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Populärvetenskaplig sammanfattning 

Rörelse är en grundläggande del av livet och kritiskt för vårt välmående. Vi använder 

våra muskler för att kommunicera med varandra och interagera med världen omkring 

oss. Men vad gör vi när förmågan att styra våra muskler försvagas eller går förlorad? 

Skador och sjukdomar i nervsystemet, liksom en amputation eller stroke, har ofta en 

enorm påverkan på en individs rörelseförmåga och därmed deras kapacitet att uttrycka 

sig. I grunden så styrs våra muskler med hjälp av elektriska impulser från hjärnan och 

ryggmärgen som leds hela vägen ut till varje individuell muskelfiber. Målet med denna 

avhandling är att undersöka dessa nervimpulser, tolka dem, och utveckla nya möjligheter 

för att återställa eller ersätta förlorad muskelfunktion. Men vi behöver inte stanna där; 

kan vi även förbättra eller till och med utöka vår naturliga förmåga att interagera med 

omvärlden? Med dessa mål i hänseende krävs först en bättre inblick i hur nervsystemet 

styr våra muskler, samt vilka metoder som finns för att mäta och bearbeta de nervsignaler 

som kroppen genererar.  

Elektriska impulser som sprids genom nerv- och muskelfibrer består av snabba 

kortvariga flöden av olika joner med elektrisk laddning, såsom natrium, kalium, och 

kalcium. När en nervimpuls når en muskel så sprids den genom ett antal muskelfibrer 

samtidigt, vilket får dem att dra ihop sig. En nervcell, dess utskott (axon), och de anslutna 

muskelfibrerna utgör en enstaka motorenhet, vilket kan sägas vara den minsta 

byggstenen i en muskelkontraktion. Varje motorenhet genererar ett synkroniserat flöde 

av laddade joner, vilket skapar en elektrisk signal som är så pass stark att den kan mätas 

utanför kroppen – tekniken för att mäta en sådan signal kallas för elektromyografi 

(EMG). 

EMG möjliggör mätningar av nervsystemets styrsignaler när de uppstår i muskelfibrerna, 

vilket har en mängd applikationsområden, inom exempelvis rehabilitering av 

strokepatienter, styrning av proteser för amputerade, och utveckling av nya typer av 
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människa-maskininteraktioner. Med dessa områden i åtanke, utforskar denna avhandling 

hur EMG kan tillämpas för att återställa, ersätta, och förbättra våra muskelfunktioner. 

Själva mätningen av EMG är principiellt väldigt enkel. Små metallplattor, kallade 

elektroder, placeras på huden nära en muskel där de känner av de elektriska variationer 

som uppstår i muskelfibrerna. Elektroderna leder de elektriska signalerna till ett 

mätsystem som omvandlar dem till ett digitalt format. Den stora svårigheten med EMG 

ligger i att tolka signalerna. Kroppen har hundratals muskler som i sin tur består av 

tusentals muskelfibrer som alla kan ta emot många nervimpulser per sekund. Av särskilt 

intresse är våra händer, vars exceptionella finmotorik särskiljer människan från andra 

arter. Händerna styrs till stor del av muskler i underarmen, som med långa senor fäster 

sig vid handleden och fingrarna. Underarmen rymmer ett tjugotal kompakt ordnade 

muskler vilket gör det svårt att urskilja dem från varandra vid en EMG-mätning. Hur 

översätter vi då dessa EMG-signaler till information som är användbar för en 

fysioterapeut eller till en handprotes? 

Arbetet i denna avhandling handlar om att utveckla metoder för att just dekomponera, 

lokalisera, och modellera de signaler som utgör EMG, med fokus på musklerna i 

underarmen och handen. Att dekomponera EMG innebär att bryta ner den sammansatta 

signalen i sina beståndsdelar. Mer specifikt används olika algoritmer för signalseparation 

som identifierar impulser från enskilda motorenheter. Intuitivt gäller samma princip då 

vi med vår hörsel kan urskilja och fokusera på en enskild röst i ett bullrigt rum där många 

pratar samtidigt. Avhandlingen presenterar den underliggande teorin för 

signalseparation, i kombination med nya algoritmer särskilt anpassade för 

muskelsignaler. När EMG mäts på huden, så behövs även metoder för att ta reda på exakt 

var under huden en viss signal kommer ifrån. Detta kallas lokalisering, vilket återigen 

kan liknas med vår hörsel, då vi ofta kan uppskatta både riktning och avstånd till ett visst 

ljud. På liknande sätt går det att uppskatta var en impuls från en motorenhet har sitt 

ursprung; en metod för detta vidareutvecklas och presenteras i denna avhandling. 

Slutligen, för att kunna urskilja och visualisera aktivitet från ett flertal muskler, så behövs 

en modell som beskriver musklernas placering. Avhandlingen presenterar en ny metod 

för kartläggning av muskelaktivitet baserat på EMG i en tredimensionell modell av 

underarmen. Denna modell, i kombination med lokaliseringsmetoden, används sedan för 

att tolka ny EMG-data, för att känna igen olika rörelser. Sammanfattningsvis diskuteras 

hur dessa metoder kan tillämpas inom muskelrehabilitering, styrning av handproteser, 

och i nya gränssnitt för människa-maskininteraktioner.  
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Abstract 

The ability to generate and control movement is essential for human interactions and 

overall well-being. Neuromuscular impairment caused by neurological injuries and 

diseases, such as stroke or limb amputation, severely limits the ability of affected 

individuals to interact with the surrounding environment, necessitating advanced 

strategies for rehabilitation and restoration of motor function. Voluntary muscle 

contractions are initiated by motor neurons that transmit electrical impulses, or action 

potentials, which propagate along nerves and throughout muscle fibres. A single motor 

neuron and its associated muscle fibres form a motor unit, which creates a direct link 

between the nervous system output and electrical signals generated by muscles. High-

density surface electromyography (HDsEMG) is a powerful non-invasive technique for 

analysing neuromuscular function by capturing the electrical activity of motor unit action 

potentials. However, extracting meaningful information from HDsEMG recordings 

remains a significant challenge due to the complex spatial and temporal overlap of motor 

unit activity, particularly in regions with high muscle density, such as the forearm. 

This dissertation consists of an introduction, background, and four papers presenting 

novel methods and algorithms for analysing HDsEMG data. Paper Ⅰ introduces a new 

algorithm for motor unit decomposition, combining Fast Independent Component 

Analysis with an iterative peel-off scheme based on spike-triggered averaging and 

Principal Component Compression. Paper Ⅱ presents a method for localizing motor unit 

action potentials, identified with the decomposition method in Paper Ⅰ, estimating the 

centre of electrical activity using a surface fitting approach and an analytical volume 

conductor model. Paper Ⅲ shifts the focus from motor units, and the reliance on 

decomposition, to localization of individual time-domain peaks directly in the HDsEMG 

data, and introduces a new technique for constructing a three-dimensional model of 

muscle activity. In this model, individual muscles are represented as distinct volumes, 
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which are subsequently used to classify additional HDsEMG signals into specific muscle 

activations. Paper Ⅳ extends this approach, applying the volume-based muscle 

representations to gesture classification and evaluates their generalizability across 

participants and for novel gestures beyond the original model.  



v 

 

 
 
 
 
 

List of papers 

Included 

I. Compressed spike-triggered averaging in iterative decomposition of 

surface EMG 

Lundsberg, J., Björkman, A., Malesevic, N., & Antfolk, C. 

Published in: Computer Methods and Programs in Biomedicine, 228, 107250. 

(2023) 

 

Author’s contributions: Study design, part of data collection, design and 

implementation of algorithms, analysis of results, manuscript writing. 

 

II. Inferring position of motor units from high-density surface EMG 

Lundsberg, J., Björkman, A., Malesevic, N., & Antfolk, C. 

Published in: Scientific Reports, 14(1), 3858, (2024) 

 

Author’s contributions: Study design, part of data collection, design and 

implementation of algorithms, analysis of results, manuscript writing. 

  

III. Muscle activity mapping by single peak localization from HDsEMG 

Lundsberg, J., Björkman, A., Malesevic, N., & Antfolk, C. 

Published in: Journal of Electromyography and Kinesiology, 81, 102976. 

(2025) 

 

Author’s contributions: Study design, data collection, design and 

implementation of algorithms, analysis of results, manuscript writing. 

 



vi 

 

IV. Generalizable gesture classification of HDsEMG using volume 

representations of muscles averaged across multiple individuals 

Lundsberg, J., Björkman, A., Malesevic, N., & Antfolk, C 

Manuscript 

 

Author’s contributions: Study design, design and implementation of 

algorithms, analysis of results, manuscript writing. 

 

Related 

1. Motor Unit localization from surface EMG 

Lundsberg, J., Antfolk, C., Malesevic, N 

Conference abstract for poster presentation at Rehabweek 2022 

 

2. Estimating the neural spike train from an unfused tetanic signal of low-

threshold motor units using convolutive blind source separation 

Rohlén, R., Lundsberg, J., & Antfolk, C. 

Published in: Biomedical engineering online, 22(1), 10, (2023) 

 

3. A fast blind source separation algorithm for decomposing ultrafast 

ultrasound images into spatiotemporal muscle unit kinematics 

Rohlén, R., Lundsberg, J., Malesevic, N., & Antfolk, C. 

Published in: Journal of Neural Engineering, 20(3), 034001, (2023) 

 

4. Mapping the spatial distribution of motor unit activity in forearm 

muscles 

Lundsberg, J., Malesevic, N., Antfolk, C 

Conference abstract for poster presentation at Rehabweek 2023 

 

5. Muscle activity mapping by 3-dimensional localization of motor unit 

action potentials from high-density surface electromyography 

Lundsberg, J., Malesevic, N., Björkman, A., Antfolk, C. 

Conference abstract for oral presentation at ISEK 2024 

  



vii 

 

 
 
 
 
 

Acknowledgements 

This work would not have been possible without a number of people who deserve to be 

acknowledged. I want to dedicate this section to expressing my sincerest gratitude to 

those who made this entire project into such a fantastic, wonderful, and worthwhile 

journey. 

First of all, I wish to thank my main supervisor Christian Antfolk, for getting this project 

started. Your door has always been open, and I always felt you were right there, ready to 

answer questions or provide any resources I needed. You gave me the freedom to try 

new things, to make decisions on what to do and which direction to take; this trust in my 

judgement has been truly motivating, and I have grown so much because of it. I wish to 

thank my co-supervisor Nebojša Malešević, for not only being an amazing supervisor 

but also a great friend. We’ve had countless discussions on so many different things; the 

only throughline I can think of is how incredibly enjoyable they have been. Your 

perspective is always valuable, and I’ve learnt a ton from you, whether you realize it or 

not. We’ve also travelled to so many conferences and places; the unforgettable memories 

are honestly too many to list. It’s clear to me how our interactions have elevated my time 

at the department from mere work to a great living. I wish to thank my other co-

supervisor Anders Björkman, for providing me with much needed motivation. You’ve 

made my work feel more useful, your comments always inspire me, and I’ve always 

looked forward to hearing from you. You’ve also made me a better writer, by returning 

all my drafts predominantly in the colour red; although daunting to work through, I 

sincerely appreciate all your feedback.  

To former members of the Neuroengineering group: Thank you Pamela, for being the 

vanguard PhD of our group, and your great company in all our meetings. Thank you 

Alexander, for diving deep into endless fascinating theoretical and philosophical 

discussions with me, and for helping me improve my scientific rigor. Thank you Jia, for 



viii 

 

providing tons of highly contagious positivity and entertainment to the office, for our 

long conversations and longer badminton matches. Thank you Robin, for inspiring me 

with your productivity and hard work, and your eagerness to discuss exciting new 

possibilities in our meetings. 

Beyond our group, I wish to thank Ulrika, Ammi, and Désirée, for all the administrative 

work, always clearing up my confusion, and making everything simple and smooth. 

Thank you Ola, for helping me solve problems in LabVIEW, and showing me all its 

depths. I wish to thank all those who volunteered to participate in my data collection, 

despite our group’s reputation for sticking needles into arms. And of course, thanks to 

everyone at the Department of Biomedical Engineering, who’ve been such wonderful 

company, engaged in all the thoroughly entertaining conversations, and created this 

amazing atmosphere to work in. 

I wish to thank my friends and family, for keeping me grounded to reality, and reminding 

me that I’ve been doing some pretty cool stuff all these years. In particular, I wish to 

thank my parents and my sister, for providing unconditional support. You’ve always 

been there, ready to help me with anything, and you inspire me to be my best. 

Lastly, I wish to give my thanks to all the researchers and engineers who came before 

me, who laid the vital groundwork that made my work possible, and to the Promobilia 

Foundation, which has sponsored this project. 

 

 

  



ix 

 

Author’s declaration of generative AI assistance 

In the spirit of transparency and acknowledging the evolving landscape of research tools, 

it is important to disclose the use of generative AI tools, such as large language models, 

in the writing process. OpenAI’s ChatGPT4o large language model was utilized to 

reword, restructure, and provide feedback on various paragraphs in the preparation of 

this dissertation. While the AI tool was used to enhance text for clarity and structure, the 

content and ideas are entirely the author’s own. All output produced by AI was carefully 

reviewed and edited, sentence by sentence, ensuring the final work accurately reflects 

the author’s intentions. The author is fully and solely accountable for the work in this 

dissertation. 



x 

 

  



xi 

 

 
 
 
 
 

Notations 

Time-domain variables 

𝑥[𝑛] The discrete signal in the time-domain for samples 

 𝑛 = 0, 1, … , 𝑁 − 1 

𝑁 The number of samples in a signal or window 

𝑓𝑠 The sampling frequency in Hz 

𝜇 The sample mean of 𝑥[𝑛] 

𝜇𝑟 The 𝑟-th central moment of 𝑥[𝑛] 

𝜎 The standard deviation of 𝑥[𝑛] 

Frequency-domain variables 

𝑋[𝑘] The Discrete Fourier Transform of 𝑥[𝑛] for frequency bins  

𝑘 = 0, 1, … , 𝑀 − 1 

𝑀 The number of frequency bins 

𝑓𝑘 The frequency in Hz at bin 𝑘, where 𝑓𝑘 =
𝑘𝑓𝑠

𝑁
 

𝑃[𝑘] The power spectral density estimate, at bin 𝑘 

Statistical notations 

𝑍 A random variable of a sample space 
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𝐸{𝑍} The expected value, or true mean, of a random variable 𝑍 

Vectors and Matrices 

𝑤 The scalar value 𝑤 

𝒘 The vector 𝒘 

𝑾 The matrix 𝑾 

𝑾𝑻 The transpose of matrix W 

Functions 

𝑠𝑔𝑛(𝑥) = {

   1 𝑖𝑓 𝑥 > 0
   0 𝑖𝑓 𝑥 = 0

−1 𝑖𝑓 𝑥 < 0
  The sign function 

𝛿(𝐶) = {
1 𝑖𝑓 𝐶 𝑖𝑠 𝑡𝑟𝑢𝑒

  0 𝑖𝑓 𝐶 𝑖𝑠 𝑓𝑎𝑙𝑠𝑒
  The indicator function 
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Chapter 1 

Introduction 

From the largest animal to the smallest bacteria, movement is arguably the most 

fundamental aspect of life. All living beings move to affect change and alter their 

surrounding environment. We act our will upon the world using hundreds of muscles 

throughout our bodies. These muscles, controlled by the nervous system, are our primary 

tools for interacting with the world. The loss of muscle control can be life-altering, be it 

through conditions such as stroke, neurological diseases, spinal cord injury, or 

amputation of limbs. When movement is compromised, so too is a person’s ability to 

express themselves, interact with others, and engage fully with their environment. The 

ability to move and interact with the world depends on highly intricate coordination 

between muscles, which, when disrupted, significantly impacts an individual’s quality 

of life.  

The purpose of this dissertation is to contribute to the ongoing effort to restore and even 

enhance human functionality. At the centre of this effort is electromyography (EMG), a 

technique for measuring and recording the electrical activity of muscles1,2. By analysing 

this activity, EMG enables investigations into the neurophysiological signals underlying 

movement. The intricate relationship between neural commands and muscle contractions 

is explored using sophisticated signal processing algorithms that allow us to enhance our 

understanding of the motor system. The utility of EMG extends beyond basic physiology, 

however, to a wide range of practical applications. This includes assessment of various 

neurological diseases or injuries3-5, such as cerebral palsy or stroke, where proper 

assessments are critical to guide treatment strategies. EMG can also be used as a control 

signal in human-machine interfaces (HMIs), most widely used in prosthetic limbs, 

restoring movement to amputees6-10. Other HMIs include sign language recognition and 

speller systems to improve communication11,12. With a vast number of potential 

applications, there is significant value in improving the signal processing algorithms 

which extract meaningful information from EMG. This dissertation pertains to the 
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development of signal processing methods, to enable EMG as a diagnostic and 

exploratory tool, and as input to human-machine interfaces (HMIs). 

EMG comes in several forms, mainly intramuscular EMG (iEMG), through invasive 

recordings, and surface EMG (sEMG), recorded non-invasively from the skin; although 

preferable, non-invasive recordings are noisier and more complex. High-density EMG is 

where many electrodes in a grid record simultaneously over a larger area, which can be 

both invasive and non-invasive. The most common type is the non-invasive high-density 

surface EMG (HDsEMG), used throughout this dissertation. HDsEMG generates a vast 

amount of data which not only enables but also necessitates advanced processing 

algorithms. These algorithms must disentangle meaningful physiological information 

from artifacts, noise, and overlapping signals from multiple muscles. 

In EMG analysis, decomposition is the concept of separating individual components 

from a compound signal. Decomposition methods make use of statistical properties of 

the signal and electrode grids (in most cases), to separate the activity of individual motor 

units from the global EMG recording. These methods face challenges in both reliability 

and yield; however, motor unit decomposition is a fast-moving field with significant 

progress year after year. With improved decomposition algorithms come deeper 

understanding of the control strategies employed by the nervous system, clinical 

assessment possibilities, and the potential for HMI control at a more granular level. 

Localization is the attempt to trace the origin of a signal, to map muscle activity to a 

physical position. Localization techniques leverage the spatial information inherent to 

high-density electrode grids to infer the anatomical source of electrical activity. The 

spatial interpretation of the EMG signal allows for intuitive analysis and understanding 

of muscle activity. Alongside physiological and anatomical models, accurately localizing 

EMG activity can deepen our understanding of the functional organization of 

neuromuscular activity; it may provide valuable feedback in clinical settings and identify 

the activity of individual muscles to control HMIs. In this dissertation, modelling refers 

to both electrophysiological and physical representations. An electrophysiological model 

may capture how signals propagate through tissue, which is critical to perform 

localization. Whereas a physical model may be used to visualize muscle activity and aid 

gesture recognition to control HMIs.     

Collectively, the decomposition, localization, and modelling methods provide ways to 

transform EMG data into interpretable, meaningful, and actionable information; 

information that can be used by clinicians, researchers, and designers of assistive 

devices. The presented work builds upon plenty of existing theory in neurophysiology, 

electrical engineering, and signal processing, while introducing novel methods to 

incrementally move the field forward. 
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1.1 Aim and scope 

The work presented in this dissertation covers new methods for processing and 

interpreting the electrical signals produced by muscle contractions, related to 

decomposition, localization, and modelling, with the aim of extracting intuitive and 

actionable information for clinicians, patients, and researchers. Although multiple input 

modalities exist which may solve the problems tackled here, this work focuses on signal 

processing of non-invasive HDsEMG data. Furthermore, while the methods may extend 

to other muscle groups or limbs, the work here is mostly limited to forearm muscles. 

1.2 Outline 

The remainder of this dissertation is structured in two parts. Part Ⅰ serves as a 

background which aims equip the reader with all essential information required to 

understand the papers and the context in which they were written. It consists of four 

chapters. Chapter 2 describes the neuromuscular system anatomically and 

physiologically. Chapter 3 provides an overview of EMG, how muscle signals are 

recorded and the various electrodes that are used. Chapter 4 dives into the relevant signal 

processing techniques and their underlying theory. Chapter 5 describes various 

applications which utilize EMG and potential obstacles to overcome. Part Ⅱ includes 

the scientific contribution of this dissertation in terms of four papers. The papers are 

appended at the end of this dissertation and summarised in Chapter 6. Chapter 7 contains 

a broader discussion which concludes the dissertation. 
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Chapter 2 

The neuromuscular system 

2.1 Anatomical and functional terminology 

In order to describe various structures and properties of the body without confusion, 

establishing correct terminology is important. This section pertains to the various 

anatomical and functional terms used throughout the dissertation to describe positions 

and movements.  

Positions 

Anatomical descriptions of the body are based on the standard anatomical position. In 

this position a person is standing with the palms of the hands facing forward and the 

thumbs pointing outwards. The arms are beside the body and the feet are parallel and 

separated at shoulder width. Anatomical references to the right and left side of the body 

are from the perspective of the subject and not the observer. Anterior and posterior 

describe positions that are at the front and back of the body respectively, from the 

standard anatomical position. In this position, e.g., the palm of the hand to the arm crease 

is the anterior side and the back the hand to the elbow is the posterior side. Ventral and 

dorsal also refer to the front and the back of the body but in relation to the spine, derived 

from the underbelly and backside respectively. It is typically used in neuroanatomy or 

descriptions of non-human animals. Superior and inferior describes positions that above 

or below, in relation to another part of the body. Proximal and distal describe positions 

that are closer to or farther from the body, used extensively when describing the body’s 

limbs. E.g., the elbow is proximal to the hand, and the fingers are distal to the wrist. 

Superficial and deep describe the structures that are closer to or further from the skin 

surface of the body. Muscles of the forearm are often separated into superficial and deep 

muscle groups. Medial and lateral describe position that are closer to or farther from the 

midline of the body. Thus, from the standard anatomical position, the little finger is on 
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the medial side whereas the thumb is on the lateral side of the hand. Radial and ulnar 

are used to describe positions in relation to the radius and ulna bones of the forearm 

specifically. Radial and ulnar are interchangeable with lateral and medial, but due to the 

rotations of the forearm, the former terminology is less confusing. 

Planes 

There are three anatomical planes that a commonly referred to, which divide the body 

with two-dimensional surfaces. The sagittal plane divides the body into a right and a left 

side. The frontal plane divides the body into an anterior and a posterior (front and back) 

portion. The transverse plane divides the body horizontally into a superior and inferior 

(upper and lower) portion. Of particular relevance is the transverse plane, in which cross-

sectional images of limbs are made.  

Muscles 

To create motion, a muscle is anchored between two points, referred to as its origin and 

insertion. The origin of a muscle tends to be a more proximal and stable position 

compared to the insertion. The insertion tends to be the structure with less mass which 

moves upon a muscle contraction. Intrinsic muscles are muscles with its origin and 

insertion located within the part of the body they act on, an example of which are the 

thenar group of muscles, located completely within the hand. Extrinsic muscles have 

their origin and muscle bellies outside the area where the muscle tendon inserts, such as 

the finger flexor muscles originating from the elbow and have their muscle bellies in the 

forearm with long tendons traveling into the hand, inserting on individual fingers. 

Muscles often come in agonist and antagonist pairs, defined by how they cause and 

inhibit a specific motion. An agonist muscle is a muscle which produces the main force 

to generate an action, whereas an antagonist muscle produces an opposing force over the 

same joint. A synergist muscle is a muscle which aids the agonist muscle in its action. 

Motion 

The origin and insertion of skeletal muscles that move the body are typically attached to 

two separate structures. Flexion and extension refer to a movement which decreases or 

increases the joint angle between two body parts; thus, closing the hand makes use of 

flexor muscles and opening the hand makes use of extensor muscles. Abduction and 

adduction refer to a movement which brings a structure away from or towards the 

midline of the body part in question. Pronation and supination of the forearm refer to a 

rotation so that the palm of the hand faces the posterior direction and the anterior 

direction respectively, with regards to the standard anatomical position; thus, when the 

palm of the hand is resting on a table it is in a prone position. An isometric contraction 
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refers to a contraction where the length of the muscle remains static. An isotonic 

contraction refers to a contraction where the tension, or force, produced by the muscle 

remains static. Concentric and eccentric contractions refer to a contraction during which 

the length of the muscle decreases or increases.  

2.2 The nervous system 

The human nervous system is divided into two main anatomical parts, the central nervous 

system (CNS) and the peripheral nervous system (PNS). The CNS consists of the brain 

and the spinal cord, and is responsible for processing incoming (afferent) information 

and initiating outgoing (efferent) commands13,14. The brain comprises two hemispheres, 

a left and a right. It is anatomically organized in distinct subdivisions or lobes, with 

multiple gyri (ridges) and sulci (grooves). Notably, the primary somatosensory cortex 

(S1), where afferent sensory information is received, and the primary motor cortex (M1), 

from where muscle commands are sent to the spinal cord, are both organized in a 

topographical manner as well. These adjacent interconnected regions15, M1 located just 

anterior to S1, are structured in a way which creates a map of the body, where various 

regions represent specific points across the body. This representative map is also referred 

to as a homunculus, and was demonstrated as early as 193716. While S1 reflects the input 

to sensory neurons from receptors throughout the entire body, M1 engages specific 

muscles, far fewer in number, to control the movement of limbs, resulting in some 

topographical differences. These differences are exemplified with more recent 

neuroimaging studies showing separate representations in the motor cortex of the same 

digits performing opposing actions controlled by different muscles, such as grasping and 

releasing a ball17, revealing a functional organization present in M1 that is absent in S1. 

The motor system is complex, with several areas in the brain that are important for motor 

control, which can collectively be referred to as the motor network. The motor network, 

especially M1, contains upper motor neurons which send commands down the spinal 

cord to pattern generating networks. In the spinal cord, coordinated muscle activation 

patterns for various actions are generated, as evidenced by rhythmic activation of specific 

muscles in spinal cord stimulation studies18,19. The activation patterns are relayed by 

lower motor neurons in the ventral horn of the spinal cord, which defines the border 

between the CNS and the PNS, to muscles throughout the body. The efferent division of 

the PNS is further subdivided into a somatic nervous system and an autonomic nervous 

system, where the former is made up of the fibres connecting motor neurons in the spinal 

cord to skeletal muscles throughout the body13. In the PNS, neuron fibres (axons) are 

bundled together with connective tissue along common pathways which are called 

nerves. There are 31 pairs of spinal nerves that connect both afferent and efferent fibres 

to the spinal cord (Figure 2.1), called roots, which are grouped by the vertebral levels 
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they exit: cervical (C1-C8), thoracic (T1-T12), lumbar (L1-L5), sacral (S1-S5), and 

coccygeal (CO1). Of particular relevance to human limbs and the generation of 

movement are the cervical nerves which innervate neck, shoulders, arms, and hands, as 

well as the lumbar nerves associated with the lower abdomen, hips, and legs. The nerve 

roots branch out and merge with one another at several points, forming the major nerves 

supplying the upper and lower limbs. In the cervical spine, branches from the C5 to T1 

roots eventually merge into three large nerves innervating the upper limb: the radial, 

medial, and ulnar nerves. These nerves are the communication pathways that enable the 

wide range of dexterous capabilities of human hands. 

 
Figure 2.1: The spinal cord and the nerve roots of the various vertebral levels are shown 

in a, b, and c. The colours in c, d, and e represent the different vertebral levels. The 

dermatomes for afferent nerve fibres are shown d, with a posterior view (left) and 

anterior view (right). Reused with permission from Ahuja et al (2017)20, © 2017, 

https://doi.org/10.1038/nrdp.2017.18. 
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2.3 Neurons 

The foundation of neurobiology is the neuron itself. While there are many types of 

neurons in the nervous system, they are all cells specialized for communication. The 

neuron is typically divided into three parts; the soma, which is the cell body containing 

the nucleus; the dendrites, which receive input signals; and the axon, which transmits an 

output signal13. Neurons are connected through chemical synapses, passing information 

from a presynaptic axon terminal, across a synaptic cleft, to a postsynaptic region located 

mainly on the dendrites or the adjacent cell body. Through a vast number of synapses, 

each neuron may connect to any number of other neurons, generating incredibly complex 

networks.  

2.3.1 Electrochemical communication 

The signalling system of neurons is made up of local changes in ion concentrations across 

the cell membrane, propagating from neuron to neuron as an electrochemical wave. At 

rest, each neuron has a potential difference across the membrane of approximately -70 

mV. That is, along the cell membrane, the extracellular fluid is positively charged 

compared to the intracellular fluid. This resting potential is mainly generated by a 

balance between a surplus of extracellular sodium and chlorine ions, and a surplus of 

intracellular potassium ions.  

There are two types of changes in membrane potentials, graded potentials and action 

potentials. Graded potentials are small, gradual, changes which are generated in the 

postsynaptic region of the receiving neuron. Action potentials, on the other hand, are 

large all-or-nothing changes which are generated when a neuron is transmitting a signal. 

Graded potentials 

When the postsynaptic dendrite receives a signal, neurotransmitters from the presynaptic 

axon terminal flood the synaptic cleft and bind to receptors on the postsynaptic cell 

membrane, resulting in the opening of ligand-gated ion channels in the membrane. The 

subsequent flow of ions generates a graded potential which is either excitatory or 

inhibitory, depending on which neurotransmitter is released. The most common 

excitatory neurotransmitter is acetylcholine, whereas the most common inhibitory 

neurotransmitter is GABA (gamma-aminobutyric acid). An excitatory postsynaptic 

potential (EPSP) opens sodium and potassium channels resulting in a depolarization of 

the membrane potential, followed by a slow repolarization. An inhibitory postsynaptic 

potential (IPSP) instead opens chlorine and potassium channels resulting in a 

hyperpolarization of the membrane potential. A neuron may receive many postsynaptic 
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potentials from any number of other neurons; the summation of these graded potentials 

then propagates throughout the cell body.  

Action potentials 

The bordering region between the cell body and the axon is named the axon hillock, 

which contains a vast number of voltage-gated ion channels. When depolarization of the 

membrane potential at the axon hillock exceeds a certain threshold, these ion channels 

open, causing a fast inward flow of sodium ions which further depolarizes the membrane 

potential. This positive feedback ensures that all voltage-gated ion channels open, which 

initiates an action potential that propagates throughout the axon. Following the influx of 

sodium ions, is a slower outward flow of potassium ions, which repolarizes the 

membrane potential (Figure 2.2). The sodium channels proceed to an inactive state, and 

within one to a few milliseconds that region is incapable of initiating another action 

potential, no matter the strength of the stimulus, which is said to be the absolute 

refractory period. The strong repolarization caused by the exodus of potassium ions 

create a relative refractory period which can last roughly 15 ms, where another action 

potential is possible but requires a considerably greater stimulus13. The refractory period 

prevents the backward propagation of action potentials and plays a key role in the binary 

rate coding of information in the nervous system13,21,22.  

The all-or-nothing property of action potentials means that the amplitude of the signal 

cannot convey meaningful information. Instead, the nervous system relies on the 

frequency of transmitted action potentials to code information. A higher intensity of both 

afferent sensory input and efferent motor output is conveyed with a higher frequency of 

action potentials, while each individual action potential produces a standardized response 

in the subsequent neuron or muscle fibre. Thus, these signals can be conceptualized as 

binary spike trains of action potential discharges. 
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Figure 2.2: The membrane potential of a neuron during an action potential, and the 

density of open voltage-gated sodium (Na+) and potassium (K+) channels. From 

Britannica ImageQuest, © Encyclopaedia Britannica, Accessed April 25, 2025, 

https://quest.eb.com/images/309_366166. 

2.3.2 Neuron conduction velocity 

Another important property of neurons is the conduction velocity of the axon. Action 

potentials need to traverse large distances very quickly, which is especially true for motor 

neurons, as they connect to muscle fibres throughout the body all the way from the spinal 

cord. The main strategy used by the nervous system to increase conduction velocity is to 

insulate the membrane of axons with non-conductive sheets of myelin. The un-insulated 

axon has a higher internal resistance to local currents due to a leakage of charge across 

the membrane, as the action potential wave travels along the axon. The myelin sheets, 

rich in lipids, increases the electrical resistance and thus reduces the amount of leakage 

current across the membrane, allowing the flow of ions to spread farther along the axon 

instead. Since action potentials do not occur in the myelinated sections, the coating is 

briefly interrupted with regions containing high concentrations of voltage-gated 

channels, called nodes of Ranvier. Thus, the action potential is regenerated at each node, 

creating a jumping effect from node to node (Figure 2.3), which can result in a 

hundredfold increase in conduction velocity. Between small unmyelinated fibres to large 

myelinated fibres, conduction velocities can range from 0.5-100 meters per second13. 

Demyelination of axons is a significant effect of neurodegenerative autoimmune diseases 

such as multiple sclerosis23, as well as aging and stroke24, and spinal cord injury25. 
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Figure 2.3: The faster ‘jumping’ action potential propagation in a myelinated neuron 

(top) and the slower propagation in an unmyelinated neuron (bottom). From Britannica 

ImageQuest, © Encyclopaedia Britannica, Accessed April 25, 2025, 

https://quest.eb.com/images/309_366329. 

2.4 Neuromuscular junctions 

The neuromuscular junction is the synapse between a lower motor neuron and a muscle 

fibre. As the motor neuron axon reaches the muscle, it branches out to multiple fibres. 

Each branch forms a junction with a muscle fibre, connecting the axon terminal to what 

is called the motor end plate of the fibre. A single motor neuron and the connected fibres 

define a single motor unit. From the axon terminal the neurotransmitter acetylcholine is 

released, binding to ion channels in the motor end plate, allowing sodium and potassium 

ions to flow across the muscle fibre membrane. The flow of ions creates a local 

depolarization of the muscle fibre membrane called the end-plate potential (EPP), 

analogous to the neuron-neuron EPSP; although, there are key differences between 

neuromuscular junctions and inter-neuronal synapses. Neuromuscular junctions are 

always excitatory, in contrast to inhibitory potentials, IPSPs, generated at some synapses. 

Thus, to inhibit a muscle fibre contraction, the motor neuron itself needs to receive 

inhibitory input in the CNS. One of the most important distinctions is the magnitude of 

the EPP, which is much larger than that of the EPSP. Multiple EPSP are required to elicit 

an action potential in a neuron, whereas a single EPP is typically enough to generate an 

action potential in a muscle fibre13,26. The motor end plate has a larger surface area due 
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to folds in the membrane with many more ion channels. The local currents at the motor 

end plate propagate to the adjacent membrane containing voltage-gated sodium channels 

which initiates the muscle fibre action potential. 

The motor end plate is typically located near the middle of the muscle fibre, wherefrom 

the action potential propagates, with a typical conduction velocity between 3-5 meters 

per second, in both directions along the surface of the fibre and throughout a tubular 

system within the fibre. The action potential does not directly activate the force-

generating mechanism of the fibre, rather, it stimulates the release of calcium ions within 

the cell which act directly upon the muscle fibre filaments resulting in a contraction.  

Muscle fibre twitches 

While the action potential lasts 1 to 2 milliseconds the following mechanical contraction 

of the fibre can last 100 milliseconds or more. There is additionally some delay between 

the beginning of the action potential and the initial mechanical tension generated, 

referred to as the latent period, which can be around 10 milliseconds with varied 

estimates. These divergences between electrical excitation and mechanical contraction 

play a significant role in understanding the relationship between EMG and muscle force, 

especially crucial for applications in prosthetic control. Each action potential generates 

a single muscle fibre twitch with a contraction phase and a relaxation phase (Figure 

2.4A). With increased frequency of action potentials, the twitch responses increasingly 

overlap, generating greater tension in the fibre (Figure 2.4B). At high enough 

frequencies, the twitch responses fuse together, called a fused tetanic contraction, which 

generates a consistent maximal tension in the muscle fibre. 

 
Figure 2.4: The action potential to muscle twitch tension relationship. Edited and reused 

with permission from Park (2023)27, © 2023, https://doi.org/10.1007/978-3-031-20784-

6_9. 
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2.5 Motor units  

The term “motor unit” was introduced just over 100 years ago28,29, laying the foundation 

for our understanding of how the nervous system controls motor output29,30. The motor 

unit is the smallest discrete component of voluntary contraction, consisting of a single 

lower motor neuron and all individual muscle fibres it innervates. The action potential 

of a single lower motor neuron triggers an action potential along all muscle fibres of that 

motor unit, causing a short contraction and greatly amplifying the electrical signal in the 

process. In the context of EMG, the importance of the motor unit is that it forms a one-

to-one connection between a subset of muscle fibres and the output of the nervous 

system. Motor units exhibit a range of structural and functional properties that vary both 

across muscles and between individuals. These properties influence how motor units 

generate force, how they are recruited during voluntary contractions, and how they 

contribute to the neuromuscular strategies underlying movement. For each motor unit, 

the signal shapes of repeated motor unit action potentials (MUAPs) are almost identical, 

and the resulting contractile force is determined by the MUAP frequency and the fibre 

type. Identifying which motor units are active, and the time instances of action potential 

discharges, thus identifies the output of the central nervous system and provides insight 

into the neural strategies of voluntary muscle control. 

2.5.1 Muscle fibre types 

The cells that compose muscles (myocytes) display a great deal of variety in both form 

and function. There are three types of muscle cells: cardiac, skeletal, and smooth 

myocytes. Skeletal myocytes form the muscles under voluntary control and are 

responsible for the movement of limbs by connecting the bones across various joints in 

the body. Skeletal myocytes have a long fibrous shape and are thus merely referred to as 

muscle fibres. Individual muscles are made up of hundreds to hundreds of thousands of 

muscle fibres, and the various architectures and physiological properties affect their 

speed, fatigue resistance, and effective force.  

Muscle fibres are mainly classified based on their mechanical properties, fast or slow, 

and their metabolic properties, oxidative or glycolytic. Oxidative fibres are reliant on 

aerobic metabolism, i.e. blood flow to deliver oxygen and fuel to the fibre. These fibres 

are therefore surrounded by many small blood vessels and contain large amounts of 

myoglobin, resulting in a distinctive red colour, and thus commonly referred to as red 

muscle fibres. Glycolytic fibres are less reliant on blood flow, making use anaerobic 

metabolism through large stores of glycogen. These fibres are pale due to a low amount 

of myoglobin, and thus commonly referred to as white muscle fibres. With some degree 

of overlap, muscle fibres are mainly grouped into type 1 (slow oxidative), type 2a (fast 
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oxidative/glycolytic), and type 2x (fast glycolytic) fibres. Type 1 fibres are typically 

slow, small, highly fatigue resistant, and produce low force. Whereas type 2a fibres are 

typically fast, large, quite fatigue resistant, and produce moderate force. Type 2x fibres 

are also typically fast and large, but are quick to fatigue, and produce high force. While 

muscles contain a mix of fibre types, critically, the motor neuron in each motor unit 

innervates muscle fibres of the same type. Thus, the fibre type properties exhibited by 

individual muscle fibres are also properties of the entire motor unit. 

2.5.2 Innervation ratios 

The force produced by each motor unit twitch depends on the number of fibres in it. The 

number of muscle fibres in a motor unit is called the innervation ratio, which varies 

greatly between muscles. There are typically hundreds to thousands of fibres in a motor 

unit, depending on the level of precision required for a specific movement. The 

innervation ratio of muscles controlling the precise movement of fingers is far lower than 

that of crude but powerful leg muscles. The typical approach to derive the innervation 

number of muscles have been by counting, from cadavers, the total number of muscle 

fibres and the motor neurons innervating the muscle. However, there is a significant 

range of motor unit innervation ratios within a muscle, which is much more difficult to 

assess31. One method of measuring individual motor unit innervation ratios is through 

the glycogen depletion technique31-33, where isolated motor neurons are stimulated long 

enough to reduce muscle fibre glycogen levels and the number of affected fibres are then 

counted. This technique, however, is limited by fibre type and that only a single motor 

units can be assessed at a time. An important property to consider is that the distribution 

of motor unit innervation ratios is also highly skewed. A large number of motor units 

innervate few muscle fibres, while a minority innervate many, following an exponential 

distribution 31,34,35. Through a proper recruitment strategy, this allows for great precision 

in low-force contractions, while maintaining a large range of force output. 

2.5.3 Discharge rates 

In addition to the number of active motor units, the discharge rate of each motor neuron 

contributes directly to muscle force. The relationship between discharge rate and force 

output follows a nonlinear force-frequency curve, where force initially increases steeply 

with rising frequency, then plateaus approaching the mechanical contraction limit31,34,36. 

For the digit flexor muscles, Fuglevand et al thoroughly described this force-frequency 

relationship, while noting differences between motor unit types36. They stated that the 

minimal effective firing rate was around 8 Hz, which for slow fibres produced 40% of 

their maximum force, but only around 17% of maximum force for fast fibres. Thus, the 

slow fibres reached their half-maximum force already at 9.1 Hz, whereas the fast fibres 
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required 15.5 Hz. Since temporal summation occurs more easily for slow fibre twitches, 

this results in a much steeper force-frequency curve, where near-maximal force is 

reached at much lower discharge rates. The slower motor units therefore appear to have 

less capacity for adapting their force output through rate modulation of action potential 

discharges. 

2.5.4 Recruitment strategy 

The total force a muscle produces depends not only on rate modulation, but also the 

motor unit number and the recruitment strategy. The general strategy of the nervous 

system is to recruit motor units in an orderly fashion following the size principle29,37. 

Smaller type 1 motor units are activated first, followed by larger type 2a then 2x units as 

the force demand increases. This orderly recruitment ensures efficient force production 

and allows the nervous system to scale the force output across a broad range, while 

maintaining precision in at low forces. Thus, it is worth noting that low-force 

contractions, that are common in EMG recordings, are biased towards type 1 motor units. 

Furthermore, since type 1 units produce lower amounts of force, a great number of them 

activate rapidly as force increases31,34,35,38. To generate a roughly linear increase in force, 

the number of active motor units increase in a logarithmic fashion, reflecting the 

exponential distribution of motor unit innervation ratios. While the size principle 

generally holds for isometric contractions, some deviations have been observed. For 

concentric contractions, the number of recruited motor units increases, whereas for 

eccentric contractions, some studies have shown an altered recruitment order31. 
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2.6 Muscle anatomy 

2.6.1 Muscle architecture 

Skeletal muscles consists of organized bundles of muscle fibres, called muscle fascicles, 

wrapped in layers of connective tissue, or fascia. The muscle fibres are in turn composed 

of many myofibrils (Figure 2.5). Each myofibril consists of contractile segments, called 

sarcomeres, that are chained together along the muscle fibre. The contracting force is 

produced by sliding filaments within the sarcomeres, where actin filaments form a 

“ladder” upon which the motor protein myosin “climbs”. The amount of force a muscle 

can produce depends on the cross-sectional area of the muscle, i.e. the number of 

filaments per unit of area. The contraction length, in contrast, depends on the length of 

fibres. 

 

Figure 2.5: The architecture of a muscle and its fibres, down to the force-generating 

filaments. Edited from Britannica ImageQuest, © BSIP, Accessed April 25, 2025, 

https://quest.eb.com/images/181_770492. 
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Pennate muscle fibres 

Muscle fibres are organized at various angles depending on the muscle in question, 

creating an important distinction between the muscles anatomical cross-sectional area 

(ACSA) and its physiological cross-sectional area (PCSA). The ACSA is the area of the 

cross-section perpendicular to the longitudinal axis of the muscle, whereas the PCSA is 

the area of the cross-section perpendicular to the muscle fibres, reflecting the amount of 

force it can produce. Fusiform muscles have long fibres in parallel along its longitudinal 

axis, making the ACSA and PCSA equal. In contrast, pennate muscles have angled 

fibres, much like the barbs of a feather (Figure 2.6), which allows them to fit a larger 

number of shorter fibres within the same volume. Thus, pennate muscles can produce 

more force for their size, reflected by the PCSA, at the cost of contraction length. Pennate 

muscles are further divided into unipennate, bipennate, and multipennate muscles 

depending on the number of sets of similarly angled fibres. 

 

Figure 2.6: The flexor digitorum superficialis and the third digit tendon, showing the 

unipennate feather-like structure, with the distal end (D) on the right side and the 

proximal (P) insertion on the left side. Edited and reused with permission from 

Matsuzawa et al (2021)39, © 2020, https://doi.org/10.1007/s00276-020-02522-7. 

2.6.2 Forearm muscles 

Movement of the hand is controlled by both intrinsic and extrinsic muscles. The extrinsic 

muscles are larger and the prime movers of the hand and fingers, whereas most of the 

intrinsic muscles of the hand are responsible for more precise fine-tuning or stabilizing 

actions. As most of the papers in this dissertation pertains to processing EMG and 

modelling physiological regions of muscles in the forearm, an anatomical summary of 

the forearm is in order (Figure 2.7). The forearm contains 20 muscles that can be 

categorized into the posterior compartment and the anterior compartment (Table 2.1), 

separated be the interosseus membrane between the radius and the ulna40-42. The posterior 

compartment can also be further categorized into the dorsal compartment and mobile 

wad compartment. A distinction is also made between deep and superficial muscles, with 

some overlap. 
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Relating to movements of the hand, the posterior compartment of the forearm comprises 

the wrist and digit extensors, thumb abductor, and the supinator muscles, all innervated 

by the radial nerve. The anterior compartment comprises the wrist and digit flexors, as 

well as two pronator muscles, innervated by the median and ulnar nerves. Most muscle 

bellies are located in the proximal half of the forearm, with a couple of exceptions in the 

distal half. 

The extensor digitorum communis (EDC) is the shared finger extensor and receives more 

attention than other muscles in this dissertation. Where D1-D5 denotes the digits from 

thumb to little finger, the EDC extends only the fingers, D2-D5. Unlike most forearm 

muscles, the EDC is a fused muscle with some amount of compartmentalization, where 

the amount of independent finger extension is limited. While there is a large amount of 

overlap in activity between compartments, as seen through iEMG43, distinct regions have 

also been observed through both anatomical and sEMG investigations44,45. In this 

dissertation, the compartmentalization of the EDC is further explored and modelled using 

HDsEMG data. 

 

Figure 2.7: The cross-section of the middle of the forearm. Edited from Wikimedia 

Commons, Public domain, 

https://commons.wikimedia.org/wiki/File:Gray417_color.PNG. 
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Table 2.1: A list of the 20 forearm muscles and their main functions. 

Posterior compartment Location Main function 

ECRL 

Extensor carpi radialis longus  

Superficial Extends and abducts the wrist 

ECRB 

Extensor carpi radialis brevis  

Superficial Extends and abducts the wrist 

ECU 

Extensor carpi ulnaris  

Superficial Extends and adducts the wrist 

EDC 

Extensor digitorum communis 

Superficial Extends the fingers (D2-D5) 

EDM 

Extensor digiti minimi 

Superficial Extends the little finger (D5) 

APL 

Abductor pollicis longus 

Deep Abducts the thumb (D1) 

EPL 

Extensor pollicis longus 

Deep Extends the thumb (D1) 

EPB 

Extensor pollicis brevis 

Deep (distal) Extends the thumb (D1) 

EIP 

Extensor indicis proprius 

Deep (distal) Extends the index finger (D2) 

- 

Supinator 

Deep Supinates the forearm 

BR 

Brachioradialis 

Superficial Flexes the elbow and supinates 

forearm 

- 

Anconeus 

Superficial Extends the elbow 

Anterior compartment Location Main function 

FCR 

Flexor carpi radialis 

Superficial Flexes and abducts the wrist 

FCU 

Flexor carpi ulnaris 

Superficial Flexes and adducts the wrist 

PL 

Palmaris longus 

Superficial Flexes the wrist 

PT 

Pronator teres 

Superficial Pronates the forearm and flexes the 

elbow 

FDS 

Flexor digitorum superficialis 

Superficial Flexes the fingers (D2-D5) at the 

proximal interphalangeal joints 

FDP 

Flexor digitorum profundus 

Deep Flexes the fingers (D2-D5) at the 

distal interphalangeal joints 

FPL 

Flexor pollicis longus 

Deep Flexes the thumb (D1) 

PQ 

Pronator quadratus 

Deep (distal) Pronates the forearm 
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Chapter 3 

Electromyography 

3.1 Overview and origins 

Electromyography (EMG) is the recorded, or the act of recording, electrical activity 

produced by skeletal muscles. Similar to electrocardiography (ECG) and 

electroencephalography (EEG), which record action potentials of the heart and brain 

respectively, EMG captures the action potentials of muscle fibres. EMG recordings date 

back to the early 20th century, where Hans Piper is generally considered to have recorded 

the first surface electromyogram during voluntary contractions, using a string 

galvanometer29. Although the relation between electrical activity and muscle 

contractions had been observed by Luigi Galvani already in the late 18th century, the 

practical recording of muscle-generated action potentials by Hans Piper laid the 

groundwork for the modern field of EMG46. 

Modern EMG makes use of computers to process and store signals, which can be broken 

down into three steps: detection, conditioning, and analog-to-digital (A/D) conversion 1. 

Detection of electrophysiological signals is done using at least two electrodes placed on 

the skin or inside the body, measuring the potential difference between two points. In a 

sense, the tissue between these two points completes a circuit; electrical activity, ion 

currents, within this tissue drive a potential difference in the circuit, enabling the 

recording of one channel of EMG. Conditioning of the EMG signal is done to improve 

the quality of the recorded signal, typically using analog filters and amplifiers. A/D-

conversion implies a discrete sampling in time of the otherwise continuous 

electrophysiological signals. There are many types of electrodes, components, and 

configurations for EMG systems. The following sections will describe different types of 

electrodes and setups and the impact of various factors on the recorded EMG signal. 
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3.2 Electrodes  

There are broadly two types of EMG, based on the invasiveness of the recording, 

intramuscular EMG (iEMG) and surface EMG (sEMG). The former makes use of needle 

or wire electrodes inserted inside the muscle, whereas the latter uses electrodes placed 

on the skin surface above the muscle. The difference in the resulting recordings stem 

from the size of the electrodes’ receptive fields, i.e. the detection volume, and filtering 

effects of the signal which depend on the tissue between the muscle fibres and the 

electrodes. 

3.2.1 Intramuscular EMG 

For intramuscular electrodes, the receptive fields vary greatly between different types47. 

The concentric needle, first proposed by Adrian and Bronk48, consists of an insulated 

wire inside of a cannula. The potential difference is measured between the tip of the wire, 

which is exposed to the tissue, and the cannula. This generates a highly selective 

recording, where the size and shape of the exposed part of the wire affects the size of the 

receptive field. The precise recordings of concentric needles resulted in the first 

recordings of single motor units in humans29,48. While the needle can be readjusted until 

an acceptable position has been found, the downside to this electrode is the discomfort 

and pain which can result from the invasive nature of the recording. This is especially 

limiting at higher forces or during dynamic contractions, where large displacements of 

muscle tissue occur. 

Fine-wire electrodes for EMG measurements, proposed by Basmajian in the 1960s46,47, 

reduces the issues of discomfort and pain caused by a concentric needle. This type of 

EMG measures the potential difference between two flexible insulated wire electrodes, 

with uninsulated ends. The wire electrodes are placed inside a cannula which is inserted 

at the desired location. The ends of the wire electrodes are bent backwards, so as when 

the cannula is carefully removed, the wires remain in the muscle by hooking onto the 

tissue (Figure 3.1). While the flexibility of the wires minimizes both the pain and 

displacement of the electrodes during muscle contractions, they cannot be readjusted 

once the cannula is removed. 
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Figure 3.1: An illustration of intramuscular fine-wire electrodes and the cannula which 

they are inserted with. The two wires are insulated except at the ends to allow for a 

highly selective recording. Edited and reused with permission from Karacan and Türker 

(2024)49, © 2024, https://doi.org/10.1007/s00421-024-05640-x. 

3.2.2 Surface EMG 

In contrast to iEMG recordings, sEMG offers a non-invasive alternative of measuring 

muscle activity, using electrodes placed directly on the skin above the target muscle. 

While this greatly improves comfort and ease of use, especially in dynamic or long-

duration measurements, it also introduces several limitations. Surface electrodes detect 

activity from a larger volume of tissue, resulting in a broader receptive field that captures 

the summed activity of many motor units. As such, sEMG offers less spatial selectivity 

than iEMG (Figure 3.2), which can be both a feature and drawback. Furthermore, since 

the electrodes are placed at greater distance from target muscles, they have greater 

difficulty measuring the activity of deep muscles, resulting in a bias towards the activity 

of superficial ones. The MUAPs recorded by surface electrodes are additionally subject 

to low pass filtering effects, due to both the size of electrodes and the tissue between the 

electrodes and the muscle fibres2,50, resulting in a blurring or smearing of the waveform. 

Surface EMG signals are commonly recorded using silver/silver-chloride (Ag/AgCl) 

ECG electrodes (Figure 3.2), which can be both disposable and reusable. The benefit of 

these electrodes is that they facilitate an electrode-skin impedance that is mostly resistive 

and thus have a more uniform effect on the different frequency components of the signal, 

making them highly desirable from a signal quality perspective. In contrast, gold-plated 
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electrodes are more capacitive, resulting in an non-uniform electrode-skin impedance 

that is higher for low frequencies; the benefit of these electrodes is that they are more 

resistant to corrosion and thus more durable and reuseable1. This can make them more 

desirable for more expensive large grids of electrodes, which demand reusability to be 

affordable, despite the frequency dependence. 

High-density surface EMG (HDsEMG) is an extension of sEMG achieved using grids or 

arrays of electrodes (Figure 3.2). These grids can vary in size, inter-electrode distance, 

and layout, depending on the application needs and where they are placed. Although 

intramuscular high-density grids are used as well51, the non-invasive alternatives are 

placed on the skin, commonly using some adhesive material. By recording muscle 

activity from many adjacent points on the skin, HDsEMG provides a spatiotemporal 

recording of muscle activity, which can be conceptualized as an image, evolving in time 

like a movie. By covering a larger area, electrode grids make wholistic recordings of 

muscle activity easier. The additional spatial dimension provided by these recordings 

allow for more detailed analysis of MUAPs and are necessary for advanced signal 

processing, including motor unit decomposition and source localization, which is not 

feasible with individual surface electrodes. However, HDsEMG also introduces 

additional challenges; the amount of incoming data is much higher, placing greater 

demands on both the recording hardware and the processing software.  

Figure 3.2: ECG electrodes (3M, left) and a HDsEMG grid (OT Bioelettronica, right). 
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3.3 Electrode configuration 

As previously mentioned, each channel of EMG measures the potential difference 

between two points, requiring at least two electrodes. However, multiple channels in a 

system can also share one electrode, a reference electrode, between all channels. Thus, 

there is a distinction to be made between electrode configurations, mainly between 

bipolar and monopolar EMG, but also for other forms such as single differential or 

double differential EMG. 

In bipolar EMG, the potential difference is measured between two identical electrodes 

for each channel, placed close to the muscle. This is the standard configuration for fine-

wire iEMG but is also used for sEMG when the number of channels is relatively low. In 

this configuration, electrical activity that causes a potential increase at one electrode and 

a decrease at the other is amplified, whereas signals that affect both electrodes equally 

are attenuated. This means that the placement of the electrodes and the distance between 

them has a large impact on the recorded signal. In effect, the shorter the inter-electrode 

distance is the more local the recording will be, since there is less tissue between them 

to generate a strong signal. Signals generated far away from the electrodes affect them 

equally, known as common-mode signals, and are therefore reduced. This is often a 

highly desirable trait, since common-mode signals are typically generated by other 

muscles, i.e. crosstalk, or noise from distant sources such as powerlines interference. 

A monopolar configuration is preferable over bipolar when a large number of channels 

is desired, since a shared reference electrode reduces the number of electrodes required. 

The reference electrode is typically placed in an electrically stable location away from 

muscle activity. This creates a much simpler setup at the cost of higher sensitivity to 

common-mode noise, due to the increased distance between the reference and the 

remaining electrodes.  

Single differential and double differential configurations are commonly used in high-

density surface EMG and can be understood as forms of spatial filtering applied to 

monopolar recordings. In single differential EMG, the potential difference is sequentially 

derived between two adjacent electrodes. This is similar in principle to bipolar EMG, as 

both electrodes are placed near the active tissue and results in a more selective signal. 

However, single differentials are typically derived digitally from monopolar signals and 

can also be conceptualized as the first spatial derivative over an electrode grid or array. 

Double differential EMG extends this concept by subtracting the single differential 

signals of two adjacent electrode pairs, i.e. the second spatial derivative (Figure 3.3). For 

electrode grids, this can be further extended into two dimensions, which enables a 

flexible selection of electrodes to include in spatial filtering. This results in various 
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spatial filter masks, such as the normal double differential or inverse binomial of order 

two52,53: 

𝑀𝑆𝐷 = (
1

−1
) , 𝑀𝐷𝐷 = (

1
−2
1

) 

𝑀𝑁𝐷𝐷 = (
0 1 0
1 −4 1
0 1 0

) , 𝑀𝐼𝐵2 = (
1 2 1
2 −12 2
1 2 1

) 

In HDsEMG, these filter masks are applied for each electrode in grid, computing a two-

dimensional spatial convolution that combines adjacent channels into one, forming a new 

signal that can increase the selectivity of the recording and aid motor unit analysis50,54,55. 

 
Figure 3.3: One second of iEMG (top), single channel sEMG (middle), and double 

differential sEMG derived from 3 electrodes (bottom). Note that the iEMG signal is from 

a separate recording while the sEMG signals are from the same recording. 
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Chapter 4 

Signal processing 

This chapter provides the core technical foundation of the dissertation, outlining the 

methods and concepts used to process and interpret EMG signals. It serves as a bridge 

between the raw electrophysiological signals described earlier and the broad range of 

applications presented later, providing the background most directly related to the work 

presented in the papers. The chapter begins, as all EMG analysis does, with pre-

processing, covering frequency analysis and basic filters. It then broadly covers feature 

extraction, and describes localization in relation to spatial features, providing 

background to Paper Ⅱ. Learning methods that make use of extracted features are 

introduced next, including classification and regression, with direct relevance to spatial 

classification and modelling performed in Paper Ⅲ and Ⅳ. The chapter continues with 

a detailed description of signal separation, including Principal Component Analysis and 

Independent Component Analysis, which underpin many decomposition algorithms, 

including that of Paper Ⅰ. Finally, it concludes with an overview of motor unit 

decomposition, summarizing progress in the field and the challenges that remain.  
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4.1. Pre-processing and filtering 

4.1.1 The Fourier transform 

Any time-varying signal, including EMG, can be represented in two fundamental ways: 

in the time-domain, which is how the signal is sampled and recorded, and in the 

frequency-domain, which shows how the signal’s energy is distributed across different 

frequencies. The transformation between time- and frequency-domains is formalized by 

the Fourier Transform, a mathematical operation that decomposes a time-domain signal, 

𝑥[𝑛], into its constituent frequencies (sine waves). In the context of EMG, which is 

recorded in discrete samples, the Discrete Fourier Transform (DFT) is used, efficiently 

computed using a Fast Fourier Transform (FFT) algorithm. The DFT, 𝑋[𝑘], over a 

number of samples, 𝑁, is defined as follows: 

𝑋[𝑘] = ∑ 𝑥[𝑛] ∙ 𝑒−𝑖2𝜋𝑘𝑛 𝑁⁄

𝑁−1

𝑛=0

 

The Fourier Transform is a complex-valued function with the magnitude and phase of 

each frequency. To visualize the frequency content of a signal in a real-valued spectrum, 

power spectral density (PSD) is used, calculated from the magnitude of each frequency 

component, discarding the phase (Figure 4.1). 

𝑃𝑆𝐷 = 𝑃[𝑘] =
1

𝑁
|𝑋[𝑘]|2 

The frequency-domain representation is essential in EMG analysis, as it allows for the 

identification and isolation of frequency components associated with either muscle 

activity or noise56. For instance, lower frequencies may contain movement artifacts, and 

higher frequencies may consist mostly of ambient or inherent equipment noise57-60. 

Understanding the spectral content of EMG and designing proper filters is critical for 

any signal processing pipeline. 
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Figure 4.1: The complex valued Fourier frequencies (blue) of a sampled signal (red), 

and the power spectrum (green). Reused from Muceli and Merletti (2024)56, under CC-

BY-4.0. 

4.1.2 Noise 

EMG recordings always contain some degree of noise, artifacts, or interference, which 

are by definition unwanted signals. Noise can generically refer to any unwanted signal, 

whereas baseline noise more specifically refers to a consistent random signal in a 

recording while muscles are not contracting. Baseline noise includes thermal noise 

inherent to the recording system, as well as electrochemical noise introduced at the skin-

electrode interface61,62. Artifacts refer to transient perturbations in the recording; this is 

most commonly the result of body movements. Movement artifacts are generated by 

changes in the skin-electrode impedance, as the skin stretches and deforms or moves 

relative to the electrode, and are generally below 20 Hz63. Interference is generally 

periodic and to some extent predictable, generated by sources both internal and external 

to the body. Within the body, the ECG signal can produce interference up to 100 Hz64. 

Interference from a muscle that is not a target muscle is referred to as cross-talk, which 

shares the same frequency spectrum as the intended EMG signal. Outside the body the 

main source of interference is that of electrical equipment, which can mostly be avoided 

by moving away from the source, and power-lines, which is generally too widespread 

and pervasive to avoid. Power-line interference (PLI) is centred at 50 or 60 Hz, 

depending on the regional power standard, and often includes its harmonic frequencies 

(i.e. multiples of 50 or 60 Hz). PLI is a particularly strong source of interference which 
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necessitates additional countermeasures; this typically includes impedance balancing 

and notch filters1, but also adaptive noise cancelling65,66, and virtual references67. 

4.1.3 Bandpass filtering 

Bandpass filtering is one of the most fundamental steps in EMG signal preprocessing. It 

involves applying both a high-pass filter and a low-pass filter to isolate the frequency 

band that contains the majority of the physiological signal, while attenuating unwanted 

components outside this range. These two parts serve distinct but complementary 

purposes. 

The high-pass filter attenuates low-frequency components, primarily targeting 

movement artifacts, electrode drift, and the DC component in the signal. Movement 

artifacts and electrode drift, caused by skin-electrode impedance changes and cable 

motion, typically occur below 20 Hz. Depending on the amount of noise and the 

application, high-pass filters used in sEMG preprocessing have many recommended 

cutoff frequencies, typically in the range of 5–30 Hz58-60. However, aggressive high-pass 

filtering risks attenuating genuine low-frequency components, limiting the information 

in the signal. 

The low-pass filter, on the other hand, attenuates high-frequency noise and interference 

above the EMG signal bandwidth. In sEMG, the majority of signal power lies below 350 

Hz, although some components can extend up to 500 Hz, depending on the recording. 

Frequencies above this range are generally considered to be noise, and the low-pass 

cutoff frequencies for sEMG are therefore typically set between 400–500 Hz. In contrast, 

intramuscular EMG (iEMG) contains higher frequency components that may exceed 1 

kHz, due to its proximity to motor units which reduces the low-pass filtering effects of 

the tissue. 

Together, these filters form a bandpass filter that preserves the EMG frequency band of 

interest, while attenuating high- and low-frequency noise. Bandpass filtering is crucial 

not only for improving signal quality but also for ensuring the effectiveness of 

subsequent feature extraction, decomposition, and classification algorithms, all of which 

rely on a clean representation of the muscle activation signal. 

4.1.4 Bandstop filtering 

Bandstop filters, also known as notch filters, are designed to attenuate a narrow range of 

frequencies while allowing others to pass largely unaffected. For EMG signals, they are 

most commonly used to suppress power-line interference (PLI) from electrical 

infrastructure, centred at 50 Hz or 60 Hz, often with harmonic components at integer 



Chapter 4: Signal processing 

33 

 

multiples of the base frequency. PLI can be many times greater than the EMG signal 

itself, which poses a considerable problem for investigating muscle activity. While 

filtering is often necessary, preventative measure should be taken to reduce PLI at the 

source, prior to filtering. This includes proper grounding of the EMG acquisition system 

and impedance balancing across electrode pairs to reduce interference pickup. PLI can 

also be reduced actively with a Driven Right Leg (DRL) circuit, which actively cancels 

common-mode noise by driving an inverted version of the detected noise back into the 

body. As a secondary countermeasure, however, a notch filter can very effectively 

suppress PLI even at high amplitudes. The downside to notch filters is that they also 

distort the content of the EMG signal. Since the frequency content of EMG signals 

stretches across 50-60 Hz, aggressive filtering may significantly attenuate important 

signal components, altering original signal. 

4.1.5 Filter characteristics 

While filtering improves signal quality by suppressing unwanted frequency components, 

it can also introduce unintended distortions, particularly in the temporal structure of the 

signal. One of the most critical artifacts of filtering is phase delay, or phase distortion, 

which occurs when different frequency components of the signal experience different 

time delays as they pass through the filter. To mitigate this, digital off-line filters often 

employ zero-phase filtering, typically by applying the filter twice, first in the forward 

direction from the first sample and then in the backward direction from the last sample. 

This compensates the introduced delays, effectively cancelling it out. However, this is 

not possible for analog or real-time filters. Filter performance is typically assessed by 

examining both the magnitude response and the phase response. The magnitude response 

shows how much the filter attenuates or passes each frequency, while the phase response 

indicates how different frequency components are shifted in time. Different filter types 

offer trade-offs between optimal magnitude and phase responses. The choice of filter 

depends on the demands of the application, particularly whether preserving waveform 

shape or achieving a sharp frequency cutoff is more critical. 

The Butterworth filter is one of the most commonly used filters for EMG signals due to 

its maximally flat magnitude response in the passband. However, its roll-off is relatively 

gradual, meaning it requires a higher order to achieve steep transitions between passband 

and stopband. The Chebyshev filter offers a much steeper roll-off than the Butterworth 

for a given filter order; it has the best approximation to an ideal filter, at the cost of 

ripples in the frequency response. The Bessel filter, in contrast, is designed to preserve 

the waveform shape over time, featuring a near-linear phase response. In practice, the 

selection of filter type represents a trade-off between passband flatness, noise 

suppression, and phase preservation.  
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4.2 Feature extraction 

The purpose of feature extraction is to simplify the raw or filtered data, by identifying 

the most valuable or informative properties. The entire HDsEMG input contains a lot of 

information that may not be meaningful or necessary for a given task. Thus, instead of 

analysing the entire signal directly, the most relevant features are extracted that capture 

and distil meaningful properties in a compact and interpretable form. The following 

sections describe various features of different types used in EMG analysis, including 

time-domain, frequency-domain, statistical, and spatial features. 

4.2.1 Time-domain features 

The mean absolute value (MAV) is the average amplitude within a given interval and is 

one of the most simple and robust features used for EMG signals.  

𝑀𝐴𝑉 =
1

𝑁
∑|𝑥[𝑛]|

𝑁−1

𝑛=0

 

The root mean square (RMS) is an average amplitude measure similar to MAV but is 

directly related to the signal’s power, which also makes it more sensitive to outliers. 

𝑅𝑀𝑆 = √
1

𝑁
∑ 𝑥[𝑛]2

𝑁−1

𝑛=0

 

Zero crossings (ZC) is the number of times the signal changes sign, which reflects the 

frequency content of the signal. It can be calculated any number of ways and is often 

combined with a threshold to avoid counting noise. 

𝑍𝐶 = ∑ 𝛿(|𝑠𝑔𝑛(𝑥[𝑛]) − 𝑠𝑔𝑛(𝑥[𝑛 + 1])| > 1)

𝑁−2

𝑛=0

 

Slope sign changes (SSC) measures the number of times the slope of the EMG signal 

changes direction, reflecting the signal complexity or the degree to which high-frequency 

content is present. 

𝑆𝑆𝐶 = ∑ 𝛿((𝑥[𝑛] − 𝑥[𝑛 − 1]) ∙ (𝑥[𝑛] − 𝑥[𝑛 + 1]) > 0)

𝑁−2

𝑛=1
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Waveform length (WL) is the cumulative length of the signal, providing a measure of 

signal complexity affected by both amplitude and frequency. 

𝑊𝐿 = ∑|𝑥[𝑛 + 1] − 𝑥[𝑛]|

𝑁−2

𝑛=0

 

4.2.2 Frequency-domain features 

The total power can be calculated as the sum of the power spectral density over a 

frequency band of interest. Total power over the entire frequency spectrum gives the 

energy of a signal, closely related to RMS in the time-domain. This measure is useful 

when the energy of interest is limited to a specific frequency band.  

𝑇𝑃 = ∑ 𝑃[𝑘]

𝑀−1

𝑘=0

 

The mean frequency of the PSD can be used to assess fatigue in prolonged contractions. 

𝑀𝑁𝐹 =
∑ 𝑓𝑘 ∙ 𝑃[𝑘]𝑀−1

𝑘=0

∑ 𝑃[𝑘]𝑀−1
𝑘=0

 

The median frequency is similarly used in fatigue analysis, defined as 𝑓𝑚 such that: 

∑ 𝑃[𝑘]

𝑚

𝑘=0

=
1

2
∑ 𝑃[𝑘]

𝑀−1

𝑘=0

 

4.2.3 Statistical features 

While time- and frequency-domain features provide compact and valuable signal 

characteristics, they often focus on local signal properties computed on short windows 

(e.g. 250 ms) and are used to analyse changes in continuous data. In contrast, statistical 

features describe properties of the entire signal distribution and are often more time-

invariant. They capture more global characteristics that quantify the shape and structure 

of the signal’s amplitude distribution, which are essential for understanding the 

underlying signal-generating process. In the context of EMG, one particularly important 

set of statistical features is the central moments, which quantify key aspects of a 

probability distribution such as variance, skewness, and kurtosis. These moments 

provide a foundation for both principal and independent component analysis, critical to 

motor unit decomposition of HDsEMG. 
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The central moments of a random variable provide a formal mathematical description of 

the shape of its probability distribution. For a real-valued random variable 𝑍, the 𝑟-th 

central moment is defined as 𝐸{(𝑍 − 𝐸[𝑍])𝑟}. In practice, the underlying distribution of 

the EMG signal is unknown, and moments must be estimated from data. This is done 

using a finite set of signal samples yielding the sample central moment: 

𝜇𝑟 =
1

𝑁
∑(𝑥[𝑛] − 𝜇)𝑟

𝑁−1

𝑛=0

≈ 𝐸{(𝑍 − 𝐸[𝑍])𝑟} 

Note that central moments differ from raw moments in that they are computed about the 

signal’s mean rather than zero. While the first raw moment is the mean, the first central 

moment is, by definition, zero. The second central moment is the variance, which 

quantifies the spread of the signal around the mean. It reflects the overall power of the 

signal and is directly related to both the RMS and TP (total power) features. 

The third and fourth central moments are typically standardized by dividing by 

appropriate powers of the standard deviation in order to make them dimensionless and 

comparable across signals with different scales. This yields the standardized moments of 

skewness and kurtosis, which describe the asymmetry and tailedness of the distribution, 

respectively (Figure 4.2). 

Skewness is computed as the third central moment divided by the cube of the standard 

deviation. It reflects whether the signal distribution leans toward higher or lower 

amplitude values, with positive skew indicating a longer right tail and negative skew a 

longer left tail. 

𝑆𝑘𝑒𝑤𝑛𝑒𝑠𝑠 =
𝜇3

𝜎3
 

Kurtosis is defined as the fourth central moment divided by the fourth power of the 

standard deviation, indicating how peaked or heavy-tailed the distribution is. Signals 

with high kurtosis more frequently exhibit large intermittent deviations, such as sharp 

transients or bursts. 

𝐾𝑢𝑟𝑡𝑜𝑠𝑖𝑠 =
𝜇4

𝜎4
 

These standardized higher-order moments are particularly important in statistical 

decomposition techniques like Independent Component Analysis, where these features 

are key to identifying statistically independent sources within a mixture of signals. 
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Figure 4.2: Probability distributions of the log-normal distribution (left) with positive 

skew, the normal distribution (middle), and the Laplace distribution with positive 

excess kurtosis. 

4.2.4 Spatial features 

The advent and widespread usage of high-density electrode grids have enabled the 

extraction of a new class of features, i.e. spatial features, which play a central role in the 

methods presented in this dissertation. By simultaneously recording electrical activity at 

multiple neighbouring sites, electrode arrays capture not only temporal variations but 

also the spatial distribution of the EMG signal across the skin surface. This spatial 

information adds a new dimension to EMG analysis, enabling the derivation of more 

intuitive features that reflect the underlying anatomical and physiological structures. 

Characterizing how signal intensity varies across space allows for physically grounded 

and interpretable descriptions of muscle activity. 

Activation maps 

While amplitude-based features such as RMS provide information about the intensity of 

muscle activations over time, HDsEMG enables these features to be interpreted in a 

spatial context. When RMS or similar measures are computed independently for each 

electrode in a grid, the result can be visualized as an activation map, or heat map, which 

is a two-dimensional representation of signal amplitude distributed across the skin 

surface. In practice, activation maps are typically computed over short time windows and 

continuously updated to display muscle activity over time. The results for each electrode 

are arranged according to the physical layout of the grid. Interpolation can also be applied 

to create a smooth surface (Figure 4.3), or fill in missing channels68.   

Activation maps capture the spatial footprint of muscle activity as projected onto the 

electrode array. Unlike single-channel EMG, which offers only a localized view, 

activation maps reveal broader patterns, such as the regions of peak intensity, 

asymmetries in activation, or changes in the distribution over time69-73. Beyond 

visualization, activation maps serve as a foundation for other spatial features, including 
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the centre of activity and spread of activity, as well as direct input for convolutional 

neural networks74,75. They have also been used to directly estimate muscle fibre 

conduction velocity and muscle fibre orientation76. 

 

Figure 4.3: An activation map of a 5-by-13 HDsEMG grid during index finger extension. 

Waveform distribution maps 

While activation maps provide a scalar summary of signal amplitude at each electrode 

over a given time window, longer waveforms can be visualized in a similar manner as 

well. In this case, a short window of samples (e.g. 50 ms) is extracted and plotted for 

each electrode at its corresponding grid location (Figure 4.4), forming a spatiotemporal 

map of electrical activity77. 

These waveform distribution maps reveal how the shape and timing of the signal vary 

across space. Measuring the difference in timing of electrical activity along the direction 

of muscle fibres captures the propagation of motor unit action potentials, from which 

valuable properties such as muscle fibre conduction velocity can be derived. Waveform 

distribution maps are commonly used in motor unit decomposition to visualize the motor 

unit potential distribution, typically derived using spike-triggered averaging (STA) with 

identified motor unit spike trains; they are, however, equally applicable to non-

decomposed signals. In the context of this dissertation, these waveform distributions are 

used not only for visualization, but also as the basis for iterative decomposition, 

localization of both decomposed and non-decomposed EMG signals, and subsequent 

modelling of muscle activity. 
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Figure 4.4: A waveform distribution map of a motor unit action potential derived using 

spike-triggered averaging. 

Centre of Activity 

The centre of activity (CoA) provides a compact summary of the spatial distribution of 

EMG intensity across the electrode grid. It represents the weighted average location of 

signal amplitude, effectively identifying the "centre of mass" of muscle activation within 

the recording window70,78,79. To compute the CoA, a scalar amplitude measure, such as 

the RMS value, is first calculated for each electrode over a short time window, i.e. 

generating an activation map. The spatial coordinates of the electrodes, (𝑥𝑖 , 𝑦𝑖), are then 

weighted by their corresponding amplitude values, 𝐴𝑖. 

𝑥𝐶𝑜𝐴 =
∑ 𝐴𝑖𝑥𝑖𝑖

∑ 𝐴𝑖𝑖

 ,   𝑦𝐶𝑜𝐴 =
∑ 𝐴𝑖𝑦𝑖𝑖

∑ 𝐴𝑖𝑖

  

This results in a single point that indicates where the majority of activity is concentrated 

across the grid, useful for tracking changes in muscle activity over time or comparing 

activation patterns across tasks or subjects. 

Spread of Activity 

Following the centre of activity as a spatial analogue to the signal mean, the spread of 

activity represents the next logical feature, as a spatial analogue to the signal variance. 

While the centre of activity quantifies where the EMG signal is concentrated on the 

electrode grid, the spread of activity captures whether it is tightly localized or broadly 

distributed. 
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Although the concept of spatial dispersion has been visualized and qualitatively assessed 

through activation maps, a formalized feature to quantify it has not been widely adopted. 

A potential spread of activity metric can, however, be conceptualized as the weighted 

spatial variance of signal amplitude across the electrode grid. 

𝑆𝑜𝐴 = 𝜎𝑥,𝑦
2 =

1

∑ 𝐴𝑖𝑖

∑ 𝐴𝑖
𝑖

[(𝑥𝑖 − 𝑥𝐶𝑜𝐴)2 + (𝑦𝑖 − 𝑦𝐶𝑜𝐴)2] 

This feature is a spatial analogue of the weighted sample variance, where signal 

amplitudes serve as weights over the spatial coordinates. The result is a scalar value 

representing the overall spatial spread of activity across the electrode grid. While overall 

spread of activity is not a common feature on its own, spread along a specific axis is 

central to source localization techniques that triangulate the origin of motor unit action 

potentials. 

Localization 

In the context of this dissertation, unless otherwise stated, localization of EMG signals 

refers to estimating or approximating the 3D position of a signal source within a muscle, 

rather than a position projected onto the electrode grid at the skin surface. In contrast to 

the centre of activity, providing a weighted average location on the surface, 3D 

localization methods infer the subsurface origin of electrical activity, extending the 

spatial interpretation from two dimension into three. Finite element models have long 

been explored to solve this problem80-83, but they tend to be computationally heavy. The 

simpler approach is to make use of the surface signal as presented by waveform 

distribution maps and inferring the depth of the motor unit source from the properties of 

the distribution alongside an analytical volume conductor model84-87. 

Roeleveld et al presented a method for estimating motor unit depth by measuring the 

spread of the MUAP amplitude decay perpendicular to the muscle fibre direction84. 

Using a linear array of surface EMG and intramuscular scanning EMG, they identified a 

number of motor units at varying depths and obtained their waveform distributions along 

the surface array from spike-triggered averaging. They managed to characterize the 

relation between the depth of motor units and features of the waveform distribution. 

Since superficial motor units are disproportionately close to some electrodes over others, 

the amplitude decays rapidly from its peak value at the electrode directly above the motor 

unit to the more distant electrodes. In contrast, deeper motor units have a more uniform 

distance to each electrode, resulting in a more uniform, wider, amplitude distribution 

across the electrode array. Specifically, they estimated the full width at half-maximum 

(FWHM) of the amplitudes of the waveform distribution (Figure 4.5)84. 
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Figure 4.5: The waveform distribution of a linear array width the full width at half-

maximum (FWHM) for a superficial (left) and deep (right) motor unit. The superficial 

motor unit has a rapid amplitude decay and thus a small FWHM, whereas the deep motor 

unit has a slow decay and a large FWHM. Reused with permission from Roeleveld et al 

(1997)84, © 2003, https://doi.org/10.1046/j.1365-201X.1997.00247.x. 

The amplitude decay, characterized by the FWHM, can then be modelled as signal 

attenuation which increases with distance from the motor unit source. The relation 

between the attenuation power and motor unit depth is described in an analytical volume 

conductor model84. A multitude of volume conductor models have also been explored 

and proposed for HDsEMG, with multiple layers and inhomogeneities85,88-93. While some 

alternatives to solve this inverse problem have been explored94-96, the association 

between the FWHM and depth described by Roeleveld et al is the core stepping stone 

for the source localization method used in this dissertation and introduced in Paper Ⅱ. 
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4.3 Feature-based learning methods 

Once features have been extracted from EMG signals, they can be used as inputs to 

machine learning models or algorithms for interpreting muscle activity. Models that learn 

the relationship between input features and target outputs from labelled data are 

categorized as supervised learning methods. This broadly covers two applications: 

classification and regression. 

4.3.1 Classification 

Classification methods attempt to assign the input features, represented as feature 

vectors, to one or more discrete classes. In the context of EMG, classification answers 

questions such as which muscle is active, or which gesture is performed. Papers Ⅲ and 

Ⅳ in this dissertation focus on spatial classification within a 3D muscle model, but this 

section provides general context by briefly describing common alternative approaches.   

K-nearest neighbours (k-NN) is one of the simplest classification algorithms. It assigns 

a class label to a new input based on the majority class among its 𝑘 closest neighbours 

in the feature space. Rather than learning an explicit model, k-NN simply stores all 

training data in memory and performs classification through direct comparison. While 

intuitive and easy to implement, it scales poorly in high-dimensional spaces. 

Linear discriminant analysis (LDA) separates data into distinct classes by finding a 

linear combination of features that maximizes separability97. It assumes that each class 

follows a Gaussian distribution with a shared covariance matrix, and projects the data 

onto a lower-dimensional space that maximizes the between-class variance while 

minimizing within-class variance. LDA is computationally efficient and commonly in 

EMG classification due to its simplicity and fast inference. 

Support vector machines (SVM) aim to find a decision boundary that maximizes the 

margin between classes in the feature space98. In the linear case, the boundary is a 

hyperplane, while non-linear separations can be achieved using kernel functions that map 

the data into higher-dimensional spaces. SVMs are robust to overfitting and often 

perform well on small-to-moderate datasets, due to their emphasis on margin 

maximization and their reliance on only a sparse set of support vectors, resulting in fewer 

effective parameters compared to high-capacity models like neural networks. 

Artificial neural networks are highly flexible models capable of learning complex non-

linear relationships between inputs features and class labels. They consist of multiple 

layers of interconnected nodes, resembling neurons, each applying a non-linear 

transformation to its input. Neural networks are conceptually different in that they are 
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typically trained layer-by-layer, through an iterative optimization process called 

backpropagation. While neural networks can act as powerful function approximators, 

their large number of parameters often requires substantial data to train effectively. They 

are also prone to overfitting, necessitating regularization techniques to ensure 

generalizability.  

In this dissertation, spatial classification based on 3D modelling of muscle volumes is 

introduced in Paper Ⅲ. This approach leverages the spatial features derived from 

waveform distribution maps to first model muscle regions as volume functions and then 

perform spatial classification of new points within the model. Here, the feature vector 

becomes the Cartesian coordinates of a given 3D position, and a unique ellipsoid volume 

function is used to represent each muscle. These functions then serve as distance metrics 

to the volume centre, used to assign each new observation to the closest muscle 

representation. It is conceptually simple and somewhat similar to k-NN, where instead 

𝑘 = 1 and the distance metric varies between classes to account for varying distributions. 

4.3.2 Regression 

Although not the explicit focus of the work in this dissertation, regression is widely used 

in HDsEMG applications. It is also closely related to some modern decomposition 

algorithms, and thus worth mentioning. 

Linear regression is one of the simplest and most widely used methods for modelling the 

relationship between a set of input features and a continuous output variable. In the 

context of EMG, it is often applied to estimate muscle force or joint torque. The model 

assumes a linear relationship between the input, 𝑿, and the predicted output, �̂�, 

determined by a vector of learned weights, 𝒘. 

�̂� = 𝒘𝑇𝑿 

The optimal weights are typically found by minimizing the mean squared error between 

the predicted output and ground truth, 𝒚: 

𝑚𝑖𝑛‖𝒚 − �̂�‖2 = ∑(𝑦[𝑛] − 𝒘𝑇𝒙[𝑛])2

𝑁

𝑛=1

 

This minimization problem has the optimal solution: 

𝒘 = (𝑿𝑇𝑿)−1𝑿𝑇𝒚 

It is worth noting that this solution is mathematically equivalent to estimating the Wiener 

filter, commonly described in filter theory99 and central to some motor unit 
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decomposition techniques using lower-order statistics. It is expressed as the input 

autocorrelation, 𝑹𝒙𝒙, and the input-output cross-correlation, 𝒓𝑥𝑦: 

𝒘 = 𝑹𝑥𝑥
−1𝒓𝑥𝑦 

𝑹𝒙𝒙 = 𝐸{𝑿𝑇𝑿},    𝒓𝑥𝑦 = 𝐸{𝑿𝑇𝒚} 

4.4 Unsupervised learning methods 

4.4.1 Principal component analysis 

Principal Component Analysis (PCA) is a statistical technique commonly used to reduce 

the dimensionality of a dataset while preserving as much variance as possible. In the 

context of processing HDsEMG signals, PCA can simplify high-dimensional data by 

identifying orthogonal directions, or basis vectors, along which the data has the highest 

variance. 

If each channel in a high-density recording represents a dimension in a high-dimensional 

space, then PCA performs a linear transformation, or rotation, of this space to align the 

new coordinate system with the directions of maximal variance. The first principal 

component is the direction (a vector) along which the data vary most. It is a linear 

combination of the original channels, meaning that each new component is formed by 

scaling each input channel by a weight and summing the result. Each subsequent 

component is chosen to capture as much of the remaining variance as possible while 

staying orthogonal to the previous components. The result is a set of components ordered 

by how much variance they explain. 

Mathematically, PCA involves computing the covariance matrix, 𝑹, of the data matrix, 

𝒙, after removing the mean across channels (centring the data). The principal components 

are the eigenvectors of this matrix, and the amount of variance explained by each 

component is given by its associated eigenvalue.  

𝑹 =
1

𝑁
𝑿𝑇𝑿,     𝑹𝒆𝑖 = 𝜆𝑖𝒆𝑖 

where 𝒆𝑖 is the 𝑖-th principal direction and 𝜆𝑖 the corresponding eigenvalue representing 

the variance along that component. PCA serves multiple purposes in HDsEMG analysis, 

most commonly as a preprocessing step for other methods. It is used to reduce size of 

large data matrices by retaining only the top principal components that account for most 

of the signal structure, referred to as dimensionality reduction. In the same vein, it is used 

for noise reduction, by discarding low-variance components often dominated by noise. 

Additionally, PCA is used to perform whitening (or sphering), which is the process of 
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decorrelating signals and normalizing their variances. By removing the influence of 

lower-order statistics, i.e. the mean and variance, PCA prepares the data for Independent 

Component Analysis (ICA), which leverages higher-order statistics such as skewness 

and kurtosis to identify underlying sources that are statistically independent. Whitening 

is formulated as: 

𝒁 = 𝑽𝑿 

𝑽 = 𝑬𝑫−1/2𝑬𝑇  

Where 𝒁 is the whitened data matrix and 𝑽 is the whitening matrix, produced by the 

matrix of unit-norm eigenvectors, 𝑬, and a diagonal matrix of their eigenvalues, 𝑫, from 

the previously defined covariance matrix. 

4.4.2 Independent component analysis 

While PCA transforms the data into uncorrelated components, this is not enough to 

separate independent components, such as individual motor unit signals. Independent 

Component Analysis (ICA), however, seeks a linear transformation based on higher-

order statistics which do reflect independence, making it a powerful method for blind 

source separation (BSS) tasks100-102. Blind source separation refers to the task of 

separating a set of mixed signals into their original source components without prior 

knowledge of how they were combined. The task is exemplified by the “cocktail party 

problem”, where multiple people speak simultaneously in a room, and several 

microphones record overlapping audio signals. ICA attempts to unmix these recordings 

and isolate each individual voice. In the context of HDsEMG, the recordings from the 

electrode grid are mixtures of motor unit sources, and ICA seeks a de-mixing transform 

to recover statistically independent sources, based solely on the observed surface signals.  

𝒚 = 𝒘𝑇𝒁 

Where the de-mixing vector, 𝒘, is the linear combination applied to the centred and 

whitened data matrix, 𝒁, producing an independent source, 𝒚. 

Non-gaussianity and entropy 

The key assumption in ICA is that the observed signals are linear mixtures of statistically 

independent sources with non-Gaussian distributions. ICA works because of a 

fundamental statistical principle: the Central Limit Theorem, which states that the sum 

(or mixture) of independent random variables tends toward a Gaussian distribution, even 

if the original variables themselves are not Gaussian. ICA leverages the inverted logic; 
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if the underlying sources are individually less Gaussian than their mixture, then 

maximizing non-Gaussianity will identify sources that are maximally independent. 

To measure and maximize non-Gaussianity, ICA algorithms rely on higher-order 

statistical moments such as kurtosis (the fourth central moment) and skewness (the third). 

This is because Gaussian distributions exhibit zero skewness and zero excess kurtosis, 

from which structured sources may deviate. In information-theoretic terms, Gaussian 

variables carry the least information and have the highest entropy among variables of 

equal variance; whereas independent sources are typically sparse or structured and thus 

carry more information. ICA is often theoretically formulated using negative entropy 

(negentropy), a measure of how far a distribution is from a Gaussian. 

𝐽(𝒚) = 𝐻(𝒚𝑔𝑎𝑢𝑠𝑠) − 𝐻(𝒚) 

Although negentropy provides a powerful theoretical measure of non-Gaussianity, it is 

not easily computed for arbitrary distributions. Negentropy can, however, be 

approximated using higher-order moments100. 

𝐽(𝒚) ≈
1

12
𝑠𝑘𝑒𝑤(𝒚)2 +

1

48
[𝑘𝑢𝑟𝑡(𝒚) − 3]2 

Note here that a Gaussian distribution has no skew and a kurtosis of 3; by subtracting 3 

from kurtosis, we get excess kurtosis, which is thus relative to the Gaussian distribution.  

Contrast functions 

In practice, the approximation using higher-order moments can be used as is, but it runs 

into instability as these polynomial functions are sensitive to outlier samples. A pair of 

non-polynomial contrast functions, 𝐺1 and 𝐺2, which reflect skewness and kurtosis are 

commonly used instead: 

𝐽(𝒚) ≈ 𝑘1(𝐸{𝐺1(𝒚)})2 + 𝑘2(𝐸{𝐺2(𝒚)} − 𝐸{𝐺2(𝒚𝑔𝑎𝑢𝑠𝑠)})
2
 

If one where to choose 𝐺1(𝒚) = 𝒚3 and 𝐺2(𝒚) = 𝒚4, we return to the prior 

approximation of negentropy. More practical choices that are robust to outliers, would 

be: 

𝐺1(𝒚) = 𝒚 exp(−𝒚2/2) 

𝐺2(𝒚) = exp(−𝒚2/2) 



Chapter 4: Signal processing 

47 

 

Any number of contrast functions that reflect skewness and kurtosis can be used; the goal 

remains the same: to maximize 𝐽(𝒚). This optimization problem is often further 

simplified, by using only one contrast function and dropping the constants. 

𝐽(𝒚) ∝ (𝐸{𝐺2(𝒚)} − 𝐸{𝐺2(𝒚𝑔𝑎𝑢𝑠𝑠)})
2
 

From here, any optimization method can be used, such as gradient descent, which would 

find stationary points of the derivate of the function. One of the most widely used 

methods, however, is the FastICA algorithm, due to its fast convergence properties. 

FastICA 

The FastICA algorithm is a fixed-point iteration algorithm which converges much faster 

than traditional gradient descent100,101. It is derived using Newton’s method, containing 

the first and second derivatives, 𝑔 and 𝑔′,  of the original contrast function, 𝐺2. After 

inserting 𝒚 = 𝒘𝑇𝒁, the iterative update for the de-mixing vector in FastICA is:  

𝒘 ← 𝑬{𝒁𝑔(𝒘𝑇𝒁)} − 𝑬{𝑔′(𝒘𝑇𝒁)}𝒘 

𝒘 ← 𝒘/‖𝒘‖ 

Where the de-mixing vector is normalized in each iteration. This iteration then continues 

until changes to the de-mixing vector are very small, set by some threshold, or reaches a 

chosen maximum number of iterations.  

𝒚 = 𝒘𝒇𝒊𝒏𝒂𝒍𝒁 

The final output is an estimated independent source component. Identifying multiple 

sources can be done either one at a time or simultaneously in each iteration; both cases 

require an orthogonalization step for the different de-mixing vectors. The goal is to 

prevent each de-mixing vector from converging to the same values. Thus, the overlap 

between vectors, their dot product, is removed in each iteration, typically applied before 

normalization. Removing the overlap with the previously identified de-mixing vectors, 

𝒘𝑗, from the current de-mixing vector, 𝒘𝑝, is referred to as deflationary 

orthogonalization, used when estimating sources one at a time:  

𝒘𝑝 ← 𝒘𝑝 − ∑(𝒘𝑝
𝑇𝒘𝑗)𝒘𝑗

𝑝−1

𝑗=1

 

Symmetric orthogonalization refers to an even, or unbiased, decorrelation between 

multiple de-mixing vectors, combined in the de-mixing matrix 𝑾, used when estimating 

multiple sources simultaneously:  
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𝑾 ← (𝑾𝑾𝑇)−1/2𝑾 

In the context of HDsEMG, ICA works for motor unit decomposition because motor unit 

signals are very sparse. A sparse signal contains mostly zeros, with concentrated bursts 

of activity, which results in high kurtosis. A combination of two motor unit spike trains 

has lower kurtosis (and is less sparse), as their common distribution is closer to a 

Gaussian distribution due to the Central Limit Theorem. Furthermore, ICA cannot “go 

too far” and separate individual MUAPs from the same motor unit (which would create 

an even sparser signal). This is because MUAPs from the same motor unit tend to be 

almost identical, and the de-mixing vector is applied uniformly across the HDsEMG 

data. The result is that for a linear combination of channels, it is maximally kurtotic, or 

sparse, for individual motor units with their full spike train intact. 

4.5 Motor unit decomposition 

4.5.1 Development of motor unit decomposition 

The decomposition of surface EMG into individual motor unit spike trains has undergone 

a substantial evolution, with a range of computational methods and models from different 

theoretical backgrounds. Early approaches relied on template matching techniques, 

originally developed for intramuscular EMG, where action potential waveforms could 

be cleanly isolated and clustered based on shape similarity103-105, and with software 

applications such as EMGLAB106-108 and DQEMG109-112. When applied to sEMG, 

however, these methods faced significant limitations due to the signal complexity, with 

overlapping MUAPs and smearing due to the inherent low pass filtering effects113-118. 

The introduction of HDsEMG enabled a new class of methods based on BSS. These 

approaches treat the EMG signal as an unknown mixture of sources, aiming to unmix 

them using statistical criteria. In this context, ICA methods, such as FastICA and JADE, 

became prominent and were successful in decomposing a small number of motor units119-

124. 

However, classical ICA assumes instantaneous linear mixing and does not account for 

the temporal structure in real signals, as if all samples were recorded simultaneously 

without order. To make better use of this temporal information, the model underlying 

EMG decomposition methods shifted to a finite impulse response (FIR) filter model: 

𝑥𝑖[𝑛] = ∑ ∑ 𝑎𝑖𝑗[𝑙]𝑠𝑗[𝑛 − 𝑙]

𝐿−1

𝑙=0

𝐽

𝑗=1
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Where 𝑥𝑖[𝑛] is the 𝑖-th EMG channel, 𝑠𝑗[𝑛 − 𝑙] is the spike train (impulses) of the 𝑗-th 

motor unit, 𝑎𝑖𝑗[𝑙] is the action potential (impulse response) of the 𝑗-th motor unit at 

channel 𝑖, where 𝐿 is the length of the action potential, and 𝐽 is the number of active 

motor units. This gave rise to the Convolution Kernel Compensation (CKC) 

framework125-127, where the goal instead is to reverse (compensate) the impulse responses 

and recover the underlying spike trains directly. The impulse response is compensated 

by iteratively estimating and updating an optimal filter, which is based on second-order 

statistics rather than higher-order statistics. CKC has been applied and improved upon 

extensively128,129, combined with clustering algorithms130,131, peel-off strategies132,133, 

neural networks134,135, real-time adaptation136,137, and dynamic contractions138,139. 

The convolutive framework in CKC, however, can always be reformulated, or linearized, 

in ordinary ICA as well100, which was done by Chen and Zhou140 and Negro et al141 for 

HDsEMG. The reformulation consists of extending the original dataset with delayed 

copies as new channels. Thus, the de-mixing vector becomes longer, and the linear 

combination channels now spans multiple samples in time. Chen and Zhou applied a 

batch estimation of sources using FastICA with symmetric orthogonalization, and a peel-

off strategy to remove the identified sources from the dataset, allowing subsequent 

iterations to reveal new motor unit sources140,142. Negro et al applied FastICA with 

deflationary orthogonalization combined with further refinements to the source estimates 

proposed in the CKC framework126,141. These convolutive FastICA approaches are built 

upon in the first paper included in this dissertation143, by making use of a peel-off strategy 

with spike-triggered averaging (STA) and compression. The STA approach to peel-off 

has since then also been used in combination with CKC144. Alternative real-time 

decomposition methods have been proposed as well145-147. But perhaps more 

significantly, open-source tools for motor unit decomposition of HDsEMG have recently 

been developed148,149, and tutorials have been published150, which greatly lower the entry 

barrier and increase the collaborative potential of the field. 
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4.5.2 Issues affecting motor unit decomposition 

There are, however, a few hurdles to overcome in motor unit decomposition which may 

not be present in other source separation tasks. These range from necessary reliability 

measures to characteristics of muscle contractions and the foundation of motor units as 

signal sources. 

Reliability measures 

In most iterative decomposition methods, the most prominent motor units are found first. 

In the subsequent iterations, motor units are increasingly hidden behind baseline noise 

or inseparable overlaps. Inevitably, there is a point where the source output may no 

longer represent a motor unit spike train. Thus, it is essential to assess the reliability of 

estimated motor unit sources. This is typically done with some measure reflecting the 

signal-to-noise ratio of the source, such as the silhouette141 or pulse-to-noise ratio151. By 

some determined threshold, poor estimates are then either discarded or improved upon 

in some manner. The optimal choice of threshold may be difficult to assess, and different 

measures may not be comparable due to potential transformations applied in the 

calculation, as argued by Chen and Zhou in a recent review152. 

Due to the uncertainty in motor unit decomposition, many validation studies have been 

conducted to gauge decomposition reliability. An established validation approach on 

experimental data is the simultaneous recording of iEMG and HDsEMG, with 

subsequent comparison of decomposition results for motor units identified in common153-

155. Another approach is the comparison between methods, to assess their rate of 

agreement or matching rate156,157, or to decompose synthetic data151.  

Number of motor units 

Decomposition reliability extends from the accuracy of individual motor unit estimates 

to the entire population of estimated motor units. The number of decomposed motor units 

that are reported have drastically increased over the years. While decomposition 

algorithms continually improve, reports might be exaggerated152. An inflated motor unit 

count could manifest from lower acceptance thresholds for individual motor units, which 

can vary significantly. Additionally, a large number of repetitive motor units may also 

affect reported results. The same motor unit could be counted more than once, either 

through partial initial decomposition and subsequent identification of residual firings, or 

through duplicate estimates with identical firing instances. 
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Duplicate estimates 

Duplicate estimates occur due to inherent limitation in the methods used for the motor 

unit decomposition task. Typically, a source estimate in motor unit decomposition 

reflects the instances of MUAP discharges, but not the entire motor unit signal. This is 

partly because the motor unit signal is not a single point source, rather it is a cylinder 

source, where the signal is spread out in both space and time along the muscle fibre. The 

MUAP cannot be represented as a single one-dimensional signal, as it varies in two 

dimensions. Thus, motor unit decomposition is typically focused on identifying the 

motor unit spike train instead of the MUAP waveform, with the MUAPs represented in 

waveform distribution maps after decomposition. The issue, in practice, is that two de-

mixing vectors can converge on two “versions” of the same motor unit, even with an 

orthogonalization step, resulting in duplicate motor unit estimates which need to be dealt 

with. Thus, in addition to reliability measures of the source output, a step for removing 

duplicate estimates is critical as well152.
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Chapter 5 

Applications of electromyography 

Electromyography has found a wide range of applications across research, clinical, and 

commercial domains. These applications can be broadly divided into three main areas, 

each defined by the functional state of the individual and the role EMG plays in 

supporting, restoring, or enhancing motor function. The first category involves 

rehabilitation and clinical assessment, where individuals typically have an intact limb 

with impaired function due to neuromuscular disorders or injuries that disrupt normal 

muscle control. In this context, EMG is primarily used as a diagnostic or monitoring tool, 

to assess neuromuscular health, quantify recovery, or guide therapeutic interventions. 

The second major category is prosthetic control, aimed at individuals who have lost parts 

of or entire limbs. In these cases, EMG is used to interpret residual muscle activity to 

drive the control of prosthetic devices. Because the original muscles may be absent or 

anatomically displaced, this places unique demands on EMG acquisition and processing 

methods for every individual. The final set of applications relates to human-machine 

interfaces for individuals without impairments. Here, EMG is leveraged not for recovery 

or compensation, but as a means to enhance or extend human capabilities. In these 

scenarios, ranging from gesture-based control of devices and exoskeletons to interactions 

with virtual and augmented reality, EMG acts as visceral interface between the body and 

external technology. 
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5.1 Rehabilitation and clinical assessment 

The potential clinical value of sEMG is extensive as described in the scientific literature, 

but it is contrasted with a limited degree of clinical adoption, as a consequence of a range 

of cultural, educational, and technical barriers3-5. The utility of sEMG spans many 

pathologies and injuries, particularly those involving altered motor control. With regards 

to muscle activation patterns, sEMG is used to assess muscle coordination, commonly 

used in gait analysis where healthy and pathological activations patterns can be 

distinguished158. It extends to both neurological impairments, such as stroke159, cerebral 

palsy159,160, and amyotrophic lateral sclerosis161; and orthopedic impairments, such as 

back pain162,163, osteoarthritis164, and anterior cruciate ligament injury165. Moreover, 

sEMG is also used to assess muscle synergies, load sharing, and fatigue3,166-169, as well 

as monitoring alterations in posture control170-172. Localization of muscle innervation 

zones from sEMG have been used to guide injections of botulinum toxin in treatments 

of spasticity from cerebral palsy and stroke173-175. There are also more active applications, 

where sEMG is used in interactive robot-assisted therapy176 and as biofeedback to 

enhance treatment177. Across applications in rehabilitation and assessment, motor unit 

decomposition is especially relevant; it allows for the exploration of, e.g., motor unit 

organization and synchronization during recovery, with the potential to provide more 

extensive assessment capabilities.  

Despite this wide breadth of applications, going far beyond the short list mentioned here, 

the clinical use of sEMG remains limited. The barriers to widespread adoption include a 

cultural reluctance among clinicians, lack of technical competence and education, 

communication gaps, and economic limitations3. Overcoming these barriers require 

greater interdisciplinary collaboration and simple user-friendly systems and processing 

algorithms. 

5.2 Prosthetic control 

While prosthetic control falls under the definition of HMIs, it is worth making a 

distinction between prosthetics and generic HMIs, due to the unique challenges they face. 

There are three general categories of upper limb prosthetic devices: passive, body-

powered, and electrically powered prosthetics6-8. Passive prosthetics do not move and 

are mainly adopted for their aesthetics and comfort178; they provide limited, although 

still significant, function, often with a highly customized task in mind6. Body-powered 

prosthetics use a harness system and a cable mechanism, allowing the user to control the 

device with the movement of other body parts; they provide significant functional value, 

durability, and secondary proprioceptive feedback to the user6,179. Electrically powered 

prosthetics are most commonly controlled through EMG signals; they provide better 



Chapter 5: Applications of electromyography 

55 

 

speed and grip force compared to the alternatives, as well as a more pleasing appearance6. 

However, despite considerable advances in hardware, the sustained use of active upper 

limb prosthetics is limited, with high rejection rates for myoelectric-controlled 

devices8,180,181.  

Unlike applications in clinical assessment, where signals are interpreted by trained 

professionals, EMG-based prosthetic control requires the system to autonomously 

interpret intent and execute movement in real time. Thus, there is a high demand on both 

robust signal acquisition and processing, as well as a stable long-term interface. The 

degree of individual adaptation is vast, as residual muscles may be displaced or 

weakened. Furthermore, users must learn to generate repeatable EMG patterns while 

receiving little or no sensory feedback, and if the control system is too complex, it placed 

a high cognitive load or burden on the user, resulting in frustrations and ultimately 

rejection of the prosthesis182,183.   

5.3 Human-machine interfaces 

Human-machine interfaces is a broader umbrella term for any form of aid that integrates 

people with technology, in order to augment or supplement human capabilities. Here, we 

refer to generic HMIs as technology that is applicable to anyone, not just patients, 

meaning the potential user base is far greater and perhaps more commercially lucrative. 

In contrast to clinical applications, where each patient may pose unique challenges 

requiring individual technical solutions, generic HMIs aim for cross-user generalizability 

with minimal individual training. 

While this dissertation focuses on myoelectric control signals, HMIs cover a diverse set 

of sensing modalities, with unique advantages and drawbacks. Inertial and bending 

sensors, such as IMUs (inertial measurement units) and flex sensor, incorporated into 

data gloves184 can provide robust movement information, for e.g. gesture recognition. 

However, they rely entirely on physical motion, providing no information on muscle 

force or isometric contractions, and interfere with the hands they measure. Vision-based 

systems, such as Kinect185 or Leap Motion186, can also reliably track hands for gesture 

recognition, but rely on external cameras, limiting portability. Ultrasound can be used to 

provide information on deep muscles with high spatial resolution. However, typical 

clinical transducers are bulky and susceptible to motion artifacts187. The appeal of sEMG-

based HMIs is that even very subtle signals from low-effort or isometric muscle 

contractions can be used; and contra image processing, HDsEMG deals with fewer data 

channels which reduces the computational burden9,10,188,189. Furthermore, EMG precedes 

the muscle contraction; this reduced latency could be critical in real-time processing and 

ultimately increase the natural feel of HMIs. 
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Beyond prosthetic control, applications for HMIs are wide-ranging and rapidly evolving. 

A major domain for sEMG-based HMIs is communication, including sign language 

recognition11,190,191 and speller systems12. Adjacent to prosthetics is the control of robots 

in unsafe of uncertain environments192. sEMG has also been used in map navigation193, 

to enhance game interactions194, and evoke force exertion in virtual reality 

environments195; even specialized training programs have been explored, for improving 

hand hygiene196 or gestures from sports referees197.  

While the number of potential applications is vast, sEMG-based HMIs have yet to see 

widespread adoption. To achieve the lofty promises HMI, as often described in popular 

science, the systems need robustness, intuitive control, seamless integration, and cross-

user generalization. Solving these challenges could ultimately move sEMG-based HMIs 

beyond research prototypes, to become everyday tools and natural extensions of the 

human body. 
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Chapter 6 

Summary of papers 

This chapter comprises brief summaries of the papers in this dissertation, including three 

published journal papers and one unpublished manuscript. All papers relate to methods 

of processing HDsEMG data in various ways, with a clear shift in direction for Papers 

Ⅲ and Ⅳ. Paper Ⅰ presents a novel algorithm for motor unit decomposition which 

outperformed a state-of-the-art method based on the similar underlying signal separation 

theory. Paper Ⅱ introduces a motor unit localization method, validated with simultaneous 

iEMG, and demonstrates the differences in the spatial distribution of active motor units 

between different actions. Paper Ⅲ presents a new approach to processing HDsEMG, 

visualizing muscle activity and modelling muscles using volume representations, with 

substantial statistical robustness compared to approaches reliant on motor unit 

decomposition. Paper Ⅳ demonstrates far-reaching potential and generalizability in 

gesture classification using a model with volume representations of muscle regions.  
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Paper Ⅰ: 

Compressed spike-triggered averaging in iterative decomposition of 

surface EMG 

This paper proposes a method for automatic decomposition of HDsEMG signals into 

motor unit spike trains using a peel-off approach combined with FastICA. The new 

method employs spike-triggered averaging compressed via PCA to reduce noise in each 

iteration, and high-dimensional density-based clustering to improve spike train 

estimation accuracy. Additionally, a reliability measure based on source variance before 

and after peel-off is introduced to identify and discard unreliable motor unit estimates. 

Validation against synthetic data demonstrated superior performance over a state-of-the-

art algorithm that used an established deflationary FastICA approach, especially at lower 

signal-to-noise ratios, while maintaining computational efficiency. These enhancements 

represent further progress towards the complete and accurate extraction of motor unit 

activity from HDsEMG recordings. 
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Figure 6.1. A block diagram of the motor unit decomposition method for HDsEMG 

proposed in Paper Ⅰ, based on FastICA, iterative peel-off, and PCA compression. 
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Paper Ⅱ: 

Inferring position of motor units from high-density surface EMG 

This paper presents an automatic, non-invasive method for motor unit localization from 

HDsEMG data. By applying principal component compression and a rotatable Gaussian 

surface fit to MUAP amplitude distributions, the method estimates the position and fibre 

direction of motor units. Validation was conducted in two scenarios: one with motor 

units obtained through synchronized iEMG and ultrasound as reference, and another with 

motor units obtained through decomposition of HDsEMG during specific muscle 

contractions. The results demonstrate the method's ability to discern the distinct spatial 

distributions of motor units between different muscle contractions, which could be used 

to assess individual muscles on a motor unit level.  
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Figure 6.2. The localization results of motor units identified through decomposition of 

HDsEMG data during specific actions. 

  



Chapter 6: Summary of papers 

64 

 

Paper Ⅲ:  

Muscle activity mapping by single peak localization from HDsEMG 

This study explores a novel approach for mapping muscle activity by localizing and 

visualizing individual time-domain peaks in HDsEMG recordings, rather than 

decomposed motor units, aiming to provide a more robust alternative for assessing 

muscle activation patterns in the forearm. A vast number of localized peaks are then used 

to define distinct muscle volumes corresponding to different finger movements. The 

study demonstrates that the organization of the estimated muscle regions remain highly 

consistent across participants and follow anatomical expectations. The identified 

volumes are further utilized to classify individual EMG peaks, achieving high 

classification accuracy for finger extensions. By circumventing the need for motor unit 

decomposition, this approach provides a scalable and interpretable alternative for 

analysing muscle activity in dense anatomical regions, with potential applications in 

human-machine interfaces, rehabilitation, and prosthetic control. 
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Figure 6.3. A block diagram of the muscle activity mapping and modelling method, 

proposed in Paper Ⅲ.  
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Paper Ⅳ: 

Generalizable gesture classification of HDsEMG using volume 

representations of muscles averaged across multiple individuals  

This study presents a novel approach to gesture classification of HDsEMG data by 

utilizing functional volume representations of muscle regions. The work builds upon the 

previously developed method for muscle activity mapping (Paper Ⅲ) and extends it to 

assess the generalizability of these representations across individuals and novel finger 

gestures. Volume representations were estimated based on the spatial distribution of 

localized time-domain peaks in the HDsEMG signals and averaged across multiple 

individuals. Instead of obtaining modelling data for all conceivable gestures, the 

approach focuses on identifying the activations of individual muscles, which has the 

potential to generalize to a wide range of gestures. 

The model was created and tested on a publicly available dataset with 19 participants 

performing various single- and multi-digit gestures. By leveraging a leave-one-out 

approach to modelling and testing, the study showed that functional volume 

representations of muscles generalize across most individuals, which makes this method 

suitable for widespread applications. Furthermore the method showed limited 

generalizability to multi-digit gestures, in a model created only using single-digit 

gestures. These findings are an initial step towards the creation of comprehensive three-

dimensional models, usable by anyone for gesture classification, without additional 

training or modelling data. 
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Figure 6.4. A block diagram (top) of the modelling of representative muscle volumes and 

subsequent classification of new data. With a set of average volume representations in a 

cylinder model of the forearm (bottom) for extension of the thumb (red), index finger 

(orange), middle finger (green), ring finger (blue), and little finger (purple). 

  



Chapter 6: Summary of papers 

68 

 

 



69 

  

 
 
 
 
Chapter 7 

Discussion and outlook 

This entire project started with the idea of non-invasively localizing motor units, aiming 

to track muscle activity in patients during rehabilitation following conditions such as 

stroke. In some ways the initial aim was met, in other ways it evolved, and in a few ways, 

it left more to be desired. The guiding philosophy in the development of the methods in 

this dissertation has been to keep things as simple as possible, and no simpler. Each step 

has always been relatively straightforward, whereas the complexity arose in the 

aggregate. In this chapter, I will discuss the progress and evolution of this project, the 

thoughts behind it and throughout, the results and their impact, and the future directions 

as I see it; all with a bit less formality and more subjectivity. 

Decomposition 

At the onset of the project, motor unit decomposition programs for HDsEMG were 

scarce, limited to a few commercial alternatives. The program we initially used for 

decomposition had several limitations. Firstly, the transfer of data and results between 

the decomposition software and my own code in Matlab or Python was cumbersome. 

But most importantly, it was not open source, which was severely restrictive when 

attempting to improve the processing pipeline. This was the motivation for making a new 

decomposition algorithm.  

Paper Ⅰ delivered a decomposition algorithm which is rather simple on a surface level, 

with several additions aiming to provide incremental performance improvements. 

Beyond the source separation algorithm, two main challenges in motor unit 

decomposition are that the problem is underdetermined and that repeated iterations may 

converge on the same source. The peel-off approach is arguably the simplest and most 

straightforward way to solve both problems at once. As long as the motor unit signal is 

correctly identified and directly subtracted from the dataset, it becomes irrelevant 
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whether the problem is over- or underdetermined. In the ideal case, an iterative peel-off 

algorithm removes a single motor unit completely from the dataset, and this process can 

repeat in perpetuity. In practice, however, avoiding mistakes and minor alignment errors 

in the removal process of every iteration is likely impossible, resulting in a buildup of 

residual noise. The additional steps presented in the method of Paper Ⅰ, attempted to 

address these issues. Both PCA compression of the MUAP waveform distribution and 

the high-dimensional clustering of the motor unit spike train aimed to generate accurate 

MUAP representations while minimizing noise. However, multiple other techniques 

which have become common in motor unit decomposition algorithms could be 

incorporated in the future. As presented, the method is lacking any assessments of the 

consistency in the inter-spike intervals, or instantaneous firing rates. Moreover, it seems 

to me that the most optimal approach is a dual or two-phase decomposition; where the 

motor unit is first estimated quickly by FastICA and then enters a second more thorough 

iteration, such as constrained FastICA148, to improve the initial estimate. The field of 

motor unit decomposition is advancing quickly since recent years, and the move towards 

open-source algorithms greatly facilitate the integration of multiple techniques. 

However, I share the concerns expressed in the recent review by Chen and Zhou152 about 

motor unit decomposition yields. It is easy, in my experience, to generate a significant 

number of motor units with dubious reliability. I believe full transparency and 

availability of decomposition results and the HDsEMG dataset used is therefore 

desirable. 

Regarding the work presented in Paper Ⅰ, I believe using PCA compression to reduce 

noise in the MUAP waveform distribution may be the strongest contribution, as this idea 

extends beyond decomposition algorithms, and is used throughout all papers. Moreover, 

this work made clear some limitations in decomposition algorithms, which would inform 

the direction of Paper Ⅲ and Ⅳ. 

Localization 

In contrast to motor unit decomposition, motor unit localization has received far less 

attention. Paper Ⅱ brought the motor unit localization technique of Roeleveld et al84 from 

one dimension into two, making multiple advances in the process. In contrast to the 

original method, using a linear array of electrodes, the main idea of Paper Ⅱ was to make 

use of the additional information high-density grids provide, to create a more optimal 

and automatic estimate of motor unit depth. The idea of estimating the FWHM of the 

amplitudes in the waveform distribution remains the same, however. The two-

dimensional Gaussian function incorporated all electrodes of the grid, to create a more 

robust FWHM estimate. Rotation was introduced by applying a rotation matrix to the 

coordinate system, which allowed for an estimate of fibre direction. The analytical 
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volume conductor model was chosen to be as mathematically simple as possible. In this 

case, many papers have been published on models with varying complexity. This is a 

key area which I think should be explored to improve localization accuracy, expressly 

with the aim to increase the contrast between estimates along the depth axis. In Paper Ⅱ, 

PCA compression also re-enters the picture; through noise reduction the residual signal 

on channels further away from the action potential centre are pushed towards zero, 

making the subsequent Gaussian fit very stable, and resilient to noise. The localization 

method, in my view, is very robust due to the relative simplicity of the calculations. This 

simplicity furthermore makes it easily adaptable, and the surface fitting approach to 

localization can be applied to any other anatomical region as well as the forearm. I 

believe it can easily be incorporated into any future method that would benefit from the 

spatial characteristics of identified motor units. 

The issue, however, is quite clear with regards to the aim of tracking overall muscle 

activity; the reliance on motor unit decomposition severely limits conclusions on the 

broader distribution of muscle activity. Decomposition algorithms do not identify all 

motor units, and the decomposed subset may not reflect the full distribution. 

Furthermore, decomposition is more robust and better validated in offline processing 

methods compared to real-time methods, limiting their current application in prosthetics 

or HMIs. At this point it is essential to consider what the end application is. Motor unit 

analysis is very valuable to physiological investigations and assessments relating to the 

output of individual motor neurons. However, mapping the full distribution of muscle 

activity or inferring strength of a specific muscle, could be achieved more easily without 

decomposition, which is the thought that guided the move away from motor units in 

Paper Ⅲ. 

Modelling 

Paper Ⅲ took the localization algorithm from decomposition and motor units to the 

HDsEMG data directly. The central idea was that the individual localization estimates 

would have a very high variance, but a vast number of estimates would achieve statistical 

robustness in aggregate, enabling the spatial modelling of distinct muscle volumes. 

Worth noting here, is that PCA compression was used again to reduce noise and 

increased the robustness of individual estimates. This approach, in my view, 

overperformed expectations. While this work was limited to low-force contractions, the 

degree to which the activity within the EDC, a single fused muscle, could be distinctly 

separated was surprising. From the spatial distribution of localization estimates, muscle 

regions were modelled with representative ellipsoid volumes, to be used as classifiers. 

Unlike classification using, e.g., neural networks, this form of spatial classification using 

volumes is highly intuitive and easy to visualize, as well as surprisingly consistent. It 
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may or may not work for higher forces in its current form, but I believe it is a strong 

contender in many applications. For example, to assess muscle synergies and load 

sharing for patients with reduced motor function, as visual biofeedback during 

rehabilitation, or as discrete control in low-effort HMIs. 

The final, yet to be published, Paper Ⅳ, was perhaps the most far-reaching work included 

in this dissertation. The initial idea was to test whether volumes as classifiers would 

generalize across users. The cross-user generalizability was surprisingly strong, 

particularly given the small size of the EDC muscle. The far-reaching question posed by 

this work was whether multi-labelled data could be classified using a model based on 

single-labelled data. The distribution of classified activity was clearly distinct, though 

classification performance was more limited in this case. Regardless, I believe these 

results show significant potential for generic HMI applications, especially those that 

prioritize minimal training and widespread adoption.  

With minimal calibration and intuitive spatial interpretability, these models could be 

embedded into future plug-and-play interfaces that require little to no expertise. 

Moreover, by adapting the localization algorithm for real-time processing, these methods 

lay the groundwork for a new form of EMG-based systems. In clinical settings, this could 

empower therapists and patients with robust, visual insight into muscle function, 

revealing the organization, strength, and compensation strategies of various muscles. In 

consumer applications, it could open the door to the seamless use of wearable devices 

that interface with a multitude of systems in our environment. If future technologies 

continue to prioritize simplicity, interpretability, and adaptability, we may eventually see 

EMG-based interfaces as natural extensions of our neuromuscular system, as intuitive 

and inconspicuous as the movement of our limbs.  
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a b s t r a c t 

Background and Objective: Analysis of motor unit activity is important for assessing and treating dis- 

eases or injuries affecting natural movement. State-of-the-art decomposition translates high-density sur- 

face electromyography (HDsEMG) into motor unit activity. However, current decomposition methods offer 

far from complete separation of all motor units. 

Methods: This paper proposes a peel-off approach to automatic decomposition of HDsEMG into mo- 

tor unit action potential (MUAP) trains, based on the Fast Independent Component Analysis algorithm 

(FastICA). The novel steps include utilizing compression by means of Principal Component Analysis and 

spike-triggered averaging, to estimate surface MUAP distributions with less noise, which are iteratively 

subtracted from the HDsEMG dataset. Furthermore, motor unit spike trains are estimated by high- 

dimensional density-based clustering of peaks in the FastICA source output. And finally, a new reliability 

measure is used to discard poor motor unit estimates by comparing the variance of the FastICA source 

output before and after the peel-off step. The method was validated using reconstructed synthetic data at 

three different signal-to-noise levels and was compared to an established deflationary FastICA approach. 

Results: Both algorithms had very high recall and precision, over 90%, for spikes from matching motor 

units, referred to as matched performance. However, the peel-off algorithm correctly identified more mo- 

tor units for all noise levels. When accounting for unidentified motor units, total recall was up to 33 

percentage points higher; and when accounting for duplicate estimates, total precision was up to 24 per- 

centage points higher, compared to the state-of-the-art reference. In addition, a comparison was done 

using experimental data where the proposed algorithm had a matched recall of 97% and precision of 85% 

with respect to the reference algorithm. 

Conclusion: These results show a substantial performance increase for decomposition of simulated HD- 

sEMG data and serve to validate the proposed approach. This performance increase is an important step 

towards complete decomposition and extraction of information of motor unit activity. 

© 2022 The Author(s). Published by Elsevier B.V. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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Introduction 

The recording of electromyography (EMG) signals is a widely 

ablished technique used clinically to diagnose certain neuro- 

scular diseases [1] , to control prosthetic devices [2] and in 

mechanics [3] . The basis of EMG is the electrical activity of 

scle fibres. Commands to activate and control our skeletal mus- 
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h lower motor neurons. Axons from the lower 

 the peripheral nerves, where action potentials 

f muscle cells (fibres). The signal is received at 

ions, which start action potentials in the mus- 

em to contract. A single lower motor neuron 

s it innervates make up a motor unit. Each ac- 

in simultaneous activation (i.e. contraction) of 

hat specific motor unit. This generates an elec- 

nough to reach recording electrodes positioned 

 on the skin surface. Through this neuromus- 

otor unit action potentials (MUAPs) recorded 

 to the outputs of individual motor neurons. 
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 surface EMG signal is the summation of activity from all mo- 

 units within the recording area of the electrode. 

Because of the complex superposition of underlying sources 

otor units), surface EMG recordings offer limited information re- 

d to the individual originating action potentials. One approach 

try and extract the underlying neural information is by de- 

position. The intention of decomposition is to separate the 

xed sources into their constituent parts. Successful decompo- 

on allows for the individual study of motor units, which is 

important aspect in several branches of science and engineer- 

. In the case of neurology, analysis of motor unit activation 

terns provides insights to the organization of neural pathways 

 diseases affecting motor function [ 4 , 5 ]. In the control of pros- 

tic limbs, a better functional understanding of the EMG sig- 

 could help to devise more natural control strategies based on 

oding user intent at the level of individual motor units [6–

This type of direct translation from the basic units of human 

vement to fine control of a prosthesis could result in a more 

imate body-machine interaction, ultimately reducing rejection 

es of prosthetic devices due to poor function and control [9] . 

nce, there is clearly much to gain from improving EMG decom- 

ition techniques, and the number of motor units that can be 

arated. 

The traditional approach to study motor units is by using intra- 

scular recordings (iEMG). By placing electrodes inside the mus- 

, the recording is far more local [5] . This effectively reduces the 

ording area since the motor units close to the electrode have a 

siderably stronger signal. Much work has been done on devel- 

ent and optimization of iEMG decomposition algorithms. Pro- 

ms are readily available utilizing template matching and cluster- 

 techniques to try and extract the firing timings (spike trains) 

 waveforms of individual motor units [ 10 , 11 ]. The decompo- 

on of iEMG signals is still being improved upon, with more 

ent attempts [12] using a peel-off approach to resolve super- 

posed waveforms. Furthermore, on-line decomposition of iEMG 

nals has been proposed [13] , which allows for a much wider 

a of application. Since the iEMG signal is in a sense simple, val- 

tion of decomposition results, whilst time-consuming, can also 

done manually. The disadvantage of using intramuscular elec- 

des is the invasive nature of such recordings. When recording 

ctrodes penetrate the skin, there is a risk of infection, damage 

the muscle fibres and surrounding tissue, and discomfort for 

 subject. Due to the more local nature of intramuscular record- 

s, multiple penetrations of the skin are required to get a more 

olistic view of muscle activity. Thus, recordings from the skin 

face are a more attractive alternative if sufficient decomposition 

 be achieved. 

The surface EMG (sEMG) signal is more complex compared to 

 iEMG signal. The signal-to-noise ratio for sEMG is lower due 

the increased distance from the muscle to the recording elec- 

de, and the tissue in between. A surface EMG electrode can also 

kup activity from adjacent muscles, which can be detrimental 

en trying to extract information from one specific muscle. The 

ording area for sEMG is effectively much larger than, e.g., a nee- 

 electrode used in iEMG. This relatively large recording area re- 

ts in more overlapping action potentials being picked up at the 

ctrode. A large amount of overlap makes a template matching 

roach difficult, although it has been explored with some suc- 

s [14–16] . The reduction of electrode size and increase in elec- 

de count present a recent tendency of many research groups to 

ain more information regarding the electrical activity of the un- 

lying muscles. A large number of electrodes adds spatial infor- 

tion which can be used to separate mixed sources. High-density 

face electrode arrays (HDsEMG) have therefore opened up sev- 

l alternatives for decomposition. 
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compose HDsEMG signals to their constituent 

posed using different algorithms. Blind source 

s specifically, have been in focus, using higher 

tistics. Zazula and Holobar studied decompo- 

her-order cumulants [17] , and also proposed 

el compensation (CKC) method [18] , and the 

 extension [19] . In the CKC method, the data 

nel responses to sparse pulse trains, and the 

mpensate these responses to reconstruct the 

more, Ning et al. claimed better decomposi- 

 combining a modified CKC method with k- 

0] . The CKC method has also been used re- 

 with deep learning, where recurrent [21] and 

eural networks were trained on the CKC out- 

ever, provide relatively few motor units com- 

ount present in muscles. Using Fast Indepen- 

alysis (FastICA) [23] and an iterative removal 

hou proposed their progressive FastICA peel- 

[24] , and its automated implementation [25] . 

ve similar accuracy as the CKC method [26] , 

ted for multichannel iEMG decomposition as 

el-off approach, motor units are estimated in- 

acted from the dataset in each iteration. The 

atly reduces the likelihood of converging on 

gain, which enables more motor units to be 

ng iterations. The downside, as argued by Ne- 

e possibility of induced noise from alignment 

proposed the deflationary FastICA alternative, 

d noise that may be caused by a peel-off ap- 

nalization step in their algorithm is instead 

er iterations from converging on the same so- 

 signal produced by the motor unit sources is 

 generated along the entire length of the mus- 

tion potential travels from the neuromuscular 

 of the muscle fibres, the signal at the surface 

spective of the FastICA algorithm, which relies 

n, the same motor unit could be perceived as 

dependent sources. The orthogonalization step 

CA cannot always guarantee non-convergence 

 unit. Duplicate motor unit estimates must 

ith as well. Although the method by Negro 

n success in finding many motor units, the 

easing complexity in the algorithm and com- 

he set of estimates expands. In contrast, the 

off approach lies in how repeated convergence 

 unit is avoided. Additionally, it is unclear to 

f decomposition is hindered by possible er- 

nit subtraction. With a careful removal pro- 

proach may ultimately be more efficient and 

eel-off decomposition method for HDsEMG is 

 FastICA [23] and multiple new approaches, 

y and consistency. Density-based waveform 

in the FastICA output was used to estimate 

ains with consistency across spikes. Surface 

were estimated by compressed spike-triggered 

sion by principal component analysis (PCA) 

 noise in the surface MUAP estimates, while 

per shapes and amplitudes. Motor unit es- 

vely removed from the dataset in a peel-off

 reliability measure was used by comparing 

FastICA source before and after peel-off. The 

d by decomposing simulated data at different 

mpared to the deflationary FastICA approach 

 . Additionally, decomposition of experimental 
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a was done as well, with the deflationary FastICA approach as 

erence. 

Method 

 Independent component analysis 

Independent component analysis (ICA) provides an approximate 

ution to the general signal separation problem, in this case sep- 

ting HDsEMG into constituent motor unit sources, under three 

umptions [23] . In ICA terms; the underlying sources must be 

tistically independent, there must be more observations (e.g. 

ording electrodes) than sources, and the signal distribution of 

h source must be non-gaussian. For HDsEMG, the first assump- 

n is true for many motor units due to differences in position, but 

s difficult to prove for all motor units. The second assumption 

 theoretical problem since the number of motor unit sources in 

sEMG recordings is unknown. However, this assumption mainly 

cerns simultaneous estimation of all sources, which can be cir- 

vented by iterative algorithms that estimate one source at a 

e. In the third assumption of non-gaussian distributions lies the 

e of ICA. From the central limit theorem, a summation of two 

ique non-gaussian distributions will always be closer to a gaus- 

n distribution. Reversely, non-gaussianity can therefore be used 

a measure for independence [23] . 

In the standard ICA model, the observations, x , are defined as 

instantaneous linear mixture of sources, s , with an invertible 

trix, A . 

 As 

A demixing matrix, W , returns an approximation of the sources, 

hen applied to the observations. 

 W x 

The demixing matrix is iteratively estimated by maximizing for 

 independence of the output y , with a non-gaussianity measure. 

1. Extension 

Standard ICA regards all samples as separate and disregards 

ir correlation to neighbouring samples [23] . A useful first step 

herefore to extend the dataset, by adding copies of the original 

aset with a delay, as additional channels. 

t ( n ) = [ x ( n ) , x ( n − 1 ) , .., x ( n − M ) ] 

Through extension, time features can be utilized by allowing a 

ger demixing matrix to not only account for single instances in 

e, but a series of samples correlated in time. Ultimately, the use 

extension results in a significantly higher signal-to-noise ratio 

 the estimated independent components. The rationale behind 

ension is stated somewhat differently in other implementations 

h as the CKC method [18] , where sources are modelled as pulse 

ins and extension allows for better compensation of impulse 

ponses. Extension is, however, computationally very expensive 

 should be balanced with the benefits. Therefore, in this pa- 

, extension is performed with 1 ms delays, regardless of sam- 

g rate. This time delay is reasonable since it allows the algo- 

m to work consistently across different sam pling rates while 

lizing more of the MUAP signal at a lower computational cost. 

 optimal extension factor, i.e. the number of datasets in the ex- 

ded dataset, for the proposed peel-off algorithm is identified in 

 evaluation section from analysis on synthetic data. A similar 

lysis is done for the reference deflationary method; however, 

implementation of a time-based delay is not described for this 

thod [28] , which means the extension factors might not be di- 

tly comparable. 

2.1.2. Whitenin

The search

is therefore re

sphering. The 

ing transform 

whitening mat

of the extende
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 for the demixing matrix W is very large and 

 by a pre-processing step called whitening or 

 for each channel is subtracted and a whiten- 

lied to give the observations unit variance. A 

can be calculated using the covariance matrix 

ervations [23] . 

ix of the unit-norm eigenvectors of the covari- 

 the diagonal matrix of its eigenvalues. For the 

 search space for maximizing independence is 

unitary rotation of the demixing matrix. 

 used in this paper searches for the demixing 

g negentropy. Negentropy, J , is defined as the 

y of the variable in question and a gaussian 

of equal variance. 

 ( y ) 

ntropy is approximated sufficiently using gra- 

 the following expression can be maximized 

 { G ( y gauss ) } ) 2 
ction, along with the first and second deriva- 

e gaussian function. 

 

)

 2 

)

p 

(
−y 2 / 2 

)

ithm [23] is a fixed-point algorithm which it- 

 demixing matrix until it converges. Using the 

rivatives of the gradient function, the demix- 

ed and normalized in each iteration. For the 

pproach, only a single source is estimated at 

E 
{

g ′ 
(
w 

T z 
)}

w 

ctor w can be initialized randomly, however, 

ce properties, a starting vector is chosen here 

 data. The FastICA output is then also deter- 

es analysis and comparison easier. Similar to 

e time of highest power across all channels is 

xing vector is initialized as the inverse of the 

xtended whitened data at this time. After con- 

atrix gives a source estimate when applied to 

 , which is locally the most independent. 

mpressed spike-triggered averaging 

& clustering 

 performed on the estimated source for sam- 

ude threshold. Since FastICA outputs are nor- 

e values carry no useful information. However, 

e static threshold to be consistent across dif- 

terations. From the estimated source, the time 

e in the signal is extracted. The amplitude val- 

tely 4 millisecond long window around a spike 
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 used as inputs to the density-based clustering algorithm (DB- 

N) [29] . The samples within each window are condensed to a 

gle high-dimensional point, where each sample is considered a 

ique variable. In this manner, a more elaborate and consistent 

stering of spikes is achieved, which accounts for a larger part 

the waveform. Additionally, the density-based clustering method 

ws for an unspecified number of clusters, distinguishing be- 

een distinct groups and outliers, which is useful when more 

n one MU occupies the same source estimate ( Fig. 1a ). 

The FastICA algorithm does not return meaningful morpholog- 

l information of the underlying MUAPs, since a single source 

s not account for the entire convolutional mixture. However, 

ce the FastICA output is a direct filtering result of the demixing 

tor applied to the dataset, it affects the entire signal uniformly. 

s means the peaks in the FastICA output should remain consis- 

t for unique motor units across the signal, which justifies the 

veform clustering approach. After clustering, however, only the 

e instances of each spike, i.e. the spike train, is kept, while the 

t of the source signal is discarded. The resulting spike trains for 

h estimated motor unit are mostly zero, with sparse single val- 

 indicating when a firing has occurred ( Fig. 1b ). The full effect 

a firing on the surface potential, the surface MUAP distribution, 

 then be estimated by spike-triggered averaging. 

.2. Spike-triggered averaging 

With the assumption that the surface MUAP distribution of 

ividual firings is relatively consistent in shape and size, they 

uld not differ significantly from the average surface distribu- 

n. Spike-triggered averaging can therefore be used to recover 

 surface MUAP distribution from an estimated spike train. To 

form spike-triggered averaging, data from a time window of ap- 

ximately 16 milliseconds, centred around the firing instance of 

h spike found in the previous step, is extracted at every elec- 

de. Calculating the average signal on every electrode result in an 

imate of the surface potential distribution specific to that motor 

it ( Fig. 2 ). Since other motor units do not discharge simultane- 

ly across most of the signal, they cancel out given enough fir- 

s. However, since there is often some residual noise in the sur- 

e MUAP distribution, a noise-reduction step is necessary before 

oving the motor unit to avoid disrupting the original signal. 

.3. PCA compression 

Using PCA compression, the components accounting for the 

gest total variance are used to recreate the distribution, and 

ponents accounting for a smaller portion of the variance are 

oved. The surface MUAP affects all electrodes simultaneously, 

while noise in
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udes. Clustering of these spikes separates the groups from 

t, showing only the firing instances of the two estimated 

stimated surface potential is random. There is 

t for random noise which accounts for a large 

and the noise is therefore quickly removed by 

rface MUAP distribution is largely unaffected 

o a certain point, as seen in Fig. 2 with a com- 

 However, the amount of compression is a pa- 

to be tuned so the surface MUAP distributions 

this paper, compression down to four samples 

to recreate surface distributions with consider- 

. 

he estimated surface MUAP distribution is re- 

aset at the time instance of each firing in the 

roach solves the problem where FastICA would 

ly converge on the same solution. It also cir- 

at estimated FastICA sources may not account 

olutional mixture. By subtracting the spike- 

ring peel-off, the entirety of the motor unit 

ter removing the motor unit, the algorithm can 

ely revealing more motor units. The algorithm 

. 3 . 

ethod also separates and annotates outliers 

istinct groups. Outliers need to be removed to 

 them in later iterations. The relevant samples 

red to the complete signal and can be dealt 

s. For example, the spikes can be replaced by 

 noise or attenuated by some factor. Both ap- 

 influence of outliers on the FastICA algorithm 

pacting performance due to the small number 

For a deterministic output, attenuation of out- 

00 is used in this paper. 

e 

dibility of a motor unit and its removal, the 

sed after the peel-off step. After the motor 

 demixing vector used to estimate the origi- 

stICA algorithm, can be re-applied to the up- 

ew source residual gives an indication of the 

eel-off when compared to the original source. 

maining spikes can suggest that multiple mo- 

ded in the estimate and could not be prop- 

results in a higher variance in the new source 

ff. On the other hand, a minimal number of re- 

ct consistent peel-off and carries a lower total 

y, the variance of the original FastICA source, 
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Fig. 2. The surface MUAP distribution is shown before compression (left) and after (right). PCA compression was performed on the surface distribution, recreating it from 

the largest principal components, at a compression ratio of 16. The noise reduction effect is particularly noticeable on noisy channels, and channels far away from the motor 

unit. The difference between the bottom rows of electrodes illustrates the effect clearly. The central surface MUAP distribution is largely unaffected as it accounts for the 

largest principal components. 
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Fig. 3. Block diagram of the proposed peel-off method for decompositio

ore peel-off, is normalized and always equal to one. A variance 

asure after peel-off can therefore be used as a generalized mea- 

e of credibility. 

Fig. 4 illustrates the concept with examples of low and high 

iance. In the low variance example, the spikes are almost en- 

ly removed, which suggests the peel-off step was consistent 

 accurate. In the high variance example, there are many small 

kes left, which suggests an incomplete peel-off. In this case, it 

possible that more than one motor unit signal is included in 

 original source estimate. An estimate with high variance af- 

 peel-off, should be scrutinized carefully since it is difficult to 

ertain whether individual spikes where properly removed. By 

ng a variance threshold, such estimates can be discarded or in- 

cted manually in borderline cases. The optimal variance thresh- 

 is identified in the evaluation section from analysis on syn- 

tic data. 

. Evaluation 

In order to validate the proposed decomposition method for a 

ge number of motor units with a known ground truth, a simu- 

d dataset at different noise levels was used. This dataset was 

synthesized w
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ined through decomposition of recorded HD- 

e deflationary approach described by Negro 

TBiolab + software (OT Bioelettronica, Torino, 

since assessment using real data is important, 

e recorded datasets were used to compare the 

ts of both methods. 
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tom left), all spikes are almost completely removed, whilst in the high variance example (bottom right

Where TP (true positives) is the number of matching spikes, FN 

lse negatives) is the number of missed spikes, and FP (false pos- 

es) is the number of spikes which do not match. In this pa- 

, total recall refers to the number of matching spikes divided 

the total number of existing spikes. Total precision refers to the 

mber of matching spikes divided by the total number of iden- 

ed spikes. Each true spike train is only matched with a single 

imated spike train, regarding duplicate estimates as false posi- 

s. For the peel-off algorithm, the estimates were sorted by their 

iance measure and spikes of any duplicate estimate with higher 

iance were regarded as false positives. For the deflationary algo- 

m, since there was no variance measure available, the first es- 

ate (lowest index) was used and spikes from any duplicate esti- 

te were regarded as false positives. Matched recall and matched 

cision refer to the calculation on matching spike trains only, 

regarding motor units not found and duplicate estimates respec- 

ly. 

The dot product of two binary spike trains results in the num- 

 of matching spikes, if the spikes are perfectly temporally 

ned. Since this is rarely the case, an offset of approximately 

milliseconds, 20–100 samples depending on the sampling rate, 

s accounted for by first widening the spikes of the candidate 

ke train in each direction. The dot product between the candi- 

e spike train and the true spike train produced the number of 

tches. A shorter offset window could have been used by first 

forming a time shift as done in other studies [ 24 , 30 ], however 

 difference in the number of matches was deemed insignificant 

ce misattributing spikes for matching motor units is very rare 

 to the sparseness of the spike trains. 

.2. Data and setup 

HDsEMG signals were gathered using arrays of 64 electrodes in 

8 × 8, both monopolar and differential, configuration with 1 cm 

erelectrode distance (OT Bioelecttronica model ELSCH064NM3), 

orded at 2048 and 10,240 Hz, placed over the right forearm and 

er arm on two right-handed and neurologically intact partici- 

ts using a similar set-up as in [31] . The data was recorded us- 

 the OT Bioelettronica Quattrocento bioelectrical amplifier and 

 BioLab + v1.4.2 software (OT Bioelettronica, Torino, Italy) and all 

traction were isometric. For the upper arm recordings, a weight 

1.9 kg was held statically in the hand with a 90-degree flex- 

 of the elbow. For the forearm recordings, an isometric force- 

 was used in conjunction with a LabVIEW program, which pro- 

vided a protoc
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ts provided informed consent, and the study 

 Regional Ethical Review Board in Lund, Swe- 

). 

as done using a deflationary approach by 

rithm in the OT BioLab + v1.5.2 software as 

 et al. [28] . The presented peel-off method 

 MATLAB R2020a (MathWorks, Natick, Mas- 

r the deflationary algorithm, the data was fil- 

ss filter between 5 and 500 Hz and a 50 Hz 

 built-in features of OT BioLab + . For the peel- 

ata was similarly bandstop and bandpass fil- 

se filtering in MATLAB. All of the data process- 

on a benchtop computer with an AMD Ryzen 

processor (32-cores) and 128 Gb of RAM. 

 construction 

 datasets, containing recordings from both the 

arm, a total of 32 motor units found by the 

h were selected for the simulated dataset. The 

utions were obtained through spike-triggered 

sampled to match the lowest sampling rate at 

ted spike trains were constructed by randomly 

s between 1 and 10 Hz, and subsequently ran- 

ver 100 s. After convolving each surface MUAP 

new spike train, gaussian noise was added to 

ferent levels, with a signal-to-noise ratio of 0, 

ecomposition results 

f 100 s of simulated data at 2048 Hz was per- 

e level using the proposed peel-off algorithm, 

tions. The optimal variance threshold and ex- 

dentified using a grid search on the synthetic 

B signal-to-noise ratio (see Supplemental Fig- 

threshold of 0.5 and an extension factor of 6 

lancing both precision and recall performance. 

 was delayed at 1 ms increments. With these 

oise levels 0, 10 and 20 dB, the peel-off algo- 
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Fig. 5. A comparison of decomposition performance on simulated HDsEMG data at 2048 Hz for the proposed peel-off algorithm (blue) and the deflationary algorithm (red) 

is shown for three levels of signal-to-noise. Total recall refers to the number of matching spikes divided by the total number of existing spikes. Total precision refers to the 

number of matching spikes divided by the total number of identified spikes. Matched recall and matched precision refer to the calculation on matching spike trains only, 

disregarding motor units not found and duplicate estimates respectively. 
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m ran for 250, 190, and 150 s, and the accuracy is summarized 

Fig. 5 (blue). 

For the noise levels 0, 10, and 20 dB respectively: There were 

 28, and 34 motor units estimated in total, with 18, 27 and 30 

tor unit matches with the 32 existing motor units. The total re- 

call was 71%, 

92%. The matc

precision was 

The deflati

100 second se
7 
nd 91% and the total precision was 90%, 94%, 

ecall was 99%, 98%, and 95% and the matched 
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 reference algorithm was run on the same 

s for 250 iterations, which was the maximum 
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Table 1 

The recall and precision performance of the proposed peel-off algorithm with respect to the deflationary algorithm is 

shown for 27 matching spike trains. The number of firings estimated by each algorithm, and the number of matches, 

are shown for each spike train. The matched recall and precision performance is calculated over the sum of all spikes. 

Description Spikes Performance 

Segment Number Deflation Peel-off Matches Recall Precision 

Index finger flexion 1 1 180 189 167 93% 88% 

2 53 47 46 87% 98% 

3 353 348 347 98% 100% 

4 75 54 53 71% 98% 

5 702 661 643 92% 97% 

6 782 759 738 94% 97% 

7 925 862 847 92% 98% 

Index finger flexion 2 1 64 54 53 83% 98% 

2 351 336 334 95% 99% 

3 480 442 439 91% 99% 

Index finger extension 1 513 540 513 100% 95% 

2 1002 1780 970 97% 54% 

3 767 844 756 99% 90% 

4 754 856 754 100% 88% 

5 664 759 656 99% 86% 

6 775 784 771 99% 98% 

7 713 1028 709 99% 69% 

Middle finger flexion 1 1 88 72 71 81% 99% 

2 921 1627 862 94% 53% 

3 945 941 939 99% 100% 

4 871 894 866 99% 97% 

Middle finger flexion 2 1 984 992 944 96% 95% 
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2 1018 1092 1

Middle finger extension 1 137 137 1

2 909 928 8

Elbow flexion 1 1 1166 1156 1

Elbow flexion 2 1 385 675 3

Total 27 16,577 18,857 1

mber of iterations in the OT BioLab + software. A similar grid 

rch was performed for the optimal SIL threshold and extension 

tor in the deflationary algorithm on the synthetic dataset with 

dB signal-to-noise ratio (see Supplemental Figure S2–3). An SIL 

eshold of 94 and an extension factor of 6 were chosen, after bal- 

ing both precision and recall performance. With these parame- 

s, at the noise levels 0, 10 and 20 dB, the deflationary algorithm 

 for 690, 540, and 430 s, and the accuracy is summarized in 

. 5 (red). 

For the noise levels 0, 10, and 20 dB respectively: There were 

 28, and 32 motor units estimated in total, with 12, 21 and 

motor unit matches with the 32 existing motor units. The to- 

recall was 38%, 72%, and 86% and the total precision was 81%, 

, and 74%. The matched recall was 92%, 99%, and 94% and the 

tched precision was 99%, 93%, and 90%. 

. Experimental data decomposition results 

For the decomposition assessment using real data, six 80 sec- 

 segments were selected from three recordings of the forearm 

10,240 Hz during contractions of the index and middle finger, 

 two 100 second segments were selected from two recordings 

the upper arm at 2048 Hz during elbow flexion. Since the focus 

this section was on evaluation of matching spike trains, manual 

pection of decomposition results was done as well, discarding 

ifacts and estimates with less than 30 firings. The peel-off algo- 

m ran with the same parameters as for the simulated data, at a 

iance threshold of 0.5 and an extension factor of 6. For the de- 

ionary reference algorithm, the SIL threshold was similarly set 

94. The extension factor was set to 6 for data at 2048 Hz, and 

32 for data at 10,240 Hz to accommodate the higher sampling 

e. 

Over all eight segments, a total of 33 spike trains were es- 

ated with the deflationary algorithm and a total of 80 spike 

trains were es

two algorithm

In order to co

sion of the pe

results of the 

firings combin

erage matchin

4. Discussion 
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to-noise. The 
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noise or artifa

The compu

nificantly less,

ations chosen.

flationary algo
8 
98% 92% 

99% 99% 

99% 97% 

98% 99% 

98% 56% 

97% 85% 

ed with the peel-off algorithm. Between the 

spike trains matched, summarized in table 1 . 

 the decomposition results, recall and preci- 

algorithm was calculated with respect to the 

ionary algorithm, for each match and for all 

e average matching recall was 97% and the av- 

ision was 85%. 

ethod for decomposition of HDsEMG record- 

ented, which builds on previous decomposi- 

 , 24 , 28 ]. The compressed spike-triggered aver- 

pike trains were iteratively removed in a peel- 

ally revealing more motor units. The method 

 reconstructed synthetic HDsEMG at different 

mpared to the deflationary FastICA approach, 

dditionally, a comparison was made using ex- 

n of simulated data, the new peel-off algo- 

 the deflationary algorithm regarding total re- 

motor units found, especially at low signal- 

recision was also higher for the peel-off al- 

s largely due to a higher number of dupli- 

e deflationary algorithm. When only consid- 

r units, both algorithms provide high recall 

l noise levels. These results suggest that the 

ore efficiently avoids repeated convergence on 

s, without introducing a significant amount of 

ich would undermine reliability. 

al time for the peel-off algorithm was also sig- 

ver this largely depends on the number of iter- 

e number of iterations was chosen for the de- 

 to make sure the decomposition was as com- 
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te as possible, prioritizing total recall and precision. Interest- 

ly, the optimal extension factor for both algorithms was 6, even 

ugh the peel-off algorithm implemented extension with a time- 

ed delay. It should be noted however, that the most optimal 

ice of parameters for the deflationary algorithm was not im- 

diately clear (Supplemental Figure S2–3). 

Further evaluation of the new peel-off method was performed 

ng experimental data by calculating the matching recall and 

cision with respect to the deflationary algorithm. In contrast to 

er assessments such as rate of agreement, the recall and pre- 

ion metrics provided more detailed information. A higher recall 

formance compared to precision, which was seen in this case, 

gests that the peel-off algorithm could be more strict, by for 

mple lowering the variance threshold. However, it could also 

an that the deflationary algorithm missed discharges for the es- 

ated motor units in question. Additionally, the number of motor 

it estimates differed significantly, and more spike trains could 

e been estimated with the deflationary algorithm by applying a 

er SIL threshold. However, the purpose of this part of the study 

s to assess reliability of discharges, with the deflationary algo- 

m as a substitute ground truth. Reliability of these estimates 

s therefore prioritized over the total number of estimates. 

One of the main issues in decomposing muscle signals, is that 

tor units are not point sources, rather each source is spread out 

 the surface EMG signal shifts as the MUAP traverses the mus- 

 fibres. A single estimate from ICA algorithms doesn’t convey 

 complete motor unit, and hence, multiple versions of the same 

tor unit can be found. In typical deflationary FastICA, the search 

ce of the demixing matrix is restricted during orthogonaliza- 

n, to avoid repeated convergence. However, properly restricting 

 search space for all version of the same motor unit can be dif- 

lt. The strength of the peel-off approach is that the removal 

cess directly affects each surface MUAP distribution in the HD- 

G signal. No matter which version of the motor unit is found, 

 peel-off step will affect the entire motor unit signal. 

Density-based clustering of the FastICA output was performed 

condensing multiple samples to a single high-dimensional point 

 each firing. This approach allowed for improved clustering of 

kes, ensuring high consistency in each spike train. The chosen 

roach stands in contrast to a common choice of k-means clus- 

ing [ 20 , 28 ]. For the proposed algorithm, DBSCAN is preferred as 

 number of clusters is not predefined, and outliers are iden- 

ed in addition to unique spike trains. If not dealt with, these 

lier peaks interfere with the following iterations and may cause 

eated convergence in the FastICA algorithm. 

Before the peel-off step, PCA compression was performed on 

 surface MUAP, to reduce any noise in the spike-triggered av- 

ge. The importance of this denoising step, is more pronounced 

 shorter signals or motor units with fewer firings, since less 

raging takes place. If the average contains a large amount of 

se, the risk of inducing a “phantom source” into the data or in- 

fering with other sources is greater. With enough compression 

ever, we err on the side of caution by removing less rather 

n more, ultimately minimizing the risk of interfering with sub- 

uent iterations. Compression down to four samples per channel 
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Inferring position of motor units 
from high‑density surface EMG
Jonathan Lundsberg 1*, Anders Björkman 2, Nebojsa Malesevic 1 & Christian Antfolk 1*

The spatial distribution of muscle fibre activity is of interest in guiding therapy and assessing recovery 
of motor function following injuries of the peripheral or central nervous system. This paper presents 
a new method for stable estimation of motor unit territory centres from high‑density surface 
electromyography (HDsEMG). This completely automatic process applies principal component 
compression and a rotatable Gaussian surface fit to motor unit action potential (MUAP) distributions 
to map the spatial distribution of motor unit activity. Each estimated position corresponds to the 
signal centre of the motor unit territory. Two subjects were used to test the method on forearm 
muscles, using two different approaches. With the first dataset, motor units were identified by 
decomposition of intramuscular EMG and the centre position of each motor unit territory was 
estimated from synchronized HDsEMG data. These positions were compared to the positions of the 
intramuscular fine wire electrodes with depth measured using ultrasound. With the second dataset, 
decomposition and motor unit localization was done directly on HDsEMG data, during specific muscle 
contractions. From the first dataset, the mean estimated depth of the motor unit centres were 
8.7, 11.6, and 9.1 mm, with standard deviations 0.5, 0.1, and 1.3 mm, and the respective depths of 
the fine wire electrodes were 8.4, 15.8, and 9.1 mm. The second dataset generated distinct spatial 
distributions of motor unit activity which were used to identify the regions of different muscles of the 
forearm, in a 3‑dimensional and projected 2‑dimensional view. In conclusion, a method is presented 
which estimates motor unit centre positions from HDsEMG. The study demonstrates the shifting 
spatial distribution of muscle fibre activity between different efforts, which could be used to assess 
individual muscles on a motor unit level.

Keywords Electromyography, Motor unit depth, Motor unit spatial distribution, Motor unit localization

Mapping the distribution of motor unit activity is essential for understanding basic muscle neurophysiology. 
Motor units are the smallest functional parts of voluntary movement, consisting of a single motor neuron and 
the muscle fibres it innervates. These muscle fibre groups directly relay information from the nervous system. 
Peripheral or central nervous system injuries may therefore affect the distribution of motor unit activity in 
muscles. Tracking how motor unit activity is distributed could provide a quantifiable assessment of the severity 
of an injury and to what extent lost motor function is recovered, tools which are in high  demand1. Furthermore, 
it could guide treatment of neuromuscular disorders such as  spasticity2. The in vivo study of motor units is 
predominantly done with intramuscular and surface electromyography (EMG)3–6. More recent studies have 
explored motor unit imaging using ultrafast  ultrasound7, as well as a combination of ultrasound and  EMG8–11.

Intramuscular EMG (iEMG) provides high spatial selectivity and therefore reliable identification of motor 
units, which can be done either manually or through various  algorithms12–14. Due to this high spatial selectivity 
of iEMG, the identified motor units are located close to the recording electrode. By knowing the position of the 
recording electrode, the position of the motor units is known as well. However, the high spatial selectivity and 
the invasive nature of the recording limit the ability of iEMG to simultaneously study many motor units. Thus, 
making it difficult to acquire a broader view of the distribution of motor unit activity since this would require 
a large number of intramuscular electrodes, which carries the risk of damage to muscle fibres, infection, as well 
as discomfort for the patient.

Ultrafast ultrasound is a promising alternative to iEMG, where decomposition of velocity images is used to 
single out individual motor units; a technique which directly identifies motor unit positions. However, decom-
position of ultrafast ultrasound requires further validation, especially for many active motor units when higher 
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muscle force is used. An additional shortcoming of ultrafast ultrasound is the intense computational and data 
storage requirements for such measurement systems, which limits the duration of recordings.

Surface EMG (sEMG), on the other hand, is a well-studied non-invasive technique. In contrast to iEMG, 
electrodes on the skin surface need to be less spatially selective since they are further from the active muscle. 
Consequently, the signal is less discernible and the individual motor units cannot be identified manually. To 
compensate for this, high-density sEMG (HDsEMG) is used with more advanced signal separation techniques, 
in order to decompose the data into motor unit  activity15–18. These decomposition techniques identify spike 
trains, which are the time instances of motor unit action potentials (MUAPs), from individual motor units. The 
MUAP is a compound signal of the synchronized single fibre action potentials of a motor unit firing. Thus, the 
contribution of each single fibre is not discernible with these techniques. Furthermore, the shape of individual 
MUAPs in a motor unit are not directly identified. Instead, each motor unit is represented by an average MUAP, 
generated using the identified spike train. The average contribution of all MUAPs from one motor unit to the 
recorded signal at each surface electrode is in this paper referred to as the surface MUAP distribution. Averag-
ing the MUAP signals across each motor unit firing is referred to as spike-triggered averaging. The motor unit 
activity, however, is identified without positional information. Inferring motor unit positions from surface EMG 
therefore requires additional techniques.

Approaches to mapping muscle activity from sEMG have been proposed for many years using finite 
 elements19–21, which has been further used to study the motor unit distribution in stroke  survivors22. A faster 
and simpler approach has also been proposed and iterated upon using an analytical volume conductor model, 
and a curve fit to the peak amplitudes of the surface MUAP  distribution23–28. This curve fit approach estimates 
a motor unit’s depth from the full width at half maximum (FWHM) of the surface potential peak amplitudes, 
perpendicular to an assumed muscle fibre direction. The FWHM, estimated with the spread of a Gaussian fit, has 
been shown to correlate with motor unit  depth23. The motor unit depth and the point along the skin surface with 
the largest peak amplitude, in both the temporal and spatial domain, provide coordinates for each motor unit. 
Since MUAPs are compound signals from multiple single fibres, the estimated motor unit coordinates describe 
a centre point, with the largest peak amplitude, on an equivalent fibre that would generate the same potential 
distribution. The equivalent fibre’s position is assumed to be a weighted sum of individual single fibre positions. 
However, distinctions are not made between different sets of weights or distributions of individual fibres, which 
is a limitation of the method. Furthermore, this curve fitting approach is done with a fit in one  dimension23–28, 
by placing the electrodes over the largest peak amplitude of the surface MUAP distribution perpendicular to the 
muscle fibre direction, which are both unknown prior to analysis of the signal. Thus, the coordinate along the 
fibre direction is unclear, and different fibre rotations from anatomical differences and muscle fibre pinnation 
may affect the depth estimate. Additionally, using a single linear array of electrodes makes the approach highly 
susceptible to noise at individual channels. HDsEMG may, however, solve these limitations with the additional 
information from a large number of channels.

The motor unit localization approach presented in this paper expands upon the original curve fit concept 
by using a two-dimensional elliptical Gaussian fit. This approach enables automatic localization of motor units 
with different surface amplitude peaks and fibre directions, as well as being robust to noise. In a pilot study, the 
presented method is first tested on a dataset of simultaneous intramuscular and surface EMG of the forearm, 
containing three intramuscular fine wire electrodes and an 8-by-8 surface electrode grid. Motor units are identi-
fied by decomposition of iEMG, with positions estimated from the synchronized HDsEMG data and compared 
to the positions of the fine wire electrodes, with depths measured using ultrasound. The presented method is 
then tested on a dataset consisting of only HDsEMG, using two adjacent 13-by-5 surface electrode grids. Motor 
units are identified by decomposition of HDsEMG, and the spatial distributions of motor units are qualitatively 
assessed for different efforts.

Methods
Data acquisition
Two separate tests of the method are presented with two participants. Simultaneous intramuscular and surface 
EMG was recorded with additional ultrasound images taken before the EMG recordings on the first partici-
pant, and only surface EMG was recorded on the second participant. Both participants were right-handed and 
neurologically intact. The participants provided informed consent, and the study was approved by the Regional 
Ethical Review Board in Lund, Sweden (DNR 2017-297). The motor unit localization method uses the shape of 
surface MUAP distributions across the skin to estimate motor unit positions. The identification of surface MUAP 
distributions is done differently for the two tests and thus separated in this section. The localization method is 
the same in both tests and thus presented in one section after the “Data acquisition” section.

Motor units from synchronized iEMG
For the first dataset, three intramuscular paired fine wire electrodes (0.051 mm in diameter stainless steel wires 
with 2 mm uninsulated ends, Chalgren, Gilroy, USA) were inserted into the right forearm of the participant 
with an insertion needle, targeting the following muscles: the extensor indicis proprius (EIP), extensor pollicis 
longus (EPL), and abductor pollicis longus (APL) (Fig. 1). At the time of insertion, the depths of the insertion 
needles were measured using an ultrasound machine (EPIQ 7, Phillips, The Netherlands with a linear transducer 
L18-5 at 9 MHz centre frequency). The insertion needles were measured because the fine wires electrodes were 
not visible on the ultrasound image. After the ultrasound measurements were performed, a HDsEMG elec-
trode array, of 64 electrodes in an 8 × 8 differential configuration with 10 mm interelectrode distance (Model 
ELSCH064NM3, OT Bioelettronica, Torino, Italy), was placed on the skin on top of the intramuscular fine wire 
electrodes (Fig. 1). Differential signals were obtained by recording the difference between each electrode and 
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the following closest electrode in the grid in the proximal to distal direction. All EMG data were recorded at a 
sampling rate of 10,240 Hz, amplified 150 times, and analog bandpass filtered between 0.7 and 4400 Hz, with a 
16-bit analog-to-digital converter (Quattrocento, OT Bioelettronica, Torino, Italy). The sampling rate and analog 
filtering was the same for iEMG and HDsEMG data as a result of recording simultaneously with the same system. 
However, this did not affect the data since further digital filtering would be applied to the HDsEMG data regard-
less. The efforts used for this recording were index finger flexion and extension, thumb flexion and extension, and 
thumb palmar adduction and abduction, corresponding to the muscles targeted with iEMG. The arm was placed 
in an isometric force  rig29 with 90-degree lateral rotation from the prone position, with visual force feedback 
displayed in a LabVIEW (National Instruments, Austin, Texas, USA) program as a guide for consistent finger 
muscle contractions. After determining the maximum voluntary contraction (MVC) force for each effort, the 
participant performed multiple isometric agonist–antagonist contractions by following a sinusoidal force curve 
(including both directions) with an amplitude of 20% MVC.  See29 for a detailed description. All forces were 
recorded concurrently with the EMG recordings, which enabled the selection of EMG data only when force was 
applied in the selected direction to minimize crosstalk from other muscles.

For this first test, motor unit spike trains were only identified from the iEMG data (fine wire electrodes), 
which had known positional references from the ultrasound measurements. Two-pass zero-phase filtering was 
performed on the iEMG data using a third order Butterworth notch filter with cutoff frequencies at 49 and 51 Hz, 
and bandpass filter with cutoff frequencies at 1 Hz and 2000 Hz. For the HDsEMG data, two-pass zero-phase 
filtering was performed using a third order Butterworth notch filter with cutoff frequencies at 49 and 51 Hz, and 
bandpass filter with cutoff frequencies at 5 Hz and 500 Hz. Motor unit spike trains were then identified from the 
filtered iEMG data by peak detection and high-dimensional density-based spatial clustering of peaks described 
in Ref.18 with the DBSCAN  algorithm14. The DBSCAN algorithm groups data points into clusters using a distance 
parameter and a minimum neighbours parameter. Data points with sufficient neighbours within the distance 
parameter are labelled as core points, and data points with too few neighbours but within range of a core point 
are labelled as edge points. Distinct groups of core points and edge points form separate clusters, and remain-
ing data points not in range of any core points are labelled as outliers. As input to DBSCAN, a window of 100 
samples (approximately 10 ms) was used as unique variables, generating a single high-dimensional data point, 
for each peak. The distance parameter, was set between 0.5 and 0.6 and the minimum neighbours parameter was 
set to 50. These parameters were chosen empirically, after manually optimizing the clustering for the smallest 
number of false positives. Spike trains were not identified for the HDsEMG data in this test. Instead, each spike 
train from the iEMG data was synchronized with the HDsEMG data, and spike-triggered averaging was used 
to calculate the surface MUAP distributions, later used for motor unit localization. The window size for spike-
triggered averaging was 400 samples (approximately 40 ms).

Motor units from decomposition of HDsEMG
For the second dataset, two HDsEMG electrode arrays, both 64 electrodes in a 5 × 13 monopolar configuration 
with 8 mm interelectrode distance (Model ELSCH064NM2, OT Bioelettronica, Torino, Italy), were placed adja-
cently on the right forearm of the second participant, resulting in a 10 × 13 grid (Fig. 2). The efforts used for the 
second test were wrist extension, wrist extension with radial deviation, index finger extension, ring finger exten-
sion, little finger extension, thumb palmar abduction, and thumb palmar adduction. EMG data was recorded 
for 60 s for each effort at a sampling rate of 2048 Hz, amplified 150 times, and analog bandpass filtered between 
0.7 and 900 Hz, with a 16-bit analog-to-digital converter (Quattrocento, OT Bioelettronica, Torino, Italy). The 

Figure 1.  A post-measurement image showing the three fine wire electrodes inserted into the extensor indicis 
proprius (red circle), extensor pollicis longus (green circle), and abductor pollicis longus (blue circle) of the 
participant’s posterior forearm. For illustrative purpose, the HDsEMG grid is elevated. During the recordings, 
this grid is placed on top of the forearm, covering the fine wire electrodes.
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forearm was in a prone position for all efforts except wrist extension with radial deviation, where the wrist 
was laterally rotated approximately 45° from the prone position, to isolate the extensor carpi radialis muscles. 
Isometric contractions were performed by applying a constant force to a vertically placed force gauge (Mark-10 
model M5-20). Constant set force levels were used, at 1 N for finger and thumb contractions and 2 N for wrist 
contractions. At set force levels, the number of active motor units is assumed to be relatively consistent, which 
facilitates the comparison of the spatial distributions of motor unit activity between efforts. Using force levels at 
a percentage of MVC for each effort is commonly used to adjust for differences in muscle strengths. However, 
this test aims to distinguish the spatial distribution of motor unit activity between different wrist and finger 
contractions; and changing the force levels would introduce an additional factor to consider which affects the 
motor unit distribution. Thus, the force and number of motor units is kept as consistent as possible.

For this second test, motor units were identified by decomposition of the HDsEMG data, without known 
positional references. Two-pass zero-phase filtering was performed using a third order Butterworth notch filter 
with cutoff frequencies at 49 and 51 Hz, and bandpass filter with cutoff frequencies at 5 Hz and 500 Hz. The fil-
tered HDsEMG data was decomposed with the iterative peel-off method described in Ref.18. This decomposition 
method estimates individual motor unit spike trains using the Fast Independent Component Analysis  algorithm30 
while accounting for time structures by extending the dataset with delayed copies similar to other  methods15–17. 
The spike-triggered average motor unit signal is removed from the HDsEMG dataset in each  iteration18, allowing 
iterative discovery of more motor units. Decomposition was run for 30 iterations with an extension factor of 6, 
each delayed by 2 samples, for each effort. Spike-triggered averaging then generated the surface MUAP distribu-
tions used for motor unit localization. Motor units were removed manually if their surface distributions were too 
medially or laterally positioned relative to the HDsEMG grid, since the surface fit applied in this method would 
not properly cover those areas. This positional requirement is a limitation of the current method to be considered.

Localization
The localization method presented in this section was applied principally in the same manner in both tests, 
with differing model parameters accounting for differences in forearm shape, electrode layout, and recording 
configuration. The positions of motor units were estimated using a Gaussian surface fit to the peak-to-peak 
amplitudes of the surface MUAP distribution (Fig. 3), for both differential signals (first test) and monopolar 
signals (second test). The surface MUAP amplitude is assumed to decay the fastest perpendicular to the muscle 
fibre direction from the electrode closest to the motor unit centre, and subsequently decays the slowest along 
the muscle fibre direction. As such, the surface MUAP distribution provides information on both the position 
and the fibre direction of each motor unit.

Figure 2.  An image of two adjacent 13 × 5 electrode grids placed on the posterior side of the forearm.

Figure 3.  The localization method applies a general Gaussian surface fit to the peak-to-peak amplitudes of the 
surface MUAP distribution. The largest spread, σx , indicates the fibre direction, whilst σy indicates the spread 
perpendicular to the fibre direction, which relates to motor unit depth.
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Principal component compression as noise reduction
As a pre-processing step, surface MUAP distributions were first smoothened by principal component compres-
sion. The estimated surface MUAP distributions occasionally contain residual noise, due to, e.g., errors in the 
original spike train, or from a low number of firings where spike-triggered averaging has not cancelled out all 
the noise. The idea of this step is that by choosing the amount of compression correctly, then mainly components 
for random noise are removed, while components for the surface MUAP amplitudes of interest  remain18. In this 
paper, surface MUAP distributions were compressed down to a matrix of four samples per channel, by matrix 
multiplication with four eigenvectors of the covariance matrix corresponding to the four largest eigenvalues, 
and then resized with the transposed eigenvector matrix. The compression was important to ensure that noise at 
channels far from the motor unit would not dominate the lower amplitudes and subsequently impair the fitting 
process. Without compression, noise at these distant channels was found to often generate large errors for the 
surface fit, which would then converge poorly.

Gaussian surface fit
For a HDsEMG grid, each electrode’s column and row define the variables x and y . However, the muscle fibres 
are not always aligned with the x and y axes of the electrode grid. In order to apply a Gaussian surface fit to the 
surface MUAP distribution, the potential offset can be accounted for by introducing a rotation angle. The gener-
alized rotatable Gaussian function is derived by introducing a rotation matrix to the standard two-dimensional 
Gaussian function.

After simplification, resulting in

where A is the peak amplitude of the Gaussian function at the centre (x0, y0) , with the spread (σx , σy) and rotation 
angle θ . These six coefficients are estimated by fitting the function to the peak-to-peak values of each electrode 
in the surface MUAP distribution, using least squares, with the curve fitting toolbox in MATLAB (MathWorks, 
Natick, Massachusetts, USA). Then, it is assumed that the largest spread of the distribution is along the fibre 
direction; and thus, the smallest σ defines the spread perpendicular to the fibre direction (Fig. 3). The spread 
perpendicular to the fibre direction and the rotation angle are then used to estimate the motor unit depth in a 
cylindrical volume conductor model.

Volume conductor model
The conductor model in this method is an analytical homogenous cylindrical single-layer model, which uses 
the Gaussian fit’s amplitude centre, spread, and rotation to calculate the final motor unit position. Since the cal-
culations are performed in the plane perpendicular to the fibre direction, the model is assumed to be isotropic. 
Although advanced multilayer conductor models have been  developed31,32, a single-layer model was used in 
this paper since additional layers were found to overcomplicate the method and generate too many unknown 
parameters. These choices are further explored in the discussion section.

Previous approaches have used a power function to model signal decay with increased  distance23, from the 
laws of electrostatics which assumes that the dynamics of the system are negligible. However, the MUAP signal is 
generated by the temporary displacement of ions and subsequent return flow to a neutral state, which is intuitively 
similar to the generation of waves. In this paper, signal strength, V  , is instead modelled akin to attenuation of 
waves using Bouguer–Lambert–Beer’s extinction law, where the amplitude decreases exponentially with distance, 
d , in an absorbing medium with a factor for attenuation strength, Q.

This model choice is justified both in terms of physical plausibility and ease of calculation. The exponential 
decay model assumes an internal starting amplitude, V0 , at the motor unit territory centre, where d = 0 . A 
power function, such as d−Q , grows infinitely for d → 0 , which makes it difficult to estimate an internal starting 
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2

2σ 2
y

))
,

[
x̂
ŷ
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amplitude. The exponential function provides similar decay properties to the power function, although it tends 
faster towards 0. Ultimately, both models are simplifications with different assumptions and could therefore both 
be viable. The attenuation strength is unknown, and the optimal value may differ between individuals, muscles, 
and recording configurations. A higher attenuation value ultimately produces deeper estimates of motor unit 
positions. However, a shift in attenuation strength offsets the estimates of all motor units and has only a minor 
impact on their relative position to other motor units. For the first test, Q was estimated post hoc, by calibrat-
ing for one of the three fine wire electrodes. The optimal value of Q was identified for motor units found in the 
iEMG signal in the APL muscle, producing a mean of µQ = 1.36 with a standard deviation σQ = 0.16 from two 
motor units. Since the first dataset was recorded in a differential configuration, the same attenuation factor was 
not applicable to the second dataset recorded in a monopolar configuration. Due to the lack of ground truth, 
the attenuation factor for the second test was set to 1 for simplicity.

The ratio between the peak of the Gaussian distribution and the point at FWHM is, by definition, 2. From 
this, the depth of the motor unit, d , and radial distance to the surface position at half maximum surface potential, 
rF , (Fig. 4) are related by

Roeleveld et al.23 previously described the geometric relation between motor unit depth and radial distance. 
As a result of the cosine rule, a second expression for radial distance is generated, where the radial distance cre-
ates a triangle with the radius r , and r − d , with the opposing angle α = FWHM/2r.

The FWHM relates to the spread of the Gaussian fit perpendicular to the fibre direction according to

After combining the two expressions for radial distance, the depth is directly calculated from

This, however, only applies to motor units where the fibre direction is aligned with the cylindrical model. For 
other fibre directions, the effective radius of the expression changes.

Effective radius
The radius of the cylinder was obtained by measuring the circumference of the forearm for both participants. 
The radius values were 48mm for the first dataset, and 50mm for the second dataset. For motor units with a 
rotation angle, θ , the radius value in Eqs. (6) and (8) increases, since the calculation is done perpendicular to the 
fibre direction in a cylindrical model. For example, in the extreme case with a fibre direction in the transverse 
plane of the cylinder, the depth is calculated with the surface amplitude distribution along the flat surface in the 
proximal to distal direction on the cylinder. Thus, the effective radius is the radius value used for calculation of 
motor unit depth, which increases with increased rotation angle. The measured radius, r , is related to the effec-
tive radius, reff  , by making use of projections for two circle sectors, sharing the corner Vmax . For a rotated fibre 
direction, imagine the circle sector spanning Vmax , VFWHM , and the centre point, with the two radii reff  and the 
arc FWHM/2 . The radius from the centre point to VFWHM projects onto the other radius with the cosine of the 
angle given by the arc FWHM/2 . This will be a common point, or depth, between the circle sectors, due to the 
cylindrical shape of the model. The second circle sector is perpendicular to the cylinder direction and makes 
use of the measured radius, r , and the corner Vmax . For this second circle sector, the projection of the radii lands 
on the common point, or depth, when the arc is FWHM/2 · cosθ . The distance between the common point and 
Vmax in these two cases generate the equation
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Figure 4.  An illustration of the geometry and values used in the model to estimate motor unit depth.
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By approximation of the cosine function, we get a simplified equation for the effective radius.

With the surface fit parameters, the estimated attenuation strength, and the effective radius value, the centre 
position of each motor unit is estimated. While the spread of the surface fit perpendicular to the fibre direction 
informs motor unit depth, the spread along the fibre direction could conceivably inform motor unit fibre length. 
However, this possibility is not explored in this paper. Instead, fibre lengths are plotted as half the spread along 
the fibre direction, for visualization purposes only.

Ethics approval and consent to participate
The study was approved by the Regional Ethical Review Board in Lund, Sweden (DNR 2017-297) and was con-
ducted in accordance with the tenets of the Declaration of Helsinki. All participants were informed about the 
contents of the experiments, both verbally and in writing, and gave their informed and written consent.

Results
Motor units from synchronized iEMG
From the three intramuscular fine wire electrodes in the first participant, a total of 7 motor units were identified 
and temporally matched with the HDsEMG data, generating 7 surface MUAP distributions. From these surface 
MUAP distributions, the estimated depth of each motor unit is shown in Table 1 and grouped by muscle in a 
boxplot in Fig. 5. The depth of the needles inserting the intramuscular fine wire electrodes were 8.4, 15.8, and 
9.1 mm for the extensor indicis proprius (EIP), extensor pollicis longus (EPL), and abductor pollicis longus 
(APL) respectively. The mean estimated depth for motor units from each wire was 8.7, 11.6, and 9.1 mm, with 
standard deviations 0.5, 0.1, and 1.3 mm, for the EIP, EPL, and APL, respectively. The resolution of these estimates 
is further addressed in the discussion section. Visualization of the motor unit positions in 3D is shown in Fig. 6, 
alongside a projection of the motor unit centres onto the transverse plane. The motor units are clearly localized 
to the insertion points on the skin surface (seen in Fig. 1). However, the difference in estimated motor unit depth 
between the muscles of the participant was not as large as the difference between the insertion depths of the fine 
wire electrodes measured by ultrasound. Thus, it is possible that the model underestimates differences in depth. It 
may also be the result of the displacement of muscles under tension, or a displacement of the fine wire electrodes 
after insertion. While these estimated differences were less than in the ultrasound reference, motor units from 
the EPL muscle still produced the deepest estimates (Fig. 5). For one-tailed two-sample t-tests, the mean motor 
unit depth of the EPL muscle was 2.8 mm greater than the EIP muscle with p = 0.001 , and 2.5 mm greater than 
the APL muscle with p = 0.018 . After Bonferroni correction for multiple comparisons is applied to these values, 
the results are significant at the α = 0.01 and α = 0.05 levels respectively. However, strong conclusions from 
statistical analysis should be avoided, due to the low number of motor units in the test which limits this study.

Motor units from decomposition of HDsEMG
From HDsEMG decomposition of the seven different efforts, a total of 79 motor units were identified. After 
discarding 14 motor units that were too far outside the bounds of the HDsEMG grids, the remaining 65 motor 
units were used for the localization method (Table 2). Visualization of the motor unit positions in 3D is shown 
in Fig. 7, alongside a projection of the motor unit centres onto the transverse plane. To aid analysis, the seven 
efforts were grouped into wrist efforts, finger efforts, and thumb efforts. For wrist extension there were two clear 
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Table 1.  The estimated depth of motor units from surface MUAP distributions, identified by temporally 
matching iEMG and HDsEMG data from one participant. The two motor units from the APL were used as 
calibration points for the attenuation factor of the model.

Muscle Motor unit depth (mm) Insertion needle depth (mm)

EIP
9.1

8.4
8.4

EPL

11.5

15.811.5

11.7

APL
8.2

9.1
10
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Figure 5.  A boxplot of the estimated depths, grouped by muscle, from 7 surface MUAP distributions from 
one participant. The blue crosses indicate the estimated depth of each motor unit centre. The motor units were 
first identified with iEMG, then temporally matched with the HDsEMG data. The red, green, and blue shapes 
represent the depth of each fine wire insertion needle, measured by ultrasound. One and two asterisks indicate a 
significant difference at α = 0.05 and α = 0.01 respectively. The blue triangle overlaps with the red median line 
for motor units from the APL since the two motor units from this fine wire electrode were used to estimate the 
attenuation factor of the model.

Figure 6.  The left figure shows the visualization of 7 motor units in 3D in a cylindrical model. The top surface 
represents the skin and the electrode grid, and the underlying concentric layer indicate 10 mm depth. A 
projection onto the transverse plane is shown in the right figure where 10- and 20-mm depths are marked. The 
yellow layer illustrates subcutaneous fat; however, this distinction is not included in the model. The motor unit 
centres, indicated by coloured dots, were identified from iEMG and their positions estimated from synchronized 
HDsEMG data, for the extensor indicis proprius (red), extensor pollicis longus (green), and abductor pollicis 
longus (blue), in the right forearm of the participant.

Table 2.  The number of identified motor units and the vertical upward force applied to the force gauge for 
each of the 7 efforts.

Effort Motor units Force (N)

Wrist extension 15 2

Wrist extension with radial deviation 6 2

Index finger extension 9 1

Ring finger extension 7 1

Little finger extension 7 1

Thumb palmar abduction 11  − 1

Thumb palmar adduction 10 1
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areas of motor unit activity, at the radial and ulnar edges of the grid, which provides a preliminary suggestion 
that these are the areas of the extensor carpi radialis brevis or longus (ECRB and ECRL) and the extensor carpi 
ulnaris (ECU) respectively (Fig. 7a). When wrist extension was performed with radial deviation, the motor unit 
activity on the ulnar side disappeared, which suggests that an isolated contraction with the ECR muscles was 
successfully made. Additionally, the direction of these radial fibres aligns with the expected anatomy of the ECR 
muscles, as seen in the 3D plot. For finger extensions, the motor unit activity was mainly identified in between the 
previous estimates of the ECR muscles and the ECU muscle, suggesting this is the area of the extensor digitorum 
communis muscle (Fig. 7b). However, additional activity on the ulnar side can be seen for index finger extension, 
which overlaps with the previous estimate of the ECU muscle, which may indicate some amount of stabilizing 
synergistic contraction. The estimates for little finger extension are less convincing due to their pronounced 
depth. This depth could be the result of either displacement of the muscles under tension, synergistic contractions 
of the deeper abductor and extensor pollicis longus muscles (APL and EPL), or an error in the depth estimates 
specific to these motor units. For thumb efforts, the activity distributions were the least conclusive (Fig. 7c). The 
large amount of overlapping activity on the ulnar side for both thumb palmar abduction and adduction suggests 
that these are not motor units of the APL or EPL muscles but could instead be stabilizing contractions of the 
wrist. Further tests across the forearm are needed to identify the area of, e.g., abductor pollicis longus.

Discussion
In this study, a new automatic method was developed for non-invasive estimation of motor unit positions, 
consisting of principal component compression and a custom surface fit applied to peak-to-peak amplitudes of 
surface MUAP distributions, as well as a volume conductor model with exponential signal attenuation. Surface 
MUAP distributions have been thoroughly  studied23,24,28,33,34, demonstrating the relationship between motor unit 
depth and the FWHM of the amplitudes of the surface MUAP distribution. Thus, this paper focuses on providing 

Figure 7.  The figures in the left column show the visualization of motor units in 3D in a cylindrical model. 
The top surface represents the skin and the electrode grid, and the underlying layer indicate 10 mm depth. A 
projection onto the transverse plane is shown in the right column where 10- and 20-mm depths are marked. The 
yellow layer illustrates subcutaneous fat; however, this distinction is not included in the model. The motor unit 
centres, indicated by coloured dots, were identified by decomposition of HDsEMG for 7 separate efforts. The 
results are grouped into wrist extensions (a), finger extensions (b), and thumb efforts (c) to aid analysis.
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a method which improves upon previous  methods23–27. The new method presented in this paper is automatic 
and carries a very low computational load, in contrast to, e.g., finite element  methods19–21. This enables the esti-
mation of a large number of motor units, required for properly mapping the spatial distribution of motor unit 
activity. However, it is limited to motor units within the confines of the HDsEMG grid. For end applications, it is 
furthermore important to consider the limitations of decomposition algorithms, and the number of motor units 
which can reliably be identified. The new method is flexible as it is applicable to different motor unit positions 
and fibre directions. This was exemplified by the wrist extensions in the second test (Fig. 7a), which demonstrated 
the methods ability to identify the slightly diagonal direction of the ECR muscles. In contrast, previous studies 
used linear arrays of electrodes or selected a single column of electrodes from a grid  manually22–27,33,35, which 
requires prior knowledge of motor unit positions and fibre directions for correct estimations.

A method was recently proposed with generalized electrode placements which identifies surface amplitude 
maps and the centre of gravity of surface MUAP distributions, using normalized peak-to-peak values, generated 
via spike-triggered averaging on a monopolar HDsEMG  grid36. However, their method only identifies motor 
unit positions at the surface and does not include the depth of motor units. Still, this centre of gravity approach 
highlights the potential asymmetries in surface MUAP distributions when contrasted with the peak amplitude 
centre. The Gaussian fit is rigid in this regard, and accounting for such asymmetries is a potential next step in 
improving the method presented in this paper. Furthermore, asymmetries in the surface MUAP distribution 
could perhaps be used inform fibre rotation in the depth direction. Better models and estimates for fibre length 
should also be explored by making use of, e.g., the spread along the fibre direction.

The stability of motor unit estimates is improved by using a grid of electrodes, rather than a linear array. Due 
to the high number of electrodes, the method is less affected by individual poor channels, improving stability. 
Furthermore, principal component compression reduces possible residual noise after spike-triggered averaging. 
This ensures that the Gaussian fit is applied only to the surface MUAP signal, reducing the risk of converging on 
poor local minima determined by residual noise. In addition, the presented method includes a new correction 
for the effective radius of a cylindrical model for fibre directions at an angle. However, the extent to which this 
correction affects the results was not determined and should be studied further.

The placement of the HDsEMG grid is very important, as was seen in both tests. In the first test, the surface 
MUAP distributions of the EIP were close to the distal edge of the grid, which may impact the accuracy of the 
Gaussian fit. In the second test, it is possible that the APL and EPL muscles were too distal in relation to the grids 
to be easily detected, which could explain the resulting motor unit distributions (Fig. 7c). Future studies should 
ensure full coverage of the muscles by targeting muscles closer together or using a larger array.

Furthermore, the recording configuration affects the surface MUAP distribution and thus the estimated 
 FWHM23,33. For differential recordings, the surface MUAP distribution sometimes contains a row of low ampli-
tudes where the MUAP signal shifts from increasing to decreasing amplitude. This occurs when the peak ampli-
tude of the motor unit signal lies in the middle between two electrodes. The electrodes are then affected equally 
by the MUAP, resulting in a low differential signal between them. This may negatively affect the Gaussian fit and 
increases the risk of converging on an erroneous local minimum. A monopolar configuration might therefore 
be more suitable for this method. Monopolar surface MUAP distributions generally provide larger FWHM 
 values23,33, which results in deeper motor unit estimates. Thus, a smaller attenuation factor may be used to 
compensate for this effect. Whether depth discrimination between motor units is affected should be studied 
further. Additionally, depth estimates could be affected by the size of the motor unit territories. A larger spread 
of neuromuscular junctions may result in a larger FWHM, which could be conflated with increased depth.

The estimation of the attenuation factor in the conductor model is one of the main limitations of the current 
method. In the first test, an attenuation factor was identified by calibrating for one of three fine wire electrodes. 
This value may not be generalizable to other muscle groups or individuals. Since the forearm contains many 
closely packed muscles, it presents a good test for localization and muscle discrimination. However, future stud-
ies should include a range of muscle groups and many subjects. Furthermore, the depth values in this paper are 
reported with 0.1 mm resolution. This choice was made due to the small differences in depth estimates for the 
motor units from the EPL muscle, resulting in a standard deviation of 0.1 mm. However, it is important to note 
that more data is required to properly determine the precision of the method. Additionally, while the positions 
of the insertion needles were precisely obtained from ultrasound images, it is not known to what extent the fine 
wire electrodes move after insertion. Using ultrasound with better resolution to identify the position of the fine 
wire electrodes after removing the insertion needle would greatly improve the reliability of iEMG as reference 
points. Conceivably, iEMG could be used once per patient in future applications to determine the attenuation 
factor, with subsequent recordings done with only HDsEMG. The use of iEMG, however, is preferably avoided 
due to patient discomfort.

The choice of conductor model, with an exponential attenuation instead of a power function, was briefly 
motivated in “Volume conductor model” section but should be explored further. The Bouger–Lambert–Beer’s 
extinction law used in this study is an empirical law concerning the attenuation of light through a material. 
We model the MUAP as a voltage source, generating an electromagnetic wave, propagating through the tissue. 
However, since the fluctuations of the potential field from the flow of ions is relatively slow, the application of 
the extinction law may be limited. A power function derived from electrostatic laws could still be a better model 
for MUAP amplitudes, which is a potential limitation of this study. However, neither an exponential nor a power 
function is a complete description of the MUAP source, as cylindrical muscle fibres. Due to the high degree of 
simplification, validity is difficult to assess from a theoretical point. As such, we argue that performances should 
be assessed and compared for multiple models in an end application. While a power function may work well to 
describe potential amplitudes along the skin surface, it is difficult to generate estimates for an internal starting 
amplitude, since the distance in these functions cannot be set to zero, unlike in the exponential function. Such 
internal estimates were not done in this study. A future study could therefore explore this, by comparing the 
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internal estimate from surface EMG, V0 in Eq. (3), with intramuscular EMG at a known depth. The thickness of 
the subcutaneous layer varies across muscle groups and should be studied to determine whether it affects the 
estimates enough to limit the utility of the method. Since the conductor model in this paper is only a single-
layer model, the properties of the different layers are approximated to a single attenuation factor. More complex 
multilayered  models31,32 could hypothetically provide better depth discrimination between motor units across 
muscle groups, by making use of more parameters. However, it is also possible that shifting the attenuation fac-
tor in a single-layer model can sufficiently account for varying thicknesses of the subcutaneous layers, which 
should be explored. The advantage of the single-layer model is in the simplicity of implementation and would 
be the preferred choice if viable. Furthermore, the calculations assume that the muscle is isotropic in the cross-
sectional plane. The isotropic assumption is only made in the plane perpendicular to the fibre direction, since 
the length of the surface MUAP distribution in the fibre direction is not used for depth estimation. It is possible 
that the conductivity along the fibre direction could influence the distribution width as well, however, this effect 
was not assessed and assumed to be negligible.

Conclusion
A new automatic method for position estimation of motor units has been presented, based on a rotatable Gauss-
ian surface fit applied to surface MUAP distributions. The method is tested using simultaneous iEMG and 
HDsEMG as well as only HDsEMG. The method provided distinct areas of activity associated with different 
muscles and demonstrated the shifting spatial distribution of motor unit activity between different efforts. This 
information could be used to aid non-invasive assessments of individual muscles on a motor unit level.

Data availability
The datasets used and/or analysed during the current study are available from the corresponding author on 
reasonable request.
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A B S T R A C T

Human-machine interfaces using electromyography (EMG) offer promising applications in control of prosthetic 
limbs, rehabilitation assessment, and assistive technologies. These applications rely on advanced algorithms that 
decode the activation patterns of muscles contractions. This paper presents a new approach to assess and decode 
muscle activity by localizing the origin of individual temporal peaks in high-density surface EMG recordings from 
the dorsal forearm during low force finger extensions. Localization was performed using a surface Gaussian fit 
applied in the spatial domain to the varying amplitudes across the channels of the electrode grids. Localized EMG 
peaks were used to estimate different muscle volumes for each finger, showing high consistency across 10 
subjects. The results suggest that muscle regions generating each action are highly distinct and indicate potential 
structural differences of muscle fibres between digits. The estimated volumes were further used to classify in-
dividual EMG peaks into each corresponding action. The percentage of correctly classified peaks for each action 
across 10 participants were 79 ± 18, 84 ± 9, 76 ± 13, and 79 ± 9 percent for index, middle, ring, and little 
finger extension, respectively. The presented volume analysis provides a new approach to assessing the spatial 
activation patterns in compact muscle anatomies; and the single peak classification approach opens up possi-
bilities for near-instantaneous identification of muscle activations.

1. Introduction

The human hand can perform a wide range of different movements 
and grips thanks to numerous extrinsic and intrinsic muscles acting on 
the fingers. Extrinsic muscles in the forearm have long tendons that pass 
multiple joints before inserting in the fingers while intrinsic muscles 
within the hand fine-tune finger movements. This complex muscle 
arrangement is controlled by numerous nerves using electrical impulses 
which are passed on to muscle fibres. Electrical impulses from con-
tracting muscle fibres can be recorded and analysed using electromy-
ography (EMG). Decoding EMG signals is essential for different 
human–machine interfaces (HMI), benefitting prosthetics (Farina, Jiang 
et al., 2014a; Marinelli et al., 2023; Parajuli et al., 2019), rehabilitation 
(Campanini et al., 2020; Fang et al., 2020), and assistive devices (Eddy 
et al., 2023; Labs et al., 2024). For real-time control of prosthetics and 
computer interfaces, quick and accurate muscle identification is crucial 
for intuitive user control (Farina, Jiang et al., 2014a). EMG controlled 
prosthetic devices have been in development for decades, but they still 
suffer from high rejection rates (Marinelli et al., 2023; Salminger et al., 
2022). In post-stroke rehabilitation, understanding differences between 

healthy and pathological muscle activation patterns is key for assess-
ment of motor function and guiding rehabilitation (Boukhennoufa et al., 
2022; Langhorne et al., 2011). EMG-based HMIs also have broader ap-
plications, including spellers (Vasiljevas et al., 2014), game controllers 
(Zhang et al., 2009), and sign language recognition (Paudyal et al., 
2016).

For HMI applications, surface EMG is an attractive choice in partic-
ular, since the recording is performed non-invasively on the skin surface. 
On the other hand, intramuscular EMG is an established technique used 
to assess neurological impairment (Merletti & Farina, 2009). Such 
invasive recordings, however, bring a risk of infection as well as 
discomfort for patients. In both cases, the recorded signal is made up of 
many motor unit action potentials (MUAPs). The motor unit, the 
smallest functional muscle component, includes a single motor neuron 
and all its innervated muscle fibres. Analysing motor unit firing patterns 
and the location of contracting muscle fibres has attracted a lot of 
attention (Del Vecchio et al., 2020; Del Vecchio et al., 2017; Farina, 
Merletti et al., 2014b). Surface EMG, however, has interpretative chal-
lenges due to overlapping MUAP waveforms. The increased distance to 
the muscle from the skin surface, compared to intramuscular EMG, 
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results in a less selective recording, with a bias towards detecting su-
perficial motor units. Furthermore, electrode placement is crucial for 
high signal-to-noise ratios.

High-density surface EMG (HDsEMG) enables comprehensive muscle 
activity recordings with large grids of electrodes. Electrode grids cover a 
larger area than individual electrodes, thus, making optimal electrode 
placement easier. The numerous channels make blind source separation 
techniques effective for extracting motor unit signals, which have been 
extensively researched over the years (Chen et al., 2017; Chen & Zhou, 
2015; Dai & Hu, 2019b; Holobar and Zazula, 2007a; Holobar and 
Zazula, 2007b; Lundsberg et al., 2022; Negro et al., 2016; Ning et al., 
2014). Neural networks also show promise in EMG processing, partic-
ularly in feature extraction and gesture classification, but require 
extensive training data and often lack interpretability (Xiong et al., 
2021). Typically, the blind source separation task for HDsEMG is 
approached using independent component analysis (Comon, 1994; 
Hyvärinen et al., 2001), with time-delayed extensions of data channels 
(Chen et al., 2017; Chen & Zhou, 2015; Holobar and Zazula, 2007a; 
Holobar and Zazula, 2007b; Lundsberg et al., 2022; Negro et al., 2016; 
Ning et al., 2014). These decomposition algorithms attempt to identify 
all firing instances of individual motor units. That is, MUAP timings are 
identified without morphological information of the waveform. The 
MUAP waveform is then obtained through spike-triggered averaging 
across all firings of the motor unit, rather than analysing the individual 
firing instances. Much research and analysis of muscle activation pat-
terns rely on the improvement of decomposition algorithms. However, 
the performance of these algorithms in terms of true positive rate, i.e. 
the fraction of active motor units that are correctly identified, is limited 
or unclear (Farina et al., 2010), especially during dynamic contractions 
which are relevant in many applications. The number of motor units 
which can be identified with decomposition of HDsEMG varies greatly 
between muscles and data quality (Farina et al., 2010). Furthermore, 
decomposition can be slow, depending on, e.g., the number of channels 
and the extension factor, both of which increase the size of the matrix 
calculations (Chen & Zhou, 2015; Holobar and Zazula, 2007a; Holobar 
and Zazula, 2007b; Negro et al., 2016), and a great deal of manual effort 
is sometimes required to optimize decomposition results. Although, 
once identified, a demixing matrix can be used to decompose further 
HDsEMG data in real-time (Barsakcioglu & Farina, 2018; Glaser et al., 
2013). Decomposition on its own enables analysis of the temporal 
activation patterns of motor units, whereas analysis of the spatial acti-
vation patterns requires additional algorithms.

The location of each motor unit from decomposition of HDsEMG can 
be derived from the MUAP waveform detected at multiple locations. The 
MUAP waveform varies in shape and amplitude across the channels of 
the high-density grid. This distribution of MUAP waveforms in relation 
to the motor unit position has been studied for a long time (Roeleveld 
et al., 1997a; Roeleveld et al., 1997b). For motor units located deeper 
below the skin, the amplitude distribution of the waveforms is more 
uniform than that of superficial motor units, since the relative distance 
to each electrode is more equal. The width of the MUAP amplitude 
distribution can therefore be used to estimate the motor unit depth 
(Roeleveld et al., 1997c; Roeleveld et al., 1997a; Roeleveld et al., 
1997b). A major limitation in this approach is the statistical uncertainty 
that comes from analysing a relatively low number of motor units. 
Furthermore, real-time localization is difficult, since the MUAP wave-
forms are obtained by averaging over many firings. A different 
approach, complementary to motor unit analysis, could therefore be 
useful. Surface heat maps of macro-EMG features, such as root mean 
square (RMS) amplitude distributions, have been used to analyse muscle 
activation patterns on a more aggregate level (Dai & Hu, 2019a; Gallina 
& Botter, 2013; Hu et al., 2015). A more granular analysis, however, of 
localizing individual temporal peaks in the EMG signal is less explored. 
The large number of individual potential peaks in HDsEMG recordings 
could offer statistical robustness exceeding that of motor unit analysis. 
Additionally, robust classification of individual EMG peaks into different 

muscles could result in faster identification of muscle contractions and 
user intent, critical to intuitive and natural control in human–machine 
interfaces.

The aim of this study was to test a new method for assessing muscle 
function with high statistical robustness, to compliment motor unit 
analysis typically done on relatively few motor units. We applied a 
motor unit localization algorithm (Lundsberg et al., 2024) to individual 
motor unit firings, replacing averaged MUAP waveforms with single 
EMG peaks. For clarity, EMG peaks refer to local temporal peak ampli-
tudes generated by MUAPs, which can include multiple overlapping 
motor unit firings. Despite high variance due to overlapping firings and 
noise, the large number of recorded action potentials offers sufficient 
statistical power to identify distinct muscle volumes. We identify vol-
umes for the muscles responsible for finger extension and evaluate their 
separation visually and by volume cross-coverage, with the aim to 
enhance understanding of neuromuscular activation patterns in 
compact anatomies, such as the forearm. The identified volumes are 
used to classify individual EMG peaks, assessing performance by true 
and false positive rates, with the aim to enable near-instantaneous 
identification of muscle contractions. This initial study focuses on low 
force contractions, which are relevant to gesture identification and early 
rehabilitation assessments. For gesture identification, we see sign lan-
guage recognition (Paudyal et al., 2016) and spellers (Vasiljevas et al., 
2014) as key applications; these cases involve specific low forces, in 
contrast to applications involving force regression over a large range of 
forces. Similarly, low force contractions can be used as computer inputs 
(Labs et al., 2024; Zhang et al., 2009), simulating e.g., specific discrete 
keyboard inputs. For early rehabilitation assessments, where patients 
have lost most of their motor function and thus produce weaker EMG 
signals, there is potential to assess the amount of compensation from 
other muscles by mapping the spatial distribution all individual EMG 
peaks.

2. Method

2.1. Participants

Ten healthy volunteers, eight men and two women, aged 22 to 44 
years participated in the study. Exclusion criteria were history of 
neurological disorders and history of severe trauma to the right arm or 
hand. All participants provided informed consent. The study was 
approved by the Regional Ethical Review Board in Lund, Sweden (DNR 
2017–297).

2.2. Data acquisition

Two high-density electrode grids (64 gold-coated electrodes each, 5- 
by-13 in a monopolar configuration, 1 mm electrode diameter, 8 mm 
interelectrode distance, Model ELSCH064NM2, OT Bioelettronica, Tor-
ino, Italy) were placed adjacently on the dorsal side of the proximal right 
forearm, with missing electrodes in the proximal-radial and distal-ulnar 
corners (Fig. 1). HDsEMG was sampled with a 16-bit analog-to-digital 
converter (input referred noise < 4 μVRMS, common-mode rejection 
ratio > 95 dB at 50 Hz, Quattrocento, OT Bioelettronica, Torino, Italy) at 
a sampling rate of 2048 Hz, amplified 150 times and analog bandpass 
filtered (0.7–900 Hz). The signals were displayed in OT Biolab + v1.5.9 
(OT Bioelettronica, Torino, Italy). The EMG data was further digitally 
filtered off-line with two-pass zero-phase filtering using a third order 
Butterworth notch filter (49–51 Hz) and a third order Butterworth 
bandpass filter (5–500 Hz), in MATLAB R2022b (MathWorks, Natick, 
Massachusetts, USA).

With the forearm prone, participants performed low-force isometric 
contractions, one finger at a time, upwards against a force gauge (Model 
M5-20, Mark-10, Copiague, NY, USA) which provided visual feedback 
by displaying the force in real-time. Index, middle, ring, and little finger 
extensions were individually maintained at 1 N for 60 s each. Using force 
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levels at a percentage of maximum voluntary contractions (MVC) could 
also have been used to adjust for differences in muscle strength between 
actions and individuals. However, differences in MVCs between indi-
vidual finger extensors or participants may be affected by synergistic 
muscle contractions such as the extensor carpi muscles, resulting in a 
large range of force levels. The motivation for using the same force level 
for all actions was to remove the force level as a potential confounding 
factor and to highlight the differences in active regions between finger 
extensors when producing the same force. Participants were first 
familiarized with the setup and the correct force level. Poor quality 
channels were manually excluded by visually inspecting the recordings 
and removing those with flat signals or exceptionally high root-mean- 
square (RMS) amplitude at rest which exceeded that of EMG signals 
during muscle contractions. The same channels were then excluded for 
each recording from the participant.

2.3. Action potential localization

The localization algorithm used in this paper was previously devel-
oped for localization of motor units obtained through decomposition 
(Lundsberg et al., 2024). In the previous implementation, estimates of 
the muscle fibre direction and 3D-coordinates of motor unit centre po-
sitions were obtained from the amplitude distribution of the average 
MUAP waveform. In this study, the need for decomposition is circum-
vented by replacing the average MUAP waveform, typically obtained 
through spike-triggered averaging, with the extracted waveforms of 
individual EMG peaks. Estimates for the muscle fibre direction and 3D- 
coordinates are then obtained for the individual EMG peaks, in the same 
manner as in (Lundsberg et al., 2024).

Individual EMG peaks were identified on the channel with the 
highest RMS amplitude using a custom peak detection algorithm written 
in MATLAB R2022b (MathWorks, Natick, Massachusetts, USA). The 
channel selection for peak detection is further addressed in the discus-
sion. For each sample of the selected channel, the time instance was 
identified as a peak if that sample had the highest amplitude in a 31-sam-
ple window (15 samples before and after), approximately 15.1 ms, and 
was above a 50μV threshold. Thus, peaks within 15 samples of a larger 
peak were automatically ignored. The window size was empirically 
chosen to avoid detecting the same MUAP more than once, due to the 
multiple phases of the MUAP waveform. The threshold was chosen to 
exceed that of base-line noise. The peak detection parameters were then 
applied uniformly to all recordings. It is important to note that there is 

ambiguity at higher forces regarding whether peaks represent a single or 
multiple motor unit action potentials; the implications of which are 
addressed in the discussion.

For each identified peak, a 31-sample window, approximately 15.1 
ms, was extracted synchronously from all channels (Fig. 2) and used for 
single peak localization. The window size was chosen to be the same as 
during peak detection for simplicity and was not studied extensively. For 
each channel, the peak-to-peak amplitude within the window was 
identified, and each channel was mapped to its spatial location on the 
HDsEMG grid on the skin surface. A generalized two-dimensional 
Gaussian surface fit was applied in the spatial domain to the identified 
amplitudes across all channels, explained in detail here (Lundsberg 
et al., 2024). The Gaussian fit’s width informed the estimated depth in a 
volume conductor model, explained in detail here (Lundsberg et al., 
2024), and the centre of the fit determined the estimation of the position 
along the skin surface. The rotation of the fit determined the estimation 
of the muscle fibre direction, with the assumption that the spread of the 
two-dimensional Gaussian fit is largest along the fibre direction 
(Lundsberg et al., 2024). Despite high variance for the localization of 
individual EMG peaks, due to noise and MUAP overlap, the vast number 
of localized EMG peaks allows for highly robust modelling of active 
regions. Different volume conductor models were not investigated 
which may result in differences for localization in absolute values. 
However, this study focused on localization in relative terms, in order to 
assess differences between different actions.

2.4. Muscle modelling

2.4.1. Modelling and evaluation split
The identified peaks from each 60 s recording were split into a 

modelling batch and a validation batch. Approximately half of the peaks 
in each recording were randomly selected and used to create a volume 
representing the corresponding muscle. The remaining peaks were used 
for evaluation with true and false positive rates, described in section 2.5. 
To test the stability of volume estimation, this modelling and validation 
split was repeated 10 times for each 60 s recording.

2.4.2. Ellipsoid volume estimation
Muscle volumes were modelled as ellipsoids from the distribution of 

the localized EMG peaks (Fig. 2). The ellipsoid function was chosen for 
its simple expression, where the radii in each dimension determines the 
shape. 

Fig. 1. The placement of the high-density electrode grids on the dorsal side of the proximal half of the right forearm, and the index finger position pushing upwards 
against the force gauge.
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The radii, r, in each dimension were set by the three-dimensional spread 
of localized EMG peaks in the depth direction, z, along the fibre direc-
tion, y, and perpendicular to the fibre and depth direction, x. Note that 
these ellipsoid volumes are a functional representation of the origin of 
each muscle’s EMG activity, in contrast to anatomical representations of 
muscle fibres. To exclude localized peaks from distant co-activated 
muscles and noise points in the modelling step, density-based spatial 
clustering using the DBSCAN algorithm (Ester et al., 1996) was applied 
to localized peaks in the medial-to-lateral axis, with the distance 
parameter set to 2 cm and minimum neighbours set to half the total 
number of peaks. This clustering step was not deemed necessary along 
the depth axis since, anatomically, the deep muscles of the dorsal 
compartment of the forearm are abductor pollicis longus and extensor 
pollicis longus, which were not expected to co-contract with the 
extensor digitorum communis and extensor digiti minimi muscles. The 
clustering parameters were chosen empirically to create a lenient se-
lection and only exclude distant peaks but were not studied extensively. 
From this selection of localized EMG peaks, the mean position, μ, and 
two standard deviations in each direction, 2σ, determined the ellipsoid 
position and shape. 
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2

(2σx)
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2

(2σz)
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The rotation of the fibre direction, θ, was accounted for by first applying 
the inverse rotation matrix around the depth axis (Eq. (3), given by the 
mean fibre rotation angle (Eq. (4). 
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This transformation was identified for each unique volume. Fibre rota-

tions around other axes were not considered since this information was 
not generated by the localization algorithm.

2.5. Coverage & classification

2.5.1. Volume coverage
The ellipsoid function (Eq. (2) can be seen as an isosurface function 

with an isovalue of 1. For a given position, f(x,y,z), the function value is 
less than one inside the ellipsoid and greater than one outside the 
ellipsoid. The unique offset position, μ, ellipsoid shape, σ, and rotation 
matrix, Rz, for each volume, results in different isosurface function 
values for each volume. The volume coverage of localized peaks for each 
ellipsoid was evaluated for the corresponding action (true positive rate), 
and the volume cross coverage for other actions (false positive rates). 
For each ellipsoid volume, the isosurface function (Eq. (1) was evaluated 
for the position of every localized peak. True and false positive rates 
were calculated by counting the number of localized peaks within each 
volume, for each action. Thus, the false positive rates provide some 
indication to the amount of overlap between volumes. Whereas the true 
positive rates are limited by the selection criteria localized peaks during 
the modelling step, e.g., defining the ellipsoid shapes with two standard 
deviations in each direction.

2.5.2. Single peak classification
The ellipsoid volumes were used to classify localized peaks by 

comparing the isovalues between volumes. For a given position, f(x,y,z), 
the function value (using Eq. (1) increases with increased distance from 
the volume centre, modified by the shape of the volume. Thus, each 
localized EMG peak was assigned to the volume resulting in the lowest 
function value. A more typical distance measure may have been the 
Euclidian distance to each volume centre. However, Euclidian distance 
would heavily favour smaller volumes. Thus, better classification per-
formance can be achieved using the ellipsoid isosurface function values. 
This comparison is included in the Supplementary S3.

2.5.3. Majority vote classification
In contrast to single peak classification, multiple peaks can be used to 

improve classification of muscle activity, resulting in a time-accuracy 
trade-off. To determine this trade-off, a simple majority vote classifica-
tion was implemented, which greatly increased performance compared 
to single peak classification. For each peak, the subsequent 1, 3, 5, …, 15 

Fig. 2. Overview of the muscle region modelling approach. HDsEMG data is recorded by two adjacent 5x13 grids with 128 monopolar channels. Peak detection is 
performed on the highest RMS channel, and a window of samples across all channels is extracted for each peak. A surface Gaussian fit is applied in the spatial domain 
to the peak-to-peak amplitudes of all channels. Individual EMG peaks are localized using the surface fit parameters. Ellipsoid volumes are estimated from the mean 
and standard deviations of the localized EMG peak positions.
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peaks in the validation batch were included in the voting procedure.

3. Results

3.1. Volume coverage

Localization of all EMG peaks on the dorsal side of the forearm, and 
corresponding ellipsoid volumes resulting from extensions of different 
fingers are shown in Fig. 3 for one of the participants (all participants are 
shown in Supplementary S2). In this 3D plot, the relative regions of each 
activation can be evaluated and understood visually. The extensor dig-
itorum communis (EDC) is the common extensor muscle for all the four 
digits, yet the separation of the ellipsoid volumes is very clear and is 
consistent across participants. In all participants, the region estimated 
from middle finger extension (green), was located proximally compared 
to the other regions. The regions estimated from index (red), ring (cyan), 
and little (purple) finger extension, showed a distinct anatomical 
arrangement from radial to ulnar, which corresponds well with how the 
fingers are located. The only exceptions were for two participants, where 
activity was identified on the ulnar side during index extension 
(Supplementary S2), which could be explained by co-activation of the 
extensor carpi ulnaris muscle. The consistent separation between each 
finger seen in both plots (Fig. 3) suggests that the organization within 
the EDC muscle is highly distinct. Furthermore, a higher degree of 
estimated rotation is consistently observed for index extension, which 
may indicate structural differences between the subregions of the 
muscle.

For a quantitative analysis, the volume coverage of peaks in Table 1
shows the cross-subject mean and standard deviation for the percentage 
of localized peaks covered by each volume for each action (individual 
tables for each participant are shown in Supplementary S1). From each 
60 s recording, an average of approximately 1300 individual EMG peaks 
were classified (half of the total), with an equivalent number of peaks 
used to create each volume. The amount of overlap between volumes 
can be evaluated by the false positive rates (off-diagonal elements), in 
contrast to the true positive rates (diagonal elements). The greatest 
overlap was seen between ring and little finger extension. However, the 
greatest variability came from the index volume.

3.2. Classification

The classification of peaks in Table 1 shows the cross-subject mean 
and standard deviation for the true positive rates (diagonal elements) 
and false positive rates (off-diagonal elements), in the single peak clas-
sification task (individual tables for each participant are shown in 
Supplementary S1). The mean true positive rates for index, middle, ring, 

and little finger extension were 79 ± 18, 84 ± 9, 76 ± 13, and 79 ± 9 
percent, respectively.

Fig. 4 shows the muscle classification task by majority voting, for 
each participant and each action, as well as the cross-subject mean. Note 
that the mean for single peak voting in Fig. 4 is equivalent to the true 
positive rate reported in Table 1. For index classification, the mean is 
drastically reduced by two participants (participant 2 and 4) with poor 
performance, caused by poor underlying data, which can be seen in the 
individual results in Supplementary S1. For participants with high single 
peak true positive rates, the performance increase quickly plateaued for 
very few peaks, which signifies the importance of high-quality data. The 
average frequency of localized EMG peaks was 44.2 peaks per second. 
Thus, 3-peak voting was equivalent to 68 ms and 5-peak voting to 113 
ms, on average.

4. Discussion

Here we present a new method to map muscle volumes and classify 
single EMG peaks from HDsEMG recordings. The new method manages 
to consistently generate unique muscle volumes from HDsEMG during 
isolated finger extensions. The visual analysis suggests that extension of 
individual fingers is mainly generated by highly distinct subregions of 
the EDC. It is particularly easy to separate middle finger extension from 
other finger extensions, since the muscle activity is generated at the 
proximal end of the EDC. Furthermore, we show that classification of 
individual EMG peaks is possible with high accuracy, which can enable 
near-instantaneous classification of muscle activity.

The results of the visual analysis provide a more detailed estimate of 
the organizational structure of muscles responsible for finger extensions 
at low forces, compared to previous RMS based studies (Gallina & Bot-
ter, 2013). Additionally, with this method we see that localized EMG 
peaks from index finger extension had a higher degree of rotation of the 
fibre direction, compared to other actions. This could be an indication of 
differences in the underlying anatomical structure, for example due to 
fibre pinnation. Alternatively, it could also be the result of synergistic 
activity between the EDC and extensor indicis proprius or muscles 
responsible for wrist extension, such as extensor carpi radialis longus 
and brevis. This additional rotation may, however, be sensitive to the 
location of the high-density grids. Future studies should therefore assess 
the entire length of the forearm.

The presented method provides a consistent, simple, and intuitive 
way to investigate neuromuscular activity, which does not require 
specialized knowledge to use and can be easily automated. In contrast, 
the recurring limitation of motor unit analysis through decomposition is 
the uncertainty in the fraction of motor units that are identified, and the 
manual work and expertise required to ensure accurate decomposition 

Fig. 3. 3D-plot of localized EMG peaks (left) and the corresponding generated ellipsoid volumes (right), for index (red), middle (green), ring (cyan), and little 
(purple) finger extension.
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(Farina et al., 2010). Furthermore, the modelling of muscle volumes 
requires very little data compared to neural network approaches (Xiong 
et al., 2021). The new method, however, does not provide the same 

neurological analysis of motor unit firing rates gained through decom-
position. Additionally, since the ellipsoid volumes are functional rep-
resentations of EMG activity, the accuracy is difficult to assess in 

Table 1 
Cross-subject mean and standard deviations of true and false positive rates (diagonal and off-diagonal elements respectively), with regards to volume coverage and 
classification of individual EMG peaks. Peak count refers to the number of EMG peaks in the validation batch, approximately half of all peaks. Vol 1, 2, 3, and 4 refer to 
the volumes generated from index, middle, ring, and little finger extension, respectively.

  Volume coverage of peaks (%) Classification of peaks (%) 

Finger Peak count Vol 1 Vol 2 Vol 3 Vol 4 Vol 1 Vol 2 Vol 3 Vol 4 

Index 1038 ± 325 70 ± 14 5 ± 10 13 ± 14 7 ± 9 79 ± 18 2 ± 4 9 ± 9 9 ± 13 

Middle 1462 ± 165 6 ± 10 77 ± 5 15 ± 15 4 ± 6 5 ± 6 84 ± 9 8 ± 6 3 ± 4 

Ring 1540 ± 122 19 ± 24 16 ± 18 73 ± 6 20 ± 17 9 ± 12 8 ± 5 76 ± 13 8 ± 6 

Little 1266 ± 251 19 ± 26 2 ± 5 24 ± 26 76 ± 4 10 ± 10 1 ± 1 10 ± 10 79 ± 9 

Fig. 4. Muscle classification by majority vote for each participant for index (red lines), middle (green lines), ring (cyan lines), and little (purple lines) finger extension 
and the cross-subject means (black lines) for each action. Note that the mean majority vote with a single peak is equivalent to the classification in Table 1. The lowest 
true positive rate for all actions came from the same participant. For index extension, one participant did not achieve an isolated contraction, resulting in a low true 
positive rate as well. With an average of 44.2 peaks per second, 3-peak voting was equivalent to 68 ms and 5-peak voting to 113 ms.
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anatomical terms. Instead, the utility of the method, as presented in this 
paper, lies in identifying and quantifying differences between actions. A 
future application of the presented method could be to assess the degree 
of isolated muscle control, or the effort generated by individual muscles. 
Patients with lost motor function and reduced EMG activity, e.g. after 
stroke, and their therapists’, could potentially gain valuable feedback on 
the underlying individual muscle activity and points of weakness, which 
in turn could inform future rehabilitation exercises.

The classification results in this study showcases the importance of 
good underlying data. The mean performance is drastically reduced by 
two participants as seen in Fig. 4. For participant 2, performing index 
finger extension resulted in two distinct regions of localized EMG peaks 
(Supplementary Fig. S2). The smaller group of localized peaks were 
excluded from the volume estimation by the clustering step with the 
DBSCAN algorithm. This reduced the risk of overestimating the volume, 
but also resulted in a true positive rate of 48 % (Supplementary 
Table S2), compared to the 79 % cross-subject average (Table 1) and the 
98 % highest (Supplementary Table S6), for this action. This case in-
dicates that isolated contractions may sometimes be difficult to achieve, 
which is an important aspect to consider for this modelling method. For 
participant 4, the estimated volumes overlapped to a much a higher 
degree than other participants, as revealed by the 3D-plot (Supple-
mentary Fig. S4) and cross coverage values (Supplementary Table S4). 
This resulted in very poor classification performance across the board at 
46, 67, 52, and 69 % for index, middle, ring, and little finger extension, 
respectively. For other participants, however, where single peak classi-
fication resulted in above 90 % true positive rates, the potential for a 
near instantaneous HMI is promising. Majority voting with 3 or 5 peaks 
could be a very potent muscle classification approach. On average, 5 
peaks were equivalent to a 113 ms time window. Thus, a classification 
protocol is theoretically possible with a very low latency which main-
tains high robustness.

The main limitation of the study concerning the classification task is 
that each action was isometric and recorded separately. The method 
should be tested for classification of dynamic contractions and the 
transition between different actions, which would address robustness to 
the shifting position of muscle bodies in relation to the estimated vol-
umes. Additionally, classification should be tested on data with multiple 
muscles activated at once, to address whether simultaneous activity 
from multiple separate muscles interferes with classification perfor-
mance. Furthermore, this study focused on low force contractions, 
which could be a limitation for some applications. While prosthetic 
control typically relies on continuous control and different contraction 
forces, generic HMIs, however, may rely more on discrete events as in-
puts (Eddy et al., 2023). For discrete inputs, fast and subtle low effort 
contractions would be more desirable, to minimize fatigue. For example, 
in virtual and augmented reality applications, we hypothesize that this 
will enable the creation of an ‘intimate’ HMI, as user will not need to 
exert high force, and latency will be low.

EMG peaks were selected by peak detection on the highest RMS 
channel, which may be a limitation for real-time applications. However, 
in our experience we found minimal performance differences between 
selecting the highest RMS channel and any central channel on the grid 
for peak detection. This consistency between channels can be explained 
by the window size of 15 ms that was extracted for each EMG peak. In 
most cases this window would include the same peak-to-peak amplitude 
values regardless of which channel was used for peak detection. In this 
study, there could be a potential bias in localization due to a selection of 
firings from a specific type of motor unit. The low force contractions 
used may exclude many large motor units and the amplitude threshold 
for peak-detection may exclude very small motor units. Whether the 
spatial distribution of the remaining motor unit firings is representative 
of all firings is unknown. Furthermore, whether identified EMG peaks 
are the result of individual or multiple motor unit firings should be 
discussed, especially for higher force levels. When smaller motor unit 
firings overlap with larger firings, they are potentially lost when 

extracting the peak-to-peak amplitude. A different measure, such as the 
energy at each channel, could be more suitable. With an energy mea-
sure, overlapping firings would all contribute to a compounded location 
estimate. Such a compounded estimate, however, might have additional 
limitations if multiple muscles are active at once.

The approach presented in this paper provides a new mode of 
analysis which may complement motor unit analysis done through 
decomposition approaches. A combination of the two approaches should 
be explored by, for example, localizing motor units from decomposition 
alongside volumes generated by the presented approach. In this manner, 
motor unit analysis could be done with the information of muscle 
structures and functional organization generated by the new approach. 
Additionally, a comparison between localized volumes and localized 
motor units should be done to assess, and account for, potential 
discrepancies.
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Abstract: 

Human hands can perform far more gestures than the number of muscles controlling them, as 

most gestures result from coordinated combinations of muscle activations and relaxations. This 

complexity poses a key challenge for human-machine interfaces performing gesture 

classification based on electromyography (EMG). Rather than identifying all conceivable 

gestures, it may be simpler to instead identify the activity of the individual muscles which 

generate a variety of complicated gestures. 

Here we suggest a three-dimensional model with volume representations of individual digit 

extensor muscles, averaged across multiple individuals, and evaluate its application and 

performance in hand gesture classification. Time-domain peaks in high-density surface EMG 

data from different hand gestures were extracted and localized within the model, from which a 

gesture classification scheme was generated for both single and multi-label cases. The model 

was created and tested on a publicly available dataset with 19 participants, leveraging a leave-

one-out approach to assess inter-subject generalizability, and multi-label data to assess 

generalizability to gestures not included in the creation of the model. Furthermore, multi-label 

metrics were calculated, resulting in a median Hamming loss of 21.4 (IQR 18.7-25.3), 

Precision of 79.1 (IQR 72.6-87.7), Recall of 60.1 (IQR 53.1-62.8) and F1-score of 68.4 (IQR 

63.1-72.6) percent. A model generated with this approach could be used for gesture 

classification by anyone, without individual modelling data, with the potential to generalize to 

any number of gestures. 

  



1. Introduction 

The human hand can perform a large number of actions despite being controlled by a limited 

number of intrinsic and extrinsic muscles. While the anatomy of forearm and hand muscles is 

well understood, the permutations of muscle combinations that generate grasps, gestures, and 

actions are vast, which poses a challenge for the development of advanced human-machine 

interfaces (HMIs). HMIs based on electromyography (EMG) decode descending neural 

activity from neurophysiological signals generated by muscles (1-3). These signals are 

processed by various algorithms to interpret user intent, enabling control of computer interfaces 

or devices such as prosthetic limbs. 

There are broadly two categories of control algorithms for HMIs based on either discrete 

categorisation (classification) of, e.g., hand gestures (4, 5) or continuous estimation 

(regression) of, e.g., muscle force (6). Advanced gesture classification algorithms commonly 

involve learning features unique to each gesture from training data. However, unravelling EMG 

signals for all possible hand gestures requires a prohibitive amount of training data and a large 

number of gesture classes, when applying a direct one-to-one approach. Identifying the 

contractions of all individual muscles, rather than all conceivable gestures, may result in 

simpler processing of EMG signals. Such an approach is therefore worth exploring, although 

it necessitates understanding and more effectively utilizing the underlying anatomical and 

physiological knowledge of muscles. 

A motor unit is a collection of muscle fibres that discharge action potentials in unison along 

with a motor neuron controlling them. The simultaneous discharge from muscle fibres of the 

same motor unit generates a compound signal referred to as the motor unit action potential 

(MUAP). This compound signal amplifies the output of individual motor neurons, providing a 

direct link to the nervous system and the smallest discrete units of voluntary muscle control. 

The recorded EMG signal can be seen as a weighted sum of MUAPs, that varies depending on 

the position of the electrodes and the type of EMG. 

EMG can be recorded intramuscularly (iEMG) or from the skin surface (sEMG). While iEMG 

can provide clear MUAP recordings, and is therefore used clinically to diagnose neurological 

disorders  (7), its invasiveness limits its use in HMIs. Since needle or wire electrodes record 

only a few spatially local motor units each (7, 8), a comprehensive muscle-controlled interface 

would require many needles or wires, leading to significant discomfort for users. Non-invasive 

sEMG is a much more attractive alternative for generalized or widespread HMIs. However, 

sEMG suffers from reduced interpretability since the recording is less selective compared to 

iEMG (7, 8). The recording contains an unknown number of active motor units with 

superimposed MUAPs, making it more difficult to decode into user intent. The signal 

interpretability of sEMG is further exacerbated by low-pass filtering effects of the tissue which 

increases both the overlap and homogeneity of MUAP waveforms (7, 9). On the other hand, 

the simplicity of sEMG recordings have enabled high-density sEMG (HDsEMG), using large 

grids of electrodes, to become commonplace in research settings (9, 10). High-density electrode 

grids generate additional spatial information on MUAPs by recording them from many 

different positions and angles (11). Although this additional spatial information is important, a 



large number of EMG channels also complicate the decoding task; HDsEMG contains too 

much information, which may or may not be relevant for a given task. Thus, effective 

processing algorithms are essential to simplify the data and extract meaningful features for 

robust signal interpretation. 

Feature extraction techniques for EMG signals are commonly divided into time-domain, 

frequency-domain, and time-frequency-domain features (12-14). Time-domain features are 

directly computed from signal amplitudes, such as root mean square (RMS), zero crossings, 

slope sign changes, or waveform length, which makes them computationally efficient and easy 

to implement. Frequency-domain features, such as mean or median frequency, and time-

frequency-domain features, such as a wavelet transform or short-time Fourier transform, are 

computationally more complex than time-domain features but have been used to study, e.g., 

muscle fatigue (15, 16). Common classification approaches for extracted features include linear 

discriminant analysis (17) and support vector machines (18), which are robust and simple to 

use compared to more advanced neural network approaches (19). Neural networks are 

promising due to their ability to capture non-linear relationships, which may be present when 

multiple muscles contract; however, they are severely limited by slow and complicated 

training, requiring large amounts of training data. Neural networks also lack in explainability, 

which is important for understanding why estimation errors occur and can limit analysis and 

model improvements. Notably, these established approaches do not explicitly incorporate 

anatomical or physiological knowledge, such as muscle structure, spatial position or motor unit 

features. 

In contrast to the previously mentioned global EMG features, more recent developments in 

HDsEMG processing have enabled the study of motor unit characteristics (20, 21), using 

decomposition algorithms often based on independent component analysis (22-26). These 

algorithms make use of known motor unit physiology, i.e. the statistical sparsity of motor unit 

discharges, to identify their firing patterns, which can then be used to estimate muscle force 

(20, 27-29), thus directly decoding user intent from the output of the nervous system. However, 

current decomposition algorithms identify only a fraction of active motor units, whose total 

number is unknown (27). Motor unit characteristics therefore lack robustness as features in 

control algorithms. 

We recently proposed a new method which was used to model extensor muscles as ellipsoid 

volumes from HDsEMG recordings of the forearm during extensions of individual fingers (30). 

The spatial information of HDsEMG was utilized to localize individual time-domain peaks in 

the recording. The three-dimensional distributions of localized peaks were then used to 

generate the shapes of the ellipsoid volumes. In that study, we found that these muscle 

representations could be used to determine which muscle volume new peaks belonged to and 

thus identify muscle activity. However, the study was limited to one dataset with 10 participants 

performing single digit movements. Furthermore, volume modelling and the assessment of new 

peaks was performed on the same subject and the same session. As such, the generalizability 

of this modelling approach remains untested. Generalizability can broadly be broken down into 

multiple categories, depending on the type of training data required to create a model or, e.g., 

train a neural network. Cross-session generalizability requires that the algorithm works on data 



from a new session, with training data from a separate recording; the method needs to adapt to 

potential variations in electrode placement and data quality. Cross-subject generalizability 

requires that the algorithm works for completely new subjects not included in the training data; 

this remains a difficult task with methods typically requiring some amount of individualization 

or calibration. A final category is generalizability to entirely new gestures not included in the 

training set, which is rarely explored at all. However, we hypothesize that representative 

volume modelling of individual muscles in the forearm can generalize to more complex 

gestures consisting of multiple contracting muscles, removing the need for training data from 

all conceivable gestures. A control scheme based on this model would be highly intuitive, 

explainable, and generalizable, and therefore worth exploring. 

In this paper, we assess gesture classification using representative volume modelling, focusing 

on its generalizability across subjects and its ability to recognize entirely new gestures not 

included in the modelling phase. We apply the method described in (30) to a publicly available 

HDsEMG dataset (31) to create volume representations of individual digit extensor muscles 

and generate a three-dimensional average human model of the involved extensor muscles in 

the forearm. A classification scheme is proposed for single and multi-digit contractions based 

on localization of time-domain extracted EMG peaks within the model. True and false positive 

classification rates are analysed in single and multi-label cases to assess the method for 

generalizability across subjects and completely new gestures.  

 

 

 

  



2. Method 

2.1. Dataset 

In this study, the publicly available HDsEMG dataset “Hyser” (31) was used. This dataset was 

chosen for its large coverage of the forearm with monopolar recordings, and the inclusion of 

single digit gestures. The dataset consists of 256 channels of monopolar HDsEMG, using two 

adjacent 8-by-8 electrode grids along the anterior side of the forearm as well as the posterior 

side of the forearm, recording from 20 subjects performing 34 separate gestures. For single 

digit gestures, only extensions of the thumb and fingers were recorded. Thus, for the purposes 

of volume modelling of individual muscle regions described in this paper, only the grids on the 

posterior side were used, primarily covering the extensor digitorum communis (EDC) and 

extensor pollicis longus (EPL). Additionally, one of the subjects (subject 4) had no recording 

for one of the single digit gestures and was therefore also excluded. Furthermore, wrist gestures 

were excluded in order to simplify the model and enable a comparison to our previous study 

(30). This resulted in a data subset of 128 channels from 19 subjects performing 11 gestures. 

Five single-digit gestures including thumb (D1), index finger (D2), middle finger (D3), ring 

finger (D4), and little finger (D5) extension, were used for modelling muscle volumes and 

single label classification. Two double-digit gestures (extension of D1-D2, extension of D2-

D3), three triple-digit gestures (extension of D1-D2-D3, extension of D2-D3-D4, extension of 

D3-D4-D5), and one four-digit gesture (extension of D2-D3-D4-D5) were used for multilabel 

classification assessment; multi-digit gestures were not included in any modelling step and 

only used for multi-label assessment, to test for generalizability to completely new gestures. 

2.2. Average volume modelling 

We used a previously developed method (30) to generate representative ellipsoid volumes of 

forearm extensor muscles by localizing numerous time-domain peaks in HDsEMG data. The 

three-dimensional distributions of localized peaks, for each action, shaped the ellipsoid for each 

volume representation. These volumes were then used to classify peaks from a different 

subject, as well as completely new gestures, summarized in Figure 1. 

 

Figure 1. The block diagram illustrates the volume modelling (top row) and the gesture 

classification (bottom row). For volume modelling, time-domain EMG peaks were first detected 

and localized individually; the distributions of the localized peaks informed the shapes of 

representative ellipsoid volumes, which were then averaged across 18 of the 19 subjects. For 



gesture classification, localized EMG peaks, from the subject excluded during modelling, were 

classified using their position in relation to the average volumes. Gestures were then classified 

with a moving window which accounts for multiple subsequent peaks. 

The localization step was first described for estimation of motor unit positions here (32), and 

later applied to individual EMG peaks for volume estimation here (30). In this method, 

individual EMG peaks were first identified with peak-detection on a single channel. Centred 

around each identified peak, a time window of 31 samples (15 samples before and 15 samples 

after the identified peak) was then extracted across all channels. The spatial surface distribution 

of the EMG peak was plotted using the row and column position for each electrode (as x and 

y coordinates) and the energy (calculated as the sum of all squares) within the time window at 

each channel (as z coordinates). A surface Gaussian function was then fitted to these values, 

which had parameters for maximum peak amplitude and position (Gaussian function centre), 

as well as distribution width, length, and rotation. The width and rotation of the Gaussian fit 

informed an estimate of the depth and fibre direction of the MUAP source. In the original 

method (30), the Gaussian fit was applied to the peak-to-peak amplitude at each channel, 

instead of calculating the energy as was done in this work. Compared to using the peak-to-peak 

values, the signal energy is theoretically less dependent on individual samples, since it is 

calculated on the full extracted window, and was therefore chosen to improve the stability of 

position estimates. 

In the volume estimation step, five muscle volume representations were estimated, 

corresponding to the activity during extension of each individual digit, using data from the 

single digit gestures. For each of the five gestures, the spatial distribution of localized EMG 

peaks were used to generate the shape of each representative ellipsoid volume; a detailed 

description of the volume generation can be found here (30). The mean estimated position and 

fibre direction was first calculated. Then, the standard deviations were calculated along the 

fibre direction, perpendicular to the fibre direction, and for the depth. The average volumes 

used for gesture classification, were generated from the average mean and standard deviations 

across participants for each volume. Since generalizability to completely new individuals was 

a focus of this work, the averaging was done in a leave-one-out manner, meaning that for each 

participant a new set of average volumes to be used for classification were calculated from the 

remaining 18 participants (Figure 2). 

 



 

Figure 2. The cylinder model (right) with a set of volume representations, averaged across 18 

of the 19 subjects, for extension of the thumb (red), index finger (orange), middle finger (green), 

ring finger (blue), and little finger (purple). Each volume is defined by an ellipsoid function 

with the shape determined by the mean spread of localized EMG peaks from the corresponding 

action. The forearm (left) illustrates the orientation of the model. 

2.3. Classification procedure 

2.3.1. Ellipsoid based spatial classification 

Once the volume models were established, they were used as a reference for classifying new 

EMG peaks. Ellipsoid based spatial classification was performed in the same manner as in (30). 

Each volume is represented by an iso-surface, a mathematical function which defines a 

boundary in three-dimensional space using x, y, and z coordinates (Figure 2). Inserting a 

specific coordinate into the iso-surface function returns a value which increases with increased 

distance to the volume centre, modified by the shape of the volume. The estimated position of 

each EMG peak was inserted into the function representing each volume, returning a set of iso-

function values. The EMG peak was classified as belonging to the volume generating the 

lowest iso-function value. However, different placements of the electrode grids could lead to 

large offsets between the volumes and the EMG peaks being assessed. Therefore, the volumes 

were first centred by estimating an offset position which was subtracted for all volumes. The 

centring offset was calculated from one second of EMG data during ring finger extension. This 

action was chosen because ring finger extension was found to generate activity in the centre of 

all volumes with great consistency; the same tendency was also found in (30). 

 



2.3.2. Moving windowing classification 

Gesture classification performance was assessed by imitating real-time conditions with a 

moving window (250 ms window size, 100 ms stride, Figure 3) by segmenting the EMG data. 

In the single-label classification test, EMG peaks within each window were classified 

individually, and the class with the most peaks was labelled as active. For the multi-label 

classification test, EMG peaks within each window were again classified individually, and any 

class with three or more assigned peaks was labelled active. This threshold number of peaks 

was selected post-hoc via a grid search of the threshold number and the moving window size, 

optimizing for the lowest Hamming loss. 

 

Figure 3. The moving window classification procedure is illustrated on the same EMG channel 

(light blue lines) overlapped with the 250 ms moving window (red line), for three different 

segments with a 100 ms stride. The horizontal dashed lines represent the five classes. The 

coloured dots denote the identified peaks on the line of their assigned class. Using single label 

majority voting, all cases in this example were classified as thumb extension (red). In the multi-

label case, with a minimum threshold of 3 peaks, the last window was classified as both thumb 

(red) and index (orange) extension.  



2.4. Evaluation methods 

2.4.1. True and false positive rates 

For both single label and multi-label gesture classification, performance was evaluated using a 

table of true positive rates (TPR) and false positive rates (FPR), which refers to the percentage 

of correctly labelled segments and the percentage of incorrectly labelled segments, for each 

gesture. In the single label task, each of the five single-digit gestures had one corresponding 

volume and four non-corresponding volumes, which generated one TPR value and four FPR 

values per gesture. In the multi-label task, all 11 gestures were included and the number of 

corresponding volumes changed depending on the gesture. This allowed for a more thorough 

examination of individual gestures, the distribution of classification errors, and potential limits 

in the multi-label classification task.  

From anatomical knowledge of the forearm, the extensor pollicis longus (EPL) is located 

beneath the extensor digitorum communis (EDC), extensor digiti minimi (EDM), and extensor 

indicis proprius (EIP) muscles. Thus, it is expected that the volume representing the EPL would 

interfere the most with gesture classification performance. To assess this impact on 

performance, modelling and single label classification was additionally done after excluding 

thumb extension, generating one TPR value and three FPR values per gesture. 

2.4.2. Generic performance metrics 

For a wholistic assessment of gesture classification performance, generic metrics were 

calculated for the multi-label case. The number of true positives, false positives, true negatives, 

and false negatives, denoted by 𝑡𝑝, 𝑓𝑝, 𝑡𝑛, and 𝑓𝑛 respectively, were calculated for each label 

separately and added together, as in (4). 

Hamming loss is defined as the ratio of false estimated labels to the total number of labels in 

the dataset. Thus, a lower Hamming loss corresponds to better performance. 

𝐻𝑎𝑚𝑚𝑖𝑛𝑔 𝑙𝑜𝑠𝑠 =
𝑓𝑝 + 𝑓𝑛

𝑡𝑝 + 𝑡𝑛 + 𝑓𝑝 + 𝑓𝑛
 

Precision is defined as the ratio of true positives to the total number of positive estimated labels. 

This metric is favoured by ‘cautious’ or ‘strict’ classification algorithms, which have a high 

threshold for generating a positive label, resulting in a minimal number of false positives. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑡𝑝

𝑡𝑝 + 𝑓𝑝
 

Recall (i.e., true positive rate or sensitivity) is defined as the ratio of true positive estimated 

labels to the total number of ground truth positive labels. Recall is favoured by ‘heedless’ or 

‘lenient’ classification algorithms, which have a low threshold for generating a positive label, 

thus identifying most positive labels while disregarding the number of false positives. 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑡𝑝

𝑡𝑝 + 𝑓𝑛
 



Precision and recall tend to be inversely related, in the sense that optimizing for the 

performance of one is often to the detriment of the other. The F1-score provides a compromise 

between precision and recall. 

𝐹1𝑠𝑐𝑜𝑟𝑒 = 2 ∙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∙ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

 

  



3. Results 

3.1. Single label gesture classification 

3.1.1. True and false positive rates 

Single label TPR and FPR for gesture classification with five classes are summarized in Table 

1. The values show the cross-subject means and standard deviations after calculating individual 

performances in a leave-one-out manner, where the assessed individual is not included in the 

generation of the model. Note that for the single label classification task, the sum of each row 

is 100%. The TPRs (diagonal grey elements) were highest for ring finger extension with a 

cross-subject mean of 95.1%, which was expected since one second of this gesture was also 

used for centring the volume models. The TPRs were the lowest for little finger extension with 

a cross-subject mean of 61.9%, largely due to misclassification as thumb extension as seen in 

the bottom row in Table 1, where off-diagonal elements show FPRs for each volume. Similarly, 

a large degree of misclassification occurs between thumb and index finger extensions, which 

indicates that the thumb extension interferes the most with classification performance. Table 2 

shows the true and false positive rates after removing the thumb extension gesture from the set. 

 True and false positive rates (%) 

Action Vol 1 Vol 2 Vol 3 Vol 4 Vol 5 

Thumb 76.9 ± 29.9 21 ± 30.2 0.3 ± 1.1 0 ± 0 1.4 ± 4.2 

Index 24.1 ± 34 64.1 ± 39.8 6.1 ± 22.2 5.6 ± 18.1 0.2 ± 0.8 

Middle 2 ± 8.6 0 ± 0 80.5 ± 35.1 12.2 ± 28.9 5.3 ± 22.9 

Ring 0.9 ± 3.1 1.7 ± 6.6 2.2 ± 4 95.1 ± 12.6 0.2 ± 0.6 

Little 20.8 ± 29 12.8 ± 31 1.4 ± 4.4 3 ± 10.7 61.9 ± 39.3 

Table 1. Cross-subject mean and standard deviation for true positive rates (diagonal elements) 

and false positive rates (off-diagonal elements) for 250 ms windowed moving mode. 

 True and false positive rates (%) 

Action Vol 1 Vol 2 Vol 3 Vol 4 Vol 5 

Thumb  -  -  -  -  - 

Index  - 86.2 ± 30.2 6.2 ± 22.1 6.1 ± 20.2 1.4 ± 5.1 

Middle  - 0 ± 0 82.4 ± 35.4 12.4 ± 29.4 5.3 ± 22.9 

Ring  - 2.2 ± 8.8 2.5 ± 4.6 95 ± 12.4 0.3 ± 1 

Little  - 17.6 ± 36.8 1.2 ± 4.2 3.3 ± 10.2 77.9 ± 37.4 

Table 2. True positive rates (diagonal elements) and false positive rates (off-diagonal elements) 

for 250 ms windowed moving mode after excluding thumb extension. 

  



3.2. Multi-label gesture classification 

3.2.1. True and false positive rates 

Multi-label true and false positive rates for gesture classification with 11 classes are 

summarized in Table 3. The values show the cross-subject means and standard deviations in a 

leave-one-out manner, similar to the single label test. In contrast to the single-label test, 

multiple labels could be positive for each segment, and the sum of each row is no longer 100%. 

This is exemplified by comparing little finger extension in Table 1 and Table 3, where a 

substantial increase in both TPR and FPR is seen for the multi-label task.  

Note here that assessments of the bottom six multi-digit gestures were performed on 

participants not included in the modelling step and, more importantly, were completely new 

gestures; modelling only made use of data from single-digit extensions. Although the TPRs 

(grey elements) vary greatly, the highest TPR is much greater than the FPR. For each gesture, 

even the lowest TPR is greater than the highest FPR in most cases, revealing clearly distinct 

distributions between actions. 

 True and false positive rates (%) 

Action Vol 1 Vol 2 Vol 3 Vol 4 Vol 5 

D1 75.5 ± 27.1 29.6 ± 36.1 1.2 ± 3 0 ± 0 6.6 ± 19.5 

D2 29.8 ± 34.7 74.8 ± 34.2 10.5 ± 26.8 12 ± 28.8 2.1 ± 7.8 

D3 6.7 ± 21.1 1.1 ± 3.8 90.7 ± 25.5 22.2 ± 39.4 5.3 ± 22.9 

D4 6.1 ± 13.9 7.4 ± 18.1 16.3 ± 16.1 97.3 ± 7.6 2.4 ± 6.1 

D5 38.5 ± 38.1 21.7 ± 35.5 3 ± 8.5 8.1 ± 19.1 77.5 ± 34.5 

D1, D2 69.6 ± 30.9 52.8 ± 40 6.7 ± 22.2 1.4 ± 3.8 3.7 ± 13.9 

D2, D3 8.4 ± 20.6 19.8 ± 25.9 82.2 ± 29 34.5 ± 37.4 3.7 ± 16.3 

D1, D2, D3 33.3 ± 31.4 25.4 ± 28.8 74.8 ± 36 6.6 ± 17.6 2.4 ± 5.2 

D2, D3, D4 12.6 ± 25.9 13.9 ± 28.4 73.3 ± 32.3 76.6 ± 29.4 10.4 ± 27.1 

D3, D4, D5 18 ± 24.4 19.2 ± 34 51.6 ± 32.2 79.9 ± 28.3 19.7 ± 30.2 

D2, D3, D4, D5 19 ± 20.5 26 ± 33 66.7 ± 32.7 77.9 ± 24.8 11 ± 26.2 

Table 3. True positive rates (grey elements) and false positive rates (white elements) for 11 

gestures in the multi-label gesture classification task, with a moving window of 250 ms and a 

minimum threshold of 3. 

3.3.2. Multi-label performance metrics 

The generic performance metrics are summarized in a violin plot (Figure 4). The results show 

a cross-subject mean Hamming loss of 23.7, Precision of 77.8, Recall of 57.8, and F1-score of 

66.0 %; with a standard deviation Hamming loss of 7.0, Precision of 12.9, Recall of 9.3, and 

F1-score of 9.9 %; a median Hamming loss of 21.4, Precision of 79.1, Recall of 60.1, and F1-

score of 68.4 %; with interquartile range Hamming loss of 18.7-25.3, Precision of 72.6-87.7, 

Recall of 53.1-62.8, and F1-score of 63.1-72.6 %. The better median performance compared to 

mean performance suggests that the distribution of performances is skewed by low 

performance outliers. Precision performance is comparatively much higher than recall 

performance, which indicates that the method is ‘strict’. The lower recall performance indicates 



difficulties in correctly identifying all positive labels at the same time, and that a larger window 

or lower threshold can result in a more balanced performance.  

 

Figure 4. A violin plot showing performance metrics for multi-label gesture classification. 

Coloured dots represent individual subject performances; white dots indicate the mean. Shaded 

regions illustrate the approximate data distribution, with visible skew due to a few low-

performing outliers.  



4. Discussion 

This study presents a novel approach to finger gesture classification based on representative 

muscle volume modelling, emphasizing generalizability. By functional modelling of the active 

regions in the forearm during extension of individual digits, averaged across multiple subjects, 

representative volumes were generated for the corresponding muscles. Using these 

representative volumes, we demonstrated the feasibility of a real-time classification algorithm 

that generalizes across users and even to new gestures. By leveraging a leave-one-out approach 

to modelling and testing, the study showed that functional volume representations of muscles 

generalize across most individuals, which makes this modelling approach suitable for 

widespread applications. The presented method is an initial step towards the creation of 

comprehensive three-dimensional models, usable by anyone for gesture classification without 

additional training or modelling data. 

The study also demonstrated a limited degree of generalizability to completely new gestures, 

as seen in Table 3. Notably, EMG data from multi-digit gestures was never included in the 

functional modelling of muscle volumes. The multi-digit gestures were instead classified using 

volumes generated by single-digit gestures from other participants only. Table 3 demonstrates 

that the EMG data from each multi-digit gesture was predominantly classified as belonging to 

the volumes corresponding to the active digits (grey elements). The limitation of this 

generalizability was seen in the overall recall rate, summarized in the violin plot (Figure 4). 

The limited recall rate suggests that there were difficulties in identifying multiple muscles at 

once. The moving window classification used in the multi-label test required three or more 

EMG peaks to be classified to a volume to label it as positive. This may severely limit 

performance for gestures with many simultaneously active muscles, since each EMG peak was 

assigned to only one volume. In these cases, a longer time window or lower thresholds might 

be required when identifying, e.g., four simultaneously active digits. Another explanation for 

the limited recall performance might be that the shape or structure of the muscles were 

significantly different when multiple digits contracted simultaneously compared to individual 

digit contractions. 

The method for generating volume representations of muscles (30) was previously only 

demonstrated on single-digit gestures with inter-session modelling on a dataset tailored to 

generate optimal volumes using stable isolated isometric contractions. This study further 

validated the method by successfully applying it to a generic publicly available HDsEMG 

dataset (31). This indicates that the method is easily applied to other HDsEMG datasets; 

however, it should be applied to a wider range of datasets to gauge any potential limitations.  

Another finding of this study was the amount of overlap in the single-digit test between thumb 

extension and both index and little finger extension, while thumb extension showed almost no 

overlap with middle and ring finger extension. This provides further insights into the functional 

anatomy of the dorsal compartment of the forearm; however, further studies are required to 

fully explain this discrepancy. It is worth noting that while the EDC is a fused muscle extending 

all fingers, previous studies (as well as this study) demonstrated a specific segmentation of the 

EDC where middle finger (EDC-3) extension was mainly generated by EMG activity at the 



proximal end of the EDC muscle (30, 33-35). In contrast, the EDC segments responsible for 

index finger (EDC-2) extension and little finger (EDC-5) extension seem to be located at the 

distal end. However, it is important to note that extension of the index and little finger are both 

controlled by two muscles, EDC-2 and EIP; EDC-5 and EDM respectively. It is unclear to what 

extent this affects the generated volume representations and thus the gesture classification 

performance; a more comprehensive model could include multiple volumes for these actions. 

Thus, the results indicate that the EPL is mainly located beneath EDC-2 or EIP, and EDC-5 or 

EDM, which is also seen in Figure 2. While the volume representing the EPL was deeper than 

the other volumes, as expected anatomically, the current method may have potentially 

underestimated the differences in depth, leading to an increased overlap between volumes. In 

the localization step, increasing the separability of estimated positions along the depth axis is 

a potential avenue for improvement. 

Another limitation of the current method was the lack of a ‘rest’ or ‘other’ class. The current 

method assigned each EMG peak to one of the volumes in the model. Thus, co-contraction 

from, e.g., wrist muscles could have been falsely classified as one of the digit extensors. A 

possible solution could be to identify some maximum distance threshold for ellipsoid 

classification. EMG peaks localized too far away from any of the volumes in the model would 

then be excluded.  

While the focus of this paper was real-time gesture classification, other promising applications 

exist as well. Most notably, the method can be used to estimate the distribution of EMG activity 

between muscles, which could be of great value in rehabilitation assessments. For example, 

during rehabilitation exercises, the distribution of EMG activity could provide a measure for 

muscle compensation from co-contracting muscles. Feedback on the degree to which intended 

and unintended muscles are being used could inform therapists and patients of the quality of 

current exercises. Such quantitative assessment tools are in high demand, since rehabilitation 

therapists often rely on their own past professional experience to make assessments (36). 
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