indicates that the calculation is performed over an infinitely long time interval to ensure that all
relevant variations and patterns in the signal are captured. Similarly, the cross-correlations of the input and output signals can be
computed,

𝑅𝑓𝑥(𝜏) = E[𝑓 (𝑡), 𝑥(𝑡 + 𝜏)] = lim
𝑇→∞

1
𝑇 ∫𝑇

𝑓 (𝑡)𝑥(𝑡 + 𝜏) 𝑑𝑡, (12a)

𝑅𝑥𝑓 (𝜏) = E[𝑥(𝑡), 𝑓 (𝑡 + 𝜏)] = lim
𝑇→∞

1
𝑇 ∫𝑇

𝑥(𝑡)𝑓 (𝑡 + 𝜏) 𝑑𝑡. (12b)

The frequency domain components of the input energising and output response signals can be simply extracted using the Fourier
transform F :

𝐹 (𝜔) = F [𝑓 (𝑡)] = ∫
∞

−∞
𝑓 (𝑡) 𝑒−𝑗2𝜋𝑓𝑡 𝑑𝑡, (13a)

𝑋(𝜔) = F [𝑥(𝑡)] = ∫
∞

−∞
𝑥(𝑡) 𝑒−𝑗2𝜋𝑓𝑡 𝑑𝑡, (13b)

where 𝑓 (𝑡) and 𝑥(𝑡) are discrete-time samples of the input and output signals, respectively, at time 𝑡. The complex exponential term
𝑒−𝑗2𝜋𝑓𝑡 corresponds to the frequency component of 𝑓 in the Fourier transform. The measurements presented in this article were
carried out with a frequency resolution 𝛥𝑓 = 1∕𝑇0 = 1.25 Hz, where 𝑇0 = 0.8 s denotes the total duration of the sample, resulting in
an FFT frame size of 1600 bins. The Fourier function F transforms the time domain signals 𝑓 (𝑡) and 𝑥(𝑡) into their frequency domain
representations 𝐹 (𝜔) and 𝑋(𝜔), respectively. The signals in the time domain are functions of 𝑡 in seconds, while their corresponding
signals in the frequency domain are functions of the driving frequency 𝜔 in rad/s. The Fourier components are often computed
using FFT. Further insights into the application of FFT analysers and their characteristics can be explored in the technical report
authored by Thrane [45].

The auto-power spectrum of the input and output signals can be computed by:

𝐺𝐹𝐹 (𝜔) = ∫
∞

−∞
𝑅𝑓𝑓 (𝜏) 𝑒−𝑗2𝜋𝑓𝑡 𝑑𝜏 = 𝐹 (𝜔)𝐹 (𝜔), (14a)

𝐺𝑋𝑋 (𝜔) = ∫
∞

−∞
𝑅𝑥𝑥(𝜏) 𝑒−𝑗2𝜋𝑓𝑡 𝑑𝜏 = 𝑋(𝜔)𝑋(𝜔), (14b)

where an over-line denotes a complex conjugate. The auto-power spectrum is a real function of frequency, in which the phase
information is lost. Similarly, the cross-power spectrum of the signals can be determined using the following:

𝐺𝐹𝑋 (𝜔) =∫
∞

−∞
𝑅𝑓𝑥 𝑒−𝑗2𝜋𝑓𝑡 𝑑𝜏 = 𝐹 (𝜔)𝑋(𝜔), (15a)

𝐺𝑋𝐹 (𝜔) =∫
∞

−∞
𝑅𝑥𝑓 𝑒−𝑗2𝜋𝑓𝑡 𝑑𝜏 = 𝑋(𝜔)𝐹 (𝜔), (15b)

where it is noted that the cross-power spectrum is a complex function that carries both magnitude and phase. Recalling the
convolution in (8) and the concept of relating input signal to output signal via ℎ(𝑡) in the time domain, a similar function can
be formulated in the frequency domain,

𝑋(𝜔)𝐹 (𝜔) = 𝐻(𝜔)𝐹 (𝜔)𝐹 (𝜔) ⟶ 𝐻1(𝜔) =
𝑋(𝜔)𝐹 (𝜔)
𝐹 (𝜔)𝐹 (𝜔)

=
𝐺𝑋𝐹 (𝜔)
𝐺𝐹𝐹 (𝜔)

, (16a)

𝑋(𝜔)𝑋(𝜔) = 𝐻(𝜔)𝐹 (𝜔)𝑋(𝜔) ⟶ 𝐻2(𝜔) =
𝑋(𝜔)𝑋(𝜔)
𝐹 (𝜔)𝑋(𝜔)

=
𝐺𝑋𝑋 (𝜔)
𝐺𝐹𝑋 (𝜔)

, (16b)

where 𝐻1 is accurate for systems with output noise, whereas 𝐻2 is accurate in the presence of input noise. Hence, an average of
𝐻1 and 𝐻2 must be accurate in handling both input and output noise,

𝐻3(𝜔) =
√

𝐻1(𝜔) ⋅𝐻2(𝜔) =

√
𝐺𝑋𝑋 (𝜔)
𝐺𝐹𝐹 (𝜔)

𝐺𝑋𝐹 (𝜔)|𝐺𝑋𝐹 (𝜔)| . (17)

Due to the sensitivity of the FRFs to noise, the three FRFs in (16) and (17) were calculated and compared. As shown in Fig. 4,
all three FRFs produce similar results, indicating that the noise levels present in the FRFs are minimal. Finally, the complete system
can be presented in a manner similar to (10), however, in the frequency domain as:

𝐗(𝜔) = 𝐇(𝜔) 𝐅(𝜔), (18)
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where 𝐇(𝜔) represents the FRF matrix for the system consisting FRFs associated with all measurement coordinates 𝑛,⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝑋1(𝜔)
𝑋2(𝜔)
𝑋3(𝜔)

⋮

𝑋𝑛(𝜔)

⎫⎪⎪⎪⎬⎪⎪⎪⎭
=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

𝐻11(𝜔) 𝐻12(𝜔) 𝐻13(𝜔) … 𝐻1𝑛(𝜔)
𝐻21(𝜔) 𝐻22(𝜔) 𝐻23(𝜔) … 𝐻2𝑛(𝜔)
𝐻31(𝜔) 𝐻32(𝜔) 𝐻33(𝜔) … ⋮

⋮ ⋮ ⋮ ⋱ ⋮

𝐻𝑛1(𝜔) 𝐻𝑛2(𝜔) … … 𝐻𝑛𝑛(𝜔)

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝐹1(𝜔)
𝐹2(𝜔)
𝐹3(𝜔)
⋮

𝐹𝑛(𝜔)

⎫⎪⎪⎪⎬⎪⎪⎪⎭
. (19)

To assess the fidelity of the relationship between the input and output signals, ordinary coherence serves as a crucial metric.
Coherence quantifies the extent to which the input energy translates into the corresponding output energy. Therefore, in high-quality
measurements, coherence values typically approach 1, indicating a strong correlation between the signals. Exceptions to this are
observed during antiresonance events, where oscillatory patterns can lead to deviations from this ideal behaviour. With the auto-
and cross-power spectrum in (14) and (15), the coherence can be defined as:

|𝐺𝑋𝐹 (𝜔)|2 ≤ |𝐺𝐹𝐹 (𝜔)| |𝐺𝑋𝑋 (𝜔)| ⟶ 𝛾2(𝜔) =
|𝐺𝑋𝐹 (𝜔)|2|𝐺𝐹𝐹 (𝜔)| |𝐺𝑋𝑋 (𝜔)| , 0 ≤ 𝛾2(𝜔) ≤ 1, (20)

where unity denotes the full translation of the input signal into output energy and zero denotes otherwise. The coherence function
shall be computed from averaged auto- and cross-powers for repeated measurements.

Vibration is often measured in terms of acceleration, as accelerometers are the most common transducers. Therefore, the transfer
functions typically represent acceleration per unit force (inertance). However, in analysis, it is often more intuitive to examine
velocity per unit of force (mobility) or displacement per unit of force (compliance). Accordingly, the FRF matrix can be simply
integrated using:

𝐻𝑣,𝑖𝑗 (𝜔) = ∫𝜔

𝐻𝑖𝑗 (𝜔) 𝑑𝜔 =
𝐻𝑖𝑗 (𝜔)
2𝜋𝑓𝑗

, (21a)

𝐻𝑐,𝑖𝑗 (𝜔) = ∬𝜔

𝐻𝑖𝑗 (𝜔) 𝑑𝜔 =
𝐻𝑖𝑗 (𝜔)
(2𝜋𝑓𝑗 )2

, (21b)

where 𝐻𝑣,𝑖𝑗 (𝜔) and 𝐻𝑐,𝑖𝑗 (𝜔) are the mobility and compliance FRF components, respectively, 𝐻𝑖𝑗 are components of the inertance
matrix in (19), and 𝜔 is the driving angular frequency.

The equations described above outline a concise derivation of the FRF estimation, acknowledging the minimal noise in the
measurements presented later in this article. However, signal processing and FRF estimation from noisy signals involve complexities
beyond this brief overview. Interested readers are encouraged to explore the extensive work of Oppenheim et al. [46] and the
referenced literature therein, as well as Proakis and Manolakis [47], for further information.

2.4. Modal parameter estimation

With a subset of low-noise transfer functions, the modal characteristics of the beams can be extracted. Modal parameter
estimation focusses on determining the resonance frequencies, modal damping, and their corresponding natural modes. This process
requires a curve fitting procedure to identify consistent peaks within the transfer functions across the frequency spectrum. If
necessary, the frequency spectrum can be constrained to a specific range to improve accuracy. From the peaks, our objective is
to find consistent poles with complex values (𝑝𝑘 = 𝜁𝑘+ 𝑗𝜔𝑑,𝑘), where (i) 𝜁𝑘 is the real part representing the rate at which oscillations
decay (modal damping), and (ii) 𝑗𝜔𝑑,𝑘 is the imaginary part representing the oscillatory rate. The term 𝑗𝜔𝑑,𝑘 corresponds to the
damped natural frequency, which describes how a small excitation causes a large response. A negative value of 𝜁𝑘 indicates that the
oscillations decrease over time, whereas a positive value indicates that the oscillations grow over time. Hence, for a stable system,
𝜁𝑘 must be negative.

The transfer functions are the sum of several SDOF systems. They can be expressed in various forms: (i) polynomial form, (ii)
pole-zero form, (iii) partial fraction form, and (iv) exponential form. In this work, we express the transfer functions in partial fraction
form:

𝐻(𝑗𝜔) =
∑
𝑘

(
𝐴𝑖𝑗,𝑘

𝑗𝜔 − 𝑝𝑘
+

𝐴𝑖𝑗,𝑘

𝑗𝜔 − 𝑝𝑘

)
, (22)

where the poles 𝑝𝑘, 𝑝𝑘 (real and complex conjugate, respectively) represent

𝑝𝑘, 𝑝𝑘 = −𝜁𝑘𝜔𝑛,𝑘 ± 𝑗𝜔𝑛,𝑘

√
1 − 𝜁2

𝑘
= −𝜁𝑘𝜔𝑛,𝑘 ± 𝑗𝜔𝑑,𝑘. (23)

where 𝜔𝑛,𝑘 is the undamped natural angular frequency, 𝜔𝑑,𝑘 is its damped correspondence, and 𝜉𝑘 is the modal damping factor.

The residues 𝐴𝑖𝑗,𝑘 and 𝐴𝑖𝑗,𝑘 in expression (22) contain information on the modes and their associated scaling factors. The transfer
function can thus be expressed as

𝐻(𝑗𝜔) =
∑
𝑘

𝑄𝑘𝝍𝑘𝝍
⊺
𝑘

𝑗𝜔 − 𝑝𝑘
+

𝑄𝑘𝝍𝑘𝝍
𝐻
𝑘

𝑗𝜔 − 𝑝𝑘
, (24)
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where 𝝍𝑘 and 𝝍𝑘 are the mode shapes and 𝑄𝑘 and 𝑄𝑘 are the corresponding scaling factors determined through fitting the above
expression to the measured transfer functions, [44,48]. In the above equations, 𝜔 = 2𝜋𝑓 denotes the angular frequency. In the
present work, estimation of the modal parameters has been carried out in the z-domain [3,49,50].

2.5. Evaluation metrics

To evaluate the degree of similarity between the transfer functions across different CLT beams, a Frequency Response Assurance
Criterion (FRAC) can be used:

FRAC
(
𝐻𝑟𝑠, �̂�𝑟𝑠

)
=

||||∑𝜔 𝐻𝑟𝑠(𝜔)
̂
𝐻𝑟𝑠(𝜔)

||||2∑
𝜔 𝐻𝑟𝑠(𝜔)𝐻𝑟𝑠(𝜔)

∑
𝜔 �̂�𝑟𝑠(𝜔)

̂
𝐻𝑟𝑠(𝜔)

, (25)

where 𝐻𝑟𝑠(𝜔) and �̂�𝑟𝑠(𝜔) are the two transfer functions at each discrete driving angular frequency 𝜔 to be evaluated [51], and
the overline denotes the complex conjugate. Since all transfer functions chosen for the evaluation regarding their variability are
extracted from the same location across different beams, they are expected to exhibit a low degree of orthogonality.

The degree of complexity in the vibration modes of a structure can be examined using the Modal Complexity Factor (MCF).
In an ideal, undamped structure, the modes are purely imaginary, corresponding to simple harmonic motion with no energy loss.
However, in real-world structures, damping and local nonlinearities introduce complexities, making the modes inherently complex
with both real and imaginary components. Normalised to real values, the MCF yields a value between zero and one, where zero
denotes a purely real mode shape (indicating simple harmonic motion with no phase difference between structural components),
while a value of one indicates an entirely complex mode shape (reflecting significant phase differences and damping effects). The
MCF can be computed using

MCF
(
ℜ[𝝍 𝑗 ],ℑ[𝝍 𝑗 ]

)
= 1 −

([
ℜ
[
𝝍 𝑗

]⊺ ℜ [
𝝍 𝑗

]]
−
[
ℑ
[
𝝍 𝑗

]⊺ ℑ [𝝍 𝑗

]])2 + 4
(
ℜ
[
𝝍 𝑗

]⊺ ℑ [𝝍 𝑗

])2([
ℜ
[
𝝍 𝑗

]⊺ ℜ [
𝝍 𝑗

]]
+
[
ℑ
[
𝝍 𝑗

]⊺ ℑ [𝝍 𝑗

]])2 , (26)

where ℜ and ℑ denote respectively real and imaginary components of mode 𝝍 𝑗 .
Additional evaluations, such as the classical relative difference between the natural frequencies and modal damping relative to

their mean values, as well as Kernel Density Estimation (KDE) and Confidence Interval [52], have been used. These methods are
straightforward and well documented in the literature and therefore the equations are not presented here.

3. Experimental results

This section presents the experimental results and evaluates their associated variability. Data were collected from the test of 24
nominally identical CLT beams, each beam representing one lamella. Each beam was discretised using 45 reference points (Fig. 1):
22 points in the 𝑥𝑦 plane, 22 points in the 𝑥𝑧 plane, and 1 point in the 𝑦𝑧 plane. Consequently, the total number of transfer functions
is 24 × 45. Presenting all transfer functions is impractical as not all of them excite every resonance. Therefore, the focus is on the
driving transfer functions along the 𝑦 and 𝑧 axes, together with the axial transfer function along the 𝑥 axis. These transfer functions
excite all the resonances that are presented later in this section.

3.1. Transfer functions

The transversal transfer functions (along the 𝑧-axis) exhibit minimal variability in the lower frequency range (except for the
outliers), as depicted in Fig. 5. However, variability increases significantly at higher frequencies. Specifically, in the frequency
range of 600–790 Hz (the zoomed region in Fig. 5), the variability in the resonance peaks makes it challenging to differentiate
between them, whereas the peaks in the 0–400 Hz range are more distinct. Despite this increased variability, the magnitude of the
transfer functions shows minimal variation (except for the outliers), indicating a consistent dynamic response per unit force across
the beams. Furthermore, the magnitude and sharpness of the resonance peaks decrease with higher frequencies, suggesting increased
overall damping, in particular, associated with resonances at higher frequencies, Fig. 5. The overall quality of the measurements,
assessed using excitation coherence in (20), demonstrates that nearly all excitation energy is effectively translated into vibration
energy, with the exception of antiresonances, Fig. 5.

Consistent with observations from the transversal transfer functions, the lateral transfer functions (along the 𝑦-axis) also display
variability across the excitation spectrum. This variability becomes more pronounced with increasing frequency, which complicates
the differentiation between resonance peaks due to the distinct characteristics of the beams, as shown in the zoomed region of Fig. 6.
Unlike transverse FRFs, lateral FRFs exhibit increased variability in magnitude as the frequency range increases. This behaviour
indicates that lateral FRFs exhibit greater variability at higher frequencies compared to their transverse counterparts. Furthermore,
the magnitude of the transfer functions generally decreases with increasing frequency, indicating higher damping in the structure
at these frequencies.

The excitation coherence analysis confirms that a substantial portion of the excitation energy is effectively translated into
vibration energy, except for anti-resonance events, where the structure generates minimal vibration, further validating the quality
of the measurements, Fig. 6.



B. Bondsman and A. Peplow

Fig. 5. Bode plot of the driving transfer functions across 24 beams due to excitation against the 𝑧-axis (Fig. 1), including their associated excitation coherence
and envelope (in blue shade).

Fig. 6. Bode plot of the driving transfer functions across 24 beams due to excitation against the 𝑦-axis, and their associated excitation coherence and envelope
(in blue shade). The line colours are consistent with Fig. 5.
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Fig. 7. Bode plot of transfer functions across 24 beams due to excitation against the 𝑥-axis (Fig. 1), along with their associated excitation coherence and envelope
(in blue shade). The line colours are consistent with Figs. 5, and 6.

Fig. 8. From top to bottom: Mean transfer functions with their associated 95% confidence intervals and the Frequency Response Assurance Criterion (FRAC), which
encompasses the driving FRFs in the transverse (𝑧-axis), lateral (𝑦-axis), and transfer FRF axial (𝑥-axis) directions. The minimum correlations are approximately
0.94, 0.92, and 0.91, respectively.
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Fig. 9. Resonance frequencies and their associated modal complexities and modal damping: (a) Out-of-plane bending, (b) Torsional, (c) In-plane bending, and
(d) Axial modes. The outlier marker colours are consistent with Figs. 5, 6, and 7.

Consistent with the transversal transfer functions, the axial transfer functions resulting from excitation along the 𝑥-axis exhibit
shifting variability across the excitation spectrum, while maintaining minimal variability in their magnitude (see Fig. 7). Unlike
the transversal and lateral transfer functions, the axial transfer functions feature more antiresonances and local resonance peaks,
particularly noticeable in the regions flanking the resonance events. The overall coherence function demonstrates the effective
translation of excitation energy into vibration energy, with this effect being particularly evident at resonance events.

Since the transfer functions illustrated in Figs. 5, 6, and 7 exhibit variability throughout the excitation spectrum, quantifying
this variability is essential. Consequently, the mean values of the transfer functions, along with their associated confidence intervals
of 95%, were calculated. Furthermore, the FRAC was also calculated for these transfer functions in various directions, as defined
in (25). The results, shown in Fig. 8, reveal smaller confidence regions in the lower frequency spectrum, whereas these regions
grow as the frequency range increases consistent with the previously observed behaviour of the transfer functions. This behaviour
is particularly evident for the transverse and lateral FRFs. In contrast, the FRAC values range from 0.9 to 1, with the majority close
to 1. This suggests minimal variability in the transfer functions across different beams.

3.2. Resonance frequencies and modal damping

The transfer functions discussed in the previous section exhibit a shift across the excitation spectrum, which affects the resonance
events. Therefore, it is crucial to quantify to what extent this shift influences the resonance characteristics. A distinction is made
among out-of-plane bending, torsional, in-plane bending, and axial modes. Visualisation of these modes can be found in Fig. A.1,
see Appendix. Specifically, out-of-plane bending and torsional resonances and their associated data were obtained from transverse
excitation against the 𝑧 axis. In-plane bending resonances were derived from lateral excitation against the 𝑦-axis, while axial
resonances were extracted from excitation along the 𝑥-axis, Fig. 1. In the modal estimation, the frequency spectrum was constrained
between 0−1600 to extract all the modes of interest. A similar classification is applied to the modal damping of these resonances.
Furthermore, the complexity of the resonance modes was assessed for all modes using the MCF defined in (26).

The results in the upper subplots of Fig. 9 indicate minimal overall modal complexity for lower-order modes (Modes 1–4).
For higher-order modes (Modes 5–6), the modal complexities exhibit significant variability, particularly among the fifth torsional
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Fig. 10. Percentage relative variation in resonance frequencies (top subplots) [32] and corresponding modal damping (bottom subplots) for different modes: (a)
Out-of-plane bending, (b) Torsional, (c) In-plane bending, and (d) Axial modes. The outlier marker colours are consistent with Figs. 5, 6, 7, and 9.

and in-plane bending modes. The sixth mode, in particular, shows high variability across all out-of-plane bending, torsional, and
in-plane bending modes. The axial mode, on the other hand, displays a consistent modal complexity of nearly zero. Resonances
exhibit increasing variability with higher-order modes, with torsional modes showing the highest overall variability, as illustrated
in the mid-subplots of Fig. 9. Additionally, out-of-plane bending modes resonate at frequencies lower than those of torsional and
in-plane bending modes. Despite these differences, the frequency spacing between modes appears relatively uniform. The percentage
modal damping values reveal different characteristics and varying variability between the modes, as shown in the lower subplots
of Fig. 9. On average, the mean modal damping value of the torsional modes is approximately 1%, while the out-of-plane and
in-plane bending modes exhibit mean modal damping values of 0.76% and 0.62%, respectively. The torsional modal damping also
shows a minimal number of outliers (indicated by markers). The variability in modal damping increases among higher-order modes
compared to lower-order modes.

Insights into the relative variability in the resonances and their associated modal damping, with respect to their mean values,
reveal different trends in different modes. For resonances, a consistent pattern of decreased variability is observed with an increase
in the number of modes for the out-of-plane and in-plane bending modes. However, no such trend was observed among the torsional
modes. In general, the variability in the resonances ranges mostly between ±5−10% with respect to their mean values, except for
a few outliers (see the top subplots in Fig. 10). The axial mode, on the other hand, displays a variability consistent with the first
modes of vibration, that is, approximately ±7%. In contrast, modal damping values exhibit significantly higher variability in all
modes. The most substantial variability is observed in the higher-order torsional and in-plane bending modes, with values reaching
up to ±10−45%, except for outliers. Unlike the resonances, no consistent pattern of decreasing variability is identified for higher-
order modes. On average, the variability in the modal damping is significantly higher than the relative variability in the natural
frequencies. In addition, a higher number of outliers was identified for the modal damping values compared to the resonances, as
shown at the bottom of Fig. 10.

Fitting a KDE function across the beams provides further insight into the variability in the resonances and their associated modal
damping. The KDE estimation in Fig. 11 depicts the frequency and damping regions where resonance events and their related
damping are likely to occur. The KDE estimation indicates the highest probability density among the bending modes compared
to the torsional and axial modes, as shown in Fig. 11. The probability density decreases with an increasing frequency range. The
KDE modal damping indicates a decrease in modal damping and their associated probability density with an increasing frequency
range. The highest modal damping is observed among the torsional modes, whereas the lowest modal damping is observed among
the in-plane bending and axial modes. The KDE estimation in Fig. 11 further highlights the more frequent occurrence coincidence
of the out-of-plane and in-plane bending resonances within the lower frequency range. Variability across the frequency range also
reveals wider variability ranges associated with torsional and axial modes compared to bending modes.
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Fig. 11. Kernel Density Estimate (KDE) of the resonance distributions and their associated modal damping. The data includes six out-of-plane bending modes,
six in-plane bending modes, six torsional modes, and one axial mode.

4. Conclusions

In this study, a detailed analysis of the variability in the modal characteristics of Cross-Laminated Timber (CLT) was performed.
Experimental Modal Analysis (EMA) was performed on 24 beam-like CLT substructures, which were sawn from a larger CLT slab,
under free-free boundary conditions to capture their vibration characteristics. The substructures were excited in the transverse,
lateral, and axial directions to comprehensively assess their modal behaviour. The study focused on distinguishing the dynamic
characteristics associated with out-of-plane bending, torsional, in-plane bending, and axial modes, as well as their respective modal
parameters.

Analysis of driving transverse and axial transfer functions revealed a variation shift across the frequency spectrum while
maintaining relatively small variability in resonance magnitudes. In contrast, lateral transfer functions exhibited not only a
variability shift across the higher frequency spectrum but also an increased variability in magnitude with increasing frequency.

To quantify the variability in the amplitude of the transfer functions across the principal axes, the 95% confidence intervals
were calculated, indicating that the variability in magnitude increases with increasing frequency among the transverse and lateral
transfer functions. The Frequency Response Assurance Criterion (FRAC) showed variability in the transfer functions ranging between
0.9 and 1, with higher frequencies generally associated with increased variability.

The resonances and their associated modal damping indicate that the torsional modes exhibit higher variability and modal
damping values compared to the other modes. A slight increase in the modal damping values was observed for the out-of-plane
and in-plane bending modes. In contrast, a slight decrease in modal damping values was observed for torsional modes. Relative
variability in the resonances with respect to their mean values indicated a variability between plus or minus 5−10% (except for
outliers), with the torsional modes showing a higher overall variability. The analysis also showed a decrease in the variability with
an increase in the number of modes among the out-of-plane bending and in-plane bending modes. In contrast, the relative variability
of the modal damping values relative to their mean values showed significant variability between the modes, ranging between plus
or minus 10−45% (except for outliers).

The Kernel Density Estimate (KDE) of the resonances confirmed a trend of increased variability with higher frequency ranges,
with the highest variability observed in the torsional modes. Similarly, KDE analysis of modal damping confirmed that the torsional
modes exhibit higher modal damping.

In conclusion, torsional modes were identified as having the highest variability in both resonance frequencies and modal
damping, underscoring their sensitivity to changes in the structural characteristics of CLT. This finding highlights the importance
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Fig. A.1. Illustration of six Out-of-plane bending modes, six torsional modes, six in-plane modes, and one axial mode. The colour map represents the modal
displacement.
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Fig. A.1. (continued).

of carefully considering torsional modes in the design and application of CLT structures, particularly where dynamic performance
is critical.

Future research should explore the analysis of time-domain signals and investigate the effects of various types of excitation and
averaging methods on the modal characteristics of CLT. Furthermore, examining the variability in the modal characteristics of tall
CLT buildings subjected to stochastic excitations would provide further insights into the dynamic behaviour of CLT structures. This
research will contribute to a deeper understanding of the dynamic performance of CLT and support advances in the design, safety,
and optimisation of CLT structures.

CRediT authorship contribution statement

Benjamin Bondsman: Writing – review & editing, Writing – original draft, Visualization, Validation, Software, Resources,
Methodology, Investigation, Formal analysis, Data curation, Conceptualization. Andrew Peplow: Writing – review & editing,
Validation, Conceptualization.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgements

Tested materials were provided by Södra. The production of this article received no financial support.

Appendix

See Fig. A.1.



B. Bondsman and A. Peplow

Data availability

Data will be made available on request.

References

[1] James W. Cooley, John W. Tukey, An algorithm for the machine calculation of complex Fourier series, Math. Comp. 19 (90) (1965) 297–301.
[2] C.Y. Shih, Y.G. Tsuei, R.J. Allemang, D.L. Brown, Complex mode indication function and its applications to spatial domain parameter estimation, Mech.

Syst. Signal Process. 2 (4) (1988) 367–377.
[3] Alessandro Fasana, Modal parameters estimation in the Z-domain, Mech. Syst. Signal Process. 23 (1) (2009) 217–225.
[4] Mahmoud El-Kafafy, Bart Peeters, Theo Geluk, Patrick Guillaume, The MLMM modal parameter estimation method: A new feature to maximize modal

model robustness, Mech. Syst. Signal Process. 120 (2019) 465–485.
[5] Adel Younis, Ambrose Dodoo, Cross-laminated timber for building construction: A life-cycle-assessment overview, J. Build. Eng. 52 (2022) 104482.
[6] Angeliki Kylili, Paris A. Fokaides, Policy trends for the sustainability assessment of construction materials: A review, Sustain. Cities Soc. 35 (2017) 280–288.
[7] Guillaume Habert, Sabbie A Miller, Vanderley M John, John L Provis, Aurélie Favier, Arpad Horvath, Karen L Scrivener, Environmental impacts and

decarbonization strategies in the cement and concrete industries, Nat. Rev. Earth Environ. 1 (11) (2020) 559–573.
[8] Reinhard Brandner, Georg Flatscher, Andreas Ringhofer, Gerhard Schickhofer, Alexandra Thiel, Cross laminated timber (CLT): Overview and development,

Eur. J. Wood Wood Prod. 74 (2016) 331–351.
[9] Reinhard Brandner, Production and technology of cross laminated timber (CLT): A state-of-the-art report, in: Focus Solid Timber Solutions-European

Conference on Cross Laminated Timber, CLT, University of Bath, 2013, pp. 3–36.
[10] Xiaofeng Sun, Minjuan He, Zheng Li, Novel engineered wood and bamboo composites for structural applications: State-of-art of manufacturing technology

and mechanical performance evaluation, Constr. Build. Mater. 249 (2020) 118751.
[11] Erol Karacabeyli, B. Douglas, CLT Handbook, US ed., FPInnovations and Binational Softwood Lumber Council, Point-Claire, Quebec, 2013.
[12] Benjamin Bondsman, Andrew Peplow, Inverse parameter identification and model updating for cross-laminated timber substructures, J. Build. Eng. 95

(2024) 110209.
[13] Forest Products Laboratory (US), Wood Handbook: Wood as an Engineering Material, vol. Number 72, The Laboratory, 1987.
[14] David W. Green, Jerrold E. Winandy, David E. Kretschmann, Mechanical properties of wood, in: Wood Handbook: Wood As an Engineering Material,

General technical report FPL; GTR-113, vol. 113, USDA Forest Service, Forest Products Laboratory, 1999, Madison, WI, 1999, pp. 4.1–4.45.
[15] Charles C. Gerhards, Effect of moisture content and temperature on the mechanical properties of wood: An analysis of immediate effects, Wood Fiber Sci.

(1982) 4–36.
[16] Vanessa Baño, Francisco Arriaga, Manuel Guaita, Determination of the influence of size and position of knots on load capacity and stress distribution in

timber beams of pinus sylvestris using finite element model, Biosyst. Eng. 114 (3) (2013) 214–222.
[17] Elke Mergny, Raquel Mateo, Miguel Esteban, Thierry Descamps, Pierre Latteur, Influence of cracks on the stiffness of timber structural elements, in:

Proceedings of the World Conference on Timber Engineering, Vienna, Austria, 2016.
[18] Sigurdur Ormarsson, Numerical Analysis of Moisture-Related Distortion in Sawn Timber (Ph.D. thesis), Chalmers University of Technology, Dep. of Structural

Mech, 1999.
[19] René Steiger, Arne Gülzow, Daniel Gsell, Non destructive evaluation of elastic material properties of crosslaminated timber (CLT), in: Conference COST

E, vol. 53, Citeseer, 2008, pp. 29–30.
[20] M. Kawrza, T. Furtmüller, C. Adam, R. Maderebner, Experimental modal analysis of a cross-laminated timber slab, Mater. Today: Proc. 62 (2022) 2611–2616.
[21] Adam Faircloth, Loic Brancheriau, Hassan Karampour, Stephen So, Henri Bailleres, Chandan Kumar, Experimental modal analysis of appropriate boundary

conditions for the evaluation of cross-laminated timber panels for an in-line approach, For. Prod. J. 71 (2) (2021) 161–170.
[22] Michael Kawrza, Thomas Furtmüller, Christoph Adam, Experimental and numerical modal analysis of a cross laminated timber floor system in different

construction states, Constr. Build. Mater. 344 (2022) 128032.
[23] Thomas Reynolds, Daniele Casagrande, Roberto Tomasi, Comparison of multi-storey cross-laminated timber and timber frame buildings by in situ modal

analysis, Constr. Build. Mater. 102 (2016) 1009–1017.
[24] Blaž Kurent, Boštjan Brank, Wai Kei Ao, Model updating of seven-storey cross-laminated timber building designed on frequency-response-functions-based

modal testing, Struct. Infrastruct. Eng. 19 (2) (2023) 178–196.
[25] Angelo Aloisio, Dag Pasca, Roberto Tomasi, Massimo Fragiacomo, Dynamic identification and model updating of an eight-storey CLT building, Eng. Struct.

213 (2020) 110593.
[26] Blaž Kurent, Wai Kei Ao, Aleksandar Pavic, Fernando Pérez, Boštjan Brank, Modal testing and finite element model updating of full-scale hybrid

timber-concrete building, Eng. Struct. 289 (2023) 116250.
[27] Khai Quang Mai, Aron Park, Khoa Tan Nguyen, Kihak Lee, Full-scale static and dynamic experiments of hybrid CLT–concrete composite floor, Constr.

Build. Mater. 170 (2018) 55–65.
[28] Ebenezer Ussher, Kaveh Arjomandi, Jan Weckendorf, Ian Smith, Predicting effects of design variables on modal responses of CLT floors, in: Structures,

vol. 11, Elsevier, 2017, pp. 40–48.
[29] Fredrik Ljunggren, Innovative solutions to improved sound insulation of CLT floors, Dev. Built Environ. 13 (2023) 100117.
[30] Angelo Aloisio, Dag Pasquale Pasca, Blaž Kurent, Roberto Tomasi, Long-term continuous dynamic monitoring of an eight-story CLT building, Mech. Syst.

Signal Process. 224 (2025) 112094.
[31] SIS, Structural Timber – Strength Classes, Standard SS-EN 338:2016, Swedish Institute for Standards, Stockholm, Sweden, 2016.
[32] Benjamin Bondsman, Ola Flodén, Henrik Danielsson, Peter Persson, Erik Serrano, Modal analysis of CLT beams: Measurements and predictive simulations,

in: Alphose Zingoni (Ed.), Current Perspectives and New Directions in Mechanics, Modelling and Design of Structural Systems, 2022, pp. 56–62.
[33] Anders Brandt, Noise and Vibration Analysis: Signal Analysis and Experimental Procedures, John Wiley & Sons, 2023.
[34] Daniel C. Kammer, Sensor placement for on-orbit modal identification and correlation of large space structures, J. Guid. Control Dyn. 14 (2) (1991)

251–259.
[35] Andreas Linderholt, Thomas Abrahamsson, Optimising the informativeness of test data used for computational model updating, Mech. Syst. Signal Process.

19 (4) (2005) 736–750.
[36] Randall J. Allemang, A correlation coefficient for modal vector analysis, in: Proc. of the 1st IMAC, 1982, pp. 110–116.
[37] Claude E. Shannon, Communication in the presence of noise, Proc. IRE 37 (1) (1949) 10–21.
[38] Thomas G. Carne, D. Todd Griffith, Miguel E. Casias, Support conditions for experimental modal analysis, Sound Vib. 41 (6) (2007) 10–16.
[39] Brüel, Kjær, Impact Hammers — Types 8206, 8206-001, 8206-002 and 8206-003, Product Data BP 2078 – 12, Brüel & Kjær Sound & Vibration Measurement,

Nærum, Denmark, 2005.
[40] Brüel, Kjær, Piezoelectric Charge Accelerometer Types 4500-A, 4501-A, and 4501-A-001, Product Data BP1427 – 15, Brüel & Kjær Sound & Vibration

Measurement, Nærum, Denmark, 2018.



B. Bondsman and A. Peplow

[41] Brüel, Kjær, LAN-XI Data Acquisition Hardware: Frames, Modules and Front Panels, Product Data BP 2215 – 38, Brüel & Kjær Sound & Vibration
Measurement, Nærum, Denmark, 2022.

[42] Randall Allemang, Peter Avitabile, Handbook of Experimental Structural Dynamics, Springer Nature, 2022.
[43] James W. Cooley, John W. Tukey, On the origin and publication of the FFT paper—A citation-classic commentary on an algorithm for the machine

calculation of complex Fourier-series by cooley, JW, and tukey, JW, Curr. Contents/ Phys. Chem. Earth Sci. 51–52 (1993) 8–9.
[44] Roy R. Craig Jr., Andrew J. Kurdila, Fundamentals of Structural Dynamics, John Wiley & Sons, 2006.
[45] N. Thrane, The Discrete Fourier Transform and Fft Analyzers, Technical Review No. 1, Bruel & Kjaer, 1979.
[46] Alan V. Oppenheim, Discrete-time Signal Processing, Pearson Education India, 1999.
[47] John G. Proakis, Digital Signal Processing: Principles, Algorithms, and Applications, 4/E, Pearson Education India, 2007.
[48] Randall J. Allemang, et al., Vibrations: Experimental Modal Analysis, Structural Dynamics Research Laboratory, Department of Mechanical, Industrial and

Nuclear Engineering, University of Cincinnati, 1999.
[49] Brüel, Kjær, BK Connect Structural Dynamics: Modal Analysis Type 8420, Modal Analysis (advanced) Type 8420-A and Geometry Type 8410, Product

Data BP 1523 – 16, Brüel & Kjær Sound & Vibration Measurement, Nærum, Denmark, 2021.
[50] Mark H. Richardson, David L. Formenti, Parameter estimation from frequency response measurements using rational fraction polynomials, in: Proceedings

of the 1st International Modal Analysis Conference, vol. 1, Citeseer, 1982, pp. 167–186.
[51] Ward Heylen, Stefan Lammens, FRAC: A consistent way of comparing frequency response functions, in: Proceedings of the Conference on Identification

in Engineering Systems, 1996, pp. 48–57.
[52] Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy, David Cournapeau, Evgeni Burovski, Pearu Peterson, Warren Weckesser,

Jonathan Bright, Stéfan J. van der Walt, Matthew Brett, Joshua Wilson, K. Jarrod Millman, Nikolay Mayorov, Andrew R.J. Nelson, Eric Jones, Robert
Kern, Eric Larson, C J Carey, İlhan Polat, Yu Feng, Eric W. Moore, Jake VanderPlas, Denis Laxalde, Josef Perktold, Robert Cimrman, Ian Henriksen, E.A.
Quintero, Charles R. Harris, Anne M. Archibald, Antônio H. Ribeiro, Fabian Pedregosa, Paul van Mulbregt, SciPy 1.0 Contributors, SciPy 1.0: Fundamental
algorithms for scientific computing in python, Nature Methods 17 (2020) 261–272.







Contents lists available at ScienceDirect

Journal of Building Engineering

journal homepage: www.elsevier.com/locate/jobe

Full length article

Inverse parameter identification andmodel updating for
Cross-laminated Timber substructures
Benjamin Bondsman a,∗, Andrew Peplow b

a Lund University, John Ericssons väg 1, SE-223 63, Lund, Kingdom of Sweden
b Sweco, Malmö Acoustics, Drottningstorget 14, SE-211 25, Malmö, Kingdom of Sweden

A R T I C L E I N F O

Keywords:

Model updating
Single-Objective Optimisation
Experimental Modal Analysis
Cross-laminated Timber
Mechanical properties

A B S T R A C T

Finite Element (FE) model updating is crucial for identifying key parameters in structural design
and improving predictive accuracy. Despite extensive research on advanced FE procedures
approved for user applications, persistent disparities remain in real-world scenarios, especially
for complex materials like wood. Capturing accurate mechanical characteristics with traditional
models poses challenges in sustainability projects. This study introduces a derivative-free model
updating procedure using a Single-Objective Optimisation (SOO) incorporating observed and
predicted natural frequencies and vibration modes. The objective function optimises tuning
parameters to minimise discrepancies between predicted and observed outcomes. The focus
is on Cross-laminated Timber (CLT), a composite wooden structure gaining traction as a
sustainable alternative to materials like reinforced concrete and steel. However, the mechanical
properties of CLT can vary due to inherent variability in wood’s mechanical characteristics.
This research identifies sensitive mechanical properties — longitudinal Young’s modulus,
internal shear moduli, and rolling shear modulus of CLT — using a model updating procedure
based on a comprehensive set of data from Experimental Modal Analysis (EMA). The study
provides mathematical algebraic derivations of the updating procedure and a step-by-step
implementation algorithm to facilitate practical application in structural engineering.

1. Introduction

In the field of structural engineering and analysis, accurate modelling and representation of structures are essential to ensure
the safety, reliability, and optimal use of materials. A precise computer representation of structures allows for the simulation of
scenarios that can be challenging to measure in reality. For example, simulation of multistorey buildings under motion-induced
wind loads with different excitation patterns, investigation of long-span bridges under varying traffic load patterns, analysis of
the dynamic response of an aircraft during landings in adverse weather conditions, or simulation of the dynamic behaviour of
radioactive components within nuclear reactors. These computer simulations help engineers uncover potential weaknesses and
vulnerabilities in the design of structures subjected to dynamic loading throughout their useful life. Despite the availability of
advanced Finite Element (FE) modelling procedures [1], real-world applications frequently expose disparities between predicted
and observed results, primarily attributable to inherent modelling assumptions [2]. FE representation errors can be divided into
the following categories: (i) idealisation errors, (ii) discretisation errors, and (iii) incorrect material properties. Idealisation errors
comprise the representation of physical structures using engineering structural elements (e.g., beams, plates, or shells). In contrast,
the discretisation errors include using FEs and their associated order of approximation. And errors stemming from incorrect material
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properties that encompass incorrect assumptions regarding material strength or distribution of mass. Although measurements are
often considered as references in model updating procedures, they can also contain uncertainties due to environmental noise,
boundary conditions, excitation variability, etc. [3,4]. A detailed description of these errors can be found in the work of Mottershead,
Link, and Friswell, [2].

In the case of complex materials such as wood, whose mechanical behaviour and properties are strongly linked to growing
conditions, the approximation of its mechanical properties often fails to yield accurate assumptions. The complexity of wood
behaviour underlines the challenges faced in accurately representing its mechanical characteristics within the confines of traditional
modelling approaches. Therefore, updating an FE representation model based on observed experimental data becomes imperative
to attain an accurate representation model. Mitigating the discord between the predicted and observed results can be accomplished
by formulating a residual term that encapsulates the discrepancy between the predicted and observed results. Subsequently,
adjusting the modelling assumptions (or tuning parameters) to mitigate the residual term to a satisfactory level, [5]. Consequently,
computational procedures have been developed to update the tuning parameters on the basis of observed data. In particular, the
observed data from Experimental Modal Analysis (EMA) have found broad applications as a target to identify optimal tuning
parameters, [5,6]. The model updating procedure has become important in the identification of unknown model parameters,
primarily due to a lack of existing knowledge or a variation in the mechanical properties of structures over time. The unknown
model parameters are often associated with new or complex materials such as wood. The variation in material properties over time
includes changes caused by environmental and temperature fluctuations [7–9], cyclic fatigue, and damage [10–12].

Several procedures have been proposed to identify the mechanical properties of materials. In 1978, Baruch and Bar-Itzhack
introduced a direct model updating approach by minimising the weighted norm of the difference between observed and predicted
modes, subject to orthogonality to the mass matrix, [13]. In their method, they focused on updating the stiffness matrix while
assuming the correctness of the mass matrix. Baruch extended this approach by proposing a similar model updating procedure
that specifically targeted the stiffness matrix. This was achieved by minimising the weighted norm of the difference between
observed and predicted stiffness, using Lagrange multipliers, [14]. The latter approach of Baruch was further developed by
Berman, who introduced a direct method to update the mass matrix using Lagrange multipliers, [15]. Chen et al. suggested the
simultaneous updating of the mass and stiffness matrices, [16]. In 1983, Berman and Nagy combined the sequential updating of
the stiffness and mass matrices with mode orthogonality constraints to introduce a complete model-updating procedure [17]. The
model updating techniques described in [13–15] constitute a comprehensive set of model updating techniques, encompassing both
stiffness and mass updating while adhering to orthogonality constraints of the modes. Model updating methods can be categorised
into Sensitivity-based model updating [2,18,19], Bayesian model updating [20], Optimisation-based model updating [21–23], FE
model correlation [24,25], Statistical model updating [26,27], and Sequential model updating [28,29]. Other researchers have also
proposed the optimisation of the informativeness of test data for model updating, e.g. the work by Linderholt and Abrahamsson [30].
For further reading on the development of model update methods, the reader is referred to [5,31–34] and the state-of-the-art review
by Sehgal and Kumar, [35].

In this work, the main focus is on the optimisation-based model updating of Cross-laminated Timber (CLT) substructures to
identify unknown sensitive mechanical properties. CLT, as a sustainable and versatile alternative to conventional building materials
such as reinforced concrete and steel, has gained prominence in modern construction over recent decades. The composition of CLT
involves a unique arrangement of juxtaposed layers of lumber boards, positioned crosswise at an angle of 90◦ between one layer and
the adjacent ones. More information on the development of CLT can be found in [36]. Previous studies on updating the CLT model
have focused primarily on multi-storey CLT buildings, using lower frequency modes of vibration, as seen in [22,37–39]. However,
because of inherent disparities in the nature of wood, individual wooden structures exhibit different properties. Consequently,
obtaining statistical data, particularly from numerous nominally identical CLT substructures, is imperative for a comprehensive
understanding of the mechanical properties of CLT. Hence, this paper introduces a numerical computational framework for model
updating, employing an optimisation-based approach, which utilises EMA results obtained from multiple nominally identical CLT
substructures. The optimisation problem is mathematically formulated as a Single-Objective Optimisation (SOO) comprising two
nested objectives related to natural frequencies and vibration modes. The SOO is subsequently minimised using the derivative-free
simplex method by Nelder and Mead [40]. The key reason for using the derivative-free simplex method lies in its independence
from the gradient of the objective function, which is often approximated using numerical differentiation (e.g., Finite Difference
Method (FDM)) [41]. Thus, the derivative-based optimisation algorithms require computation of the Jacobian or Hessian, which can
be computationally intensive. A study by Ozaki et al. [42], comparing different optimisation methods, indicates that the simplex
method outperforms several popular existing optimisation methods such as Random Search, Bayesian Optimisation, Coordinate-
search method and Covariance Matrix adaptation evolution strategy. Furthermore, the simplex method has been successfully applied
to a wide range of problems; for example, see [43] and references therein. Moreover, the simplex method does not necessitate any
bounds for tuning parameters, making it particularly suitable for updating the CLT model where such bounds may be unknown. By
employing the simplex method, we avoid the approximations inherent in computing gradients, Jacobians, Hessians, and associated
regularisation terms, and tuning parameter boundaries.

This work focuses primarily on updating the FE model to determine the mechanical properties of CLT and quantify their
variability. The presented model updating procedure effectively reduces discrepancies between predicted and observed results while
identifying pertinent tuning parameters. The findings of this study provide crucial insight for design engineers and researchers in
the field of timber engineering.

The structure of the rest of this article is structured as follows. Section 2 presents a comprehensive derivation of the model
generation and updating framework. Section 3 details the model updating of CLT substructures using an extensive collection of
observed data from the EMA as a reference, and conclusions are drawn in Section 4.
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2. Model generation and updating framework

This section offers the necessary definitions and mathematical algebraic derivations. A residual function is introduced to construct
an objective function which is subsequently minimised to quantify and address the disparity between the observed (measurements)
and predicted (FE) outcomes. The analogy behind model updating comprises the following key steps: (i) selecting several observed
outputs and their corresponding predicted counterparts, (ii) comparing these outputs and determining the distance (in some cases
relative distance) between them, and (iii) updating the sensitive tuning parameters to minimise the distance between the observed
and predicted outcomes. The model outputs often comprise natural frequencies and modes in structural dynamics, whilst the tuning
parameters often comprise stiffness, mass, and geometrical parameters to be updated. Therefore, the tuning parameters are updated
until the distance between the output quantities is minimised to a satisfied criterion, [2].

2.1. Residual formulation

To compute the predicted outputs, it is necessary to discretise the physical structure within the FE framework. The undamped
equations of motion for the corresponding FE model denoted as (𝑘) at iteration 𝑘, can be expressed as:

𝐌(𝑘)�̈�(𝑘) +𝐊(𝑘)𝐔(𝑘) = 𝐟 (𝑘), (1)

where 𝐌(𝑘) and 𝐊(𝑘) are respectively lumped mass matrix and positive semi-definite stiffness matrix. The time-dependent nodal
accelerations, displacements, and external forces are denoted �̈�(𝑘), 𝐔(𝑘), and 𝐟 (𝑘), respectively. The superscript 𝑘 signifies the
quantities at 𝑘th iteration as the model gets updated. The predicted outputs employed in the model updating procedure can be
obtained from an eigenvalue analysis as:(

𝐊(𝑘) − 𝜔2(𝑘)
𝑗 𝐌(𝑘)

)
𝝍

(𝑘)
𝑗

= 𝟎(𝑘), 𝑗 = 1, 2,… , 𝑁𝑗 , (2)

where 𝜔
(𝑘)
𝑗
is 𝑗th angular eigensolution in [rad∕s] and 𝝍

(𝑘)
𝑗
is the associated conjugate mode. The angular eigensolution’s equivalent

natural frequency in [Hz] can be determined as 𝑓 (𝑘)
𝑗

= 𝜔
(𝑘)
𝑗
∕2𝜋. The eigenmodes are all mass-normalised such that 𝝍 (𝑘)⊺

𝑗
𝐌(𝑘)𝝍 (𝑘)

𝑗
= 𝐈,

in which 𝐈 denotes unity. The total number of eigensolutions to be determined is denoted 𝑁𝑗 , which also denotes the total number
of outputs.

The predicted outputs are denoted 𝐳(𝜽), which is a function of 𝑝 model parameters 𝜽, i.e., 𝜃𝑖 ∈ {1, 2,… , 𝑝}, whilst their
corresponding observed counterparts are denoted �̃�, The discrepancy between the observed and predicted outputs can be determined
by formulating a residual term,

𝐫(𝜽)(𝑘) = �̃� − 𝐳(𝑘)(𝜽). (3)

The relationship between the residual 𝐫(𝑘)(𝜽) and the model parameters 𝜽(𝑘) is often non-linear. Studies employing classical
gradient-based optimisation have suggested linearising the residual using a truncated Taylor series, as indicated by Bartilson et al.
in their work [44]. However, it is important to note that, in the present case, such linearisation is not necessary as no valley-seeking
minimisation approach is being used. To begin the procedure of optimisation, a weighted sum-of-squared residual (WSSR) is defined
which is commonly employed in model updating and parameter estimation to determine the total discrepancy between the observed
and predicted outputs. The WSSR is subsequently minimised to reduce the distance between the observed and predicted outputs,
leading to the determination of optimal values for 𝜽(𝑘), often denoted as 𝜽⋆. The model outputs comprise, in the present case, natural
frequencies and modes. Therefore, the residual term can be decomposed into a residual term associated with natural frequencies
𝐫(𝑘)
𝑓
and a residual term associated with the natural modes 𝐫(𝑘)𝜓 . Using a concatenation of 𝐫(𝑘)

𝑓
and 𝐫(𝑘)𝜓 . Hence, the total residual can

be defined and used to compute the WSSR as:


(𝑘) = 𝐫⊺(𝑘)𝐖(𝑘)𝐫(𝑘) =

[
𝐫⊺

(𝑘)

𝑓
𝐫⊺

(𝑘)
𝜓

][𝐖(𝑘)
𝑓

𝟎(𝑘)

𝟎(𝑘) 𝐖(𝑘)
𝜓

]⎡⎢⎢⎣
𝐫(𝑘)
𝑓

𝐫(𝑘)𝜓

⎤⎥⎥⎦ , (4)

where 𝐖(𝑘) is a symmetric positive semi-definite matrix reflecting the uncertainty in the residual terms concerning the tuning
parameters 𝜽, and contains the residual weighting of the natural frequencies and their conjugate modes, i.e., 𝐖(𝑘)

𝑓
and 𝐖(𝑘)

𝜓 . In
the present work, a simple choice of 𝐖 is considered using the Tikhonov regularisation 𝐖 = 𝐈, [19,44]. Other choices of 𝐖 suitable
for gradient-based optimisation can comprise the inverse of the observed and predicted parameter covariance matrices, as elaborated
in [45–48].

The matrix multiplication in (4) results in two WSSR terms as follows:


(𝑘)
𝑓

= 𝐫⊺
(𝑘)

𝑓
𝐖(𝑘)

𝑓
𝐫(𝑘)
𝑓

, (5a)


(𝑘)
𝜓 = 𝐫⊺

(𝑘)
𝜓 𝐖(𝑘)

𝜓 𝐫(𝑘)𝜓 , (5b)

where 
(𝑘)
𝑓
and 

(𝑘)
𝜓 refer to the WSSR terms associated with the natural frequencies and natural modes, respectively.

The residual term associated with the natural frequencies can be formulated using a relative difference between the observed
outputs �̃� and the predicted outputs 𝐳(𝑘)(𝜃),

𝐫(𝑘)
𝑓

=
(
𝒛
(𝑘)
𝑓
(𝜽) ⋅ 𝐈

)−1 (|̃𝒛𝑓 − 𝒛
(𝑘)
𝑓
(𝜽)|) , (6)
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where the dot product denotes element-by-element operation. The observed and predicted undamped natural frequencies are
respectively defined as:

�̃�𝑓 =
[
𝑓1, 𝑓2,… , 𝑓𝑁𝑗

]⊺
(7a)

𝐳(𝑘)
𝑓
(𝜽) =

[
𝑓
(𝑘)
1 (𝜽), 𝑓 (𝑘)

2 (𝜽),… , 𝑓
(𝑘)
𝑁𝑗

(𝜽)
]⊺

(7b)

The components in (7) are rearranged, if necessary, using mode pairing, as described in [49]. The natural frequencies of the
vibrating substructure are assumed to be decoupled, resulting in a diagonalised form of𝐖𝑓 . Hence, the 

(𝑘)
𝑓
in (5a) can be simplified

to

 (𝑘)
𝑓

= 𝐫(𝑘)
⊺

𝑓
𝐖(𝑘)

𝑓
𝐫(𝑘)
𝑓

=
𝑁𝑗∑
𝑗=1

𝑊
(𝑘)
𝑓,𝑗𝑗

(|𝑓𝑗 − 𝑓
(𝑘)
𝑗

(𝜃)|∕𝑓 (𝑘)
𝑗

(𝜽)
)2

. (8)

The residual term associated with the natural modes can be defined as the discrepancy between the observed and predicted
modes,

𝐫(𝑘)𝜓 = �̃�𝜓 − 𝐳(𝑘)𝜓 (𝜽), (9)

where the observed and predicted mode matrices (sorted according to the pairing results) are respectively defined as:

�̃�𝜓 =
[
�̃�1, �̃�2, … , �̃�𝑁𝑗

]
, (10a)

𝐳(𝑘)𝜓 (𝜽) =
[
𝜆
(𝑘)
1 (𝜽)𝝍 (𝑘)

1 (𝜽), 𝜆
(𝑘)
2 (𝜽)𝝍 (𝑘)

2 (𝜽), … , 𝜆
(𝑘)
𝑁𝑗

(𝜽)𝝍 (𝑘)
𝑁𝑗

(𝜽)
]
. (10b)

In the expression above, the observed mode matrix �̃�𝜓 contains the 𝑗th unit-normalised modes, determined as �̃� 𝑗 = �̃� 𝑗∕
√

�̃�
⊺
𝑗
�̃� 𝑗 .

In the same manner, the predicted mode matrix 𝐳(𝑘)𝜓 (𝜽) contains the 𝑗th unit-normalised mode vector 𝝍
(𝑘)
𝑗
(𝜽) using the modal

scale factor 𝜆
(𝑘)
𝑗
(𝜽) = �̃�

⊺
𝑗
𝝍

(𝑘)
𝑗
(𝜽). The modal scaling factor reflects the difference between �̃� 𝑗 and 𝝍

(𝑘)
𝑗
(𝜽) considering a least-square

approach, [44,49].
The decoupled characteristics of the natural frequencies and their conjugate modes result in a diagonalised 𝐖(𝑘)

𝜓 , thus, the 
(𝑘)
𝜓

in (5b) can be simplified to

 (𝑘)
𝜓 = 𝐫(𝑘)⊺𝜓 𝐖(𝑘)

𝜓 𝐫(𝑘)𝜓 =
𝑁𝑗∑
𝑗=1

𝑊
(𝑘)
𝜓,𝑗𝑗

𝐫(𝑘)
⊺

𝜓,𝑗
𝐫(𝑘)
𝜓,𝑗

=
𝑁𝑗∑
𝑗=1

𝑊
(𝑘)
𝜓,𝑗𝑗

‖‖‖�̃� 𝑗 − 𝜆𝑗𝝍
(𝑘)
𝑗
(𝜽)‖‖‖22 , (11)

where the residual term associated with 𝑗th mode-pair is defined as 𝐫(𝑘)
𝜓,𝑗

= �̃�
(𝑘)
𝑗

− 𝜆
(𝑘)
𝑗
𝝍 (𝑘)(𝜽) and ‖ ‖2 denotes the 𝐿2 norm. The

crossMAC between the observed and predicted modes can be defined as:

MAC(𝑘)
(
�̃� 𝑖,𝝍

(𝑘)
𝑗
(𝜽)
)
=

|�̃�H
𝑖
𝝍

(𝑘)
𝑗
(𝜽)|2(

�̃�H
𝑖
�̃� 𝑖

) (
𝝍

(𝑘)H
𝑗

(𝜽)𝝍 (𝑘)
𝑗
(𝜽)
) , (12)

where the superscript H denotes the Hermitian transpose, [49]. Substituting (12) into (11) simplifies the expression of  (𝑘)
𝜓 in (11)

to

 (𝑘)
𝜓 = 𝐫(𝑘)⊺𝜓 𝐖(𝑘)

𝜓 𝐫(𝑘)𝜓 =
𝑁𝑗∑

𝑖,𝑗=1
𝑊

(𝑘)
𝜓,𝑗𝑗

[
1 − diag

(
MAC(𝑘)

(
�̃� 𝑖,𝝍

(𝑘)
𝑗
(𝜽)
))]

. (13)

Combining expressions (8) and (13) yields a simplified expression for WSSR in (4) as:

 (𝑘) =
𝑁𝑗∑
𝑗=1

𝑊
(𝑘)
𝑓,𝑗𝑗

(|𝑓𝑗 − 𝑓
(𝑘)
𝑗

(𝜃)|∕𝑓 (𝑘)
𝑗

(𝜽)
)2

+
𝑁𝑗∑

𝑖,𝑗=1
𝑊

(𝑘)
𝜓,𝑗𝑗

[
1 − diag

(
MAC(𝑘)

(
�̃� 𝑖,𝝍

(𝑘)
𝑗
(𝜽)
))]

. (14)

The WSSR contains all model outputs to be correlated, which subsequently will be used in the formulation of the objective
function.

2.2. Model parameterisation

The parametrisation is a crucial aspect of model updating within an FE framework. This is because the numerical model
involves a multitude of parameters that encompass geometrical definitions, material properties, and external conditions. Effective
parameterisation is essential for the success of the overall model updating process. The parametrisation must adhere to the following
criteria, as outlined in [50,51]:

1. Mitigate ill-posedness by restricting the number of tuning parameters,
2. Ensure that the parameters capture model uncertainty, and
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Fig. 1. Flowchart illustrating the sequential steps in the generation, updating, and validation of FE models in structural dynamics. The symbols �̃�, 𝐳(𝜽), (𝑘),
𝜽(𝑘), and 𝜽⋆ represent, respectively, the observed results, predicted results, FE model at iteration 𝑘, tuning parameters at iteration 𝑘, and the optimal tuning
parameters.

3. Confirm that the FE model outputs exhibit sensitivity to the chosen parameters.

Since each FE 𝑒 in the discretised model has its properties, updating 𝜽(𝑘), which can contain many parameters varying in
magnitude, can result in ill-conditioning of the objective function. Therefore each element system matrix, i.e., 𝐌𝑒 and 𝐊𝑒, shall
be modified at each iteration before summation into the global system matrices as:

𝐌(𝑘)(𝜽) =
𝑛𝑒𝑙∑
𝑒=1

𝐌(𝑘)
𝑒 (1 − 𝜹𝑚𝑒 ) = 𝐌0 −

𝑛𝑒𝑙∑
𝑒=1

𝐌(𝑘)
𝑒 𝜹𝑚𝑒 , (15a)

𝐊(𝑘)(𝜽) =
𝑛𝑒𝑙∑
𝑒=1

𝐊(𝑘)
𝑒 (1 − 𝜹𝑘𝑒 ) = 𝐊0 −

𝑛𝑒𝑙∑
𝑒=1

𝐊(𝑘)
𝑒 𝜹𝑘𝑒 , (15b)

where the system matrices 𝐌(𝑘)
0 and 𝐊(𝑘)

0 are respectively the global mass and stiffness matrices computed using the initial guess of
the parameters 𝜽0. The update of the mass and stiffness parameters is denoted 𝜹𝑚𝑒 and 𝜹𝑘𝑒 associated with FE 𝑒, respectively. In this
work, the updating process focuses exclusively on the orthotropic stiffness parameters 𝐸x, 𝐺xy = 𝐺xz, and 𝐺yz. Consequently, for
each FE, the associated modification parameters are 𝛿𝑘,1𝑒 (about 𝐸x), 𝛿

𝑘,2
𝑒 (related to 𝐺xy = 𝐺xz) and 𝛿𝑘,3𝑒 (linked to 𝐺yz). Therefore,

the overall count of the modification parameters is 𝑑 = 3 × 𝑛𝑒𝑙, where 𝑛𝑒𝑙 denotes the total number of FEs.
In some cases, the substructure system matrices contain a large number of equations, which can be computationally intensive.

To overcome computational barriers, the system matrices in (15) can be truncated using, for example, Modal Truncation (MT) [52],
or Component Mode Synthesis (CMS) approaches [53–55].

2.3. Objective function

With the expression (14), the following objective function can be formulated as a nested minimisation problem to update the FE
model. The objective is to minimise the discrepancy between the observed and predicted outcomes and the model tuning parameters
𝜽⋆,

𝜽⋆ = argmin
𝜽

⎧⎪⎨⎪⎩
𝑁𝑗∑
𝑗=1

𝑊
(𝑘)
𝑓,𝑗𝑗

(|𝑓𝑗 − 𝑓
(𝑘)
𝑗

(𝜽)|∕𝑓 (𝑘)
𝑗

(𝜽)
)2

+
𝑁𝑗∑

𝑖,𝑗=1
𝑊

(𝑘)
𝜓,𝑗𝑗

[
1 − diag

(
MAC(𝑘)

(
�̃� 𝑖,𝝍

(𝑘)
𝑗
(𝜽)
))]⎫⎪⎬⎪⎭ . (16)

In this formulation, the optimisation task involves simultaneously minimising two nested objectives: the first related to the
frequencies 𝑓 (𝑘)

𝑗
(𝜽), and the second related to the vibration modes 𝝍 (𝑘)

𝑗
(𝜽). The minimisation mechanism seeks to identify the optimal

tuning parameters of 𝜽 by simultaneously minimising both nested objectives, which results in a Single-objective optimisation (SOO)
problem, [56,57]. Given the unknown upper and lower limits of the model parameters 𝜽, the problem inherently takes the form of
an unconstrained minimisation problem.

2.4. Parameter identification and model validation

To identify the optimal tuning parameters discussed in Section 2.2, the gradient-free simplex method by Nelder and Mead [40]
can be used to minimise the objective function in (16). Widely recognised for its robustness and efficacy, especially in handling
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Algorithm 1 Model updating, parameter identification and validation procedure.

1: Initialise: 𝐌0,𝐊0, �̃�𝑓 , �̃�𝜓 ,𝐖
(0)
𝑓

,𝐖(0)
𝜓 ,𝜽0

2: while ‖𝜽(𝑘) − 𝜽(𝑘−1)‖ < 1 × 10−2 do
3: Compute predicted outputs 𝐳(𝑘)

𝑓
(𝜽), 𝐳(𝑘)𝜓 (𝜽), in Eqs. (2), (7b), and (10b)

4: Compute nested objectives  (𝑘)
𝑓

and  (𝑘)
𝜓 , in Eqs. (8) and (13)

5: Compute the objective function  (𝑘), in Eq. (14)
6: Minimise the objective function argmin

𝜽

{ (𝑘)} and determine 𝜽(𝑘), in Eq. (16)

7: if ‖𝜽(𝑘) − 𝜽(𝑘−1)‖ < 1 × 10−2 then
8: 𝜽⋆ = 𝜽(𝑘)

9: break

10: else

11: Update 𝜽(𝑘−1) with 𝜽(𝑘)

12: Update 𝐌(𝑘)(𝜽) and 𝐊(𝑘)(𝜽), in Eqs. (15a) and (15b)
13: end if

14: end while

15: Output: Optimal tuning parameters 𝜽⋆

16: Validation: Validate the model using 𝜽⋆, in Eqs. (17) and (18)

objective functions with noise or discontinuities while avoiding local minima, this method proves advantageous in the quest for
global optima amid challenges posed by multiple local minima. The simplex method is well documented in the literature and, while
implementation details are not provided here, the readers are referred to [40,58] for comprehensive information. For a detailed
understanding of the parameter identification process, the reader can refer to the step-by-step procedure outlined in Algorithm 1.

Once the optimal parameters 𝜽⋆ are identified, a validation against observed data can be performed to ensure the correctness
of the predicted optimal parameters. To achieve this, the expression in (14) can be used to assess the relative difference between
the predicted and observed natural frequencies, as well as the correlation MAC values between the predicted and observed modes.
The relative frequency difference between the natural frequencies can be quantified using the following.

Relative frequency dif ference =
|𝑓𝑗 − 𝑓𝑗 (𝜽⋆)|

𝑓𝑗 (𝜽⋆)
, 𝑗 = 1, 2,… , 𝑁𝑗 , (17)

where 𝑓𝑗 and 𝑓𝑗 (𝜽⋆) denote respectively natural frequency components of the observed and predicted outcomes, and 𝑁𝑗 is the total
number of natural frequencies to be compared. The predicted natural frequencies are evaluated using the optimal set of model
parameters, namely 𝜃⋆

𝑗
∈ {1, 2,… , 𝑝}, in which 𝑝 denotes the total number of tuning parameters.

The natural modes can be compared using a MAC to determine their associated correlation,

MAC
(
�̃� 𝑖,𝝍 𝑗 (𝜽⋆)

)
=

|�̃�H
𝑖
𝝍 𝑗 (𝜽⋆)|2(

�̃�H
𝑖
�̃� 𝑖

) (
𝝍H

𝑗
(𝜽⋆)𝝍 𝑗 (𝜽⋆)

) , 𝑖, 𝑗 = 1, 2,… , 𝑁𝑗 , (18)

where �̃� 𝑖 and 𝝍 𝑗 (𝜽⋆) denote the observed and predicted modes, respectively, and 𝑁𝑗 is the total number of modes to be compared. It
is noted that the predicted modes are evaluated using the optimal set of model parameters, namely 𝜃⋆

𝑗
∈ {1, 2,… , 𝑝}. The diagonal

terms of (18) represent the degree of correlation between corresponding predicted and observed modes, whilst the off-diagonal
terms represent the correlation between non-corresponding modes.

The procedure for model updating from the physical structure to a validated FE model is illustrated in the flowchart presented
in Fig. 1.

3. Model updating of Cross-laminated Timber

The process of FE model updating for CLT substructures involves a series of essential steps. These include: (i) collecting observed
data through EMA, (ii) creating FE models, (iii) formulating an objective function, and (iv) minimising the objective function to
identify the key tuning parameters. The effectiveness of model updating heavily relies on the quality of observed data, emphasising
the importance of having a sufficient number of data points, especially related to natural modes and their resonances. With a
well-defined objective function and high-quality observed data, the model updating can use the simplex minimisation algorithm to
identify the tuning parameters.

In subsequent sections, we will apply the framework introduced in Section 2 to multiple CLT substructures, aiming to identify
critical stiffness parameters such as the axial Young’s modulus (𝐸x), shear modulus (𝐺xz) and rolling shear modulus (𝐺yz). The
vibration characteristics of the substructures were determined through EMA, providing data points related to vibration modes
and resonances. These vibration data points, along with the FE representation of the substructures, were used to formulate an
SOO. Subsequently, the SOO was minimised to determine the aforementioned tuning parameters. Additional details about the
model-updating procedure are available in the step-by-step Algorithm 1.
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Fig. 2. Experimental setup of a CLT beam with dimensions Length × Breadth × Height giving 2 m × 0.12 m 0.12 × m. The excitation points (2 × 11 × 2)
are uniformly distributed across the beam. The coordinate system is associated with global structure and consistent with the top and bottom layers. For the
mid-layer, the coordinate system must be oriented by an angle of 90◦ about z-axis.

Fig. 3. (a) Solid model of the beam shown in Fig. 2, depicting individual intermediate boards individually modelled. (b) Discretised model of the CLT beam
from Fig. 2, represented using brick FEs. The blue line indicates the coupling interface between the top–mid–bottom layers. These models pertain to the CLT
beams in Section 3.1. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Table 1

Orthotropic material properties of lumber boards of strength class C35 from [59,60]. The subscripts x, y, and z are respectively
consistent with the orthotropic orientations of wood.

𝐸x [MPa] 𝐸y [MPa] 𝐸z [MPa] 𝐺xy [MPa] 𝐺xz [MPa] 𝐺yz [MPa] 𝜈𝑥𝑦 [–] 𝜈𝑥𝑧 [–] 𝜈𝑦𝑧 [–]

13,000 262 430 810 810 57 0.48 0.42 0.28

3.1. Cross-laminated Timber beams

In the first model updating example, observed data points from EMA were used to update FE models of 24 nominally identical
CLT beam substructures. These beams consist of two outer layers of Norway spruce and a central layer of Scots pine, as illustrated in
Fig. 2. The density of the beams were determined by weighing them and calculating their weight-to-volume ratio. The beams were
suspended using low-stiffness bungee cords, simulating free-free conditions to eliminate uncertainties resulting from frequency-
dependent and contact stiffness associated with boundary conditions. Throughout the measurement campaign, the beams were
excited both transversely (against the z-axis) and laterally (against the y-axis), Fig. 2. Consequently, vibration modes were obtained
in both directions. The measurement campaign resulted in a total of six bending modes in each transverse and lateral direction,
along with six torsional modes. All of these modes were considered and included in the subsequent model updating procedure.

The CLT beams were modelled using three solid layers within an FE framework, with each intermediate lamella individually
modelled. Distinct material orientations were assigned to each layer, and tie coupling between the top, intermediate, and bottom
layers was implemented, while no coupling between individual lamellae was considered. The model was discretised using standard
solid brick elements with quadratic interpolation and reduced integration, as depicted in Fig. 3, [61]. In alignment with the
measurements, Dirichlet boundary conditions were not applied to the model, and rigid-body modes were excluded from the updating
procedure. Initially, each layer in the FE model was assigned the measured density along with the material properties from Table 1.
The material properties in Table 1 were determined for the beams in a preliminary study in [59], as follows: the measured density
(presented in Table 2), the 𝐸x and 𝐺xz = 𝐺xy were extracted from SS-EN 338:2016 [60] corresponding to the mean density value
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Fig. 4. Convergence behaviour of the objective function associated with 24 CLT beams in Section 3.1.

Table 2

Identified dynamic stiffness parameters of CLT beams using model updating strategy. The data is associated with the CLT beams in Section 3.1.

𝜌 [kg∕m3] 𝐸x [MPa] 𝐺xy = 𝐺xz [MPa] 𝐺yz [MPa] 𝜌 [kg∕m3] 𝐸x [MPa] 𝐺xy = 𝐺xz [MPa] 𝐺yz [MPa]

440 11,071 704 198 458 11,086 693 187
478 12,480 818 181 486 11,463 815 202
424 10,206 677 214 507 13,277 871 171
476 12,267 824 198 489 11,552 824 207
464 12,257 798 182 493 12,231 750 158
509 13,201 907 192 448 10,254 725 188
483 11,996 842 232 458 11,170 727 170
448 12,463 788 167 461 11,541 712 172
483 11,479 766 214 461 11,996 769 180
462 11,761 781 204 507 13,212 884 180
487 11,005 892 202 479 12,256 843 211
445 10,522 720 147 516 12,941 862 182

of the beams, and the rest of the material properties (𝐸y , 𝐸z, 𝐺yz, 𝜈𝑥𝑦, 𝜈𝑥𝑧, 𝜈𝑦𝑧) were determined using previous studies. In [59], a
sensitivity study was conducted, revealing that parameters such as material density, 𝐸x, 𝐺xz = 𝐺xy, and 𝐺yz significantly influence
the FE model. In the present case, the density is known. Therefore, 𝐸x, 𝐺xz = 𝐺xy, and 𝐺yz were updated until their optimal values
were identified.

The minimisation mechanism successively minimised the objective function until the distance between the current and previous
iteration steps was reached 10−2, Fig. 4. In agreement with the minimisation of the objective function, the tuning parameters were
optimised to reach a similar level of precision, Fig. 5. In particular, the minimisation of the objective function approaches a stability
level after roughly 50 iterations Fig. 4, indicating that the tuning parameters have been roughly estimated at iteration number 50.
This is except for the outlier plotted in dark purple in Figs. 4, 5, and 6. However, the algorithm explores the objective domain
further for accuracy and precision purposes. This is particularly observable in the convergence behaviour of the objective function
in Fig. 6. The optimal tuning parameters determined through the model updating procedure are presented in Table 2.

The optimal tuning parameters in Table 2 showcase variability, and therefore it is important to quantify the influence of the
variability on the model updating procedure. Hence, a cross-validation investigation has been conducted to quantify the discrepancy
between the updated FE model and the observed data. The FE model together with the observed density 𝜌 and determined optimal
tuning parameters 𝐸x, 𝐺xy = 𝐺xz, 𝐺yz Table 3, together with the un-updated parameters 𝐸y , 𝐸z, 𝜈𝑥𝑦, 𝜈𝑥𝑧, 𝜈𝑦𝑧 in Table 1 has been
executed and their associated natural frequencies and vibration modes have been validated against their corresponding observed
data from EMA using Eqs. (17) and (18). The cross-validation results indicate excellent MAC values (> 0.9) associated with the
modes 1–11 and 12–17, with the exception of lower MAC values (> 0.6) for modes 12 and 18. The predicted natural frequencies also
indicate an excellent correlation with the observed natural frequencies, as evident indicated by the relative frequency difference
values in Fig. 7. In addition, the mean values of all predicted natural frequencies in comparison to the mean values of all observed
natural frequencies convey an excellent correlation, Fig. 7.

Since the determined optimal tuning parameters in Table 2 showcase variability, it is important to determine optimal tuning
parameters using the mean values of the observed data. In this regard, the mean value of the natural frequencies and vibration
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Fig. 5. Convergence behaviour of the tuning parameters Young’s modulus 𝐸x, Shear modulus 𝐺xy = 𝐺xz, and rolling shear modulus 𝐺yz associated with 24 CLT
beams in Section 3.1.

Fig. 6. Convergence behaviour of the simplex optimisation algorithm, depicting step size variations over iterations for 24 CLT beams in Section 3.1.
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Table 3

Comparison of optimal tuning parameters obtained from FE model updating using averaged observed data and averaged optimal
tuning parameters after updating all beams, Table 2. Data pertains to CLT beams in Section 3.1.

𝐸x [MPa] 𝐺xy = 𝐺xz [MPa] 𝐺yz [MPa]

Optimal tuning parameters using mean observed data 11,835 775 194
Mean optimal tuning parameters using all observed data (in Table 2) 11,835 792 189

Percentage difference 0% 2.1% 2.6%

Fig. 7. Cross-validation of observed and predicted natural frequencies (using optimal parameters in Table 2), their associated relative difference, and vibration
modes. The data is associated with the CLT beams in Section 3.1.

modes with the lowest modal complexity is used to update an FE model of the beams. The FE model was assigned the mean
density value of the beams and the material properties in Table 1 as initial parameters. An objective function was formulated and
subsequently minimised to determine the optimal tuning parameters. These optimal tuning parameters determined using the mean
observed data are subsequently compared to the mean optimal tuning parameters from Table 2. The comparison in Table 3 indicates
that updating all the beams and averaging their corresponding optimal tuning parameters do not differ significantly from the optimal
tuning parameters determined by updating the FE model using averaged observed data. This is an important indication that leads
to significant computational efficiency.

3.2. Cross-laminated Timber cutouts

In the second example of the model updating process, EMA data is employed to update FE models of 10 CLT cutout substructures.
These CLT cutouts comprise 5 juxtaposed layers of Norway spruce arranged with thicknesses of 30 mm, 20 mm, 20 mm, 20 mm, and
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Fig. 8. Experimental setup of a CLT cutout with dimensions length (in the 𝑥-direction) of 1.0 [m], breadth (in the 𝑦-direction) of 1.5 [m] and height (in the
𝑧-direction) of 0.12 [m]. The thickness of the covering layers is 30 [mm] each, while the three intermediate layers have a thickness of 20 [mm] each. The excitation
points (9 × 5) are uniformly distributed across the 𝑥𝑦 surface.

Fig. 9. (a) Two-dimensional representation of the cutout depicted in Fig. 8. (b) Discretised model of the CLT cutout from Fig. 8, employing laminated
doubly-curved composite shell FEs. These models pertain to the CLT cutouts in Section 3.2.

30 mm, respectively, as illustrated in Fig. 8. The cutouts were cut from a CLT slab. The density, calculated as the volume-to-weight
ratio, was determined by weighing and measuring the geometric dimensions of the cutouts. The measurement grid was designed
based on preliminary simulations to ensure an adequate number of data points, with each point excited transversely (against the
𝑧 axis), Fig. 8. To mitigate uncertainties arising from boundary conditions, the cutouts were suspended using low-stiffness bungee
cords. In total, five vibration modes and their associated resonances have been obtained for all the CLT cutouts.

The CLT cutouts were modelled using a two-dimensional plate approach, which was further discretised within an FE framework.
The FE model employed laminated doubly curved composite shell elements, ensuring that each nodal point had six degrees of
freedom (three translations and three rotations), as illustrated in Fig. 9. The elements employed quadratic interpolation with reduced
integration [61,62]. In accordance with the measurements, the model was not subjected to Dirichlet boundary conditions, and
rigid-body modes were excluded from the updating procedure.

The initial mechanical properties of the FEs were selected as follows: the measured density 𝜌, the stiffness constants 𝐸x, 𝐺xy = 𝐺xz
corresponding to the mean measured density value according to SS-EN 338:2016 [60], the rolling shear modulus 𝐺yz, and the rest of
the material constants (𝐸y , 𝐸z, 𝜈𝑥𝑦, 𝜈𝑥𝑧, 𝜈𝑦𝑧) were selected using the strategy reported in [59], Table 1. In other words, the initial FE
model of each CLT cutout was assigned the orthotropic properties reported in Table 1 together with its associated measured density in
Table 4. For each FE model, an objective function was formulated according to (16), which was subsequently minimised with respect
to the tuning parameters 𝐸x, 𝐺xy = 𝐺xz, 𝐺yz. The simplex optimisation algorithm successfully minimises the objective function to find
the optimal tuning parameters shown in Fig. 10. The minimisation procedure reaches a stable level after 30 iterations. However, as
the convergence criterion was set to 10−2, the simplex algorithm iterates until equilibrium is reached, Figs. 10, 11, and 12. Although
minimisation of the objective function reaches stability after 30 iterations (Fig. 10), the tuning parameters, in particular the rolling
shear modulus 𝐺yz, reach stability after 60 iterations. This behaviour has been observed in the optimisation of the rolling shear
modulus 𝐺yz of the beams in Section 3.1. In agreement with the minimisation procedure of the objective function, the simplex
algorithm takes larger steps towards minima at the beginning of the minimisation procedure. These steps will become smaller after
iteration 30, as the algorithm seeks a finer solution and oscillates around the optima, Fig. 12. This behaviour is consistent with the
minimisation of the objective associated with the beams in [59].

The optimal tuning parameters determined at the last iteration step display variability, as is expected due to the variability in
the observed data, Table 4. Therefore, a cross-validation of the predicted results against the observed results has been conducted.
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Fig. 10. Convergence behaviour of the objective function associated with 10 CLT cutouts in Section 3.2.

Fig. 11. Convergence behaviour of the tuning parameters Young’s modulus 𝐸x, Shear modulus 𝐺xy = 𝐺xz, and rolling shear modulus 𝐺yz associated with 10 CLT
cutouts in Section 3.2.
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Fig. 12. Convergence behaviour of the simplex optimisation algorithm, depicting step size variations over iterations for 10 CLT cutouts in Section 3.2.

Table 4

Identified dynamic stiffness parameters of CLT cutouts using model updating strategy. The data is associated with the CLT cutouts in Section 3.2.

𝜌 [kg∕m3] 𝐸x [MPa] 𝐺xy = 𝐺xz [MPa] 𝐺yz [MPa] 𝜌 [kg∕m3] 𝐸x [MPa] 𝐺xy = 𝐺xz [MPa] 𝐺yz [MPa]

483 13,121 603 147 471 13,415 674 157
478 13,701 601 143 476 14,211 680 149
501 15,260 647 182 472 13,878 643 150
478 12,165 619 165 487 13,217 648 159
471 13,363 699 157 478 12,803 655 150

Table 5

Comparison of optimal tuning parameters obtained from FE model updating using averaged observed data and averaged optimal tuning parameters
after updating all cutouts, Table 4. Data pertain to CLT cutouts in Section 3.2.

𝐸x [MPa] 𝐺xy = 𝐺xz [MPa] 𝐺yz [MPa]

Optimal tuning parameters using mean observed data 13,500 647 155
Mean optimal tuning parameters using all observed data (in Table 4) 13,513 647 156

Percentage difference 1% 0% 0.6%

In this regard, the FE models were fed with the measured density 𝜌 and optimal tuning parameters concerning 𝐸x, 𝐺xy = 𝐺xz, 𝐺yz
in Table 4, and 𝐸y , 𝐸z, 𝜈𝑥𝑦, 𝜈𝑥𝑧, 𝜈𝑦𝑧 in Table 1. Subsequently, the predicted and observed results in terms of the MAC values and
relative frequency difference have been evaluated. The evaluation presented in Fig. 13 indicates an excellent correlation between
the predicted and observed modes with MAC values > 98. In the same manner, the relative difference between the predicted and
observed natural frequencies demonstrates an excellent match. To gain further insight into the correlation of the predicted and
observed natural frequencies, the mean values of the observed and predicted natural frequencies are compared and show excellent
correlation, Fig. 13.

Given the variability observed in the optimal tuning parameters outlined in Table 4, it is imperative to quantify this variability.
To address this, an objective function was formulated with inputs such as the observed mean density value of the cutouts, elastic
parameters from Table 1, and mean values of the natural frequencies, and modes characterised by the lowest modal complexity
values. Subsequently, the objective function underwent a minimisation process to determine the optimal tuning parameters aligned
with the mean observed data obtained from EMA.

The tuning parameters obtained through minimising the objective function, which used the mean observed data, closely align
with the mean values of the tuning parameters obtained when updating all cutouts individually. Analysis of the results reveals no
significant differences between the optimal tuning parameters derived from minimising the objective function with mean observed
data (Table 4) and the mean values obtained by updating all cut-outs, Table 5. Consequently, it is computationally more efficient
to minimise the objective function configured with the mean observed data, rather than updating each cutout separately if the
variability of the tuning parameters is not of interest. This agrees with the behaviour of the updating procedure of the beams in
Section 3.1.
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Fig. 13. Cross-validation of the observed and predicted vibration modes, natural frequencies and their associated frequency difference in comparison to their
corresponding observed counterparts. The predicted outcomes are obtained using the optimal parameters in Table 4. The data is associated with the CLT cutouts
in Section 3.2.

4. Conclusions

In this work, a comprehensive computational framework has been established for the model updating of Cross-Laminated Timber
(CLT) substructures, focusing on both beams and cutouts from slabs. By taking into account the observed data from Experimental
Modal Analysis (EMA) and employing a Finite Element Method (FEM) framework, an appropriate objective function was derived.
This objective function encapsulated the key sensitive parameters associated with the CLT substructures, namely the longitudinal
Young’s modulus 𝐸x, the interior shear moduli 𝐺xy = 𝐺xz, and the cross-sectional rolling shear modulus 𝐺yz. The formulated objective
function was subsequently optimised to minimise the disparity between observed and predicted results, specifically targeting natural
frequencies and vibration modes. To achieve this optimisation, a computational simplex approach was employed, allowing efficient
fine-tuning of the tuning parameters within the defined computational framework. As a result, optimal tuning parameters, together
with their associated variability, were obtained satisfactorily.

During the optimisation procedure, it was observed that the simplex method tends to oscillate around the optima and requires
several additional steps to reach convergence. This behaviour can be managed by setting a fixed number of iterations. However,
detailed information regarding the convergence behaviour of the specific case study is essential to effectively control this process.

The mechanical properties of CLT were identified through Tables 2 and 4, revealing distinct characteristics between beams
and cutouts. The beams, composed of three layers, Norway spruce, Scots pine, and Norway spruce, exhibit improved internal and
rolling shear capacity (Section 3.1) when Norway spruce is combined with Scots pine. However, this combination results in a lower
longitudinal Young’s modulus compared to using only Norway spruce. In contrast, cutouts, composed solely of five layers of Norway
spruce, achieve a higher longitudinal Young’s modulus but demonstrate lower internal and rolling shear moduli compared to the
mixed Norway spruce and Scots pine configuration in beams (Section 3.2).
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The updating procedure further highlighted that employing the mean value of natural frequencies and a selected set of clear
modes (preferably with low modal complexity) results in nearly identical tuning parameters as updating all substructures and
averaging their respective optimal tuning parameters. Consequently, when focusing on the values of the mean tuning parameters,
updating all substructures may not be necessary. Instead, updating one substructure using the mean natural frequencies and a clear
mode set suffices to determine the mean values of the desired tuning parameters.

The identified tuning parameters indicate differences compared to those suggested by SS-EN 338:2016 [60]. Therefore, it is
important to reassess the mechanical properties of CLT and account for their associated variability in structural analysis. This re-
evaluation is essential to ensure accurate performance predictions and safe utilisation of CLT in various structural applications.
Furthermore, SS-EN 338:2016 [60] does not specify a rolling shear modulus 𝐺𝑦𝑧. Hence, there is a need to update the standard to
include the precise mechanical properties of the softwoods commonly used in CLT production.

The optimal tuning parameters, quantified variability, and robust model updating framework established in this article emerge as
valuable tools for engineers engaged in the design of timber structures and researchers in the field of vibroacoustic. The demonstrated
efficacy of the proposed framework in the identification of sensitive tuning parameters of CLT substructures underscores its practical
significance.

Potential extensions of this work include adapting the updating procedure to both time and frequency domains. Additionally,
evaluating the effectiveness of this procedure in detecting damage in reinforced concrete structures and assessing the coupling
stiffness between reinforcement and concrete would be valuable. Another area of interest is applying this model updating approach
to identify the degradation of mechanical properties in structures over time, particularly those exposed to radiation, such as nuclear
reactors, spacecraft components, radiation shielding materials, and high-energy particle accelerators. Further research could also
explore applying the procedure to update models of coupled vibroacoustic and thermoelastic vibrations.
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A B S T R A C T

Uncertainty in the mechanical properties and modal characteristics of Cross-Laminated Timber
(CLT) significantly affects its predictive design and analysis. Although previous studies have
focused on determining sensitive mechanical properties of CLT using model updating, the un-
certainty quantification of these properties and their influence on natural frequencies and modes
remain underexplored. In this study, the mechanical properties of beam-like CLT substructures,
determined through model updating with Experimental Modal Analysis (EMA) as a reference,
are used to generate probabilistic and stochastic mechanical properties. These properties include
wood density, longitudinal Young’s modulus, interior shear moduli, and cross-sectional rolling
shear modulus. Gaussian processes (GP), Latin Hypercube Sampling (LHS), and Monte Carlo
(MC) sampling techniques are applied to propagate these distributions into a Finite Element
(FE) model to evaluate their effects on natural frequencies and vibration modes. The variability in
input properties is used to determine how uncertainty in these properties affects the output natural
frequencies and modes. The results are presented in terms of normal distributions and relative
differences in natural frequencies across modes and propagation techniques. A local sensitivity
analysis is performed to assess the impact of individual mechanical properties on the natural
frequencies and mode shapes across different types of modes, and linear regression is used to
explore the relationships between wood density and other properties. Furthermore, the article
comprises algebraic derivations and an implementation algorithm to facilitate application.

1. Introduction
Numerical analysis and Finite Element (FE) modelling have become integral parts of predictive modelling in

various engineering fields, ranging from civil, aerospace, and structural engineering to automotive design and product
lifecycle analysis. FE modelling and simulation permit the prediction of structural responses under various loading
scenarios, leading to improvements in design accuracy and safety, performance efficiency, product optimisation, and
cost savings. Although the engineering industry relies on extensive simulations, experimental measurements often
reveal discrepancies between the simulated and measured results. Hence, the concept of model updating was developed
to tune the simulated results toward their measured counterparts using experimental data as reference, [1, 2, 3, 4, 5]. In
particular, non-destructive testing, such as Experimental Modal Analysis (EMA), has been widely used as a reference in
model updating. The updated model only brings the simulated results as close as possible to their measured counterparts
whilst identifying the sensitive tuning parameters of the model. However, model updating often cannot eliminate all
uncertainties due to modelling errors, noisy measurements, and truncated updating using only a few vibration modes. A
more comprehensive description of modelling errors can be found in the literature [6, 7, 8]. Once the model is updated
and validated against the corresponding experimental data, Uncertainty Quantification (UQ) is necessary to quantify
the degree of uncertainty or variability in simulated and measured quantities. The uncertainties are subsequently
propagated back into the numerical model to identify the relationship between the input and output uncertainty.

The concept of UQ is particularly important in the analysis of structures with inherent variability in their mechanical
characteristics. Specifically, wood, as a natural material, exhibits variability in its mechanical properties due to growing
conditions, leading to different patterns of fibre orientation [9, 10]. Other contributing factors include natural defects,
such as knots, checks, splits, and distortion caused by variations in moisture content, [11, 12, 13]. Wood is also
characterised by a high strength-to-mass ratio [14] and is therefore vulnerable to vibration at low frequencies. When
wooden boards are juxtaposed in a crosswise pattern to form Cross-Laminated Timber (CLT), a robust structural
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material is formed with diverse variability in its mechanical properties [15]. Despite the variability in its mechanical
characteristics, CLT has become a conventional structural material and structural system component in sustainable and
environmentally friendly constructions. Examples of CLT applications are commonly seen in multi-storey wooden
buildings, where they are used as load-bearing slabs and shear walls. Hence, quantification of the variability in the
mechanical properties of CLT is of particular importance as the world continues to embrace sustainable building
practices in response to global warming and climate change [16, 17]. Consequently, probabilistic models of the
mechanical properties of wood are accordingly widely adopted with a particular emphasis on the longitudinal Young’s
modulus and the internal shear moduli [18, 19, 20, 21]. Research by Yin et al. [22] has identified that the density
of CLT and its associated longitudinal dynamic Young’s modulus can be represented using the normal distribution.
Recently, Ge et al. [23] presented results from the propagation of uncertainties in the mechanical properties of a wooden
floor system made of a combination of orientated standard board and glued laminated timber beam joists. The natural
frequencies of the floor were found to exhibit significant randomness due to the variability in mechanical properties.
While substantial progress has been made in understanding the probabilistic nature of the mechanical properties of
wood—such as the longitudinal Young’s modulus and in-plane shear moduli—research into the influence of the rolling-
shear modulus on the dynamic properties of wood, particularly CLT, remains limited. The rolling-shear modulus,
which resists deformation perpendicular to the grain, has been extensively studied in the context of static testing. For
example, an evaluation of CLT made from Japanese cedar [24] demonstrated that rolling shear strength depends on
lamina width and annual ring patterns. A comprehensive static assessment of rolling shear in CLT is also presented in
[25]. More recently, dynamic model updating of CLT conducted by the author [26] identified the rolling-shear modulus
as a mechanically sensitive parameter influencing natural frequencies and mode shapes. Despite these contributions,
comprehensive quantification of uncertainty in the dynamic properties of CLT remains incomplete. In particular, data
sampled from multiple nominally identical CLT structures is essential to understanding how uncertainty in mechanical
properties propagates to variability in modal parameters. Therefore, quantifying uncertainty in the dynamic mechanical
properties of CLT—and the resulting natural frequencies and mode shapes—is imperative for improving predictive
analyses of the dynamic behaviour of CLT.

In response to this gap in the literature, the present study aims to quantify how uncertainty in the input mechanical
parameters of CLT propagates to uncertainty in modal parameters, specifically natural frequencies and mode shapes. To
achieve this, mechanical properties known to influence modal behaviour are evaluated in this study. These properties
were derived through model updating of 24 nominally identical CLT beam-like substructures, as described in [26],
using experimental EMA results from [27] as a reference. The study then generates both probabilistic and stochastic
mechanical property datasets, which are subsequently propagated through an FE model to examine how uncertainty in
mechanical parameters translates into variability in modal parameters. The mechanical properties evaluated comprise
material density, longitudinal Young’s modulus, in-plane shear moduli, and the rolling-shear modulus. Probabilistic
property distributions were generated using Gaussian Processes (GPs), while random samples were drawn using Latin
Hypercube Sampling (LHS) and Monte Carlo (MC) methods. In addition, the individual minimum and maximum
effects of these mechanical properties on the natural frequencies were evaluated through one-parameter variation.
Furthermore, relationships between material density and the longitudinal Young’s modulus, in-plane shear moduli,
and rolling-shear modulus were established using linear regression.

The remaining sections of this article are organised as follows: Section 2 covers the methodology, including a brief
discussion on previous EMA, model updating of CLT and their associated results and the methodologies used here for
analysis and evaluations. Section 3 presents the results obtained from this research and their associated trends. Finally,
Section 4 contains the conclusions drawn from this research and recommendations.

2. Methodology
This section provides a brief overview of previous research on EMA, model updating, and identification of the

mechanical properties of the CLT structures studied here. It includes further FE modelling and formulation of a residual
function to facilitate the evaluation of input-output uncertainties. The input parameters comprise the mechanical
properties of CLT described using GP, LHS, and MC sampling, whereas the output parameters comprise natural
frequencies and vibration modes. In addition, evaluation metrics are presented and references to the relevant literature
are provided where deemed necessary.
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Figure 1: Illustration of the experimental setup of a three-layer CLT beam substructure with dimensions length (l) × width
(w) × height (h) of 2 m × 0.12 m × 0.12 m. Each layer has a thickness of 40 mm. The outer layers are made of Norway
Spruce, whereas the middle layer is made of Scots Pine. The substructure is discretised with 22 measurement points in
the xy and xz planes, respectively. A single point in the yz plane was also measured but excluded in the model updating
[26] and also herein. The coordinate system is consistent with the outer layers, and for the middle layer, the coordinate
system is oriented about the z-axis at an angle of 90◦.

Table 1
Coefficient of variation (CoV) of resonance frequencies for each mode, across 24 CLT beams.

Mode number Out–of–plane bending (%) Torsional (%) In–plane bending (%) Axial (%)

1 4.0 4.2 4.1 3.5
2 3.8 3.5 3.7
3 3.2 3.7 2.6
4 2.5 3.2 2.0
5 2.4 3.5 1.9
6 2.5 3.0 1.9

2.1. Experimental Modal Analysis
The results of the EMA, as presented in [27], provide a comprehensive insight into the variability in the modal

parameters of the CLT substructures used in this article. A total of 24 nominally identical CLT substructures were
tested using 22 transverse (against the z axis), 22 lateral (against the y axis), and one axial (along the x axis) excitation
points, as shown in Fig. 1. The beams were excited across a frequency range of 0-2 kHz using a modal hammer, and
the corresponding acceleration for each point was measured using a piezoelectric accelerometer in each direction.
The beams were tested under free-free conditions, suspended by bungee cords. After sampling and frequency domain
transformations, the modal properties—comprising six out-of-plane bending modes, six torsional modes, six in-plane
bending modes, and one axial mode—were determined, along with their natural frequencies and modal damping. The
Coefficient of Variation (CoV) for the natural frequencies of each mode, expressed as a percentage, is computed as the
ratio of the standard deviation to the mean for each frequency and is provided in Tab. 1.

The key results from the EMA highlight the variability in the modal properties of the CLT beams, even though they
are geometrically nominally identical and made of the same wood species. This variability suggests that the dynamic
properties of CLT are influenced by inherent material heterogeneity, which introduces uncertainty into the modelling
of CLT structures. Consequently, accounting for this uncertainty in FE modelling is essential to ensure the robustness
of the predictive models. Furthermore, the bending and torsional modes, along with their corresponding natural
frequencies observed in EMA, provide critical benchmarks for the model updating procedure and the identification
of the sensitive mechanical properties of CLT used in this study. Further discussion on model updating is provided in
Section 2.2.
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Table 2
Identified dynamic stiffness parameters of CLT beams following the model updating process. The initial values for the
updated parameters were set as: 𝐸1 = 13, 000 MPa, 𝐺12 = 𝐺13 = 810 MPa, and 𝐺23 = 57 MPa. The parameters that were
not updated, including the identified density, were fixed at the following values: 𝐸2 = 262 MPa, 𝐸3 = 430 MPa, 𝜈12 = 0.48,
𝜈13 = 0.42, and 𝜈23 = 0.28. Further information on the updating procedure can be found in [26].

𝜌 (kg∕m3) 𝐸1 (MPa) 𝐺12 = 𝐺13 (MPa) 𝐺23 (MPa) 𝜌 (kg∕m3) 𝐸1 (MPa) 𝐺12 = 𝐺13 (MPa) 𝐺23 (MPa)
440 11071 704 198 458 11086 693 187
478 12480 818 181 486 11463 815 202
424 10206 677 214 507 13277 871 171
476 12267 824 198 489 11552 824 207
464 12257 798 182 493 12231 750 158
509 13201 907 192 448 10254 725 188
483 11996 842 232 458 11170 727 170
448 12463 788 167 461 11541 712 172
483 11479 766 214 461 11996 769 180
462 11761 781 204 507 13212 884 180
487 11005 892 202 479 12256 843 211
445 10522 720 147 516 12941 862 182

Figure 2: Convergence behaviour and progressive reduction of the residual in (4) through iterative adjustment of the
sensitive material parameters (𝐸1, 𝐺12 = 𝐺13, 𝐺23). Full methodological details are provided in [26].

2.2. Finite Element modelling
The tested substructures were modelled as solid bodies and discretised using brick FEs with quadratic interpolation,

as implemented in Abaqus [28]. The layers were coupled transversally (along the z-axis) using a node-to-node tie
coupling, assuming perfect bonding between them. No coupling was considered between the individual boards along
the x-axis (see Fig. 1), indicating the absence of adhesive bonding between them. The discretisation was refined to an
element size of 0.02 m, ensuring convergence across all relevant natural frequencies of interest. The corresponding
homogeneous equations of motion were derived as:

𝐌(𝑘)(𝜽) �̈�(𝑡) +𝐊(𝑘)(𝜽) 𝐚(𝑡) = 𝟎, (1)

where the mass and stiffness matrices, i.e., 𝐌(𝑘)(𝜽) and 𝐊(𝑘)(𝜽), contain the substructure’s lumped mass and
corresponding nodal stiffness in the physical domain at iteration 𝑘 for a set of model parameters 𝜽 ∈ {𝜃1, 𝜃2, … , 𝑝}.
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The nodal acceleration and displacement fields are collected in �̈�(𝑡) and 𝐚(𝑡), respectively. As the system is undamped
and homogenous, its corresponding natural frequencies and vibration modes can be computed iteratively using Lanczos
solver [29] from an eigenvalue problem,[

𝐊(𝑘)(𝜽) − 𝜔
(𝑘)2
𝑗

(𝜽) 𝐌(𝑘)(𝜽)
]
𝝍

(𝑘)
𝑗
(𝜽) = 𝟎, 𝑗 = 1, 2,… , 𝑁𝑗, (2)

where 𝜔
(𝑘)2
𝑗

(𝜽) and 𝝍
(𝑘)
𝑗
(𝜽) denote respectively the system’s 𝑗th eigenvalue and eigenmode for 𝑘th subset of model

parameters. The equation is solved for 𝑁𝑗 modes of interest. The corresponding natural frequency of the eigenvalue

in Hz can be determined using the following relation 𝑓
(𝑘)
𝑗

(𝜽) =
√

𝜔
(𝑘)2
𝑗

(𝜽)∕2𝜋. The eigenmodes are all mass
normalised so that 𝚿(𝜽)⊺𝐌(𝜽)𝚿(𝜽) = 𝐈 and 𝚿(𝜽)⊺𝐊(𝜽)𝚿(𝜽) = 𝚲(𝜽), where 𝐈 is an identity matrix and 𝚲(𝜽) =
diag(𝜔(𝑘)2

1 , 𝜔
(𝑘)2
2 , … , 𝜔

(𝑘)2
𝑁𝑗

). Systems without Dirichlet conditions can exhibit rigid body modes for which 𝜔𝑗 ≈ 0,

otherwise 𝜔𝑗 > 0. The equation above represents a computational model (𝜽), which for a certain model input 𝜽
produces natural frequencies and modes.

Natural frequencies and vibration modes determined through EMA were used together with their corresponding FE
counterparts to identify the sensitive mechanical properties of these substructures, including 𝐸1, 𝐺12 = 𝐺13, 𝐺23 [26].
The primary reason for updating only the sensitive mechanical properties is their influence on the objective function,
which allows them to be tuned towards their optimal values. In contrast, updating insensitive parameters leads to an
ill-conditioned problem, where the objective function cannot be effectively minimised or optimised. Furthermore, the
mechanical properties are assumed to be constant throughout the entire structure, which means that no random fields
were considered in the material. This assumption simplifies the analysis, though it may limit the representation of
spatial variability in material properties. In addition, it was assumed that the uncertainties arising from the distribution
of geometrical dimensions (e.g., thickness of layers) and orientation angles were negligible.

The density 𝜌 of the substructures was determined by dividing their respective weight by their volume, whereas the
other insensitive orthotropic parameters (𝐸2, 𝐸3, 𝜈12, 𝜈13, 𝜈23) were fixed to (262 MPa, 430 MPa, 0.48, 0.42, 0.28),
respectively. Consequently, the following unconstrained problem was formulated,

(ℙ)
⎧⎪⎨⎪⎩

argmin
𝜽 ∈ ℝ3

(𝜽),

where 𝜽 ∈ {𝐸1, 𝐺12 = 𝐺13, 𝐺23},
(3)

with the residual function (𝜽) defined as:

(𝜽) =
𝑛∑

𝑗=1

(|𝑓𝑗 − 𝑓
(𝑘)
𝑗

(𝜽)|∕𝑓 (𝑘)
𝑗

(𝜽)
)2

+
𝑛∑

𝑖,𝑗=1

[
1 −

(
MAC(𝑘)

(
�̃� 𝑖,𝝍

(𝑘)
𝑗
(𝜽)
))]

, (4)

where MAC is a quantitative tool for comparing two vibration modes, as further discussed in Section 2.4. The 𝑗th
observed and predicted natural frequencies together with their corresponding modes are denoted 𝑓𝑗, 𝑓

(𝑘)
𝑗

, �̃� 𝑗 , 𝝍
(𝑘)
𝑗

,
respectively. It is noted that a tilde refers to observed quantities (obtained from EMA) which are neither dependent
on the inputs of the model 𝜽 nor the state of the model denoted 𝑘. The optimisation problem formulated in (3) was
solved iteratively using the Nelder–Mead simplex algorithm [30, 31], in order to minimise the discrepancy between
the FE model predictions and the modal parameters identified from EMA. The convergence behaviour of the objective
function over successive iterations is presented in Fig. 2. As a result of the updating procedure, the sensitive mechanical
properties of the CLT beams were estimated, and the corresponding values are reported in Tab. 2. These sensitive
mechanical properties of CLT substructures, determined using the above approach in [26], will henceforth be referred
to as the observed mechanical properties.

2.3. Probabilistic modelling and sampling
The inherent variability and randomness observed in the mechanical properties of CLT suggest that the 24 available

data subsets may be insufficient to fully capture the underlying uncertainty. Consequently, stochastic modelling
techniques become essential for accurately characterising these properties. An effective approach is to use Gaussian
processes (GPs) to obtain a full posterior distribution over the mechanical property values. In GP regression, a kernel
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Figure 3: Illustration of the application of Gaussian Processes (GPs) to generate 150 additional samples of the mechanical
properties of CLT, based on the 24 observed data points. The observed data points (density 𝜌, 𝐸1, 𝐺12 = 𝐺13, and 𝐺23)
were obtained through model updating, as detailed in [26]. The observed data is denoted as 𝜇1, whereas the generated
data is represented by 𝜇2|1, with its associated confidence interval denoted by ±2𝜎2|1.

(covariance) function is used to encode assumptions about the smoothness and structure of the underlying function.
The observed data (denoted by 𝒙1) and the new (predicted) data points (denoted by 𝒙2) are assumed to be jointly
Gaussian. Thus, their combined multivariate distribution can be written as

{
𝒙1
𝒙2

}
∼ 

({
𝝁1
𝝁2

}
,

[
𝚺11 𝚺12
𝚺21 𝚺22

])
, (5)

where the notations 𝝁 and 𝚺 represent the mean vector and covariance matrix, respectively. The conditional probability
of predicting new random variables, given the observed data from (5), can be expressed as:

𝑝
(
𝝁2 ∣ 𝝁1,𝒙1,𝒙2

)
∼  (

𝝁2|1,𝚺2|1) , (6)

where the conditional quantities are derived as

𝝁2|1 = 𝚺21𝚺−1
11 𝒙1, (7a)

𝚺2|1 = 𝚺22 − 𝚺21𝚺−1
11𝚺12. (7b)

and the covariance matrices are computed using the Radial Basis Function (RBF) kernel defined as

𝑘(𝑥1, 𝑥2) = exp
(
− 1
2𝑙2

‖𝑥1 − 𝑥2‖2), (8)
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Table 3
Summary of mechanical properties using various methods: FE Model Updating (Observed), Gaussian Processes (GP), Latin
Hypercube Sampling (LHS), and Monte Carlo (MC) sampling.

Parameter Method Min Mean Max Variance Std. Dev. CoV (%) 95% Confidence Interval

𝜌 (kg∕m3)

weight/volume 423 473 516 549 23 4.95 [463, 483]
GP 422 473 517 470 21 4.58 [470, 477]
LHS 424 469 515 710 26 5.67 [465, 474]
MC 424 470 515 686 26 5.57 [465, 474]

𝐸1 (MPa)

Observed 10206 11835 13277 717574 847 7.16 [11477, 12192]
GP 10207 11851 13289 670931 819 6.91 [11719, 11983]
LHS 10210 11741 13263 786387 886 7.55 [11598, 11884]
MC 10272 11841 13269 748629 865 7.31 [11701, 11980]

𝐺12 = 𝐺13 (MPa)

Observed 677 791 907 4349 65 8.33 [763, 819]
GP 666 793 919 4063 63 8.03 [783, 803]
LHS 677 791 905 4400 66 8.39 [781, 802]
MC 677 790 904 4907 70 8.86 [779, 801]

𝐺23 (MPa)

Observed 147 188 232 383 19 10.38 [180, 197]
GP 142 188 235 372 19 10.21 [185, 192]
LHS 147 189 231 601 24 12.93 [185, 193]
MC 147 186 231 558 23 12.65 [183, 190]

where the length scale 𝑙 determines the smoothness of the distribution and is obtained through hyper-parameter
optimisation. The term ‖𝑥1 − 𝑥2‖ represents the Euclidean distance between two data points [32, 33, 34]. The
mechanical properties of CLT determined through model updating in Tab. 2 were used as input data for the GP, which
subsequently generated 150 samples, as illustrated in Fig. 3. The number of samples was determined by monitoring
the stability of the conditional standard deviation to ensure adequate coverage of the predictive uncertainty.

To validate the Gaussian Process (GP) model, which facilitates a smooth interpolation between the observed data
points, both Latin Hypercube Sampling (LHS) [35, 36, 37] and Monte Carlo (MC) sampling [38, 39] were used to
generate stochastic random variables that represent the variability in the mechanical properties of the beams. The LHS
and MC sampling techniques were applied using the minimum and maximum bounds of the observed mechanical
properties in Tab. 3.
The LHS technique ensures an even distribution of samples across the input space by stratifying the space into intervals,
providing an efficient coverage of the parameter space. In contrast, the MC sampling method relies on random sampling
according to the probability distributions of the input variables, offering a more exhaustive exploration of the input
space at the cost of increased computational effort.
To ensure a robust comparison with the GP model, 150 samples were generated using both LHS and MC techniques for
each mechanical property. Subsequently, these samples were used in the FE model in (2) to determine the corresponding
natural frequencies and vibration modes. A summary of the mechanical properties used in the analysis, along with their
respective generated counterparts, is presented in Table 3.

2.4. Uncertainty quantification
To quantify the uncertainty relationship between inputs and outputs, the sampled parameters are propagated into

the FE model in (1), which was further used to solve the eigenvalue problem in (2) to determine the natural frequencies
and modes of the system for each set of input data. Similarly to EMA measurements, a distinction is made between the
out-of-plane, torsional, and in-plane bending modes. To distinguish between these modes and identify their respective
natural frequencies, the numerical modes from (2) were compared with the observed ones using the Modal Assurance
Criterion (MAC):

MAC(𝑘)(�̂� 𝑖,𝝍
(𝑘)
𝑗
(𝜽)) =

|||�̂�𝐻
𝑖 𝝍

(𝑘)
𝑗
(𝜽)|||2(

�̂�
𝐻
𝑖 �̂� 𝑖

)(
𝝍

(𝑘)
𝑗
(𝜽)𝐻𝝍

(𝑘)
𝑗
(𝜽)
) , (9)

where �̂� 𝑖 is an observed mode vector whereas 𝝍 (𝑘)
𝑗
(𝜽) is the corresponding predicted counterpart at iteration 𝑘. The

MAC returns a value between zero and unity, where zero denotes orthogonality, and unity denotes perfect correlation.
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Figure 4: Estimated probability density distributions of the observed mechanical properties of CLT substructures, comparing
the distributions of various sampling methods: Gaussian Process (GP), Latin Hypercube Sampling (LHS), and Monte Carlo
(MC) sampling. The Gaussian distributions follow the expression in (12).

Once the mode is identified, its associated natural frequency is stored to ensure a distinction between the bending and
torsional modes. The axial mode was excluded from this procedure as it contains only one value and could therefore
not be identified using the MAC approach in (9). To assess the uncertainty span within the mechanical properties and
their associated natural frequencies, a relative difference to their mean values was employed using

relative dif ference = 𝒙 − 𝜇(𝒙)
𝜇(𝒙)

, (10)

where 𝜇(𝒙) is a mean value operator. Furthermore, a univariate normal distribution was used to evaluate the distribution
of the mechanical properties and their corresponding natural frequencies following

𝒙 ∼  (𝜇(𝒙), 𝜎2), (11)

where 𝜇(𝒙) is the mean and 𝜎2 is the variance. The Probability Density Function (PDF) of a normalised Gaussian
function is given by

𝑝(𝒙|𝜇(𝒙), 𝜎) = 1√
2𝜋𝜎2

exp
(
−(𝒙 − 𝜇(𝒙))2

2𝜎2

)
, (12)

which represents a univariate normal distribution for the random variables in 𝒙. The PDF distributions of the
mechanical properties are illustrated in Fig. 4. To further evaluate the distribution of the probabilities in (12), a sum of
their probabilities is computed using the Cumulative distribution function (CDF) using

𝐹 (𝒙) =
∑ 1√

2𝜋𝜎2
exp

(
−(𝒙 − 𝜇(𝒙))2

2𝜎2

)
. (13)

A brief summary of the procedural framework for uncertainty quantification proposed in this study is presented in
Algorithm 1. The procedure begins with model updating and the inverse identification of the mechanical properties.
This is followed by probabilistic and stochastic sampling based on the identified parameters. Subsequently, the
framework outlines the uncertainty quantification through FE propagation and concludes with a sensitivity analysis
to assess the influence of input variability on the output natural frequencies and modes.
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Algorithm 1 Uncertainty and quantification of CLT framework.

1: Initialise 𝐌(𝜽),𝐊(𝜽)
2: Formulate the minimisation problem (ℙ), in (3)
3: Minimise (𝜽) and identify 𝜽 ∈ {𝜃1, 𝜃1, … 𝜃𝑁𝑗

}, in (4)
4: Model 𝜽 probabilistically, in (5) – (8)
5: Model 𝜽 stochastically using LHS and MC sampling
6: for all 𝜽 do ⊳ Evaluate uncertainty
7: Solve (𝜽), in (2)
8: Identify mode types using MAC, in (9)
9: Compute relative difference, in (10)

10: end for
11: for all 𝜽± and 𝜽𝜇 do ⊳ Evaluate sensitivity
12: Solve 𝐲± = (𝜽±), in (2)
13: Solve 𝐲𝜇 = (𝜽𝜇), in (2)
14: Identify mode types using MAC, in (9)
15: Compute 𝑆±

𝑗,𝜔
(𝜽), in (16)

16: Compute 𝑆±
𝑗,𝜓

(𝜽), in (17)
17: end for

2.5. Local sensitivity analysis
The influence of individual mechanical properties on the natural frequencies can be quantified using a one-

parameter variation approach. The minimum, mean, and maximum values of the mechanical properties, as listed in
Tab. 3, were used as input to the model (𝜽) in (2). The corresponding natural frequencies were determined using
(2):

𝐲±(𝜽) = (𝜽±), (14a)

𝐲𝜇(𝜽) = (𝜽𝜇), (14b)

where 𝜽𝜇 ∈ {𝜃𝜇1 , 𝜃
𝜇

2 ,… , 𝜃
𝜇

𝑁𝑗
} represents the mean values of the model parameters, and 𝜽± ∈ {𝜃−1 , 𝜃

−
2 ,… , 𝜃−

𝑁𝑗
; 𝜃+1 ,

𝜃+2 ,… , 𝜃+
𝑁𝑗

} represents the minimum and maximum values of the parameters, as shown in Tab. 3. The corresponding

outputs in (14) are:

𝐲±(𝜽) = {𝜔−
1 , 𝜔

−
2 ,… , 𝜔−

𝑁𝑗
,𝝍−

1 ,𝝍
−
2 ,… ,𝝍−

𝑁𝑗
; 𝜔+

1 , 𝜔
+
2 ,… , 𝜔+

𝑁𝑗
,𝝍+

1 ,𝝍
+
2 ,… ,𝝍+

𝑁𝑗
}, (15a)

𝐲𝜇(𝜽) = {𝜔𝜇

1 , 𝜔
𝜇

2 ,… , 𝜔
𝜇

𝑁𝑗
,𝝍

𝜇

1 ,𝝍
𝜇

2 ,… ,𝝍
𝜇

𝑁𝑗
}. (15b)

The sensitivity of the model outputs to variations in the input parameters was examined by setting one parameter
at a time to its maximum or minimum value, while keeping all other parameters fixed at their mean values. The natural
frequencies and modes for each set of parameters were then determined. The sensitivity of the natural frequencies was
computed as:

𝑆±
𝑗,𝜔

(𝜽) =
𝐲±
𝑗,𝜔

(𝜽) − 𝐲𝜇
𝑗,𝜔

(𝜽)

𝐲𝜇
𝑗,𝜔

(𝜽)
, (16)

while the sensitivity of the mode shapes was determined using the MAC in (9) as:

𝑆±
𝑗,𝜓

(𝜽) =
MAC

(
𝝍±

𝑗
(𝜽),𝝍𝜇

𝑗
(𝜽)
)
−MAC

(
𝝍

𝜇
𝑗
(𝜽),𝝍𝜇

𝑗
(𝜽)
)

MAC
(
𝝍

𝜇
𝑗
(𝜽),𝝍𝜇

𝑗
(𝜽)
) , (17)

Here, 𝝍𝜇(𝜽), 𝝍−(𝜽), and 𝝍+(𝜽) denote the modes determined using the mean value, the lower and upper values of
the mechanical properties in Tab. 3, respectively. Sensitivity analysis in (16) and (17) was evaluated for all 𝑗, including
six out-of-plane bending, torsional, and in-plane bending modes; however, only the minimum and maximum values of
𝑆±
𝑗,𝜔

(𝜽) and 𝑆±
𝑗,𝜓

(𝜽) were used to evaluate the uncertainty of the output.

Preprint will be submitted for publication Page 9 of 18



Figure 5: From top to bottom: probability density distribution of six out-of-plane bending (top subplots), torsional (middle
subplots), and in-plane bending (bottom subplots) natural frequencies following the Gaussian distribution in (12).

3. Results and analysis
This section presents the results of the uncertainty quantification, including the distributions of the natural

frequencies and their corresponding cumulative distributions across different vibration modes. The relative differences
of the natural frequencies with respect to their mean values are evaluated for both the EMA results and the different
propagation techniques (GP, LHS, and MC sampling). Furthermore, results from a local sensitivity analysis are
presented, in which the influence of individual mechanical properties on the natural frequencies and mode shapes
is assessed by examining their minimum and maximum impacts. Finally, the relationship between material density
and the longitudinal Young’s modulus, interior shear moduli, and rolling shear modulus is investigated using linear
regression.

3.1. Effect of uncertainty on the natural frequencies and modes
As depicted in Fig. 5, the Gaussian distributions of the output natural frequencies reveal distinct characteristics

associated with each category from which the mechanical properties originate. The Gaussian distribution of the natural
frequencies associated with observed and GP mechanical properties results in a nearly similar distribution, which is
narrower than their experimental counterparts. In contrast, with increased stochastic variation in mechanical properties,
particularly those originating from stochastic LHS and MC sampling, the probability distribution becomes broader. In
the same way, the cumulative distribution curves of the natural frequencies associated with observed and GP parameters
are steeper compared to those associated with stochastic parameters, Fig. 6. The cumulative distribution curves further
indicate that with an increased stochastic nature of the mechanical properties, particularly those stemming from LHS
and MC sampling, the cumulative distribution curves become broader.

In contrast to natural frequencies, their associated modes are not significantly influenced by uncertainty in
mechanical properties. The vibration modes associated with the natural frequencies in Fig. 7 show an excellent
correlation with their corresponding observed modes of EMA with MAC𝑗𝑗 > 0.98 for 𝑗 ∈ {1, 2,… , 6}. With an
exception for the lower correlation associated with the sixth torsional and in-plane bending modes with MAC66 ≈ 0.67
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Figure 6: From top to bottom: cumulative distribution of six out-of-plane bending (top subplots), torsional (middle
subplots), and in-plane bending (bottom subplots) natural frequencies following the expression in (13).

Figure 7: From top to bottom: Cross MAC between six out-of-plane bending (top subplot), torsional (middle subplot),
and in-plane bending (bottom subplot) modes and their corresponding modes from EMA using (9).

and MAC66 ≈ 0.77, respectively. The insensitivity of the modes to variability in the mechanical properties has been
previously exploited for variability prediction in FE models of laminated structures [40, 41].
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The probability and cumulative distribution of the natural frequencies in Figs. 5 and 6 require further evaluation
of the uncertainty in the natural frequencies with respect to their mean values. In this evaluation, the MACs were not
included as Fig. 7 indicates a minor influence of uncertainty in the mechanical properties on the vibration modes.

To quantify the uncertainty in the outputs, a relative difference between the natural frequencies and their
corresponding mean values was calculated, Fig. 8. The experimental data indicate that an uncertainty between 5-10%
is expected. In contrast, the FE evaluation indicates a marginally lower variability than the observed ones. With an
increase in the number of probabilistic data, using GP variability in the uncertainty becomes somewhat more stable.
However, outliers appear in the torsional natural frequencies. Consequently, the uncertainty in the out-of-plane bending

Figure 8: Minimum and maximum percentage variability in natural frequencies relative to their mean values, as defined
in (10). Columns (a), (b), and (c) correspond to out-of-plane bending, torsional, and in-plane bending modes, respectively.
The subplot rows represent data obtained from Experimental Modal Analysis (EMA) and different propagation methods:
observed data (Observed), Gaussian Process (GP), Latin Hypercube Sampling (LHS), and Monte Carlo sampling
(MC). Representative visualisations of these mode shapes are provided in the Appendix of [27].
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(row 3 in subplot (a) in Fig. 8) and in-plane bending (row 3 in subplot (c) in Fig. 8) natural frequencies fall under 5%.
On the other hand, the uncertainties in the torsional modes (row 3 in subplot (b) of Fig. 8) are less than 8%. When
mechanical properties vary stochastically, the uncertainty in natural frequencies increases to 12%, as seen for natural
frequencies associated with LHS and MC samplings (rows 4 and 5 of (a), (b) and (c) in Fig. 8). The natural frequencies
associated with the in-plane bending modes exhibit an uncertainty below 10% in contrast to the out-of-plane bending
and torsional modes. Overall, the results indicate that an increase in the number of data points stabilises the uncertainty
distribution in the vibration natural frequencies.

3.2. Local sensitivity analysis
To assess the sensitivity of individual mechanical properties on the natural frequencies and modes across different

propagation techniques, the minimum, maximum, and mean values of each parameter from Tab.3 were propagated into
the FE model. Their corresponding outputs were then evaluated using (16) and (17), as shown in Figs.9 and 10. The
results reveal distinct variations in the natural frequencies associated with different types of modes.

The density 𝜌 influences the natural frequencies of all modes. An uncertainty of ±10% in the density 𝜌 (Fig. 9(d))
results in a minimum or maximum uncertainty of up to ±6% in the natural frequencies. In contrast, the variation in
density 𝜌 did not influence the modes as seen in the evaluation in Fig. 10.

The longitudinal Young’s modulus, 𝐸1, has the greatest influence on the bending modes and only a minor effect on
the torsional modes. An uncertainty of ±14% in 𝐸1 (Fig. 9(d)) results in an uncertainty up to ±7% in the bending-mode
frequencies, see as shown in Figs. 9(a) and (c). However, 𝐸1 did not significantly affect the sensitivity of the modes to
its variation, Fig. 10.

The interior shear moduli, 𝐺12 = 𝐺13 (Fig. 9(d)), exert the greatest influence on the torsional and in-plane bending
natural frequencies, while their effect on the out-of-plane bending frequencies is comparatively smaller, see as shown
in Figs. 9(a) – (c). An uncertainty of approximately 14.5% in 𝐺12 = 𝐺13 leads to up to ±5% uncertainty in the torsional
and in-plane bending frequencies, and around ±2% in the out-of-plane bending frequencies. In contrast to the natural
frequencies, the vibration modes themselves are not significantly affected by variations in these shear moduli, Fig. 10.

Finally, the rolling shear modulus, 𝐺23, is the parameter with the highest variability—up to 23% (Fig. 9(d))
and primarily influences the out-of-plane bending and torsional natural frequencies, as shown in Figs. 9(a) and (b).
However, the variability in 𝐺23 has almost no influence on the corresponding vibration modes. An uncertainty of
almost ±23% in 𝐺23 results in up to ±6% uncertainty in the out-of-plane bending and torsional natural frequencies,
Figs., Fig. 9 and , Fig. 10.

The results further indicate that probabilistic or stochastic variation in the parameters did not influence the
sensitivity analysis results due to the use of lower, mean, and upper limits of the parameters since their distributions
are nearly similar, Fig. 4. Furthermore, the results in Fig. 10 indicate that the use of different sampling techniques to
generate the input mechanical properties did not influence the sensitivity of the modes, as a similar degree of sensitivity
was obtained for the parameters sampled by GP, LHS and MC.

3.3. Relation between the mechanical properties
Despite the variability in the mechanical properties of wood, a relationship can be established between density 𝜌,

longitudinal Young’s modulus 𝐸1, and interior shear moduli 𝐺12 = 𝐺13. In this analysis, only the observed mechanical
properties and their corresponding probabilistic ones generated using GP are included, whereas the stochastic data
points generated using LHS and MC sampling were excluded due to their stochastic nature. A linear regression using
𝑦(𝜌) = 𝑎0 + 𝑎2𝜌 was used to assess the degree of correlation between 𝜌 and 𝐸1, 𝜌 and 𝐺12 = 𝐺13, and 𝜌 and 𝐺23.
The 𝜌 was used as an input parameter due to the ease of identifying the density of the wood using, for example, the
weight/volume ratio.

Consequently, a regression model with 𝑅2 = 0.58 was achieved for the 𝜌 − 𝐸1 relation and a stronger linearity
between 𝜌−(𝐺12 = 𝐺13) corresponding to 𝑅2 = 0.70. However, no linear relationship between 𝜌−𝐺23 was established,
indicating a nearly independency of 𝐺23 on 𝜌, Fig. 11. Furthermore, the use of GP data did not improve the linearity
relations 𝜌 − 𝐸1 and 𝜌 − (𝐺12 = 𝐺13), but marginally reduced them. The established relations for density as input
values, as shown in Fig. 11, can be found in the following expressions

𝐸1(𝜌) = 27.46𝜌 − 1166.43, 𝑅2 = 0.58, Observed, (18a)

𝐸1(𝜌) = 28.11𝜌 − 1465.69, 𝑅2 = 0.55, GP, (18b)

[𝐺12 = 𝐺13](𝜌) = 2.35𝜌 − 319.33, 𝑅2 = 0.70, Observed, (18c)
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Figure 9: Relative deviations in natural frequencies for (a) out-of-plane bending, (b) torsional, and (c) in-plane bending
modes, due to variability in individual mechanical properties. The deviations are normalised with respect to the frequencies
obtained using mean mechanical properties, as defined in (16). Panel (d) shows the relative differences in the mechanical
properties (𝜌, 𝐸1, 𝐺12 = 𝐺13, 𝐺23), normalised with respect to their corresponding means. The bars represent the range
(minimum to maximum) of deviations for each uncertainty propagation method: Observed, Gaussian Process (GP), Latin
Hypercube Sampling (LHS), and Monte Carlo (MC).

[𝐺12 = 𝐺13](𝜌) = 2.42𝜌 − 354.49, 𝑅2 = 0.68, GP, (18d)

𝐺23(𝜌) = 0.05𝜌 + 166.57, 𝑅2 = 0.00, Observed, (18e)

𝐺23(𝜌) = 0.12𝜌 + 129.78, 𝑅2 = 0.02, GP. (18f)
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Figure 10: Relative deviations in MAC values for (a) out-of-plane bending, (b) torsional, and (c) in-plane bending modes,
due to variability in mechanical properties. The MAC deviations are normalised with respect to the values obtained from
the mean mechanical properties, as defined in (17). Panel (d) shows the relative differences in the mechanical properties
(𝜌, 𝐸1, 𝐺12 = 𝐺13, 𝐺23), normalised with respect to their corresponding means. The bars represent the range (minimum
to maximum) of deviations for each uncertainty propagation method: Observed, Gaussian Process (GP), Latin Hypercube
Sampling (LHS), and Monte Carlo (MC).

4. Conclusion
In this article, an uncertainty quantification investigation was performed on the influence of uncertainty in the

sensitive mechanical properties of CLTs on their associated natural frequencies and modes. The probabilistic Gaussian
process and stochastic LHS and MC sampling were used to describe the probabilistic and randomness in the mechanical
properties of CLT. Using probabilistic and stochastic variation in the mechanical properties resulted in the following:
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Figure 11: Correlation between density 𝜌, longitudinal Young’s modulus 𝐸1, interior shear moduli 𝐺12 = 𝐺13, and rolling
shear modulus 𝐺23. The black circles encompass observed data points, whereas the grey squares are their corresponding
probabilistic data generated using Gaussian Process (GP).

• The observed mechanical properties from model updating and their associated predicted ones using Gaussian
Processes (GPS) result in a narrower Gaussian distribution of the natural frequencies and a steeper cumulative
distribution.

• The stochastic distribution of the mechanical properties resulted in a broader probability distribution of the
natural frequencies, and their corresponding cumulative distribution became broader.

• The probabilistic and stochastic nature of the mechanical properties did not result in sensitivity in the modes.

The analysis of the sensitivity of each mechanical property (namely 𝜌, 𝐸1, 𝐺12 = 𝐺13, and 𝐺23) on the natural
frequencies and modes indicated:

• The density 𝜌 influences all natural frequencies. With an uncertainty in 𝜌 corresponding to ±10%, an uncertainty
in the natural frequencies corresponding to ±6% is expected.

• The variability of ±14% for 𝐸1 resulted in the variability up to ±7% for natural frequencies.

• The interior shear moduli, 𝐺12 = 𝐺13, primarily influence the torsional and in-plane bending natural frequencies.
A minor influence on the out-of-plane bending natural frequencies is also observed. With an uncertainty of
approximately ±14.5% in 𝐺12 = 𝐺13, a corresponding uncertainty of up to ±5% is expected in the associated
torsional and in-plane bending natural frequencies, whereas only ±1.7% uncertainty is expected in the out-of-
plane bending frequencies.

• The rolling shear modulus 𝐺23 shows the highest variability, up to 23%, and results in an uncertainty of 6% in
the out-of-plane bending and torsional natural frequencies.

In addition, variability in the mechanical properties did not result in variability in the mode shapes. The correlation
between mechanical properties also shows a relationship between density 𝜌 and the longitudinal Young’s modulus 𝐸1
and interior shear moduli 𝐺12 = 𝐺13. However, no linear relationship was observed between density 𝜌 and rolling
shear modulus 𝐺23, which shows the highest uncertainty. Hence, further investigation into the rolling shear modulus
is necessary for a comprehensive understanding of its variability.

Future research can analyse a larger observed data set to refine the probabilistic model established in this study,
enhancing its accuracy and reliability. In addition, further research on the influence of environmental factors such as
humidity, temperature, and natural defects on the mechanical properties of CLT is essential. Implementing real-time
monitoring techniques, such as operational modal analysis coupled with inverse dynamics, will allow for continuous
tracking of the mechanical properties of CLT. This approach will provide a deeper understanding of the uncertainties
and variations in the mechanical properties over time. Long-term studies are recommended to observe changes in
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mechanical properties and natural frequencies throughout the lifespan of CLT structures. This will provide valuable
information on the durability and performance of CLT over time. Following these recommendations, the uncertainty
in the mechanical properties of CLT can be significantly reduced, leading to more reliable and robust structural
applications.

Data Availability
Data will be made available on request.
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A B S T R A C T

Substructure coupling and model order reduction using Component Mode Synthesis (CMS)
have, over recent years, gained considerable attention in the vibroacoustic analysis of com-
plex structures. In the CMS methodology, the interior dynamics of each subcomponent in a
substructured system are represented by a truncated set of normal modes within the lower
frequency range, while all physical degrees of freedom (DOFs) at the interface are retained.
In cases where there are many interconnected subcomponents within a system, in particular
when these components are finely discretised in the Finite Element (FE) domain, the reduced
system matrices may still involve a significant number of equations. This, in turn, leads to a
considerable computational workload. To address this issue, further reduction of the system
matrices concerning the interface DOFs by using a set of truncated interface modes can be
considered. However, the accuracy of the reduced matrices depends on the representation
of the truncated dynamics in the reduction process. In this work, two interface reduction
techniques are presented to truncate the interface dynamics of the Enhanced Craig-Bampton
(ECB) equations of motion. The first technique is a classical interface reduction approach that
assumes decoupled internal and interface dynamics. The second approach is an extension of the
first one by incorporating an additional coupling term that accounts for interactions between
the truncated internal and interface dynamics. The performance of each interface reduction
technique is evaluated by applying them to three practical engineering examples. In these
instances, resonance frequencies, associated errors, transfer functions, and normal modes are
compared to those obtained using both the classical CB method and the full model.

1. Introduction

Substructure coupling for dynamic analysis or Component Mode Synthesis (CMS) has, since the introduction of the Craig-
Bampton (CB) method [1], gained great popularity within the field of Structural Dynamics. The CMS method is an extension of
static condensation by Hurty [2,3] and Guyan-Irons [4,5], which in difference compensates for the neglected inertia terms by
inclusion of a set of generalised coordinates. The objective of CMS comprises the fragmentation of a complex structure into several
distinct regions or substructures, reducing the representation system matrices with contribution from component normal modes and
assembling a reduced-order system with interface constraint (or attachment) modes for the entire system, Fig. 1. The constraint
modes are defined as static deformation due to the application of a unit displacement at one interface degree-of-freedom (DOF),
whilst restraining the remaining DOFs. Attachment modes are defined as displacement vectors due to the application of a unit force
at one DOF, and hence are simply just columns of the associated flexibility matrix, [6]. Component normal modes are eigenvectors
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Fig. 1. Illustration of reduction process from the full model to interface reduction in the CMS domain. The black dots denote numbers associated with DOFs in
the system matrix. The presented data is associated with the stiffened steel plate example in Section 4.1.

computed through eigenvalue analysis and may be classified as fixed-interface, free-interface, hybrid-interface and loaded interface
normal modes, [7]. The number of component normal modes (dominant modes) are often selected within the lower frequency range
or chosen based on mode selection methods, for example, [8–10]. Further review of substructure coupling and CMS methods can
be found in [1,7,11,12].

The Craig-Bampton method employs a truncated set of fixed-interface normal modes together with a set of constraint modes to
reduce the substructure system matrices. The fixed-interface modes are computed through an eigenvalue analysis for the substructure
system matrices with restrained interface boundary DOFs. In the 1970s, another class of the CMS method was introduced to
employ free-interface modes, in particular MacNeal’s Method [13], Rubin’s Method [14], Hintz’s method [15] and Craig-Chang
Method [16], and others [17–20]. Substructures with truncated internal dynamics are assembled into a coupled global system
using displacement compatibility at their interfaces, referred to as primal assembly, [11,21]. Considering force compatibility at
the substructure interfaces, Rixen [21] introduced a Dual Assembly approach allowing for small discontinuities in displacement
across the interfaces. Park and Park also proposed a robust free interface CMS method known as flexibility-based CMS (F-CMS) with
localised Lagrange multipliers to ensure mathematical independence between substructures [22]. The present study focuses on the
primal assembly approach first introduced by Craig Jr. and Bampton [1]. This approach considers the coupling of the substructures
at their interfaces through the use of constraint modes, thereby allowing for the description of the motion at the coupling interfaces
through these constraint modes.

The adoption of reduced substructural models instead of full models in computational mechanics results in improved compu-
tational efficiency, simplified modelling, and increased flexibility. Hence, in addition to its use in structural mechanics to study
mechanical response of structures, the CMS method has been recently extended to address computational efficiency in fluid–structure
interaction, thermo-mechanical vibration, vibro-acoustic analyses and simulation of protein dynamics, as reported in [23–26].
Accordingly, reduction methods, particularly the CB method, have been integrated into commercial FE software, [27,28].

The accuracy of CMS methods, including the CB method, is often contingent upon the number of component normal modes
included in the compensation for neglected inertia. To address this limitation, Kim and Lee [19] developed the Enhanced Craig-
Bampton (ECB) method, which incorporates both dominant and residual modes truncated in the original CB method. This results
in a significant improvement in the accuracy of the CB method with a minimal additional computational cost. Accurate reduced
models are crucial for structural design, system identification, and model calibration based on experimental data.

The reduction process within the CMS framework involves truncation of the internal dynamics of each subcomponent within a
substructured system using a set of dominant modes, whilst preserving the physical DOFs at the interfaces between the substructures.
This procedure is particularly useful in the analysis of structural assemblies consisting of a limited number of interconnected
substructures or with a limited number of interaction nodes between the substructures. Nonetheless, for extremely large and
complex structures with multiple substructures and a substantial number of interaction nodes, the CMS domain may be dominated
by the interface DOFs. As a result, the reduced-order system matrices may still contain a significant number of DOFs, leading to
computational costs. In 1977, Craig and Chang introduced the interface reduction technique to further reduce the number of DOFs
by applying Guyan, Ritz, and modal reduction techniques, as documented in [29]. The modal reduction technique underwent further
development by Castanier et al. [30], who applied a secondary eigenvalue analysis on the system-level interface partition of the
assembled system matrices. This led to the identification of eigenvectors known as system-level Characteristic Constraint (CC) modes.
Using a truncated set of CC modes allows for further reduction of the equations of motion and results in a significant decrease in
the size of the assembled system matrices.

The work by Castanier et al. [30] inspired subsequent studies in the field of interface reduction technique. For example, Rixen
proposed an interface reduction technique for the Dual Craig-Bampton method utilising free interface modes [21]. Holzwarth
et al. [31] proposed the utilisation of Legendre Polynomials as basis functions to represent the interface deformation patterns as an
approach to reducing the interface DOFs. The performance of this method was then compared to that of the CC mode approach.
Ahn et al. [32] presented a refinement technique of the interface reduction technique by Castanier et al. [30] by incorporating the
influence of residual flexibility into the CC modes. Additionally, interface reduction of the F-CMS method was proposed by using
mathematical basis reconstruction of the interface DOFs, [17,33]. Hong et al. [34] proposed a technique for conducting eigenvalue
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analysis on the CB interface DOFs at the substructure level before assembly using exact interface compatibility, and reducing the
interface DOFs by employing augmented modes. Given the popularity of the CB method, most of the existing interface reduction
techniques are associated with it. Further information on these techniques can be found in a review by Krattiger et al. [35].

The interface reduction technique using CC modes results in reduced-order system matrices, the accuracy of which depends on
the number of interface constraint modes retained. However, the reduction process may result in system matrices of lower accuracy
compared to the original system matrices due to approximations introduced during the reduction procedure. To mitigate this issue,
the interface reduction technique based on CC modes can be combined with the ECB method, instead of CB. The ECB method has
been shown to produce system matrices of greater accuracy compared to the original CB method, [19,36–38]. The approach to the
interface reduction proposed by Castanier et al. [30] encompass a classical modal truncation based on the assumption of decoupled
internal and interface DOFs. This approach is valid, considering the decoupled stiffness characteristics of the CB system matrices.
However, as evidenced further in the paper, this assumption is not entirely correct and the internal and interface DOFs are not fully
decoupled when the ECB method is employed. This may result in system matrices with reduced accuracy. Incorporating the coupling
between internal and interface dynamics can improve the accuracy of the interface reduction technique and produce system matrices
with greater accuracy compared to the classical approach proposed by Castanier et al. [30].

In this study, two interface reduction techniques are coupled with the ECB method. The first option, as proposed by Castanier
et al. [30], is considered. The second option builds upon the first approach and includes a coupling term to address the transmission
of vibrational energy between the internal and interface dynamics. The efficacy of each of these interface reduction techniques has
been evaluated through three practical engineering examples, and the results demonstrate an improvement in the accuracy of the
system matrices. Furthermore, the results are compared with the classical CB method, both with and without the interface reduction
proposed by Castanier et al. [30]. Further mathematical derivations and a step-by-step implementation algorithm are also provided
to facilitate the practical application of this work.

The structure of the rest of this paper is outlined as follows: Section 2 provides a comprehensive overview of substructure
coupling and reduction of internal dynamics of substructures. Section 3 outlines the derivation of interface reduction techniques in
conjunction with CB and ECB. The performance of each proposed interface reduction technique is evaluated through 3 examples in
Section 4, and conclusions are drawn in Section 5.

2. Substructure coupling and model order reduction

This section provides a brief introduction to substructure reduction and coupling, comprising substructure partitioning, internal
dynamics truncation, and subsequent coupling. The reduction methods used to truncate substructure internal dynamics include the
Craig-Bampton (CB) and Enhanced Craig-Bampton methods. In the CMS domain, substructures are assembled block-diagonally and
share interfaces, Fig. 1. With the aim of achieving a partitioned global system, the substructures are decomposed into internal and
interface regions before the coupling procedure.

The equations of motion for a discretised substructure, in the absence of damping, can be formulated as:

𝐌(𝑠)�̈�(𝑠) +𝐊(𝑠)𝐮(𝑠) = 𝐟 (𝑠), 𝑠 = 1, 2,… , 𝑁s, (1)

where 𝐌(𝑠), 𝐊(𝑠) ∈ R
𝑁 (𝑠)×𝑁 (𝑠)

are mass and stiffness matrices and 𝐮(𝑠), 𝐟 (𝑠) ∈ R
𝑁 (𝑠)×1 are nodal displacement and force vectors for

substructure 𝑠, respectively. An upper double-dot denotes second-order time-derivative 𝑑2∕𝑑𝑡2 and 𝑁𝑠 denotes the total number of
substructures. To simplify subsequent substructure coupling, the substructure’s internal and boundary regions are decomposed to

𝐌(𝑠) =

[
𝐌(𝑠)

𝑖𝑖
𝐌(𝑠)

𝑖𝑏

𝐌(𝑠)
𝑏𝑖

𝐌(𝑠)
𝑏𝑏

]
, 𝐊(𝑠) =

[
𝐊(𝑠)

𝑖𝑖
𝐊(𝑠)

𝑖𝑏

𝐊(𝑠)
𝑏𝑖

𝐊(𝑠)
𝑏𝑏

]
, 𝐮(𝑠) =

{
𝐮(𝑠)
𝑖

𝐮(𝑠)
𝑏

}
, 𝐟 (𝑠) =

{
𝐟 (𝑠)
𝑖

𝐟 (𝑠)
𝑏

}
, (2)

where the substructure system matrices 𝐌(𝑠) and 𝐊(𝑠) are symmetric positive semi-definite. Hence, the system matrix blocks
𝐌(𝑠)

𝑖𝑏
= 𝐌(𝑠)⊺

𝑏𝑖
and 𝐊(𝑠)

𝑖𝑏
= 𝐊(𝑠)⊺

𝑏𝑖
. The subscripts 𝑖 and 𝑏 denote internal and boundary (interface) regions, respectively. The total number

of substructure internal and boundary DOFs are defined as 𝑁 (𝑠)
𝑖
and 𝑁

(𝑠)
𝑏
, respectively. Thus, the total number of substructure DOFs

is 𝑁 (𝑠) = 𝑁
(𝑠)
𝑖

+𝑁
(𝑠)
𝑏
.

The system matrices and force vector associated with 𝑁𝑠 substructures to be coupled can be assembled in a block-diagonal format
as follows:

�̆�
𝛥
= diag(𝐌(1),… ,𝐌(𝑁𝑠)) =

⎡⎢⎢⎢⎣
𝐌(1)

⋱

𝐌(𝑁𝑠)

⎤⎥⎥⎥⎦ , �̆�
𝛥
= diag(𝐊(1),… ,𝐊(𝑁𝑠)), 𝐟

𝛥
=
⎧⎪⎨⎪⎩
𝐟 (1)

⋮

𝐟 (𝑁𝑠)

⎫⎪⎬⎪⎭ . (3)

In the CMS field, substructures in a coupled system share their boundary DOFs at their interfaces. To ensure compatibility between
the coupled substructure DOFs, the Boolean matrix 𝐋 is used to impose interface coupling between the substructures, as described
in [11]. This establishes a relationship between the substructure displacement vector 𝐮(𝑠) and the global displacement vector 𝐮𝑔 as
follows:

𝐮(𝑠) = 𝐋(𝑠)𝐮𝑔, 𝐮𝑔 =

{
𝐮𝑖

𝐮𝑏

}
, (4)
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where 𝐋(𝑠) is a substructure primal assembly Boolean operator. This relationship ensures the recovery of the substructure displace-
ment vector from the global displacement vector. Considering a primal assembly approach, the substructures in Eq. (3) can be
coupled as follows:

𝐌𝑔

𝛥
= 𝐋⊺�̆�𝐋 =

[
𝐌𝑖𝑖 𝐌𝑖𝑏

𝐌𝑏𝑖 𝐌𝑏𝑏

]
, (5a)

𝐊𝑔

𝛥
= 𝐋⊺�̆�𝐋 =

[
𝐊𝑖𝑖 𝐊𝑖𝑏

𝐊𝑏𝑖 𝐤𝑏𝑏

]
, (5b)

𝐅𝑔

𝛥
= 𝐋⊺𝐟 =

{
𝐟𝑖
𝐟𝑏

}
, (5c)

where the size of the global mass matrix 𝐌g, stiffness matrix 𝐊g and force vector 𝐅g is 𝑁 × 𝑁 , 𝑁 × 𝑁 , and 𝑁 × 1, respectively.
The total number of DOFs is denoted 𝑁 = 𝑁𝑖 + 𝑁𝑏, where 𝑁𝑖 represents the total number of internal DOFs, and 𝑁𝑏 represents
the total number of interface DOFs in the global system. The total number of internal DOFs is defined as 𝑁𝑖 =

∑𝑁𝑠

𝑠=1 𝑁
(𝑠)
𝑖
. Because

the substructures share interfaces within the global system, the total number of global interface DOFs is less than the sum of all
individual substructure interface DOFs, i.e., 𝑁𝑏 <

∑𝑁𝑠

𝑘=1 𝑁
(𝑠)
𝑏
.

The dimensions of 𝐋, 𝐮(𝑠), and 𝐮𝑔 are 𝑁𝑏 × 𝑁 , 𝑁 (𝑠) × 1, and 𝑁 × 1, respectively. The global force vector 𝐅𝑔 contains a zero
partition for 𝐟𝑖 since all loaded DOFs are considered as interface DOFs and included in the 𝐟𝑏 partition. Information on constructing
the Boolean matrix 𝐋 can be found in [11]. It is important to note that these equations represent the coupling equations, originally
proposed by Craig Jr. and Bampton [1], and referred to as primal assembly by Rixen [39]. The next section will provide a brief
review of the CB and ECB methods for reducing the substructure internal DOFs before the assembly procedure outlined in Eq. (5).

2.1. Reduction of internal DOFs

The internal DOFs of each substructure can be reduced by utilising a set of component fixed-interface normal modes before the
assembly and coupling procedure outlined in Eqs. (3) and (5). The normal modes are obtained by restraining all interface DOFs and
conducting an eigenvalue analysis for the internal DOFs as:(

𝐊(𝑠)
𝑖𝑖

− 𝜔
(𝑠)2
𝑖,𝑗

𝐌(𝑠)
𝑖𝑖

)
𝝓
(𝑠)
𝑖,𝑗

= 𝟎, 𝑗 = 1, 2,… , 𝑁
(𝑠)
𝑖,𝑑

, (6)

where the system matrices 𝐌(𝑠)
𝑖𝑖
and 𝐊(𝑠)

𝑖𝑖
are respectively internal partitions of the substructure mass and stiffness matrices outlined

in Eq. (2), whilst 𝜔(𝑠)2
𝑖,𝑗

and 𝝓
(𝑠)
𝑖,𝑗
are associated 𝑗th eigensolution. The number of substructure dominant modes retained is defined as

𝑁
(𝑠)
𝑖,𝑑
. The dominant modes are often selected within the lower frequency range, or according to mode selection techniques, [9,10].

Considering a fixed-interface truncation approach, the substructure displacement vector can be approximated to

𝐮(𝑠) ≈ �̄�(𝑠)
CB�̂�

(𝑠) = �̄�(𝑠)
CB

{
𝐪(𝑠)
𝑖,𝑑

𝐮(𝑠)
𝑏

}
, (7a)

�̄�(𝑠)
CB =

[
Φ(𝑠)

𝑖,𝑑
Ψ(𝑠)

𝑖𝑏

𝟎 𝐈(𝑠)
𝑏𝑏

]
, 𝚽(𝑠) =

[
𝝓
(𝑠)
𝑖,1 𝝓

(𝑠)
𝑖,2 … 𝝓

(𝑠)
𝑖,𝑑

𝟎 𝟎 … 𝟎

]
, 𝚿(𝑠) =

[
Ψ(𝑠)

𝑖𝑏

𝐈(𝑠)
𝑏𝑏

]
, Ψ(𝑠)

𝑖𝑏
= −𝐊(𝑠)−1

𝑖𝑖
𝐊(𝑠)

𝑖𝑏
, (7b)

where the substructure displacement vector 𝐮(𝑠) is approximated to �̂�(𝑠), by making use of the substructure transformation matrix �̄�(𝑠)
CB,

where an over-bar denotes approximated quantities. The fixed-interface mode matrix Φ(𝑠) contains 𝑁𝑖,𝑑 columns of the dominant
modes obtained in Eq. (6). The constraint mode matrixΨ(𝑠) contains static mode shapes of the internal DOFs due to unit displacement
of the interface boundary DOFs Ψ(𝑠)

𝑖𝑏
and an identity matrix 𝐈(𝑠)

𝑏𝑏
. Thus, the motion of the interface is entirely described by the

constraint modes, [30]. The Φ(𝑠) together with Ψ(𝑠) are referred to as a complete set of fixed-interface normal mode and constraint
mode and have the dimensions 𝑁 ×𝑁𝑖,𝑑 and 𝑁 ×𝑁𝑏, respectively. Truncating the substructure internal DOFs using Eq. (7) in Eq. (1)
and pre-multiplying by �̄�(𝑠)⊺

CB , the reduced substructure equations of motion can be expressed as:

�̄�(𝑠)⊺
CB 𝐌(𝑠)�̄�(𝑠)

CB

{
�̈�(𝑠)
𝑖,𝑑

�̈�(𝑠)
𝑏

}
+ �̄�(𝑠)⊺

CB 𝐊(𝑠)�̄�(𝑠)
CB

{
𝐪(𝑠)
𝑖,𝑑

𝐮(𝑠)
𝑏

}
= �̄�(𝑠)⊺

CB

{
𝐟 (𝑠)
𝑖

𝐟 (𝑠)
𝑏

}
, (8)

with

�̂�(𝑠) = �̄�(𝑠)⊺
CB 𝐌(𝑠)�̄�(𝑠)

CB =

[
�̂�(𝑠)

𝑖𝑖
�̂�(𝑠)

𝑖𝑏

�̂�(𝑠)
𝑏𝑖

�̂�(𝑠)
𝑏𝑏

]
, (9a)

�̂�(𝑠) = �̄�(𝑠)⊺
CB 𝐊(𝑠)�̄�(𝑠)

CB =

[
�̂�(𝑠)

𝑖𝑖
𝟎(𝑠)
𝑖𝑏

𝟎(𝑠)
𝑏𝑖

�̂�(𝑠)
𝑏𝑏

]
, (9b)

�̂�(𝑠) = �̄�(𝑠)⊺
CB

{
𝐟 (𝑠)
𝑖

𝐟 (𝑠)
𝑏

}
=

{
𝐟 (𝑠)
𝑖

𝐟 (𝑠)
𝑏

}
, (9c)
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where �̂�(𝑠) and �̂�(𝑠) are substructure system matrices representing mass and stiffness, with internal dynamics truncated using a set
of dominant modes 𝑁𝑖,𝑑 , and �̂� is the corresponding force vector. Referred to as the Craig-Bampton method in the literature [1],
this approach is characterised by coupled mass and decoupled stiffness between internal and interface regions, as evident in Eq. (9).
Considering a primal coupling approach introduced in Eqs. (3) and (5), the reduced global equations of motion in Eq. (9) can be
derived as:

�̂�g ̂̈𝐮g + �̂�g �̂�g = �̂�g, (10)

where �̂�g and �̂�g are respectively global mass and stiffness matrices with truncated internal dynamics using CB method, and �̂�g
is the corresponding global force vector. The size of the system matrices and force vector are respectively �̂� × �̂� and �̂� × 1, with
�̂� = 𝑁𝑖,𝑑 +𝑁𝑏.

In the original CB method, the residual substructural modes are truncated without any consideration. To acquire an improved
accuracy of the reduced matrices, Kim and Lee [19] proposed an ECB method where the residual substructural modes are in addition
to the dominant structural modes included in the transformation matrix. Considering the ECB approach in [19], the substructure
displacement vector can be approximated as:

𝐮(𝑠) ≈ �̄�(𝑠)
ECB�̄�

(𝑠) = �̄�(𝑠)
ECB

{
𝐪(𝑠)
𝑖,𝑑

𝐮(𝑠)
𝑏

}
, �̄�ECB = �̄�(𝑠)

CB + �̄�(𝑠)
R , (11a)

�̄�(𝑠)
R =

⎡⎢⎢⎣
𝟎 𝐅(𝑠)

rs

[
−𝐌(𝑠)

𝑖𝑖
𝐊(𝑠)−1

𝑖𝑖
𝐊(𝑠)

𝑖𝑏
+𝐌(𝑠)

𝑖𝑏

]
𝟎 𝟎

⎤⎥⎥⎦ �̄�(𝑠)−1
CB �̄�(𝑠)

CB, (11b)

𝐅(𝑠)
rs = 𝐊(𝑠)

𝑖𝑖
−Φ(𝑠)

𝑖,𝑑
Λ(𝑠)−1

𝑖,𝑑
Φ(𝑠)⊺

𝑖,𝑑
, Λ(𝑠)

𝑖,𝑑
= Φ(𝑠)⊺

𝑖,𝑑
𝐊(𝑠)

𝑖𝑖
Φ(𝑠)

𝑖,𝑑
. (11c)

The equation above indicates that the CB transformation matrix �̄�(𝑠)
CB has been supplemented with another transformation matrix,

namely �̄�(𝑠)
R which contains residual modal effect 𝐅(𝑠)

rs . With the ECB transformation matrix derived in Eq. (11), the substructure
equations of motion in Eq. (1) can be approximated as follows:

�̄�(𝑠)⊺
ECB𝐌

(𝑠)�̄�(𝑠)
ECB

{
�̈�(𝑠)
𝑖,𝑑

�̈�(𝑠)
𝑏

}
+ �̄�(𝑠)⊺

ECB𝐊
(𝑠)�̄�(𝑠)

ECB

{
𝐪(𝑠)
𝑖,𝑑

𝐮(𝑠)
𝑏

}
= �̄�(𝑠)⊺

ECB

{
𝐟 (𝑠)
𝑖

𝐟 (𝑠)
𝑏

}
, (12)

with

�̄�(𝑠) = �̄�(𝑠)⊺
ECB𝐌

(𝑠)�̄�(𝑠)
ECB =

[
�̄�(𝑠)

𝑖𝑖
�̄�(𝑠)

𝑖𝑏

�̄�(𝑠)
𝑏𝑖

�̄�(𝑠)
𝑏𝑏

]
, (13a)

�̄�(𝑠) = �̄�(𝑠)⊺
ECB𝐊

(𝑠)�̄�(𝑠)
ECB =

[
�̄�(𝑠)

𝑖𝑖
�̄�(𝑠)

𝑖𝑏

�̄�(𝑠)
𝑏𝑖

�̄�(𝑠)
𝑏𝑏

]
, (13b)

𝐟 (𝑠) = �̄�(𝑠)⊺
ECB

{
𝐟 (𝑠)
𝑖

𝐟 (𝑠)
𝑏

}
=

{
𝐟 (𝑠)
𝑖

𝐟 (𝑠)
𝑏

}
, (13c)

where �̄�(𝑠) and �̄�(𝑠) are system matrices for which the internal DOFs are truncated using a fixed-interface based ECB method. In
Eq. (13), it is evident that the off-diagonal terms of �̄�(𝑠) are non-zero. This is in contrast to the classical CB method, which features
decoupled internal and interface dynamics, as demonstrated in Eq. (9). As a result, the ECB method exhibits stiffness coupling
between internal and boundary regions. For further insight into CMS methods, the reader is referred to [7,11]. With the primal
coupling approach in Eqs. (3) and (5) the reduced system in Eq. (13) can be assembled to derive the reduced equations of motion
as follows:

�̄�g ̈̄𝐮g + �̄�g �̄�g = �̄�g (14)

where �̄�g, �̄�g and �̄�g are respectively global mass, stiffness matrices, and force vector, with truncated internal dynamics using ECB
method. The substructures are coupled at their boundaries with constraint modes. The number of dominant internal modes retained
and included in the reduction for substructure 𝑠 was defined as 𝑁 (𝑠)

𝑖,𝑑
in Eq. (6). Hence, the total number of retained modes associated

with all substructures must become 𝑁𝑖,𝑑 =
∑𝑁𝑠

𝑘=1 𝑁
(𝑠)
𝑖,𝑑
. The number of DOFs in the reduced system becomes �̄� = 𝑁𝑖,𝑑 + 𝑁𝑏, which

is fewer than the total DOFs before reduction, denoted as 𝑁 . Note that the total internal DOFs were originally 𝑁𝑖 and the total
number of the internal DOFs after reduction has become 𝑁𝑖,𝑑 ≪ 𝑁𝑖.

The equations presented above may still comprise a significant number of DOFs, depending on the extent of coupling between
the substructures at their interfaces. As such, in the following section, techniques for reducing the size of the interface region will
be described.
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3. Reduction of interface DOFs

In the previous section, the internal dynamics of each substructure were truncated using a set of fixed-interface normal modes and
subsequently coupled at their interfaces using constraint modes. In other words, the substructure internal DOFs were reduced whilst
the physical interface DOFs were retained. Since the motion on the substructural interface is described by the constraint modes, the
number of DOFs associated with the constraint modes may result in a further computational cost. In particular, for a sufficiently
fine FE discretisation with many substructural components, the size of the CMS model may be dominated by the constraint mode
DOFs. Therefore, a reduced interface approach can be considered to reduce computational burden and achieve a reduced set of
system matrices. In this section, two interface reduction techniques will be introduced to truncate the interface dynamics of system
matrices with truncated internal dynamics. The first option, introduced in Section 3.1, is based on the classical approach proposed by
Castanier et al. [30] to truncate interface dynamics of the CB method. This approach is referred to as IR1 in subsequent derivations.
The second option is a refinement of Castanier et al.’s [30] approach, which accounts for the coupled stiffness terms between internal
and interface DOFs. This refinement is particularly important because, in contrast to the CB method, the ECB method comprises
coupled internal and interface stiffness. This refined approach is denoted as IR2 in the following derivations in Section 3.2.

To reduce the interface DOFs, a similar approach as for the internal DOFs reduction can be considered, namely truncating the
interface dynamics with a set of fixed-internal modes obtained from computing an eigenvalue analysis for the interface DOFs as:(

𝐊𝑏𝑏 − 𝜔2
𝑏,𝑗
𝐌𝑏𝑏

)
𝝓𝑏,𝑗 = 𝟎, 𝑗 = 1, 2,… , 𝑁𝑏,𝑑 , (15)

where 𝜔2
𝑏,𝑗
and 𝝓𝑏,𝑗 are 𝑗th eigenvalue and eigenvector associated with the interface DOFs, respectively. The interface mode 𝝓𝑏,𝑗 is

often referred to as system-level Characteristic Constraint (CC) mode. The number of dominant modes associated with the interface
boundary is labelled as 𝑁𝑏,𝑑 , which is less than the total number of boundary modes 𝑁𝑏, i.e. 𝑁𝑏,𝑑 ≪ 𝑁𝑏. In this study, the number
of dominant interface modes, denoted as 𝑁𝑏,𝑑 , is selected based on mode convergence, as shown in Figs. 9, 4, and 17. The entry
system matrices in Eq. (15) are the interface partitions of the assembled (global) system matrices defined in Eq. (10) for CB and
Eq. (14) for ECB, respectively.

3.1. Interface reduction technique

Selecting a number of dominant interface modes, the structural displacement vector of the boundary DOFs can be approximated
as:

𝐮𝑏 ≈ Φ𝑏,𝑑𝐪𝑏,𝑑 , (16)

where the modal matrix Φ𝑏,𝑑 contains dominant interface eigenvectors and has the dimension 𝑁𝑏 × 𝑁𝑏,𝑑 , where 𝑁𝑏,𝑑 ≪ 𝑁𝑏, and
𝐪𝑏,𝑑 is the eigenvector’s associated generalised coordinates. Truncating the boundary DOFs using a set of dominant modes, the
displacement vector of the coupled systems in Eqs. (10) and (14) can be further reduced as follows:

�̂�g ≈ �̄�IR1

{
𝐪𝑖,𝑑

𝐪𝑏,𝑑

}
, �̄�g ≈ �̄�IR1

{
𝐪𝑖,𝑑

𝐪𝑏,𝑑

}
, �̄�IR1 =

[
𝐈𝑖,𝑑 𝟎
𝟎 Φ𝑏,𝑑

]
, (17)

where �̂�g and �̄�g are displacement vectors associated with the equations of motion, for which the internal dynamics are truncated
using CB and ECB methods, respectively. The interface transformation matrix �̄�IR1 was originally proposed by [30] for use in
the interface reduction of the original Craig-Bampton method. The displacement vector, after truncation of the interface DOFs,
now contains generalised internal and interface coordinates. As evident in Eq. (17), �̄�IR1 implies decoupled internal and interface
dynamics, as indicated by the zeros in the off-diagonal terms. This approach aligns with the decoupled stiffness characteristics of
CB, as demonstrated in Eq. (9). However, the coupled stiffness characteristics of ECB in Eq. (13) make this approach unsuitable for
ECB, as shown further through the application examples in Section 4. Considering the �̄�IR1 to truncate interface dynamics of the
global system matrices for which internal dynamics is truncated using the CB method in Eq. (9), the equations of motion in Eq. (10)
can be further reduced to

�̄�⊺
IR1�̂�g�̄�IR1

{
�̈�𝑖,𝑑

�̈�𝑏,𝑑

}
+ �̄�⊺

IR1�̂�g�̄�IR1

{
𝐪𝑖,𝑑

𝐪𝑏,𝑑

}
= �̄�⊺

IR1

{
𝐟𝑖
𝐟𝑏

}
, (18)

with

�̌� = �̄�⊺
IR1�̂�g�̄�IR1 =

[
�̌�𝑖𝑖 �̌�𝑖𝑏

�̌�𝑏𝑖 �̌�𝑏𝑏

]
, (19a)

�̌� = �̄�⊺
IR1�̂�g�̄�IR1 =

[
�̌�𝑖𝑖 �̌�𝑖𝑏

�̌�𝑏𝑖 �̌�𝑏𝑏

]
, (19b)

�̌� = �̄�⊺
IR1

{
𝐟𝑖
𝐟𝑏

}
=

{
𝐟𝑖
𝐟𝑏

}
. (19c)
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The component terms of the system matrices in Eq. (19) are computed using the components of the system matrices in Eq. (10), as:

�̌�𝑖𝑖 = �̂�𝑖𝑖, �̌�𝑖𝑏 = �̂�𝑖𝑖Φ𝑏,𝑑 , �̌�𝑏𝑖 = �̌�⊺
𝑖𝑏
, �̌�𝑏𝑏 = Φ

⊺
𝑏,𝑑

�̂�𝑏𝑏Φ𝑏,𝑑 , (20a)

�̌�𝑖𝑖 = �̄�𝑖𝑖, �̌�𝑖𝑏 = �̂�𝑖𝑖Φ𝑏,𝑑 , �̌�𝑏𝑖 = �̌�⊺
𝑖𝑏
, �̌�𝑏𝑏 = Φ

⊺
𝑏,𝑑

�̂�𝑏𝑏Φ𝑏,𝑑 , (20b)

𝐟𝑖 = 𝐟𝑖, 𝐟𝑏 = Φ
⊺
𝑏,𝑑

𝐟𝑏, (20c)

where it is noted that the interface partition of the CB system matrices, i.e. �̂�𝑏𝑏 and �̂�𝑏𝑏 are reduced using classical modal truncation.
However, the truncated internal partition of the CB system matrices, i.e. �̂�𝑖𝑖 and �̂�𝑖𝑖 are just retained. Accordingly, the equations
of motion in Eq. (10) can be further reduced to

�̌� ̌̈𝐮 + �̌� �̌� = �̌�, (21)

where the system matrices �̌�, �̌� and force vector �̌� are those for which the internal and boundary DOFs are reduced using the CB
method and interface reduction matrix �̄�IR1, respectively. Hence the size of the mentioned system matrices and the force vector are
respectively �̌� ×�̌� and �̌� ×1, where �̌� = 𝑁𝑖,𝑑 +𝑁𝑏,𝑑 , which is smaller than �̂� , �̄� and 𝑁 . This combination of CB and IR1 is denoted
CB-IR1 in the application examples in Section 4.

Considering �̄�IR1 to truncate interface dynamics of the global system matrices for which the internal dynamics are truncated
using the ECB method, the system matrices in Eq. (14) can be further reduced to

�̄�⊺
IR1�̄�g�̄�IR1

{
�̈�𝑖,𝑑

�̈�𝑏,𝑑

}
+ �̄�⊺

IR1�̄�g�̄�IR1

{
𝐪𝑖,𝑑

𝐪𝑏,𝑑

}
= �̄�⊺

IR1

{
𝐟𝑖
𝐟𝑏

}
, (22)

with

�̀� = �̄�⊺
IR1�̄�g�̄�IR1 =

[
�̀�𝑖𝑖 �̀�𝑖𝑏

�̀�𝑏𝑖 �̀�𝑏𝑏

]
, (23a)

�̀� = �̄�⊺
IR1�̄�g�̄�IR1 =

[
�̀�𝑖𝑖 �̀�𝑖𝑏

�̀�𝑏𝑖 �̀�𝑏𝑏

]
, (23b)

�̀� = �̄�⊺
IR1

{
𝐟𝑖
𝐟𝑏

}
=

{
𝐟𝑖
𝐟𝑏

}
, (23c)

where the elements of the system matrices �̀� and �̀�, and the force vector �̀� are defined as:

�̀�𝑖𝑖 = �̄�𝑖𝑖, �̀�𝑖𝑏 = �̄�𝑖𝑖Φ𝑏,𝑑 , �̀�𝑏𝑖 = �̀�⊺
𝑖𝑏
, �̀�𝑏𝑏 = Φ

⊺
𝑏,𝑑

�̄�𝑏𝑏Φ𝑏,𝑑 , (24a)

�̀�𝑖𝑖 = �̄�𝑖𝑖, �̀�𝑖𝑏 = �̄�𝑖𝑖Φ𝑏,𝑑 , �̀�𝑏𝑖 = �̀�⊺
𝑖𝑏
, �̀�𝑏𝑏 = Φ

⊺
𝑏,𝑑

�̄�𝑏𝑏Φ𝑏,𝑑 . (24b)

𝐟𝑖 = 𝐟𝑖, 𝐟𝑏 = Φ
⊺
𝑏,𝑑

𝐟𝑏. (24c)

The equation above indicates that the interface portions of the system matrices, i.e., �̀�𝑏𝑏 and �̀�𝑏𝑏, and the force vector 𝐟𝑏, are
truncated using classical modal truncation. However, this approach does not account for the stiffness coupling present in the ECB
method, as shown in Eq. (13). With the system matrices and force vector in Eq. (23), the equations of motion in Eq. (14) can be
reduced to

�̀� ̀̈𝐮 + �̀� �̀� = �̀�, (25)

where the sizes of the system matrices �̀� and �̀�, and the force vector �̀� are �̀� × �̀� and �̀� × 1, respectively, where �̀� = 𝑁𝑖,𝑑 +𝑁𝑏,𝑑 .
This size is smaller than that of �̂� , �̄� , and 𝑁 . The approach using a combination of ECB and IR1 is denoted as ECB-IR1 in the
application examples in Section 4.

3.2. Refined interface reduction technique

Referring back to Eq. (13), it is evident that the off-diagonal terms of ECB, which indicates the interaction between the truncated
internal and boundary DOFs, are not entirely decoupled. These off-diagonal terms serve as a forcing function, resulting in the
excitation of the internal dynamics by the motion at the interface. Consequently, to project the truncated internal dynamics onto
the interface, the consideration of an additional constraint mode matrix is necessary to facilitate the transfer of the vibration energy.
In this section, the interface reduction matrix presented in the previous section denoted as �̄�IR1, will be modified to enhance its
accuracy. This modification is intended for cases where internal dynamics are truncated using the ECB method in Eq. (14).

Considering an additional coupling term, the interface boundary displacement vector in Eq. (16) can be approximated as:

𝐮𝑏 ≈ Ξ𝐪𝑖,𝑑 +Φ𝑏,𝑑𝐪𝑏,𝑑 , (26)
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where Ξ is a constraint mode matrix which projects the internal DOFs onto the interface DOFs, Φ𝑏,𝑑 is a mode matrix containing
dominant interface modes, obtained in Eq. (15) with a column size of 𝑁𝑏,𝑑 , and 𝐪𝑏,𝑑 is it’s associated generalised coordinates. The
shape of the constraint coupling term Ξ is similar to a static condensation of the interface DOFs. This consideration is valid for
low-frequency vibrations considering the interface DOFs respond quasi-statically to the truncated internal DOFs.

The global displacement vector in Eq. (14) can be further reduced to

�̄�g ≈ �̄�IR2

{
𝐪𝑖,𝑑

𝐪𝑏,𝑑

}
, �̃�𝑔 =

{
𝐪𝑖,𝑑

𝐪𝑏,𝑑

}
, �̄�IR2 =

[
𝐈𝑖,𝑑 𝟎
Ξ Φ𝑏,𝑑

]
, Ξ = −�̄�−1

𝑏𝑏
�̄�𝑏𝑖, (27)

where Ξ is computed using components of �̄�g Eq. (14), for which the internal DOFs are reduced using the ECB method and has the
dimension of �̄�𝑏 × �̄�𝑖,𝑑 . It is noted that the transformation matrix �̄�IR2 in Eq. (27) is similar to the �̄�IR1 in Eq. (17), however, with
an additional coupling term Ξ.

Considering the refined interface reduction technique which takes the coupling between the truncated internal and interface
DOFs into account, i.e. �̄�IR2, the equations of motion in Eq. (14) can be further reduced to

�̄�⊺
IR2�̄�g�̄�IR2

{
�̈�𝑖,𝑑

�̈�𝑏,𝑑

}
+ �̄�⊺

IR2�̄�g�̄�IR2

{
𝐪𝑖,𝑑

𝐪𝑏,𝑑

}
= �̄�⊺

IR2

{
𝐟𝑖
𝐟𝑏

}
, (28)

where

�̃� = �̄�⊺
IR2�̄�g�̄�IR2 =

[
�̃�𝑖𝑖 �̃�𝑖𝑏

�̃�𝑏𝑖 �̃�𝑏𝑏

]
, (29a)

�̃� = �̄�⊺
IR2�̄�g�̄�IR2 =

[
�̃�𝑖𝑖 �̃�𝑖𝑏

�̃�𝑏𝑖 �̃�𝑏𝑏

]
, (29b)

�̃� = �̄�⊺
IR2

{
𝐟𝑖
𝐟𝑏

}
=

{
�̃�𝑖
�̃�𝑏

}
, (29c)

with

�̃�𝑖𝑖 = �̄�𝑖𝑖 +Ξ⊺�̄�𝑏𝑖 + �̄�𝑏𝑖Ξ +Ξ⊺�̄�𝑏𝑏Ξ, (30a)

�̃�𝑖𝑏 = �̄�𝑖𝑏Φ𝑏,𝑑 +Ξ⊺�̄�𝑏𝑏Φ𝑏,𝑑 , �̃�𝑏𝑖 = �̃�⊺
𝑖𝑏
, (30b)

�̃�𝑏𝑏 = Φ
⊺
𝑏,𝑑

�̄�𝑏𝑏Φ𝑏,𝑑 , (30c)

�̃�𝑖𝑖 = �̄�𝑖𝑖 +Ξ⊺�̄�𝑏𝑖 + �̄�𝑏𝑖Ξ +Ξ⊺�̄�𝑏𝑏Ξ, (30d)

�̃�𝑖𝑏 = �̄�𝑖𝑏Φ𝑏,𝑑 +Ξ⊺�̄�𝑏𝑏Φ𝑏,𝑑 , �̃�𝑏𝑖 = �̃�⊺
𝑖𝑏
, (30e)

�̃�𝑏𝑏 = Φ
⊺
𝑏,𝑑

�̄�𝑏𝑏Φ𝑏,𝑑 , (30f)

�̃�𝑖 = 𝐟𝑖, �̃�𝑖 = Ξ⊺𝐟𝑖 +Φ
⊺
𝑏,𝑑

𝐟𝑏, (30g)

where the system matrices �̃� and �̃� and force vector �̃� are those for which the internal and boundary DOFs are reduced using
ECB method and the refined interface reduction transformation matrix �̄�IR2, respectively. The components of the reduced system
matrices in Eq. (30) clearly show that the truncated internal and coupling terms, i.e. �̃�𝑖𝑖 and �̃�𝑖𝑏 = �̃�⊺

𝑏𝑖
have been enhanced by

additional terms accounting for the coupling between the truncated internal and interface DOFs, cf. Eqs. (20) and (24). Accordingly,
the equations of motion in Eq. (14) can be further reduced to

�̃� ̈̃𝐮 + �̃� �̃� = �̃� , (31)

where the size of the system matrices �̃� and �̃� is �̃� × �̃� and the size of the force vector �̃� is �̃� × 1 with �̃� = 𝑁𝑖,𝑑 + 𝑁𝑏,𝑑 , which
is smaller than both �̄� and 𝑁 , Table 1. The approach using a combination of ECB and IR2 is denoted ECB-IR2 in the application
examples in Section 4.

With the aim of providing a concise summary of each interface reduction technique and its key attributes, a brief comparison is
provided in Table 1. Additionally, to assist the implementation of the interface reduction techniques, a supplementary step-by-step
procedure is provided in Algorithm 1.
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Table 1

Comparison between CB with interface reduction (CB-IR1), ECB with interface reduction (ECB-IR1), and ECB with refined
interface reduction (ECB-IR2). The checkmark denotes valid operations.

CB-IR1 ECB-IR1 ECB-IR2

Transformation matrix �̄�IR1�̄�CB �̄�IR1�̄�ECB �̄�IR2�̄�ECB
Reduced mass matrix �̄�⊺

IR1�̄�
⊺
CB𝐌�̄�CB�̄�IR1 �̄�⊺

IR1�̄�
⊺
ECB𝐌�̄�ECB�̄�IR1 �̄�⊺

IR2�̄�
⊺
ECB𝐌�̄�ECB�̄�IR2

Reduced stiffness matrix �̄�⊺
IR1�̄�

⊺
CB𝐊�̄�CB�̄�IR1 �̄�⊺

IR1�̄�
⊺
ECB𝐊�̄�ECB�̄�IR1 �̄�⊺

IR2�̄�
⊺
ECB𝐊�̄�ECB�̄�IR2

Size of the reduced matrices �̌� = 𝑁𝑖,𝑑 +𝑁𝑏,𝑑 �̀� = 𝑁𝑖,𝑑 +𝑁𝑏,𝑑 �̃� = 𝑁𝑖,𝑑 +𝑁𝑏,𝑑

Reduced internal dynamics ✓ ✓ ✓
Reduced interface dynamics ✓ ✓ ✓

Algorithm 1 Implementation of interface reduction using CB-IR1, ECB-IR1, and ECB-IR2.

Input: Full model substructure system matrices
(
𝐌(𝑠),𝐊(𝑠), 𝐟 (𝑠)

)
Output: Reduced system matrices

(
(�̌�, �̌�, �̌�), (�̀�, �̀�, �̀�), (�̃�, �̃�, �̃�)

)
procedure

1. Solve the internal eigenvalue problem for substructure 𝑠 = 1, 2,… , 𝑁𝑠(
𝐊(𝑠)

𝑖𝑖
− 𝜔2

𝑖,𝑗
𝐌(𝑠)

𝑖𝑖

)
𝝓
(𝑠)
𝑖,𝑗

= 𝟎, 𝑗 = 1, 2,… , 𝑁
(𝑠)
𝑖,𝑑
, in Eq. (6)

2. Compute the CB reduction matrix �̄�(𝑠)
CB, in Eq. (7)

3. Compute the ECB reduction matrix �̄�(𝑠)
ECB, in Eq. (11)

4. Truncate the interior dynamics of each substructure and compute
�̂�g, �̂�g, �̂�g and �̄�g, �̄�g, �̄�g, in Eqs. (10) and (14)

5. Solve the system-level interface eigenvalue problem and obtain CC modes:(
𝐊𝑏𝑏 − 𝜔2

𝑏,𝑗
𝐌𝑏𝑏

)
𝝓𝑏,𝑗 = 𝟎, 𝑗 = 1, 2,… , 𝑁𝑏,𝑑 , in Eq. (15)

6. Compute the interface reduction transformation �̄�IR1 in Eq. (17)
7. Compute the refined interface reduction transformation matrix �̄�IR2 in Eq. (27)
8. Truncate system-level interface dynamics and compute:

- CB-IR1 system matrices and force vector: �̌�, �̌�, �̌�
- ECB-IR1 system matrices and force vector: �̀�, �̀�, �̀�
- ECB-IR2 system matrices and force vector: �̃�, �̃�, �̃�

end procedure

4. Application examples

In this section, the interface reduction techniques discussed in the previous section are applied to reduce the interface DOFs in
three examples. To assess each model’s performance, the results are compared with those from the full model, CB model, and ECB
model. The accuracy of each model is then evaluated by considering the relative frequency error as:

Relative frequency error =
|𝑓𝑖 − 𝑓𝑖|

𝑓𝑖

, (32)

where 𝑓𝑖 represents the resonance frequency of component 𝑖 for comparison. An over-bar, as previously explained, indicates an
approximate quantity. Therefore, 𝑓𝑖 and 𝑓𝑖 respectively correspond to the frequency components of the reduced and full models.

The accuracy of the models is further evaluated in the frequency domain by considering their harmonic response due to the
application of a harmonic unit load. The equations of motion in the frequency domain in the absence of damping can be expressed
as:

𝐙(𝜔)𝐮(𝜔) = 𝐅(𝜔), 𝐙(𝜔)
𝛥
= −𝜔2𝐌 +𝐊, (33)

where 𝐙(𝜔) represents a block-diagonal matrix containing the dynamic stiffness of the coupled substructures. The system matrices
𝐌 and 𝐊 are mass and stiffness matrices, respectively. The response vector is denoted by 𝐮(𝜔) and the force amplitude vector
is defined as 𝐅(𝜔). The response is a function of the driving angular frequency 𝜔 in [rad∕s]. Hence, the dynamic stiffness matrix
𝐙(𝜔) as well as the force vector 𝐅(𝜔) are also functions of the driving frequency 𝜔. The transfer function representing normalised
displacement response under unit loading is often referred to as Admittance. For additional insight into the admittance response,
the representation plots are supplemented with the phase shift angle of the admittance at each discrete frequency step.

To evaluate the accuracy of the vibration modes associated with the reduced models in comparison with the full model, the
statistical indicator Modal Assurance Criterion (MAC) can be employed, [40,41]. The advantages of employing MAC stem from
the fact that it is a quantitative tool for comparing the degree of consistency between two modes, whilst being sensitive to large
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Table 2

Number of internal and interface modes computed for the stiffened plate example in Section 4.1.

Method Number of internal modes retained Number of interface
modes retained

Total number
of DOFs

𝑁
(1)
𝑖,𝑑

𝑁
(2)
𝑖,𝑑

𝑁
(3)
𝑖,𝑑

𝑁
(4)
𝑖,𝑑

𝑁
(5)
𝑖,𝑑

𝑁
(6)
𝑖,𝑑

𝑁𝑏,𝑑

Full model 4542 3252 1584 1584 2214 2214 972 𝑁 = 16362
CB 20 10 5 5 10 10 972 �̂� = 1032
ECB 20 10 5 5 10 10 972 �̄� = 1032
CB-IR1 20 10 5 5 10 10 196 �̌� = 256
ECB-IR1 20 10 5 5 10 10 196 �̀� = 256
ECB-IR2 20 10 5 5 10 10 196 �̃� = 256

differences and relatively insensitive to small differences between two modes. Another advantage is that MAC produces a real
quantity despite the degree of complexity of the modes. Considering MAC as a correlation constant we can find:

MACrs =
|𝝓H

𝑟 𝝓𝑠|2(
𝝓H

𝑟 𝝓𝑟

) (
𝝓H

𝑠 𝝓𝑠

) , (34)

where 𝝓𝑟 and 𝝓𝑠 are two mode vectors to be compared and a superscript H denotes the Hermitian transpose, [42]. The MAC
yields a normalised correlation coefficient between two modes with a value between zero and unity, where unity denotes excellent
correlation and zero denotes absolute orthogonality.

4.1. Stiffened steel plate

In the first example, a stiffened plate inspired by [43] made of steel is considered. Such plates are on a larger scale commonly
employed in bridge structures to withstand lateral torsional buckling as a consequence of significant compression perpendicular
to its axial direction. The dimension of the plate is as follows, Length 𝐿 is 4.8 [m], width 𝐵 is 3.2 [m] and thickness 𝑡 is 0.03 [m].
The plate is stiffened in the axial and transversal directions with two and four stiffeners, respectively. The stiffeners in the axial
direction have a centre-to-centre distance of 1.2 [m], whilst the transversal stiffeners have a centre-to-centre distance of 1 [m]. The
stiffeners have a height 𝐻 of 0.5 [m]. To the plate, material properties of steel are assigned, with Young’s modulus 𝐸 as 210 [GPa],
density 𝜌 as 7850 [kg∕m3] and Poisson’s ratio of 0.3. The domain is discretised using shell FEs with 6 DOFs per nodal point and linear
approximation as well as reduced integration. The element size of 0.1 [m] is chosen in each direction resulting in 2656 elements with
2727 nodes and a total number of DOFs of 16362. The system matrices are subsequently derived and partitioned to 6 substructures
coupled at the interface 𝛤 denoted by a blue line in Fig. 2. Information regarding the number of modes employed in the truncation
of internal and interface dynamics of each region can be found in Table 2. Throughout the analyses, no Dirichlet boundary condition
has been imposed on the plate and no rigid-body modes and resonances have been included in the results presented herein.

The evaluation results indicate that the interface reduction technique IR2 in conjunction with ECB, i.e. ECB-IR2, performs better
than the classical interface reduction technique using CB-IR1 and ECB-IR1, in terms of accuracy in the prediction of the resonance
frequencies, Fig. 3. The convergence plot in Fig. 4 shows that CB-IR1 converges faster than ECB-IR1 and ECB-IR2. This suggests that
adding more interface modes in CB-IR1 does not enhance the results, while the opposite is true for ECB-IR1 and ECB-IR2. Thus,
users might prefer to select the convergence criteria in ECB-IR2, cf. Table 2 and Fig. 4. Evaluation of the transfer functions indicates
improvement in accuracy when ECB-IR2 is employed compared to CB-IR1 and ECB-IR1, Fig. 5. Notably, the ECB-IR2 with only 256
DOFs produces normal modes with an accuracy similar to the ECB with 1032 DOFs in comparison with the full model with 16362
DOFs, Fig. 6.

4.2. Composite cross-laminated timber plate

Cross-laminated timber (CLT) plates have gained great popularity as a sustainable alternative to conventional construction
materials, such as steel and concrete, since the commercial launch of engineered wood products (EWPs). However, in contrast
to the mentioned conventional construction materials, wooden structural elements possess a low mass density, making them extra
sensitive to vibration at lower frequencies. The structure of CLT consists of an odd number of wooden boards arranged in layers,
with each layer oriented at a 90-degree angle to the adjacent ones. For additional information regarding CLT and its production and
development, the reader is referred to the state-of-the-art review by Brandner [44] and the overview in [45]. Wood as a material
possesses a high degree of orthotropy in three main directions: longitudinal (parallel to wood fibres), denoted as 𝐿; tangential
(tangent with the concentric growth rings), denoted as 𝑇 ; and radial (perpendicular to the concentric growth rings), denoted as 𝑅.

In this example, a CLT plate with a total length of 7 [m] and a width of 2.4 [m] is considered, Fig. 7. The plate consists of 7
cross-wisely bonded layers with a material orientation of 90◦ about the 𝑧-axis between one layer and the adjacent ones. The plate is
discretised using doubly-curved composite shell elements with 7 layups, [47]. The thickness of each layup is 40| 20| 40| 40| 40| 20| 40
millimetres, respectively. For the bottom and top layers, the material direction of the fibres is spanning along the 𝑥-axis, whilst for
the second layer from the bottom the fibres are oriented by an angle of 90◦ about the 𝑧-axis and so forth. Such plates are commonly
used as structural elements in multi-storey timber buildings. To the plate, orthotropic material properties of softwood of strength
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Fig. 2. Discretised geometry of a stiffened plate with 𝐿 = 4.8 [m], 𝐵 = 3.2 [m], 𝐻 = 0.5 [m] in (a) 3D and (b) in 2D, as discussed in Section 4.1. Black lines in
(b) denote the stiffeners and Ω𝑖 ∈ {1, 2,… , 6} denote substructure regions. The blue line 𝛤 denotes the interface, a black circle denotes the unit excitation point
and a black square denotes the evaluation point of the transfer functions in the frequency domain.

class C35 in [46] have been assigned, Table 3. Throughout the analyses, no Dirichlet boundary condition has been imposed on

the plate and the rigid-body resonances and modes have not been considered in the results presented herein. Further information

regarding the number of modes retained for each substructure can be found in Table 4.

The evaluations indicate improvement in the accuracy prediction of the resonance frequencies associated with the ECB-IR2

compared with CB-IR1 in comparison to the full model, Fig. 8. The interface mode convergence indicates that CB-IR1 and ECB-IR2
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Fig. 3. Resonance frequencies and their associated relative error of the stiffened plate example in Section 4.1. The numbers in the legend indicate the size of
the system matrices.

Fig. 4. Interface mode convergence of the stiffened plate example in Section 4.1, with respect to modes number 5, 15, and 25.

Table 3

Orthotropic material properties of CLT of strength class C35 from Ref. [46]. The subscripts 𝐿, 𝑇 , and 𝑅 respectively denote orthotropic orientations
of wood in longitudinal, tangential and radial directions.

𝐸𝐿 [MPa] 𝐸𝑇 [MPa] 𝐸𝑅 [MPa] 𝐺𝐿𝑇 [MPa] 𝐺𝐿𝑅 [MPa] 𝐺𝑅𝑇 [MPa] 𝜈𝐿𝑇 [–] 𝜈𝐿𝑅 [–] 𝜈𝑅𝑇 [–] 𝜌 [kg/m3]

13 000 262 430 810 810 57 0.48 0.42 0.28 470
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Fig. 5. Bode plot of the transfer functions and their associated phase shift angle of the stiffened plate example in Section 4.1, to unit loading. The numbers in
the legend indicate the size of the system matrices.

Fig. 6. Modal Assurance Criterion comparing 40 flexible modes of the stiffened plate example in Section 4.1.

converge faster than the ECB-IR1, Fig. 9. This explains that an increase in the number of interface modes in CB-IR1 does not improve
its accuracy, while the opposite is true for ECB-IR1 and ECB-IR2. Evaluation of the transfer functions indicates further improvement
in predicting the resonance peaks in Fig. 10. The MAC evaluation also indicates that ECB-IR2 produces normal modes with only
110 DOFs with an accuracy nearly as for the ECB with 281 DOFs in comparison to the full model with 2808 DOFs, Fig. 11. To gain
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Fig. 7. Discretised Composite Cross-Laminated Timber (CLT) plate geometry (Section 4.2): Substructures Ω1 and Ω2 are interface-coupled at 𝛤 . A black circle
represents unit loading in the out-of-plane direction (z-axis), while a black square indicates the corresponding transfer function. Geometrical dimensions:
𝐿1 = 5.8 [m], 𝐿2 = 1.2 [m], 𝐵1 = 2 [m], and 𝐵2 = 0.4 [m].

Table 4

Number of internal and interface modes computed for the composite CLT plate example in Section 4.2.

Method Number of internal
modes retained

Number of interface
modes retained

Total number of
DOFs

𝑁
(1)
𝑖,𝑑

𝑁
(2)
𝑖,𝑑

𝑁𝑏,𝑑

Full model 1740 828 240 𝑁 = 2808
CB 25 16 240 �̂� = 281
ECB 25 16 240 �̄� = 281
CB-IR1 25 16 69 �̌� = 110
ECB-IR1 25 16 69 �̀� = 110
ECB-IR2 25 16 69 �̃� = 110

further insight into the modes predicted by each model in this study, 3D visualisations of modes 13 and 26 are shown in Figs. 12
and 13.

4.3. Multi-storey CLT building

In the last example a multi-storey CLT building comprising 4 CLT plates, a CLT core and 18 Glued-Laminated Timber (GLT)
beams, is fragmented into 4 substructures. Each substructure is connected at the interface 𝛤 , indicated by a blue line in Figs. 14 and
15. The plane dimension (length × breadth) of the building is 20 × 16 [m2] and each storey is connected with another at a height
of 3.4 [m], giving the building a total height of 13.6 [m]. The core has the dimension (length × breadth) of 12 × 8 [m2], placed at
the centre of the building. The beams have a cross sectional area of 215 × 405 [mm2] with a centre-to-centre distance of 4 [m]. The
core and the plates are assumed to be of 5-ply CLT elements with layup thicknesses 40| 40| 40| 40| 40 millimetres and strength class
of C35, for which the orthotropic elastic properties are presented in Table 3. For the plates, the top and bottom layers of the CLT
plates span along the global 𝑥−axis, whilst for the core, the top and bottom layers of the CLT span along the global 𝑧−axis. Elastic
properties of GL30c with Young’s modulus of 13000 [MPa], density of 500 [kg∕m3] and Poisson’s ratio 0.42 have been assigned to
the beams.

The CLT core and plates are discretised using doubly curved composite shell elements with reduced integration and hourglass
control, as described in [47]. The global element size is set to 0.5 [m] in each direction, using linear interpolation. Additionally,
a convergence analysis of the discretisation has been performed. The beams are modelled according to the Bernoulli–Euler beam
theory (without shear deformation) with the same element size as the plates and the core. Full interaction between the upper and
lower floors as well as the beams and the floors is considered. The geometry of the building analysed herein is inspired by the study
in [48]. Throughout the analyses presented herein, pinned (fixed translational DOFs) Dirichlet boundary conditions were applied to
the bottom of the multi-storey building, i.e., the bottom of the beams and the core. The rigid-body resonances and their associated
modes have not been considered in the results presented herein. The number of modes computed for each model can be found in
Table 5.

The evaluation results align with the previously presented examples, demonstrating that ECB-IR2 provides resonance frequencies
with enhanced accuracy compared to CB-IR1 and ECB-IR1. This improvement is particularly evident in the prediction of the lower
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Fig. 8. Resonance frequencies and their associated relative error of the composite CLT plate example in Section 4.2. The numbers in the legend indicate the
size of the system matrices.

Fig. 9. Interface mode convergence of the composite CLT plate example in Section 4.2, with respect to modes number 5, 15, and 25.

frequency elastic resonances, as shown in Fig. 16. The interface mode convergence analysis in Fig. 17 indicates that increasing the

number of modes further can enhance the accuracy of ECB-IR1 and ECB-IR2. Therefore, users may choose a convergence criteria

that meets their requirements. In the prediction of the transfer functions, an obvious improvement can be observed in the frequency

range of 9–11 [Hz], in particular the double peaks, Fig. 18. Thus the transfer functions predicted by ECB-IR2 are of greater accuracy
compared to CB-IR1 and ECB-IR1, in comparison to the full model. Furthermore, the MAC evaluations indicate that the ECB-IR2 with
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Fig. 10. Bode plot of the transfer functions and their associated phase shift angle of the composite CLT plate example in Section 4.2, to unit loading. The
numbers in the legend indicate the size of the system matrices.

Fig. 11. Modal Assurance Criterion comparing 40 flexible modes of the composite CLT plate example in Section 4.2.

only 342 DOFs produces vibration modes nearly as accurate as the ECB method with 1559 DOFs in comparison with the full model
with 38892 DOFs, Fig. 19. Consistent with previous results, ECB-IR1 does not achieve the same level of accuracy in normal modes
as CB-IR1 or ECB-IR2. This discrepancy can be attributed to the influence of internal and interface stiffness coupling characteristics
of the ECB method, Fig. 19.
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Fig. 12. 3D visualisation of 13th flexible mode of the CLT plate discussed in Section 4.2.

Fig. 13. 3D visualisation of 26th flexible mode of the CLT plate discussed in Section 4.2.

Table 5

Number of internal and interface modes computed for the multi-storey building example in Section 4.3.

Method Number of internal modes retained Number of interface
modes retained

Total number
of DOFs

𝑁
(1)
𝑖,𝑑

𝑁
(2)
𝑖,𝑑

𝑁
(3)
𝑖,𝑑

𝑁
(4)
𝑖,𝑑

𝑁𝑏,𝑑

Full model 7818 13974 10896 4740 1464 𝑁 = 38892
CB 15 20 35 25 1464 �̂� = 1559
ECB 15 20 35 25 1464 �̄� = 1559
CB-IR1 15 20 35 25 247 �̌� = 342
ECB-IR1 15 20 35 25 247 �̀� = 342
ECB-IR2 15 20 35 25 247 �̃� = 342
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Fig. 14. Discretised geometry of a multi-storey timber building with GLT supporting beams and 5-ply CLT core and plates in Section 4.3. Geometrical dimensions
length (L) × breadth (B) × height (H) are 20 × 16 × 13.6 [m3]. The notation Ω𝑖 ∈ {1, 2,… , 4} denotes substructure regions, whilst a blue line denotes the coupling
interface 𝛤 . A black circle denotes unit loading, and a black square denotes the corresponding transfer function.

5. Conclusions

In this study, two interface reduction techniques based on Characteristic Constraint (CC) modes in conjunction with Craig-
Bampton (CB) and Enhanced Craig-Bampton (ECB) methods were presented. Among these techniques, ECB-IR2, which considers
coupling between truncated internal and interface DOFs, outperforms the classical method proposed by Castanier et al. [30] when
ECB is employed. The coupling term is particularly important due to the stiffness coupling characteristics of the ECB method.
This approach provides an improved representation of vibration energy transmission between the truncated internal and interface
dynamics. This improves accuracy in predicting resonance frequencies, transfer functions, and normal modes. The ECB-IR2 is a
valuable choice when the accuracy of reduced system matrices is of great importance.

The application examples suggest that models with reduced interface dynamics achieve accuracy levels comparable to their
CB and ECB counterparts (without interface reduction), from which they are derived. Notably, the inclusion of a large number
of CC modes did not enhance the accuracy of the CB-IR1 method, contrasting with the ECB-IR1 and ECB-IR2, where additional
CC modes improved accuracy. Therefore, it is evident that additional CC modes enhance the accuracy of the ECB method with
interface reduction, especially in the case of ECB-IR2. Furthermore, CB-IR1 demonstrated better convergence properties, while
ECB-IR2 exhibited better accuracy with the same number of CC modes.

Potential future avenues of study may include extending the present research to interface reduction of free-interface CMS models,
such as Rubin’s approach in [14] and the Dual Craig-Bampton method by Rixen [39]. Additionally, exploring the performance of
ECB-IR2 in coupled vibroacoustic problems, multi-physics scenarios, and systems involving heat, mass transfer, and damping could
be of interest.
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Fig. 15. Discretised plate geometry of a 5-ply CLT plate with length (L) × breadth (B) of 20 × 16 [m2], in Section 4.3. The inner core has dimensions length ×
breadth of 12 × 4 [m2]. An Ω denotes a substructural region, whilst a blue line denotes coupling interface 𝛤 . The black circle and rectangle denote respectively
excitation node and evaluation node in the frequency domain.

Fig. 16. Resonance frequencies and their associated relative error of the multi-storey CLT building example in Section 4.3. The numbers in the legend indicate
the size of the system matrices.
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Fig. 17. Interface mode convergence of the multi-storey CLT building example in Section 4.3, concerning modes number 5, 15, and 25.

Fig. 18. Bode plot of the transfer functions and their associated phase shift angle of the multi-storey CLT building example in Section 4.3, to unit loading. The
numbers in the legend indicate the size of the system matrices.
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Fig. 19. Modal Assurance Criterion comparing 40 flexible modes of the multi-storey CLT building example in Section 4.3.
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