
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Code-based Cryptography: Attacking and Constructing Cryptographic Systems

Nguyen, Vu

2025

Link to publication

Citation for published version (APA):
Nguyen, V. (2025). Code-based Cryptography: Attacking and Constructing Cryptographic Systems. [Doctoral
Thesis (compilation), Department of Electrical and Information Technology]. Lund University.

Total number of authors:
1

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

Download date: 12. Aug. 2025

https://portal.research.lu.se/en/publications/dfc45765-af41-4513-8245-ac9782435740


Code-based Cryptography:
Attacking and Constructing

Cryptographic Systems

Vu Nguyen

Advisors: Thomas Johansson, Qian Guo
Faculty opponent: ?

Academic dissertation which, by due permission of the Faculty of Engineering at Lund University,
will be publicly defended on DATE, at HOUR, in lecture hall PLACE at the Faculty of

Engineering, for the degree of Doctor of Philosophy in Engineering.



ISBN 978-91-8104-523-9 (print)
ISBN 978-91-8104-524-6 (electronic)
Series of licentiate and doctoral theses
No. 186
ISSN 1654-790X-186

Vu Nguyen
Department of Electrical and Information Technology
Lund University
Box 118
SE-221 00 Lund
Sweden

Typeset using LATEX.
Printed in Sweden by Tryckeriet i E-huset, Lund, 2025.

© 2025 Vu Nguyen
Published articles have been reprinted with permission from the respective copyright
holder.



iii

Abstract

This thesis discusses novel results in the area of code-based cryptography, ranging
from cryptanalyses on several code-based cryptographic constructions to propos-
ing a code-based authentication scheme based on a novel Syndrome Decoding
variant.

To address the looming threat of large-scale quantum computers that would
break many widely-used public-key cryptosystems, the National Institute of Stan-
dards andTechnology (NIST), in 2016, promptly called for new quantum-resistant
cryptographic standards. After several comprehensive evaluation stages, several al-
gorithms were chosen as the way forward. Recently, in 2022, “NIST expressed
particular interest in additional general-purpose signature schemes based on a se-
curity assumption that did not use structured lattices as well as signature schemes
with short signatures and fast verification...” [NIS22]. This process reignited the
competition, introducing many interesting and novel proposals.

Code-based cryptography has been pivotal in both processes, being the secu-
rity keystone for many proposals, particularly in the selected HQC algorithm. Its
strong track record of research offers strong confidence in code-based cryptosys-
tems. From a complexity theory point of view, code-based assumptions are often
NP-hard computational problems, which have been the staples for provably-
secured systems. On the other hand, cryptanalysis algorithms have witnessed
significant advancements, employing increasingly more sophisticated techniques.
Yet, the fundamental Syndrome Decoding Problem remains resistant, suggesting
that code-based cryptography is an exceptionally well-founded and dependable
tool.

Many variants/alternatives of the Syndrome Decoding Problem have been
put forward to offer better performance without compromising security. Specifi-
cally, in this thesis, one encounters the Learning Parity with Noise (LPN) and Re-
stricted Syndrome Decoding Problem (RSDP). LPN has been a notable candidate in
lightweight cryptography, and RSDP has gained traction due to its appearance in
CROSS- a remaining candidate in the Round-2 of NIST Additional Digital Signa-
ture Schemes. Code-based cryptography, as a research field, shows immense versa-
tility and richness far beyond its origin as a PKE proposed by McEliece [McE78].

We analyze several lightweight code-based cryptosystems in the first three
works, ranging from stream ciphers to wPRFs and authentication protocols. We
investigate the design weaknesses that allow us to launch attacks using various tech-
niques. In particular, we analyze a novel LPN-based stream cipher called Firekite, a
wPRFs construction, and an HB-like authentication protocol named LCMQ. Us-
ing diverse techniques in conjunction with information-set decoding algorithms
(ISD), our studies improve previous results (if any) and impose stronger security
parameters for said constructions.

Then, we draw connections between lattice-solving algorithms and traditional
syndrome decoding algorithms with our new proposal: a sieving-style ISD algo-
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rithm. Our algorithm offers a novel time-memory trade-off in solving relevant
code-based parameters. In the low error-weight regime, the sieving-style ISD can
use memory more efficiently without losing its competitiveness in computational
performance. Thus, we introduce a valuable and practical alternative to cryptanal-
ysis.

The last two papers look at the novel RSDP problem from a new perspective
- the Oracle model, analogous to the LWE or LPN problems. We construct an
HB-like authentication protocol, replacing the LPN problem with the (Oracle)
RSDP problem, showing its remarkable adaptiveness to the most secure designs.
In practice, RSDP structures allow incredibly efficient operations, rivaling those
of LPN. Moreover, RSDP also achieves high-security guarantees with modest pa-
rameters, yielding significant superiority regarding communication cost. Finally,
we expand the cryptanalysis of the RSDP problem, especially when many RSDP
samples are allowed with a BKW-style solver. We analyze the concrete complexity
of RSDP in new regimes outside of CROSS parameters. Hence, our work is a
useful calibrating tool for similar RSDP-based cryptosystems in the future.



v

Acknowledgements

I dedicate this thesis to my dearest wife, Thuong, who has made my Ph.D. journey
the most memorable and significant period of my life, for it is when I married
her. Words cannot describe how much I appreciate you for always supporting and
being with me throughout my academic journey, wherever it is. Despite all the
sacrifices you have made to be together, you remain a supportive, sympathetic,
and understanding partner, enduring moments that I am not proud of. Your love,
sweetest personality, encouragement, and delicious food made this journey more
pleasant and worthwhile.

Firstly, I want to extend my sincerest and deepest gratitude to my main super-
visor, Thomas Johansson, for saying you needed a mathematics Master’s student at
a dinner 6 years ago. Above all, thank you for being patient, understanding, and
confident in me even when cryptography was new to me. You gave me the courage,
time, and space to grow and always came to help when I needed it the most. Your
intellectual curiosity and enthusiasm remind me every day why I wanted to re-
search in the first place. I now concur with Jing that you are the best supervisor
ever. Also, I wish to express the same admiration and appreciation for my co-
supervisor, Qian, who has been an inspiration for me and other junior researchers
with your discipline, work ethic, and incredible astuteness. You and Thomas not
only provided invaluable guidance and insights in every project we had been work-
ing on together, but also taught me an optimistic, curious, and positive attitude
when there was a problem (and many of them, there were!). I could not have asked
for better research mentors.

Besides my supervisors, many published papers would not have been possible
without my coauthors, Willi and Mustafa. Thank you, Willi, for allowing me to
work on your ideas and for your collaboration in the first two papers, which were
crucial in my formative years as a Ph.D. Together with Thomas, you have both
been generous in lending an immense wealth of knowledge and wisdom to me.
Thank you, Mustafa, for the short but fruitful time we had. You always knew how
to improve a paper!

I have been blessed to know so many fantastic colleagues and seniors in my re-
search group, all of whom I wish I had known earlier. The office corridor is not the
same without your lovely personalities. Special thanks to Syafiq, my Southeast-
Asian brother, who put up with my antics and stupid moments and allowed me to
be at my worst while working in our shared office(s). Most importantly, you con-
vinced me to use Ubuntu, among many other things. I will miss our chats, for they
are as random and funny as unhinged. I want to apologize to Denis and Dachao,
who never denied an unauthorized office invasion with unintelligible and self-
deprecating monologues of mine. Thank you for always letting me talk through
my problems and questions, whether it is about research, programming, or even
badminton. To the older Chinese sisters, Jing and Hui (and Dachao), thanks
for indulging my obsession with the Chinese language and culture. Joakim and



vi

Karim, thank you both for showing me “How to Adult (appropriately)” and say-
ing (roughly) “Get a grip, Vu, you are a Ph.D.” I wish to thank the other (new and
old) Ph.D.s: Erik, Martin, Alexander, Pegah, Rohon, Markus, Maggie, Shouran,
Arthur..., for all the lunch and fika discussions (mostly banters). My apprecia-
tion to the seniors, Paul, Elena, Christian, and Sara, for being great research role
models and occasional guidance. To the finance and administration staffs of the
faculty: Elisabeth, Erik, Linda..., you have been so helpful in assisting with all the
paperwork during my time here. You are now rid of another Ph.D. student.

It is getting too long and over-the-top, so I prefer to conclude with an ac-
knowledgement to my friends and family. My time in Sweden has been made
more remarkable and colorful due to my Vietnamese cohort: Mi, Vu (not me),
Huan, Chi, Dat, Ha... Thanks for all the fantastic hangouts, cooking, and trips
together. You have been with me through good and hard times. Linus, you made
me right at home when I first came here, have always told me what I need to hear,
and you appreciate my humor. Let’s agree not to be moody simultaneously so that
we can lend a hand to each other. Finally, thanks to my parents and siblings for
everything and for making me the way I am now. Every step I made in foreign
lands was firm and steadfast because I knew you were always there looking out for
me.

Vu Nguyen
Lund, April 2025



vii

Contribution Statement

The following papers are included in this dissertation:

Paper I Thomas Johansson, Willi Meier, Vu Nguyen. “Attacks on the Firekite
Cipher”. In Fast Software Encryption (FSE) 2023, Beijing, China. IACR
Transactions on Symmetric Cryptology. 2022, 3, p. 191–216.

Paper II Thomas Johansson, Willi Meier, Vu Nguyen. “Differential cryptanaly-
sis of Mod-2/Mod-3 constructions of binary weak PRFs”. In International
Symposium on Information Theory 2023, Taipei, Taiwan. 2023 IEEE Inter-
national Symposium on Information Theory (ISIT), pp. 477-482, IEEE.

Paper III Vu Nguyen, Thomas Johansson, Qian Guo. “A Key-Recovery Attack on
the LCMQ Authentication Protocol”. In IEEE International Symposium on
Information Theory (ISIT) 2024, Athens, Greece. 2024 IEEE International
Symposium on Information Theory (ISIT), pp. 1824-1829, IEEE.

Paper IV Q. Guo,T. Johansson andV. Nguyen. “A New Sieving-style Information-
set Decoding Algorithm”. In IEEE Transactions on Information Theory,
vol. 70, no. 11, pp. 8303-8319, IEEE.

Paper V Thomas Johansson, Mustafa Khairallah, Vu Nguyen. “Efficient Authen-
tication Protocols from the Restricted Syndrome Decoding Problem”. In
IEEE European Symposium on Security and Privacy 2025 (EuroS&P), Venice,
Italy.

Paper VI Thomas Johansson, Qian Guo, Vu Nguyen. “A BKW-Style Solver for
the Restricted Syndrome Decoding Problem”. In InternationalWorkshop on
Code-Based Cryptography 2025, Madrid, Spain.



viii

The table below summarizes the contribution that Vu Nguyen made to each paper.
In particular, The capital letters “YES” indicate roles where Vu Nguyen took pri-
mary responsibility for the given role, whereas “yes” indicates partial involvement.
The hyphen shows a minor contribution to the tasks. In all papers, the writing
was given to Vu with increasing independence and involvement.

Paper Writing Concepts Implementation Evaluation

I yes yes YES yes
II YES - YES yes
III YES - YES YES
IV yes yes YES yes
V YES YES - yes
VI yes YES YES yes

The details of Vu Nguyen’s contributions to each work are described in the fol-
lowing paragraphs. In Paper I, he was tasked with investigating and implementing
the algorithm of which his co-authors proposed the initial ideas. The evaluation
and analysis of the paper was carried out with feedback from the co-authors.

In Paper II and Paper III, Vu was introduced to the wPRFs/LCMQ construc-
tions by his co-authors. He worked on deriving the heuristic arguments necessary
for the attack based on crucial insights from his senior co-authors. Vu was respon-
sible for simulating, verifying, and evaluating the attack complexity.

In Paper IV, the basic concept of sieving in a code-based cryptography con-
text was introduced by his senior co-authors. Vu investigated and materialized the
algorithms. Many algorithm optimizations were possible with his co-authors’ con-
tributions, including sketching an adaptation for the Decoding-One-Out-of-Many
technique. All authors are involved in deriving theoretical probabilistic arguments
for the algorithms, evaluating, and writing the manuscript. Vu was also tasked with
implementing the algorithm in many versions and writing complexity estimation
scripts.

In PaperV,Vu was tasked with investigating the prospect of building a lightweight
authentication protocol from the novel Restricted Decoding Problem. He pro-
posed the initial designs and adapted well-known reduction proofs for the designs,
which his co-authors subsequently improved. He investigated the Restricted Syn-
drome Decoding Problem and the state-of-the-art cryptanalysis to derive param-
eters for the protocols. His co-authors chiefly did the hardware implementation-
s/evaluations.

In Paper VI, Vu and his co-authors were all involved in developing a new al-
gorithm for the Restricted Syndrome Decoding Problem by finding low-weight
vectors. Vu experimented with many approaches and settings, exploring the via-
bility of the ideas, but was not fruitful when attacking the parameters of the digital



ix

signature schemeCROSS. Following Paper V, Vu was tasked with investigating the
algorithm in the novel RSDP settings where many samples are allowed. He devel-
oped the skeleton of the algorithms, arguments, implementation, and complexity
estimate. His co-authors then suggested a multiple-depth variant, which yielded
significant improvement. Most importantly, their insights contributed greatly to
the implementation evaluation, especially in understanding the algorithm’s cor-
rectness and success probability. A further description of the papers’ contributions
to the research field is presented in Section 4.1.





Contents

Abstract iii

Acknowledgements v

Contribution Statement vii

Contents xi

Overview of the Research Field 1

1 Introduction to Cryptology 3
1.1 Notations and Typesetting . . . . . . . . . . . . . . . . . . . . 5
1.2 Cryptography . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 Security Notions . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4 Cryptanalysis . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.5 Post-quantum cryptography . . . . . . . . . . . . . . . . . . . 12
1.6 Motivation of the thesis. . . . . . . . . . . . . . . . . . . . . . 14
1.7 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2 Code-based Cryptography 17
2.1 Coding theory . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2 Information-set Decoding Algorithms . . . . . . . . . . . . . . 20
2.3 Restricted Syndrome Decoding Problem . . . . . . . . . . . . . 32
2.4 Solvers for the Restricted Decoding Problem . . . . . . . . . . . 33

3 Learning-based Cryptography 35
3.1 Learning-based Assumptions . . . . . . . . . . . . . . . . . . . 35
3.2 LPN-based lightweight cryptography . . . . . . . . . . . . . . 38



xii CONTENTS

4 Contributions and Conclusions 41
4.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.2 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

References 51

Included Publications 63

I Attacks on the Firekite Cipher 65
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
3 The proposed distinguishing algorithm . . . . . . . . . . . . . 74
4 Results for the distinguisher . . . . . . . . . . . . . . . . . . . 83
5 A key-recovery attack on Firekite . . . . . . . . . . . . . . . . . 87
6 Discussion and Conclusions . . . . . . . . . . . . . . . . . . . 90
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

II Differential cryptanalysis ofMod-2/Mod-3 constructions of binary weak
PRFs 101
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
3 Attack on the Alternative Mod-2/Mod-3 wPRF . . . . . . . . . 106
4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
5 Future works . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
6 Acknowledgement . . . . . . . . . . . . . . . . . . . . . . . . 112
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

III A Key-Recovery Attack on the LCMQ Authentication Protocol 117
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
3 The LCMQ authentication protocol . . . . . . . . . . . . . . . 120
4 A new attack on LCMQ . . . . . . . . . . . . . . . . . . . . . 123
5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

IV A New Sieving-style Information-set Decoding Algorithm 133
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
3 A new heuristic ISD algorithm . . . . . . . . . . . . . . . . . . 141
4 Analysis of the new ISD algorithm . . . . . . . . . . . . . . . . 147
5 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . 159
6 Simple implementations for Sieve_Syndrome_Dec()with smaller

parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163



CONTENTS xiii

7 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . 164
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

V Efficient Authentication Protocols from the Restricted Syndrome De-
coding Problem 173
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
3 An authentication protocol based on RSDP . . . . . . . . . . . 187
4 Parameters for the proposed protocol . . . . . . . . . . . . . . 192
5 A MitM-secured proposal based on RSDP . . . . . . . . . . . . 198
6 Parameters for the MitM design . . . . . . . . . . . . . . . . . 203
7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

VI A BKW-Style Solver for the Restricted Syndrome Decoding Problem 211
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
3 The new BKW-style approach . . . . . . . . . . . . . . . . . . 219
4 Complexity Analysis . . . . . . . . . . . . . . . . . . . . . . . 227
5 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
6 Verification with a small experiment. . . . . . . . . . . . . . . . 233
7 Conclusion and Discussion . . . . . . . . . . . . . . . . . . . 236
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237

Popular Scientific Summary 241





Overview of the Research
Field





Introduction to Cryptology

At the time of writing this thesis, the subject of privacy had become normalized
to every internet user. Social networks and data storage services have evolved so
much that they have become conveniences in our daily lives. In today’s intercon-
nected world, sensitive data, such as financial records and personal information, is
constantly transmitted and stored digitally. People are reasonably concerned about
their privacy, even innocent conversations with their friends and loved ones, which
can be used maliciously against them. However, such worrying thoughts, as well as
countermeasure practices, are not precisely recent in our history. In fact, cryptog-
raphy - the art of “secret writing” has been around for millennia and probably not
too long after the invention of writing itself. It originated from the simple need
to conceal the meaning of messages only meant for intended receivers, primarily
if the communication is eavesdropped/intercepted. The (simplistic) cryptography
framework can be described in Figure 1.1.

In essence, the goal of (early-age) cryptography is to render the plaintext un-
intelligible by some mechanism (encryption), and only those who have the proper
method can unscramble the ciphertext to retrieve the actual plaintext (decryption).
The main antagonist in our scenario is called the adversary, which is abstract and
ambiguous despite being overly personified with names like Eve. It can be any-
thing: a nosy neighbor, a spy, an insecure or leaky channel, or even someone who
provides storage for our (hopefully) encrypted data. The bottom line is that they

Figure 1.1: A typical model of encryption and decryption in cryptography.
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all have an insatiable thirst for reading our messages and information.
In ancient times, it became a valuable tool to protect messages of military sig-

nificance. Indeed, the most well-known ancient cipher is perhaps Caesar’s cipher.
It replaces every letter in the plaintext with another one, some fixed number of
positions down the alphabet (shift). However, since the alphabet is not large, test-
ing all possible shifts (i.e., “key”) is not a bad strategy. Caesar’s cipher is a classic
example of substitution cipher. Fast-forwarding a few centuries, it was used more
generically and securely. In particular, one letter can be mapped to any other arbi-
trary one, making the space of possible keys much larger (e.g., 26! for the English
alphabet). However, a closer look reveals that the frequencies of the letters do not
change, and certain words are much more frequent (e.g., “the”). Thus, it is possible
to break such a cipher without trying all possible keys from such extra informa-
tion. Even the “seemingly” unbreakable Enigma was eventually decoded, which
played a crucial role in World War II. The history of cryptography has no shortage
of similarly broken cryptosystems. They all share common pitfalls: relying on a
cipher without properly analyzing or designing without sound scientific methods
or a security framework, or even worse: “security through obscurity”.

Knowing the (mal)practice of predecessors, cryptographers nowadays have to
play the role of the adversary. The goal is to discover weaknesses and oversights as
well as analyze the security of cryptographic constructions. This scientific practice
is called cryptanalysis, and it is complementary to cryptography to form cryptology.

In modern times, especially in the age of information, the applications of cryp-
tography extend to many more aspects of data protection than merely confidential-
ity. For example, the scope of cryptography also includes data integrity, authentic-
ity, secure communication, verification, secure multi-party computation, identity
protection, and so on. More familiar applications include (but are not limited
to) banking, anonymous voting, credit cards, and new-age financial movements
such as cryptocurrency. Hence, it is not an exaggeration to claim that cryptog-
raphy has become an indispensable tool and has penetrated every fabric of our
digital way of life. To adapt to the ever-growing list of needs, cryptography has
also been enriched and developed with equally suitable theories and techniques.
As a science, cryptography is closely related and lies in the intersection of many
other foundational scientific disciplines, such as mathematics, computer science,
and information theory.

This chapter provides a brief introduction to concepts in cryptology. First,
we learn about the general framework of (classical) cryptography, cryptanalysis,
and security notions. In particular, we present the motivation for the subfield of
post-quantum cryptography and code-based cryptography (our focus). In broad
strokes, we summarize the research area of code-based cryptography and its status
in the research community. We strive to make the thesis self-contained without
being too lengthy. Therefore, we will only cover notions that are relevant to our
publications. Moreover, the goal is to give general intuitions unless it is necessary
to present formulae and definitions. The readers will eventually encounter precise
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and rigorous formulations in the publications, and we provide many references to
well-written surveys/articles throughout the thesis.

1.1 Notations and Typesetting

In the first part of this thesis, we frequently use the following notations.

Algebra

We write Fq for a finite field of q elements, and Fn
q as the n-dimensional vector

space over Fq. We use bold letters such as a,A for vectors (row, unless mentioned
otherwise) and matrices, respectively. The coordinates of a vector are often denoted
by the corresponding non-capitalized characters. For example, a vector x of length
n is usually expressed as

x = (x1, x2, . . . , xn).

The transpose of a matrix is denoted by Aᵀ, and a matrix can be written as

A = (xᵀ1, x
ᵀ
2, . . . , x

ᵀ
n),

where xᵀi are its column vectors. The identity matrix of dimension n × n is In.
The vector addition, written as x+ y, is to be understood as the bit-wise addition.
In particular, it is the bit-wise XOR operation in F2. The dot product of x and y
is simply denoted by x · y.

The set of integers 1, . . . , n is denoted by [[1, n]]. For a vector x ∈ Fn
q , we call

xI its projection on the coordinates that belong to an index set I ∈ [[1, n]]. In
particular, x[`], ` ≤ n is the truncated vector of the first ` coordinates. Similarly,
A[`] is the submatrix that comprises the first ` rows of A.

Probability

Let x be a random variable, taking values from a set X , and χ be a probability
distribution on X . If x is sampled according to χ, we write

x
χ←− X,

or sometimes
x← χ,

if the set X is evident and the distribution χ is in our focus and interest. When x
is sampled uniformly at random, we use the notation

x
$←− X.
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Complexity

Below is a list of asymptotic complexity notations that occur in the thesis.

f(n) ∈ O(g(n)) |f(n)| ≤ k · g(n) for some positive k,
f(n) ∈ Ω(g(n)) |f(n)| ≥ k · g(n) for some positive k,

f(n) ∈ Θ(n) ` · g(n) ≤ |f(n)| ≤ k · g(n) for some positive `, k,
f(n) ∈ o(n) |f(n)| ≤ k · g(n) for every positive k.

We frequently use the statement “...in the order of ...” interchangeably with the
notation O.

1.2 Cryptography

Generally, we can categorize cryptosystems into the following classes of crypto-
graphic primitives. Note that in cryptographic applications, the technical descrip-
tion of a primitive can be convoluted, involving multiple-step protocols. More-
over, cryptography does not always revolve around exchanging plaintexts and ci-
phertexts. For instance, cryptography includes other crucial concepts such as key
distribution, digital signatures, zero-knowledge proofs, and so on. However, for
the sake of a simplistic presentation, we can safely assume that for our cryptosys-
tem, Alice and Bob are trying to communicate, and they have come up with a
clever encryption/decryption scheme (E,D) against a nosy adversary, Eve. The
pair (E,D) denotes a generic encrypting and decrypting function where E (resp.
D) takes a key and plaintext (resp. ciphertext) as input.

Symmetric cryptography Alice and Bob share an identical key K for encryp-
tion and decryption. Using the key K, Alice can encrypt the message (plaintext)
m by computing the ciphertext c = EK(m). Upon receiving, Bob decrypts by
computing m = DK(m) by the same key. Examples of symmetric primitives in
encryption are stream ciphers and block ciphers. In a stream cipher, the key can be
used to initiate a pseudorandom generator that produces a pseudorandom bit string
called keystream. The keystream is then added (XOR) to the plaintext to obfuscate
the message. Since the key is shared, the receiver can reproduce the same keystream
to retrieve the plaintext. Block ciphers, on the other hand, operate by encrypting
the plaintext block-wise. Due to the nature of stream ciphers, they introduce very
little data latency and can be implemented quite efficiently, which is suitable for
data-in-transit encryption, low-latency applications, or resource-constrained envi-
ronments. Block ciphers, despite being bulkier than stream ciphers, are even more
ubiquitous nowadays (e.g., AES, DES, Blowfish) and have many applications in
data storage, internet communication protocols...

Another case of symmetric primitives in this thesis is authentication, albeit
not for encryption purposes. In addition to the encryption module, other build-
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ing blocks are necessary for a cryptosystem. They come from other cryptogra-
phy objects such as Pseudorandom functions (PRFs), weak Pseudorandom functions
(wPRFs), or Pseudorandom number generators (PRNG) that facilitate key deriva-
tion, nonce, etc. Despite not being explicit, they are crucial to secure encryption
(e.g., a “weak” key might tell the adversary something). In Paper II, we come across
PRFs and wPRFs. Briefly speaking, PRFs are a family of efficiently computable
functions indexed by a “key-space”. Given all input and a random function of
the family, the output appears indistinguishable from uniform random distribu-
tion without knowing the key (that is, the chosen function). In the weak version,
wPRFs, a distinguisher can only observe pairs (input, output) for uniformly ran-
dom input. We will formulate these notions in later publications. For a compre-
hensive survey, we refer to [BR17a].

Asymmetric cryptography It is also known as Public-key Cryptography and in-
volves a pair of mathematically related keys (pub, sec). The public key pub is
available to everyone (including Eve), while the secret key sec is kept secret by,
e.g., Alice. Suppose Bob wants to communicate with Alice securely. Alice pro-
duces a key pair (pub, sec) and makes public pub. A message m is encrypted by
Bob with Epub(m). The secret key is then used to decrypt and retrieve the orig-
inal message as Dsec(Epub(m)). In contrast to symmetric primitives, Bob does
not need to know the secret key. The idea is that it is mathematically infeasible
(for Eve) to compute sec from pub. In other words, it is easy to decrypt with the
secret key and hard to do otherwise. Such a situation is called trapdoor one-way
function, which can be inspired by computationally hard mathematical problems.1
Two main problems for asymmetric cryptography before post-quantum cryptog-
raphy are the factoring (e.g., RSA [RSA78]) and discrete-log problems (e.g., Diffie-
Hellman key-exchange [DH76]). However, compared to symmetric cryptography,
functions arising from such problems can often be slow for many purposes. There-
fore, public-key cryptography can be used in hybrid cryptosystems to encrypt and
facilitate the key in a symmetric cipher.

Other than the above classes, there are other primitives that are outside the
scope of this thesis. Traditional key-based cryptography inherently carries many
nuances and intricacies in key generation and key management that we have glossed
over. In contrast, keyless cryptography, in particular cryptography hash function,
does not need an explicit key. Essentially, a hash function (efficiently) produces a
fixed-size “fingerprint” of (variable-length) data.

1.3 Security Notions

We have seen the types of cryptography primitives, but we have yet to address the
following questions:

1The existence of one-way functions is an open conjecture.
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Given a cryptosystem, what exactly do we mean by “secure”?

Even before that, we should discuss which system components are encompassed
by the security notions. Surprisingly, this is not exactly straightforward. As history
has shown, ancient cryptography designers and users often falsely trusted encryp-
tion schemes that were far from secure simply because not enough tinkering or
serious scrutiny was conducted on them. However, given enough time and anal-
ysis, reverse engineering would eventually be possible. It was not until 1883 that
Auguste Kerckhoffs, in his article, stated his famous principle, which has become
ever so integral for cryptography. The Kerckhoffs’ principle can be interpreted as
“The security of a system should only rely on the key”. In other words, when
designing a cryptosystem, one must assume that the adversary has a copy of the
device, and only the keys are kept secret. In modern cryptography, there are many
more nuances to this principle. For example, the standard in today’s encryption is
that the keys must also be sampled uniformly at random.

So, how do we quantify the security of a cryptosystem? Claude Shannon, in
1945, was the first person to formulate an answer rigorously. His ground-breaking
insight came with the introduction of information theory, which is crucial to cryp-
tography and many other disciplines, such as communication, information pro-
cessing, and so on. Shanon’s idea of security, called information-theoretic security,
or colloquially unconditional security can be summarized in the following.

Unconditional Security For a cryptosystem to achieve unconditional security
(information-theoretic security or perfect secrecy), it states that

A ciphertext should not reveal any additional information about the plain-
text.

More specifically, it means that an adversary, even with unlimited computing
power, cannot do better than guessing the plaintext among all possible ones af-
ter receiving the ciphertext.

A classic example defining the “security game” in many cryptography text-
books is such that: Given two messages m0,m1 and b ∈ {0, 1}. Assume we
choose b and a key K at random and encrypt mb with a perfectly secure encryp-
tion scheme (E,D), then the probability that an adversary guesses b correctly after
seeing the ciphertext EK(mb) is no greater than 1/2.

A notable cipher that achieved unconditional security is the Vernam Cipher,
a.k.a. the one-time pad (OTP): to encrypt a length-k message, we need a length-k
key. In addition, it must hold

• The keys have to be sampled uniformly at random.

• The same key is never to be used twice.
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However, this is infeasible with the abundance of information/communication
going on nowadays. For instance, users will eventually run out of ideas for new
passwords and re-use their keys, which defeats the purpose of perfect secrecy. His-
torically, the one-time pad was employed when secrecy is paramount (e.g., military
and espionage documents), and it is still used today when appropriate (e.g., OTP
for bank log-in). Other examples of cryptosystems that achieve unconditional
security are Shamir’s secret sharing scheme [Sha79], or secure multi-party compu-
tation. To have more usability, cryptographers turn to more relaxed notions of
secrecy.

Instead of striving for perfect secrecy, we can be satisfied with an encryption
scheme as long as it takes a really long time to break it. For example, if the best
algorithm takes 2256 operations to break an encryption scheme, then for all intents
and purposes, one might as well employ such a scheme. We say that a cryptosystem
has t-bit security if the best attack is comparable to an exhaustive search over t
bits.2 In essence, we recognize the fact that an adversary might have enormous
computing capability, but the effort might be so great that he/she might as well
guess it.

With this notion, we can discuss the security of a cryptosystem in quantifiable
senses, such as operations (time) and data (space) complexity. Categorically, we
speak of exponential, sub-exponential, and polynomial complexity. We interchange-
ably use “hard”, as in exponential time, and “efficient”, as in polynomial time. It
suffices to remember that exponential-time algorithms are much more expensive
than polynomial-time ones, at least asymptotically. However, we must tread care-
fully with these notions. Asymptotic complexity can be misleading and often says
little about concrete complexity (i.e., empirical evidence of a cryptosystem). For
instance, a very slow-growing exponential function can be smaller than a polyno-
mial function in certain input regions, which means that, for cryptographically
relevant parameters, a hard problem (exponential complexity) is not always more
costly to solve than an easy problem (polynomial complexity).

Empirical Security In contrast to unconditional security, which is secure under
any circumstance, this type of security is only “as good as” the most efficient attack.
The idea is that confidence in a cipher is accreted after a reasonably long time,
especially under the intense scrutiny of many cryptanalysis attempts. However, it
is entirely possible that newer attacks can be found. However, there is no formal
proof (“guarantee”) for an empirically secured cryptosystem, only a strong track
record of its resistance against attackers. The AES block cipher is a candidate for
this category.

2More formally, we can relate to the “guessing game” above: Any algorithm using at most 2t

operations cannot guess b correctly with a probability greater than 1/2 + 2−t.
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Provable security On the other hand, this type refers to any security that can
be proved. However, the catch is that it only works if the underlying assump-
tion is valid. Usually, it involves reducing the task of breaking a system to solving
a computationally hard problem.3 The assumption is that problems chosen can-
not be solved efficiently (i.e., in polynomial time). Formal techniques for proof
of reduction have been developed to ensure soundness when establishing security.
However, whether a problem is (unconditionally) hard is unknown to us, which
calls for empirical evidence for a problem. Thus, to prevent the entire collapse
of hardness-based security, we generally choose the most well-understood prob-
lem that is widely regarded as really hard. Certain problems (e.g.,NP-complete)
for which, if an efficient attack is found, would lead to significant implications in
complexity theory. Therefore, they are considered very safe bets.

1.4 Cryptanalysis

Besides constructing cryptographic primitives, it is equally important to scrutinize
them with the best attacks. The goal is not to undermine but to understand and
justify whatever security claims are made about a design. That is, we cannot rely
on the enemy to discover a system weakness first (and usually when it is too late).
Designers and advocates for a cryptosystem bear as much responsibility to inves-
tigate, under scrutiny from various angles, all the potential exploitations. This is
the only way we can ensure confidence, and it is, in fact, at the core of any other
intellectual science. This is the gist of cryptanalysis. Furthermore, we can only
discuss the security of a cryptosystem in the context of an adversary. This was al-
ready hinted at when we discussed the security notions (e.g., we go from unlimited
to reasonably large computational power). With this in mind, we mathematically
model an adversary and “give” them as much power as one reasonably assumes. As
discussed before, it does not matter who the adversary is (although we often give
the name “Eve”). What is important to cryptography practitioners is its goals and
capabilities (or power) when attacking a cryptosystem in question.

Types of attacks for encryption schemes

Generally, the goal of an adversary can be put into the following categories.

Key recovery The adversary attempts to recover the secret key.

Message recovery The adversary attempts to recover a specific message.
3Note that there are many “hard” math problems, but we are focusing on cryptography-relevant

ones.
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Distinguishing attack The adversary attempts to distinguish whether a piece of
information is random or generated by a cipher.

We can see a clear hierarchy among these attack goals. Trivially, an adversary
that can successfully recover the secret key can launch a message recovery attack.
Similarly, a message recovery attack implies a distinguishing attack. Therefore,
resisting distinguishing attacks is a stronger security requirement than, e.g., key-
recovery attacks.

Adversarial Power

Similarly, we describe how the adversary interacts with our cryptosystems, which
heavily impacts the possibility of the above attacks.

Ciphertext-only attack (COA) The adversary is assumed to have access to arbi-
trary ciphertexts. This is the weakest adversarial assumption, corresponding to the
weakest notion of security.

Chosen-plaintext attack (CPA) The adversary can choose plaintexts and observe
the corresponding ciphertexts. A stronger notion of this attack is adaptive chosen-
plaintext attack, where the adversary can perform a series of adaptively chosen
plaintexts to be encrypted. In this sense, the attacker may retrieve some infor-
mation from each encryption and can use it for the next plaintext, attempting to
reveal even more information.

Chosen-ciphertext attack (CCA) The adversary can choose ciphertexts and ob-
serve the corresponding plaintexts. Similarly toCPA, we also have a boosted, adap-
tive version of CCA, called CCA2, where the adversary can adaptively choose the
ciphertexts to be decrypted.

We have a similar situation with the attack goals. A known-ciphertext attack
refers to the weakest adversary, and a chosen-ciphertext attack is the strongest ad-
versary. In combination, we can strive for the highest security guarantee, called
IND-CCA2, that is indistinguishability under adaptive chosen-ciphertext attack.

In the publications, we will come across differently named notions of adver-
sary that are more specific to the cryptosystem at hand. However, they can all be
traced back to the above notions. For example, for an authentication system, we
discuss attacks in passive, active, or Man-in-the-Middle models. These models em-
phasize the adaptive nature of the adversary. For instance, it may only “passively”
observe the ciphertext, or it can adaptively choose a specific plaintext and observe
the encryption, or even alter the communication between parties and observe the
reaction. Another example is the differential attack that we perform on wPRFs,
where the input (plaintexts) are chosen to be different in a strategic manner so that
the output (ciphertexts) can reveal beneficial information for an attacker. Such an
attack falls under the category of CPA.
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The above notions cover the cryptanalysis we present in this thesis. However,
they are by no means comprehensive. For instance, we often brush over the brute-
force attack that is usually associated with exhaustive search, i.e., the adversary
disregards every exploitable underlying structure of a cryptosystem. Such an at-
tack can provide a useful (but crude) upper bound on the computational security
of a cryptosystem. On the other hand, we also encounter more sophisticated at-
tackers that reflect the advancement in technology, such as side-channel attacks.
In this scenario, the adversary is assumed to have access to “leaks” (power con-
sumption, timing, electromagnetic...) from physical devices implementing our
cryptosystems. Such leaks represent additional information that can be used to
speed up the above attack or even devise a novel attack strategy.

1.5 Post-quantum cryptography

1.5.1 The quantum threat

Given the mathematical richness, more cryptographers have leaned towards prov-
able security, and the field has been rapidly expanding. Instead of frustrating gen-
erations of mathematicians, stubborn problems reveal the untapped potential to
construct cryptographic primitives, which are ever so diversified and sometimes
hard to keep track of. However, hardness assumptions are not impervious to the
test of time and technology.

In the pre-quantum era, we often relied on the factoring and discrete-log prob-
lems. They are crucial to cryptography because they underpin the security of sev-
eral widely used applications. RSA, a cornerstone of secure online transactions
and digital signatures, relies on the difficulty of factoring large numbers. Simi-
larly, the Diffie-Hellman key exchange is vital for establishing secure communica-
tion channels (like HTTPS). Its security ensures that even if an attacker intercepts
the exchanged messages, they cannot easily determine the shared secret key. Be-
yond these, variations like Elliptic curve Cryptography are important for resource-
constrained devices like smartphones, securing everything from messaging apps
to cryptocurrency transactions. In essence, the computational hardness of these
problems is what makes our digital world secure.

Quantum computers, introduced by Manin [Man80] and Feynman [Fey82],
can use quantum mechanics to perform computations. The topic has become even
more relevant in cryptography with the prospect of using them to tackle (some)
hard problems faster than classical computers. Shor [Sho94], in his seminal work,
introduced his trailblazing quantum algorithms that solve the problems mentioned
above in polynomial time. To a lesser extent, in symmetric cryptography, Grover’s
algorithm [Gro96], a.k.a. quantum search, is another quantum algorithm that
can be generically applied to cryptosystems. Fundamentally, it reduces the search
time in an unsorted database fromO(N) toO(

√
N). A straightforward example

would be finding the inversion of a hash function or a brute-force attack on ci-
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phers. It effectively forces us to double the length of the key for the same security
guarantee.

Although quantum computers, even today, have not been commercially avail-
able, the mere possibility is sufficient to breed concerning thoughts and specu-
lations (e.g., “store now, decrypt later” attack for data that needs to stay secret
in a long time frame). After all, those hard problems have become ubiquitous
and trustworthy in our digital lives. The dire consequences cannot be overesti-
mated if we are not well prepared. Therefore, cryptographers have begun the pil-
grimage in the search for quantum-safe cryptographic algorithms. More impor-
tantly, the replacements must also be practical; that is, they can be implemented
on classical computers and cater to commercial needs. This research field is called
Post-quantum Cryptography. It should be noted that even if (practical) quantum
computers are only our preoccupation with a distant possibility, cryptography still
greatly benefits. As a science, the quantum threat is a profound and compelling
motivation for cryptographers to explore and bring forward novel, more secure
candidates that only strengthen the confidence and diversity in our cryptography
toolbox.

1.5.2 Post-quantum hardness assumptions

Over the years, we have seen the rapid growth of several branches in Post-quantum
Cryptography. Culminating in 2016, NIST initialized the process of standardiz-
ing post-quantum cryptography (PQC) algorithms. This initiative aims to iden-
tify and standardize cryptographic algorithms that are secure against both classi-
cal and quantum computers, ensuring the long-term security of sensitive data in
the future when powerful quantum computers may become a reality. The stan-
dardization process involved a public competition in which experts submitted and
evaluated cryptographic algorithms to find the best proposals for standardization.
This rigorous process is crucial for establishing robust and reliable cryptographic
standards that protect our information in the post-quantum era. The applications
were diverse and can be grouped into the following.

• Code-based Cryptography

• Lattice-based Cryptography

• Multi-variate Cryptography

• Hash-based Cryptography

• Isogeny-based Cryptography

In this thesis, we focus only on code-based cryptosystems, those that rely on
hard problems in coding theory, such as Syndrome Decoding Problem (SDP), Code
Equivalence Problem, or Learning Parity withNoise Problem (LPN). Notably,McEliece
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[Ber+20], BIKE [Ara+23], and HQC [Mel+23a] are representatives of code-based
cryptography that persist in later rounds of the standardization process (round 4).
In March 2025, it was announced that HQC is among the algorithms selected to
be standardized in the future, highlighting the importance of code-based cryp-
tography. The computationally hard problem underpinning the security of the
aforementioned schemes is the SDP. For a more complete survey, we direct the
readers to [Ber09].

Lattice-based cryptography enjoyed popularity, featuring in many selected al-
gorithms to be standardized (Crystals-Kyber, Crystals-Dilithium, and Falcon).
However, code-based cryptography remains an active field of research because of
its reliability and understanding by the research community. At the time of writ-
ing, another call for Post-quantum Additional Signature Scheme is ongoing, where
we are witnessing a plethora of code-based candidates, such as [Bal+24a; Bal+24b;
Ban+23]. This can be seen as an attempt to diversify our post-quantum cryptogra-
phy profile. The new wave of code-based proposals sees the introduction of many
novel coding theory problems that are promising in both security and efficiency.
In particular, the last two publications focus on the Restricted Syndrome Decoding
problem (RSDP), pioneered by [Bal+20a].

1.6 Motivation of the thesis.

Beyond the code-based cryptosystems like PKE, KEMs, or digital signature schemes
in the NIST processes, there are many other useful code-based applications. For
instance, we will see coding theory in ciphers, wPRFs constructions, or lightweight
authentication protocols. Although their security foundation is reliable, we rec-
ognize that they are not well understood, and novel designs can be vulnerable to
special attacks. For example, implementation and design choices significantly and
negatively impact security. In other words, we are invested in the empirical secu-
rity aspect of cryptosystems. One key aspect of this part of the thesis is the use of
several other techniques in conjunction with traditional cryptanalysis algorithms
(BKW or Information-Set Decoding (ISD)). Such techniques aim to exploit design
weaknesses that are often overlooked. Therefore, in the first part of the publica-
tion, we explore possible ways to attack such constructions to improve the security
estimate and confidence for various code-based primitives.

Similarly, the popularity of several new problems (e.g., RSDP) in coding the-
ory also brings interesting challenges. Although promising in terms of efficiency,
the settings in which they are employed are limited. Hence, it can be hard to have
a complete picture of their concrete hardness. To illustrate, we have a good idea of
the traditional SDP due to its extensive and reliable track record of cryptanalysis,
which provides different optimal algorithms for various settings. The same cannot
be said for RSDP. Hence, the last part of the thesis is devoted to adapting RSDP
to well-known designs, giving rise to an efficient, lightweight authentication pro-
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tocol, and proposing a new cryptanalytic approach to this uncharted territory of
the RSDP setting.

Somewhat separated, Paper IV deals with the “hardcore” SDP problem. As
noted above, it is quite challenging to develop a breakthrough in solving SDP.
However, we are curious to explore other approaches, such as applying sieving
ideas in lattice-based cryptography, to incorporate into the framework of ISD al-
gorithms.

1.7 Outline

The thesis consists of two parts. Part I, including this chapter, is the overview of the
research field. Following is Chapter 2, where we review the technical preliminaries
of code-based cryptography. In particular, we will see, e.g., coding theory back-
ground, computationally hard problems in coding theory, their state-of-the-art
cryptanalysis, and a few notable code-based candidates in the NIST post-quantum
cryptography process. Chapter 3 describes an interesting research subfield of code-
based cryptography called Learning Parity with Noise, and its role in lightweight
cryptography. Finally, we conclude the first part of the thesis with a summary
of the thesis contributions and conclusions in Chapter 4. Part II consists of all
publications in the thesis.





Code-based Cryptography

Erroneous messages and data have always been inevitable in communications. The
extent to which the intended information is corrupted varies and can be due to
multiple reasons. The most common examples are that the medium (in which
the communications are carried out) is disturbed, such as satellite communica-
tion, physical data storages are damaged, transmitted signals are interfered with,
and so on. Therefore, robust error-correcting methods are vital in such scenarios.
The (rather ingenious) principle is to add redundancy, or encoding the data before
transmission, and the receivers will reconstruct, or decode, to obtain the error-
free information. However, this comes at the cost of lowering the transmission
throughput as we need more symbols per information bit in our communication.

Assume we have a message of k binary symbols, i.e., an element Fk
2 . A linear

code is simply a subspace of Fn
2 . A linear code is often represented by its generator

matrix G ∈ Fk×n
2 . That is, it will map a message m ∈ Fk

2 into a codeword
c = mG. After transmission through a noisy channel, the receiver might obtain
an erroneous copy y = c + e. The task on the receiving end is to recover m. We
often describe the channel in a simplistic and probabilistic manner, e.g., Binary
Symmetric Channel with parameter 0 < ε < 1. This medium can flip a bit with
probability ε. Due to this nature, the principle of decoding is to look for the
most likely codeword. That is, we look for a codeword c ∈ C that maximizes the
probability

Pr[y received |c sent ].

A decoding method that solves the above maximization problem is called
Maximum-likelihood decoder (ML). We can reasonably assume that ε is quite small.
In other words, the error e only has a few bits set to 1 on average. Hence, we in-
tuitively look for the “closest” codeword in C to y and turn the ML decoder into
a Minimum-distance decoder (MD), for which we provide a mathematical formu-
lation in this chapter.

In error detection and error correction, coding theory provides the foundation
for constructing efficient codes, e.g., reasonable redundancy and efficient retrieval
of information. In other words, we are looking for robust codes that provide robust
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encoding/decoding of the information. Fortunately, there are families of codes for
which we have efficient decoding algorithms. Codes that use special algebraic
structures are, e.g., the Reed-Solomon codes [RS60], or its generalization Goppa
codes [Gop81]. On the other hand, we also have probabilistic-decoding codes
such as convolutional codes [Eli55], LDPC [Gal62], and so on.

Interestingly, the same idea can be applied to cryptography. By deliberately
perturbing a message (e.g.), only the intended receiver with an efficient decoding
algorithm can correctly retrieve it. However, if the structure of the code is known
to an adversary, he or she is equally capable of reading the plaintext. Therefore, in
code-based cryptography, it is usually the case that characteristics (e.g., generator
matrix or parity-check matrix) of the code are further obfuscated, making the
code appear indistinguishable from a randomly generated one. In that sense, an
adversary without trapdoor knowledge might as well attempt to decode a random
linear code. Fortunately, as we will see, it is an intractable problem.

In this chapter, we will go through the coding theory and related hard prob-
lems that allow code-based cryptography to be one of the fundamental pillars of
post-quantum cryptography. We briefly look at the history of cryptanalysis from
which we draw resounding confidence in code-based cryptosystems. In addition,
given its history and extensive research, many variants of the original decoding
problem have been proposed to further expand the width of applications where
code-based cryptography can provide solutions.

2.1 Coding theory

Let Fq be a finite field and n, k be integers.

Definition 1 (Linear codes). A [n, k]q linear code, denoted by C, is defined as a k-
dimensional linear subspace of Fn

q . A vector element c of a code is called a codeword.

Besides its dimension and length, a [n, k]q code C is further characterized by
its code rate R := k/n and redundancy n− k. Equivalently, we can say that one
transmits 1/R symbols per symbol of information. Since it is a linear subspace of
Fn
q , we can succinctly represent a code by its generator matrix, often denoted by G

and
C = {mᵀG|m ∈ Fk

q}.

Representations of a code In general, there are many generator matrices that
describe the same code C. However, one particularly useful form is the the sys-
tematic form, that is, if G =

(
Ik A

)
for some A ∈ Fk×(n−k)

q . In this case, we
observe that the information is now stored on the first k symbols of the codeword.
Analogously, we can also define C via its dual code, denoted by Cᵀ, of which the
generator matrix H ∈ F(n−k)×n

q is defined as the kernel of G. It follows that
∀c ∈ C,Hcᵀ = 0 and H is usually referred as a parity-check matrix of C. Let
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x be a vector in Fn
q , the syndome of x w.r.t the code C with parity-check matrix

H is defined as s = Hcᵀ. Moreover, if G is given in its systematic form, then
H =

(
In−k Aᵀ

)
. Evidently, all codewords of C have syndrome 0.

InFn
q , we can define the well-knownHamming weight, written asωH(·), as the

number of nonzero symbols of a vector. We then straightforwardly define Ham-
ming distance between two vectors as dH(x, y) = ωH(x− y). Essential for a code,
especially for many hard coding problems, is a special property called minimum
distance.

Definition 2 (Minimum distance). Let C be a code. The minimum distance of C is

d := min
x,y∈C
x 6=y

dH(x, y) = min
x∈C
x6=0

ωH(x).

The minimum distance d is a crucial property of a code. In particular, a code
C with a minimum distance d can be uniquely corrected up to δ = bd−1

2 c. This
upper threshold is called the error-correction capability of C, and this quantity has
significant implications for both communication and cryptographic purposes. In
communication, we understandably want our code to have a large minimum dis-
tance d without adding too much redundancy (i.e., high code rate), which is often
a trade-off scenario. This relation between the minimum distance and the code
rate can be seen in the next definition.

Definition 3 (Gilbert-Vashamov bound). Let n, k and d be positive integers such
that

d∑
i=0

(
n

i

)
(q − 1)i ≤ qn−k.

Then, there exists a [n, k]q linear code with minimum distance d. The largest d that
satisfies the above inequality is often referred to as the Gilbert-Vashamov distance dGV .

We call a [n, k]q linear code random if it does not have any particular mathe-
matical structure. A random linear code has a high probability of having a “good”
minimum distance, close to dGV . However, the proof is not constructive. There-
fore, constructing a specific (and hopefully useful) code to achieve such a distance
is not an easy task. In addition to coding theory, dGV is pivotal in studying the
hardness of cryptographically relevant coding problems.

2.1.1 Coding Problems

We visit the coding problems that lie at the heart of code-based cryptography and
discuss their hardness.

Problem 1 (Decoding Problem (DP)). Given a [n, k]q code C, and t ≤ n be a
positive integer. Let y = c+ e ∈ Fn

q , for some c ∈ C, and ωH(e) = t. Find e.
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Note that Problem 1 can be defined with different metrics other than the
Hamming weight. However, the goal of error correction was originally to find the
closest codewords, as in the corrupted message y differs by the smallest number of
coordinates from the original c. Therefore, Hamming weight is by far the most
popular setting to be considered.

Problem 2 (Computational Syndrome Decoding Problem (SDP)). Given a [n, k]q
code C with the parity-check matrix H, and t ≤ n be a positive integer. Let y ∈ Fn

q ,
and s = Hyᵀ . Find e such that ωH(e) = t and Heᵀ = s.

The decisional version of SDP is to answer if any of such e exists. It was
shown that the decisional and computational variants are polynomially equiva-
lent [AB09] and the decisional problem is NP-complete [BMT78b], in the worst
case. Therefore, throughout this thesis, the reader may encounter statements in
the nature of the SDP being NP-complete, despite this notion only applying to
decision problems. In addition, it can be readily checked that the two above prob-
lems are again equivalent. Indeed, suppose G ∈ Fk×n

q is a generator matrix of C,
we can readily produce a parity-check matrix H. Since y = c + e, it follows that
Hyᵀ = Hcᵀ +Heᵀ = Heᵀ. Therefore, if a weight-t error e can be found with its
syndrome s = Hyᵀ, it is also a solution to the Decoding Problem.

However, it should be clear that given an SDP instance, its hardness depends
on several factors (worst case vs average case). For instance, does the code have a
special structure that can be exploited, or does the target Hamming weight t some-
how make the problem easier? As we briefly discussed error-correcting codes, there
are codes for which, up to some Hamming weight t, we do have efficient decoding
algorithms. Such codes are fundamental to cryptography. After all, we still need
to reveal the original message. However, for cryptography, in particular cryptanal-
ysis, we ensure that the parity-check matrix does not reveal any information about
the underlying code C (except for the intended receiver). Therefore, in the next
section, we are interested in generic decoding algorithms. That is, we are challenged
with the task of decoding random input codes. The hardness of such a problem
now relies on the relation between t and the Gilbert-Vashamov distance dGV . The
research direction of generic decoding, called Information-set Decoding, has been
fruitful over the years [Pra62; Leo88; Dum91; Ste88; FS09; BLP08; MMT11a;
Bec+12a; BM17b; BM18]. Although we have identified the error rate region
where SDP is easier, for a well-chosen t (e.g.,q = 2, and t/n < (1 − k/n)), the
best SDP-solving algorithm is still exponential.

2.2 Information-set Decoding Algorithms

In this section, we briefly go through the code-based cryptanalysis efforts over the
years. Obviously, a brute-force attack that requires an order of

(
n
t

)
operations is to

be avoided. However, with some simple algebra, we encounter the first non-trivial
improvement in solving SDP called Prange Information-set Decoding algorithm
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[Pra62]. For the sake of simplicity, from now on, we will mainly be concerned with
the binary case q = 2 (unless otherwise mentioned), and we omit the transposition
symbols when they are clear from the context.

Prange ISD algorithm

Definition 4 (Information set). Let C be a [n, k]q code with a generator matrix G.
A subset I ⊂ [[1, n]] is called an information set of C if the collection of columns of G,
indexed by I, is linearly independent.

Let a SDP instance be given by a parity-check matrix H ∈ F(n−k)×n
2 , s ∈

Fn−k
2 , and a positive integer t ≤ n. Essentially, the Prange algorithm chooses an

information set I ⊂ [[1, n]] of size k and places a bet that the projection of the
error vector e onto indices in I is all zero. To detect if this is indeed the case, we
send these columns to the left of the matrix and perform a Gaussian elimination.
Equivalently, we can represent the action by a permutation P and transform the
problem into

He = HPP−1e = He′ = s,

where the first k column of H are independent (information set). Gaussian elim-
ination yields an invertible Q ∈ F(n−k)×(n−k)

2 and QHe′ = Qs = s′ . We can
rewrite the equation as (

H′ In−k

)
e′ = s′. (2.1)

Suppose we have made a correct bet with P, that is, we have made the first k
coordinates of e all 0. Then, we have e′ = (e1, e2) = (0, e2) ∈ Fk

2 × Fn−k
2 , and

it must hold that ωH(e2) = ωH(s′) = t. If the weight check of e2 is not fulfilled,
we go back and choose another information set.

As we can see from Algorithm 2.1, the workload we have to perform for each
iteration (permutation) is not computationally expensive. Therefore, the com-
plexity of the algorithm is primarily dictated by the (inverse) success probability
of each iteration, factored by the cost for each iteration.

For each randomly selected permutation to achieve the correct weight distri-
bution, we need to precisely choose k out of n coordinates for which the error
vector is 0. Therefore, the success probability of each permutation for the Prange
ISD, called Priter-PR, can be expressed as

Priter-PR =

(
n−k
t

)(
n
t

) . (2.2)

Gaussian Elimination We now discuss the Gaussian elimination with more nu-
ances. First, in the algorithm description, we note that there is an innocuous-
looking loop before the enumeration steps that we have glossed over, indicating



22 Code-based Cryptography

Algorithm 2.1: Prange ISD

Input: Parity-check matrix H ∈ F(n−k)×n
2 , syndrome s ∈ Fn−k

2 , and an
integer t ≤ n

Output: A vector e ∈ Fn
2 , ωH(e) = t, and He = s.

1 while true do
2 repeat
3 P← a random permutation ;
4 H← HP;
5 until The last n− k columns of H is full rank;
6

(
H′ In−k

)
← systematic form of H with Q ∈ F(n−k)×(n−k)

2 ;
7 s′ = Qs;
8 if ωH(s′) = t then

Return: P−1(01×k, s′)

that the transformed matrix is not always admissible. Indeed, there is no guar-
antee that the last n − k columns of H̄ are of full rank. There is, in fact, only
roughly a 1/4 chance for such a matrix, adding a factor 4 to the probability of
an iteration. Canteaut and Chabaud [CC98] suggested that it is not necessary to
pick an entirely different information set. It suffices to change one index to go
to another permutation. This idea is later generalized by [BLP08], where we can
simultaneously change more indices. However, we have introduced dependencies
between iterations, yielding a different probability distribution. Such a scenario
can be modeled by Markov chains, and more detailed estimates can be derived.
We refer the readers to more in-depth analysis [CC98; BLP08; Pet10]. In our
brief analysis, we disregard these techniques as they are outside the scope of the
thesis.

In literature, the standard cost of Gaussian elimination is set as (n−k) ·k2/2.
However, there is no shortage of improvements for this step, including the pivot
reuse techniques above. Our goal is to have a succinct overview of the ISD algo-
rithms, and for all the involved publications, we chiefly investigate the parameter
regimes where Gaussian elimination does not have a significant impact on our
complexity estimation. Therefore, we (naively) abuse the notation by universally
calling the cost of Gaussian Elimination, including transforming s to s′, in all
algorithms that follow by CGauss.

Moreover, for “simple” operations such as XOR-ing vectors and checking the
Hamming weight, we often conflate with the notationW - the work factor to per-
form such operations without getting too deep into practical implementations. 1

When comparing algorithms, especially for concrete performances, it is, however,
1They are often n, up to a small constant.
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crucial to unify them under the same framework. We refer the readers to more
thorough analyses, such as [Bal+19; Lön14; Meu13].

Theorem 1. The complexity of Prange ISD, called CISD-PR, is

CISD-PR = min
p
{Pr−1

iter-PR · Citer-PR} (2.3)

where Priter-PR is given by Equation (2.2), and

Citer-PR = CGauss +Wsol.

The second term, Wsol, of Citer-PR represents the work factor for checking the
weight and reconstructing the solution.

Lee-Brickell ISD algorithm

We can observe that there are many SDP instances for which Prange ISD does not
provide an optimal approach. Indeed, when the code rate is high, as in McEliece
whereR ≈ 1/2 and the error rate is in the order of logn, it is exceedingly unlikely
that one comes by a good permutation P. In other words, the success probability is
heavily penalized. Therefore, Lee and Brickell [LB88] generalized Prange’s simple
idea by allowing some small weight p that can be present in e1. Consequently, we
have to enumerate all

(
k
p

)
candidates of e1, and check for

ωH(H′e1 + s′) = t− p. (2.4)

Theorem 2. The complexity of the Lee-Brickell ISD algorithm, denoted by CISD-LB,
is given as

CISD-LB = P−1
iter-LB · Citer-LB, (2.5)

where

Piter-LB =

(
k
p

)(
n−k
t−p

)(
n
t

) ,

and
Citer-LB = CGauss +

(
k

p

)
W,

whereW denotes the work factor needed for each weight-p vector in Equation
(2.4). Therefore, the trade-off proposed by Lee-Brickell is that we can reduce the
number of iterations needed at the cost of more computations per iteration.

Leon ISD algorithm

At its core, Lee-Brickell ISD tries to test all possible candidates for each iteration.
As one might expect, the majority of them will not yield a solution for Equation
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(2.4). Therefore, Leon [Leo88] proposed a preliminary check for the candidates
that drastically decreases the amount of “obsolete” work for each inner iteration.
In particular, one can further condition that the first ` coordinates of s′ are only
constituted by e1. In other words, there is a length-` “strip” of 0 at the beginning
of e2. On average, the expected number of candidates to pass this check is

(
k
p

)
/2`.

However, this does not come for free because the success probability, denoted by
Priter-Le for each iteration, is slightly worse as

Priter-Le =

(
k
p

)(
n−k−`
t−p

)(
n
t

) .

We skip the complexity theorem for the Leon ISD algorithm as it is similar to
Lee-Brickell ISD with an extra parameter ` to be optimized.

Remark 1. Up until this point, we can implement the above algorithms in a memory-
efficient fashion. In particular, besides the matrices, it is not necessary to store all the
weight-p candidates e1. Indeed, a simple function that maps an integer to a specific
configuration of p ones often suffices. Moreover, the above algorithms are sometimes
referred to in the literature as permutation-based ISDs, as the number of iterations is
often the overwhelming factor. However, the following algorithm marks the beginning
of enumeration-based ISDs, which all employ exponential spatial complexity. As we
will see, many enumerating techniques will be involved for each iteration to construct
a solution efficiently. Over time, the scale was tipped more towards the cost of each
iteration.

Stern/Dumer ISD algorithm: Collision Decoding

In contrast to Lee-Brickell, Stern/Dumer [Ste88; Dum91] forcibly construct e1
vectors that satisfy H′

[`]e1 = s′[`] via a Meet-in-the-Middle approach. In particular,

we can split up e1 = e(0)1 + e(0)2 where ωH(e(0)i ) = p/2. To be more precise,
we distribute p set bits into disjointed partitions of size k/2, containing p/2 bits
each. To ease the notation, one might assume that e(0)1 = (∗, 01× k

2
), and e(0)2 =

(01× k
2
, ∗), where ∗ represents a length-k/2 vector of weight p/2. The equation

for e1 becomes
H′

[`]e
(0)
1 + s′[`] = H′

[`]e
(0)
2 . (2.6)

To realize the equation, we can construct two lists as follows.

L1 = {
(
e(0)1 ,H′

[`]e
(0)
1 + s′[`]

)
: ωH(e(0)1 ) =

p

2
}

L2 = {
(
e(0)2 ,H′

[`]e
(0)
2

)
: ωH(e(0)2 ) =

p

2
}.
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One can use the “syndrome” for e(0)i as the “key” in the lists, and the collisions
between the two lists can be found efficiently. The size of each list is |Li| =

(k/2
p/2

)
,

the expected number of collisions between the two lists is |Li|2/2`.

Theorem 3. The complexity of the Lee-Brickell ISD algorithm, denoted by CISD-SD,
is given as

CISD-SD = min
p,`
{Pr−1

iter-SD · Citer-SD}, (2.7)

where

Priter-SD =

(k/2
p/2

)2(n−k
t−p

)(
n
t

) ,

Citer-SD = CGauss + 2 ·
(
k/2

p/2

)
W +

(k/2
p/2

)2
2`

Wsol,

and W,Wsol denote the work factor for each vector in the lists (computing the syn-
drome) and checking for solutions, respectively.

Remark 2. Compared to the Lee-Brickell ISD algorithm, the Stern/Dumer ISD vari-
ant essentially sees a quadratic decrease in the cost of each iteration while the success
probability is slightly worse. Moreover, when enumerating L1 and L2, we only have
to materialize one list. Therefore, the spatial complexity of Stern ISD is O(

(k/2
p/2

)
).

Improvement from Finiasz-Sendrier framework

To improve the success probability for each iteration, Finiasz-Sendrier [FS09] pro-
posed a simple tweak in the setup of all previous ISD algorithms. In essence,
instead of a full Gaussian elimination, Finiasz-Sendrier used a partial Gaussian
elimination with parameter `, which yields(

H1 0
H2 In−k−`

)(
e1
e2

)
=
(
s1 s2

)
. (2.8)

Note that, contrary to Equation (2.1), the dimensions of blocks and vectors have
been changed. In particular, H1 ∈ F`×(k+`)

2 ,H2 ∈ F(n−k−`)×(k+`)
2 , e1 ∈ Fk+`

2 ,
e2 ∈ Fn−k−`

2 , and s1 ∈ F`
2, s2 ∈ Fn−k−`

2 . As a result, we have the identities

H1e1 = s1, (2.9)
H2e1 + e2 = s2. (2.10)

However, the benefit of this simple maneuver is twofold. Firstly, we remove
the condition for a strip of zeros in the error vectors, and secondly, we allow p error
bits to be allocated on k+` positions. Overall, they increase the success probability
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of each iteration. Again, this is no free lunch as we also have to enumerate slightly
more vectors, from

(k/2
p/2

)
to
((k+`)/2

p/2

)
.

Ball-collision decoding: A generalization of Stern.

There is yet another way to improve the Stern ISD algorithm. Later, Bernstein
et al. [BLP11] generalized collision decoding by allowing some weight p′ in the
previous `-strip of zeroes in the solution. For this length-` error subvector, de-
ploying the same strategy for e1, we can construct using e(1)1 = (∗, 01×`/2) and
e(1)2 = (01×`/2, ∗), where ∗ represents a vector in F`/2

2 of Hamming weight p′/2.
We then enumerate the triplets (still using the “syndrome” as the key)

L1 = {
(
e(0)1 , e(1)1 ,H′

[`]e
(0)
1 + e(1)1 + s′[`]

)
: ωH(e(0)1 ) =

p

2
, ωH(e(1)1 ) =

p′

2
},

L2 = {
(
e(0)2 , e(1)2 ,H′

[`]e
(0)
2 + e(1)2

)
: ωH(e(0)2 ) =

p

2
, ωH(e(1)2 ) =

p′

2
}.

Similarly, a collision between the two lists is checked if they produce a Ham-
ming weight of t− p− p′ in the remaining part of the error e2. For better visual-
ization, a solution found by the ball-collision decoding algorithm has the form:

e(1)1 e(1)2e(0)1 e(0)2
e2

p
2

p
2

p′

2
p′

2
t− p− p′

In conclusion, this generalization of Bernstein et al. replaces Stern ISD with a
much more reasonable assumption, similar to Finiasz et al. It has been shown in an
asymptotic analysis that these two variants are equally competitive [MMT11a].2

Remark 3. In the original work, the ball-collision algorithm can be further optimized
using p1 + p2 = p, p′1 + p′2 = p′, `1 + `2 = ` for each small subvector.

Representation technique

Recall that the collision decoding technique splits the weights in e(0)1 and e(0)2 to,
e.g., the leftmost and rightmost (k + `)/2 positions of e1. Using the representa-
tion technique3 by Howgrave-Graham and Joux [HJ10], May et al. [MMT11a]
proposed a natural generalization by allowing these set bits to be in disjoint sets

2Parameters for ball-collision decoding can be transformed to those in Finiasz et al. [FS09]
3The technique was introduced in the context of solving the Subset-sum Problem.
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Figure 2.1: A visualization of the error construction in the depth-2 MMT algorithm.

across all indices {0, . . . , k + `}. To construct e(i)1 , we can expand our algorithm
depth by setting

e(0)1 = e(1)1 + e(1)2 ,

and similarly for e(0)2 . We now obtain a tree-like construction in Figure 2.1.
Now, we can apply the same collision-decoding technique in Stern for each

tree layer to speed up the enumeration process. First, we can further split the
`-bit syndrome, correspondingly to `(0) and ` − `(0), while only asking for the
middle-layer errors to match `(0) bits of the syndrome. The rest of the syndrome is
reserved for the final matching in the bottom layer, as depicted with the color blue
in Figure 2.1. Similar to the previous algorithms, we can also set e(1)i , i = 1, 2
(top layer) of Hamming weight p/4. In particular, they can be from leftmost and
rightmost (k + `)/2 positions of e(0)1 , as long as they do not overlap with the
construction for e(0)2 .

The MMT algorithm offers two improvements. Since the p error positions
are now not restricted to different regions, the success probability per iteration
increases. Indeed, we have

(
k+`
p

)
instead of

((k+`)/2
p/2

)2
in the success probability

expression. Moreover, given a valid solution e1, there are R =
( p
p/2

)
ways to form

pairs (e(0)1 , e(0)2 ). However, it suffices to construct just one of them. Therefore,
we can control the list size in each layer so that, on average, 1 out of R solutions
survives. The common practice in literature is to set `(0) ≈ logR. In other words,
the enumeration process is further sped up by employing smaller lists. Becker et al.
[Bec+12a] further perfected the use of the representation technique in solving SDP
by allowing overlapping error positions across layers in the algorithm, resulting in
the BJMM variant.

Remark 4. For the sake of simplicity, we only present the depth-2 version of these al-
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gorithms. It is certainly possible to recursively expand the depth. However, for relevant
code-based cryptography parameters, we are operating with a relatively sparse error
vector. Therefore, it is not likely that the error can be overly decomposed in the above
manner. Depth-2 or 3 variants usually yield the best results.

The MMT/BJMM algorithm further tips the scale of complexity balance to-
wards the cost per iteration. In addition, these variants employ exponential mem-
ory usage, which can be enormous at times. Therefore, recent analyses have taken
into account the cost of memory access [Bal+19; EB22c]. Again, we skipped over
many details of the representation technique. For instance, the choice of parti-
tions in the top list may affect the probability of finding the solutions. For a more
detailed dissection, we refer the readers to [MMT11a; Bec+12a] for a better un-
derstanding.

Nearest-neighbor search

We recall the Equations (2.9). To summarize the representation technique, we
enumerate the desired error e1 in a binary tree, wherein each layer of the tree, we
look for the exact matching of the syndrome (first `(0), then ` bits). However, the
second identity gives rise to another interpretation.

H2(e
(0)
1 + e(0)2 ) = s+ e2.

Since e2 is unknown, but its Hamming weight is t − p (assuming a correct
permutation), one can rephrase the problem as: finding e(0)1 and e(0)2 , such that
their syndromes (w.r.t H2) are close to each other (i.e., exact match but on t − p
positions). Still using the binary-tree construction, one can adapt the algorithm
to: instead of finding exact matching on `(0) syndrome bits on the middle layer,
we find e(1)1 and e(1)2 so that their syndrome differs on t(0) positions. The same
arguments apply to the other side of the tree (i.e., e(0)2 ). Each merge of pair of lists
is now precisely an instance of the Nearest-neighbor Search.4

Definition 5 (Nearest-neighbor (NN) Problem). Let n ∈ N, 0 < α < 1/2,
and 0 < λ < 1. In the (n, α, λ)-NN problem, we are given two lists L,R of
equal size 2λn with uniform and pairwise independent vectors. If there exists a pair
(x, x′) ∈ L×R with Hamming distance ωH(x, x′) = αn, we are asked to output a
list that contains (x, x′).

May and Ozerov, in [MO15], proposed their NN-Search algorithm, which
was later used extensively by Both and May [BM17b; BM18] in their ISD al-
gorithms. Besides the NN-Search algorithm, there have been several studies in
solving the NN Problem or its variants (see [IM98; EKZ21; Ess23; Duc+24]).

4The problem is not only relevant in our context but to many other disciplines such as machine
learning, data science, or bioinformatics.
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The Both-May variant and later advancements that optimize the NN-Search
subroutine achieve impressive asymptotic complexity improvement. However, it
is often hard to estimate the concrete performance due to the polynomial overhead
in the complexity expression of NN-Search.

Statistical Decoding

Due to its significance, SDP is subjected to many other approaches besides the line
of ISD algorithms. Notably, before the recent proliferation in enumeration-based
ISD, Statistical Decoding was proposed by [Jab01]. In simple words, we tackle
the SDP under the lens of probability. As we previously discussed, the SDP is
equivalent to: given a code C with parity-check matrix H, look for weight-t error
e, such that He = Hy where y is a noisy codeword of C. For each (row) parity h
of H, we rewrite ∑

hiei = h · y. (2.11)

Assume the first position h1 is non-zero, we can split the left side of the equation
into:

e1 +
∑
i 6=1

hiei = h · y.

Since e is of Hamming weight t − 1 in the second term of the equation, if the
parity h is also of (very) small Hamming weight, it is possible to have a detectable
bias ε. With O(1/ε2) such parity, one can recover e1 with high probability.

Therefore, the crux of Statistical Decoding is to find low-weight parity checks
h. However, it is not hard to see that one requires quite many of them, specifically
when the bias is exponentially small (which is usually the case). Equivalently, we
are asking for codes to have a very small code rate. Optimistic arguments showed
that they are not competitive compared to previous traditional ISD algorithms
[DT17]. Recently, Statistical Decoding has enjoyed a resurgence of interest due
to breakthrough studies by Carrier et al. [Car+22; Car+24]. Essentially, instead
of restricting low Hamming weights on n− 1 positions, we can relax by allowing
more secret bits to be recovered with the Fourier transform. Specifically, let P ,N
be two disjoint partitions, such that P ∪N = [n], we write Equation (2.11) as∑

i∈P
hiei +

∑
i∈N

hiei = h · y.

This observation resembles the Learning Parity with Noise problem (which we will
cover subsequently): by viewing x := (ei)i∈P and the rest as “noise”, we effectively
have a noisy product of x and (hi)i∈P . Consequently, asN is smaller than n− 1,
the Hamming weight can be smaller on N , yielding a more forgiving bias.

In addition, more advanced and efficient methods to find low-weight parity
checks are employed (such as the representation technique). As a result, the au-
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thors broadened the code rate regions, where Statistical Decoding outperformed
the best ISD significantly, covering more cryptographically relevant contexts.

Remark 5. As we have seen, numerous advancements have been made throughout the
years toward solving SDP that provide us with a very good understanding of the security
of code-based cryptosystems. However, asymptotically speaking, the improvements from
all sophisticated ISD variants (compared to Prange ISD) have been incremental. In
particular, the asymptotic complexity for all ISD variants (in the region where SDP
is hard) is all 2αn(1+o(1)), where α is a function of the code rate and error rate and
it is only slowly decreasing with better algorithms.5 That is to say, foundationally,
code-based cryptography has been an extremely reliable pillar of cryptography.

2.2.1 Notable code-based PKEs

McEliece Public-key encryption using hard coding problems was originally pro-
posed by McEliece [McE78], but was often left in the dark due to its rather cum-
bersome key size. However, it has become a viable candidate for post-quantum
cryptography. In broad strokes, we pick an efficiently decodable code C with a
generator matrix G, then make public an obscured version Gpub that appears uni-
formly random from the perspective of an adversary. Assume two parties, Alice
and Bob, and Bob wants to send a message m with Gpub from Alice. Bob then
chooses a weight-t error (at most at the decoding capability of the C), and com-
putes mGpub + e. Since Alice knows how to decode C, the message m can be
retrieved readily.

The security of McEliece PKE relies on: 1) the public Gpub is indistinguish-
able from a random matrix and 2) Minimum Distance Decoding is hard on av-
erage for a well-chosen t and a random input code. The original proposal was
employed with Goppa codes, and the McEliece team in the NIST PKE standard-
ization process chose a variant called Niederreiter [Nie86], which is the dual ver-
sion of McEliece (Syndrome Decoding Problem, i.e., the error is the plaintext and
the syndrome is the ciphertext). Such a ciphertext compression technique yields
remarkably small ciphertext sizes for McEliece. Despite rather large public keys,
McEliece provides robust security. In addition, in applications where one key can
be reused many times, or key generation is not a concern, McEliece can be an
excellent choice.

Many subsequent proposals have used other families of codes that provide
more compact key representations, such as LPDC codes, Quasi-Cyclic Goppa
codes, convolutional codes, and so on. Further cryptanalysis studies pointed out
invulnerability in many cases. There were, however, other secure code-based alter-
natives that appeared in the NIST standardization process.

5Statistical Decoding can offer better asymptotic improvement when the code rate approaches
0 [Car+22].
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BIKE Rather than using random Goppa codes, BIKE [Ara+23] (Bit-flipping
Key Encapsulation) uses the so-called QC-MDPC (Quasi-cyclic Moderate Den-
sity Parity Check) in its construction. Not only do QC-MDPC codes have a more
compact key representation, but they also repair the vulnerability of using LDPC
codes (much sparser parity check matrix). We describe BIKE roughly as follows.
Similarly to Niederreiter, the plaintext in BIKE is a sparse error vector, and the
ciphertext is its syndrome.

• Let C be a QC-MDPC code represented by H =
(
H0 H1

)
, where H0 is

invertible. The public key is Hpub = H1H−1
0 .

• A message is a weight-t vector e = (e0, e1) and the ciphertext is s = e0 +
Hpube1.

• The receiver compute sH0 = e0H0 + e1H1 and applies a designated syn-
drome decoder to retrieve e0.

In contrast to McEliece, BIKE suffers slightly from Decoding Failure (small
probability) due to the probabilistic nature of the decoding algorithms (Bit-flipping
decoders [Gal62]). Note that the error weight t employed here is also smaller than
McEliece (in the order of

√
n, compared to n/ log(n)). In addition, due to the

cyclic structure of the parity-check matrix, given a syndrome s and its i-th cyclic
shift si, there exists a weight-t error vector ei that solves Hei = si and it can
be used to reconstruct the original solution e. Therefore, the message-recovery
attack becomes ‘slightly’ easier with more potential solutions for the SDP prob-
lem (as many as the size of Hi). A technique called Decoding-One-Out-of-many
(DOOM), providing speed-up for ISD algorithms, was proposed by Sendrier et al.
[Sen11]. However, the trade-off is that for the same security level, the key size of
QC-MDPC codes can be hundreds of times smaller than that of Goppa codes.

HQC The Hamming Quasi-Cyclic (HQC) employs two codes: 1) a public,
agreed-upon [n, k] code C with decoding capability δ, and 2) a quasi-cyclic, dou-
ble circulant (2n, n) code. Other public parameters are quantities t, ωe, ωr. We
describe very roughly the mechanism of HQC.

• Sample a generator matrix G for C, and a parity check matrix
(
I H

)
for

the QC code. Set the secret key as (x, y) ∈ Fn
2 , both of Hamming weight

t, and make public (H, s = x+Hyᵀ).

• To encrypt m ∈ Fk
2 , generate e of Hamming weight ωe, (r1, r2), each of

Hamming weight ωr. Compute

u = r1 +Hrᵀ2,

v = mG+ sr2 + e.
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• The ciphertext is c = (u, v).

The security of HQC relies on the fact that it is infeasible to retrieve m, even
if the code C is public, as the error weight exceeds the code’s error-correction ca-
pability (for well-chosen t, ωe, ωr). However, with the secret key, we can perform
v− uy and decrypt correctly when

ωH((x+Hyᵀ)r2 − (r1 +Hrᵀ2)y+ e) = ωH(xr2 − r1y+ e) ≤ δ.

Again, the parameters are chosen so that the above holds except for a small
probability, which is the decoding failure rate of HQC. The adversary can try to
bypass this problem by directly decoding x, y from s, but it is also infeasible.

We have omitted many details regarding the above schemes, as we will not
focus on them in our work, but rather discuss the underlying SDP assumptions.
Therefore, we again refer the readers to the specification documentation for better
understanding. Besides the well-known candidates, in the next section, we move
into a different approach to employing coding-theory problems efficiently and
securely: SDP with special noise.

2.3 Restricted Syndrome Decoding Problem

In the previous section, we have seen a few code-based constructions. Although
BIKE and HQC use structure keys for a more compact key representation, it is
often a trade-off, and other benchmarks usually suffer [Kuz+23].

Therefore, cryptographers have proposed other variants of SDP that are more
competitive in terms of performance without sacrificing too much security. An-
other interesting research direction is employing SDP with structured noise. That
is, variants of SDP where the noise is of particular configurations or taken from
special sets. An example of the prior is the Regular Syndrome Decoding Problem
where the noise is divided into blocks with equal Hamming weight. On the other
hand, we have the Restricted Syndrome Decoding Problem for the latter, which is
notable for its application in CROSS - a viable code-based candidate for NIST
Post-quantum Additional Signature Schemes. Note that these are not the only
examples. For instance, we also have SDP in other metrics such as rank metric, Lee
metric, or the Permuted Kernel Problem [Sha89; Bet+24].

In this section, we briefly discussed RSDP, which was first introduced in [Bal+20a].
We reserve a more detailed examination for the later publication of this thesis, and
we refer the readers to the original works [Bal+20a; Bal+24c].

Definition 6 (Restricted Syndrome Decoding Problem). Let Fq be a finite field
and n, k, t ≤ n be positive integers. Let H ∈ F(n−k)×n

q , s ∈ Fn−k
q , and E be a Fq

multiplicative subgroup of order z. Find e ∈ (E ∪ {0})n, such that ωH(e) ≤ t and
Heᵀ = s.
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It is closely related to other hard problems. If z = q, we have the usual SDP,
and if z = 1, it is the Subset-sum Problem. They are bothNP− complete, and this
is also the case for RSDP. The hardness was shown in [Bal+20a] for z = 2 and later
proved for the general case [Bal+24c]. In addition, the authors in [Bal+20a] also
established other well-known coding theory bounds (e.g., GV bound, Singleton
bound) in the new setting and studied the behaviors of random codes. For cryp-
tographic applications, they introduced a new RSDP-based identification scheme,
which eventually led to CROSS [Bal+24a].

Note that CROSS, as well as the publications in this thesis, revolves around a
special form of RSDP called full-weight RSDP. In particular, the error vector e has
the maximum Hamming weight (t = n).6 Such subtle difference allows efficient
communication and simplified implementation in CROSS.

2.4 Solvers for the Restricted Decoding Problem

Since it is an SDP problem, algorithms in Section 2 can be tailor-made to this
new setting. Substantial cryptanalysis efforts have been made in this direction.
Baldi et al. [Bal+24c] proposed their Stern and BJMM adaptations to investigate
the concrete hardness of RSDP, especially those that are relevant in their signature
proposals. Meanwhile, Bitzer et al. [Bit+23] further ventured into scenarios where
a too-small restricted set can be used against the system. That being said, with
CROSS setting, the cryptanalytic works suggest RSDP can achieve remarkable
security with fairly compact parameters, such as q = 127 and z = 7.

It is only reasonable for us to ask: “So, where is the catch then?”. Indeed, in-
tuition tells us that, with more information at hand, the problem should be easier.
In fact, structured noise, such as in RSDP or the Regular Syndrome Decoding
Problem, allows us to model the problem as a system of equations, and algebraic
methods can be applied. However, recent works have shown that this approach is
not much more fruitful than its combinatoric counterpart [Bal+24c; BM24].

2.4.1 RSDP in this thesis

In most SDP applications, we deal with a fixed-rate code, i.e., we have a limited
number of rows in the generator (or parity-check) matrix. However, LPN is a
special case where the code rate can be arbitrarily small by treating the problem as
anOracle that gives noisy dot products of the secret and uniformly random vectors
(that constitute a code).

In our work, we also examine the RSDP from a slightly different angle, e.g.,
in its dual form. Similarly to the case of SDP and the LPN problem, we are drawn
to situations where the code rate can be rather small. Our motivation is that it
can enable RSDP in many other lightweight, resource-constrained cryptographic
applications, as LPN has achieved.

6This variant is still NP−complete
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Definition 7 (RSDP Oracle). Let p be a prime number andE = {gi, i = 1, . . . , z}
be a multiplicative subgroup of order z in Fk

p . Fix a secret s ∈ Fk
p . The RSDP Oracle

gives pairs of samples
{a ∈ Fk

p, b = a · s+ e mod p}

where a $←− Fk
p and e $←− E.

In Paper V, we employ this form of RSDP in a lightweight authentication
protocol that can rival and exceed the performance of LPN-based counterparts.
Introducing the RSDP Oracle also invites another generic attack, namely the lin-
earization from [AG11]. The abundance of samples can now be exploited to solve
the problem in polynomial time, in contrast to the ISD-like algorithms. How-
ever, with a careful choice of parameters, the number of required samples can be
prohibitively large and impractical. Our motivation is to seek an answer for the
middle ground - what can be done in the case where we have many samples but
not quite enough for linearization? It resembles the situation with the LF-2 vari-
ant of the BKW algorithm, where only a conservative amount of oracle queries
can be made. Moreover, for classical SDP, recently Statistical Decoding [Car+22;
Car+24] has been revisited and improved. By finding low-weight codewords in
the dual codes and modeling the noise with heuristic probability arguments, the
authors achieved promising results, especially where the code rate can be smaller
than “more traditional” instantiations (e.g., McEliece, BIKE, HQC). Their work
improved the state-of-the-art cryptanalysis for SDP, covering relevant code rate
regimes, and this should be the case for all variants of SDP, including RSDP.

Therefore, in Paper VI, we provide a BKW-style RSDP solver, addressing this
exact question. We adapt several of the latest BKW techniques to meet the unique
requirements of the new setting. Besides its own intellectual interest, enriching
the state-of-the-art cryptanalysis for RSDP, it provides a useful security-measuring
tool for further RSDP applications, such as in Paper V.



Learning-based
Cryptography

Through advancements in technology, the presence of digital accessories has been
woven into the fabric of our everyday lives and activities to an unprecedented ex-
tent. However, such conveniences pose unique challenges to cryptography. In par-
ticular, the application of cryptography to low-powered, constrained-environment
devices. Indeed, as we have seen from the previous chapters, code-based cryp-
tography often seeks out coding problem variants that are more computation and
resource-friendly while still achieving respectable levels of security. In this chapter,
we will cover such a variant, called the Learning Parity with Noise (LPN) problem.
It is a well-studied NP-hard problem intimately related to the Syndrome Decod-
ing Problem, highlighted by the fact that there has not been a quantum algorithm
that can solve LPN faster than classical ones. Moreover, there have been substan-
tial cryptanalysis works over the years that provide researchers with confidence in
employing LPN in various cryptographic constructions. And above all, as we will
see shortly, the inherent simplicity of operations involved in LPN makes it a prime
candidate for lightweight cryptography.

3.1 Learning-based Assumptions

Let k be a positive integer, η ∈ (0, 1/2) and Berη denote the Bernoulli distribu-
tion with parameter η. We define the LPN oracle as follows.

Definition 8 (LPN Oracle). An LPN oracle calledOk,η, parameterized by k and η,
for a secret x ∈ Fk

2 , returns pairs of the form(
g $←− {0, 1}k, z = g · x+ e

)
, (3.1)

where e← Berη.
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In other words, an LPN oracle gives noisy dot products of x and uniformly
random g. We next define the main (hard) problems of this chapter, coming in
two flavors: decisional and search variants.

Problem 3 (Decisional LPN). Given an LPN oracleOk,η, the (decisional) Learning
Parity with Noise problem, LPNk,η, asks to distinguish Ok,η output from uniformly
random Fk+1

2 samples.

We formalize the hardness of the (decisional) problem. The LPNk,η is said
to be (T, δ,Q)-hard if for all algorithms A, running in time T , using Q oracle
queries ∣∣Pr[A (Ok,η) = 1]− Pr[A (Uk+1) = 1]

∣∣ ≤ δ.

Problem 4 (Search LPN). Given an LPN oracle Ok,η, the Search Learning Parity
with Noise problem asks for the recovery of x.

Similarly, the search problem is said to be (T, δ,Q)-hard if for all algorithms
A, running in time T , using Q oracle queries, and

Pr[A (Ok,η) = x] ≤ δ.

The decision LPN problem isNP-hard, and it has been shown that the search
and decisional LPN problems are polynomially equivalent [KS06a].

3.1.1 LPN solving algorithms

One can immediately draw parallels between LPN and the previously introduced
(binary) Decoding Problem. Indeed, for a fixed amount of queries n, the noisy
products essentially form noisy codewords z = (z1, . . . , zn), of which the gener-
ated matrix

G =
(
gᵀ1 . . . gᵀn

)
can be deduced. Therefore, we can view the LPN problem as a Decoding Problem.
The only distinction is that the adversary now works with a code with an arbitrar-
ily small code rate. Consequently, all generic decoding algorithms introduced in
Chapter 2 apply to LPN. However, Blum, Kalai, and Wasserman [BKW03a] pro-
posed the BKW algorithm to exploit the small code rate. In particular, the BKW
algorithm can solve LPN in sub-exponential timeO(2n/ logn), requiring as many
queries from an LPN Oracle. We briefly look at BKW and several notable im-
provements since its introduction.

In essence, the original BKW algorithm can be divided into the following
steps:

1. Reduction step: The BKW algorithm takes parameters t and b. First, it
finds all combinations of two columns gi, gj that cancel out b last positions.
This can be done by a sort-and-match procedure. In particular, BKW first
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distributes all combinations into different equivalence classes, depending
on the value of the last b positions (i.e., they have the same projection on
these coordinates). Then, a class representative is chosen to combine with
others to nullify the last b coordinates. For every combination indexed with
i and j, the observed symbol zi + zj is updated.

In summary, the reduction step has produced a new matrixG′ where the last
b coordinates of every column are zero. Consequently, the contribution of
the last b bits of secret s is nullified. The trade-off is that every new symbol
contains two error bits rather than only one. The BKW algorithm repeats
this step t times, eventually removing b · t secret bits to guess while having
2t · b error bits convoluted for each symbol. The bias of the sum of such
errors can be estimated using the Piling-up lemma [Mat94].

2. Solving step: In the final step, the BKW algorithm looks for a column in
the (transformed) matrix such that its only first bit is non-zero. That is, the
corresponding symbol comes from only the first bit of the secret and (many)
errors. The observed symbol is stored, and the reduction step is repeated to
find more such occurrences. Once enough symbol is observed, since we
know the bias of the convoluted errors, we can determine the first bit of the
secret with high probability.

The original BKW algorithm is a very strong theoretical construction as it
operates solely on independent samples. One can provide rigorous probabilistic
arguments for the algorithm’s performance. However, we should note that in the
reduction step, we must discard all class representatives, reducing 2b samples after
each reduction step. Hence, the BKW algorithm typically requires an extreme
abundance of LPN samples. Leveil and Fouque [LF06b] addressed this issue and
improved significantly in their LF-1 and LF-2 variants, which can be summarized
by the following points.

• Instead of scanning for only weight-1 columns in the solving step, one can
simultaneously guess k−t ·b bits of the secret using a fast Walsh-Hadamard
transform, thus avoiding querying the LPN oracle multiple times and mak-
ing use of all samples after the reduction steps.

• Instead of producing only independent combinations in each reduction
step, one can combine all vectors in the equivalent class, producing more
samples at the cost of introducing dependency (LF-2). With a proper choice
of parameters t and b, the number of samples after each reduction step can
even be preserved. Thus, it makes BKW a very practical choice when the
amount of LPN samples is limited.

Besides the above improvements, there have also been many notable investi-
gations of LPN-solving algorithms over the years, focusing on different regimes.
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In particular, if the number of samples allowed is polynomial in k, then the secret
can be found in O(2k/ log log k) [Lyu05]. Alternatively, once we are restricted to
only Θ(k), i.e., a linear sample amount, the best algorithms solve in exponential
time (ISD algorithms). Using a similar idea to the ISD algorithm, Bogos et al.
[BV15] achieved poly(k) · e

√
k for low noise-rate η = 1/

√
k.

Covering codes The state-of-the-art LPN algorithm is achieved by Guo et al.
[GJL14] with the introduction of Covering codes technique and later perfected by
Bogos et al. [BV16]. Using coding techniques, Guo et al. [GJL14] introduced an
intermediate phase in the BKW algorithm. In particular, they reduced more (re-
maining) guessing bits for the secret by replacing some coordinates in the samples
(after reduction) with perturbed codewords from a carefully chosen code. This
step introduces additional errors, which can be estimated depending on the code
characteristics. Using this technique, the authors improved security estimates for
several LPN-based cryptosystems, such as Lapin, LPN-C, and several variants of
HB-like authentication protocols.

3.2 LPN-based lightweight cryptography

Other than being a hard problem that motivates secure cryptographic construc-
tions, LPN is renowned for its simplicity, which is achieved by using only cheap
operations. In addition, its close affiliation with the SDP implies that LPN is quan-
tum safe. Therefore, it is unsurprising that LPN is a prime candidate for building
environment-constrained, low-powered cryptographic schemes where hardware
limitation is an important factor, such as RFID tags. In contrast, these devices
often lack the capacity to be employed with standard, well-known primitives like
AES.

The use of low-cost devices has become more prominent, which puts increas-
ing importance on suitable lightweight cryptography. Therefore, Hopper and
Blum [HB01b] pioneered this research direction with their elegant and minimal-
istic LPN-based authentication protocol called HB (Figure 3.1). This 2-round
protocol, however, was only secured in the relatively weak adversary model (pas-
sive attack) that was considered in the same work. In particular, the adversary
did not have much power besides observing the authentication protocols. Juels
and Weis [JW05b] later showed that HB could be easily exploited by the (more
realistic) threat, called active attack, in which an attacker is equipped with some
query power that can send the initial challenges of their own choice. They further
suggested an augmented version HB+, which added an extra round to HB to resist
the more potent adversary. Gilbert et al. [GRS05] further challenged the proto-
col with a Man-in-the-middle (MitM) attack, where the attacker could intercept
and alter the communications. They proved that HB+ is vulnerable under this
adversarial assumption.
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a $←− Fk
2

a←−−−−−−
e← Berτ
z = a · s+ e z−−−−−−→ Check

z = a · s

Figure 3.1: One round of the HB authentication protocol with the Tag (T ) and Reader (R)
sharing a secret s ∈ Fk

2 .

Subsequently, a proliferation of HB-family authentication patches was pro-
posed [DK07; MP07; LMM08; BC08; GRS08c], attempting to achieve security
in the MitM model. Most notable was HB# [GRS08b], which employed a vari-
ant of LPN, called Toeplitz-LPN, to reduce communication costs. However, later
cryptanalysis works, such as [GRS08a; OOV08], eventually put the LPN-based
authentication research against a gloomy backdrop.

Several breakthrough works that resisted MitM adversaries managed to resur-
rect confidence in LPN-based authentication. In particular, another LPN variant
called Subset-LPN was used to construct message authentication codes (MACs)
by Kiltz et al. [Kil+11], or Lyubashevski et al. [LM13a] showed a generic MitM-
secured authentication construction from any wPRFs with some reasonable prop-
erties. In addition, we also see a different approach in [LGQ13b], where the au-
thors devised an elegant encryption scheme to mask LPN samples, thus achieving
better security while pushing aggressive LPN parameters.

Besides authentication, one finds LPN in several other scenarios. For example,
in Paper I, we investigated an LPN-based stream cipher called Firekite [Bog+21b].
This cipher was preceded by LPN-C by Gilbert et al. [GRS08d] and tackled the
problem of generating new randomness (which can be expensive) for LPN. Duc
and Vaudenay [DV13a] also demonstrated how to build an LPN-based public-key
encryption scheme called Helen. In addition, we also encounter LPN in more
foundational cryptographic objects such as wPRFs [Bon+18; Din+21], exploring
computation-friendly Multi-party computation. This further shows the potential
of the LPN problem in many cryptographically relevant scenarios.

3.2.1 LPN in this thesis

The first part of the publications revolves around devising specialized attacks that
exploit unforeseen design weaknesses of several LPN-based cryptosystems, e.g.,
Firekite, LCMQ, and alternating-moduli wPRFs. Our attacks often employ sev-
eral creative techniques that can speed up traditional LPN-solving algorithms such
as BKW or ISD. In these applications, the LPN problem is often tweaked or used
in conjunction with other encryption schemes to mitigate existing issues (expen-
sive randomness generation or security). Although their hardness assumption is
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usually substantiated with reasonable assumptions or security reduction proofs,
novel designs must be subjected to sufficient cryptanalysis efforts. The security
parameters are often chosen according to the best attack for the underlying compu-
tational hardness problem. However, several aspects of the design/implementation
cannot be contained in the security reductions, which could result in overestimat-
ing security levels. Our work ensures a clearer picture of the concrete hardness/se-
curity of the LPN problem in these particular settings and helps avoid pitfalls in
future LPN-based applications.



Contributions and
Conclusions

This dissertation has focused on several novel cryptanalysis techniques of code-
based cryptosystems, with the exception of Paper V. The different contributions
can be visualized within the area as in Figure 4.1. After this, the contributions are
described in more detail in Section 4.1, followed by conclusions in Section 4.2.

4.1 Contributions

In this section, the main contributions of this dissertation are described.

4.1.1 Attacks on the Firekite Cipher

Since its introduction, LPN has been prevalent in many cryptographic construc-
tions that emphasize their efficiency due to the simple nature of the operations
involved. Besides popular proposals for lightweight authentication, we also see
LPN in sophisticated primitives, such as PKE [Yu+18; DV13a] and stream ci-
phers [GRS08d] (LPN-C). However, a drawback of various LPN-based encryption
schemes is that new randomness has to be repeatedly generated, thus adding sub-
stantial computational overhead. Bogos et al. [Bog+21b] have recently proposed
a novel LPN-based stream cipher called Firekite. Notably, the authors tackled the
mentioned adversity by cleverly reserving a (small) part of the output for the next
round of keystream generation. Thus, except for the initialization round, they
have readily available new random samples due to the intractability of the LPN
problem. However, contrary to LPN-C, where an additional error-correcting code
is present, Firekite reuses the same (matrix) key for the entire encryption. In ad-
dition, Firekite was also promising for its high-performance rate, and the authors
showed the prospect of implementing efficient LPN-based encryption in low-end
devices.
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Figure 4.1: Venn diagram of the included papers’ contributions

In Paper I, we show how we can exploit such design features as leverage for a
distinguishing and key-recovery attack. In particular, since the keystream is gen-
erated by the noisy products of vectors with the same matrix, dependencies in
the output might leak to the keystream, giving more advantage to a suitable dis-
tinguisher. The type of dependency that we investigate is zero-sums from k lists,
which can be seen as a generalization of the famous Birthday paradox. Due to their
significance in cryptanalysis, solvers for this problem have been studied extensively,
pioneered by Wagner in his seminal work [Wag02]. The algorithm complexity is
sub-exponential and requires as many samples (or, in our case, keystreams).

We demonstrate that such a combination will yield an abnormally low-weight
sum of the corresponding keystreams and can easily be distinguished. Subse-
quently, we argue that once we obtain enough anomalies, we eventually recover
the key of the cipher with the help of ISD algorithms. Our work provides a much-
needed cryptanalytic tool for new LPN-based encryption, ensuring more secure
parameters.

4.1.2 Differential cryptanalysis of Mod-2/Mod-3 constructions of bi-
nary weak PRFs

Several attempts to employ learning-based assumptions in building lightweight,
computationally friendly cryptographic primitives have been made. In particular,
foundational cryptographic objects such as wPRFs can be constructed efficiently
using LPN in [Bon+18; Din+21]. Cheon et al. [Che+22] showed that such con-
structions with low Hamming-weight secret keys can be susceptible to their dis-
tinguishing attacks and proposed simple fixes. However, the practicality of this
attack is questioned as it requires 280 samples, which can be thwarted by simple
preventative measures.
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In Paper II, we devise yet another attack. We observe that certain low Hamming-
weight input combinations yield detectable bias in the corresponding outputs. We
employ the Nearest-Neighbor Search algorithm to find the combinations efficiently
and then compute the exact corresponding bias in the output. The heuristic argu-
ments are verified with simulations, affirming their soundness. The contribution
is twofold. First, our attacks are superior to previous work with respect to asymp-
totic complexity and required wPRFs evaluations. In particular, while Cheon et
al.’s work needs an exceptionally large number of evaluations, our approach oper-
ates under very practical security scenarios. Secondly, relying on simulations, we
observed that the fixes previously proposed are even more vulnerable to our attack.
Therefore, our attack can be a good reference security point for future LPN-based
wPRF proposals.

4.1.3 A Key-Recovery Attack on the LCMQ Authentication Protocol

Since the introduction of HB-like authentication protocols and subsequent crypt-
analysis, the prospect of a practical, lightweight (yet MitM-secure) LPN-based au-
thentication has always been an open question. Despite multiple breakthroughs
in the fields, such as [Dod+12; Kil+11] having provided definitive answers, they
often ask for (prohibitively) large key sizes, which makes it impractical for, e.g., an
RFID tag. Lyubashevsky et al. [LM13a] showed a generic construction (without
MACs) that is MitM-secured for any wPRFs as long as they provided reasonable
properties. The LPN problem can be seen as an instantiation, and using spe-
cial variants of LPN (Toepliz-LPN or Ring-LPN), the key size is reduced from
quadratic to polynomial, thus suitable for memory-constrained devices.

Besides this direction, in 2013, Li et al. [LGQ13b] proposed an alternative.
They devised an efficient encryption scheme based on circulant matrix, masking
LPN samples and effectively turning the problem into a (noisy) quadratic mul-
tivariate problem, which is also NP-hard. As the LPN samples are now further
obfuscated, one can attain remarkable benchmarks such as key size and commu-
nication cost. In Paper III, we proposed an attack strategy as follows.

• Fixing the challenge in each invocation of the authentication, we formulate
a noisy system of equations where the unknowns are related to the keys.

• One can solve such systems readily with ISD algorithms and recover the
key.

Our attack shows an overestimation in the parameters for the desired levels of
security, and suitable countermeasures should be considered.

4.1.4 A New Sieving-style Information-set Decoding Algorithm

The essence of the decoding problem is finding low-weight codewords (in the
Hamming metric) in a given code. One can draw parallels with the task in the
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Closet Vector Problem, which asks for a short vector (in the Euclidean sense) in a
lattice. Given the close affiliation, the natural question arises of whether a lattice-
solving algorithm exists for the Syndrome Decoding Problem.

Paper IV gives the first and definitive answer to this question. We observe that
given a subset of low-weight vectors, we can “guide” this subset closer to the desired
syndrome and eventually find the solution to the Syndrome Decoding Problem.
We achieve this by combining the vectors and maintaining the weight while asking
the vectors in the subset to satisfy gradually more syndrome bits. We devised
an algorithm to detect weight-preserving combinations from the input vectors,
which can be considered as an instance of the fixed-weight Nearest-Neighbor Search
[Duc+24]. In particular, we investigate many interesting aspects of our algorithms,
providing heuristic arguments and simulations to confirm our analyses.

As for performances, we apply our algorithms to solve the SDP parameter sets
that appear in notable KEMs such as McEliece, BIKE. We observe a new time-
memory trade-off behavior for McEliece parameters, and the algorithm offers im-
provements in the memory-restricted scenarios. For BIKE, the sieving algorithm
again shows efficient memory usage, achieving comparable complexity with much
less memory than previous work. As a concluding remark, our approach can be a
valuable alternative in certain cryptanalytic scenarios where memory is a factor.

4.1.5 Efficient Authentication Protocols from the Restricted Syndrome
Decoding Problem

As an attempt to diversify our Post-quantum Cryptography portfolios, NIST has
recently called for the Additional Post-Quantum Signature Schemes [AG11], which
features many code-based signature constructions. Round 2 of the competition
has seen the survival of two code-based proposals: CROSS [Bal+24c] and LESS
[Bal+24b]. In particular, we are interested in CROSS that features a new NP-
complete variant of SDP called RSDP, where the error is drawn from a subset of
Fq, rather than sampled uniformly at random.

In Paper V, we introduce the Oracle model of the Restricted Decoding prob-
lem, analogously to the LWE/LPN Oracle. Moreover, our goal is to devise an
efficient authentication that can rival the efficiency of the LPN problem, as shown
in the HB family of authentication protocols. We show that RSDP can offer the
same elegance when choosing a suitable restricted set to make operations as sim-
ple as bit-flipping and cyclic shifting. In contrast to the previous problems, RSDP
in this form can be solved in polynomial time, using Aurora-Ge algebraic attack
[AG11], once the number of Oracle calls is arbitrarily large. However, under rea-
sonable assumptions, we show that the (Oracle) RSDP offers remarkably appealing
characteristics in the building of lightweight authentication protocols, such as key
size, communication, and computational cost.

The paper presents two secure designs in the Active and Man-in-the-Middle
attack models. The designs take inspiration from various well-known LPN-based
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lightweight authentication protocols, such as [JW05b; LM13b]. We observe that
RSDP can remarkably adapt to previous reduction techniques. Parameters for rel-
evant security parameters are proposed, where we compare the performance of our
proposal with other established constructions, showing promising benchmarks.

4.1.6 A BKW-Style Solver for the Restricted SyndromeDecoding Prob-
lem

The (classical) SDP has been studied extensively, highlighted by the fact that a di-
versified portfolio of cryptanalysis exists for the problem. For example, the most
well-known is the ISD algorithms pioneered by Prange [Pra62]. Recently, Statis-
tical Decoding Algorithm has been revisited [Car+22; Car+24], presenting promis-
ing results in certain code-rate regimes. In addition, we reserve BKW algorithm
[BKW03a] when the code rate is arbitrarily small (e.g., LPN).

NP-hard variants, particularly structured-noise alternatives, such as Regular
Syndrome Decoding Problem and RSDP, have emerged in favor of their classical
counterpart in cryptographic constructions due to their performance advantages.
However, novel problems require sufficient cryptanalysis to strengthen our con-
fidence in employing them. Indeed, several adaptations of ISD algorithms have
been proposed [Bal+24c; Bit+23], and algebraic approaches [BØ23; BM24] to ex-
ploit the additional structure have been considered recently. The consensus is that,
in practice, ISD-derived algorithms are the main cryptanalysis tools for RSDP-
based constructions. However, the applications of such solvers are restricted to
either CROSS parameters [Bal+24c] or to peculiar cases of restricted sets [Bit+23].

In Paper VI, we adapt the BKW algorithm to solve RSDP, suitable for RSDP-
based applications where an adversary encounters an RSDP instance with a very
small code rate, e.g., as in Paper V.We reintroduce the concept of an RSDP Oracle,
and the inspiration for our work is as follows. An RSDP ‘sample’ resembles the
well-known Learning with Errors problem, and

• Via a simple transformation, we can make the secret follow the same distri-
bution with the errors.

• Since the restricted set has a relatively small entropy, we suspect that the
output from an RSDP Oracle has a detectable bias.

• Therefore, by making the guess space smaller, at the expense of introducing
more noise, we can eventually recover the correct partial secret and solve the
RSDP problem.

Our approach makes use of state-of-the-art BKW techniques such as Cov-
ering codes and Subspace Hypothesis Testing, relying on reasonable heuristics that
can be verified with simulations. We observe significant improvements over tradi-
tional solvers with additional samples, particularly before algebraic attacks can be
considered viable. We broaden the scope of our algorithm by considering RSDP
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instances with larger restricted error sets. Contrary to ISD and algebraic solvers,
our algorithm is remarkably adaptive, and our preliminary analysis shows that
the BKW-solver achieves even more impressive results. To strengthen our results,
we conducted Known-Answer tests on small parameters to rectify our arguments
made throughout the paper.

In addition to enriching the cryptanalytic arsenal for RSDP, we improve the
understanding of RSDP security in different scenarios. Our future works revolve
around perfecting and fine-tuning various steps towards the goal of reducing the
required number of samples needed for our algorithms. In particular, using better-
suited covering codes and solving the dependencies problem when samples are not
abundant.

4.2 Conclusions

The topic of this dissertation has been to present new results on code-based cryp-
tography.

The contributions covered several aspects, including cryptanalysis and the con-
struction of new cryptographic schemes.

Paper I, Paper II, and Paper III examine, under various angles, the security
of LPN-based cryptographic objects, ranging from stream ciphers to weak pseu-
dorandom functions and authentication protocols. These constructions lean on
the appealing simplicity of LPN while achieving provable security. In particular,
the Firekite cipher smartly minimizes the cost of generating randomness by re-
serving a portion of their keystream for the next round while LMCQ masks their
LPN-samples with an efficient encryption scheme, allowing for aggressive choice
of parameters. They are all great advocates for LPN, especially in the context of
lightweight, computationally friendly cryptography. However, pioneering con-
structions are only as secure as the corresponding cryptanalysis efforts, which are,
oftentimes, lacking due to their novelty. Therefore, our work improves the under-
standing and confidence in the security of employing learning-based assumptions
and serves as a cautionary note for potential users.

On the other hand, Paper IV is our attempt to venture outside of the well-
known representation-based paradigm of the Information-set Decoding algorithm.
Drawing inspiration from sieving algorithms, we devise a Sieving-style solver for
the SDP problem that proves to be useful in specific scenarios. We observe that this
can lead to an interesting direction of research where many further optimizations
can be made.

The last two papers deal with the novel Restricted Decoding Problem, specif-
ically in its Oracle model. We believe that such a setting will open doors to many
potential applications, similar to the case of the Learning with Errors problem.
First, Paper V explores the idea of building an extremely efficient authentication
protocol, diversifying the use of RSDP beyond previous work. Moreover, we also
present the new, much-needed solving algorithms for RSDP that can utilize ad-
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ditional samples and bridge the gap between combinatoric and algebraic solvers.
With such a tool, cryptographers may have greater freedom and confidence in
proposing other RSDP-based schemes.

4.2.1 Reflections

With the help of senior co-authors, particularly my supervisors, I have learned
advanced and up-to-date specialized knowledge in Cryptography, Cryptanalysis,
and Code-based Cryptography, as shown in our publications.

In the first stage of the Ph.D. program, I had the opportunity to focus on
attacking code-based cryptosystems. This gave me hands-on experience in crypt-
analysis. In addition to coding problems and state-of-the-art solving approaches,
I broadened my knowledge of code-based applications and how to employ many
creative techniques to exploit weaknesses in a particular design. As a result, I fre-
quently investigated well-known cryptanalytic tools in code-based cryptography.
A significant achievement was understanding how to navigate research. For ex-
ample, in Paper I, Paper II, Paper III, and Paper IV, I learned about the analysis
aspects of our attacks and algorithms that went beyond presenting our core ideas
and pseudocodes. Notably, it was to answer a series of follow-up questions about
the correctness, complexity, or supporting heuristic arguments. I exercised well-
known methodologies, such as combinatorics and probability theory, to analyze
our approaches. This practice allowed me to deliver quality results suitable for the
research field, as well as fair comparisons with existing work.

In addition, I have been responsible for most of the manuscript writing. It was
crucial for my formative research stage, which required me to consume a broad
knowledge of previous research. Besides knowledge of code-based cryptography, I
also got the gist of how to structure and present research papers in a conventional
way in the community. In discussion, I gradually became bolder and more up-
front when proposing my ideas and opinions on our work. The same can be said
about time management. I showed more dependency in scheduling timelines and
expectations for different stages of research with my co-authors.

One of the most important learning outcomes in the Ph.D. program is to
show the capability to “demonstrate the ability to identify and formulate issues
with scholarly precision critically, autonomously and creatively...”. In other words,
it means identifying the needs for certain research directions while standing more
on one’s legs, becoming more independent. During the projects of Paper V and
Paper VI, it has been my compelling motivation. In Paper V, we explore the idea of
having an analogy of the LPN-SDP relationship by formulating an Oracle model
of RSDP, eventually showing its (remarkable) competitiveness in lightweight cryp-
tography. Likewise, in Paper VI, we address the issue of cryptanalysis for the
novel RSDP problem, especially in the new Oracle setting. With the suggestion
of having more responsibility from my supervisors, I initiated the first research
steps, including literature review, initial sketches/designs, and facilitating the basic



48 Contributions and Conclusions

strategies for proofs/analysis. Having familiarized myself with the research area’s
methodology, I could lay the groundwork for our projects, getting it to a state
where my co-authors can join in to optimize and propose how to achieve the re-
sults. Looking back, although the results left much to be desired, and progress
was, at times, slow and stagnant, I believe it was a valuable experience as a junior
researcher to push the work forward. Still, there could not have been papers with-
out the feedback, experience, and valuable insights from my co-authors, which
were essential for me to carry on with more confidence.

I have learned how to program and implement our algorithms in all our projects
in C++ and Python. In most research disciplines, experiments for verification or
refutation are as crucial as forming hypotheses. Not only are they necessary for
ethical aspects and the reviewing processes (ease of reproducing results), but they
are also excellent tools to guide our research correctly. There have been numerous
occasions when we have discovered unexpected behaviors from our algorithms.
Trying to understand and develop heuristic arguments that can explain the non-
desirable aspects of our work, in addition to being the right thing to do (as opposed
to burying it under the carpet), taught me much more than just cryptography. For
example, in Paper IV, we encountered the problem of duplicates in our sieving-
style ISD algorithm, which took us quite some time to figure out. However, we
then had a good understanding of how the algorithm performed and, by extension,
how it differed from previous approaches.

Peer-to-peer review is also an invaluable process throughout my program, espe-
cially with how the communication is conducted within the research field. Review-
ers, having faced similar challenges, can provide me with different perspectives and
insights to improve our work. Most importantly, they point out weaknesses and
oversights that we did not take into account. They can validate or challenge our
assumptions, foster a more comprehensive understanding, and ensure our work
aligns with the research standards. The process not only enhances the quality of
our research but also strengthens my critical thinking and communication skills.
More often than not, we come out of the reviewing process with a far more com-
prehensive grasp of our work than before.

Although not evident in this dissertation, performing department duties as a
teaching assistant has improved me as a Ph.D. student in unexpected ways. Teach-
ing presented the challenge of explaining ideas and concepts concisely and effec-
tively, translating tremendously into expounding my research ideas and motiva-
tions, especially during conferences and invited talks. In addition, it is also an
opportunity to broaden my general knowledge in electrical engineering and cryp-
tography, which have aided me in critical (and dry) times in my research. Through
students’ curious interrogations of the purpose of being a Ph.D. and what exactly
is (post-quantum) cryptography, I have the chance to summarize and look back
on my Ph.D. journey, speak a few (possibly wrong) things in the naive hope of
motivation, about other fields of post-quantum cryptography or exciting projects
that our research group is doing. Each time, it certainly solidified further my
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understanding of the research fields.
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Cipher

Abstract

Firekite is a synchronous stream cipher using a pseudo-random number generator
(PRNG) whose security is conjectured to rely on the hardness of the Learning Par-
ity with Noise (LPN) problem. It is one of a few LPN-based symmetric encryption
schemes, and it can be very efficiently implemented on a low-end SoC FPGA. The
designers, Bogos, Korolija, Locher and Vaudenay, demonstrated appealing prop-
erties of Firekite, such as requiring only one source of cryptographically strong
bits, small key size, high attainable throughput, and an estimate for the bit level
security depending on the selected practical parameters.

We propose distinguishing and key-recovery attacks on Firekite by exploiting
the structural properties of its PRNG. We adopt several birthday-paradox tech-
niques to show that a particular sum of Firekite’s output has a low Hamming
weight with higher probability than the random case. We achieve the best dis-
tinguishing attacks with complexities 266.75 and 2106.75 for Firekite’s parameters
corresponding to 80-bit and 128-bit security, respectively. By applying the dis-
tinguishing attacks and an additional algorithm we describe, one can also recover
the secret matrix used in the Firekite PRNG, which is built from the secret key
bits. This key recovery attack works on most large instances of Firekite parame-
ters and has slightly larger complexity, for instance, 269.87 on the 80-bit security
parameters n = 16, 384,m = 216, k = 216.

Thomas Johansson, Willi Meier, Vu Nguyen. “Attacks on the Firekite Cipher”. In Fast Software
Encryption (FSE) 2023, Beijing, China. IACR Transactions on Symmetric Cryptology. 2022, 3, p.
191–216.
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1 Introduction

Since Shor [Sho99] in his seminal work introduced quantum algorithms that ef-
ficiently break the discrete-log and factoring problems, researchers have set their
sights to cryptographic alternatives that promise to be quantum-resistant such
as lattice-based or code-based cryptography. In particular, cryptographic primi-
tives whose security relies on learning problems, such as Learning Parity with Noise
(LPN), Learning with Errors (LWE), and the closely related Ring-LPN, are re-
ceiving great attentions as they are built on supposedly hard problems.1 More-
over, Impagliazzo and Levin showed that cryptography is only possible if efficient
learning is not [IL90]. Besides the absence of an efficient LPN-solving quantum
algorithm, LPN-based constructions are desired as they can be efficiently imple-
mented using mainly XOR (‘exclusive or’) operations, thus achieving popularity
in lightweight cryptography on constrained, low-powered devices. However, most
LPN constructions are inclined towards asymmetric cryptography and they have
their own disadvantages. These include the requirement to produce and extract
randomness (cryptographically secure bits) from an entropy-limited source, caus-
ing a significant overhead cost [Hen+12; Sho99], and that they also often require
large public keys.

Bogos, Korolija, Locher and Vaudenay [Bog+21b] proposed Firekite, a syn-
chronous symmetric cipher, using an LPN-based PRNG which requires only one
cryptographically strong bit vector to construct the secret matrix key. A small key
size is attained by moving from an LPN problem to a Ring-LPN problem [Hey+07].
Their study conjectures that the corresponding Ring-LPN instance remains hard to
solve when using said matrix instead of a fully random matrix. They demonstrated
that using the Firekite noise distribution for an LPN instance is still secure and
there is a ‘partial’ transformation to an LPN instance. Using the best BKW-style
algorithm proposed by Levieil and Fouque [LF06a], Firekite’s designers estimated
the complexity to break the transformed LPN instances, thus derived concrete
complexity results for attacking their cipher. The cipher’s efficiency was tested in
terms of the throughput, which is the number of bytes encrypted or decrypted
per second using both desktop computers and FPGAs. They also showcased that,
given dedicated hardware, the Firekite PRNG can be parallelized, hence through-
put improved substantially for larger parameters.

One can draw many parallels between Firekite and the closely related LPN-
C [GRS08d]; in particular, both involve computing a noisy product using a secret
random matrix M and a random error vector e. However, LPN-C further re-
quires an error correcting code C and the error vectors are drawn from a Bernoulli
distribution, as opposed to being bounded as in the Firekite PRNG. This could
make the decrypting process fail once the error weight exceeds the code’s error
correcting capacity. This drawback could be amended by truncating the binomial
distribution to make sure not too many bits are set in the error vectors. How-

1LPN with adversarial errors is NP-hard.
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ever, it is speculated that doing so may have a negative impact to the security of
LPN-C [Bog+21b]. Furthermore, LPN-C inherently requires a large random se-
cret matrix and samples two uniformly random vectors for every invocation of
the encryption algorithm. Hence, it becomes infeasible to implement it efficiently
when implemented in a constrained environment. Firekite, besides avoiding such
undesirable features, surpasses LPN-C by not requiring fresh random bits for each
output block.

Even more important than constructing schemes that are potentially quantum
secure, it is crucial to try to attack them with the most suitable approaches to better
understand their security.

1.1 Contributions

In this work, we propose both distinguishing and key-recovery attacks for Firekite.
We observe that the secret matrix is fixed throughout every round of encryption.
Hence, if the vector components in the internal states collide to the zero codeword,
the outputs of Firekite, when combined together appropriately, result in unusually
low weight sums and can be detected. In other words, finding such occurrences
amounts to solving a birthday paradox problem with a specific target weight.

We then consider the secret matrix as the generator for a code and by care-
fully determining which positions in the above combinations are free of errors, we
describe a key-recovery attack with a slightly higher complexity than that of the
distinguishing attack.

As an example, we apply the distinguishing attacks on the Firekite cipher with
specific parameters that target 80-bit and 128-bit to understand better Firekite’s
security. In particular, we launch both a distinguishing attack and a key recovery
attack on parameters n = 16384,m = 216, k = 216 with complexity 268.87 and
269.97, respectively. As there are many choices of parameter sets for each security
level, the complexity numbers vary a bit depending on selected parameter sets.

1.2 Related work

Due to their difficulty, either proved or conjectured, LPN and Ring-LPN have
made their way into many cryptographic constructions, such as human identifi-
cation protocols, which were firstly introduced by Hopper and Blum [HB01b],
later modified and improved to HB+ and HB# [JW05b; KS06a; GRS08b]. Re-
cent LPN-based encryption schemes that can be found are Helen by Duc and
Vaudenay [DV13b], or LPN-C by Gilbert et al. [GRS08d]. Using the Ring-
LPN variant, Heyse et al. [Hey+12] proposed an efficient two-round identifica-
tion protocol in constrained environments, called Lapin. One can also find LPN
useful in other applications, e.g., message authentication codes (MACs) [Kil+17;
Dod+12], pseudo-random generators [App+09b; Blu+93], or CCA-secure public-
key encryption schemes [YZ16].
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Since its introduction, LPN has drawn a plethora of LPN-solving studies with
different approaches. It is natural to see LPN as a decoding problem; hence,
a generic decoding technique applies. Attacks on LPN can be categorized as
Information-set decoding (ISD) or BKW-type algorithms, and they prove advanta-
geous in different scenarios, namely, low noise-rate and constant noise. Information-
set decoding was first introduced by Prange [Pra62], and further improved by
Leon [Leo88], Lee and Brickell [LB88] and Stern [Ste93]. Recently, several meth-
ods have been proposed to achieve better attacks, to name a few, Ball-collision tech-
nique by Bernstein et al. [BLP11], representation technique by Becker, Joux, May,
Meurer [Bec+12a], or the state-of-the-art algorithm [BV15]. On the other hand,
BKW began with the foundation laid by Blum, Kalai, and Wasserman [BKW03a].
Besides the improvement by Levieil and Fouque who usedWalsh-Hadamard trans-
form to recover several bits of the secret vector, using a limited number of queries,
notable advancements can be found such as the use of covering codes by Guo et
al. [GJL14], or on the use of the Generalized birthday attack (GBA) [Wag02] as in
[Kir11a].

Generalized birthday attack is one of the most pertinent generic attacks in
cryptology, in particular, analyzing the security of an LPN-based cryptographic
scheme. There have been many notable works related to the generalized birthday
problem. Our study is inspired by the seminal works of Wagner [Wag02] and May
et al.’s approximate k-list algorithm [BM17b].

1.3 Organization

The paper is organized as follows. Section 2 presents preliminary and background
knowledge regarding the LPN problem and its variants such as Ring-LPN. A brief
review of the LPN-based Firekite PRNG, and how it gave rise to the Firekite syn-
chronous stream cipher follows. We then describe our idea, and formally analyze
our attack for Firekite in Section 3. In Section 4, we attack different parameters
proposed for Firekite and verify our approach by a simulation with smaller param-
eters. We describe our key-recovery attack in Section 5 and discussions on how to
improve Firekite finally concludes our work.

2 Background

Whereas the LPN problem usually finds its cryptographic applications in the public-
key domain, we will be interested in its application in symmetric cryptography. In
particular, we have seen constructions of a few synchronous stream ciphers [GRS08d;
Bog+21b] based on LPN.

A synchronous stream cipher is a symmetric cipher, in which a stream of pseu-
dorandom bits is generated independently of the plaintext and ciphertext mes-
sages, and then bitwise XOR-ed to the plaintext, to encrypt, or to the ciphertext,
in order to decrypt. Cryptanalytic attacks either aim to distinguish the output
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of the pseudorandom bit generator from random source, recover the state of the
pseudorandom generator, or recover the key. As known plaintext for a segment
of ciphertext implies knowledge of the keystream for the same segment, a known
plaintext attack of a synchronous stream cipher assumes that a large part of the
keystream is available to an attacker which is only limited by the maximum num-
ber of keystream bits allowed to be output for a same key. Distinguishing attacks
[HJB09] on the (known) keystream are relevant to the security of stream ciphers as
well: depending on the nonranomness detected, some information on the plain-
text may be leaked. For some stream ciphers, a distinguishing feature can even be
elaborated to a key recovery attack, as is the case for the distinguishing property
we shall derive for Firekite.

2.1 The LPN problem

LPN is an important problem in cryptography. It appears as one of main problems
on which we base post-quantum cryptography. Due to the existence of fast algo-
rithms for quantum computers that can solve the factorization and the discrete
logarithm problems [Sho99], the LPN problem (and the related LWE problem),
including its different versions, are of great interest. No fast quantum algorithm
that solves the LPN problem is known. Although current omnipresent symmetric
encryption schemes such as AES will likely not be rendered obsolete in the near
future, studies in post-quantum cryptography, namely the aforementioned works,
are of absolute necessity. We need post-quantum cryptographic primitives to have
efficiency, confidence, and usability [Ber09].

Cryptographic constructions based on LPN are also appealing, since only sim-
ple operations such as bit-wise addition (XOR) and scalar products are used. This
can give rise to efficient algorithms or protocols.

The LPN problem can informally be described as the problem of solving a
noisy binary system of equations. We formally define it below.

Let Berη be the Bernoulli distribution with parameter η ∈ (0, 12) and a bit
e ← Berη be such that Pr[e = 1] = η, Pr[e = 0] = 1 − η. Denote by
x U←− {0, 1}m the event that a vector x is drawn uniformly from {0, 1}m.

Definition 9. (LPN oracle). Let x U←− {0, 1}m and η ∈ (0, 12). An LPN oracle
ΠLPN for x and η returns pairs of the form(

g U←− {0, 1}m, 〈x,g〉 ⊕ e
)
,

where e← Berη, and 〈x, g〉 denotes the scalar product of vectors x and g.

Definition 10. (LPN problem). Given an LPN oracleΠLPN with parametersm and
η. The (m, η)-LPN problem is finding the secret vector x and is said to be (T,N, δ)-
solvable if there exists an algorithm A asking for at most N oracle queries, using time
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at most T and
Pr
[
A(ΠLPN) = x : x U←− {0, 1}m

]
≥ δ.

The definition above is known as the search version of the LPN problem. In
the decisional version of the LPN problem, the objective is to distinguish pairs
from ΠLPN from uniformly random samples. The search and decisional versions
are proved to be computationally equivalent [KS06a].

We briefly look at a subclass of LPN problems called Ring-LPN which proves
to be useful in general and specifically used in the Firekite PRNG. Let f be a
polynomial over Z2 and R = Z2[x]/(f) denote the quotient ring. Hence R
consists of all polynomials over Z2 of degree less than that of f . We say r ← BerRη
if the coefficients of the ring element r ∈ R are assigned independently following
the distribution Berη. If r is drawn uniformly from R, we write r U←− R. The
Ring-LPN problem can be defined similarly to the standard LPN problem.

Definition 11. (Ring-LPN oracle). Let s U←− R and η ∈ (0, 12). A Ring-LPN oracle
ΠRing-LPN for s and η returns pairs of the form

(r
U←− R, r · s+ e),

where e← BerRη .

Definition 12. (Ring-LPN problem). Given a Ring-LPN oracle ΠRing-LPN with
parameters η and a polynomial ring R. The Ring-LPN problem is finding the secret
polynomial s ∈ R and is said to be (T,N, δ)-solvable if there exists an algorithm A
asking for at most N oracle queries, using time at most T and

Pr [A(ΠRing-LPN) = s] ≥ δ.

It is worth pointing out the essential difference between LPN and Ring-LPN.
If we query the LPN oracle N times, then we can collect an m×N matrix G =(
gT
1 . . . g

T
N

)
and each column is generated independently. In the case of Ring-

LPN, only one polynomial r is generated uniformly random in R. If we consider
a polynomial as its coefficient vector, only the first column r is drawn uniformly
random . The other columns are obtained via shifting r [Hey+12]. While the
LPN problem has been shown to be NP-hard in the worst case [BMT78b], the
hardness of Ring-LPN is not known. However, there is a reduction from Ring-
LPN to LPN and the assumption is that Ring-LPN is also hard.

2.2 Firekite’s PRNG and Firekite construction

We recall that the decisional version of the LPN assumption can be interpreted as
one can not efficiently distinguish an LPN oracle from a source providing random
bit vectors of length m+ 1. Naturally, it can be extended into stating that distin-
guishing a noisy product of an m×n matrix M and a secret vector v, i.e., vM+ e
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from a random n-bit vector in Z2, where e is a n-bit noise vector is hard. As an
example, LPN-C further used a [k, n] error correcting code C with a generator
matrix G to encode a plaintext x to a ciphertext c through

c = xG+ vM+ e.

However, this construction inherently asks the source to produce random v
and e for encrypting a single plaintext. The Firekite PRNG circumvents this prob-
lem by extracting both v and e from the noisy product and feeding them iteratively
into the next encryption invocations. Out of n bits, one can spare m+ k · logn
bits to initialize the next round of Firekite.2 Let || denote the usual concatenation
of vectors. We write

vM+ e = (g||v′||ce). (1)

Assuming n � m, one can split the noisy product into three components as in
(1), then m bits are used for producing the next vector v′. Since e is only required
to be a sparse n-bit vector, we can have a compact representation of the next noise
vector, called ce. Then, the remaining bits, forming g, are the PRNG’s output.
We are now in the position to describe the Firekite PRNG formally.

Letm, n, and k be some integer parameters, where n� m and n is a power of
2. A secret key M is a binary matrix of size m×n, and w is a vector of length m+
k logn < n. Together, they form a pair (M,w), the state of the PRNG. We define
w = v||ce, where v and ce are of length m and k logn, respectively. As stated
above, M is fixed, and w is updated for every iteration. It is straightforward to
assign v = v′. To get the next error vector e, we further parse ce = c1||c2|| . . . ||ck
where ci is of length logn. Hence, each ci can be seen as the binary presentation
of a non-negative integer less than n. Therefore, ce encodes an n-bit error vector
of weight at most k. In particular, let bcj be the unit vector of length n, where
the bit at the position represented by cj is 1. Then the error vector e is defined as
e =

∨k
j=1 bcj . Note that this construction implies e is not a Bernoulli distributed

error. The execution of the Firekite PRNG is described by Algorithm I.1.
At each iteration, the PRNG’s input is its state (M,w), where the first m

bits and the remaining k logn bits of w are set to be v and ce respectively. Then
the error vector e is derived from its concise representation ce and the noisy n-
bit product is computed as vM+ e. This vector is again parsed into g and w′ of
length d = n − m − k logn and m + k logn, respectively. The internal state
is then updated to (M,w′) and g is the output of the PRNG. The number r of
randomization rounds is needed to guarantee that v is free from significant biases
when Firekite begins to output its keystream [Bog+21b].

Firekite is a synchronous stream cipher that makes use of this PRNG to pro-
duce the d-bit keystream g directly. Therefore, for each invocation, d-bit data
of a plaintext is encrypted, and the next output of Firekite depends on the up-

2Throughout the paper, log(.) denotes logarithm to base 2.
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Algorithm I.1: Firekite PRNG
Input: An m× n secret matrix M and a nonce w, r > 0 :

randomization rounds.
1 while r 6= 0 do
2 Parse: w = v||c1||c2|| . . . ||ck;
3 e←

∨k
j=1 bcj ;

4 g||w′ := vM+ e; // Randomization
5 w← w′;
6 r ← r − 1;

7 while true do
8 Parse: w = v||c1||c2|| . . . ||ck;
9 e←

∨k
j=1 bcj ;

10 g||w′ := vM+ e; // Generating keystream
11 w← w′;

Return: g

dated internal state. The designers pointed out that, for practicality, the parame-
ters m,n, and k need to be large which in turn makes the secret key M big. In
order to solve this problem, they proposed the following technique, which turns
the LPN instance into a Ring-LPN instance. Consider R = Z2[X]/(Xb − 1),
i.e, the polynomial ring with binary coefficients reduced modulo Xb − 1 such
that (Xb − 1)/(X − 1) is irreducible. It is well known that every polynomial in
R can be represented by its coefficient vectors in Zb

2. Pick q1
U←− Zb

2 and define
qi := Xi−1q1, i = 1, ...b, meaning that we shift the entries in the coefficient
vectors q1 by i − 1 times. Hence, we can construct a b × b matrix Q by shifting
the first row to the left consecutively b− 1 times. The secret matrix M is obtained
by generating the first m rows, then dropping the last b−n columns of Q. There-
fore, the secret key of Firekite PRNG is, in fact, the random b-bit vector q1 rather
than an m× n matrix M. The designers conjectured that using such M does not
substantially reduce the security compared to a fully random matrix M.

Table 1 shows a few sets of suggested parameters for Firekite that correspond
to 80 and 128 security bit levels. Other proposed parameter sets can be found in
[Bog+21b].

To derive an estimation of the concrete security of Firekite, one faces two
problems: first, the noise vectors from Firekite has weight at most k and the noise
distribution is not binomial, as opposed to a standard LPN instance. Second,
an adversary only sees a part of the noisy product. Therefore, it is necessary to
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Table 1: Firekite’s parameters for 80 and 128-bit security with the properties in terms of
key size b, and number of randomization rounds r.

Parameters Properties
m n k Key size (b) r Security level

216 1024 16 1061 18 82.76
216 2048 32 2053 18 82.76
216 16,384 216 16,421 21 80.68
352 2048 32 4099 18 129.07
352 8192 120 8219 18 128.99
352 16,384 228 16,421 18 128.93

prove that using Firekite noise distribution for an LPN variant is still hard, and
the underlying problem of solving Firekite is as hard as LPN.

The first problem is solved as follows. Let ∆(e) denote the Hamming weight
of an n-bit vector and ej the j-th bit of e. If e comes from Firekite and assume

each ce is uniformly distributed, then Pr[ej = 0] =

(
n− 1

n

)k

. Therefore, the

expected Hamming weight of the Firekite noise (denoted by ∆Firekite(e)) is

E[∆Firekite(e)] = n

(
1−

(
n− 1

n

)k
)
,

and one can show that

2

3
k < E[∆Firekite(e)] < k.

In a standard LPN problem with parameters η and m, E[∆LPN(e)] = ηm
and Pr[∆LPN(e) = bE[∆LPN(e)]c] ∈ Ω(1/n). Therefore, given such an LPN
instance, we set k such that ηm ≤ k, e.g., k := 3

2ηm. Then the noise of this LPN
instance could come from the Firekite noise distribution with probability at least
Ω(1/n). In other words, if the LPN instance with the Firekite noise distribution
can be broken efficiently, any standard LPN instance can also be broken withO(n)
more work.

As for the underlying problem of solving Firekite, Firekite’s designers were able
to show that it is at most as hard as the LPN problem, and they also conjectured
that the reverse is also true [Bog+21b]. Using this transformation to attack Firekite
with the most efficient LPN-solving algorithm, namely the one by Levieil and
Fouque [LF06a], they were able to derive the concrete proposed parameters for
the different security levels.
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2.3 The problem of observing noisy codewords from an unknown code

The task of recovering partially the secret matrix M (by observing vectors gi) can
be seen as identifying an unknown code by observing noisy codewords. The prob-
lem often arises in different contexts [MGB12], especially in analyzing cryptosys-
tems where encryption involves error-correcting codes and the transmission is car-
ried over a noisy channel (e.g., a binary symmetric channel). General approaches
consist of three steps: first, arranging noisy codewords as rows of a matrix, then
running the Gaussian elimination, and finally from the non-echelon part finding
sums of vectors that are candidates to construct dual codewords (i.e, parity-check
equations). Instead of looking at only columns that sum to 0, Sicot, Houcke
and Barbier argued that sparse sums of columns can also be candidates for be-
ing dual codewords [BSH06; SHB09]. Therefore, the last step can be reduced to
an instance of the well known close neighbors search problem. Beside the projec-
tion method proposed by Cluzeau and Finiasz [CF09], which aimed to find sparse
sums of p columns (with complexity of order Ω(np/2) when p is even) that are
equal in some positions using birthday paradox and hashtables, there have been
many improvements and extensive studies to the close neighbors search problem
recently. In particular, one being the Dubiner method which later was applied by
Carrier and Tillich in their generalized approach [CT19]. Their algorithm only
performed a partial Gaussian elimination for the second steps. The argument is
that the Gaussian elimination increases the noise by combining noisy codewords,
hence it is more likely to obtain sparse sums in the early stage of the Gaussian elim-
ination and minimizing the dual codewords that might have been undetected by
Sicot-Houcke-Barbier algorithm [CT19]. Moreover it also allowed them to find
dual codewords of much larger weight (compared to the full Gaussian elimination)
with reasonable complexities.

In practice, the recovery of an unknown code by observing noisy codewords
concerns useful families of codes, such as cyclic codes, convolutional codes, turbo
codes, or the ubiquitous LDPC, which is important as finding low-weight dual
codewords is essential in determining communication components such as un-
known interleaver [BSH06; Tix15] or reconstructing other families of codes.

In the next section we introduce a new method, namely finding a small num-
ber of noisy codewords summing to the zero codeword through a generalized birth-
day type of algorithm.

3 The proposed distinguishing algorithm

In this section, we aim to give a brief description of the idea used in our distin-
guishing attacks on Firekite. We firstly observe that the secret key matrix M is
fixed throughout the rounds of Firekite; hence, the keystream output by Firekite
PRNG is subjected to accumulating non-randomness. Let us look at the Firekite
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PRNG, fulfilling
vM + e = (g||v′||ce),

where v′ and ce are used in the next iteration by assigning v′ = v and e =∨k
j=1 bcj , and g is the PRNG’s output. In the initial part of the attack, we con-

centrate on assuming the knowledge of

g = vM′ + e′,

where g is a known d-bit vector, M′ is now considered as an m× d secret binary
matrix (obtained from the first d columns of the original M matrix) and e′ is a
secret d-bit noise vector, being the first d positions of e. It is known that∆(e) ≤ k
(which is small); hence, the weight of e′ is also small. The expected weight of e′

denoted by k̂, where k̂ = k·d
n since it is assumed that the ones in e are uniformly

distributed among all d positions.
In a synchronous stream cipher attack, we assume that an adversary has access

to a long output stream, which means access to a large number of d-bit vectors g.
The set of these vectors is written as {gi, i = 1, . . . , S}, where now gi = viM′+e′i
and for some S to be addressed in the following subsections. We first sketch the
ideas behind our distinguishing attack, i.e., given an aforementioned set of vectors,
decide whether they originate from Firekite or if they are random vectors.

Our goal is to find a subset of gij vectors, j = 1, . . . , `, such that the cor-

responding
∑`

j=1 vij = 0, i.e., we find a set of noisy codewords such that the
underlying information vectors sum to zero. If ` vectors vij , j = 1, . . . , `, sum to
zero, then the sum of the corresponding gij is expected to be of weight cω = d`·k̂e
with nonzero contributions coming only from the errors e′ij . Indeed, we then have

∑̀
j=1

gij =
∑̀
j=1

vijM
′ +
∑̀
j=1

e′ij =
∑̀
j=1

e′ij .

Therefore, when ` is not too large, e.g. ` = 4 or ` = 8, the expected weight
in
∑`

j=1 gij will be low if
∑`

j=1 vij = 0. Since d is much larger than cω (with
proposed parameters for Firekite), such a weight is very unlikely if the vectors gij
are random vectors. In the Firekite PRNG, such a collision of vectors of length
m (i.e, with probability proportional to 2−m) guarantees a low weight vector of
length d. It is only intuitive to deduce that we can detect such occurrences more
frequently than what is expected in the random case.
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3.1 A basic algorithm for finding noisy codewords summing to the zero
codeword

Recall that we want to find ` different gij vectors, j = 1, . . . , `, such that the as-
sociated unknown vectors vij sum to zero. Our approach is built from ideas from
the generalized birthday attack [Wag02] and the BKW algorithm [BKW03a].
A different but related approach is also May et al.’s Match-and-Filter algorithm
[BM17b].

In a simplified description following [Wag02], we set up ` (` = 2t is a power
of 2) lists of size 2c filled by gi vectors. We then combine the lists pairwise, re-
sulting in a new list containing vectors created as a sum of two vectors, one from
each initial list, such that some c predetermined positions are all zero. The ex-
pected number of vectors in the new list is 2c. After the first step, we have `/2
lists. We then perform the same procedure again, reducing another c positions to
zero until one single list remains, i.e, after t steps. In the remaining list, we will
finally examine whether there are vectors

∑`
j=1 gij that are candidates to satisfy∑`

j=1 vij = 0. In fact, they are quite easily detected, since if this is the case then∑`
j=1 gij =

∑`
j=1 e

′
ij , which has very low weight.

As in the BKW algorithm framework, one may use the same list for gi vectors
and we increase the list size to roughly 3 ·2c. Starting with a list L(0), we can write
up a sequence of updated lists L(0) → L(1) → L(2) · · · → L(t), where in each
step we reduce another c positions. This means that L(i) have vectors where the
first i · c positions are all zero. On average, there are three vectors that collide in
given c positions. Therefore, we can have three combinations for such vectors and
the size of L(i) can be kept (hence, the motivation for the factor 3). We formally
describe this approach in Algorithm I.2.

Figure 1 and Figure 2 are visualizations of the Combine step for the (i−1)-th
list L(i−1) and the filtering for the last list, respectively.3

We need to consider complexity and memory of the algorithm. Let this com-
putational complexity measured in simple operations be denoted C and the used
memory in bits be denoted Mem. Its main parts are theL(i) = Combine(L(i−1))
steps in the loop. We assume that the vectors in the list L(i−1) are organized in
a hash table. We have that the first (i − 1) · c positions are all zero in all vectors
in L(i−1), and they are again sorted in different buckets in the hash table accord-
ing to the value of the next c positions, i.e., position (i − 1) · c to i · c − 1, for
i = 1, . . . , t. The Combine step now creates new vectors for the new list L(i)

by adding together all possible pairs that are stored in the same bucket. This will
cancel out another c positions so that vectors in L(i) start with i · c zeros. New
vectors are created until the listL(i) has cardinality 3·2c and the sorting procedure

3Inspired by Erik Mårtensson’s poster ”Coded-BKW with Sieving”[Mår18].
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Algorithm I.2: t-step Distinguisher

Input: A list L(0), with gi ∈ Zn
2 , i = 1, . . . , 3 · 2c (|L(0)| = 3 · 2c),

parameters k, d, `, t = log l, cω = d `·k·dn e.
1 for i = 1, . . . , t do
2 L(i) = Combine(L(i−1)) ; // Combine list, cancelling c

bits.

3 minweight = k · `;
4 for g′ in L(t) do
5 if HammingWt(g′) ≤ minweight then
6 minweight = HammingWt(g′) ; // Filtering low weight

sums.

7 if minweight ≤ cω then
Return: ‘Firekite’

8 else
Return: ‘Random’

0 · · · 0
i · c

0 · · · 0, 1

· · ·

0 · · · x1 · · · xc

· · ·

0 · · · 1 · · · 1

(i− 1) · c

0 · · · 0 x1 · · · xc

i · c

0 · · · 0 0 · · · 0

XOR pairwise

A vector in L(i−1)

2c buckets

A vector in L(i)

Figure 1: Combine for L(i−1).

is repeated for the next iteration.4 The complexity of one Combine step is then
3 · 2c bit-wise additions of vectors of length at most d and storing the result in
memory. We adopt Firekite’s designers’ notation by letting p be the word-length of

4The input could be not uniformly distributed and we might have more combinations than 3·2c.
If we obtain significantly fewer vectors after Combine (unlikely) due to input non-uniformity, the
list size gradually decreases and Algorithm I.2 might fail.
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t · c

0 · · · 0

0 · · · 0

L(t)

Filter for low weight
| · | ≤ cω

Figure 2: Filter L(t) with cω.

a bit-wise addition operation, i.e, the number of bits for which an XOR operation
can be computed.5. We write the cost of one d-bit XOR operation as (1+bd/pc)
This procedure is repeated t times in Algorithm I.2. The final check for low weight
vectors actually does not need to go through all buckets, but only those with a low
weight (for instance, one can sort the vectors in L(t) by their next c positions).
This cost is then much smaller than the previous steps and can be disregarded.
The complexity can thus be estimated as

C = t · (3 · 2c) · (1 + bd/pc). (2)

The required memory M is the storage of two lists, altogether at most M =
2 · 3 · 2c · d in bits. In the next subsection, we investigate the success probability
of the distinguisher.

3.2 Parameter choices and the success probability of the proposed algo-
rithm

Algorithmic steps

Since the added noise in the
∑`

j=1 gij =
∑`

j=1 vijM
′ +
∑`

j=1 e
′
ij
=
∑`

j=1 e
′
ij

expression becomes significant as ` grows large, a low-weight sum from Firekite
will become hard to distinguish as ` grows (from the random case). We hence fix
the number of algorithmic steps t to 2 or 3, corresponding to ` = 4 and ` = 8 in
the proposed algorithm, respectively.

The required Firekite output observations

A vector formed as
∑`

j=1 gij =
∑`

j=1 vijM
′ +
∑`

j=1 e
′
ij

=
∑`

j=1 e
′
ij

will be
called a zero sum vector. Furthermore, considering a sum of error vectors, e.g.,∑`

j=1 e
′
ij

, we say that a position is error free mod 2 if
∑`

j=1 e
′
ij

is zero in that
position; we say that a position is simply error free if all e′ij are zero in the position.

5For example, the Advance Vector Extension AVX-512 allows XOR to have 512 bits computed
per cycle.
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It can happen that a double error event occurs, i.e., two ones in the same position
and 1 + 1 = 0. The required Firekite output observations (i.e., |L(0)| = 3 · 2c)
has to be chosen such that zero sum vectors can be found after Algorithm I.2.
Moreover, they must be error free mod 2 in the first t ·c positions. This probability
is denoted Pnf (noise-free), and we investigate this probability for both case ` = 4
and ` = 8.

The case ` = 4 Starting with ` = 4, we are interested in knowing if a zero sum
vector can be found in the final list. The expected number of zero sum vectors in
the final list is denoted by N . We have

N =

(
3 · 2c

4

)
· 2−m · 3 · 2−c · Pnf (3)

such zero sum vectors, which can be roughly explained as follows: there are
(
3·2c
4

)
possible combinations from the initial list. Among all such 4-sums, only a fraction
2−m will correspond to a zero sum in vij , j = 1, . . . , 4. Then, there are 3 ways to
choose 2 pairs as in Algorithm I.2. We consider two particular pairs {gi1 , gi2} and
{gi3 , gi4} summing to a zero sum, we further condition gi1and gi2 to cancel in
the first c bits with probability 2−c (the other pair automatically follows). Finally,
we assume that e′i1 + e′i2 + e′i3 + e′i4 is zero in the first 2c positions, i.e, error free
mod 2.

Pnf can be bounded by the probability that the first 2c positions are error
free. For each e′i1 , there are at most k bits set, uniformly distributed among n

positions,6 so the probability of one error vector, being error free in the first 2c
position, is roughly ((n− 2c)/n)k. Therefore, we have

Pnf ≥ ((n− 2c)/n)4k.

Lemma 1. When ` = 4, we expect to have

N >

(
3 · 2c

4

)
· 2−m−c · 3 ·

(
n− 2c

n

)4k

(4)

zero sum vectors in the final list in Algorithm I.2.

The case ` = 8 Next, we investigate ` = 8. Similar to the case ` = 4, we have:

N =

(
3 · 2c

8

)
· 2−m · 105 · 2−4c · Pnf. (5)

6The expected weight of e′ from Firekite is smaller than k, but we can compute probabilities
from error assignment in e.
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The explanation is again as follows: the number of different sums of 8 vectors that
can be constructed is

(
3·2c
8

)
. Among them, we expect a fraction of 2−m summing

to the zero case. There are 7 · 5 · 3 = 105 ways to form 4 pairs of 8 vectors.
Consider the particular pairing {gi1 , gi2}, {gi3 , gi4}, {gi5 , gi6}, and {gi7 , gi8}.
A sum constructed from this pairing will be in the final list of Algorithm I.2 if
gi1 +gi2 , gi3 +gi4 and gi5 +gi6 are all zero in the first c positions. Then gi7 +gi8
has to be zero in the first c positions. The probability of this event for each choice
of fixed indices is 2−3c. Similarly to the 4-sum, now (gi1 + gi2) + (gi3 + gi4)
must sum to zero in the next c positions, with probability 2−c. Finally, we also
need the sum of error vectors to be error free mod 2 in 3c positions.

As before, Pnf can be bounded by the probability that no errors occur in the
first 3c positions. The probability of such a distribution for a single error vector is
then roughly ((n− 3c)/n)k and for all eight of them we have

Pnf ≥ ((n− 3c)/n)8k.

Lemma 2. When ` = 8, we expect to have

N >

(
3 · 2c

8

)
· 2−m−4c · 105 ·

(
n− 3c

n

)8k

(6)

zero sum vectors in the final list in Algorithm I.2.

For ` = 8 there are more errors in general, meaning that Pnf is much smaller
compared to ` = 4. This gives a stronger motivation for examining other error
patterns such as the double errors canceling out. In particular, the sums from our
algorithm can have 1 + 1 = 0 in the first 3c bits. More specifically, if two er-
ror vectors have a one in the same position, their combination still survives the
Combine step in Algorithm I.2. For some parameters proposed by Firekite’s de-
signers, certain double error events are even more likely than having no error at all
in the first 3c positions and thus should not be neglected. Since the error vectors
are sparse (e.g., k = 16 � n = 1024), if a double error occurs at a position, it
most likely happens only once, i.e, coming from one pair of gij (or equivalently,
e′ij ). Having four ones in the same position is exceedingly rare for interested pa-
rameters (see Appendix, Example 1). Therefore, we can have a lower bound of Pnf
by considering only non-repeating double errors. Let us look at the simple case
where errors from Firekite have exactly k bits set.7

Assume we have ε ≤ k double errors, and the probability is denoted by Pε.
Then Pε is equal the sum of all possible error patterns/combinations of gi vectors,

7The expected weight of errors from Firekite can be smaller than k. Hence using binomial
expressions, while not entirely correct, gives a good approximation.
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provided they result in ε collisions. One writes

ε =
∑
i,j>i

εij ,

where εij denotes the number of double errors between gi and gj . The total num-
ber of errors in 3 · c positions of gi is εi =

∑
j εij . Hence

Pε =
∑

{(εij)}

Pε,{(εij)},

where {(εij)} is an eligible error colliding pattern of gi vectors with the corre-
sponding probability Pε,{(εij)}.

Lemma 3. Let gi, i = 1, . . . , 8 be binary vectors. Then, the noise-free probability of∑8
i=1 gi in the first 3 · c bits is

Pnf =
∑

ε=0,...,k

Pε =
∑

ε=0,...,k
{(εij)}

Pε,{(εij)}, (7)

where

Pε,{(εij)} ≈
∏8

i=1

(
k
εi

) (
3c
n

)εi (n−3c
n

)k−εi

(
ε1
ε1i

)(
ε2−ε12
ε2i

)
. . .
(
3c−ε1i−...−εi−1i
εi−ε1i−...εi−1i

)(
εi−1−ε1i−1−...εi−2i−1

εi−1i

)(
3c
εi

) .

Proof. Assume ε double errors and a fixed error colliding pattern {(εij)}. Without
loss of generality, we further assume that εi ≥ εj for i < j, i.e., g1 has the most
errors in the first 3c bits. The probability of gi having εi errors in the first 3c bits
is (

k

εi

)(
3c

n

)εi (n− 3c

n

)k−εi

.

We also requires g2 to have ε12 colliding positions out of ε2. This probability
is (

ε1
ε12

)(
3c−ε12
ε2−ε12

)(
3c
ε2

) .

Similarly, for vector g3, the colliding probability is(
ε1
ε13

)(
ε2−ε12
ε23

)(
3c−ε13−ε23
ε3−ε13−ε23

)(
3c
ε3

) .

Generalizing for gi and the lemma follows.
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However, it is not practical to take into account all possible double error
events. For instance, if the expected numbers of 1’s in the first t · c positions
for each error vector is small, e.g., fewer than 2, multiple double error events oc-
cur with decreasingly small probability (from a certain point). Moreover, they
do not contribute substantially to our estimate (Appendix, Example 2). More-
over, an improvement in estimating Pnf only suggests that we need less input for
Algorithm I.2, i.e., the bigger Pnf is, the smaller c to satisfy (5). A reasonable
approximation suffices for us to deduce the necessary initial list size |L(0)| so that
the expected number of zero sums is N > 1.

To illustrate this argument, we consider the case where we have the relative
Hamming weight of the error vectors ei’s in the first 3 · c positions to be slightly
larger than 2 (` = 8). Hence, we focus only on the scenarios of up to 2 double
errors in Figure 3.

(t · c)
· · · 1 · · ·

· · · 1 · · ·

(a) 1 double error

· · · 1· · · 1· · ·

· · · 1· · · 1· · ·

· · · 1· · · 1· · ·

· · · 1 · · ·

· · · 1· · ·

· · · 1 · · ·

· · · 1 · · ·

· · · 1· · ·

· · · 1· · ·

(b) 2 double errors

Figure 3: Illustration for the colliding patterns

One can find the inspiration from Wagner `-tree algorithm [Wag02] in Algo-
rithm I.2, namely, by consecutively canceling out c bits. Wagner argued that one
needs lists of size O(2

m
1+log ` ) to have a solution in the exact `-list birthday problem.

In our algorithm, we need slightly more,8 i.e, O(2
m

1+log `+a
) where a depends on

Pnf. Note that Pnf remains relatively the same if c ≈ m
1+log ` . Therefore, we ini-

tially set c = b m
1+log `c, then raising until we get N > 1. Finally, we verify N > 1

again with Pnf estimated by said c.

The success probability

Previously, we have seen that if we choose parameters suitably, we can detect zero
sum vectors in the final list. We now need to check whether low weight sums
can stem from random vectors. In other words, the zero sums must be easily
distinguished from those coming from the random case.

Assume Algorithm I.2 outputs ‘Firekite’ for the random case. This means that
it has found a vector in the final list of weight at most cω. It is thus of interest
to derive the likelihood of such a vector in the random case. Recall ∆(g) as the

8Wagner showed that one can find α1+log ` more solutions at the expense of α times more work,
provided α ≤ 2m/(log `·(1+log `)) [Wag02].
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Hamming weight of a binary vector g, and let g[i] be the i-bit truncated g (first i
positions). A vector in the final list will have the first t · c positions all zero, but
the remaining positions d− t · c positions are just formed by XOR-ing ` random
bit values; thus, they are independent and uniformly distributed on {0, 1}. The
probability of such a vector having Hamming weight at most cω is

Pr
[
∆(g) ≤ cω : g ∈ Zd

2, g[t·c] = 0
]
=

∑cω
i=0

(
d−t·c

i

)
2d−t·c ,

and the expected number of vectors of weight at most cω, denoted by Nrandom, in
the final list is

Nrandom = 3 · 2c ·
∑cω

i=0

(
d−t·c

i

)
2d−t·c . (8)

Information theoretically, we have an approximation9 as

Nrandom = 3 · 2c ·
∑cω

i=0

(
d−t·c

i

)
2d−t·c ≈

∑cω
i=0 2

−
(
1−H( i

d−t·c )
)
(d−t·c)+c ≈ 2

−
(
1−H( cω

d−t·c )
)
(d−t·c)+c

,

where H is the binary entropy function and H(p) = −p log(p)−(1−p) log(1−
p) with p ∈ (0, 1). Therefore, if there exists a low weight sum in the final list L(t)

and Nrandom is ‘vanishingly small’ (i.e., Nrandom � 1), we have shown that the
Firekite’s output vectors are indeed not random. Different values of Nrandom for
various parameters can be found in Table 2.

4 Results for the distinguisher

In this section, we give the results for our distinguishing attack as described in
Section 3 when it is applied to the suggested parameter sets for Firekite.

4.1 Theoretical complexity estimation for the proposed parameters of
Firekite

We investigate the results for Firekite’s proposed parameters. As an example, we
explain our distinguishing attack for the case n = 1024,m = 216, d = 648, k =
16, where the claimed security level is 82.

1. For ` = 4 we derive the following: we pick c = 76, cw = d4 · k̂e = 41,
where k̂ = k·d

n . Let P0 denote the probability of the first 2·c position being

error free. By simply setting Pnf ≈ P0 =

(
n− 2 · c

n

)4k

≈ 2−14.83, we

get N > 1.42 and

9We use 2n
(
n
i

)
≈ 2(1+H(i/n))n. The final approximation is due to overwhelming contribution

of 2−(1−H(cω/(d−t·c)))(d−t·c)+c.
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Nrandom ≈ 2−215.76.

2. For ` = 8 we derive the following: picking c = 62 and similarly, cω =
d` · k · dne = 81, we have Nrandom very close to zero.

As an example, we approximatePnf by the sum of probabilities of no double
errors P0, one double errors P1, and two double errors P2 (ε = 0, 1, 2). As
discussed, many double errors are improbable and we focus on the most
likely cases.

• If there is no double error, P0 =

(
n− 3c

n

)8k

≈ 2−37.02.

• Assume there is one double error occurring. For the colliding pair of
vectors, the probability of having exactly one 1 in the same position
k2

3c

(
3c
n

)2 (n−3c
n

)2(k−1), and there are
(
8
2

)
ways to select a pair/collid-

ing pattern {(εij)}, hence

P1 ≈
(
8

2

)
k2

3c

(
3c

n

)2(n− 3c

n

)2(k−1)(n− 3c

n

)6k

≈ 2−36.09.

• If there are two double errors, then there are two cases: the double
errors happen in one pair or two pairs (note that a vector in the first
pair can appear in the second pair). Let P21 and P22 denoted such
events, respectively, then

P2 ≈ P21 + P22,

where

P21 ≈
(
8

2

)(k
2

)2(
3c
2

) (3c

n

)4(n− 3c

n

)2(k−2)(n− 3c

n

)6k

,

and

P22 ≈ 2

(
8

3

)(
k

2

)(
3c

n

)2(n− 3c

n

)k−2
[
k

3c

(
3c

n

)(
n− 3c

n

)(k−1)
]2(

n− 3c

n

)5k

+

(
8

2

)(
6

2

)(
k2

3c

)2(
3c

n

)4(n− 3c

n

)4(k−1)(n− 3c

n

)4k

.

Therefore, P2 ≈ 2−35.86, and Pnf > P0+P1+P2 ≈ 2−34.65 ≈ 4P0

which gives N > 2.7. The failure probability for this attack when
cω = 81 can be indicated by

Nrandom ≈ 2−90.23.
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Table 2 shows our attack’s complexity and the corresponding Nrandom for a few
sets of parameters suggested by the Firekite’s designers. The number of required
Firekite output observations is indicated by the parameter c. Recall that the theo-
retical complexity is

C = t · (3 · 2c) · (1 + bd/pc).

In their implementation, beside several optimization flags, they also use a com-
pilation flag -mavx2 that allows XOR operations to apply on 256 bits per cycle.
Therefore, in our complexity estimates, we set p = 256.

Table 2: Our distinguishing attack complexity corresponding to a few selected sets of pa-
rameters for 80-bit and 128-bit security of Firekite’s stream cipher.

Parameters c Attacks(log) Nrandom(log)
m n k Security 4-sum 8-sum 4-sum 8-sum 4-sum 8-sum

216 1024 16 82.76 76 62 80.17 66.75 -215.76 -90.23
216 2048 32 82.76 76 62 81.17 67.75 -765.79 -465.74
216 16,384 216 80.68 75 60 83.28 68.87 -9011.62 -6541.71
352 2048 32 129.07 125 101 130.16 106.75 -541.40 -275.94
352 4096 58 128.95 124 99 130.17 105.75 -1739.41 -1150.69
352 16,384 228 128.93 123 99 131.26 107.84 -8510.19 -6023.39

With 4-sum attacks and for small parameters of 80-bit secured Firekite, we
can only refine Firekite’s designer estimates marginally. However, our 8-sum dis-
tinguisher manages to break Firekite for all parameters, except for the smallest
128-bit secure instance, which is n = 1024,m = 352, and k = 16. In par-
ticular, we can find a zero sum with the cost 2107.75 but log(Nrandom) ≈ 83.
Therefore, we were unable to claim that the Firekite’s output is not randomly dis-
tributed as the low weight sums found could easily come from random vectors.
The explanation is that d = n − m − k logn is not so large compared to 8 · k̂
in this case; hence, it is impossible to distinguish from the case of random vectors
gi. In general, 8-sum attack performs slightly better when the parameters n and
k grows (with the same factor, as suggested by Firekite’s designers). This is owing
to the fact that d grows bigger while m remains relatively unchanged; hence we
have even smaller failure probability and bigger error free probability Pnf. In fact,
we need a smaller initial list (3 · 260 compared to 3 · 262) when attacking Firekite
instance with n = 16384,m = 216, k = 216.

These theoretical results above can be improved; larger Firekite parameters
make the double error events more probable. For instance, attacking the parame-
ters n = 16384,m = 352, k = 228 with 8-sum distinguisher, we find that two
double errors (P2) are twice as likely as no error (P0). Therefore, Pnf should be
better approximated by taking, e.g., P3 and P4 into consideration.
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4.2 Simulation results for smaller parameters

We verify our approach and formulas by performing simulations.10 As a toy ex-
ample, we set up a mini version of Firekite with small parameters (where the ratios
n
k are kept constant as in Table 1 and m is also reduced by a similar factor) and
run Algorithm I.2.

Our parameters are m = 52, n = 256, k = 4, b = 269 and r = 15. Recall
that b is the secret key’s length used to generate the first row of Firekite’s secret
matrix M such that (Xb−1)/(X−1) is irreducible in Z2[x] and r is the number
of randomization rounds before Firekite generates its actual output.

• For the 4-sum distinguisher, the filter weight is cω = 11. The parameter c
is chosen so that

N =

(
3 · 2c

4

)
· 2−m · 3 · 2−c · Pnf > 1.

One has P0 =

(
n− 2c

n

)4k

≈ 2−3.5. If we choose c = 18, i.e |L(0)| =

3 · 218, there are, on average, less than 1 bit set of the error vectors in the
first 2c bits. One can safely assume Pnf ≈ P0, and it gives N ≈ 3.6.
The simulation returns, on average, 1.65 low weight vectors after 102 tests.
The discrepancy can be explained as follows: the assumption that we can
keep the list’s size |L(i)| = 3 · 2c is often violated as there are more vec-
tors after every Combine step owing to vectors being not evenly distributed
among buckets. Therefore, ‘good’ combinations that are present in zero
sums might be discarded by chance. Keeping all combinations from Com-
bine, we obtain more low weight sums after filtering with cω (at the cost of
higher complexity) and the simulation is more consistent with the theoreti-
cal estimate. We now look at the probability of 4 random vectors summing
to such sums:

Pr
[
∆(g) ≤ cω = 11 : g ∈ L(2), g[2·18] = 0

]
=

∑cω
i=0

(
d−2·c

i

)
2d−2·c ≈ 2−83.76,

therefore,
Nrandom ≈ 2−64.18.

• For the 8-sum distinguisher, the filter weight is chosen to be cω = 21.
Again, c must fulfill

N =

(
3 · 2c

8

)
· 2−m−4c · 105 · Pnf > 1,

10Our simple implementation can be found at https://anony-
mous.4open.science/r/FirekiteDistinguisher-553B/README.md

 https://anonymous.4open.science/r/FirekiteDistinguisher-553B/README.md
 https://anonymous.4open.science/r/FirekiteDistinguisher-553B/README.md
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where Pnf ≈ P0 + P1 + P2 ≈ 2−7.67. Setting c = 14, meaning |L(0)| =
3 · 214, suffices and gives N > 1.35. It needs to be clarified that in the
8-sum attack’s implementation, the effect of keeping |L(i)| = 3 · 214 is
more visible. In particular, we might discard all ‘good combinations’ when
N is very close to 1. We adapt by allowing |L(1)| and |L(2)| to be at most
2 · |L(0)|, then directly filter combinations from |L(2)| with cω. Therefore,
the complexity is slightly higher than the theoretical estimate provided in
the previous section. We suppose said negative impact can be mitigated
when c is large as the vectors in |L(i)| might be more evenly distributed
among buckets. The simulation returns 1.52 low weight vector on average
after 102 tests.

In the random case, the probability of having a vector having Hamming
weight up to cω is:

Pr
[
∆(g) ≤ cω = 21 : g ∈ L(3), g[3·14] = 0

]
=

∑cω
i=0

(
d−3·c

i

)
2d−3·c ≈ 2−50.16,

which yields
Nrandom ≈ 2−34.58.

5 A key-recovery attack on Firekite

In this section we show a possible way to turn the distinguishing attack into a
key-recovery attack with slightly higher complexity. We focus on the recovery
of the secret m × d matrix M′. First, we recall that the secret matrix M in
Firekite is constructed by choosing a part of the bigger b × b matrix Q as de-
scribed in Section 2. We pick q1

U←− Zb
2 and defined rows in the matrix Q as

qi = Xi−1q1, i = 1, . . . , b, i.e., by shifting the first row to the left consecutively
b− 1 times. The secret matrix M is obtained by dropping the last b− n columns
of Q and keeping only the first m rows. The secret key is only the random b-bit
vector q1 rather than a m × n matrix M. Let the unknown bits in q1 be written
as q1 = (k1, k2, . . . , kb).

More specifically, we can now see that if M = [mij ]m×n then every entry in
the matrix M corresponds to an unknown key bit. As M′ is the first part of M,
the same holds for M′.

We can view M′ as a generator matrix that spans a code C. But there are
many generator matrices spanning the same code. One particular case is when
M′ is transformed to the systematic form, that is M′′ = [I J], where I is the m×
m identity matrix and M′′ = SM′ for some m × m unknown matrix S. We
assume C = {vM′, v ∈ Zm

2 } = {v[I J], v ∈ Zm
2 }. In this case, entries in J are

linear combinations of the secret key bits. Therefore, we consider all entries in J as
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unknown. There is an assumption here that the fist m columns of M′ are linearly
independent, which is adopted.

The key-recovery attack consists of running the aforementioned distinguisher,
finding several zero sum vectors, and then deducing M′. We first show how to
derive the secret key from such zero sum vectors if we assume that the first m
positions are all error free (no double error). Again, a zero sum vector fulfills

∑̀
j=1

gij =
∑̀
j=1

vijM
′ +
∑̀
j=1

eij =
∑̀
j=1

eij .

Therefore, finding a zero sum amounts to knowing the corresponding
∑`

j=1 eij .
We now consider a single gij vector. Its positions can be split in two parts, namely
those for which we know that they are (most likely) error free mod 2 (since the
error vector is zero in this position) and those for which we do not have knowledge
of, since one of the ` involved vectors has an error. Note that the first t ·c positions
are error free, but there are, on average, cω positions where at least one of the eight
vectors will have an error.

If the first m positions are all of the error free type, one can write

gij = vij [I J]+ eij . (9)

We further have roughly d − t · c − cω additional positions to be error free. For
each such position, we can form a linear equation. Denote by Jq the q-th column
of J. Assume a position q > m is error free. Then

gij (q) =
m∑

i′=1

vij (i
′)Jq(i

′). (10)

Here gij (q) denotes position q in vector gij , etc. Since gij (q) and vij are known,
it gives a linear equation in the unknowns of vector Jq. Collecting many such
equations will enable us to derive Jq and eventually, the full J matrix. However,
such approach is not adequate as we have seen in Section 4 that, for interested
parameters, double error probability can not be disregarded. Hence, we need to
consider a more complicated approach where we try to detect columns with double
errors.

Assume we have found N zero sum vectors with the 8-sum distinguisher. Let
the first seven vectors in the first zero sum vector

∑`
j=1 gij be denoted g1, g2, . . . , g7,

the first seven vectors in the next zero sum vector be denoted g8, g9, . . . , g14, and
so forth. We construct a matrix

G =
(
gi
)
i=1,...,7N
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where gi are row vectors.
Now we will examine the columns and the related known error vector for the

corresponding zero sum vector. Recall that the first t·c columns are error free mod
2, by virtue of Algorithm I.2. For the remaining columns, if

∑`
j=1 gij is zero in

the q-th position for all detected zero sum vectors, the corresponding column Gq

is free of ‘direct errors’ and is kept. If it is not true, then we discard the column.
After this process, we have a new matrix G′ of length t · c + U , where U is the
number of columns kept in the previous step. If t · c + U > 7N > m there
will be low-weight codewords in the code spanned by G′. Namely, if 7N > m
then there are linear combinations of rows that correspond to a zero codeword plus
error terms. As we have removed all ‘direct errors’, the only error contribution in
the code must come from double errors.

Each double error will give either a 0 or a 1 as contribution in that position.
Assume there are D double errors in the columns in G′, then we expect to find
codewords in the code spanned by G′ that have weight around D/2. More, be-
cause we can form 2P−m different combinations of rows that sum to zero in the
underlying code, we have 2P−m low weight codewords of weight around D/2.
Finally, every column in G′ can be found to contain a double error or not as fol-
lows. If this position is zero in all (or almost all) low-weight codewords, there is
no double error. Otherwise, we detected a double error in that position. From
this information, it is possible to do a full recovery through additional steps. A
description of this key recovery attack is given in Appendix, Algorithm I.3.

There arises a problem of finding enough columns free of direct errors. When
the length n is small, there will be very few columns free of direct errors and
the length of G′ is not enough to have low-weight codewords. Therefore, in the
following example, we choose a large n instance of Firekite to illustrate our attack.

5.1 Example of the key recovery attack on Firekite with n = 16384

Consider the Firekite parameters choice m = 216, n = 16384 and k = 216.
The attack works as follows. First we run the 8-sum distinguisher to obtain zero
sum vectors. In this case, we need to have slight more than m/7, e.g., 32 zero sum
vectors. Applying (5), we choose c = 60 generating N ≈ 3.5 zero sum vectors
using the 8-sum distinguisher. Instead of repeating the distinguishing attacks 32
times or, equivalently 25 more work, we can instead increase the initial list size
to 3 · 261 to obtain sufficient low-weight sum (N ≈ 41), with an affordable
complexity of 269.87. We denote this cost by Cdistinguishing.

We now consider a matrix G of dimension P = 32 · 7 = 224 consisting
of the gi vectors as its rows and we then remove columns with direct associated
errors. In a zero sum vector, there are 216 · 8 errors inserted, so a positon is error
free with probability (1 − 1/(16384 − 61 · 3))216·8 ≈ 0.899. In our case, we
want the position to be error free in all 32 zero sum vectors, which brings the
probability to about 0.033. Since d = 13144, we can have about 432 columns
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error free. We then form the matrixG′ which is of dimensionP = 224 and length
61 · 3+432 = 615. There will be 2224−216 = 28 codewords in the code spanned
by G′ with support corresponding to the double errors.

By computing the likelihood of double errors, we find that a column in G′

is error free with probability at most 0.99532 = 0.85. For instance, consider a
simple case where there is no non-repeating double error at position j-th of a zero
sum. Then the probability is

1−
(
8

2

)
·

(
1−

(
16383

16384

)216
)2

·
(
16383

16384

)216·6
≈ 0.995

One can expect 615 · 0.15 ≈ 93 columns to have double errors. In con-
clusion, the code spanned by G′ will contain 28 codewords where the weight is
distributed around 47. Finding low-weight codewords in a random binary linear
code is a well-known problem that has been studied extensively. One can use ISD
algorithms to complete the task. For our example, an improved Stern’s ISD al-
gorithm11 yields the bit-complexity estimate, denoted CISD, to be 244.6, which is
small compared to the distinguishing step.

A random linear code with dimension 224 and length 615 will have an ex-
pected minimum distance of about 100 according to theVarshamov-Gilbert bound,
so the low weight codewords would come from the observation above. Finally,
generating say 16 such low weight codewords, we look for the positions where all
the 16 of these codewords are zero. This would be the case for more than 500 po-
sitions and in this way we have identified 500 columns that are completely error
free. Using a selection of them as the information set of the code we can recover
remaining parts of the code M′. The total complexity is therefore

C = Cdistinguishing + CISD ≈ 269.87 + 16 · 244.6 ≈ 269.87.

6 Discussion and Conclusions

Having seen how Firekite is vulnerable to our distinguisher, especially the 8-sum
distinguishing attack, it is natural to ask how we can make Firekite and other
similar ciphers resilient to a generic birthday problem solving algorithm. From
the result and performance of our attacks, there are certain approaches one can
consider. First, we observed thatNrandom, or in other words, the failure probability
inflates when the filtering weight cω grows. That is to say, unless cω is very small
compared to d, it is difficult to distinguish Firekite’s zero sum vectors from those
that could stem from random vectors gi. Therefore, instantiating Firekite with

11The estimate is obtained in a recent work by Andre Esser and Emanuele Bellini [EB22a], where
they unify ISD-algorithm variants (Prange,Stern,MMT,BJMM) in a Nearest-Neighbor framework.
They also provided a complexity estimator for independent parameters.
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larger k can be beneficial. Second, we have discussed that the attack complexity
depends on the parameter c which is solely determined by m (if we fix `), the
number of rows in M. Therefore, if the security level is close to m/(1 + log `),
our attack becomes infeasible. As a contribution to Firekite’s design criteria, we
propose a few modifications as follows.

For small Firekite’s parameters, one can increase k slightly, which yields an
LPN instance with a higher noise rate; therefore more difficult to solve in gen-
eral. In our estimate, larger k suggests a drastic decrease in Pnf and an increase in
Nrandom. It is now exceedingly unlikely to have no error in the first t · c bits and d
becomes smaller, which makes it more difficult to distinguish the zero sum found
by Algorithm I.2 from those stemming from the random case. As an example, by
setting k = 24 for the instance n = 1024,m = 216, our attack was rendered
useless as Nrandom is always larger than 1. This comes at the cost of decreasing
the number of bits encrypted per invocation; hence more instructions need to be
executed per bit. However, larger parameter instances of Firekite are less affected
by this ‘fix’ as d becomes large relatively to k. For instance, our 8-sum attack still
succeeds with n = 16384,m = 216 despite raising k from its original k = 216
to k = 400. We only need to slightly increase |L(0)| = 3 · 267 and we still obtain
a good failure probability as Nrandom ≈ 2−2835. An extreme adjustment such as
k = 600 gives Firekite resistance to our attack. We apply this idea to our simu-
lation with toy parameters to verify the countermeasure (see Appendix, Example
3).

Finally, we may discuss possible future improvements to the proposed attack.
We believe that there can be a possibility to gain some small amount in terms of
decreased complexity by smaller changes in the distinguishing algorithm. One
idea could be to not only allow sums of vectors that sum to zero in c positions, but
also those that have weight 1 in these c positions. Still, it would not change the
complexity significantly, and with modified parameters as suggested above, the
Firekite should meet the intended security level. Moreover, since our approach
relies heavily on GBA, it would be amenable in principle to the quantum search
approach, e.g., using the result in [NS20].
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Appendix

Algorithm I.3: Firekite key recovery algorithm

Input: A list L(0), with gi ∈ Zn
2 , parameters k,m, d,

cω = d8·k·dn e, D/2, G = ∅, E = ∅.
1 for i = 1, . . . , 3 do
2 L(i) = Combine(L(i−1));

3 for si =
∑8

j=1 gij in L(3) do
4 if HammingWt(si) ≤ cω then
5 G← G ∪ {gi1 , . . . , gi7};

6 G = (gj)j=1...|G| ; // constructing G

7 for i = 1, . . . , d do
8 if ∃s ∈ L(3), si = 1 then
9 G← G \Gi; // removing columns with direct error

10 Finding all vectors ei spanned by G that are of Hamming weight less
than D/2;

11 Keep columns of G if ei are all 0 in that position;
12 Recover M′ from G;
13 return M′;

Example 1. (Probability of repeating double error.)
To convince readers that Pnf can be reasonably approximated by taking into ac-

count only non-repeating double error, we give an example where there is 1 double-
error. We consider the probabilities of this event in both cases: the double error comes
from only 2 or 4 vectors out of 8. Our parameters are n = 1024, k = 16, c = 62
(see Section 4 for the choice of c).

The probability of 4 error vectors having a one in the same position in the first 3 · c
bits is:

P1 ≈
(
8

4

)
k4

(3c)3

(
3c

n

)4(n− 3c

n

)4(k−1)(n− 3c

n

)4k

≈ 2−46.19.

The probability of 2 error vectors having a one in the same position in the first 3 · c
bits is:

P ′
1 ≈

(
8

2

)
k2

3c

(
3c

n

)2(n− 3c

n

)2(k−1)(n− 3c

n

)6k

≈ 2−36.09 � P.
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Table 3: Repeating (P1) and non-repeating double errors (P ′
1) probabilities for some pa-

rameters of Firekite.

Parameters Probabilities
m n k log(P1) log(P ′

1)

216 1024 16 -46.19 -36.09
216 2048 32 -44.95 -34.54
216 16,384 216 -33.37 -27.70

Example 2. (Multiple double errors)
Let us compare the probabilities of multiple double errors in the first t · c bits to

justify our assumption that Pnf can be ‘practically’ approximated. We continue with
Firekite parameters in Example 1, with c = 76 (4-sum distinguisher).

The probability of no double error in the first 2 · 76 bits is:

P0 =

(
n− 2 · c

n

)4k

≈ 2−14.83.

The probability of one double error in the first 2 · 76 bits is:

P1 ≈
(
4

2

)
k2

(2c)

(
2c

n

)2(n− 2c

n

)2(k−1)(n− 2c

n

)2k

≈ 2−17.13.

Therefore, P0+P1 ≈ 2−14.57, and more importantly, this ‘better approximation’
of Pnf does not affect our algorithm significantly.

Another example being Pnf in our simulation (Section 4) where n = 256,m =
52, k = 4. For the 8-sum distinguisher, the double error probabilities are:

P0 ≈ 2−8.27,

P1 ≈ 2−9.55,

P2 ≈ 2−11.58.

Example 3. (Improve Firekite by increasing noise level)
Recall in our simulation, the parameters are n = 256,m = 52, k = 4. We

increase k to k = 7 and apply the 8-sum distinguisher again with c = 14. One can
verify, with the new parameters, that

Nrandom ≈ 3.15.

N ≈ 0.03.
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As discussed in Section 4, due to non-uniformity of the input, we exhaust all combina-
tions in the last Combine step. On average, there are 218 vectors in L(3) which raises

Nrandom (in our simulation) to
218

3 · 214
· 3.15 ≈ 18.9. After 102 tests, we observe on

average, 18.8 low weight vectors. Therefore our distinguishing attack does not work.
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Differential cryptanalysis of
Mod-2/Mod-3 constructions

of binary weak PRFs

Abstract

Pseudo-random functions are a fundamental building block in many crypto-
graphic applications. In certain scenarios, a weaker notion (where security is re-
stricted to uniformly random input), but more computationally efficient, called
weak pseudo-random functions, is sufficient. In this work, we present new dif-
ferential attacks on the main binary weak pseudo-random function constructions,
namely the so-called Alternative Mod-2/Mod-3. For the Alternative Mod-2/Mod-
3 wPRF, the best distinguisher proposed by Cheon et al. achieves O(20.21n) com-
plexity, where n is the input length. We show that our attack asymptotically out-
performs this and requires far fewer samples that can be applied in restricted oracle
settings. By minimizing computational complexity, we can achieve O(20.166n)
complexity. Additionally, in a small experiment, we indicate that their proposed
fix of using keys with large Hamming weight is even more vulnerable to our attack.

1 Introduction

A pseudo-random function (PRF), first conceptualized in 1984 by Goldreich et al.
[GGM84], is a keyed function that behaves in all aspects like a true random func-
tion. PRFs are widely used as building blocks to construct different cryptographic

Thomas Johansson, Willi Meier, Vu Nguyen. “Differential cryptanalysis of Mod-2/Mod-3
constructions of binary weak PRFs”. In International Symposium on Information Theory 2023,
Taipei, Taiwan. 2023 IEEE International Symposium on Information Theory (ISIT), pp.
477-482, IEEE.
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schemes. Examples of such schemes are message authentication, keyed hash func-
tions, digital signatures, and indistinguishability obfuscation, [App14; Ana+15;
Bel15; BCK96; BR17b; Gol86]. The standard (or strong) pseudo-random func-
tion definition enjoys a strong security requirement: not only does it have to be
resistant to all classes of distinguishers, but also secure against adaptive attacks,
i.e., adversaries can observe the input-output of their choices. In certain settings,
the full power of PRF is not required, and it is natural to restrict adversaries to
perform only on random input. This motivates non-adaptive or weak PRF. For a
thorough survey, we refer the readers to [BR17b].

The notion of weak PRFs (wPRF), despite satisfying a weaker security defi-
nition, achieves higher efficiency than PRFs and opens the door to many appli-
cations. A wPRF is, briefly explained, a keyed function that is indistinguishable
from a random function when the adversary is limited to only observing outputs
that come from randomly sampled inputs.

Many cryptographic primitives and applications are built from weak PRFs
because of their efficiency [AA17; Bal+20b; Dod+12; DN02; LM13b; MS07;
Pie09]. In [Din+21], new candidates for symmetric cryptographic primitives are
proposed that use the idea of alternation between linear functions modulo 2 and
modulo 3 to support fast protocols for secure multiparty computation (MPC).
Their motivations are to construct cryptographic primitives that have concrete
efficiency, are easy to describe, and are well-suited for different applications. This
continues the study of weak pseudo-random functions of this kind initiated by
Boneh et al., [Bon+18], and Cheon et al. [Che+22]. Notably, in [Bon+18], the
author proposed a new kind of primitive, called ‘encoded-input’ PRF, constructed
from their weak PRFs, as a potential replacement for strong PRFs in a scenario
where the latter are not known to exist.

In [Bon+18], two types of weak PRF candidates are introduced, coined ba-
sic Mod-2/Mod-3 and alternative Mod2/Mod-3 weak PRF. Both use a mixture
of linear computations defined on different small moduli to satisfy conceptual
simplicity, low complexity, and MPC friendliness. These wPRFs candidates were
conjectured to be exponentially secure against any adversary that allows exponen-
tially many samples. In [Che+22], these wPRFs are investigated regarding attacks
and necessary fixes.

In particular, for the alternative Mod-2/Mod-3 wPRF, it is proved that the ad-
versary’s advantage is at least 2−0.105n, where n is the size of the input space of the
weak PRF. This gives distinguisher and key-recovery attacks of asymptotic com-
plexity O(20.21n). It is worth noting that, as pointed out in [Din+21; Che+22],
the attack in [Che+22] requires a large number of evaluations from the wPRF.
Further, a simple method of using keys with large Hamming weight is suggested
for repairing the wPRFs affected by these attacks while preserving the parameters.

It appears, therefore, of interest, to increase the understanding of constructions
based on mixing linear computations defined on different small moduli.
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1.1 Contributions

The paper aims to describe a differential attack on the binary Alternative Mod-
2/Mod-3 wPRF in [Bon+18]. Rather than the attack in [Che+22], our attack in-
vestigates and exploits reduced weight input differences. Our attack significantly
outperforms the one in [Che+22] regarding data complexity. Minimizing compu-
tational complexity, we achieve O(20.166n) complexity, an asymptotic improve-
ment compared to [Che+22]. Moreover, it is demonstrated that the fix does not
achieve the desired security level as proposed in [Che+22].

2 Preliminaries

Throughout the paper, we denoted by

• bold uppercase letters, e.g., A, matrices and bold lowercase letters, e.g., x,
row vectors.

• Ai and Aj the i-th row and the j-th columns of A, respectively.

• x mod p, for p prime, as the modulo operation by each element of x.

• x+ y the bit-by-bit XOR of vectors x and y.

• ωH(x) the Hamming weight of a binary vector x.

• log the logarithm base 2 and H(p) = −(p log p+ (1− p) log(1− p)) the
binary entropy function with p ∈ [0, 1].

• [i] = 1, . . . , i for an integer i ∈ N.

• {0, 1}n binary vector of length n.

• Funs[X ,Y] by the set of all functions from X to Y .

Definition 1 (Pseudo random functions (PRF) in [Bon+18]). Let λ ∈ N be a secu-
rity parameter, andK = {Kλ}λ∈N,X = {Xλ}λ∈N, Y = {Yλ}λ∈N be ensembles of
finite sets indexed by λ. Let {Fλ}λ∈N be an efficiently-computable family of functions
Fλ : Kλ × Xλ → Yλ. The function family {Fλ}λ∈N is said to be a (t, ε)-strong
pseudo-random function if for all adversaries A running in time t(λ), and taking
k ∈ Kλ, fλ ∈ Funs[Xλ,Yλ] uniformly at random, we have that∣∣∣∣Pr

[
AFλ(k,·)(1λ) = 1

]
− Pr

[
Afλ(·)(1λ) = 1

] ∣∣∣∣ ≤ ε(λ).

Aweaker notion of PRF is the weak PRF: the family {Fλ}λ∈N is said to be an (`, t, ε)-
weak pseudo-random function if for all adversaries A running in time t(λ), taking
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k ∈ Kλ,fλ ∈ Funs[Xλ,Yλ], and x1, . . . , x` ∈ Xλ uniformly at random, we have∣∣∣∣Pr
[
A

(
1λ, {xi, Fλ(k, xi)}i∈[`]

)]
− Pr

[
A

(
1λ, {xi, fλ(k, xi)}i∈[`]

)] ∣∣∣∣ ≤ ε(λ).

Informally speaking, for a family of functions to be strong (resp. weak) pseudo-
random, an adversary can not distinguish them from a uniformly random func-
tion when observing adaptively chosen (resp. uniformly random) pairs of input-
output. We briefly visit the binary weak PRF constructions that are of interest to
our work.

Construction 1 (Alternative Mod-2/Mod-3 candidate in [Bon+18]). Let λ be a
security parameter, and n = n(λ) be the key and input length. The weak PRF
candidate is a family of functions Fλ : Zn

2 × Zn
2 → Z2 with key-space Kλ = Zn

2 ,
input space Xλ = Zn

2 and output space Yλ = Z2. Let k = (k1, . . . , kn) ∈ Kλ and
an input x = (x1, · · · , xn), a function Fλ(k, x), denoted by Fk(x), inFλ is defined
as

Fk(x) =
∑
i∈[n]

kixi mod 2 +
∑
i∈[n]

kixi mod 3 mod 2.

The construction can be viewed as a deterministic Learning Parity with Noise
(LPN) instance with noise rate 1

3 . Indeed, kixi mod 3 = 1 with probability
1
3 [Bon+18]. However, in this construction, the noise is correlated to both the
input and the secret key rather than being independently sampled. The authors
pointed out that although the BKW attack applies to this candidate, it requires a
large number of samples and does not pose a major threat in practice [Bon+18].
The motivation behind the construction is that it is very efficient to compute in
different MPC settings. For background in the LPN problem and its state-of-the-
art attack, we refer the readers to [GJL14].

In a recent work [Che+22], Cheon et al. analyzed the security of several weak
PRF candidates, including the Alternative Mod-2/Mod-3. They showed a distin-
guishing attack for the candidate in time O(20.21n). As a fix for the candidates,
they proposed raising the Hamming weight of k as the complexity of their attack
depends on ωH(k) (Theorem 1, [Che+22]).

The idea of our attack for this wPRF is to find reduced weight input differ-
ences. In brevity, we look for pairs (x, x′) where x + x′ has ‘small’ weight. We
then derive the particular bias arising from such pairs. Since our attack relies on
finding pairs of vectors with low Hamming weight in the bit-wise XOR sum, any
dedicated algorithm benefits our attack. In particular, our problem can be solved
through the Nearest-Neighbor Problem, which we briefly introduce.

Definition 2 (Nearest Neighbor (NN) Problem in [MO15]). Let n ∈ N, 0 <
α < 1/2, and 0 < λ < 1. In the (n, α, λ)-NN problem, we are given two lists
L,R of equal size 2λn with uniform and pairwise independent vectors. If there exists
a pair (x, x′) ∈ L × R with Hamming distance ωH(x, x′) = αn, we are asked to
output a list that contains (x, x′).
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Examining this problem, there have been numerous studies [IM98; Dub10;
MO15; EKZ21], to name a few. In 2015, May and Ozerov [MO15] proposed
their algorithm, called NearestNeighbor. This has led to many improvements
in cryptanalysis, particularly in the Information-Set Decoding algorithms towards
code-based cryptography [MO15; BM18; EB22b]. The following theorem is
helpful to our work.

Theorem1 (Theorem 1, [MO15]). For any constant ε > 0 and any λ < 1−H
(α
2

)
,

NearestNeighbor solves the (n, α, λ)-NN problem with overwhelming probability
in time

O
(
2(y+ε)n

)
,with y := (1− α)

(
1−H

(
H−1(1− λ)− α

2

1− α

))
.

For details of the algorithm, we refer the readers to the original work [MO15].
To provide stronger candidate constructions that can work on a smaller input

space, a set of different primitives was proposed in [Din+21], among them a binary
weak PRF that was named LPN-wPRF.

Construction 2 (LPN-wPRF candidate in [Din+21]). Let λ be the security parame-
ter,m,n, t be functions of λ, and B ∈ Zt×m

2 be fixed public matrix chosen uniformly
at random. The LPN-wPRF candidate is a family of functions Fλ : Zm×n

2 ×Zn
2 →

Zt
2 with key-space Kλ = Zm×n

2 , input space Xλ = Zn
2 and output space Yλ = Zt

2.
Let K ∈ Kλ, a function FK in Fλ is defined as

• For input x ∈ Zn
2 , compute

u = KxT mod 2.

• The noise is added by interpreting K and x over Z3. In particular, we compute

v =
(
KxT mod 3

)
mod 2,

and output
y = B(u+ v)T .

To ease the notation, from now on, we omit the transpose symbol as it should
be clear from the context. A private key K in the above construction has the size
mn, which can be expensive to communicate within distributed protocols. Hence,
the authors in [Din+21] proposed structured keys, i.e., those that have a concise
presentation (linear in n and m). In particular, Toeplitz matrices and generalized
circulant matrices were introduced.
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3 Attack on the Alternative Mod-2/Mod-3 wPRF

3.1 Description of the attack

In this section, we describe another attack on the Construction 1. In particular,
we still consider the key to be chosen uniformly at random as opposed to Cheon
et al.’s suggestion to increase the Hamming weight (for instance, ωH(k) = 310
when n = 384). We shall look into the attack performance later when applied to
keys with unusually large Hamming weights. Our idea is to distinguish between
ki = 0 and ki = 1. Without loss of generality, suppose we are looking at the first
key bit k1.

Assume we can ask for the wPRF evaluations until we get pairs of input (x, x′)
such that ωH(x̂, x̂′) = αn, where x̂ = (x2, . . . , xn) (correspondingly x̂′) is the
shortened vector x without the first position. Moreover, α is an important param-
eter to be specified later. In addition, we are only interested in pairs that fulfill the
following:

|I := {i : xi = 0, x′
i = 1}| = |J := {i : xi = 1, x′

i = 0}| = αn

2
. (1)

In other words, we are looking for ‘small’-weight sums whose Hamming weights
are evenly contributed from the corresponding vectors. Let us consider the prob-
ability

Pr[x1 = x′1, Fk(x) = Fk(x
′) = 0]. (2)

If k1 = 0, then the first bits of both inputs do not contribute to the evaluation of
the wPRF. Hence k1 = 0 yields Pr[x1 = x′1, Fk(x) = Fk(x′) = 0] = 1

8 , since we
assume the inputs are drawn uniformly at random. We can rewrite the equation
(2) as

Pr[x1 = x′1, Fk(x) = 0] · Pr[Fk(x
′) = 0|x1 = x′1, Fk(x) = 0]. (3)

For an input x, let us denote G(k, x) = Gk(x) =
∑n

i=1 kixi mod 6. We
recall that from the definition of the wPRF, Fk(x) = 0 if and only if Gk(x) ∈
{0, 1, 2} mod 6. Besides the set of indices I and J in equation (1), we further
define K := {i : xi = x′i = 1} and three sums

A =
∑
i∈K

kixi mod 6 =
∑
i∈K

kix
′
i mod 6,

X =
∑
i∈I

kixi mod 6, X ′ =
∑
i∈J

kix
′
i mod 6.

To ease the notation, from now on we omit the mod 6, unless otherwise men-
tioned. We can rewrite Gk(x) = A+X and Gk(x′) = (A+X) + (X ′−X) =
Gk(x)+X−X ′.With the assumption that Pr[Gk(x) = a|Gk(x) ∈ {0, 1, 2}] =
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1
3 , a = 0, 1, 2, the second term in equation (3) becomes

Pr[Gk(x) + (X ′ −X) ∈ {0, 1, 2}|x1 = x′
1, Gk(x) ∈ {0, 1, 2}]

=
1

3

2∑
a=0

Pr[X ′ −X ∈ {−a, 1− a, 2− a}|Gk(x) = a].

By definition, the first equality follows from (X ′−X) is independent of the event
x1 = x′1. We claim the following theorem.

Theorem 2. Let k = (k1, . . . , kn), x = (x1, . . . , xn), and x′ = (x′1, . . . , x
′
n)

be length-n binary vectors, such that ωH(x+ x′) = αn = 2` and |I| = |J | = `,
where I := {i : xi = 0, x′i = 1}, and J := {i : xi = 1, x′i = 0}. Assume that k
is uniformly random. Then the followings hold

2∑
a=0

Pr[X ′ −X ∈ {−a, 1− a, 2− a}|Gk(x) = a] =
3

2
+

(
3

4

)l−1

, (4)

∣∣∣∣Pr[Fk(x
′) = 0|x1 = x′1, Fk(x) = 0]− 1

2

∣∣∣∣ ≈ 1

20.41`+1.17
. (5)

Proof. To prove Theorem 2, we make use of Lemma 4.1 in Cheon et al.’s work
[Che+22].

Lemma 4. Let n be a positive integer. For all 0 ≤ a ≤ 5, the following equations
hold ∑

a+6k≤n

(
n

a+ 6k

)
=

1

6

∑
j=0

(
ωj
)6−a ·

(
1 + ωj

)n ,

where ω =
1 +
√
3i

2
is the 6-th root of unity.

The proof consists of long and repetitive computations; hence, we will only
prove for the case ` = 6k, k ≥ 0 is odd. Recall that X =

∑
i∈I kixi =

∑
i∈I ki

where |I| = `. Therefore, for a = 0, . . . 5,

Pr[X = a] =

∑
6k+a≤`

(
`

a+6k

)
2`

.

Using Lemma 4, we obtain

Pr[X = a] =

∑5
j=0

(
ωj
)6−a ·

(
1 + ωj

)`
6 · 2`

=
1

6
+

∑5
j=1

(
ωj
)6−a ·

(
1 + ωj

)`
6 · 2`
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=
1

6
+ εa.

We also note that, since
∑5

a=0 Pr [X − a] = 1, then
∑5

a=0 εa = 0. We have

Pr[X ′ −X = a] =

5∑
m=0

Pr[X ′ = m+ a]Pr[X ′ = m]

=

5∑
m=0

(1/6 + εm+a)(1/6 + εm)

= 1/6 +
5∑

m=0

εm+aεm.

To compute εa, a = 0, . . . 5, we use the following identities

1 + ω = ω5
√
3i, 1 + ω2 = ω,

1 + ω3 = 0, 1 + ω4 = ω5,

1 + ω5 = −ω
√
3i.

Then, from ` = 6k, k is odd, we derive the followings

6 · 2l · ε0 = 2− 2(
√
3)l, 6 · 2l · ε1 = −

√
3
l − 1

6 · 2l · ε2 =
√
3
l − 1, 6 · 2l · ε3 = 2

√
3
l
+ 2

6 · 2l · ε4 =
√
3
l − 1, 6 · 2l · ε5 = −

√
3
l − 1.

Now, we compute Pr [X −X ′ = a] , a = 0, . . . , 5.

Pr
[
X −X ′ = i

]
=



1

6
+

1 + 3l

3 · 4l
, i = 0.

1

6
+
−1 + 3l

6 · 4l
, i = 1.

1

6
+
−1− 3l

6 · 4l
, i = 2.

1

6
+

1− 3l

3 · 4l
, i = 3.

1

6
+
−1− 3l

6 · 4l
, i = 4.

1

6
+
−1 + 3l

6 · 4l
, i = 5.
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Putting everything together, we conclude Theorem 2.

On the one hand, Theorem 2 provides us with a distinguishing attack for the
Alternative Mod-2/Mod-3 wPRF. In details, one can collect O(22·(0.41`+1.17))
‘particular’ (as described in Theorem 2) pairs of (x, x′) such that Fk(x) = 0. Then
by computing the deviation of Pr[Fk(x′) = 0] from 1

2 , one can conclude if the
evaluations were done using the aforementioned wPRF.

On the other hand, Equation (2) helps us conceive a key recovery attack in
the same manner.

To compare with Cheon et al.’s work [Che+22], our distinguishing attack re-
lies on the assumption that k was chosen at uniformly random and the later-to-
be-specified parameter `, rather than ωH(k). Moreover, we stress that our dis-
tinguisher complexity is not O(22·(0.41`+1.17)). We recall that the attack requires
producing desired pairs (x, x′) before estimating the deviation. We will discuss
how we choose our parameters α and `, then derive the attack complexity in the
next section.

3.2 Different moduli

In [Che+22], Cheon et al. generalized their attacks into Alternative Mod-p/Mod-q
wPRF. They showed that the adversary’s advantage, in this scenario, is larger than
ch ·

∣∣ωpq+1
2

∣∣h.1 Our approach to finding the bias is similar to the original work.
Therefore, in principle, we can also extend to different moduli scenarios.

3.3 Heuristic arguments for the attack complexity

Data complexity

Recall that, for the distinguishing attack, one needs O(22·(0.41`+1.17)) pairs of
(x, x′). Suppose we query the wPRF to evaluate N = 2c evaluations, then we can
form up to 22c−1 pairs. Among such pairs, we only look at pairs where Hamming
weight of the difference is αn. Since the inputs are assumed to be uniformly
random, so is their bit-wise XOR. The probability of a random vector having
weight αn is

Pr
[
ωH

(
x+ x′

)
= αn

]
=

(
n
αn

)
2n

. (6)

In addition, among pairs whose Hamming weight is αn, we only examine those
that fulfill |I| = |J | = αn

2 . Heuristically, this probability is

Pr
[
|I| = |J | = αn

2

]
=

(
αn

αn/2

)
2αn

. (7)

1where h = ωH(k) and ωpq is the pq-th root of unity.
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In conclusion, we need to evaluate N = 2c samples, such that the following holds

22c−1 ·
(
n
αn

)
2n
·

(
αn

αn/2

)
2αn

≈ 20.41αn+2.34,

or, in other words, the attack’s data complexity is 2c, where

c ≈
n (1.41α+ 1) + 3.34− log

(
αn

αn/2

)
− log

(
n
αn

)
2

. (8)

Asymptotic computational complexity of our attack

As opposed to Cheon et al.’s work, our attack requires an additional processing
phase after the wPRF’s evaluation. Suppose, for parameter α, that we observe 2c
evaluations, where λ = c/n satisfies the prerequisite in Theorem 1, i.e., λ <
1 − H(α2 ). The cost of finding low-weight sums is then O

(
2(y+ε)n

)
, where y

is defined as in Theorem 1. Note that the NearestNeighbor allows one to find
low-weight sums with a smaller size of input lists. In our case, we have a somewhat
fixed size since we need to observe the calculated bias in the previous section.

After the processing phase, we have a list of size O(22·(0.41`+1.17)). We then

go through the list to find
∣∣∣∣Pr[Fk(x′) = 0|x1 = x′1, Fk(x) = 0] − 1

2

∣∣∣∣. Hence,

the complexity of this step is O(20.41αn+2.34). Let us denote by CMod-2/Mod-3 the
computational complexity of our attack, then

CMod-2/Mod-3 = O
(
2(y+ε)n

)
+O(20.41αn+2.34) ≈ O

(
2(y+ε)n

)
. (9)

We note that by fixing n, we can write the complexity exponent y as a function
of only α. Therefore, it is important to understand how large y becomes for α ∈
(0, 12), compared to 0.21 (as in Cheon et al.’s attack). To this end, we rely on
simulations with increasingly large input length n to observe the behavior of y
(Figure 1a).2 We see that our attack achieves better asymptotic complexity for
α ∈ (0.23 + ε(n), 0.49− ε(n)), with ε(n) decreases in n. Notably, the smallest
value of y is roughly 0.1664. Figure 1b shows the asymptotic data complexity of
our attack as the ratio c/n, using Equation (8).

Example 1. The (conservative) parameter of the Alternative Mod-2/Mod-3 wPRF to
achieve 128-bit security is n = 384. The optimal parameter for our attack is α ≈
0.37, which yields c ≈ 44.5 and CMod-2/Mod-3 ≈ 74.27, if we ignore the polynomial
overhead in (9). We show our attack in comparison with the one in [Che+22].

While it remains unclear how the NearestNeighbor polynomial overhead,
which has been addressed in [EKZ21; MO15], will affect our attack for concrete

2Since our attack heavily depends on the NearestNeighbor search, we exclude the region of
α where the condition λ < 1−H(α

2
) does not hold.
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(a) The exponent y = y(α). (b) The ratio λ(α) = c(α)/n.

Figure 1: The data and computational complexity for n = 105.

(a) The computational complexity. (b) The data complexity.

Figure 2: The data and computational complexity for n = 384.

parameters, we can see that our distinguisher is advantageous. In particular, it
requires far fewer samples/evaluations, compared to [Che+22], and is suitable in
certain restricted oracle settings where the amount of queries to the oracle is lim-
ited.

3.4 Applying our approach to Cheon et al. fix

In [Che+22], the authors proposed a simple fix to preserve the wPRF security.
Since their attack relies heavily on the Hamming weight of the key k, it is inter-
esting to observe the bias we get from our attack when applying their fix.

Experiment 1. For n = 384, we first generate keys at random. Using Theorem 2, we
obtain the predicted bias ε(`) where ` = αn/2. Then, we randomly generate c · 1

ε(`)2

pairs (x, x′), as in Theorem 2, to observe the bias. Finally, we rerun the experiment
with ωH(k) � n/2, for example, by setting Pr[ki = 1] = 310

384 . The result is shown
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in Table 1.3

It can be seen from the experiment (albeit not comprehensive), Cheon et al.’s
fix results in an even bigger bias in our attack.

Table 1: Experiments for our distinguisher with Cheon et al. fix.

` = αn/2 6 8 12 15 18
Bias observed for ωH(k)� n/2 0.161 0.114 0.056 0.0363 0.0211

Bias observed for random k 0.079 0.044 0.013 0.0060 0.0025
Bias predicted from Theorem 2 0.079 0.044 0.014 0.0059 0.0025

4 Conclusion

In this paper, we have examined a differential attack on the binary Alternative
Mod-2/Mod-3 wPRF candidate in [Bon+18], improving the state of the art for
these constructions. The complexity of the proposed attacks is still exponential
in the input and key size, but the results show that proposed parameters for con-
structions to meet a specific security level need to change. It is likely that further
improvements can be made.

5 Future works

An interesting idea to build a distinguisher on the LPN-wPRF would be to use the
ideas from Section 3 and generate a large number of low weight differences, and
then examine the distribution for the vector y, where y = B(u+v). As was shown
in Section 3, u+vwill be biased if it is created from a low weight difference, which
in turn gives a (smaller) bias on y. This bias will depend on properties of the B
matrix. Computations of such large distributions can use methods like those in
[MJ05].
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A Key-Recovery Attack on
the LCMQ Authentication

Protocol

Abstract

We present a simple key-recovery attack on the LCMQ Authentication Protocol,
an RFID authentication protocol proposed by Li, Gong, and Qin in 2013. We
show that a successful attack is performed by solving a Learning Parity with Noise
instance in a not-too-large dimension. For the proposed LCMQ parameters, the
attack requires only a few invocations with the tag under attack. When there is no
restriction on the number of invocations, state-of-the-art LPN solvers recover the
keys with complexity below 251 and 286, when attacking LCMQ parameters for
security levels 80-bit and 128-bit, respectively. To the best of our knowledge, this
is the first attack on LCMQ with complexity below exhaustive key search.

1 Introduction

In recent years, the cryptography and security communities have been focusing on
designing secure entity authentication schemes for radio frequency identification
(RFID) systems [JW05a]. This is due to the practical demands and theoretical
challenges of creating extremely lightweight schemes. RFID systems are systems
for automated identification of physical entities using radio frequency transmis-
sions. They consist of very simple and low-cost tags that are attached to physical

Vu Nguyen, Thomas Johansson, Qian Guo. “A Key-Recovery Attack on the LCMQ
Authentication Protocol”. In IEEE International Symposium on Information Theory (ISIT) 2024,
Athens, Greece. 2024 IEEE International Symposium on Information Theory (ISIT), pp.
1824-1829, IEEE.
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objects. On the other hand, there are powerful readers that get data from the tags.
RFID systems are to be found in many different applications, including supply
chain management, payments, door locks, and other electronic identification. It
is widely expected that RFID systems will dominate the physical identification
mechanism market in the future.

The extremely low production cost of RFID tags is critical. For most appli-
cations, the price of a tag must be a few cents to be considered affordable. This
implies that the low-cost RFID tags lack the necessary computation, communi-
cation, storage, and energy capability, posing security and privacy challenges in
low-cost RFID systems. Secure and efficient entity authentication are vital aspects
of preventing counterfeiting, which is a major attack on identification devices.
Therefore, the cryptographic community has developed extremely lightweight au-
thentication schemes to address these challenges.

One of the more interesting directions is the HB-like authentication proto-
cols, most notably [HB01a; JW05a; GRS08c] that have gained much attention
in the field of RFID systems. These protocols use only bitwise operations for the
protocol participants and have a solid security foundation based on the learning
parity with noise (LPN) problem. Including also security proofs [KS06b] makes
them very attractive for entity authentication in very resource-constrained devices.
A long line of patches for HB-like protocols has appeared in literature [DK07;
MP07; LMM08; BC08; GRS08c] to resist man-in-the-middle attack (MIM) that
are outside of the original security model [GRS05]. However, they are eventually
vulnerable to more advanced methods such as [GRS08a; OOV08].

In response to the attacks on HB-like authentication protocols, Li, Gong,
and Qin proposed in 2013 a lightweight authentication protocol named LCMQ
[LGQ13b]. Arguments in the paper proved it secure in a general man-in-the-
middle model. The scheme uses a special type of circulant matrix and efficient
algorithms using binary matrix operations. By combining LPN and a multivari-
ate quadratic problem, the LCMQ protocol appears to be secure against all prob-
abilistic polynomial-time adversaries, and still, it resembles HB-like protocols in
terms of tag computations, storage expenses, and communication costs. No attack
better than an exhaustive key search has been presented since its introduction.

In this paper, we present a simple key-recovery attack on the LCMQ Authen-
tication Protocol. We show that a successful attack is performed by solving an
LPN instance in a not-too-large dimension, by-passing the multivariate quadratic
problem. For the proposed LCMQ parameters for 80-bit and 128-bit security
levels, the attack complexity is 251 and 286, respectively, using LPN-solver.

2 Preliminaries

Notation We adopt most of the notation used by the authors in [LGQ13b]
throughout the paper.
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F2 The finite field GF (2).
a, ωH(a) Bit vector and its Hamming weight.
· Inner product of vectors.

Mn×m A n×m matrix M over F2.
◦ Matrix multiplication.

a(x) Polynomial in F2[x].
∗ Polynomial multiplication in F2.

0n, 1n n-bit vectors of all 0 and all 1, respectively.
Sn Set of all n-bit vectors excluding 0n and 1n.

Sen,Son Set of vectors in Sn with even and odd
Hamming weight, respectively.

Let Berη be the Bernoulli distribution with parameter η ∈ (0, 12). We write

x $←− {0, 1}n for the event that a vector x is drawn uniformly from {0, 1}n.

Definition 3 (LPN Problem). Let s $←− {0, 1}n and η ∈ (0, 12). An LPN oracle
OLPN,s,η gives samples (

g $←− {0, 1}n, s · g⊕ e
)
,

where e ← Berη. The LPN problem asks for the recovery of the secret s given q LPN
oracle samples.

As the LPN problem is proven to be NP-hard [BMT78a], it has enjoyed
much attention as a key ingredient in constructing post-quantum cryptographic
schemes. One can find no shortage of its presence in cryptography. Especially
relevant to our work is a field of research that utilizes LPN in crafting lightweight
cryptoschemes such as Firekite stream cipher [Bog+21a], weak pseudo-random
functions [Bon+18], the aforementioned HB-family of authentication protocols,
and the LCMQ authentication protocol [LGQ13b] - the target of this paper.

Despite many of those constructions have been attacked and subsequently
forced to use larger parameters [JMN22; Joh23] or severely compromised (such
as the HB-like protocols), the LPN problem still stands promising and valuable
for cryptographic primitives. In particular, as the authors of the LCMQ protocol
demonstrated in their paper, coupled with a neat encryption scheme that involves
circulant matrix multiplication, the LPN problem still delivers a secure yet low-
cost authentication protocol. More importantly, it was shown to resist known
attacks against the HB-family protocols while using significantly smaller parame-
ters.

To understand the security of LPN-based primitives, it is crucial to consider
state-of-the-art LPN-solving algorithms. Most notable are the two families of al-
gorithms called Information-Set Decoding (ISD), e.g. to name a few, [Pra62; Ste88;
MMT11b; Bec+12b; BM18] and BKW [BKW03b]. The prior is the main solver
for the well-known Syndrome Decoding Problem (equivalent to the LPN problem
when the amount of samples is fixed), while the latter proves useful when an ar-
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bitrary number of samples is allowed. The family of BKW algorithms contains
many versions, among them: [BKW03b; LF06b; Kir11b; GJL14]. A Rust imple-
mentation for practically solving LPN is found in [WS21].

Before we investigate the LCMQ protocol, we review crucial mathematical
backgrounds selectively. For a more comprehensive understanding, we advise the
readers to study the LCMQ paper [LGQ13b]. Furthermore, without introducing
them in our work, we will point to theorems and lemmas in [LGQ13b] if needed.

Definition 4 (Circulant matrix). Let a = (a0, . . . , am−1) be a length-m vectors.
A circulant matrix generated by a is a square matrix, denoted by Cm×m

a of which the
i-th row is the i-th right cyclic shift of a

Cm×m
a =


a0 a1 . . . am−1

am−1 a0 . . . am−2
...

...
...

...
a1 a2 . . . a0

 .

This notion can be extended to non-square circulant matrices: let n ∈ [1,m − 1] be
an integer, then Cn×m

a (resp. Cm×n
a ) is obtained by truncating m − n rows (resp.

columns) of Cm×m
a .

Definition 5 (Circulant-P2 Matrix). Let a ∈ Fm
2 wherem is a prime. We callm a

P2 number if Fm = 〈2〉, i.e., if 2 is a primitive element in Fm. Moreover, Cm×m
a

is a circulant-P2 matrix if neither 0m nor 1m is one of its rows. Similarly, We extend
this notion to non-square circulant-P2 matrices.

Lemma 5 (Lemma 2 in [LGQ13b]). If m is a P2-number then the polynomial
xm−1 + xm−2 + . . . 1 is irreducible over F2.

Lemma 6 (Lemma 4 in [LGQ13b]). Let a ∈ Fm
2 where m is a P2-number. Then

Cm×m
a is invertible if and only if ωH(a) is odd.

Lemma 7 (Lemma 5 in [LGQ13b]). The matrix Cm×n
a (resp. Cn×m

a ) always has
a right inverse (resp. left inverse).

Let fm(x) = xm + 1 and consider the quotient ring R = F2[x]/〈fm(x)〉.
It then becomes convenient to compute the polynomial multiplication using
circulant matrices. Let a, b ∈ Fm

2 be vectorial representation of polynomials
a(x), b(x) ∈ R. The multiplication z(x) = a(x) ∗ b(x) in R has representa-
tion

z = a ◦ Cm×m
b = b ◦ Cm×m

a .

3 The LCMQ authentication protocol

The LCMQ protocol combines a ciphertext-only secure encryption scheme and
LPN, resulting in an efficient and lightweight authentication protocol. The prior
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can be seen from the following algorithm (Algorithm 1 [LGQ13b], for correct-
ness).

Algorithm III.1: Inverse of circulant-P2 matrix multiplication
Input: a ∈ Sm, z = b ◦ Cm×n

a , fm(x) = xm + 1.
Output: b ∈ Sn.

1 g(x)← gcd(a(x), fm(x));
2 Compute a′, such that a′(x) ∗ a(x) = g(x) mod fm(x);
3 t(x) = z(x) ∗ a′(x). ;
4 if a ∈ Som then
5 b← leftmost n-bit of t;

6 else
7 b0 ← t0, i← 1;
8 while i < n do
9 bi = bi−1 ⊕ ti;

10 i← i+ 1;

The encryption is then simply takes a vector k as the key, the plaintext as m
and output c = Enc(m, k) = m ◦ Cm×n

k . On the other hand, the decryption
Dec(c, k) is precisely Algorithm III.1.

After the mathematic background, we can study the LCMQ protocol, which is
captured in Figure 1. In this protocol, we denote two entities, Tag and Reader, by
Tk1,k2,η,n and Rk1,k2,n,τ , where they share the secret keys k1 and k2. The Reader
sends a “challenge” a. Unless a /∈ Sem, in which case the protocol is terminated, the
Tag then responds with (b, z) as described in Figure 1. The b is randomly selected
and then z = (y||r) ◦Cn×m

k2
, where ||means concatenation of vectors. Here y has

been constructed by y = b◦Cm×n
k1
⊕v, where v is the low-weight noise vector. On

the reader’s side, the response is verified by first computing y||r = Dec(z, k2⊕ a);
as described before, to get y. Then it is checked that ωH(b ◦Cm×n

k1
⊕ y) is small.

The verifying threshold τ is set in the interval (nη,
n

2
).

3.1 Adversary models

Similarly to its predecessor protocols, LCMQ security was investigated under dif-
ferent models of adversary power, namely the DET (detection-based) and MIM
(man-in-the-middle). We briefly review the main differences in the behaviour of
an adversary A when considered in the aforementioned models.

DET Model The adversary A operates in two phases:
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Tag(k1, k2) Reader(k1, k2)

a←−−
a $←− Sem;

b $←− Sm;
v← Bernη , r

$←− {0, 1}m−n−1;
y = b ◦ Cm×n

k1
⊕ v;

z = (y||r) ◦ Cn×m
k2

;
(b,z)−−→

y||r = Dec(z, k2 ⊕ a);
ACCEPT iff

ωH(b ◦ Cm×n
k1

⊕ y) ≤ τ ;

Figure 1: The LCMQ authentication protocol with parameters m as a P2 number, n <
m, η ∈ (0, 1

2
), τ ∈ (nη, n

2
), and secret k1, k2 shared by the Tag and the Reader.

During Phase 1,A interacts q times with the legitimate tag Tk1,k2,η,n by send-
ing challenges ai of its choice. During the i-th interaction, the tag carries out
computations as described in Figure 1 and responds A with (bi, zi).

In Phase 2, A interacts with the actual LCMQ reader. It receives a challenge
â fromRk1,k2,n,τ and responds with (b̂, ẑ) to pass the authentication protocol.

MIMModel The adversary, A in this model, also carries two phases.
During Phase 1,A can intercept the communications betweenRk1,k2,n,τ and

Tk1,k2,η,n q times and observe their behaviour. In particular, it can replace the
challenge ai from the Reader with ai ⊕ a′i and the response (bi, zi) from the Tag
with (bi ⊕ b′i, zi ⊕ z′i).

Similarly in Phase 2, A receives a challenge â from the Reader and out-
puts (b̂, ẑ) correspondingly. One can see that the security in the MIM model
is bounded by the security in the DET model as A is a stronger adversary. Re-
gardless of the power A possesses, its ultimate goal is to pass the authentication
with a non-negligible advantage. Note that the LCMQ protocol inherently has
a false-positive probability PFP (i.e., the probability that Rk1,k2,n,τ outputs AC-
CEPT for a random (b, z)).1 Therefore, we define the advantages of A in the
above models as

AdvDET
A := Pr[Rk1,k2,n,τ (b̂, ẑ) = ACCEPT]− PFP, (1)

AdvMIM
A := Pr[Rk1,k2,n,τ (b̂, ẑ) = ACCEPT]− PFP. (2)

1PFP =
∑τ

i=0

(
n
i

)
2−n.
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Table 1: Parameters recommendation for the LCMQ protocol with the Upper-Bounded
Bernoulli Noise Mode in [LGQ13b]

Security Level 80 112 128
η 0.08 0.09 0.10
m 163 269 317
n 162 268 316
τ 18 34 45

3.2 Security and parameters

In this part, we first briefly summarize the strategy the authors in [LGQ13b] em-
ployed to show that LCMQ is secure in the MIM model. For the full-version
proof, we refer the readers to the original paper. In a nutshell, the arguments go
as follows

• Show a reduction from DET-model to MIM-model.

• Assuming the intractability of the LPN problem, the LCMQ protocol is
secure in the DET model.

• Therefore, LCMQ is provably secure in the MIM model.

The security proof of LCMQ in the DET model shows that the parameter
m ≥ d+1 is sufficient for d-bit security, and the noise rate is insignificant as long
as noises are present. However, the security proof (Theorem 1 [LGQ13b]) requires
m to be sufficiently big, and n is set to n = m− 1 to minimize the False positive
probability. Furthermore, the authors in [LGQ13b] showed that the noise-free
LCMQ protocol can be seen as an instance of the so-called MQ Problem [GJ79],
which is defined as finding solutions of m variables with n quadratic equations.
This problem is NP-hard for general values of m and n and has been employed in
various cryptosystems. Therefore, introducing LPN noise into the MQ problem
is assumed only to make it harder to break. The proposed parameters are shown
in Table 1.

4 A new attack on LCMQ

In this section, we describe our attack using the parameter choice n = m− 1, as
this simplifies the description slightly. This is the parameter choice proposed in
all instantiations for the different security levels in Table 1. Also, any other choice
of n does not change much; such an instance is still susceptible to the proposed
attack with roughly the same complexity as if n = m− 1.
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4.1 The setting

Consider the LCMQ protocol with secret k1, k2, parameters m,n, η, τ , the tag
Tk1,k2,η,n and the readerRk1,k2,n,τ .

We aim for a full key recovery attack in the DET model. In this scenario,
the adversary A interacts q times with a legitimate tag in Phase 1. On the i-th
invocation, the tag receives a challenge vector ai from the adversary. The tag then
generates a random bi

$←− Sm and the noise vector vi ← Bernη . It computes

yi = bi ◦ Cm×n
k1

⊕ vi, (3)

zi = y ◦ Cn×m
k2⊕ai

. (4)

and responds with (bi, zi).
In Phase 2, A now tries to authenticate toRk1,k2,n,τ and measures its advan-

tage through Equation 1. In our case, a successful key-recovery attack clearly gives
maximum advantage.

4.2 The attack description

Our attack relies on the fact that A can challenge the tag with ai of its choosing.
With this freedom, A uses the same challenge vector ai = a, 1 ≤ i ≤ q in each
invocation where a is an arbitrary vector in Sem. For notation simplicity, we assume
a = 0, although any other value could be used as the recovery of k2 ⊕ a implies
that of k2.

We first turn our attention to the equation

zi = y ◦ Cn×m
k2

.

We observe that this equation can be written in the form of a polynomial multi-
plication as

zi(x) = yi(x) ∗ k2(x) mod xm + 1. (5)

Since xm+1 = (x+1)∗(xm−1+xm−2+ . . .+x+1), and it is known that
m is a prime such that 2 is a primitive element mod m. This means that p(x),
defined as p(x) = (xm−1+xm−2+. . .+x+1), is an irreducible polynomial over
F2[x]. We can split the above equation using the Chinese Remainder Theorem
(CRT) into moduli (x+ 1) and p(x). However, as k2 has even weight, it follows
that k2(x) ≡ 0 mod (x+1), and the equation (5) reduces to 0 ≡ 0 mod (x+1).

With respect to polynomials modulo p(x), we define

z′i(x) = zi(x) mod (xm−1 + xm−2 + . . .+ x+ 1),
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which can be computed from the known zi(x). Furthermore, let

k′2(x) = k2(x) mod (xm−1 + xm−2 + . . .+ x+ 1),

which is unknown. However, the knowledge of k′2(x) gives k2(x) mod xm + 1,
since k2(x) ≡ 0 mod (x+ 1).

Finally, we note that yi(x) corresponds to the (m−1)-dimentional vector yi,
so yi(x) has degree at most m− 2. As such, it is not reduced w.r.t modulo p(x),
hence

yi(x) mod p(x) = yi(x).

We now can write Equation 5 as

z′i(x) = yi(x) ∗ k′2(x) mod p(x). (6)

Since p(x) = (xm−1+xm−2+ . . .+x+1) is irreducible, there exists the inverse
of k′2(x) in F2[x]/〈p(x)〉, denoted by k−1

2 (x). Again, this is unknown, but it is
in one-to-one correspondence with k2(x). Multiplying both sides of Equation 6
gives

z′i(x) ∗ k−1
2 (x) = yi(x) mod p(x). (7)

Denote the unknown key vector k−1
2 (x) as k−1

2 (x) = k0 + k1x + . . . +
km−1x

m−1 and denote k1 as k1 = (km, km+1, km+2, . . . , k2m−2). Looking at
the coefficient for xj , 0 ≤ j ≤ 2m−2, we can see that the left-hand side contains
a known linear combination of key bits in k0, k1, . . . , km−1. The right-hand side
is of the form yi = bi ◦ Cm×n

k1
+ vi, so position j is a linear combination of key

bits in km, km+1, km+2, . . . , k2m−2 added with a single noise bit vj .
Altogether, this means that from each invocation, we can form a system of

(m− 1) equations as

(k0, k1, . . . , k2m−2) ◦Hi + (v0, v1, . . . , vm−1) = 0,

where Hi is an (2m− 2)× (m− 1) matrix that is known and can be computed
from the bits in the known z′i and bi. As the unknown key vector stays the same
for each invocation, this can be viewed as an instance of the LPN problem with
dimension 2m − 1 and noise level η, where each invocation gives m − 1 LPN
samples.

The matrix Hi from each invocation with the tag is constructed from the two
matrices in the equations

k−1
2 ◦M

n×n
z′i

= k1 ◦ Cm×n
bi

+ vi,

(k−1
2 ‖ k1) ◦

(
Mn×n

z′i
Cm×n
bi

)
= vi, (8)
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where Mn×n
z′ corresponds to the matrix representation of the multiplication with

z′i(x) in the field generated by p(x), etc. For instance, assume m = 5 and z′i =
(z′0, z

′
1, z

′
2, z

′
3). Then

Mn×n
z′ =


z′0 z′1 z′2 z′3
z′3 z′0 + z′3 z′1 + z′3 z′2 + z′3

z′2 + z′3 z′2 z′0 + z′2 z′1 + z′2
z′1 + z′2 z′1 + z′3 z′1 z′0 + z′1

 .

After q invocations, each providing a matrix Hi, we form the matrix C =
[H1H2 · · ·Hq], and it is now clear that the nonzero codeword of lowest weight
in the code spanned by C corresponds to the secret key. The code has dimension
2m− 1 and length q(m− 1). The weight of the codeword corresponding to the
secret key is around ηq(m − 1). We find this codeword by applying an efficient
ISD algorithm, and the complexity for different parameters can be measured with
the Syndrome Decoding Estimator in [EB22c]. If q is very large, we would rather
use an LPN solver.

4.3 Applying the attack on proposed parameters

The suggested security parameters of the LCMQ protocol from [LGQ13b] are
shown in Table 1. It is claimed that (m = 163, η = 0.08) can provide 80-bit
security in the LCMQ protocol. However, our attack leads to the problem of solv-
ing an LPN instance in dimension 325 with noise η = 0.08. The complexity for
solving such an instance is 251 by using the BKW variant with subspace hypothesis
testing [GJL14; GJL20].

For the 128-bit secure parameters, one needs to solve an LPN instance with
dimension 633 with noise η = 0.10. The complexity is estimated to be 286.

We are also interested in the case when we interact with the Tag as few times
as possible. This effectively turns the problem into a coding problem where we are
tasked to find a codeword of weight roughly ω = q(m − 1)η of a random code
generated by a matrix of size (2m − 1) × q(m − 1). Note that the minimum
distance of such a code can be extrapolated from the GV-bound as the smallest
integer d such that

2q(m−1)−(2m−1) ≤
d−1∑
i=0

(
q(m− 1)

i

)
.

Therefore, as long as the target weight ω is much smaller than d, the solution
should be unique and match the key. Results are presented in Table 2.
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Table 2: Complexity w.r.t LCMQ parameters and different smaller q. The complexity is
chosen from the best ISD solver.

Security Level q ω dGV Complexity
80(m = 163, η = 0.08) 4 52 74 64.6
80(m = 163, η = 0.08) 8 105 282 58.7
112(m = 269, η = 0.09) 4 96 121 107.4
112(m = 269, η = 0.09) 8 193 464 94.9
128(m = 317, η = 0.10) 8 253 546 119.3
128(m = 317, η = 0.10) 10 316 772 116.7

4.4 Example 1

Let m = 5, n = 4, the keys are k1 = (1, 0, 1, 1, 0), k2 = (0, 0, 1, 0, 1). Assume
a = 0 and during the i-th interaction, the tag generates v = (0, 1, 0, 0), b =
(0, 1, 0, 0, 1), which gives y = (0, 1, 1, 1). Then, the adversary A, receives

b = (0, 1, 0, 0, 1), z = (0, 1, 1, 1, 1).

In polynomial terms modulo fm(x) = x5 + 1, we have

k1(x) = x3 + x2 + 1, k2(x) = x4 + x2,

b(x) = x4 + x, v(x) = x,

z(x) = x4 + x3 + x2 + x, y(x) = x3 + x2 + x.

On the other hand, w.r.t modulo p(x) = x4 + x3 + x2 + x + 1 we have that
y(x) stays the same as before, and then

k′2(x) = x3 + x+ 1, k−1
2 (x) = x3 + x2 + x,

z′(x) = 1.

We check:

z(x) ∗ k−1
2 ≡ x3 + x2 + x mod p(x),

b(x) ∗ y(x) + v(x) ≡ x3 + x2 + x mod p(x).

When turning z′(x) ∗ k−1
2 (x) ≡ y(x) mod p(x) to the vector/matrix form,

we get from (8)

(k−1
2 ||k1) ◦

(
Mn×n

z′

Cm×n
b

)
= v,
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where

(
Mn×n

z′

Cm×n
b

)
=



1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 1 0 0
1 0 1 0
0 1 0 1
0 0 1 0
1 0 0 1


4.5 Example 2

Assume now the attack scenario and that A gets the response from 5 invocations
with the tag. For example,

(b1 = (0, 1, 0, 0, 1), z1 = (0, 1, 1, 1, 1)),

as in Example 1 and then

(b2 = (0, 1, 1, 0, 1), z2 = (1, 0, 0, 0, 1)),

(b3 = (1, 1, 1, 1, 0), z3 = (1, 0, 0, 0, 1)),

(b4 = (1, 0, 0, 0, 0), z4 = (1, 1, 1, 0, 1)),

(b5 = (1, 1, 1, 0, 0), z5 = (1, 0, 0, 1, 0)).

The unknown noise values are v2 = v3 = v5 = 0n and v4 = (1, 0, 0, 0). From
these responses, A computes

z′2 = (0, 1, 1, 1), z′3 = (0, 1, 1, 1), z′4 = (0, 0, 0, 1), z′5 = (1, 0, 0, 1).

Then a 9× 20 matrix C = [H1H2 · · ·Hq] is computed as

C =



1 0 0 0 0 1 1 1 0 1 1 1 0 0 0 1 1 0 0 1
0 1 0 0 1 1 0 0 1 1 0 0 1 1 1 1 1 0 1 1
0 0 1 0 0 1 1 0 0 1 1 0 1 0 0 0 1 0 1 0
0 0 0 1 0 0 1 1 0 0 1 1 0 1 0 0 0 1 0 1
0 1 0 0 0 1 1 0 1 1 1 1 1 0 0 0 1 1 1 0
1 0 1 0 1 0 1 1 0 1 1 1 0 1 0 0 0 1 1 1
0 1 0 1 0 1 0 1 1 0 1 1 0 0 1 0 0 0 1 1
0 0 1 0 1 0 1 0 1 1 0 1 0 0 0 1 1 0 0 1
1 0 0 1 1 1 0 1 1 1 1 0 0 0 0 0 1 1 0 0


.

We can directly solve for the key with an ISD algorithm looking for a low-weight
codeword in the code generated byC. We first try to look for the minimum-weight
codeword. We get the solution

ksol = (0, 1, 1, 1, 1, 0, 1, 1, 0),
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which is precisely (k−1
2 , k1).

5 Conclusion

We have presented a very powerful key-recovery attack on the LCMQ Authen-
tication Protocol that renders the scheme completely insecure as it is described.
Possible ways to repair the scheme can be considered. We first note that choosing
n < m− 1 introduces more unknown randomness (the r value), but it does not
change much for the attack. It is performed in the same way, only that each in-
vocation provides n samples instead of the m − 1 as described before. Trying to
find simple means to repair the scheme is left for future work.
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Abstract

The problem of decoding random codes is a fundamental problem for code-based
cryptography, including recent code-based candidates in the NIST post-quantum
standardization process. In this paper, we present a novel Sieving-style Information-
set Decoding algorithm, addressing the task of solving the syndrome decoding
problem. Our approach involves maintaining a list of weight-2p solution vec-
tors to a partial syndrome decoding problem and then creating new vectors by
identifying pairs of vectors that collide in p positions. By gradually increasing the
parity-check condition by one and repeating this process iteratively, we find the fi-
nal solution(s). We show that our novel algorithm performs better than other ISDs
in the memory-restricted scenario when applied to McEliece. Notably, in the case
of problem instances with very low relative weight, the sieving approach uses sig-
nificantly less memory compared to other ISD algorithms while being competitive
in terms of performance.

1 Introduction

The recent advancements in the development of quantum computers have greatly
impacted cryptography. There is a threat to current standard cryptographic al-
gorithms based on factoring and discrete-log problems, leading to an interest in

Q. Guo, T. Johansson and V. Nguyen. “A New Sieving-style Information-set Decoding
Algorithm”. In IEEE Transactions on Information Theory, vol. 70, no. 11, pp. 8303-8319, IEEE.
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cryptographic algorithms based on other hardness assumptions. Post-quantum
cryptography revolves around primitives that are not known to be broken by a
large quantum computer.

One leading and promising field in post-quantum cryptography is code-based
cryptography. Being introduced in the 70s, it has a long history with many pro-
posed primitives that withstand classical as well as quantum attacks. Code-based
cryptography relies on the difficulty of the problem of decoding random codes,
which is a very well-studied hardness assumption. The ongoing NIST standard-
ization process for post-quantum cryptography [NIS] includes in round 4 sev-
eral code-based proposals (Classic McEliece [Ber+20], BIKE [Ara+23], and HQC
[Mel+23a]).

One major challenge in these schemes is the selection of secure parameter sets
for the proposals, which match the required security levels as decided by NIST. To
determine and evaluate parameter sets, the exact cost of the best cryptanalysis tools
- Information-set Decoding (ISD) on the proposed schemes and their correspond-
ing hardness assumption is needed. Improving current ISD algorithms, as well as
proposing new ones, are therefore of interest, and their complexity parameters,
such as time and space, are important.

The problem of decoding random codes, or equivalently, the Syndrome De-
coding Problem (SDP) can be described as: given a random matrix H ∈ Fr×n

2 , a
syndrome s ∈ Fr

2 and an integer ω asks to find an error vector e ∈ Fn
2 with weight

ω such that s = Heᵀ.
The SDP has been a well-established problem in cryptography and coding

theory for more than half a century. Throughout history, the NP-complete class
of problems has been the building blocks of cryptography. Similarly, the SDP
has proven to be useful in constructing many cryptographic primitives. One can
find numerous code-based constructions such as public-key cryptography [NIS;
Ber+20; Ara+23; Mel+23a], stream ciphers [FS96], hash functions [AFS05; Ber+11],
signatures [CFS01], zero-knowledge protocols [Ste93; Vér96], etc., just to name a
few. In particular, the current NIST standardization project for post-quantum
public-key cryptosystems includes code-based constructions such as McEliece,
BIKE, and HQC. With such importance, it is unsurprising that extensive crypt-
analytic efforts have been made to gain trust in code-based primitives.

The best algorithms to solve this problem belong to a class of algorithms known
as Information-set Decoding (ISD). The first idea of an ISD algorithm was pro-
posed by Prange in 1962 [Pra62], and then a long line of papers has provided sub-
sequent improvements, see [LB88; Dum91; Leo88; Ste88; BLP08; FS09; Sen11;
MMT11a; Bec+12a; MO15; BM17a; BM18]. Recently, an approach called Sta-
tistical Decoding has been revisited by Carrier et al. [Car+22], and shown to be
advantageous in specific code rate regimes.

Most works study the problem for ω = cn, where c is a constant, and inves-
tigate the asymptotic runtime exponent. However, for all code-based NIST PQC
submissions, as well as other explicit proposals, the asymptotic expressions do not
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give the estimated complexity as numbers that can be translated to a security level.
Some of the asymptotic advantages of improved ISD algorithms have been shown
to be less significant for certain parameter regimes [TS16]. Therefore, it is not
clear which algorithms actually yield practical improvements. Another important
aspect is that memory requirements are very high in the improved versions of ISD
algorithms, and it is likely to be the limiting factor in practice. Hence, any al-
gorithm that requires less memory but has a similar computational complexity
offers a valuable alternative. Estimators for concrete complexity of solving the
syndrome decoding problem for various algorithms have previously appeared in
[HS13; Bal+19] and most recently in [EB22b].

1.1 Related works

An important ISD algorithm is the Stern algorithm [Ste88] that significantly im-
proved the previous work of Prange. Its slightly improved version using the parity-
check matrix as suggested in [FS09] is used in our work. Other improvements
making use of representation technique, as in [MMT11a; Bec+12a], are notable
among enumeration-dominated ISD. The Nearest-neighbor Search was introduced
in [MO15] and later used in various steps of the algorithms [BM17a; BM18].
These improved versions of the Stern algorithm share a drawback: they generally
require even larger memory, a bottleneck in many situations. Lattice sieving, a
method of finding short vectors in a lattice [AKS01b; NV08; BGJ13], is an in-
spiration for our work. In our case, we are working with the Hamming metric.
Our sieving method is, therefore, different from the known efficient lattice sieving
methods due to the different metrics. A similar idea was also initiated by Bernstein
in a cryptanalysis forum.1

While the performance assessment for our algorithm mainly deals with con-
crete parameters of code-based candidates, recently, Esser, Etinski, Ducas, and
Kirshanova [Duc+23] have conducted an asymptotic analysis for our approach.
More notably, they have also viewed our subroutine Algorithm IV.5 in Section 3.3
as an Nearest-neighbor instant, upon which several asymptotically better solutions
were proposed. Their result further supports that the Sieving-style approach can
be a promising research direction in code-based cryptanalysis.

1.2 Contributions

We propose a new ISD-like algorithm for solving the SDP, which we call Sieving-
style ISD. From the simple observation that if two weight-p vectors x, y collide
(i.e., both have a one) in p/2 positions (assuming p is even), then their sum
is also a weight-p vector. Moreover, if we impose a ‘syndrome condition’, being
Hxᵀ,Hyᵀ ∈ {0, s} for some syndrome s, then again H(x+ y)ᵀ ∈ {0, s}. There-
fore, instead of using birthday-style arguments like in the Stern algorithm and

1cryptanalytic-algorithms@list.cr.yp.to
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its many subsequent improvements, we can construct new weight-p error vectors
by combining in pairs stored weight p vectors, where the two vectors collide in
p/2 positions. This procedure, together with an iterative increase in the number
of considered syndrome positions, gives weight-p vectors fulfilling the syndrome
equation.

Given a set L of small weight p vectors, we derive efficient algorithms for
computing the new set of all weight-p vectors of the form x+ y, where x, y ∈ L.
This is used as a part of the proposed ISD algorithm. We then analyze the con-
crete complexity of the proposed algorithm and make comparisons with previous
works when considering memory and computational complexity. We argue that
our proposed algorithm has better time-memory trade-offs, especially when we
restrict the memory. Hence, our algorithm can contribute significantly to un-
derstanding the concrete security of code-based cryptographic constructions and
improve complexity numbers when the memory is limited.

When comparing the complexity to other ISD algorithms, our approach yields
similar performances for instances with very low relative weight (in particular, for
code-based candidates such as BIKE or MDPC parameters). In that case, the new
algorithm outperforms all previous algorithms w.r.t memory used while achieving
comparable computational complexity. Given that high memory requirement is
often a bottleneck of many enumeration-based ISDs, our algorithm presents a
valuable alternative. In summary, we hope that our research enriches as a novel
contribution to post-quantum cryptanalysis.

1.3 Organization

We start by giving preliminaries on coding theory and ISD algorithms in Section 2.
In Section 3, we explain the new ideas and describe all parts of the new algorithm.
Section 4 presents the complete complexity analysis for the new algorithm. In
addition, we show that the Decoding-one-out-of-many technique can be applied to
our new algorithm. Section 5 then illustrates the performance by making compar-
isons with some of the best-known ISD algorithms for parameter choices selected
from proposed schemes. Section 6 gives some details and results from an actual
algorithm implementation for small parameters, supporting theoretical estimates.
Section 7 concludes the paper.

2 Preliminaries

Throughout the paper, we use the following notations. We denote by

• bold letters, e.g., v and H, row vectors and matrices. In particular, In de-
notes the identity matrix of size n× n.

• (x) the Hamming weight of a vector x.
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• v = (v1, v2, . . . , vn) a binary vector of length n.

• x+ y the bit-by-bit XOR between binary vectors x and y.

• F2 the binary finite field and Fm×n
2 the vector space over F2 of dimension

m× n.

• log the logarithm base 2.

• [i] := {1, . . . , i} for an integer i ∈ N.

• H[i] the matrix restricted to the first i rows of H.

• v[i] the projection v onto the coordinates indexed by [i].

• O(.) the usual Landau notation for the asymptotic behavior of algorithms,
and Õ(.) means we suppress arbitrary polynomial factors.

We should also point out that all complexity expressions consider the actual com-
plexity in the number of bit operations and not the corresponding asymptotic
form of complexity expressions.

2.1 Linear codes and related hard problems

Let Fn
2 be the vector space of all n-tuples over the finite field F2. A linear code, de-

noted by C, is a vector subspace of Fn
2 . An element of the code c = (c1, . . . , cn) ∈

C where ci ∈ F2, i = 1, . . . , n is called a codeword. If C is of dimension k, then
we say it to be a [n, k]-linear code over F2. The minimum distance d of the code
is defined as the minimum Hamming weight of nonzero codewords of C.

A code C is often represented by a generatormatrix, which is a k×n binary ma-
trix G, where the rows constitute a basis of C. Any set of k independent columns
of G forms an information set of C. It is also a common practice to denote the
remaining coordinates, called redundancy of C, by r = n− k. Another represen-
tation of a code is with a parity-check matrix. In particular, there exists an r × n
matrix H such that Hcᵀ = 0, ∀c ∈ C. In general, there are many generator and
parity-check matrices for a code C. When G =

(
Ik A

)
or H =

(
Aᵀ In−k

)
,

we say that they are in systematic form.
Let y ∈ Fn

2 be an arbitrary vector, we call s = Hyᵀ ∈ Fr
2 the syndrome of y

through H. To ease the notation, we omit the transposition and write y instead
of yᵀ, and it should be clear from the context unless otherwise mentioned. We
observe that if y is not a codeword of C, i.e., y = c + e, for some c ∈ C and an
“error vector” e, then the syndrome of y is nonzero and s = Hy = He.

Definition 6. Let C be a [n, k]-linear code with a parity-checkmatrixH ∈ F(n−k)×n
2 .

Given a noisy codeword y ∈ Fn
2 , its syndrome s = Hy, and an integer ω > 0, the

syndrome decoding problem is to find an error vector e ∈ Fn
2 such that (e) = ω,
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y+ e ∈ C, or equivalently He = s.We say that e solves the (H, s, ω) instance of the
syndrome decoding problem.

The SDP is closely related to the coset weights problem, also known as the deci-
sional SDP (DSDP), which has been shown to belong to the NP-complete com-
plexity class by Berlekamp et al. [BMT78b].

Definition 7. LetH be a random r×nmatrix, s be a vector inFr
2, andω be a positive

integer. The coset weights problem is to determine if there exists a vector e ∈ Fn
2 such

that (e) ≤ ω and He = s.

Arora et al., in [AB09], showed that the search and decision SDP are polynomial-
time equivalent, i.e., there exists a polynomial search-to-decision reduction. There-
fore, it is common in the literature to say the SDP is NP-complete despite the fact
that the definition of NP applies to decisional problems.

2.2 Information-set Decoding Algorithms

The most prominent and well-studied approach to solving the SDP is the class
of so-called Information-set Decoding algorithms. In a naive attempt, one can
search exhaustively through the space of error vectors with weight ω, which is

(
n
ω

)
and the complexity is Õ

((
n
ω

))
. A long line of studies has gone back to Prange in

1962, who realized we could significantly improve this approach using simple lin-
ear algebra. Since then, ISD algorithms have remained an active field of research
[Pra62; LB88; Leo88; Ste88; Dum91; BLP08; FS09; Sen11; MMT11a; Bec+12a;
MO15; BM17a; BM18]. Following, we describe the general ISD framework and
explain some of the technical details of relevant ISD algorithm variants. The essen-
tial idea of ISD algorithms is to reduce the search space’s dimension with Gaussian
elimination. In short, one applies a random permutation P as

He = HPP−1e = He = s. (1)

A Gaussian elimination process yields an invertible matrix Q ∈ F(n−k)×(n−k)
2

such that
QHe =

(
Ĥ In−k

)
e = Qs = s. (2)

Therefore, we can reconstruct a solution of (H, s, ω) by solving the new in-
stance (QH, s, ω). The random permutation P imposes a particular weight distri-
bution to e = (e′, e′′) ∈ Fk

2 × Fn−k
2 , ωH(e′) = p < ω. Therefore, equation (2)

becomes
Ĥe′ + e′′ = s. (3)

In the original Prange’s ISD algorithm, one looks for P that sends all the erro-
neous bits to the second part, i.e., corresponding to the case of p = 0 and e′′ = s
(equivalently guessing an error-free information-set of H). Therefore, the run-
ning time of this algorithm is determined by finding a correct permutation, which
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happens with probability

Prsuccess =

(
n−k
ω

)(
n
ω

) . (4)

Intuitively, Prange’s ISD is suitable for the low-weight error regime as it is
more likely that a random permutation will yield the desired weight distribution.
Hence, the original ISD is still one of many main cryptanalysis tools to estimate
the security of many code-based cryptosystems, most notably NIST post-quantum
candidates such as McEliece, BIKE, or HQC public-key cryptosystems.

In contrast, modern variants of ISD allow some error weight p > 0 in e′.
Therefore, one looks for a weight-p vector e′ such that

ωH(Ĥe′ + s) = ω − p. (5)

Lee and Brickell [LB88] solved the above equation by simply enumerating (Ĥe′ + s)
until a low weight e′′ is found via (5). Leon in [Leo88] improved this approach by
imposing a `-window of zeroes in e′′; hence, the contribution from the first ` bits
of s comes only from e′. In particular, we can write again as e =

(
e′, 0`, e′′

)
∈

Fk
2 ×F`

2×Fn−k−`
2 . Although such a constraint reduces the probability of a good

permutation, it offers a check via the equation

Ĥ[`]e
′ = s[`]. (6)

It has been shown that such versions of ISD can not gain more than a polynomial
factor compared to Prange’s ISD.

The first asymptotic improvement came from the Stern ISD algorithm [Ste88]
by employing a Meet-in-the-Middle strategy to construct the candidates for equa-
tion (6). The strategy is to further split up e′ = e1 + e2, where ωH(e1) =
ωH(e2) = p/2. Moreover, this approach also mandates that e1 (and e2) con-
tributes p/2 ones only among the left (right, respectively) k/2 coordinates. This
is done by storing all

(k/2
p/2

)
possible values of (Ĥ[`]e1 + s[`]) in a look-up table

and enumerating all possible values for Ĥ[`]e2. We also notice that the Stern ISD
algorithm was also the first variant to introduce a non-polynomial memory re-
quirement, namely, a look-up table of size

(k/2
p/2

)
.

Later, Finiasz et al. [FS09], and Dumer [Dum91] argued that one can increase
the success probability of each permutation by removing the window of `-zeroes
condition and allowing some error bits to that region. More specifically, instead
of a full Gaussian elimination, one can apply a partial Gaussian elimination to (1)
(with an additional parameter `) and obtain the following form(

H′ 0
H′′ In−k−`

)
e =

(
H′ 0
H′′ In−k−`

)(
e′ e′′

)
=

(
s′ s′′

)
, (7)

where H′ ∈ F`×(k+`)
2 ,H′′ ∈ F(n−k−`)×(k+`)

2 , (e′, e′′) ∈ Fk+`
2 × Fn−k−`

2 . Then
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we proceed to find (almost) all solutions for the ‘small’ syndrome decoding in-
stance (H′, s′, p) in the form e′ = e1 + e2, where ωH(e1) = ωH(e2) = p/2 (in a
similar manner as the Stern algorithm), i.e.,

H′e1 +H′e2 = s′ (8)

and then check for

ωH(H′′(e1 + e2) + s′′) = ω − p. (9)

The equations (8) and (9) are sometimes called the exact matching and approxi-
mate matching, respectively, in literature. The state-of-the-art ISD algorithms such
as MMT/BJMM [MMT11a; Bec+12a] further speed up the process of construct-
ing e′ via the representation technique. This practice allows more flexibility on how
p error bits are presented in the vector e′. We refer the readers to the original works
for more details of the representation technique. Subsequently, Nearest-neighbor
Search [MO15] was introduced to amortize the cost of the approximate matching
problem, e.g., as in [BM18].

In comparison with Prange original ISD, whose running time depends on the
number of permutations one has to perform (with a polynomial factor for every
iteration), enumeration-dominated ISD variants raise the success probability in
(4) to

Prsuccess =

(
n−k−`
ω−p

)(
k+`
p

)(
n
ω

) . (10)

Therefore, modern ISD variants are beneficial in the weight regime where a ran-
dom permutation is not likely to send all the error weight to e′′. For concrete se-
curity of code-based cryptosystems, enumeration-based ISD remains an essential
cryptanalysis tool. However, enumeration introduces significant memory over-
heads (and the cost of accessing memory). Estimates based solely on the algorith-
mic steps can, therefore, lead to security underestimation of code-based cryptosys-
tems. Hence, cryptographers have expressed skepticism about how much modern
ISD algorithms can improve code-based cryptanalysis, especially for cryptosystems
of interest.

To this end, there have been comprehensive surveys of ISD algorithms such
as Baldi et al. [Bal+19], Esser-Bellini [EB22b], where concrete bit security es-
timates for code-based schemes are provided. Importantly, in their works, the
memory access cost was taken into consideration to understand better the secu-
rity of McEliece, HQC, and BIKE. Recently, Esser et al. [EMZ22] provided an
efficient implementation of the MMT/BJMM algorithm (by deploying multiple
techniques and speed-ups such as the Parity bit trick, Method of the four Russians
for Inversions, and Decoding-one-out-of-Many (DOOM) [Sen11]) with optimized
parameters for McEliece and a quasi-cyclic setting. More notably, they also did
cryptanalysis with medium-sized instances (60 bits). They showed that the data
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from their record computations could be used to extrapolate the bit-security of
McEliece/HQC parameters in the NIST standardization process.

3 A new heuristic ISD algorithm

In this section, we describe, in brevity, the main steps of our new ISD algorithm.

3.1 Our ISD framework

We follow the same ISD framework presented in the previous section that derives
Equation (7). As in (8), we are now assuming that the first part of the (permuted)
error vector, e′, is of weight p. So we are looking for all weight-p vectors e′ ∈ Fk+`

2
that satisfy

H′e′ = s′. (11)

Once such a vector is found, we can directly compute the corresponding ē′′ giving
the desired syndrome and finally check whether the overall weight is ω. When no
vector of weight ω is found, we apply a new random permutation, a new partial
Gaussian elimination, and the procedure is repeated until success.

Continuing, we assume that the parity-check matrix is already in the form of
(7), and from now on, we assume that p is even. Hence, the weight 2p is used
instead. Moreover, to ease the notation, we refer to matrix and vectors in (11)
as H, e, and s. To summarize, we are searching all weight-2p vectors e ∈ Fk+`

2
fulfilling

He = s, (12)

where ` is a parameter giving the number of parity-check equations used for the
first part ē′.

3.2 New ideas

The new idea behind our approach is to build an algorithm that keeps a list of
weight-2p vectors for which a part of the parity-check equations are fulfilled. From
this list, we create a new list of weight-2p vectors for which a larger number of the
parity-check equations are met. Iterating this procedure several times, we end up
with a final list of weight-2p vectors for which all considered parity checks are
fulfilled.

We suggest the following algorithm for computing new weight-2p vectors
from old weight-2p vectors based on a modified form of the sieving idea from
computing short vectors in lattices [AKS01a; BGJ14]:

Assume that e, f are two weight-2p vectors. If they collide in p positions,
meaning that ei = fi = 1 for i = {i1, i2, . . . , ip}, then their sum is a new
weight-2p vector. In addition, we have one more restriction, namely that the new
vector should fulfill a parity-check equation. Recall that s[i] is the syndrome s
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restricted to its first i positions. The parity-check condition used in the first run is

H[1]e ∈ {0, s[1]},

i.e., only weight-2p vectors fulfilling this condition are kept. In the next run, the
parity-check will be considered up to the second coordinate, i.e., H[2]e ∈ {0, s[2]}
and so on.

The underlying observation is that if two vectors e1, e2 satisfyH[i]ej ∈ {0, s[i]}
for j = 1, 2, then their sum will also have H[i](e1 + e2) ∈ {0, s[i]}. Therefore,
H[i+1](e1+e2) ∈ {0, s[i+1]} is then fulfilled (when the newly added parity-check
is applied) with probability roughly one half.

Let us now explain and discuss the algorithmic description that is to be found
in Algorithm IV.1 and Algorithm IV.2. This describes the inner parts of the full
ISD algorithm.

Algorithm IV.1: Sieve_Syndrome_Dec()
Input: A parity-check matrix H with k + ` columns and ` rows, a length

` syndrome vector s, the fixed weight 2p of the error vectors and
list size M .

Output: A set of weight 2p vectors e such that He = s.
1 Initiate a set L0 with M vectors of weight 2p;
2 for i = 1 to ` do
3 Create the new set Li ← {e ∈ Li−1 : H[i]e ∈ {0, s[i]}};
4 Mi ← Merge_Set(Li−1, i);
5 Li ← Li ∪Mi;
Return: L` \ {e : He = 0}.

The algorithm is centered around keeping a set L of M vectors of weight 2p.
In each iteration i, we aim to generate a new set of weight-2p vectors with the
same cardinality, where now one additional parity-check equation from He = s
is fulfilled. On the one hand, this new set keeps the existing vectors in the set
Li−1 (from the previous iteration), for which one more parity check is still valid
(that keeps roughly half of them). On the other hand, we create new weight-2p
vectors by considering sums of any two vectors in Li−1, which hold the collision
condition and fulfill the aforementioned parity-check. This central part of the
approach, called the Merge_Set() subroutine, is extracted as Algorithm IV.2 and
will be discussed in detail later.

The Merge_Set() subroutine is called ` times, corresponding to the number
of parity-check equations that need to be satisfied. Note that the parity-check
condition in the previous iteration will also be valid in the next. Therefore, we
eventually have a ‘candidate’ list of weight-2p error vectors that match the ` bits of
syndrome s. Such candidates are subsequently tested for the approximate match-
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Algorithm IV.2: Merge_Set()

Input: A parity-check matrix H ∈ F`×(k+`)
2 , a syndrome s ∈ F`

2, an
integer i, and a set
L = {e ∈ Fk+`

2 : H[i−1]e ∈ {0, s[i−1]}, wH(e) = 2p} of size M .
Output: A setM of vectors of weight 2p such that for e ∈M we have

H[i]e ∈ {0, s[i]}.
1 Initiate a setM← ∅;
2 for e, e′ ∈ L do
3 If wH(e+ e′) = 2p thenM←M∪ (e+ e′);
Return: L` \ {e : He = 0}.

ing condition as in (9). Putting everything together, we have a high-level descrip-
tion of our Sieving-style ISD algorithm as in Algorithm IV.3.

Algorithm IV.3: Full_ISD
Input: A matrix H with n− k rows and n columns, received length n

vector y, required weight ω and algorithm parameter `.
Output: A weight-ω vector e such that Hy = He.

1 Compute the syndrome s = Hy;
2 repeat
3 Pick a random row permutation P; ;
4 H← HP, e← P−1e ; ;
5 Perform (partial) Gaussian elimination on H resulting in

Ĥe =
(
H′ 0
H′′ In−k−`

)(
e′ e′′

)
= s =

(
s′ s′′

)
; ;

6 Let H′ = Ĥ[`] and s′ = s[`]; ;
7 L ← Sieve_Syndrome_Dec(H′, s′, 2p);;
8 for ẽ ∈ L do
9 if ωH(H′′ẽ+ s) = ωH(ẽ′′) = ω − 2p then return P−1(ẽ, ẽ′′);

10 until solution is found ;

3.3 TheMerge_Set() algorithm

As introduced above, the Merge_Set() algorithm operates on a set of weight-2p
vectors and should return any weight-2p sum of two such vectors. There is an
additional parity-check requirement, but since this is valid for half of the vectors,
it does not pose a problem. We simply check for each sum vector of weight 2p.
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In short, the problem is to find an efficient way of generating pairs of vectors
that sum to a new weight-2p vector.2 A naive implementation of Algorithm IV.2
would require checking all pairs of vectors, hence requiring quadratic (in list size)
complexity.

Let a (low-weight) vector e be represented by the indices of its ones, i.e.,
(i1, i2, . . . , i2p) in rising order, written e ∼ (i1, i2, . . . , i2p). We want to find
two vectors that share p indices. In a first attempt to find an efficient solution, we
could generate

(
2p
p

)
‘labels’ for each vector. A label would be a selection of p out

of the 2p indices for the vector. With M vectors in total, we would have
(
2p
p

)
·M

such labels. They would then be stored in a sorted way so that collisions among
them are detected. Labels of the form (i1, i2, . . . , ip) can be mapped to integers
and, with a hash table, one can then get close to complexity

(
2p
p

)
·M and the same

memory.

Algorithm IV.4: Merge_Set_Implementation0

Input: A parity-check matrix H ∈ F`×(k+`)
2 , a syndrome s ∈ F`

2, an
integer i, and a set
L = {e ∈ Fk+`

2 : H[i−1]e ∈ {0, s[i−1]}, wH(e) = 2p} of size M .
Parameters p′, p′′.

Output: A setM of vectors of weight 2p such that for e ∈M we have
H[i]e ∈ {0, s[i]}.

1 Declare and initiate parameter (set of vectors)M← ∅;
2 Find_Collision(L, p, p′,0);
3 returnM = {e ∈M : H[i]e ∈ {0, s[i]}};

However, we propose a more balanced implementation, where we, in par-
ticular, reduce the amount of memory since

(
2p
p

)
·M can be prohibitively large

compared to M . This approach is described in Algorithm IV.4 together with Al-
gorithm IV.5. For the latter, we use recursive calls to ease the description of the
procedure. We first describe the basic ideas of the procedure, and later, we revisit
the exact steps of Algorithm IV.4 and Algorithm IV.5.

We split p (and vectors, correspondingly) into two parts as p = p′ + p′′.
Each vector given by (i1, i2, . . . , i2p) parses into (i1, i2, . . . , ip′) as a first part
and (ip′+1, . . . , i2p) as a second part. We consider the set L of length-(k + `)
and weight-2p vectors to be arranged in a number of ‘buckets’, where each bucket
initially contains the vectors, of which the first part is (i1, i2, . . . , ip′).

2It can also be viewed as a special variant of the Nearest-neighbor (NN) problem. Although NN-
solvers such as Local-sensitive Hashing orNearest-neighbor Search could apply, due to our setting (e.g.,
very low weight 2p and fixed weight samples) and interest in the concrete analysis, it is unclear to
what extend a direct application of such algorithms can be useful.
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It means that the number of p′-buckets is
(
k+`−p′′

p′

)
. Note that each vector is

only in one bucket. Furthermore, p′ should be chosen in such a way that there
will likely be some collisions inside each bucket. Now we consider the first bucket,
indexed by (1, 2, . . . , p′). The vectors in this bucket already collide in p′ positions,
and we seek pairs of vectors that collide in an additional p′′ positions out of the
2p − p′ remaining ones. This is done in the following way. We assume we can
access an array A of size

(
k+`−p′

p′′

)
, indexed by p′′ positions. For each vector in the

bucket, we create the
(
2p−p′

p′′

)
different possible combinations of the remaining

p′′ positions and write a one in the corresponding position in A. Also, if there
was already a one in that position, we have found a collision, which is recorded.
Finally, after all collisions in a bucket are found, the vectors are placed in their
‘next bucket’-indexed by the next value for the p′ positions.

We now elaborate this idea by describing the procedure in a recursive way as in
Algorithm IV.5. To give a brief explanation, it starts with a call to Find_Collision(),
looking for collisions in p positions. It has a bucket (list) of vectors as input.
These vectors are now placed in new buckets, depending on the vector’s first in-
dex value. In bucket B1, all vectors have a one in position 1, so within B1, we
only need to look for collisions in p − 1 additional positions. Therefore, the call
to Find_Collision(B1, p− 1, p′ − 1, i+ 1). Once this call has returned possible
collisions, the vectors in B1 may still collide in other ways, excluding position 1.
This is why we then move the vectors to the next bucket corresponding to the
second lowest index in the vector. Since the position 1 was removed from further
combinations, the vector now has only 2p − 1 indices. Let us assign an index x
where the vectors are considered to ‘start’.

If the remaining depth is not zero (checked in Line 1), we are simply going
to put the vectors in different buckets Bx+1, . . . ,Bk+` depending on their next
index that is greater than x. For instance, if the next index in order is y, the vector
is put in bucket By (Line 2). Then we go through all these buckets in order and
find all collisions in bucket Bi by the call Find_Collision(Bi, p− 1, p′− 1, i+1)
(Line 4). Note that since all vectors in bucket Bi already collide in position i, we
decrease the depth and required collision while increasing the index by one.

Once all collisions in Bi have been found, these vectors may provide further
collisions in indices i. Thus, we must move the vectors in Bi to the next bucket
corresponding to the next index that is greater than i. This is done according to
Line 5.

When the remaining depth is 0, there are not enough vectors in the input
bucket to further motivate a split in smaller buckets. Instead, we now directly find
the collisions. For this purpose, we use an array A, indexed by p′′-tuples. For each
vector, we create all possible p′′-tuples of its remaining indices (ij , ij+1, . . . , i2p)
and we write upA by one in each such position (Line 11). We also keep the address
to the vector v in an array D where we assume that in each entry, we can store a
few elements (Line 14). While updating the array, one may hit an index where A
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Algorithm IV.5: Find_Collision()
Input: A set L of vectors of length k + `; collision weight p; depth sizes

p′; first index x.
Output: All vectors of the form x+ y, where x, y ∈ L and they collide in

p positions, written to global parameterM.
1 if p′ > 0 then
2 Put the vectors in L in new buckets Bx+1, . . . ,Bk+` depending on

its first index greater than x;
3 for i = x+ 1 . . . k + ` do
4 Find_Collision(Bi, p− 1, p′ − 1, i+ 1);
5 Move the vectors in Bi to its next buckets among

Bi+1, . . . ,Bk+` depending on its first index greater than i;

6 else
7 Initiate two arrays A← 0, D← 0 ;
8 for each vector v ∼ (ij , ij+1, . . . , i2p), j > x, in Bi do
9 create a set Y of all its p′′-tuples. ;

10 for each p′′-tuple y = (y1, y2, . . . , yp′′) ∈ Y do
11 A[y]← A[y] + 1;
12 if A[y] ≥ 2 then
13 store v+D[y] = {v+ u, u ∈ D[y]} as collisions inM
14 D[y]← D[y] ∪ {v};
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is already non-zero (meaning collisions). One directly writes them to the global
output parameterM.
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Figure 1: Checking vector in Li and Merge_Set().

Example 2. We can visualize the checking step and Merge_Set() (Lines 3 and 4
in Algorithm IV.1) by Figure 1. For simplicity, let p = 3, p′ = 1, and p′′ = 2. In
the i-th iteration, we have a list Li of vectors. First, we put vectors in Li in buckets
corresponding to their first coordinate. Assume we have xj , xk, x` ∈ Li where xj ∼
(j1, . . . , j2p) (and so forth), and they have the same first coordinate, i.e., they are
put in Bj1 . Then we only need to proceed with their shortened versions, written as
x∗j ∼ (j2, . . . , j2p), etc., since we have excluded the first coordinate. We then detect
collisions in this ‘bucket’ by producing p′′ labels for each vector and marking them on
A correspondingly. For example, if both x∗j , x

∗
k include (j2, j3), then we potentially

have xj + xk as a ‘good’ combination to be added in Li+1.
After processing Bi1 , we move (dashed red line) vectors in this bucket to their next

buckets. For instance, xi to Bi2 , xj to Bj2 and so forth. We now exclude the first two
coordinates of xj (hence, we use x∗∗j ∼ (j3, . . . , j2p)). Note that in the list Li+1, we
also have half the vectors from Li that survive the syndrome condition.

4 Analysis of the new ISD algorithm

This section provides estimations on the time complexity, denoted C, and the
space complexity. The space is essentially the number of stored vectors M (so it is
not given in bits). Some smaller additional memory is required for other parts of
the algorithm.
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4.1 The list sizeM and parameters selection

We first determine the list size M required for the new algorithm to work. Let
us recall that the inner iteration of our ISD algorithm, i.e., the Sieve Syndrome
Decoding (Algorithm IV.1), consists of two steps: the Merge_Set subroutine,
and verifying the next parity-check for vectors in the list that we are processing.
Assume that we initiate Algorithm IV.1 with a list L0 where |L0| = M and we
aim to keep the list size constant after every (or the majority of ) iteration of the
parity-check condition. At the i-th iteration, one has for each e ∈ Li that

ωH(e) = 2p, and H[i]e ∈ {0, s[i]}.

We observe that, on average, half of them shall satisfy the next parity-check
condition, i.e., H[i+1]e ∈ {0, s[i+1]}. Therefore, we choose M that yields another
M
2 ‘good’ combinations. We denote the probability of two random weight-2p

vectors of length k + ` colliding in precisely p positions (of the ones) by q, then

q =

(
2p
p

)(
k+`−2p

p

)(
k+`
2p

) .

Given a list of M vectors, we can form M(M−1)
2 ≈ M2

2 combinations. How-
ever, as will be explained later, a significant part of our vectors are actually depen-
dent. Two phenomena arise: 1) We have more combinations than the uniformly
random case, and 2) Combinations can be already existing vectors (called dupli-
cates). For this purpose, we introduce δ as the fraction of all combinations that
give rise to new vectors. Continuing, on average, new weight-2p vectors survive
the parity-check with probability 1

2 . In conclusion, we require

δ ·M2 · q
2 · 2

≈ M

2

or
M ≈ 2

δ · q
. (13)

Let us define
N = {e ∈ Fk+`

2 |ωH(e) = 2p and He = s},

which is the number of solutions for the exact matching equation (8) (not to be
confused with the original syndrome decoding problem). One can expect that the
cardinality of N is around (

k+`
2p

)
2`

.

The final list of Sieve_Syndrome_Dec contains around M/2 solutions of the
exact matching equation (the other half yields null syndrome). If ` is not too
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large, there will be many possible solutions, and they all need to be stored in the
final list. Therefore, to guarantee that our ISD algorithm is able to retrieve all (or
most) solutions of the exact matching problem, we need that

M ≥
(
k+`
2p

)
2`−1

. (14)

In conclusion, the list size is first set by (13). Then, to find the optimal param-
eters for our algorithm, we search for p ∈ [0, ω], and ` in a ‘reasonable’ range3, so
that (14) holds, and we select the parameters that yield the lowest complexity.

4.2 Heuristic arguments for duplicated vectors

In this subsection, we investigate the fact that due to dependency in our list of
vectors, there will be some combinations that do not contribute to the new list. We
stress in advance that the duplicates originate not only by chance but also from the
nature of our proposed algorithm (in particular, due to keeping half of the list from
previous iterations). In other words, we will see that the duplicates are entirely
different from the situation of “many representations” for weight-2p vectors in the
representation-based ISD algorithms. In short, we try to heuristically determine
δ in Equation (13) as a countermeasure to the latter, as well as the number of
combinations we have to compute in each iteration.

· · ·

keep combine combine

Li,1 Li,2

Li+1,1

M

2

Li+1,2

M

4

Li+1,3

M

4

i

i+ 1

i+ 2
M

4

M

2

H[i+1]x ∈ {0, s[i+1]}

x xj1 + xj2

Figure 2: An example of duplicates

Let us look at three consecutive iterations in Sieve_Syndrome_Dec() as in
Figure 2. Vectors in Li can be split into two sets: Li,1 as the set of vectors from
the i-th iteration that also fulfill the syndrome condition up to iteration i + 1,
and Li,2 as the rest. Next, the vectors in iteration i + 1 are made of three sets

3Similar to Baldi et al. in [Bal+19]. We extend the range of ` until the optimal value of ` is no
longer on the edge of the range.
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Li+1,j , j = 1, 2, 3. Vectors from Li+1,1 = {x1, x2, . . .} which is a set of size M
2

(directly kept from Li,1); Li+1,2 (resp. Li+1,3) as sums of two vectors both from
Li,1 (resp. Li,2) which is a set of size M

4 . 4

Note that there can be no sum of one vector from Li,1 and one from Li,2, as
then the syndrome condition is not fulfilled.

We now look at all the different combinations that give already existing vec-
tors. First, any combination of two vectors from Li+1,1 already exists in Li+1,2.
They will account for (M2 )

2 · q2 = M2·q
8 combinations that do not contribute.

Then there are also duplicates when combining Li+1,1 and Li+1,2. When a vec-
tor xj1 + xj2 ∈ Li+1,2 is added to either xj1 ∈ Li+1,1 or xj2 ∈ Li+1,1, there will
be a duplicate. Since |Li+1,2| = M

4 , and for each xj1 + xj2 , we can have two du-
plicates which are xj1 and xj2 . Therefore, the number of generated duplicates is of
order M

2 . Then, we may also have additional duplicates from other combinations.
Again, besides the ‘useless’ combinations fromLi+1,1 andLi+1,2, we also have

other additions that can give new vectors. In particular, the type xj1 + xj2 + xk
where xj1 + xj2 ∈ Li+1,1 and xk ∈ Li+1,2, xk 6= xj1 , xj2 . Additions of this
kind yield approximately M

4 · (
M
2 − 2) · q ≈ M2·q

8 new vectors. To summarize,
it is necessary that the total number of combinations is around M , excluding the
duplicates. In other words, one has

M2 · q ·

 1

8︸︷︷︸
(1,1)

+
1

8︸︷︷︸
(1,3)

+
1

32︸︷︷︸
(2,2)

+
1

16︸︷︷︸
(2,3)

+
1

32︸︷︷︸
(3,3)


+

(
M

2
+

M2 · q
8

)
︸ ︷︷ ︸

(1,2)

(
M

2
+

M2 · q
8

)
︸ ︷︷ ︸

duplicates

≈ M,

where (j, k) represents the combinations between Li+1,j and Li+1,k. Sim-
plifying, one obtains

M ≈ 8

3 · q
=

4

3
· 2
q
. (15)

This corresponds to selecting δ = 3
4 in Equation (13). However, this is not

sufficiently small due to the other (rarer) duplicates. To be conservative, we choose
δ = 2

3 , and it is more than sufficient according to simulations.
The number of duplicates is then at least (excluding other rarer cases)

M

2
+

M2 · q
8

=
7 ·M
8

.

4Both sets are made of M2·q
4

combinations. Assume si+1 = 0, so Li,2 = {x : Hi+1x ∈
{(s[i], 1), (0[i], 1)}} . We can check that one can combine roughly the same way (compared to

vectors in Li,1) to be in {s[i+1], 0[i+1]}. Therefore, |Li+1,2| = |Li+1,3| =
M

2 · 2 .
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We are motivated by this heuristic estimate and expect (conservatively) to have to
create around 2 ·M combinations for each iteration. Note that: 1) this estimate
is not necessarily true once the number of possible weight-2p vectors decreases
in later iterations (in a sense, this estimate allows us to be on the safe side in
(many) early iterations by maintaining the list size) and 2) the constant δ covers
the duplicates as described in Figure 2. Other duplicates (rarer, arose by chance)
depend on the parameters k, `, and p.

Example 3. We supported our heuristic arguments of δ with simulations. We test
various sets of parameters, and simulations confirm the heuristic arguments. We stop
Merge_Set once we observe that the list size is maintained, and we look at the number
of total combinations we have done. For example, two (out of many tested) parameter
sets are (k, `, p) = (500, 30, 2) and (k, `, p) = (1000, 30, 2). We record the total
amount of collisions and duplicates for each iteration.

• For (k, `, p) = (1000, 30, 2), we have M ≈ 215.35. For the majority of
iterations, we obtainM unique vectors (hence, M

2 survive after the check). The
ratio between duplicates and M varies around 7

8 and peaks at 0.93 (i.e. we
create at most 0.93 ·M duplicates).

• For (k, `, p) = (500, 30, 2), we have M ≈ 213.43. We observe similar be-
havior and the ratio between duplicates and M peaks at 1.

4.3 Memory requirement

The memory required for the algorithms is broken down into: 1) the list size M ,
the list B of p′ “buckets”, and the size of the array A used for detecting collisions.
In our optimization, we selected parameters p′ and p′′ so that |A| =

(
k+`−p′

p′′

)
and

|B| =
(
k+`−p′′

p′

)
are not greater than the list size M . Moreover, we will see from

our result tables (e.g., Table 1 and Table 7) that the memory is predominantly
determined by M . Therefore, the memory requirement in bits, denoted by M̂ for
our algorithm is:

log(M̂) = log(M) + log(n). (16)

Although the memory can be further reduced by only storing the indices of
the weight-2p vectors, and the algorithm benefits from such optimization when
p is very small5, we refrain from such optimization to be fair in comparison with
other algorithms (that also use log(n) in calculating the memory in bits).

4.4 The probability of finding a desired vector

We next provide some heuristic arguments concerning the probability of find-
ing one or several desired vectors, i.e., if the code contains a weight-2p code-

5For example, we can store only the position of the indices of the ones instead of the full-length
vector.
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word, what is the probability that it is included in the list given as output from
Sieve_Syndrome_Dec()?

Recall the assumption that, throughout the Sieve_Syndrome_Dec(), we have
M unique vectors moved from one iteration to the next. However, when i is large
enough, this will no longer be true. We now introduceM ′

i as the expected number
of weight-2p vectors that fulfill up to i parity-check conditions. Then

M ′
0 =

(
k + `

2p

)
and

M ′
i =

(
k+`
2p

)
2i

.

Note that we also have the same amount of weight 2p vectors that fulfill the null
syndrome 0[i].

Now, the heuristic argument is that the set of generated vectors in iteration
i is a random selection among all M ′

i vectors. So for each created vector in the
iteration, we view it as a random pick. Let Mi = |Li| denote the list size in
iteration i, where Mi ≤ M . Then the Mi vectors come from the primary check
and Merge_Set() (Lines 3 and 4 in Algorithm IV.1). We denote the cardinality
of these two sets by M (1)

i and M
(2)
i , respectively. Then,

Mi = min
(
M,M

(1)
i +M

(2)
i

)
.

The primary check contributes, on average, M (1)
i = Mi−1

2 distinct vectors
from the previous iteration.

We now estimate M (2)
i as the expected number of unique new vectors from

Merge_Set(). Intuitively, when M ′
i �M , it is unlikely that we will generate the

same vector twice or more (besides systematic duplications described in 4.2), and
we have a high chance to reach Mi = M new vectors for the next iteration. How-
ever, when M ′

i gets closer to M as i grows, we are forced to have more duplicates,
and Merge_Set() we will not generate M

2 new vectors.
As previously discussed, after excluding the obvious obsolete combinations,

Merge_Set creates 3M2
i−1·q
8 more combinations in iteration i. With the choice of

δ = 2
3 to ensure that we expect to generate more new vectors than needed. We

have an expected number of 9·M2
i−1

16·M new vectors.
A vector is unique if it is not among the M

(1)
i vectors in the first part and

not the same as any previously kept one. Hence, the first vector has a probability

1− M
(1)
i

2·M ′
i

of being unique, and the second vector has a probability larger than 1−
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M
(1)
i +1

2·M ′
i

, and so on. In total, the expected number of unique vectors is estimated
at around

9 ·M2
i−1

16 ·M
−

M
(1)
i + (M

(1)
i + 1) + . . .

2 ·M ′
i

≈
9 ·M2

i−1

16 ·M

1−
M

(1)
i +

9·M2
i−1

32·M
2 ·M ′

i

 .

We expect M (2)
i to be the minimum of M/2 and the above expression.

Now assume e is a desired weight-2p vector that fulfills ` parity-checks. Then,
we know that if e has appeared in an iteration i, it continues to be present in all
subsequent iterations j ≥ i. Recall that we initialize Sieve_Syndrome_Dec()
with a list of size M . The probability that e is not randomly selected is(

1− 1

M ′
0

)M

.

For i = 1, . . . , `, as the primary check does not produce new vectors, then e is not
present after each iteration if it is not produced from Merge_Set(). This routine
produces Mi

(2) more vectors; hence the probability is(
1− 1

2 ·M ′
2

)M
(2)
i

,

where the factor 2 can be explained as the newly created vectors can be those whose
syndromes are either s[i] or 0[i]. Therefore, the probability that e is not found after
Sieve_Syndrome_Dec is(

1− 1

M ′
0

)M

·
∏̀
i=1

(
1− 1

2 ·M ′
i

)M
(2)
i

.

In other words, our algorithm finds e with probability

1−
(
1− 1

M ′
0

)M

·
∏̀
i=1

(
1− 1

2 ·M ′
i

)M
(2)
i

.

We stress that the quantities above are, for a large part, heuristic estimates for
the expected number of vectors in Sieve_Syndrome_Dec(); hence, the provided
formulae are not rigorous. In fact, from simulation, we can see that we slightly
overestimate M (2)

i and underestimate the actual success probability. However, we
can use the expressions to roughly estimate the desired probability for cases where
we cannot simulate. If we do that, we observe that the probability typically lies in
the range 50−100%. In Section 6, we give some examples from implementations
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to justify the above heuristic approach.
This probability can be adjusted in two ways. On the one hand, the probability

of finding a valid vector is mostly larger than 0.5 if ` is large enough. On the other
hand, the parity trick in the Gaussian elimination part, explained in [EMZ22],
can force the weight of all codewords to be even and then Prsuccess slight increases.
In addition, later in Section 4.6, we introduce another trick called the “hybrid
approach” that can potentially speed up our algorithm by a factor of 2. Therefore,
we adopt the approximation that these two factors cancel each other out.

4.5 Complexity Estimation

We study the complexity in the RAM model, i.e., the cost of reading and writing
to one memory address is O(1) operations, with the memory access cost set to
1. This method is the most traditional way of estimating the complexity, used in
many previous papers and also in the complexity estimator given in [EB22b].

Outer iterations

Let us recall that the probability that a permutation yields the correct weight dis-
tribution, that is, 2p in the first k+ ` bits and ω− 2p in the remaining n− k− `
bits, is

Prsuccess =

(
k+`
2p

)(
n−k−`
w−2p

)(
n
w

) .

Therefore, we have to perform, on average, 1
Prsuccess

iterations. We subsequently
examine the cost for each iteration, denoted by Citer.

Gaussian elimination

Similarly to recent ISD analysis works [EB22b; EMZ22], we employ the Method
of the four Russians for Gaussian elimination, which was proposed in [BLP11;
BLP08]. There also exists a theoretical analysis [Bar07], along with an open-source
version of this method, which was later adopted by Esser et al. [EB22b] for per-
forming the partial Gaussian elimination that is necessary for our framework.

Sieve_Syndrome_Dec()

This routine consists of performing Merge_Set() ` times, corresponding to `
parity-checks. Let us recap the Merge_Set() subroutine of our ISD algorithm.
Assume that a list of size M is sufficient, as stated in Section 4.2. In Algo-
rithm IV.4, we go through the list to check if vectors fulfill the parity-check con-
ditions. For every sample of weight 2p, the checking corresponds to summing 2p
bits in the parity-check matrix and the syndrome bit. Therefore, the cost for this
step is about

Ccheck = 2p ·M.
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The next step is Algorithm IV.5, which combines samples so that we create
another M/2 vectors for the next iteration. By parsing p = p′ + p′′, we put our
vectors in an ordered table of size

(
k+`−p′′

p′

)
and distribute our vectors according

to their first p′ coordinates (in the representation form). This way, when we move
our vectors, we only need to read the value of the ‘next’ p′ coordinate and move
correspondingly; thus, the cost of moving is constant for each vector. Assume
we are at the first ‘bucket’, i.e., examining all the vectors with 1 in their first p′
coordinates. We produce all p′′ labels for each vector, and we make use of an array
A to keep track of how many times the labels have been produced (recall that we
index A using the p′′ labels). We then run through the list of labels that occurred
more than once to find the vectors that need to be combined. This routine then
ends by moving its content to the next ‘bucket’. Note that, for every sample, we
do not have to produce labels that include previous coordinates (as those labels are
already processed in past buckets). The cost of this step can be broken down into
the following parts:

• For each vector, we create precisely
(
2p
p

)
markings on the array A. This is the

total number of times Lines 11-14 executed for each vector. It consists of
two assignments and one comparison. On rare occasions (with probability
q), we additionally get collisions to handle. We also include the cost of
creating a p′′ label (Line 9-10). Assume that the cost of reading and marking
each label in A is clabel operations. Then we need

Clabel =

(
2p

p

)
· clabel ·M,

operations for this part.

• The cost of moving vectors (Line 5). Since the remaining number of co-
ordinates of a vector has to be at least p′′, we only have to move a vector(
2p−p′′

p′

)
times. Therefore, moving vectors cost

Cmove =

(
2p− p′′

p′

)
·M.

• The cost of combining vectors. In the worst case, we have 2 ·M collisions,
but only M

2 new unique vectors are kept (as explained in Section 4.2). For
each collision, the cost of producing the new vector is the cost of creating the
new 2p positions. Colliding positions are known, so it reduces to copying
the other positions in an ordered form. We also need to compute the other
parts of the vector representation and check for duplicates. This last part
corresponds to bit-wise adding two values of bit size slightly larger than
logM and then checking in a hash table if it is a duplicate. It may cost
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2 logM operations.6 Therefore, this step is estimated to cost

Ccombine = (2p+ 2 logM) · 2 ·M.

The Merge_Set() routine is then repeated ` times. Thus, if we introduce
CSyn_Dec as the bit complexity of performing all these steps then

CSyn_Dec =

(
2p+

(
2p

p

)
· clabel +

(
2p− p′′

p′

)
+ 4(p+ logM)

)
· ` ·M.

Testing candidates

Finally, we have to go through the last list and check for weight-(ω−2p) solutions,
i.e., via the identity ωH(H′′e − s) = ω − 2p. This corresponds to adding 2p
length-(n − k − `) columns in H′′; moreover, the number of solutions for the

exact matching Equation (8) is
(k+`

2p
)

2`
. Hence

Csolution_check = 2p · (n− k − `) ·
(
k+`
2p

)
2`

.

Theorem 3. The bit complexity C of the Sieving-Style ISD algorithm is

C =
1

Prsuccess
·
(
CGauss + CSynd_Dec + Csolution_check

)
, (17)

where CGauss is the cost of the Gaussian elimination step.

Some observations that decrease the complexity slightly are: For the case of
one or a small number of valid solutions, the list size will decrease, and hence, the
complexity drops in later iterations. Therefore, these later iterations can be less
expensive than the previous ones.

We also note that for ‘larger’ error weight regimes, for instance, McEliece pa-
rameter sets (p is not very small, e.g., p = 14 for Category I), then the dominating
part of the complexity expression is (

(
2p
p

)
· clabel · ` ·M)/Prsuccess.

4.6 A small improvement through a hybrid approach

We propose the idea of a hybrid algorithm first using enumeration to construct a
list of weight-2p vectors for Sieving-style ISD. Typically, this will lower the com-
plexity by 1-2 bits.

6Here, we assume that the vector representation includes a ”key” of bit-length larger than logM .
We check if the key is already present, which, in such a case, means that we created a duplicate. When
we add two vectors, we also add their keys. The keys can be constructed as a syndrome vector for a
random code.
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Instead of repeating the Merge_Set() for all ` iterations, we split in two parts
by ` = `1 + `2. We now directly construct weight-2p vectors that satisfy all first
`1 parity checks by employing a birthday-style algorithm. After that, we continue
with our Sieving-style ISD for the `2 remaining iterations.

First, we createM ′ random weight-p vectors e, compute the partial syndromes
H[`1]e,H[`1]e+ s[`1], and store pairs (H[`1]e, e) and (H[`1]e+ s[`1], e) in a table of
size 2`1 . If there exist two pairs in an entry of the table, we combine e+e′ that will
satisfy the null-syndrome or s[`1]. The goal of this step is to create M weight-2p
vectors for the sieving step, Assume we start with two lists of weight-p vectors of
size M ′, then M ′ satisfies

(2 ·M ′)2

2 · 2`1
≈M or M ′ ≈

√
M · 2`1−1

and to not introduce significantly more memory, we can choose `1−1 ≤ log(M)
so that M ′ ≤M . The complexity of this step is broken down as

• Computing 2 ·M ′ syndromes for the list of size M ′

2 ·M ′ · p · `1.

• Combining M weight-2p vectors

M · 2p.

Example 4. Suppose we attack the SDP instance (3488, 2720, 64), then the opti-
mized parameters for our algorithm are ` = 83, p = 7, and logM = 46. The
complexity of the inner iteration for this instance is C = 265.17. Let `1 = 41, then
M ′ ≈ 243. The cost of the new approach is:

2 ·M ′ · p · `1 +M · 2p+ 42

83
· C ≈ 264.18

or we improve by 1 bit from this approach.

4.7 Decoding-out-of-many in our sieving-style ISD

In code-based cryptography, the technique ofDecoding-one-out-of-many (DOOM)
[Sen11; JJ02] can significantly enhance the efficiency of previous ISD algorithms
for attackers solving a single SDP instance from multiple instances. This approach
is especially critical for the key-recovery attack on the HQC cryptosystem and the
message-recovery attack on the BIKE system. In the following paragraphs, we
sketch how we can, in principle, adapt our new algorithm to benefit from the
DOOM technique. However, more work is needed to verify the effect of the
modified algorithm in terms of performance and success probability.
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The DOOM problems from the key-recovery attack on HQC and the message-
recovery attack on BIKE. We aim to search for a specific 2k-dimensional vector,
namely e = (e0, e1), which adheres to the condition He = s. The parity-check
matrix of the code employed in HQC and BIKE is given byH = (H0,H1), where
the matrices H0 and H1 are cyclic. In this context, si represents the i-th left cyclic
shift of the syndrome s. For each instance of si, an e that satisfies He = si can be
found. The crux of the problem lies in outputting a single vector e amongst the k
potential solutions. The problem is easier than the syndrome decoding problem
due to the k potential solutions.

Incorporating DOOM into the Sieving-style ISD algorithm We make minor
modifications to the new ISD algorithm for its application in the DOOM context.
The DOOM problem appears to aggregate k sub-problems, i.e., creating k types of
vectors and progressing to the subsequent iteration. Yet, the new Sieving-style ISD
presents a unique characteristic that enables the merging of vectors that have an all-
zero syndrome 0 across all k categories. By leveraging this feature, we demonstrate
that simply doubling the list size is sufficient to maintain a stable list size.

To be specific, in the i-th iteration, we include an index for each vector to
distinguish which parity-check equation is satisfied. In the i-th iteration, one has
for each e ∈ Li that

ωH(e) = 2p, and H[i]e ∈ {0, sj,[i]} for 0 ≤ j ≤ k − 1.

Here sj,[i] represents the j-th left cyclic shift of the syndrome s restricted to its first
i-th positions. We assign an index j to e to classify the vector e ∈ Li to k + 1
categories, where j = t for 0 ≤ t ≤ k − 1 represents H[i]e = st,[i] and j = k
represents H[i]e = 0.

Under the continued assumption that the list size is M per iteration—with
M/2 samples carried forward from the preceding iteration—it becomes crucial to
generate M/2 fresh samples via collision detection. In each iteration, we assume
that M/2 samples have the index k and M/(2k) samples have the index t for
0 ≤ t ≤ k− 1. Let δ as defined in Section 4.1 be the fraction of all combinations
that give rise to new vectors.

We create new samples, specifically M
4k of them, carrying indices t where 0 ≤

t ≤ k − 1. This results in the equation

M

2
· M
2k
· δq
2

=
M

4k
,

yielding the minimum value for M as 2
δq , aligning with the estimate in Equa-

tion (13). For the category with index k, we produce new samples, M
4 in number,

which can be created by merging two vectors with identical indices. Hence, se-
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lecting M = 4
δq , we obtain

δq · M2

4·2
2

=
M

4
,

where the left side is the new vectors created from merging two vectors with the
index k. In this analysis, combinations paired with an index differing from k are
ignored due to their less frequent occurrence.

5 Numerical results

In this section, we provide the concrete complexity of our described algorithm
when considering some proposed code-based schemes and comparisons with other
ISD algorithms.

Our analysis focuses first on the Classic McEliece parameter sets. Subse-
quently, we examine our algorithm’s performance for a set of SDP parameters,
referred to as MDPC parameters, akin to those used in QC-MDPC cryptosys-
tems such as BIKE, where noise weights are on the order of O (

√
n). In this

phase, we disregard the quasi-cyclic structure, focusing solely on the complexity
of the corresponding SDP problem. Finally, we incorporate the quasi-cyclic struc-
ture of BIKE, assessing the bit complexity estimates for BIKE parameters in the
context of key-recovery attacks. As for other ISD algorithms, we mainly focus
on the MMT and BJMM variants as the bit-complexity can be computed in a
similar fashion as in Section 4.5. In particular, we opt not to include Both-May
or May-Ozerov variants as it is unclear how the polynomial overhead by using
Nearest-neighbor Search can affect the concrete complexity.

A comprehensive estimator for the aforementioned ISD algorithms was pro-
vided in [EB22b], where the bit complexity is computed as the number of vector
operations multiplied by the cost per operation. However, the authors set the cost
of each F2-vector operation as n. This is not the case in our analysis. Therefore,
to achieve a fair comparison, our estimator7 adjusted the cost for each operation
for the MMT and BJMM algorithms in a similar manner as in Section 4.5. As a
result, Figure 3 and Table 6 yield different optimizations and bit-complexity from
[EB22b].

In this section, we examine the security estimates with two values of clabel
(reading and marking a label into A), namely clabel = 2 and clabel = 5. The
first case, corresponding to a value of 2, represents the optimal scenario and is
intended to allow for comparisons with previous works, as the constant in the big
O (·) notation corresponding to using a hash table or similar, is typically set to 1.

7The estimator and optimal parameters can be found in the implementation repository
https://github.com/vunguyen95/Review-ISD-Sieving.

https://github.com/vunguyen95/Review-ISD-Sieving#category.name
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The second case, corresponding to a value of 5, reflects our attempt to gauge the
impact of increasing this constant value on the complexity.

5.1 Numerical results for Classical McEliece

Table 5 provides the security parameter sets of the Classic McEliece cryptosystem.
Five parameter sets are published, including one for Category 1, one for Category
3, and three sets for Category 5.

In Table 7, we present the bit security estimates of our new sieving-style ISD
algorithm on these Classic McEliece parameter sets. The reference values are from
the estimator in [EB22b].

(a) Category 1 (n = 3488) (b) Category 3 (n = 4608)

(c) Category 5

Figure 3: Time-memory trade-offs of different ISD (including ours, clabel = 2) algorithms.

Figure 3 demonstrates that, under memory constraints, our algorithm out-
performs competing ISD algorithms. As detailed in Table 7, our algorithm has
improvements to other ISD algorithms for the Classical McEliece security param-
eters when memory limitation is set to 260 bits. Although it is not competitive
with no memory constraint, our algorithm enriches the cryptanalytic arsenal with
its different behavior regarding the time-memory trade-off.

With a closer look at the optimal parameters, we notice an interesting fact
about our algorithm. With the same memory restriction, the sieving approach
can work with larger values of p. For example, for M < 260, the optimal p for
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sieving-ISD is p = 14 while p = 8 for MMT and p = 12 for BJMM algorithms.
The explanation is that our algorithm only works with a small subset of weight-2p
vectors (instead of enumerating all). The iterative ‘sieving’ steps manipulate this
set towards containing the solution(s). This hints that Sieving-style ISD can have
more significant improvements in low-memory configurations, which constrains
the values of p.

5.2 Applications to MDPC and BIKE (key-recovery) parameter sets

Next, we extend the application of our new algorithm to address MDPC param-
eters, demonstrating that, in terms of memory efficiency, the Sieving-style ISD
algorithm surpasses other ISD algorithms across a set of parameters. Our focus
is on SDP parameters where n = 2k and the error weight scales with O (

√
n).

Specifically, as detailed inTable 1, we explore SDP parameters derived from the pa-
rameter sets of BIKE and HQC, as listed inTable 6, disregarding their quasi-cyclic
structures. It is noteworthy that BIKE and HQC represent two leading code-based
KEM proposals in the fourth round of the NIST PQC project, with NIST aiming
to potentially standardize one of these code-based KEMs at the conclusion stage of
this round. Therefore, analyzing these specific sparse MDPC parameters becomes
crucial for cryptographic research.

In the concrete setting, HQC has an even sparser, low-weight error than BIKE.
It is a commonly held belief that there have been limited advancements in the en-
hancement of modern ISD algorithms for sparse parameters as proposed in BIKE
and HQC, as evidenced in [EB22b]. It has been shown that the recent ISD meth-
ods of BJMM/MMT, Both-May and May-Ozerov have not made a significant
improvement to Stern regarding these sparse parameters.

The bit security estimates on the new sieving-like ISD algorithm are shown in
Table 1. It is worth pointing out that our approach, while being very competitive
with modern ISDs such as BJMM and MMT, uses significantly less memory. In
particular, for (81946, 40973, 264) parameter set, sieving ISD and BJMM only
differ by 0.5− 1 bit in complexity, despite the prior employing 210 less memory.

Memory-efficient behavior is prevalent; different memory-cost models have
been examined [EB22b] recently to take into consideration the cost of accessing
huge memory, especially in the context of enumeration-based ISD algorithms.
Therefore, we believe that, in a practical scenario where memory is a limiting factor,
our approach offers a valuable alternative.

As described in [Ara+23], in key-recovery attacks for the BIKE scheme, the
quasi-cyclic structure gives us k cyclic shifts of the searched secret key. The bit
complexity numbers of a key-recovery attack on BIKE could be reduced by log(k)
bits (from the middle part of Table 1) since BIKE is homogeneous.

Moreover, the value of clabel has a minimal effect on the time complexity in
contrast to the Classic McEliece scenario. This is primarily due to the fact that the
parameter p is set to 3 when solving these highly sparse instances, and thus the
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Table 1: Bit security estimates of the MDPC parameters. Here T is the log of the bit com-
plexity and M̂ is the log of the memory in bits. The parenthesis notation (6, 48)
specifies that 2p = 6 and ` = 48. We have p′ = 1. Furthermore, the tuple
(24646, 12323, 134) characterizes an SDP instance with parameters n = 24646,
k = 12323, and ω = 134.

(24646, 12323, 134) (49318, 24659, 199) (81946, 40973, 264)

T M̂ T M̂ T M̂

Stern 147.9 51 212.4 55 277.2 58
MMT 149.6 57 214.0 62 278.7 66
BJMM 146.6 54 210.9 59 275.7 63
Our ISD, clabel = 2 146.7 46 211.4 50 276.2 53

(6,48) (6,52) (6, 55)
Our ISD, clabel = 5 147.1 46 211.8 50 276.6 53

(6,48) (6,52) (6, 55)

(24646, 12323, 142) (49318, 24659, 206) (81946, 40973, 274)

T M̂ T M̂ T M̂

Stern 155.5 51 219.2 55 286.9 58
MMT 157.1 57 220.7 62 288.3 66
BJMM 154.0 54 217.5 59 285.3 63
Our ISD, clabel = 2 154.3 46 218.2 50 286.0 53

(6,48) (6,52) (6, 55)
Our ISD, clabel = 5 154.7 46 218.5 50 286.3 53

(6,48) (6,52) (6, 55)

(35338, 17669, 132) (71702, 35851, 200) (115274, 57637, 262)

T M̂ T M̂ T M̂

Stern 147.3 53 214.8 57 276.5 60
MMT 149.6 60 216.8 65 278.4 68
BJMM 146.4 57 213.6 62 275.4 65
Our ISD, clabel = 2 146.2 48 213.7 52 275.5 55

(6,51) (6,55) (6, 57)
Our ISD, clabel = 5 146.5 48 214.1 52 275.9 55

(6,50) (6,54) (6, 57)

cost associated with clabel is not the primary contributing factor to the complexity.
In addition, we have computed the probability of finding the desired vector by
numerical means for this particular example, using the method presented in Sec-
tion 4.4; our calculation results in an estimated value of more than 50% for the
reported attack parameters. We have verified this observation on other parameter
sets as well, thereby affirming the soundness of our complexity analysis in con-
junction with the hybrid approach in Section 4.6 and the parity-bit trick, which
can make up to a factor of 2 needed for the success probability.
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6 Simple implementations for Sieve_Syndrome_Dec()with
smaller parameters

In this section, we discuss our simple implementation with smaller parameters
to support arguments and assumptions that we have made throughout the pa-
pers.8 It is crucial to show in simulation that Sive_Syndrome_Dec() is capable
of producing solutions for the exact matching equation as theory predicts, and the
parameters such as list size can be sustained. In the implementation, we generate
a random target error vector e and observe whether this vector can be found by
Sieve_Syndrome_Dec after ` iteration of Merge_Set. Moreover, we set p′ = 1
in our simulations.

Example 5. One of many implemented parameter sets is k = 300, 2p = 6, i.e.,
p = 3. We set p′ = 1, p′′ = 2 for the Merge_Set algorithm. For the parameter `,

we choose ` ≈ 28 (recall Equation (14), we also need M
2 ≥

(k+`
2p
)

2`
) which corresponds

to the exponentially many solutions case.
The probability that the XOR of two weight-6 vectors results in another weight-6

vector is

q =

(
2p
p

)(
k+`−2p

p

)(
k+`
2p

) ≈ 2−13.86.

M ≈ 2

δq
≈ δ−1 · 214.86.

As explained in Section 4.4, we increase M with a factor δ−1 ≈ 3/2 so that we can
keep the list size relatively constant for the majority of iterations (until Merge_Set
can not produce M

2 new vectors). Hence, we select M = 215.44.
We run the implementation 102 times and find e in 60 runs, i.e., a 60% success

rate.

Table 2: Comparison between the heuristic arguments and the actual implementation for
k = 300, ` = 28, p = 3, in terms of each iteration memoryMi (in log) and success
probability (S.P).

Iteration 1 … 14 15 16 … 25 26 27 28

Mi (pred.) 15.46 … 15.46 15.46 15.46 … 15.44 14.80 13.96 13.09
Mi (impl.) 15.46 … 15.46 15.46 15.46 … 15.22 14.71 13.91 12.96
S.P (pred.) 0 … 22 · 10−5 0.00045 0.0009 … 0.363 0.441 0.477 0.507

We note that any sufficiently large enough ` can be chosen. As an example, in the
case where ` = 50 (i.e., on average, only one solution), our algorithm still finds the
target e with promising probability (> 50%). It can also be inferred fromTable 2 that

8Implementation repository https://github.com/vunguyen95/Review-ISD-Sieving.

https://github.com/vunguyen95/Review-ISD-Sieving#category.name
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one can choose ` in order to raise the success probability to a desired range as claimed
in Section 4.4.

Example 6. It is also of interest to see how our implementation fares with larger in-
stance of k (e.g., close to the medium-sized instance of McEliece). In particular, we
proceed with k = 1000 and 2p = 4. We choose a smaller values of p to have a man-
ageable memory requirement for a commercial computer. The following numerical
values are derived in the same manner as in Example 1.

For ` = 27, it gives M ≈ 215.42. A target vector e is found in 56 out of 102
tests, i.e., a 56% success probability.

Table 3: Comparison between the heuristic arguments and the actual implementation
for k = 1000, ` = 27, p = 2, in terms of each iteration memory Mi (in log) and
success probability (S.P).

Iteration 1 … 20 21 22 23 24 25 26 27

Mi (pred.) 15.42 … 15.35 14.64 13.82 12.94 12.01 11.05 10.08 9.09
Mi (impl.) 15.42 … 14.97 14.32 13.46 12.50 11.51 10.49 9.50 8.41
S.P (pred.) 0 … 0.380 0.442 0.482 0.511 0.529 0.539 0.545 0.548

Discussions We have observed that the actual implementation results are com-
parable to or even surpass the estimation results obtained using the method de-
scribed in Section 4.4. Moreover, in Table 4, we present the evolution of the
estimated list size and estimated success probability over the course of various it-
erations, utilizing an attack instance on Classic McEliece as reported in Table 7.
In both our theoretical calculations and empirical investigations, we have identi-
fied a critical juncture, referred to as a ‘breaking point’, which corresponds to the
iteration at which the list size of Mi begins to decrease. While the initial decline
is gradual, it gains momentum as subsequent iterations progress.

One favorable aspect in this iterative process is that upon reaching the ‘break-
ing point’, the success probability becomes non-negligible and quickly rises above
50%. Subsequent iterations will result in a further reduction of the list size, leading
to a slower increase in the success probability in finding the targeted vector.

We have observed that the attack instances reported in the previous section
all select the parameter ` several iterations after the occurrence of the ‘breaking
point’, thereby guaranteeing a success probability exceeding 50%. Additionally,
our experiments demonstrate that, for a choice of ` close to the ‘breaking point’,
the actual list size is consistent with the theoretical estimation and the observed
success probability meets (or even surpasses) the estimated value.

7 Concluding remarks

We have presented a novel Sieving-style Information-set Decoding algorithm for
solving the syndrome decoding problem and made a heuristic analysis. The al-
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Table 4: The predicted memory (in log) and success probability (S.P) for attacking a Classic
McEliece instance with k = 3360, ` = 96, p = 8.

Iteration 1 … 89 90 91 92 93 94 95 96

Mi (pred.) 53.03 … 53.03 52.93 52.60 51.99 51.18 50.28 49.34 48.37
S.P (pred.) 0 … 0.138 0.242 0.358 0.441 0.485 0.509 0.523 0.529

gorithm makes advancements to state-of-the-art algorithms when complexity is
considered in the RAM model and is characterized by its time-memory trade-off
profile. For instance, in the McEliece cryptographic scheme, an attack using the al-
gorithm achieves lower complexity when the memory is limited (for example, 260
bits). Interestingly, it was also shown that the low-weight regime (as in MDPC
parameters or in constructions such as BIKE) benefits our algorithm compared
to the state-of-the-art. In particular, we achieve very comparable performance
with significantly less memory. This finding is of great interest as the advantage
of enumeration-based ISD variants is often compromised by the huge memory
requirements.

Besides the described algorithm, many other versions of the algorithms can
be considered. For instance, we can amend the problem of duplicates by only
combining vectors in the first few iterations and including the checking routine
later. The motivation is that the correct error vector will not likely be created in
early iterations, and combining vectors does not result in noticeable dependencies
between vectors. Moreover, in specific settings, such as BIKE and HQC, where
the optimal value of p is small and the memory requirement is not high, more
efficient implementation could be achieved.

Lastly, we note that accelerating the new ISD algorithm using sophisticated
instruction sets such as AVX-256 in practical software design seems non-trivial.
Further exploration of this intriguing topic and actual, full-scaled implementations
of concrete parameters of code-based schemes are left for future endeavors.
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Codes in Õ(20.054n)”. In: Advances in Cryptology - ASIACRYPT
2011 - 17th International Conference on the Theory and Application
of Cryptology and Information Security, Seoul, South Korea,
December 4-8, 2011. Proceedings. Ed. by D. H. Lee and X. Wang.
Vol. 7073. Lecture Notes in Computer Science. Springer, 2011,
pp. 107–124.

[MO15] A. May and I. Ozerov. “On Computing Nearest Neighbors with
Applications to Decoding of Binary Linear Codes”. In: Advances
in Cryptology - EUROCRYPT 2015 - 34th Annual International
Conference on the Theory and Applications of Cryptographic
Techniques, Sofia, Bulgaria, April 26-30, 2015, Proceedings, Part I.
Ed. by E. Oswald and M. Fischlin. Vol. 9056. Lecture Notes in
Computer Science. Springer, 2015, pp. 203–228.

[NIS] NIST. NIST Post-Quantum Cryptography Standardization.
https://csrc.nist.gov/Projects/Post-Quantum-
Cryptography/Post-Quantum-Cryptography-
Standardization. Accessed: 2022-11-30.

[NV08] P. Q. Nguyen and T. Vidick. “Sieve algorithms for the shortest
vector problem are practical”. In: Journal of Mathematical
Cryptology 2.2 (2008), pp. 181–207.

[Pra62] E. Prange. “The use of information sets in decoding cyclic codes”.
In: IRE Trans. Inf. Theory 8.5 (1962), pp. 5–9.

[Sen11] N. Sendrier. “Decoding One Out of Many”. In: Post-Quantum
Cryptography - 4th International Workshop, PQCrypto 2011, Taipei,
Taiwan, November 29 - December 2, 2011. Proceedings. Ed. by
B. Yang. Vol. 7071. Lecture Notes in Computer Science. Springer,
2011, pp. 51–67.

[Ste88] J. Stern. “A method for finding codewords of small weight”. In:
Coding Theory and Applications, 3rd International Colloquium,
Toulon, France, November 2-4, 1988, Proceedings. Ed. by
G. D. Cohen and J. Wolfmann. Vol. 388. Lecture Notes in
Computer Science. Springer, 1988, pp. 106–113.

https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Post-Quantum-Cryptography-Standardization
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Post-Quantum-Cryptography-Standardization
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Post-Quantum-Cryptography-Standardization


170 Paper IV: A New Sieving-style Information-set Decoding Algorithm

[Ste93] J. Stern. “A New Identification Scheme Based on Syndrome
Decoding”. In: Advances in Cryptology - CRYPTO ’93, 13th
Annual International Cryptology Conference, Santa Barbara,
California, USA, August 22-26, 1993, Proceedings. Ed. by
D. R. Stinson. Vol. 773. Lecture Notes in Computer Science.
Springer, 1993, pp. 13–21.

[TS16] R. C. Torres and N. Sendrier. “Analysis of Information Set
Decoding for a Sub-linear Error Weight”. In: Post-Quantum
Cryptography. 2016.

[Vér96] P. Véron. “Improved identification schemes based on
error-correcting codes”. In: Appl. Algebra Eng. Commun. Comput.
8.1 (1996), pp. 57–69.

Supporting Tables.

Table 5: Security parameters of the Classical McEliece scheme.

Category n k ω

1 3488 2720 64
3 4608 3360 96
5 6688 5024 128
5 6960 5413 119
5 8192 6528 128

Table 6: BIKE and HQC security parameters.

Category n k w

1 24646 12323 134
BIKE (message) 3 49318 24659 199

5 81946 40973 264

1 24646 12323 142
BIKE (key) 3 49318 24659 206

5 81946 40973 274

1 35338 17669 132
HQC 3 71702 35851 200

5 115274 57637 262
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Table 7: Bit security estimates of the Classic McEliece scheme. Here T is the log of the
bit complexity, and M̂ is the log of memory in bits. The parenthesis notation
(14, 83, 3) specifies that 2p = 14 and ` = 83, p′ = 3.

Category 1 Category 3 Category 5 Category 5 Category 5
(n = 3488) (n = 4608) (n = 6688) (n = 6960) (n = 8192)

T M̂ T M̂ T M̂ T M̂ T M̂
Stern 147.7 41 189.5 43 264.9 72 265.5 73 300.4 92
MMT 146.6 45 187.9 76 260.0 109 260.0 123 292.9 114
BJMM 141.2 77 180.6 101 250.4 109 250.2 110 283.4 141
M̂ ≤ 60 143.9 56 185.1 59 263.1 48 263.8 48 299.4 49
Our ISD, M̂ ≤ 60
clabel = 2 143.4 58 184.8 55 259.2 59 259.8 60 296.6 55
clabel = 5 144.6 58 186.0 55 260.4 59 261.0 60 297.6 55

(14,83,3) (12,75,2) (12,78,2) (12,79,2) (10,68,2)
Our ISD, any M̂
clabel = 2 143.4 58 184.4 65 256.7 91 256.8 92 290.6 95
clabel = 5 144.6 58 185.7 65 258.0 91 258.1 92 291.9 95

(14,83,3) (16,96,3) (24,144,5) (24,146,5) (24,149,5)
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Efficient Authentication
Protocols from the Restricted
Syndrome Decoding Problem

Abstract

In this paper, we introduce an oracle version of the Restricted Syndrome Decod-
ing Problem (RSDP) and propose novel authentication protocols based on the
hardness of this problem. They follow the basic structure of the HB-family of
authentication protocols and later improvements but demonstrate several advan-
tages.

An appropriate choice of multiplicative subgroup and ring structure gives rise
to a very efficient hardware implementation compared to other Learning Parity
with Noise based approaches. In addition, the new protocols also have lower key
size, lower communication costs, and potentially better completeness/soundness
compared to learning-based alternatives. This is appealing in the context of low-
cost, low-powered authenticating devices such as radio frequency identification
(RFID) systems. Lastly, we show that with additional assumptions, RSDP can be
used to instantiate a Man-in-the-Middle secured authentication protocol.

1 Introduction

Authentication serves as one of the foundational pillars of cryptography, play-
ing a crucial role in securing communication and data integrity. As technology

Thomas Johansson, Mustafa Khairallah, Vu Nguyen. “Efficient Authentication Protocols from the
Restricted Syndrome Decoding Problem”. In IEEE European Symposium on Security and Privacy
2025 (EuroS&P), Venice, Italy.
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advances, particularly with the widespread adoption of low-cost RFID tags, the
demand for lightweight yet robust authentication protocols has intensified. Due
to the efficient nature of using only simple operations, Learning parity with Noise
(LPN) emerged as a prime candidate for constructing lightweight identification
protocol. The LPN problem does not only stand out under the “practical” but
also from the theoretical viewpoint. It is closely related to the well-studied decod-
ing a random linear code problem or the equivalent syndrome decoding problem,
and they are both strongly believed to resist known quantum attacks.

However, traditional approaches often struggled to balance efficiency and se-
curity, prompting an ongoing search for solutions catering to resource-constrained
environments without compromising security. For example, early attempts at em-
ploying LPN, e.g., [HB01a; JW05a; DK07; MP07; BC08; GRS08c], were met
with security issues when examined under the scopes of different, more advanced
adversarial models, such as in [GRS05; GRS08a; OOV08]. Numerous attempts
to improve and explore other (yet still related to the LPN-based) directions have
been proposed in recent years [LGQ13a; Kil+11; LM13a]. They appear to have
achieved some level of security while still promising efficiency.

Hopper and Blum [HB01a] laid the foundation for LPN-based authentica-
tion with their strikingly simple 2-round design, called HB. It provides provable
security under passive attack, in which an adversary can only eavesdrop on the
communications. It was noted by Juels and Weis [JW05a] that an active attacker
(i.e., with query power) could easily break HB, and they proposed an augmented
3-round version called HB+. HB+ was shown to be susceptible to attacks in the
Man-in-the-Middle attack model (MitM) [GRS05]. Gilbert et al. [GRS08c] pro-
posed HB# to resist the attack from [GRS05]. To make the proposal suitable for
low-cost hardware, the authors also proposed using X as a Toepliz matrix, which
implies a slightly different LPN hardness assumption. Unfortunately, in a more
general model of MitM adversary, HB# was shown to be not sufficient [OOV08].

LPN-based MitM-secured authentication was finally achieved with a series
of breakthrough works: Kiltz et al. [Kil+11] proposed a variant of LPN called
Subset-LPN and built efficient MACs based on this problem. Notably, they also
achieve ε security (compared to

√
ε for other LPN-based protocols, excluding HB)

by avoiding rewinding in their security proof. One of the drawbacks is a large key
size that can be prohibitive in some cases. WhileHB# can circumvent this problem
by using “structural” LPN (e.g., employing a Toepliz matrix) [GRS08c], it is un-
fortunately not the case for [Kil+11]. Li et al. in [LGQ13a] showed an interesting
design called LCMQ without constructing MACs by applying a chosen ciphertext
secure encryption on top of the LPN samples. To reduce communication and the
computation burden on the low-cost tag, the encryption scheme uses the so-called
P2-circulant matrix. By masking the LPN samples, they proposed aggressive pa-
rameters for their claim security, thus demonstrating the efficiency of the design.
However, Nguyen et al. [NJG24] have recently devised a key-recovery attack on
LCMQ, which could significantly compromise the performance by forcing bigger
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key sizes.
Further advancement came when Lyubashevsky and Masny showed how to

generically build a MitM-secured authentication from any (randomized) weak
pseudo-random functions (wPRFs), which only has to fulfill a few (reasonable)
properties [LM13a]. Therefore, LPN can be seen as an instantiation of this de-
sign. Other well-studied LPN-type assumptions were employed to achieve man-
ageable key sizes and efficiency required for low-cost environments, such as Ring-
LPN [Hey+12] andToepliz-LPN [GRS08b]. Despite the tightness of the security
proof being “only”

√
ε, their proposal remains impressive as it is more efficient

than MACs construction like [Kil+11]. Moreover, it is unclear how the gap in the
security proof affects instances for practical uses.

Similarly to LPN, the Restricted SyndromeDecoding Problem (RSDP) is another
NP-hard variant of SDP. It was first proposed by Baldi et al. in [Bal+20a] as a
new research direction toward efficient code-based zero-knowledge identification.
It has recently been featured in one of the post-quantum signature candidates,
CROSS [Bal+24c], in the ongoing NIST additional call for signatures.

Motivation

LPN-based authentication protocols are, in general, attractive in lightweight ap-
plications but suffer from drawbacks, such as large key size, a large number of
rounds, etc., since parameters have to be quite large to attain sufficient security.
Our work is motivated by the belief that changing the underlying problem from
LPN to RSDP may render several advantages, both in security and performance.
From a more theoretical perspective, the modified Oracle RSDP is analogous to
the situation between the LPN and the Syndrome Decoding Problem. Thus, we
aim to diversify the applications of the novel RSDP problem towards lightweight
cryptography.

Contributions

In this work, we introduce an Oracle version of the RSDP and then we propose
novel authentication protocols based on the hardness of this problem. We first ex-
plore the idea of building a highly efficient RSDP-based authentication protocol
that is secure in the active attack model. By selecting the secret keys from a suit-
able restricted set, multiplication in the finite field can be as simple as a cyclic shift,
which can be performed very efficiently even with low-cost RFID tags. Our de-
signs also have smaller key sizes, lower communication costs, and potentially better
completeness/soundness compared to HB-like protocols based on LPN or similar
problems. On the theoretical side, restricting the secret keys in such a fashion does
not compromise the hardness of RSDP. Moreover, relying on the best cryptana-
lytic tools for RSDP [Bal+24c], we show, for example, that the key size for 128-bit
security can be as low as 396-bit compared to 896 for LPN-based constructions.
In Table 1, we provide a head to head comparison between these two protocols,
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demonstrating that not only our protocol has small key size, but also a few orders
of magnitude lower communication bandwidths and significantly smaller area.
Besides, our protocol offers a speed-area trade off that can further lower the area
at the expense of speed, a trade-off that is not feasible with LPN protocols; reduc-
ing their speed does not significantly reduce the area. We further propose another
stronger design that is proven to be secure in the MitM model. The cost is larger
keys and more costly implementation, but still, the design compares favorably with
other protocols secure in the MitM model.

Table 1: Head to head comparison between HB+ protocols based on LPN vs RSDP for a
128-bit security level. BW: Bandwidth. GE: Gate Equivalents. The implementa-
tion estimates are based on the ASIC synthesis results presented in Table 6.

Assumption Security Total BW #Cycles/Round Total #Cycles Key Size Area (GEs)
LPN 128 1,023,447 3 3492 896 19428.97
RSDP 128 30,135 3∼105 105∼ 4305 396 13249.47∼7304.22

Organization

In Section 2, we give the basics on authentication protocols, coding theory, LPN,
and RSDP. We introduce some new definitions in relation to RSDP. In Section 3,
we give the basic RSDP authentication protocol with security against active at-
tacks. The proof of security is given in the same section. Section 4 is devoted to
parameter instantiation and performance evaluation, including some comparisons
based on FPGA and ASIC implementations. Section 5 then gives an extended
protocol that is secure in the MitM and includes proof of this fact.

2 Preliminaries

Throughout the paper, we use the notation

• a, a,A for single elements, vectors, and matrices, respectively.

• 〈·, ·〉 the inner products of two vectors.

• In the identity matrix of size n× n.

• Fp the finite field of order p, where p is a prime and Fn
p is the corresponding

vector space of dimension n.

• a
$←− A an element drawn uniformly at random from some set A.

• ωH(x) the Hamming weight of a vector x ∈ Fn
p , defined as the number of

its non-zero coordinates.
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2.1 Authentication Protocol

We are interested in an interactive authentication protocol where we define two
entities: aTag (a.k.a Prover, denoted by T ) and a Reader (a.k.a Verifier, denoted by
R). Together, they share secret keys, which have been communicated via a secure
channel before the authentication begins. Moreover, they are also parameterized
by other (public) values, such as the length of the secret key, the domain, and so
on. They interact on an insecure communication channel. After the interaction,
R either outputs accept or reject. An authentication protocol is said to have
a completeness error Pc if R rejects a legitimate T with probability at most Pc.
Conversely, the protocol is said to have a soundness errorPs ifR accepts a random
response from T with probability at most Ps.

For security notions, we consider the most common adversary models: passive
attack, active attack, and Man-in-the-middle attack [JW05a; GRS05; OOV08;
LGQ13b].

2.2 The security game of an authentication protocol

For simplicity, we use the 3-round model (commit, challenge, response) for the in-
teraction between T andR. They share s as secret(s). The protocol is described as:
the T initiates by sending the commit b toR, thenR replies with the challenge a.
A response z is produced by T andR outputs accept or reject. We characterize
the interaction with the transcript (a, b, z). An adversary A, who has access to T
andR, operates in 2-phases.

• Phase 1 (Interaction): The adversaryA invokes T andR. It stands between
the communication of T andR.

• Phase 2 (Impersonation): A interact with R. If A sends a commit â, re-
ceived b̂ fromR, then produce a response ẑ.

The adversary A “wins” the above security games if (â, b̂, ẑ) 6= (0, 0, 0) and
R outputs accept in Phase 2. Generally, we assume that A only has one chance
to convince R as a legitimate T . The behavior in Phase 1 of A in the passive,
active, MitM security game is described in the following figures (they are identical
in Phase 2).

Passive attack

A passive attacker A can only observe interactions between T andR (Figure 1).

Active attack

Here, A is given query power in Phase 1. Specifically, A can choose a in (a, b, z)
to interrogate T (Figure 2).
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Ts RsApas
b−−−−−−→b

aa←−−−−−−
z z−−−−−−→ accept/reject

Figure 1: Phase 1 of a passive attack.

Ts Aact (asRs)
b−−−−−−→b

aa←−−−−−−
z z−−−−−−→

Figure 2: Phase 1 of an ative attack.

Man-in-the-Middle attack

In this scenario, A can modify (a, b, z) before forwarding to either T or R. We
represent the interference as (a′, b′, z′) (Figure 3).

Ts RsAMitM

b−−−→ b′−−−→b
aa←−−−a′←−−−

z z−−−→ z′−−−→ accept/reject

Figure 3: Phase 1 of an MitM attack.

Definition 13 (Security of an authentication protocol). An authentication protocol
is said to be (t,Q, ε)-secure in the X-model (X is either passive, active, or MitM) if for
all X-adversaries A, running in time t, making Q queries with T , the probability of
R outputs accept in Phase 2 is at most ε. In particular, we have

Pr[(AX , T ,R) = accept]− Ps ≤ ε.

2.3 Coding theory

Let p be a prime number and Fp be a finite field. A [n, k]-linear code C over Fp

(k ≤ n) is a vector subspace of dimension k in Fn
p . A full-rank matrix G ∈ Fk×n

p

is said to be the generator of C if C = {uG : u ∈ Fk
p}, i.e., G is a basis of C.

Let H ∈ F(n−k)×n
p be a matrix such that GHᵀ = 0. Then H is called the parity-

check matrix of C and for y ∈ Fn
p , s = yHᵀ is called its syndrome (w.r.t H). As

G is full-rank, it is sometimes convenient to assume G to be in its systematic form,
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that is G =
(
Ik A

)
for some A ∈ Fk×(n−k)

p . We can then readily compute the
parity-check matrix, also in systematic form, as H =

(
−Aᵀ In−k

)
.

Problem 5 (Syndrome Decoding Problem (SDP)). Given H ∈ F(n−k)×n
p , a syn-

drome s ∈ Fn−k
p , and a positive integer t ≤ n. Find e (if any) where ωH(e) ≤ t

such that eHᵀ = s.

It is a well-studied NP-complete [BMT78b], highlighted by the fact that it has
been a crucial building block in many cryptosystems, such as zero-knowledge proof
[Ste93; Vér96], signatures [CFS01], hash functions [AFS05; Ber+11], stream ci-
phers [FS96], and so on. In particular, for post-quantum cryptography, it has
been popular and appeared in many public key cryptosystems (such as McEliece
[Ber+20], BIKE [Ara+21], HQC [Mel+23a]), as well as the recent NIST call for
signatures (CROSS [Bal+24c], SDitH [Mel+23b], Wave [Ban+23], and so on).

One also finds many variants of SDP, such as the Restricted Decoding Prob-
lem, Regular Decoding Problem, Permuted Kernel Problem, …, or the SDP defined
with different metrics (e.g., rank metric, Lee metric), that all prove useful in con-
structing cryptographic primitives. This work involves employing the Restricted
Decoding Problem (RSDP) in lightweight authentication protocols.

Let Fp be a finite field where p is a prime, and let E = {gi, i = 0, . . . , z} be
a multiplicative subgroup of order z, generated by some element g ∈ Fp.

Problem 6 (Restricted Syndrome Decoding Problem). Given H ∈ F(n−k)×n
p ,

s ∈ Fn−k
p . Find e ∈ En such that eHᵀ = s.

The RSDP was first introduced in [Bal+20a] for z = 2. Moreover, the
original RSDP asks for non-full weight e, that is, entries of e are sampled from
E0 := E ∪ {0} and ωH(e) ≤ t for some t ∈ N. Notably, via a reduction to the
classical SDP, they showed that this new problem is also NP-complete. As an appli-
cation, the authors proposed a zero-knowledge identification scheme (adaptation
by replacing SDP with RSDP), which is promising in terms of reduced public key
size and communication cost. Recently, the versatility of RSDP has been extended
by Baldi et al. [Bal+24c], where the order z is no longer restricted to z = 2. In
addition, CROSS - a digital signature scheme based on maximum-weight RSDP
(as defined in Problem 6) was proposed.1 Such a modification does not compro-
mise the problem hardness [Bal+24a], and contrarily to Hamming-weight RSDP,
the uniqueness of the solution is still guaranteed.

For our application (in later sections), we rely on the security of RSDP in the
“oracle form”. We thus define the so-called RSDP Oracle, which will later be used
in our construction.

1A specialized version of RSDP, called RSDP(G) was also investigated in the same work.
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Definition 14 (RSDP-Oracle). Let p be a prime number and E = {gi, i =
1, . . . , z} be a multiplicative subgroup of order z in Fp. Fix a secret s ∈ Fk

p . The
RSDP Oracle, denoted by ORSDP

s , gives pairs of samples

{a ∈ Fk
p, b = 〈a, s〉+ e mod p}

where a $←− Fk
p and e $←− E.

We write Λk(s) for the distribution over Fk
p × Fp, where the samples are

obtained by querying ORSDP
s . The decisional RSDP, written as ORSDPk, is to

distinguish the Λk(s) samples from the uniform distribution Uk+1. On the other
hand, the search version asks for the recovery of the secret s.

Definition 15. The ORSDPk is said to be (t,Q, ε)-hard if for every algorithm D
running in time t, making Q oracle queries∣∣∣Pr[s $←− Fk

p : DΛk(s) = 1]− Pr[DUk+1 = 1]
∣∣∣ ≤ ε,

where we denote DX by the algorithm D taking oracle input from a distribution X .

Next, we informally argue that the decisional RSDP problem is as hard as
the search version via simple reduction. Indeed, suppose there exists some distin-
guisher D that can solve ORSDPk with non-negligible probability ε. It can then
be used to recover s. Let {a, b} be aORSDP

s sample. The distinguisherD then picks
s̄1 ∈ Fp as its guess for the first value of s, and computes

{a′ = (a2, a3, . . . , ak), b
′ = b− a1s̄1}.

If the guess s̄1 is correct, then {a′, b′} is precisely a sample from Λk−1(s). By
definition,D can successfully distinguish such samples afterQ queries with proba-
bility at least ε. On the other hand, if the guess is incorrect, b′ will be independent
of a′ (since a1 is chosen uniformly at random). In such a case, D enjoys no ad-
vantage. Repeating the same procedure in the order of 1/ε times, D eventually
recovers s.

One can see that trying to recover the secret s after some n queries amounts
to finding a noisy codeword b in the code C generated by ai, i = 1, . . . n, where
the noise consists of elements in E. Equivalently, it suffices to find e ∈ En such
that eHᵀ = bHᵀ = s. In conclusion, the hardness of RSDP implies the hardness
of ORSDPk, which again implies the “pseudo-randomness” of Λk(s). In the next
section, we show that it also extends to the case where the secret is not drawn
uniformly at random.

When the number of Oracle calls is unlimited and the field size in the problem
is fixed, then the RSDP problem from Definition 14 can be solved in polynomial
time. This follows from algebraic attacks in the style of Aurora-Ge [AG11] and
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can be launched whenever there are many values for the noise with probability 0.
To this end, we introduce a slightly modified version of the RSDP-Oracle, called
the δ-RSDP-Oracle.

Definition 16 (δ-RSDP-Oracle). Fix 0 < δ < 1. The δ-RSDP-Oracle, denoted by
Oδ−RSDP

s , responds as an RSDP-Oracle with probability 1 − δ and with a random
pair of samples {a ∈ Fk

p, b ∈ Fp} with probability δ.
To sum up, we consider two presumably difficult problems, the first one is

the problem of distinguishing the RSDP-Oracle from random assuming a limited
fixed number Q of queries, which corresponds to the RSDP problem. The second
one is the same for the δ-RSDP-Oracle without limit on queries. In the sequel,
we use the RSDP-Oracle, but the modifications needed to fit the use of δ-RSDP-
Oracle are rather straightforward.

RSDP with a non-uniformly random secret

We briefly also discuss the hardness of RSDP when the secret s is not chosen
uniformly at random. In particular, the entries of the secret s itself can be drawn
from the same distribution as the error, i.e., randomly from E. The reason for
wanting this specific choice is that it lowers the secret key size and can give rise to
very efficient implementations. For instance, with a proper choice of p andE, e.g.,
p = 127 and E = {2i, i = 0, . . . , 6}, multiplication of α ∈ Fp with elements
in E amounts to performing cyclic shifting on (the binary representation) of α,
which can be implemented very efficiently on hardware as well as in software. This
is crucial to our goal of constructing a lightweight cryptosystem. In our proposed
constructions, we will however use p = 127 and E = {(−2)i, i = 0, . . . , 13},
which share the same nice implementation properties.

However, one needs to be careful whether such a particular form of the secret
key compromises the security of RSDP. Our case resembles the situation in the
very well-studied learning problem Learning with Errors (LWE) [Reg09]. In their
seminal work, Applebaum et al. [App+09a] shed light on a crucial observation:
for an arbitrary noise distribution, the Learning with Error problem, where the
secret’s values are sampled from the same distribution as the noise, is as hard as
the case where the secret is taken uniformly at random. Let us denote ORSDP∗k by
the problem of distinguishing the samples of aORSDP

s where values of s are drawn
according to the noise distribution. By applying the same standard reduction as
in [App+09a], we directly achieve that ORSDP∗k is as hard as ORSDPk
Lemma 8. Assume there exists an algorithm D that can distinguish samples from
ORSDP

s′ and uniform distribution U , where s′ are drawn from the noise distribution.
Then, one can leverageD to distinguish (with non-negligible probability) samples from
ORSDP

s and U , where s is chosen uniformly at random.

Proof. (Sketch) Suppose we have access to an oracle ORSDP
s where the secret is

chosen uniformly at random. Our objective is to ‘manipulate’ samples from the
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given oracle to obtain new ones as if they are given from another oracle, but the
secret has the same distribution as the noise. First, let ORSDP

s give out {a∗i , b∗i =
〈a∗i , s〉 + e∗i }, i = 1, . . . , k such that the matrix A = {a∗i }ki=1 is invertible (with
certain probability), and let b∗ = {b∗i }. Then, ORSDPk continues to sample fresh
{ai, bi}, and D computes

{a′i = −A−1ai, b′i = b+ 〈a′i, b∗〉}.

Then, one can check

b′i = 〈ai, s〉+ ei + 〈−A−1ai,As+ e∗i 〉
= 〈a′i, e∗〉+ ei.

In other words, {a′i, b′i} areORSDP
e∗ samples, where e∗ is now the secret taken from

the noise distribution. Indeed, with the view so far, since ai is random and A is
singular, a′i is also random. By definition, D can distinguish these samples and,
by extension, we can use the output from D to distinguish samples from ORSDP

s
and uniform distribution U .

2.4 RSDP-solving Algorithms

With the introduction of RSDP, adaptations of SDP-solving algorithms have been
proposed [Bal+20a; Bal+24c; Bit+23; BM24] in the new setting. In particular, we
briefly investigate the Stern/Dumer variant, the BJMM variant, and the algebraic
approach, which we will use to derive security parameters for our construction.

Stern/Dumer algorithm

The following is a straightforward adaptation of the Stern/Dumer algorithm [Ste88],
originally proposed for the classical SDP. We recall the SDP instance given by
(H, s,E), where H ∈ F(n−k)×n

p and E is a multiplicative subgroup of order z in
Fp. Our task is to find eHᵀ = s, where e ∈ En. To ease the notation, we omit the
transposition notation from now on. First, one applies to the parity-check matrix
a partial Gaussian Elimination H← UHP, with an invertible matrix U and some
permutation P, resulting in

(e1, e2)
(
In−k−` H1

0 H2

)
= (s1, s2),

where eP−1 = (e1, e2) ∈ Fk+`
p ×Fk+`

p (with an additional later-to-be-optimized
parameter `). The equation gives rise to the identities

e1 + e2H1 = s1 (1)

e2H2 = s2 (2)
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The next step of the Stern/Dumer approach is to enumerate e2 ∈ Ek+` to have
candidates for (2). Equation (1) is then used to check if the candidates are the
solution(s), that is, s1 − eH1 is also a Ek+` vector. The enumeration step can be
done via a Meet-in-the-Middle approach. In particular, we further parse e2 =

(x1, x2) where xi ∈ E(k+`)/2 and H2 =

(
H21

H22

)
. We then construct two lists

L1 = {(x1, x1H21), x1 ∈ E(k+`)/2},

L2 = {(x2, s2 − x2H22), x2 ∈ E(k+`)/2},

and find collisions between them. For simplicity, we can assume |L1| = |L2| =
z(k+`)/2, and on average, there are |L1|2 · p−` collisions between them. The
complexity of this step consists of building the lists and checking for solutions. In
particular,

CStern/Dumer =
C1 + C2 + Ccoll

(number.of.solutions)
× (memory.access.cost), (3)

where

C1 = C2 = |L1| ·
(
k + `

2
· log(z) + ` · log(p)

)
,

Ccoll = |L1|2 · p−` · (k + `) · log(p).

The number of solutions is given by

1 + |{e ∈ En : eH = s}| = 1 + znpk−n.

BJMM algorithm

Similar to the BJMM algorithm [Bec+12b] in classical SDP, we can also adapt
the representation technique in the enumeration step. This has been investigated
in [Bit+23] and [Bal+24c]. Interestingly, the performance of such adaptations
depends on the additive structure of the restricted set E. We will briefly explain
the idea and skip the details of the approach. For a more thorough understanding,
we refer the readers to [Bal+24c].

Simplistically speaking, the representation technique aims to construct e2 =

e(1)1 + e(1)2 that solves equation (2). Since E is only a multiplicative subgroup, it is
usually not closed under addition. Therefore, we have to sample e(1)i from some
larger search domain defined as E∪D∪{0} for some carefully chosenD. The cost
of this approach depends on the so-called “linearity” of E and D. In particular, for
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a random element a ∈ E, we define the two quantities

`E(a) = |[b ∈ E : ∃c ∈ E, b+ c = a]| ,

`D(a) = |[b ∈ E : ∃c ∈ D, b+ c = a]| .

These values will determine the number of representations r for an element dur-
ing the enumerating process; hence, it implies how much we can save (by only
enumerating a 1/r-fraction). For the choice of p and E in CROSS, the above
quantities are independent of a. Similar to the SDP case, one can repeat this step
for e(1) = e(2)1 + e(2)2 and so on, increasing the depth of the tree. However, for
a fixed code rate of k/n and in the full-weight RSDP setting (as in CROSS pa-
rameters [Bal+24c]), this approach does not seem to yield improvements over the
Stern/Dumer algorithm.

A clever alternative was proposed by the same authors: one can solve for a
shifted instance of RSDP as (e + x)H = s + sx, where sx is the syndrome of a
well-chosen x (e.g., x ∈ En). Such a transformation introduces 0 to the shifted
error, from which BJMM might benefit. In particular, it was found that for the
CROSS parameter, shifted-BJMM yields smaller spaces shifted Ex and Dx (while
having the same linearity), which slightly outperforms Stern/Dumer.

However, as we will see in our setting and parameters selection, applying
shifted-BJMM is very tricky. For example, if E := {±2i}, then the linearity
of shifted E and D are not constant. Nevertheless, we can conservatively lower
bound the cost of shifted-BJMM by testing with different possible `E and `D.

Both Stern/Dumer andBJMM enumerating approach requires very high mem-
ory usage (e.g., 2141 and 2116, respectively, for NIST Category 1 parameters [Bal+24c]).
Therefore, it is reasonable to take into account certain memory cost models. Simi-
lar to the CROSS authors, we use log model to estimate the cost of memory access.
For example, in Equation (3), the complexity is multiplied with log(max(|L1|, |L2|)).

Algebraic approach

The basic Aurora-Ge approach [AG11] involves forming nonlinear equations for
each sample of the form ∏

e∈E
(〈a, s〉+ e− b) = 0,

which will be of degree z. Then, the system of equations is transformed into a
linear one with around

∑z
i=1

(
k
i

)
unknowns (each is a monomial up to degree z

of variables si in s). Assuming in the order of
(
k
z

)
oracle calls and z < k/2, one

can then solve for the unknowns by Gaussian elimination in time around
(
k
z

)3
.

Better algorithms can lower the exponent.
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More advanced algebraic attacks have been recently studied as an alternative
to the traditional ISD algorithms, particularly for specific variants of SDP such as
the Regular SDP [BØ23]. In [BM24], the authors investigated the prospect of
applying algebraic attacks to various other variants, one of which is RSDP. Within
this framework, SDP is modeled as solving a polynomial system. A general ap-
proach is to compute the Gröbner basis for the system, whose complexity depends
on estimating the degree of regularity of said system. Algebraic approaches based
on Gröbner basis techniques improve performance, but the improvement is often
difficult to estimate.

2.5 The HB-family of authentication protocols

TheHB-family authentication protocols were pioneered by Hopper and Blum [HB01a]
to achieve a simple yet secure protocol based on the hardness of the learning prob-
lem. Since our design takes inspiration from HB-family protocols, especially the
HB and the HB+ protocols, we briefly revisit the LPN problem, which gives rise
to the aforementioned constructions.

Problem 7 (Learning Parity with Noise (LPN) Problem). Let Berτ be the Bernoulli
distribution over Z2 with bias τ ∈

(
0, 12
)
. That is, a random variable x ← Berτ

if Pr[x = 1] = τ . Given a secret s ∈ Zk
2 , the LPN Oracle OLPN

s,τ returns pairs in
Zk
2 × Z2 of the form

{a $←− Zk
2, z = 〈a, s〉 ⊕ e},

where e ← Berτ . The (decisional) LPNτ,k problem is defined as distinguishing the
samples obtained from the above OLPN

s,τ from the uniform distribution.

The HB protocol

Ts Rs

a $←− Zk
2

a←−−−−−−
e← Berτ
z = 〈a, s〉 ⊕ e z−−−−−−→ Check if

z = 〈a, s〉

Figure 4: One round of the HB authentication protocol.

We recall the HB protocol proposed by Hopper and Blum [HB01a]. The Tag
and the Reader share a binary length-k secret s. One round of the protocol is
illustrated in Figure 4. It is an simple 2-round interaction between T and R.
First, a “challenge” a is send by R and T responds with z = 〈a, s〉 ⊕ e where
e← Berτ . Finally,R verifies where z = 〈a, s〉. On average, the check passes with
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probability (1 − τ), and a random response from an illegitimate tag is accepted
with probability 1

2 . Therefore, to raise the confidence that T has the secret key,
one repeats this protocol for n times. Therefore,R outputs accept if there are at
most τ · n failed checks2.

The HB+ protocol

It was later shown by Juels and Weis [JW05a] that HB is only secure against a pas-
sive attacker. However, against a (more realistic) active adversary, the protocol is
easily compromised. In particular, such an attacker A in Phase 1 can repeatedly
challenge Ts with the same a. Since e is sampled according to Berτ , A can per-
form majority voting (after enough queries) to reveal the noise-free value 〈a, s〉.
Repeating this process with linearly independent challenges ai,A can recover s by
Gaussian Elimination. Hence, HB+ was proposed by Juels and Weis as an aug-
mented version of HB. They turned HB into a 3-round interaction by requiring
T to sends a “blinding” factor b $←− Zk

2 beforeR’s challenge. Moreover, there are
now two secret keys x, y ∈ Zk

2 . One round of the HB+ protocol is shown in Figure
5. Similarly,R outputs accept after n rounds if the number of failed checks is, at
most, up to a certain threshold.

Tx,y Rx,y

b−−−−−−→b $←− Zk
2

a $←− Zk
2

a←−−−−−−
e← Berτ

z = 〈a, x〉 ⊕ 〈b, y〉 ⊕ e z−−−−−−→ Check if
z = (〈a, x〉 ⊕ 〈b, y〉)

Figure 5: The HB+ authentication protocol.

However, against a simple MitM attack called GRS [GRS05], HB+ fell short.
Roughly speaking, the active adversary A can add some perturbation a′ to a chal-
lenge and send a + a′ to T . If the authentication is successful, it follows that
xa′ = 1 with overwhelming probability. After retrieving x, A can impersonate T
in Phase 2 by setting b = 0.

The HB# protocol

Gilbert et al. [GRS08b] propose the HB# protocol, employing two matrices as
secret keys X,Y ∈ Zk×n

2 , effectively condensing all n rounds of HB+ into one.
That is, the response is z = aX + bY + e that is secured to the GRS attack.
However, it is vulnerable to a more general MitM adversary who can modify the

2In [JW05a], a higher threshold τ ′ can be chosen to minimize the number of rounds needed to
obtain Pc ≤ 2−40 and Ps ≤ 2−80.
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entire transcript. In very broad strokes, given an authorized transcript (ā, b̄, z̄)
(hidden noise ē), A can invoke the interaction by replacing (a, b, z) → (ā +
a, b̄ + b, z̄ + z). The crucial observation is that R will output accept if and only
if ωH(ē + e) ≤ nτ , where e is the (hidden) noise for (a, b, z). Repeating many
enough times, A can confidently estimate ωH(ē). By changing z one bit to z̄′ ,
repeat the interception above with (ā, b̄, z̄) and estimate the new noise ē′, A can
recover one bit of ē. Eventually, the non erroneous value āX + b̄Y is recovered.
The mathematics is rather convoluted; hence, we refer the readers to [OOV08].

3 An authentication protocol based on RSDP

In this section, we propose a simple novel authentication protocol that is secure in
the active model. In essence, it is theHB+ protocol, but the LPN problem has been
replaced by the RSDP problem. In particular, we deploy the full-weight version
of RSDP that has also been used recently in CROSS [Bal+24c].

Public parameters

The following are public parameters where n, k, p and z depends on the security
parameter λ.

• Fp: integers modulo prime p.

• E = {gi, i = 0, . . . , z − 1}: the multiplicative subgroup of order z in Zp.

• k ∈ N: length of the secret keys.

• n ∈ N: number of rounds in the authentication protocol.

Secret keys

The Tag and the Reader share two secret keys x, y ∈ Ek. Figure 6 describes one
round in the authentication protocol with Tx,y andRx,y. Similar to the HB+ pro-
tocol, it consists of three interactions between the Tag and the Reader. First, Tx,y
sends b and Rx,y responds with a challenge a. Then, Tx,y samples an element
e ∈ E at uniform random and compute u = 〈a, x〉+ 〈b, y〉+ e mod p, which is
then relayed to Rx,y. The Reader performs a check if u − (〈a, x〉 + 〈b, y〉) ∈ E.
The round is then repeated n times to raise the confidence in the Tag. The Reader
accepts if and only if all n checks were fulfilled.

Remark 1. An active Adversary can repeatedly query with a challenge a, e.g., a = 0,
trying to solve recover y as the other key x no longer contributes to the response z.
Therefore, the protocol security relies on the length of y, and we only need to set the
length of x so that guessing is infeasible. For example, 80-bit security requires the
length of x to be at least 22 as z22 ≈ 283. The protocol can be instantiated with
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Tx,y Rx,y

b−−−−−−→b $←− Fk
p

a $←− Fk
p

a←−−−−−−
e

$←− E
u = 〈a, x〉+ 〈b, y〉+ e mod p u−−−−−−→ Check if

u− (〈a, x〉+ 〈b, y〉) mod p ∈ E

Figure 6: One round of the RSDP-based HB+ authentication protocol. For simplicity, we
let kx = ky = k.

different key lengths, denoted by kx, ky. For simplicity, in Figure 6 and the proof, we
use the same key length.

Completeness of the authentication protocol

Contrary to HB-family authentication protocol, a legitimate tag in our proposal
will produce u that passes the check ofRx,y with probability 1.

Soundness of the authentication protocol

Let ui be a random response in round i. To be authenticated, all ui, i = 1, . . . , n
need to pass the Reader’s checks. Without knowing the secret, such a single event
happens with a probability

Ps = (Pr[ui − (〈a, x〉+ 〈b, y〉) mod p ∈ E])n =

(
z

p

)n

.

3.1 Security against an active adversary

In this section, we show a reduction of the RSDP problem to the authentication
protocol in the active model. To formalize an active attacker, we introduce the
following notation. Let A = (A1,A2) be the active adversary in Phase 1 (query-
ing the tag) and Phase 2 (authenticate to the reader), respectively. In phase 1,
A has access to T in at most Q authenticating executions, and the adversary’s
actions are characterized by the program A1. During each execution, it receives
bi, i = 1, . . . , n from T , and sends back ai, for i = 1, . . . , n respectively, as
challenges. Note that A1 can choose ai as an active attacker. Then, T computes
some zi for i = 1, . . . , n as responses. In the end, A1 outputs some state σ that
contains all information used for the next phase.

In the second phase, the attacking adversary impersonates the tag T . Its com-
plete action is described by the programA2, which takes the state σ as input. A2
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sends some b̂i (which is derived from σ), R then challenges with âi and A2 pro-
vides the final ẑi, attempting to pass the authentication protocol. After n rounds,
i = 1, . . . , n, the reader decides to accept or reject. The running time of A,
denoted by t, is determined by the maximum run time between A1 and A2.

We need to introduce further notation related to the error set E. Let D denote
the set

D := {e− e′|e, e′ ∈ E}.

Furthermore, let αE := |D|
p .

Theorem 4. Assume that the RSDP-based HB+ protocol in Figure 6 (with parameters
p, k, n, and E = {gi, i = 0, . . . , z − 1}) is not (t,Q, ε)-secure, that is, there
exists an active adversary A, running in time t, interacting with the tag in at most Q
executions, and achieving success probability at least ε in Phase 2. Then there exists a
distinguisher D running in time O(t/ε), making Q · n queries to an RSDP oracle
ORSDP

s , for which∣∣∣Pr
[
s← Ek : DΛk(s) = 1

]
− Pr

[
DUk+1 = 1

]∣∣∣ ≥ 1− ε′,

with
ε′ ≈ αn

E · c2/ε2 + (c+ 1) · exp(−c),

for some small constant c.

Proof. Let (bi, u′i) ∈ Zk
p × Zp be ordered pairs that are from an unknown distri-

bution, which is either Λk(s) or Uk+1. Assume that D has access to the program
descriptionA = (A1,A2) of an adversaryA that can successfully attack the pro-
tocol described in Figure 6, in time t and after Q queries, with advantage ε. We
now show that D can useA to distinguish whether its samples are from an RSDP
oracle or drawn uniformly at random.

The following steps take inspiration from the reduction for the HB+ protocol
in [KS06b]. The algorithm D first picks a random y $←− Ek. The idea is that D
simulates a transcript as if, in the query phase,A is interacting with an honest tag
Ty,s.

Phase 1

D runsA1. Recall that, in this phaseA1 challenges the Tag with ai after receiving
some bi. First,D relays bi toA1. For every challenge ai made byA1,D computes
and responds with

ui = u′i + 〈ai, y〉 mod p,

for i = 1, . . . , n. After Q such executions, A1 outputs the state σ.
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Phase 2

Next, D will use the A2 program. A2(σ) starts by sending b̂i to D, who then
responds with â1i , i = 1, . . . , n. 3 Then, A2(σ) computes some responses u1i for
i = 1, . . . , n. The distinguisher D rewindsA2(σ) but this time inputs a different
â2i and observes the responses u2i for i = 1, . . . , n.

The distinguisher D proceeds to rewind and run A2 for M times and inputs
different random âji , i = 1, . . . , n, and j = 1, . . . ,M and obtains uji for i =
1, . . . , n and j = 1, . . . ,M .

Finally, D runs through all 1 ≤ j1 < j2 ≤ M and computes ûi = uj1i −
uj2i mod p for i = 1, . . . , n and û′i = 〈(̂aj1i − âj2i ), y〉 for i = 1, . . . , n. D
checks if there exist two different such j values, j1, j2 for which we have that for
all i = 1, . . . n, ∃ei, e′i ∈ E such that ei − e′i = ûi − û′i. If this is the case, D
outputs 1 (Λk(s)), otherwise 0 (Uk+1).

• Case 1: Assume D gets samples from Uk+1 in Phase 1. Then, the values
ûi− û′i are uniformly and independently distributed. That is, D will make
an error and output 1 iff Ûi = ûi − û′i can be written as the subtraction
of two elements in E. This happens iff Ûi is in the set D. A pair of j1, j2
then gives all n responses from a legit tag with probability αn

E :=
(
|D|
p

)n
.

In other words, running through all pairs gives an error probability of D as
most as αE ·

(
M
2

)
. In other word,

Pr
[
DUk+1 = 1

]
= αn

E ·
(
M

2

)
.

• Case 2: AssumeD gets samples fromΛk(s). Then, in Phase 1, we simulated
the transcript as if A interacted with Ty,s. Indeed,

ui = u′i + 〈ai, y〉 mod p = 〈bi, s〉+ 〈ai, y〉+ ei.

By definition, A2 produces a correct response with probability at least ε.
We now show that for a well-chosen M , at least a pair of correct responses
exists with high probability. A fails to produce any correct pair of responses
with probability

M · ε · (1− ε)M−1 + (1− ε)M ≈
M · ε · exp(−ε · (M − 1)) + exp(−ε ·M).

3The superscript 1, 2, . . . in â1, â2 are not exponentiation but corresponds to the whole authen-
tication attempt where A2 sends challenges.
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That is,

Pr
[
s← Ek : DΛk(s) = 1

]
=

1−M · ε · exp(−ε · (M − 1)) + exp(−ε ·M).

We want the probability of D being successful to be close to 1; hence, one
chooses M = c · 1ε , for some constant c > 1. This proves the theorem.

Hence, if c is big enough, D can tell if the samples are from Λk(s) with
probability very close to 1.

Example 4. Let ε = 2−20, we only needM = 5
ε to have probability 0.96 to have at

least one correct pair.

3.2 A MitM Attack Strategy

Here, we point out that the proposed protocol from Figure 6 is not secure against
a MitM attacker. The attack depends on the additive structure of the restricted
set E. Consider an adversary that observes one sample in the first round of the
protocol as before:

u = 〈a, x〉+ 〈b, y〉+ e mod p

and tries to guess e ∈ E. Recall that in the MitM model,A are allowed to interfere
and alter (b, a, u) before forwarding to either T orR. The adversaryA first picks
an element e′ ∈ E and assumes that e = e′. Then pick another element e′′ 6= e′,
such that e′′ ∈ E. Then substitute u with u′, which is calculated as

u′ = 〈a, x〉+ 〈b, y〉+ e− e′ + e′′ mod p

in this first round. In all other rounds i = 2, . . . , n, the adversary forwards the
responses u without modifications.

Assume u′ passes the verification check, which can only occur when e− e′ +
e′′ ∈ E, and depending on the choice of E, A can obtain some information
regarding e or even correctly guess e.

Example 5. Let p = 127 and E = {1, 2, 4, 8, 16, 32, 64}. It is then easily checked
that if e′ 6= e′′ ∈ E and e− e′ + e′′ ∈ E then e = e′. Equivalently, when u′ passes
the check,A correctly guess e = e′. Knowing e, the adversary can compute u− e and
conclude that

u− e = 〈a, x〉+ 〈b, y〉 mod p.

This gives a linear equation in the unknown key variables x, y. The Reader accepts
the corrupted response with probability 1/|E| (for each authentication). Thus, it takes
the attacker on average |E| attempts to reveal a noise-free value 〈a, x〉+ 〈b, y〉, or at
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most (n + k)|E| attempts to reveal the entire secret key by solving a system of linear
equations through Gaussian elimination.

Example 6. For our later choice of E, p = 127 and E = {(−2)i, i = 0, . . . , 13}.
Guessing e is more challenging as there are many e′ and e′′ that yield a seemingly valid
u′. However, by definition, the design is not MitM-secure as it means thatA can forge
a response u′ 6= u (with non-negligible probability) that will be authenticated byR.

Going further,A can also perform a key recovery attack. In contrast to Example 5,
for fixed e′ and e′′, there are more than one possible values for e (that makes u′ pass).
As an example, (e′, e′′) = (1, 8) yields e = 1 or e = 19, which allows A to form
a quadratic equation as (e− 1)(e− 8) = 0 mod p. By changing different (e′, e′′)
and going through n responses coming from the Tag,A obtains more information (and
equations) about each error position, which could be used to speed up combinatoric
solvers (or algebraic).

4 Parameters for the proposed protocol

We propose parameters for 3 security levels, namely 80, 112, and 128 bits. The
parameters are selected based on the performance of the various RSDP-solving
algorithms.

As in Remark 1, an active attacker using RSDP solvers to recover the secret
key(s) amounts to solving an RSDP instance with parameter n and secret length
ky. When n < ky, there are exponentially many solutions. However, one has to
find the exact e1, . . . , en produced by T to recover x. The attacker can indeed
observe many authentications to get more than n samples to guarantee that the
solution from the solver is indeed correct. However, once the average number of
solutions is 1, Stern/Dumer and BJMM do not seem to take advantage of the
extra samples.

We stress that the performance of Stern/Dumer or BJMM takes into account
the cost of accessing huge memory under the log model. Indeed, such algo-
rithms require such high memory usage that can not be disregarded. For example,
Shifted-BJMM needs 270 bits of memory for 80-bit security parameters.

All proposed instances use p = 127 and E = {(−2)i, i = 0, . . . 13} as the
multiplicative subgroup in Fp, so z = 14.

Table 2: Parameters recommendation for the RSDP HB+ protocol with n as the number
of authentication steps, kx, ky as the length of two secret keys, and p as the field
size. The restricted set is set to be E := {(−2)i, i = 0, . . . z − 1}.

Security Level 80 112 128
(p, z) (127,14) (127,14) (127,14)
(kx, ky) (22,34) (30,54) (34,70)
n 26 36 41
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We present the cryptanalysis on the 80-bit security parameters with E =
{±1,±2, . . . ,±64} Interestingly, the biggest threat to this parameter set is the al-
gebraic attack. Since the algebraic approach cost can be lower-bounded by roughly(
k
z

)3
, it prevents ky from being too small. Since there are better methods compared

to Gaussian elimination that can lower the exponent, we conservatively choose
ky = 34 as

(
34
14

)3 ≈ 291. For a d-bit security level, we require the soundness error(
14
127

)n ≤ 2−d. For example, n = 26 for 80-bit security level.
Now we consider the combinatorial approach, such as Stern and BJMM, as-

suming an adversary using such solvers is allowed multiple interactions (to guar-
antee the correctness of the found solution). In that case, it does not seem to yield
improvements as the size of E is quite big, thus significantly increasing enumer-
ating efforts. For example, the Stern(BJMM) in Section 2.4 requires 2105 (2110,
resp.) operations and 294 (298, resp.) bits in memory. In contrast to the CROSS
parameter, shifted-BJMM does not improve over Stern for our choice of E. In
addition, for higher security-level parameters, the gap between algebraic and com-
binatorial solvers gets significantly wider.

Other settings

The most well-studied setting of RSDP, as can be seen in CROSS, is p = 127, z =
7 (E = {2i, i = 0, . . . , 6}). In particular, it is employed in all targeted NIST
security levels (up to 256-bit). However, this choice of z makes our protocol
vulnerable to the algebraic attack by [AG11]. Table 3 shows the change of ky
the keys with z = 7.4 Such a drastic change can make our protocol unreasonably
expensive regarding storage in an environment-constrained device. In this case, the
adversary needs to observe 230 (80-bit) to 248 (128-bit) authentications to success.
In summary, this setting is not secure unless there is a reasonable countermeasure
to thwart excessive queries. Therefore, our choice of parameters in Table 2 can

Table 3: The restricted set is set to be E := {2i, i = 0, . . . z − 1}.

Security Level 80 112 128
(p, z) (127,7) (127,7) (127,7)
(kx, ky) (22,71) (30,210) (34,400)

be seen as a simple and effective way to achieve better security without adding
substantial overhead (only additional log 2 bits for each key symbol stored).

4.1 Performance

In this section, we discuss the proposed protocol with different benchmarks such
as computation, communication, and key size(s).

4Again, combinatoric approaches are not competitive to algebraic attacks.
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Key size

The protocol employs two keys of lengths kx, ky each, of which entries are drawn
from the restricted set E; therefore, we need roughly (kx+ky) · log(z) bits to store
the keys.

Communication

One authentication consists of n 3-round authenticating step. In each step, the
Tag and the Reader exchange (a, b, u) ∈ Fkx

p ×Fky
p ×Fp, which incurs n× (kx+

ky + 1)× log(p) bits in communication.

Example 7. 80-bit security parameters of LPN-based HB+ are roughly (512, 1/8)
where 512 is the length of the key and 1/8 is the noise rate. To achieve good complete-
ness and soundness probability (2−40 and 2−80, respectively), one needs to repeat an
authentication step by roughly n = 441 times.

Table 4: Key size (in bits) of different protocols.

Security Level 80 112 128
RSA 1024 2048 3072
DSA 1024 2048 3072
LPN-based 592 880 896
RSDP HB+ 217 320 396

Table 4 shows the key sizes of our protocol in comparison with some tra-
ditional cryptographic primitives and LPN-based protocols. Note that there are
several options for LPN-based protocols to achieve one security level. For instance,
one can select (kx = 112, ky = 512, τ = 0.49) for 112-bit security. However,
such a high noise level will be detrimental to both the completeness and sound-
ness of the scheme, thus implying a very high number of authentication steps, i.e.,
high communication cost. Therefore, for LPN-based protocols, we pick values of
k that correspond to “reasonable” noise rates (typically ≤ 0.3).5

4.2 Hardware Implementation

The most critical task that affects performance in Figure 6 is computing

u = 〈a, x〉+ 〈b, y〉+ e mod p

This operation is implemented using hardware in the tag and needs to be as lightweight
as possible. Our choice of the error set E, and the choice of p ensures that the op-
eration remains cheap. We implemented two strategies for both protocols based

5Table in Section 5.2 in [LF06b] can serve as a rough guideline for LPN parameters.



4 Parameters for the proposed protocol 195

on RSDP and LPN, with parameters targeting 80-bit security. The implemen-
tations focus on the inner product operation, which is the most costly operation
implemented on the tag hardware. In both strategies, the cost is dominated by
the circuits needed to store the key and the challenge. In the case of LPN, both
variables consist of 512 bits, while in the case of RSDP, the key consists of 136
bits, while the challenge consists of 238 bits. In the case of LPN, one vector coor-
dinate consists of 1 bit, while in the case of RSDP, one challenge vector coordinate
consists of 7 bits, and 1 key vector coordinate consists of 4 bits in a signed integer
format. Each multiplication, in the case of RSDP, consists of two steps:

1. Multiplication of the challenge coordinate by the unsigned value of the key
coordinate mod 127, which boils down to a rotation based on the key
values.

2. Multiplication by either 1 or −1 mod 127, which boils down to a condi-
tional bitwise negation.

In strategy A, we implement the operation serially, as depicted in Figure 7.
Every clock cycle, we perform one multiplication operation followed by an ac-
cumulation. The inner product operation takes several clock cycles. In strategy
B, we implement the inner product operation in one clock cycle, and add all the
products using an addition tree. Strategy A targets the minimum possible area
(storage with a minimal combinational circuit), while strategy B targets the high-
est possible speed (1 clock cycle per inner product). We synthesized the circuits
for both the Artix 7 FPGA using Xilinx Vivado and FDSOI 28nm using Synop-
sys Design Compiler, and the results are provided in Tables 5 and 6, respectively.
We observe that on FPGA, strategy B works better for LPN than strategy A, but
the RSDP-based protocol is smaller and faster for both strategies. Similar trends
emerge in ASIC implementations, the RSDP circuit being 60% and 30% smaller
for strategies A and B, respectively. We note that LPN favors strategy B over strat-
egy A due to its very lightweight combinational logic compared to the storage cost,
while RDSP offers a somewhat linear trade-off due to its more involved combina-
tional/arithmetic logic. However, it still experiences a significant gain in all cases.

Table 9 shows the comparison in performance between RSDP-based and LPN-
based authentication protocols. Note that the number of rounds for LPN-based
protocol is chosen so that they have acceptable correctness and soundness prob-
abilities (≤ 2−40, and ≤ 2−80) (Figure 2, [LF06b]). We then extrapolate the
overall performance into Table 1.

As we can see from Table 9, the RSDP-based approach provides remarkable
benchmarks compared to its LPN-based counterpart. The RSDP-based protocol
requires very modest keys compared to LPN-based counterparts. The reason is
that RSDP offers a much higher security level for the same key length, and we
only need to use log z bits for each key symbol. In addition, we also see reduced
communication cost (column 2) per round for T and R. Most importantly, the
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Secret

. . .

Challenge

. . .

split

rotate

accumulator

e

Figure 7: Serialized implementation of the inner product operation (strategy A).

Table 5: FPGA Resource Utilization for 80-bit security using Xilinx Artix 7 and Xilinx Vivado.
LUTs: Look-Up Tables, FFs: Flip-Flops.

Design LUTs FFs Cycles

LPN-based
1028 1025 512
1032 1025 64
780 1025 1

RSDP-based
399 381 34
421 381 18
678 266 1

RSDP-based protocol needs very few authentication rounds: 17 times and 28
times less for 80-bit and 128-bit parameters, which yields very competitive total
bandwidth. Although round parallelization is an option, it burdens power and
hardware utilization on T , which can be unreasonable for devices with low power
or constrained environment, such as an RFID tag. As hinted in the introduction,
due to elementary arithmetic (XOR), the GEs in LPN do not change much if
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Table 6: ASIC area for 80-bit security using FDSOI 28nm. GEs: Gate Equivalents.

Design GEs Cycles

LPN-based
12243.75 512
12262.5 64

12985 1

RSDP-based
4678 34

4797.18 18
8614.69 1

Table 7: FPGA Resource Utilization for 128-bit security using Xilinx Artix 7 and Xilinx Vi-
vado. LUTs: Look-Up Tables, FFs: Flip-Flops.

Design LUTs FFs Cycles

LPN-based
1540 1537 768
1544 1537 96
1169 1537 1

RSDP-based
619 601 70
641 601 35
999 394 1

Table 8: ASIC area for 128-bit security using FDSOI 28nm. GEs: Gate Equivalents.

Design GEs Cycles

LPN-based
18349.13 768
18389.25 96
19428.97 1

RSDP-based
7304.22 70
7421.47 35

13249.47 1

Table 9: Performance comparison in 1 round of RSDP-based and LPN-based authentica-
tion protocol for 128-bit level security

Design Key size Communication Rounds
RSDP-based 396 735 41
LPN-based 896 897 1164

we follow Strategy A or B. In contrast, RSDP allows optimizations/trade-offs de-
pending on the hardware at hand. Therefore, we argue that RSDP is a much more
friendly and flexible candidate for a lightweight authentication protocol.
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5 A MitM-secured proposal based on RSDP

In this section, we present an extended protocol that provides security also in the
MitM model. We adopt the approach of Lyubashevsky et al. [LM13a] to achieve
this, with the addition of a few additional assumptions.

Definition 17. A family function F : D → F is said to be a weak pseudorandom
functions (wPRFs) if for f $←− F , it is computationally infeasible to distinguish input-
output pairs (xi, f(xi)), where xi are chosen uniformly at random from D, from
random pairs (xi, yi) ∈ (D,F).

The condition of wPRFs can be further relaxed by a family of functions Fχ,
provided the output of f ∈ F is indistinguishable after perturbation of noise
characterized by a distribution χ. Such a family is called randomized wPRFs.

Definition 18. H : D→ F is a pairwise independent function family if

Pr
h

$←−H
[h(x1) = y1 ∧ h(x2) = y2] = 1/|F|2,

for all x1 6= x2, y1 6= y2.

In brevity, the design in [LM13a] relies on a (randomized) wPRFs Fχ : D→
F, a pairwise independent function family H : D → F, where F is a finite field.
Importantly, a weight function |·| (defined on F), the field F, and χ have to satisfy
certain (reasonable) properties. In essence, together, they have to provide good
completeness (close to 1) and soundness probability. A natural instantiation for
LPN is F = Z2[x]/〈g(x)〉, for some irreducible polynomial g(x), and χ as the
Bernoulli distribution Bernη , and the Hamming weight function. Despite such
requirements not applying to our situation, we have seen in Section 3 that RSDP
naturally yields good completeness and soundness probability. Hence, we propose
a protocol that achieves MitM security in Figure 8.

The following instantiation of the protocol in Figure 8 can be seen as an RSDP
version of the protocol in [LM13a]. Note that the protocol now runs only a single
round as the final response u from the Tag is a vector (or, equivalently, an element
in a finite field).

Public parameters

The following are public parameters where k, n, p and z depends on the security
parameter λ.

• Zp: integers modulo p.

• E: a multiplicative subgroup of order z in Zp.
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TX,h,s RX,h,s

b−−−−−−→b $←− Zk
p

a
$←− F

a←−−−−−−
e $←− En

u = (Xb+ e) · s+ h(b) · a u−−−−−−→ Check if

(u− h(b) · a) · s−1 − Xb ∈ En

Figure 8: An RSDP adaptation to Lyubashevski et al. for MitM security. Here, we use the
vector form of (u− h(b) · a) · s−1 in the check.

• F = Zp[x]/〈g(x)〉 for some irreducible polynomial g(x) over Zp of degree
n. Multiplications, denoted by · in F, are seen as polynomial multiplica-
tions. Operations between a vector and an element in F are assumed to be
done after converting the vector to a corresponding element. For instance,
a vector can be seen as coefficients of a polynomial in F, and vice versa.

Secret keys

TheTag and the Reader both share secret keys X ∈ En×k, h ∈ H, and s ∈ F. The
function h is defined as h(x) = h1 ·x+h2, for hi ∈ F and x is the corresponding
polynomial to vector x in F.

Hardness assumptions

Having X as a secret matrix is equivalent to having many RSDP instances with
different secrets xi (columns of X). However, as we have discussed, RSDP is not
hard when an adversaryA has access to an unlimited number of queries. Therefore,
for the reduction proof of this design, we have to assume that A is allowed up to
Q interactions with the Tag, where Q is a fixed value. Storing a matrix X ∈ Ek×n

could pose a practical challenge for a low-cost RFID Tag. Therefore, similar to
previous work, one can consider a version where X is a Toeplitz matrix.

5.1 Security reduction of the MitM proposal

We now want to prove security for the protocol in Figure 8. We are inspired
by the methodology from [LM13a]. Their work considers a slightly different
MitM adversary where it does not operate in two phases. Instead, a MitM at-
tacker interacts with T and R for Q times and modifies the communications
(b, a, u) → (b + b′, a + a′, u + u′). The attacker wins the game if one out of
Q interaction, a non-trivial change in the communication, i.e., (b′, a′, u′) are not
simultaneously 0, yields an accept from R. However, if the attacker wins in this
scenario, it also wins in the 2-stage model.



200
Paper V: Efficient Authentication Protocols from the Restricted Syndrome

Decoding Problem

T (sim.) A R (sim.)

bi+b′i−−−−−−−−−→
choose some random s, h

(bi, yi)→

ai
$←− Fai+a′i←−−−−−−−−−

ui = yi · s+ h(bi) · (ai + a′i)
ui+u′

i−−−−−−−−−→ Check if

(b′i, a
′
i, u

′
i) 6= (0, 0, 0), reject

else, accept

Figure 9: Simulating T and R before the winning query.

In this reduction, we assume the existence of an adversary A that breaks the
design after Q authentication queries with probability ε. It means that we assume
that A makes Q − 1 unsuccessful attempts followed by a Q-th query, where the
Reader output accept for (b′i, a

′
i, u

′
i) 6= (0, 0, 0) with probability ε. Obviously,

this implies that an adversary A that is allowed to win in any query has success
probability at most εQ.

Theorem 5. Assume that the protocol in Figure 8 is not (t,Q, ε)-secured, that is, there
exists an active adversaryA, running in time t, interacting with theTag and Reader in
at most Q executions, and can produce (b′, a′, u′) 6= (0, 0, 0) that is authenticated
with probability at least ε. Then there exists an algorithm D running in time O(t),
making Q · n queries to an RSDP oracle (with secret as a matrix), and∣∣Pr

[
X← Ek×n : DΛk(X) = 1

]
− Pr

[
DUk+1 = 1

]∣∣ ≥ (ε− 1/pk
)2 − αn

E.

Proof. LetA be a MitM attacker as described above. In each authentication query,
A changes b→ b+ b′, a→ a+ a′, u→ u+ u′.

We now describe a distinguisher for the (vectorized) RSDP oracle using A
as a part. The Challenger sends to the distinguisher pairs (bi, yi) where bi are
uniformly random and yi are either uniformly random or yi = Xbi+ ei, for some
random matrix X. Now, the distinguisher simulates the Tag and the Reader for
all queries. First, random values of the secrets h, s are chosen. For execution i,
D receives (bi, yi) from the challenger and chooses a random ai. Then (bi, ai) is
input to A who responds with (b′i, a

′
i). D computes ui from its known values as

ui = yi · s+ h(bi) · (ai + a′i),

and gives to A, who responds with u′i. Finally, we simulate the response from the
reader by simply rejecting if (b′i, a

′
i, u

′
i) 6= (0, 0, 0). This is the simulation before

the winning query, and it is depicted in Figure 9.
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T (sim.) A R (sim.)

b−−−−−−→

(b, y)→

a
$←− Fa+a′←−−−−−−−−−

u = y · s+ h(b) · (a+ a′) u+u′
−−−−−−−−−→ Check if

(u′ + h(b) · a′) · s−1 ∈ Dn,not_random

else, random

Figure 10: Response with the winning query when b′ = 0.

We argue that this is a correct simulation of the protocol up to Q− 1 queries.
If yi = Xbi + ei, then T andR behaves as if they have secrets X, s and h. Then,
for (b′i, a

′
i, u

′
i) = (0, 0, 0),R outputs accept correctly. If (b′i, a

′
i, u

′
i) 6= (0, 0, 0),

R outputs reject correctly since the winning query has not been reached.
Next, we will show how to use the Q-th winning query to output the answer

to the Challenger correctly. The distinguished acts differently in the two cases:
b′ = 0 and b′ 6= 0. From now on, we denote the winning query by (b′, a′, u′) 6=
(0, 0, 0).

The case b′ = 0

The response to the challenger is as given in Figure 10.

• Case 1: Assume that the challenger sends RSDP pairs. Then, since (a′, u′)
is the winning response, the following must be accepted by the Reader.

(u+ u′ − h(b) · a) · s−1 − Xb ∈ En.

On the other hand, since the pairs (b, y) from the Challenger is an “RSDP”
pair, we also have

(u− h(b) · (a+ a′)) · s−1 − Xb ∈ En.

Subtracting the two equations, one obtains

(u′ + h(b) · a′) · s−1 ∈ Dn,

i.e., in this case, the response is always not_random.

• Case 2: Assume that the challenger sends a random pair. Then, the simula-
tor responds not_random if and only if

(u′ + h(b) · a′) · s−1 ∈ Dn
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with randomly chosen h and s. Moreover, previous unsuccessful queries
do not leak information about these secrets, So A behaves as if u′, a′ are
chosen before h and s. As b′ = 0, we have that u′, a′ cannot both be zero.
This leads to

Pr[(u′ + h(b) · a′) · s−1 ∈ Dn] = αn
E,

for any choice of u′, a′.

In summary, if b′ = 0, then one has∣∣∣Pr
[
X← Ek×n : DΛk(X) = 1

]
− Pr

[
DUk+1 = 1

]∣∣∣ = ε− αn
E.

The case b′ 6= 0

The response to the challenger in this case is as given in Figure 11. Here we first
run A in the winning query with random input a0, then we rewind A and run it
again with another random input a1.

T (sim.) A R (sim.)

b+b′−−−−−−−−→

(b, y)→

a0
$←− Fa0+a′0←−−−−−−−−−−

u0 = y · s+ h(b) · (a0 + a′0)
u0+u′

0−−−−−−−−−−→
a1

$←− Fa1+a′1←−−−−−−−−−−
u1 = y · s+ h(b) · (a1 + a′1)

u1+u′
1−−−−−−−−−−→ Check if

[(u1 + u′1)− (u0 + u′0)−
h(b+ b′) · (a1 − a0)] · s−1 ∈ Dn,not_random

else, random

Figure 11: Response with the winning query when b′ 6= 0.

• Case 1: Assume that the challenger sends an RSDP pair. To detect if A
responds correctly without knowing the secret X, one needs to get rid of
X(b+b′). Therefore, we have to rewind A to produce X(b+b′) twice with
different challenges a0 and a1 (which happens with probability 1− 1/pk).
In particular, the simulated Reader sends a0 and the Tag computes u0 as in
Figure 11. Then we rewind A back to the point it sends b+ b′. This time,
a different challenge a1 is sent, and similarly, a new u1 is computed.
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The distinguisher now has two responses u0 + u′0 and u1 + u′1. Both of
them are simultaneously correct with different challenges with probability(

ε− 1/pk
)2

,

and it follows that

[(u1 + u′1)− (u0 + u′0)− h(b+ b′) · (a1 − a0)] · s−1 ∈ Dn,

meaning that in this case the distinguisher always gives the correct response
not_random.

• Case 2: Assume that the challenger sends random pairs. We now investigate

Pr
[
[(u1 + u′1)− (u0 + u′0)− h(b+ b′) · (a1 − a0)] · s−1 ∈ Dn

]
.
(4)

Let ã = a1 − a0 (and correspondingly for ã′, ũ′), we can rewrite Equation
4 as

Pr
[
[ũ′ + h(b) · (ã+ ã′)− h(b+ b′) · ã] · s−1 ∈ Dn

]
.

As previous unsuccessful queries do not leak information about h and s,A can be
considered choosing ũ′, ã′ before h and s. For all t ∈ Dn,

Pr[h(b+ b′) = h(b) · (ã+ ã′) + ũ′ − t · s)] = 1

pn
,

by definition of pairwise independent function. Therefore,

Pr
[
[ũ′ + h(b) · (ã+ ã′)− h(b+ b′) · ã] · s−1 ∈ Dn

]
= αn

E.

In summary, in this case, one has∣∣∣Pr
[
X← Ek×n : DΛk(X) = 1

]
− Pr

[
DUk+1 = 1

]∣∣∣ = (ε− 1/pk
)2
− αn

E.

One can extend the proof to use multiple rewinding as in Theorem 4 to achieve
tighter reduction.

6 Parameters for the MitM design

In contrast to the active-secured design, the RSDP sample is now masked with
a secret polynomial s, which makes it challenging to apply any RSDP solvers to
retrieve the secret X (even in the case that X is a Topeliz matrix). It is reasonable
to assume that an Adversary will face a harder problem than just RSDP. Therefore,
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one can use the same parameters proposed in Table 10 for this design if the cost
factor is paramount.

Table 10: Agressive parameters for theMitM-secured RSDP authentication protocol with p
as the field size, and the restricted set is set to be E := {(−2)i, i = 0, . . . z−1}.

Security Level 80 112 128
(p, z) (127,14) (127,14) (127,14)
k 34 54 70
n 26 36 41

To be more conservative, one can select parameters based on the security re-
duction. Theorem 5 has tightness

√
ε. In other words, the protocol is only half as

secure as the RSDP problem and n has to be big enough so that αn
E can be deemed

negligible. In particular, for d-bit security level, we ask for αn
E ≤ 2−d.

Table 11: Conservative parameters recommendation for the MitM-secured authentica-
tion protocol with p as the field size, and the restricted set is set to be E :=
{(−2)i, i = 0, . . . z − 1}.

Security Level 80 112 128
(p, z) (127,14) (127,14) (127,14)
k 55 79 91
n 96 134 153

There are several ideas when it comes to reducing the cost even more. For
instance, selecting the coefficient of s, or secret polynomial h1, and h2, to be also
in the restricted set. However, more careful work has to be done to understand
the security implications of such risky options.

Example 8. Let us look at some efficiency comparisons between LPN and RSDP
instantiation for 80-bit security. Since it is unclear how the steepness of reduction
translates to security in practice, one can choose the parameters that yield 80-bit secu-
rity for both the RSDP and LPN problem as in Section 4. In particular, (roughly)
(n, k, ε) = (441, 512, 1/8) for LPN and (n, k, p, z) = (26, 34, 127, 14) for
RSDP.

• In terms of key storage, assuming we useToepliz matrices for both cases, LPN uses
k+4n = 2276 bits, while RSDP uses (k+n) · log(z)+ 3n · log(p) = 770
bits.

• LPN instantiation uses 3k = 1323 and RSDP uses 3k · log(p) = 545 bits in
communication.

Therefore, we can see that RSDP, in the MitM-secured construction, still offers sig-
nificant advantages over traditional LPN-based protocols in terms of key storage and
communication costs.
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7 Conclusion

In this paper, we have presented novel authentication protocols based on the Re-
stricted Syndrome Decoding Problem. We show a natural adaptation of the new
problem in two constructing directions: HB-family and wPRFs-based authentica-
tion protocols. From a theoretical viewpoint, security reductions from the previ-
ous works translate to RSDP (with a few additional assumptions, in the case of
wPRFs-based). For practical interests, we show that with a well-chosen restricted
set E, the proposed protocol yields impressive performance well suited to low-cost
cryptographic primitives. More importantly, such a choice of E does not compro-
mise the security regarding available RSDP solvers.
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A BKW-Style Solver for the
Restricted Syndrome
Decoding Problem

Abstract

The Restricted Syndrome Decoding Problem (RSDP) is a variant of the well-
known syndrome decoding problem. It has recently been turned into a post-
quantum signature scheme named CROSS by Baldi et al.. It is a scheme high-
lighted for being computationally friendly and providing a compact signature and
public key size. This paper investigates an Oracle-based definition of the RSDP
that has already proved useful in constructing other cryptographic primitives. We
propose a new solving algorithm for this novel and interesting problem. Our ap-
proach is to first introduce a new weight definition for vectors over Fp and then
develop a solving algorithm similar to the BKW algorithm that includes finding
many such low-weight vectors in a dual space. We make use of several advanced
techniques, such as Covering codes and Subspace Hypothesis Testing. We show that
when there are many samples, our algorithm can be more advantageous than prior
work based on Information-set decoding adaptations for RSDP or algebraic ap-
proaches.

1 Introduction

Recently, as an attempt to diversify our cryptographic portfolio, the National In-
stitute for Standard and Technology (NIST) announced the Post-Quantum Ad-

Thomas Johansson, Qian Guo, Vu Nguyen. “A BKW-Style Solver for the Restricted Syndrome
Decoding Problem”. In International Workshop on Code-Based Cryptography 2025, Madrid, Spain.
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ditional Signature Schemes call, where many code-based proposals were featured,
such as CROSS [Bal+24c], WAVE [Ban+23], LESS [Bal+24b], SDitH [Mel+23b]
to name a few. Code-based cryptography has always been at the forefront of
post-quantum cryptography research as extensive studies for more than half a
century have accumulated a good understanding and high confidence in code-
based hardness assumptions. At the heart of code-based cryptography lies the
well-known Syndrome Decoding Problem (SDP), which has been proven useful
in many cryptographic applications. Most notable are KEMs such as McEliece
[Ber+20], BIKE [Ara+21], HQC [Mel+23a]), as well as other constructions, e.g.,
zero-knowledge proof systems [Ste93; Vér96], signatures [CFS01], hash functions
[AFS05; Ber+11], stream ciphers [FS96], and so on.

Many code-based constructions rely onNP-complete variants of the original
SDP, especially when performance is a limiting factor. Numerous works have been
conducted in this direction, such as employing “structured” noise: the Regular
Decoding Problem [AFS05; CCJ23; Cui+24], Permuted Kernel Problem [Sha90;
Beu+19], etc., or SDP in different metrics (rank metric, Lee metric) other than the
Hamming weight. In particular, the second round of the NIST signature call has
seen the advancement of LESS and CROSS, whose security revolves around the
Code Equivalence Problem, and the new and novel Restricted Syndrome Decoding
Problem (RSDP).

The RSDP was first introduced in [Bal+20a], where the author introduced an
efficient zero-knowledge identification protocol. Since then, many cryptanalytic
studies have been done to improve our understanding of this interesting problem.
Solvers for RSDP fall into two categories: adaptations of the well-known SDP
algorithm Information-Set Decoding (ISD), and algebraic solvers.

Recently, another class of SDP algorithms, called Statistical Decoding [Car+22],
has been revisited, and it seems promising in certain code rate regimes. In partic-
ular, when the code rate can be made arbitrarily small, which effectively turns
(binary) SDP into the Learning Parity with Noise (LPN) problem, there exists an-
other algorithm called BKW [BKW03b] that can solve LPN in sub-exponential
complexity. Therefore, the natural question arises of whether applying the BKW
algorithm to solve RSDP is viable, especially when the code rate is also small.

Contributions

In this work, we reintroduce the RSDP problem in its “oracle” form, allowing an
adversary to obtain an arbitrary number of RSDP samples. We propose a BKW-
style approach to solve the RSDP problem that resembles the BKW algorithm for
LPN and Statistical Decoding for the classical Syndrome Decoding Problem. Our
approach is to first introduce a new weight definition for vectors over Fp and then
develop a solving algorithm that includes the process of finding many low-weight
vectors in a dual space. We incorporate several state-of-the-art techniques that
improve the basic BKW algorithm, such as covering codes and subspace hypothesis
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testing [GJL14; GJS15]. In contrast to ISD solvers, our algorithm can benefit
from additional samples and bridge the gap between combinatorial and algebraic
attacks.

On the one hand, we enrich the cryptanalysis for RSDP primitives, which is
an interesting and novel topic in the post-quantum cryptography landscape. On
the other hand, our take can serve as a vital tool for designing new RSDP-based
cryptographic primitives. We believe that, as the concrete hardness of RSDP is
better understood, it opens the doors for new applications, such as RSDP-based
authentication similar to protocols based on the LPN problem [JKN25].

In addition, we extend our results to RSDP instances that have not been stud-
ied, e.g., when the restricted set is larger than that of CROSS. The dual-style solver
can be adapted to such a scenario, yielding significant improvements.

Organization

In Section 2, we go through notions in coding theory, revisit the RSDP, and intro-
duce a new Oracle-form definition of RSDP. Then, we summarize the state-of-the-
art cryptanalysis of this new problem. Section 3 explains our BKW-style approach
in clear, identifiable steps, and in Section 4, we analyze the computation cost of
our algorithm. Section 5 presents several case studies regarding the algorithm’s
performance when applied to different RSDP settings. In particular, we study the
CROSS RSDP setting and investigate the scenario with a larger restricted set. We
then verify heuristic arguments made throughout the paper by simulations with
small RSDP parameters in Section 6. Lastly, we conclude our paper in Section 7.

2 Preliminaries

In this section, we briefly go through the mathematical background of our work.
Throughout the paper, we use the following notations:

• a, a,A for single elements, vectors, and matrices, respectively.

• In the identity matrix of size n× n.

• Fp the finite field of order p, where p is a prime and Fn
p is the corresponding

vector space of dimension n.

• X
$←− χ a random variable following the distribution χ.

• U(X ) is the uniform distribution on the set X .

• IfX $←− χ and χ is not the uniform distribution, thenX is said to be biased.
The size of the bias, a measure of how much χ differs from the uniform
distribution, can be measured in different ways and will be detailed later.
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Let p be a prime number and Fp be a finite field. A [n, k]-linear code C over Fp

(k ≤ n) is a vector subspace of dimension k in Fn
p . A full-rank matrix G ∈ Fk×n

p

is said to be the generator of C if C = {uG : u ∈ Fk
p}, i.e., the rows of G form

a basis of C. A matrix H ∈ F(n−k)×n
p is said to be a parity-check matrix for the

code C if GHᵀ = 0. Let y ∈ Fn
p , then s = yHᵀ is called its syndrome (w.r.t H).

We often assume G and H to be in their systematic form, that is G =
(
Ik A

)
for

some A ∈ Fk×(n−k)
p , and H =

(
−Aᵀ In−k

)
. The Hamming weight of a vector

x ∈ Fn
p , denoted by ωH(x), is defined as the number of non-zero coordinates in

x.

2.1 Restricted Syndrome Decoding Problem (RSDP)

Let Fp be a finite field. Consider g ∈ F∗
p of order z, and denote the subgroup

generated by g as E = {gi, i ∈ {1, . . . , z}} ⊂ F∗
p. The RSDP, first introduced

in [Bal+20a] in a slightly different form, is here defined as follows:

Problem 8 (Restricted Syndrome Decoding Problem). GivenH ∈ F(n−k)×n
p and

a syndrome s ∈ Fn−k
p . Find e (if any) where e ∈ En, and eHᵀ = s.

To ease the notation, we sometimes omit the transposition notation when the
sizes of matrices and vectors are evident from the context.

Alternative definitions could include to allow entries in e to be also zero. In this
latter case, a restriction of the weight of e can additionally be added. The RSDP
is related to other well-known hard problems. For example, it has been shown
in [Bal+20a] that RSDP is NP-complete for any choice of E. In this section, we
redefine the RSDP in a slightly different fashion that is similar to the Learning with
Errors (LWE) problem [Reg09] and the LPN problem, as originally proposed in
[JKN25].

Problem 9 (RSDP Oracle). Let k and p be positive integers. An RSDP oracle Ou,E
for a secret vector u ∈ Fk

p and a multiplicative subgroupE ⊂ F∗
p is an oracle returning

(h, b = 〈h, u〉+ e),

where h $←− U(Fk
p), e

$←− U(E) each time the oracle is called.

Calling the RSDP Oracle n times gives the returned values

(h1, b1 = 〈h1, u〉+e1), . . . , (hi, bi = 〈hi, u〉+ei), . . . , (hn, bn = 〈hn, u〉+en).

In other words, we observe noisy codewords from a q-ary code, where the
noise comes from the restricted set E. With a fixed number of queries, recovering
the secret key u amounts to solving the RSDP, where the parity-check matrix can
be deduced from hi, i = 1, . . . , n. The difference is that an adversary can choose
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n and work with a code with an arbitrarily small code rate. In contrast to LWE
using discrete Gaussian noise, as we will see later, RSDP in this form is not hard
when we have an unlimited amount of queries as it can be vulnerable to algebraic
attacks.

The conversion steps are as follows. Let G = [h1h2 . . . hn]. Then the oracle
responses give uG+ e = b, where e = (e1, e2, . . . , en) and b = (b1, b2, . . . , bn).
The parity check matrix for H is a matrix such that GHᵀ = 0. Multiplying with
Hᵀ gives uGHᵀ + eHᵀ = bHᵀ and we have eHᵀ = s, where s = bHᵀ is the
syndrome. This shows the equivalence between the two descriptions of RSDP, one
as a syndrome decoding problem and the oracle version as a “learning problem”.
We summarize the main problem for our work.

Definition 19. (Search-RSDP).The Search-RSD problem is the problem of recovering
the hidden secret u given n queries with (hi, bi) ∈ Fk

p × Fp, i = 1, . . . , n obtained
from Ou,E.

Secret-Noise transformation

In the definition of RSDP (original and Oracle form), the secret u is drawn from
the uniform distribution. Similarly to the case of LWE, through a transformation
as in [App+09a], we can transform the secret u into a “new” secret u, where the
secret itself is drawn from Ek. Therefore, from now on, we simply assume that
u ∈ Ek for the sake of simplicity.

For completeness, we describe this secret-noise transformation for the RSDP
problem step by step. Suppose we have access to the RSDP oracle Ou,E which,
upon query, provides samples of the form (hi, bi) = (hi, 〈hi, u〉 + ei), where
u is the secret vector, hi is chosen uniformly at random, and ei

$←− U(E). Our
objective is to manipulate these samples to create new samples where the ‘secret’
component effectively behaves like noise drawn from Ek.

The process begins by collecting k samples from the RSDP oracle. Let us
arrange the query vectors hi from these k samples as the rows of a k × k matrix
H0, and the corresponding responses bi as a vector b0. We can then represent
these k samples in matrix form as (H0, b0) = (H0,H0u + e0), where e0 is a
vector comprised of the k error terms ei. With a certain probability, the matrix
H0 will be invertible over the field Fp. Assuming H0 is indeed invertible, we can
precompute its inverse, H−1

0 .
To generate a transformed sample, we make a new query to the RSDP oracle,

obtaining a sample (h1, b1) = (h1, 〈h1, u〉+ e1). Now, we compute a new value
b′ = −h1H−1

0 b0 + b1, where,

b′ = −h1H−1
0 b0 + b1

= −h1H−1
0 (H0u+ e0) + (〈h1, u〉+ e1)

= −h1H−1
0 H0u− h1H−1

0 e0 + 〈h1, u〉+ e1
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= −〈h1, u〉 − h1H−1
0 e0 + 〈h1, u〉+ e1

= −h1H−1
0 e0 + e1

Let e = e0 and e′ = e1. Then b′ = 〈h′1, e〉+ e′. Thus, we have constructed a new
sample (h′1, b′)which is of the form (h′1, 〈h′1, e〉+e′). In this form, h′1 = −h1H

−1
0

is the new query vector (still uniformly distributed), and e = e0 is derived from
the original error distribution Ek, and e′ = −e1 is also an error term from E.
Effectively, the “secret” part in the transformed sample is now related to the noise
distribution.

After this transformation, the RSDP problem can be viewed in terms of recov-
ering a “secret” e that is itself drawn from a distribution derived from Ek, rather
than the original secret u. We lose k samples after the transformation.

2.2 Solvers for RSDP

Several cryptanalytic attempts have recently been made to solve RSDP, which can
be categorized into two classes of algorithms: combinatorial and algebraic. On the
one hand, combinatorial attacks are derivations of ISD algorithms such as Stern
and BJMM. For instance, the authors of CROSS [Bal+24c] relied on the so-called
shifted-Stern/BJMM to obtain the parameters for their scheme. On the other
hand, algebraic solvers try to exploit the structured noise. In essence, the RSDP
is, in this approach, modeled as a system of equations. This was first examined
in [Bal+24c], and tighter measurements/bounds were provided in [BM24]. How-
ever, both works suggest that, at this point, it is not straightforward to conceive
an algebraic solver that outperforms ISD variants (especially, regarding CROSS
parameters). It is worth noting that BJMM-like algorithms can be further tailored
to the structure of the restricted set E, which results in significant speed-ups in
some peculiar cases as in [Bit+23].

Stern-like algorithms

In the CROSS proposal, the authors adapt the Stern/Dumer algorithm [Ste88;
Dum91] to solve the RSDP. Let an RSDP instance be given by (H, s,E), where
H ∈ F(n−k)×n

p and E is a multiplicative subgroup of order z in Fp. We are tasked
to find e ∈ En, such that eHᵀ = s. First, a partial Gaussian Elimination yields
H← UHP, with an invertible matrix U and some permutation P, and we obtain
eH = s in the form

(e1, e2)
(
In−k−` H1

0 H2

)
= (s1, s2),

where eP−1 = (e1, e2) ∈ Fk+`
p × Fk+`

p (where ` is a parameter that can be
optimized). We now have two equations that can be used to construct the solution,
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which are
e1 + e2H1 = s1, (1)

e2H2 = s2. (2)

We now enumerate vectors e2 ∈ Ek+` that satisfy (2). Equation (1) verifies that
e1 is part of the permuted (original) solution, that is, s1 − eH1 is also a vector in
Ek+`. Candidates e2 can be constructed by a Meet-in-the-Middle approach. In

particular, let e2 = (x1, x2) where xi ∈ E(k+`)/2, i = 1..2, and H2 =

(
H21

H22

)
.

We then construct two lists

L1 = {(x1, x1H21), x1 ∈ E(k+`)/2},

L2 = {(x2, s2 − x2H22), x2 ∈ E(k+`)/2},

and find collisions between them, i.e., x1H21 = s2 − x2H22. Without loss of
generality, assume |L1| = |L2| = z(k+`)/2. The cost associated with constructing
them, denoted by C1 and C2, are lower bounded by

C1 = C2 ≥ |L1| ·
(
k + `

2
· log(z) + ` · log(p)

)
,

On average, we find |L1|2 · p−` collisions (i.e., candidates) between the two
lists. Since we are checking all of them, the cost, denoted by Ccoll, is estimated to
be

Ccoll ≥ |L1|2 · p−` · (k + `) · log(p).

The algorithm is considered successful if it finds any solutions for the instance. If
the problem instance was constructed in such a way that it is known that there is
at least one solution, then the expected number of solutions is roughly given by

1 + |{e ∈ En : eH = s}| ≈ 1 + znpk−n.

Similarly to enumeration-based ISD algorithms in classical SDP, this adaptation
also uses excessive memory for the lists. Therefore, it is reasonable to consider the
penalty for accessing such memory. For instance, the author of CROSS employs
the log penalty model, which is log(max(|L1|, |L2|)). In summary, in this case
the complexity of the Stern-like algorithm is estimated as

CStern/Dumer ≥
C1 + C2 + Ccoll

(number.of.solutions)
× (memory.access.cost). (3)

Recall that, in our Oracle model, the adversary has to find the correct secret
(not just any). Moreover, additional queries ensure that the number of solutions
is close to 1 (as znpk−n gets ‘arbitrarily small’). Therefore, we assume that, when
applying the Stern algorithm to RSDP Oracle samples, the number of solutions
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is 1.

BJMM-like algorithm

The authors of [Bit+23] and [Bal+24c] show that the representation technique can
also be employed in the enumeration steps. Interestingly, the performance of such
adaptations depends on the additive structure of the restricted set E. We will
briefly explain the idea and skip the details of the approach. We refer to [Bal+24c]
for a more thorough understanding.

Suppose, in Equation 2, we can decompose e2 = e(1)1 + e(1)2 . In contrast
to the Stern-like approach, the support of e(1) and e(2) can overlap. Since E
is a multiplicative subgroup, it is not closed under addition. Therefore, within
the overlapping position, we have to sample e(1)i from some larger search domain
defined as E ∪ D ∪ {0}, where D is defined as

D := {e− e′|e, e′ ∈ E}\(E ∪ {0})

The cost of this approach depends on the so-called “linearity” of E and D. In
particular, for a random element a ∈ E, we define the two quantities

`E(a) = |[b ∈ E : ∃c ∈ E, b+ c = a]| ,

`D(a) = |[b ∈ E : ∃c ∈ D, b+ c = a]| .

These values will determine how many representations r for an element during the
enumerating process. In particular, an entry of e2 can be represented as a sum of
two elements from E, or those from E and D. Hence, it implies how much we
can save by only enumerating a 1/r-fraction. It is worth noting that, for certain
of p and E (e.g., in CROSS parameters), the above quantities are independent of
a. Similar to the SDP case, one can repeat this step for a vector e(1) = e(2)1 + e(2)2
and so on, increasing the depth of the tree. However, for a fixed code rate of k/n
and in the full-weight RSDP setting (as in CROSS parameters [Bal+24c]), this
approach does not seem to yield improvements over the Stern/Dumer algorithm.

To improve the performance, the BJMM approach is further tailored: one can
solve for a shifted instance of RSDP as (e+x)H = s+sx, where sx is the syndrome
of an element x ∈ En). In particular, it was found that for the CROSS parameter,
shifted-BJMM yields smaller spaces for shifted Ex and Dx (while having the same
linearity), which slightly outperforms Stern/Dumer.

As CROSS have advanced to the second round of the NIST additional post-
quantum signature call, it is interesting to perform attacks on the RSDP in broader
contexts, as it can inspire many future cryptographic primitives. Therefore, we
later investigate our algorithm when the restricted set is, for example,E = {(−2)i, i =
0, . . . , 13}. It is unclear how the shifted-BJMM proposed by [Bal+24c] will per-
form due to its reliance on the additive structure of the restricted set (particularly,
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the “linearity” is no longer constant). A similar attempt to study RSDP with spe-
cial restricted error sets has also been made in [Bit+23]. Studying RSDP with dif-
ferent settings improves our understanding and confidence in employing RSDP
in cryptography.

The algebraic approach with linearization

The basic Aurora-Ge approach [AG11] involves forming nonlinear equations for
each sample of the form ∏

e∈E
(〈hi, u〉+ e− bi) = 0,

which will be of degree z. Then, the system of equations is transformed into a
linear one with around

∑z
i=1

(
k
i

)
unknowns (each is a monomial up to degree z

of variables ui in u). Assuming in the order of
(
k
z

)
oracle calls and z < k/2, one

can then solve for the unknowns by Gaussian elimination in time around
(
k
z

)3
.

Better algorithms for solving linear systems of equations can lower the exponent.

Gröbner basis method

More advanced algebraic attacks have been recently studied as an alternative to the
traditional ISD algorithms, particularly for specific variants of SDP such as the so-
called Regular SDP [BØ23]. Therefore, it is natural to extend the investigation to
RSDP. Recall that in an RSDP instance, the error e = (e1, . . . , en) is drawn from
a restricted set E of order z. Hence, we can solve for{

eH = s,
ezi = 1, for i = 1, . . . , n.

Such a system can be solved using Gröbner bases , e.g., via F5 algorithm [BFS15].
The complexity of such an approach depends on the degree of regularity dreg of the
above system. In [Bal+24c], the author heuristically estimates dreg to be linear in
n, and the cost of finding a Gröbner basis is exponential. Additional simulations
and tighter analysis by [BM24] further support their claim.

3 The new BKW-style approach

Recall that our problem is given in the RSDP-Oracle model as

u
(
h1 . . . hn

)
+ e = b, (4)

where hi ∈ Fk
p, i = 1, . . . , n and b ∈ Fn

p are known vectors and u ∈ Ek, e ∈
En are the unknowns. We observe that since coordinates in u and e belong to
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the multiplicative subgroup E, the vector b will, in general, be biased. Before
explaining the steps of our new algorithm, let us introduce additional definitions.

Definition 20. (E-weight) Let p be a prime number, E be a multiplicative subgroup
of Fp, and −E := {−e : e ∈ E}. For x ∈ Fp, we define its E-weight, denoted by
ωE(x), as

ωE(x) = 0, if x = 0,

ωE(x) := argmini{
i∑

j=1

ej = x : ej ∈ E ∪ −E}, if x 6= 0,

i.e., ωE(x) is the smallest number of elements from E ∪ −E that sums to x. For
convenience, let us introduce E′ = E ∪ −E. We can naturally extend this notion to
the E-weight of a vector x ∈ Fn

p as

ωE(x) =
n∑

i=1

ωE(xi).

This definition also induces a distance, dE(x, y), by defining dE(x, y) = ωE(x−
y). This defines a metric as dE(x, y) ≥ 0 with equality only when x = y;
dE(x, y) = dE(y, x); dE(x, y) ≤ dE(x, z) + dE(z, y).

Example 9. Let p = 127 and E = {(2)i, i = 0, . . . 6}. We have ωE(0) = 0, and
14 elements of weight 1, ωE(1) = 1, ωE(2) = 1, . . . , ωE(63) = 1. The E-weight
of an element x in Fp is 1 if the Hamming weight of the binary representation of x
or −x (complemented bits) is 1. Otherwise, it is less straightforward. For example
x = 15 has ωE(15) = 2 as 15 = 16 − 1, but the binary representation of 15 has
Hamming weight 3. The maximum weight of an element in Fp when p = 127 is 3.

Example 10. Let p = 127 and E = {(−2)i, i = 0, . . . , 13}. In this case E′ =
E ∪ −E = E. The weight of elements in Fp is the same as above.

Our new approach is based on two observations related to the new metric.

Observation 1. Let e ∈ E, h ∈ Fp. Then

ωE(eh) = ωE(h).

Therefore, if we let e ∈ En, h ∈ Fn
p , we have

ωE((e1h1, e2h2, . . . , enhn)) = ωE(h).

The second observation is that
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Observation 2. If ωE(h) is low, then a random variable X created from the parity
check equations and e ∈ En, as

X =
n∑

i=1

eihi = 1 · (e1h1, e2h2, . . . , enhn) = eh,

will be biased. The size of the bias will depend on the E-weight of the vector h, to be
detailed later.

We will sometimes talk about the weight of a sum, by which we mean the sum
of the weights of the terms in the sum, in the above case the same as ωE(h).

The basic strategy of the new approach is now to guess a few of the ui entries in
u, recompute the oracle calls based on this guess, and then generate many samples
of the form

∑t
j=1 bij = u ·

∑t
j=1 hij +

∑t
j=1 eij . If the weight of

∑t
j=1 hij is

low then the sampled value will show a detectable bias.
The following description of the algorithmic steps leans towards the RSDP

setting ofCROSS. In particular, we considerE = {2i, i = 0, . . . , z}, for which we
haveE 6= −E. Our algorithmic description follows this slightly more complicated
case. Some algorithmic steps can be simplified in the case E = {(−2)i, i =
0, . . . , z}, for which we have E = −E. We extend the basic BKW-style approach
in several ways, as described in the following subsections.

3.1 Creating many samples and reducing guessing positions.

For every coordinate bi of b, it is a noisy dot product of the secret u and a sample
hi. This step aims to create more samples at the cost of introducing more error
terms to each equation. It is similar to the reduction step of the BKW algorithm.

Let t, ν and δ(i), i = 1, . . . , ν be positive integers that are algorithm param-
eters. Note that ν is analogous to the amount of reduction steps in the BKW
algorithm. We first construct 2ν lists L(0)j , j = 1, . . . , 2ν which contain combi-
nations of t samples hij . The corresponding sum of t values bij , j = 1, . . . , t is
updated accordingly. Consequently, it is equivalent to combining t errors for each
new equation as

u · (
t∑

j=1

hij ) +
t∑

j=1

eij =

t∑
j=1

bij . (5)

To make the idea and later analysis straightforward, as well as to avoid any
possible dependency, we assume, for simplicity, that the lists L(0)j , j = 1, . . . , 2ν

are each constructed from M different samples from oracle calls (i.e., we have
2ν ·M oracle calls). Let us call the newly obtained combinations as t-error samples.

Note that we can benefit from the multiplicative structure of E to increase the
amount of t-error samples. For every sample hij in Equation (5), we can multiply
with any fixed element in E as our corresponding noise terms are still seen as
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elements of E. So we then get samples

u · (
t∑

j=1

djhij ) +
t∑

j=1

djeij =

t∑
j=1

djbij , (6)

where dj ∈ E, j = 1, . . . , t.
Ultimately, we aim to generate t · 2ν-error samples, of which

∑ν
i=1 δ

(i) fixed
positions in the parity check part are all zeroes. We achieve this by a tree-like
procedure depicted in Figure 1. In particular, the vectors in the top lists L(0)j ,
j = 1, . . . , 2ν , are sorted by their first δ(1) positions. Then, we merge pairs, i.e.
sum (or subtract) one vector in L(0)1 and one in L(0)2 , etc., so that the elements in
the merged lists L(1)j , j = 1, . . . , 2ν−1, are all 0 in their last δ(1) positions. The
same procedure can be repeated (on next layers) with δ(2), δ(3), and so on, and
the number of lists in each layer is halved. In summary, this procedure, that we
denote create_sample(), takes 2ν ·M RSDP-Oracle calls as input and it outputs
a list L = {(ĥ, b̂)} of 2ν · t-error samples with their corresponding updated values
of the noisy product.

L(0)1

δ(1)

L(0)2

./

L(0)3 L(0)4

./

L(1)1

0δ(1)
δ(2)

L(1)2

0δ(1)
δ(2)

./

L

0δ(1)
δ(2) 0

Figure 1: create_sample() with ν = 2 reduction steps. After step i, we cancel δ(i) last
positions of samples in the lists.

We have achieved two things: With proper choice of δ(i) and ν, we inflate the
number of available samples for guessing in later stages, and we have reduced the
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dimension of the guess space of the secret from k to k −
∑ν

i=1 δ
(i).

Dependencies

Assume ν = 2 as in Figure 1. Due to the multiplicative structure, any 2t combi-
nation in the middle layer L(1)i will have z collinear copies (i.e., they only differ
by a scalar in E). Hence, the number of “effective” samples in this list is only a
1/z-fraction of all combinations. This can be avoided by precomputing all the t-
tuples of coefficients in a table and only combining samples in, e.g., L(0)i , if their
corresponding coefficient vectors are not collinear. Note that once we eliminate
such redundant copies in L(1)i , the same kind of dependency cannot occur further
down the tree.

Remark 2. In the merge step ./, subtracting samples from lists yields errors from both
E and −E. However, it does not pose a problem for us. As we will see later, what is
crucial is that we have the same error profile in each 2ν · t-error sample. This allows
us to gauge the noise bias in the end precisely.

Remark 3. Since the top lists are assumed to be independent batches of samples, it is
possible to have dj ∈ E ∪ −E (i.e., more samples). Following Remark 2, we want to
have homogeneity of error profiles in the final samples inL, which requires a subroutine
to ensure. Therefore, we restrict ourselves to E, as described above, and investigate this
possibility in Section 5.

3.2 The Covering Code Method

After create_sample(), every equation of type (4) now has the form

u · ĥ+N = b̂, (7)

whereN denotes the error term coming from the sum of 2ν · t unknown elements
in E with known coefficients in {−1, 1} and

ĥ =
(
∗ · · · ∗︸ ︷︷ ︸

k−δ

0 · · · 0︸ ︷︷ ︸
δ

)
,

where ∗ means that the position can take any value in Fp. As we have canceled
out the contribution of some secret values in u, we are tasked with determining
only k − δ values of u. Assume we know the bias coming from N . Then, one
can estimate roughly how many samples ĥ are needed to uniquely determine the
secret using guessing and then verifying the bias. This is most efficiently done
through the Discrete Fourier Transform (DFT). However, a direct application of
the Discrete Fourier Transform with the current dimension can be prohibitively
expensive in many cases.



224Paper VI: A BKW-Style Solver for the Restricted Syndrome Decoding Problem

Moving forward, we now assume that we remove the zero parts from (7) with-
out changing our notation. So assume now that u ∈ Fk′

p , where k′ = k − δ and
each ĥ ∈ Fk′

p .
Instead of direct guessing, we proceed with the help of the covering codes tech-

nique. We project the coordinates of ĥ onto a Fp linear code C of length k′. In
particular, we use here a direct sum of [`, 1] repetition codes over Fp (length ` and
dimension 1), assuming k′ is a multiple of `. Codewords in a repetition code are
of the form (c1, c1, . . . , c1) for c1 ∈ Fp. For a vector ĥ, let ĥ = ĉ+ ê, where ĉ is
the closest codeword in C and ê is the corresponding error, measured using ωE(̂e).
We can rewrite (7) as

u · ĉ+ u · ê+N = u · ĉ+N ′ +N = b̂, (8)

whereN ′ = u · ê is a low weight sum of elements from E. Let `′ = k′/`, we have
the following lemma.

Lemma 9. Let ĉ be a codeword in C from an [`, 1] repetition code and c = (c1, c2, . . . , c`′)

be its corresponding information word. There exists a unique u′ ∈ F`′
p such that

u · ĉ = u′ · c.

Proof. For i = 1, . . . , `′, define

u′i = ui+`(i−1) + u(i+1)+`(i−1) + . . .+ u(i+`′−1)+`(i−1). (9)

Then

u · ĉ = u · (c1, . . . , c1|| . . . ||c`′ , . . . , c`′) =
`′∑
i=1

u′ici = u′ · c.

The guessing problem is now reduced to finding u′ ∈ F`′
p such that it supports

a large set of samples of the form

u′ · c+N ′ +N = b̂, (10)

where c and b̂ are known values and N ′ + N are biased noise variables for each
created sample.

To summarize this step, denoted by covering_codes(), we have further re-
duced the cost of guessing while introducing additional noise N ′. Assume that
the average E-weight of ê is t′. Since u ∈ E, we can treat N ′ as the sum of t′
elements in E′, as E′ = E ∪ −E is also closed under multiplication. Therefore,
in total, N +N ′ correspond to summing ω = 2ν · t+ t′ elements from E with
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coefficients in {−1, 1}. Consider a biased random variable X constructed as

X = N +N ′ =

2ν ·t∑
j=1

djeij +

t′∑
j=1

êijuij ,

where eij , uij ∈ E are the unknowns and dj , êij are fixed known values. For each
term in N +N ′, it may come from different “error patterns” by which we mean
how they are decomposed into elements of E and −E. Consequently, different
error patterns have different final error distributions and make things harder to
analyze. We will now investigate the bias for the overall noise more closely.

3.3 Estimation of the noise

The description now follows the case E 6= −E. For the other case, E = −E, there
is only a single distribution to consider.

Noise distribution

To guess the correct u′ in Equation (8), one needs to know the exact distribution
of the noise term N +N ′. In particular, we are investigating the distribution of
summing ω = 2ν · t + t′ elements from E and −E. Moreover, assume that the
combined noise can be represented as the sum of ω1 and ω2 elements of E and
−E, respectively. Let X be a random variable defined as

X =

ω1∑
i=1
ni∈E

ni +

ω2∑
i=1

n′
i∈−E

ni, (11)

where ni ∈ E for i = 1, . . . , ω1 and n′
i ∈ −E for i = 1, . . . , ω2. We can

tune create_sample() and covering_codes() so that we only consider a particular
(e.g., most probable) pattern by fixing ω1 and ω2. Knowing the exact pattern, we
can rely on computer simulation to estimate precisely the accumulated distribution
after summing ω1 and ω2 random elements from E and −E, respectively.

Let χ be the distribution for X in Equation (11). In addition to the noise
distribution, it is crucial to estimate the deviation of χ from the uniformly ran-
dom distribution U . To achieve this goal, we use the following result used also in
[BJV04].

Lemma 10 (Square Euclidean Imbalance). Let χ be a distribution on Zp and U be
the uniform distribution. ForX ← χ, we write Prχ[x] as the probability ofX = x.
Define εz = Prχ[x] − 1

p for x ∈ Zp. The Squared Euclidean Imbalance (SEI)
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∆(D0) of a distribution D0 from the uniform distribution over Zp is defined as

∆(χ) = p
∑
z∈Zp

ε2z.

Then, to distinguish χ from U , we need

n = O( 1

∆(χ)
)

samples from χ.

Furthermore, assume that we are considering a process that generates inde-
pendent random variables depending on some variable K ∈ K. We assume that
for one unknown value, K = K0, all generated samples follow distribution χ,
whereas when K 6= K0 all samples follow the uniform distribution. From the
previous lemma, we are required to have

n =
d

∆(χ)
,

where d is a constant factor, samples to distinguishK0 from all other “wrong”K ∈
K. Let Φ(t) denote the distribution function of the standard normal distribution,
i.e.,

Φ(t) =
1√
2π

∫ t

−∞
e−

x2

2 dx.

Then, from [BJV04], we can successfully differentiateK0 from all other candidates
with probability1

Psuccess =
(
1− Φ(

√
d/2)

)|K|−1
. (12)

3.4 Subspace Hypothesis Testing

Until now, we presumably know the noise distribution of Equation (8). To iden-
tify the correct key, we employ the p-ary subspace hypothesis testing technique
introduced in [GJS15]. This approach extends the binary subspace hypothesis
testing method proposed in [GJL14; GJL20], which was originally developed to
address the LPN problem.

Similarly to the technique used in [GJS15], we can group all processed samples
(ĥi, b̂i) in sets L(̂c) according to their nearest codeword ĉ and define the function
f ĉ
L(X) as

f ĉ
L(X) =

∑
(ĥi ,̂bi)∈L(̂c)

X b̂i mod p.

1It can be approximated as exp(−|K| · e−d/4/
√
2π), when d is large.
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According to Lemma 9, the function f ĉ
L(X) can be re-written to be a function

of the information word c, denoted by hc(X) = f ĉ
L(X). We define

Hy(X) =
∑
c∈F`′

p

hc(X) ·X−〈y,c〉.

and exhaust all the p`′ possible values of the vector y. There exists a unique vector
y ∈ F`′

p corresponding to the unknown u′ such that 〈y, c〉 = 〈u, ĉ〉. For a correct
guess, the polynomial Hy(X) thus captures the occurrences of the error symbols,
which are distributed according to the assumed error distribution. Otherwise, it
is presumed to be uniformly distributed.

The computation of the polynomial Hy(X) can be efficiently performed us-
ing the Fast Fourier Transform (FFT). Let ω be a primitive p-th root of unity in
the complex field C. The polynomial Hy(X) can be reconstructed if its values
at p distinct points (1, ω, ω2, . . . , ωp−1) are known, with a computational com-
plexity of approximately O(p log2(p)). Consequently, the problem is reduced to
evaluating the polynomial at these points.

Initially, we evaluate p`′ polynomialshc(X) at the p points (1, ω, ω2, . . . , ωp−1),
which requires a complexity of O(p`′ · p log2(p)). After these values are precom-
puted and stored, the polynomialHy(X) can be evaluated using p FFTs, each with
a complexity ofO(p`′ log2(p

`′)). Once the occurrences are determined, statistical
tests can be performed for all p`′ hypotheses, and the one most aligned with the
assumed noise distribution is selected. This step incurs an additional cost of p`′+1

operations over Fp.

Algorithm description

We describe our algorithm using pseudocode in Algorithm VI.1. The Subspace
Hypothesis Testing in the previous Section is denoted as sht().

The algorithm recovers only a part of the key u′. However, if this part is
correctly recovered, one can repeat the procedure on the same problem but now
with a lower original dimension. This is clearly much easier to solve compared to
the original problem, so the complexity of this first run will dominate the overall
complexity of recovering the full secret.

4 Complexity Analysis

In this section, we go through our algorithm complexity by revisiting each step de-
scribed in Section 3. Let t, ν, δ(i) and ` be parameters specified in Algorithm VI.1.
The complexity mainly consists of the costs of its sub-procedures: sample_cre-
ate(), covering_codes(), and sht(). For a fair comparison, we present our anal-
ysis in a similar fashion as the method employed by the authors in [Bal+24c]. In
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Algorithm VI.1: RSD solver
Input: R-SDP Oracle queries: (M := {hi, bi = hi · u+ ei)}, where

u ∈ Ek, hi ∈ Fk
p, ei ∈ E.

Parameters: ν, t, (δ(i))νi=1, `,
|M| := 2ν ·M ,
δ :=

∑ν
i=1 δ

(i),
`′ := (t− δ)/` as an integer.
Output: A guess of the partial secret u′.

1 L←sample_create(M, t, ν, (δ(i)))νi=1 = {(ĥi, b̂i)};
2 C ← Direct sum of `′ [`, 1] repetition codes over Fp with an average

decoding error weight t′;
3 ω := 2ν · t+ t′ = ω1 + ω2 ; // ω1 terms from E, ω2 terms from
−E.

4 ∆← Estimated Square Euclidean Distance when combining ω1 + ω2

elements in E and −E, respectively;
5 P ← the distribution obtained when combining ω1 + ω2 elements in E

and −E, respectively;
6 forall i = 1, . . . , |L| with (ĥi, b̂i) ∈ L do
7 (̂ci, êi)← covering_codes(ĥi, C); Lsht ← ∅; if ωE(̂ei) = t′ and êi

is correctly decomposed in E and −E then
8 ci ← information word of ĉi;
9 Lsht ← Lsht ∪ {ci, b̂i} ;

Return: u′ ← sht(Lsht, P,∆)

particular, we also employ the log memory cost model to penalize our algorithm
analysis.

4.1 The sample_create() step

The sample_create() first create 2ν listsL(0)j of t-error samples, then use a hashing

strategy repeatedly to get the lists L(i)j , i = 1, . . . , ν, of 2(i) · t-error samples of
which δ =

∑ν
i=1 δ

(i) positions are canceled out. Without loss of generality, we
can assume that, in each layer of the tree, the size of lists are roughly equal and
denoted by |L(i)|, i = 1, . . . ν − 1, and the final list is simply L := L(ν).

The computational complexity of sample_create(), denoted byCsample_create,
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equivalently to building the tree of depth ν, is lower bounded by

Csample_create ≥
ν−1∑
i=0

2ν−i ·|L(i)|(k ·log p+δ(i+1) ·log p)+|L(ν)|·k ·log p. (13)

where |L(0)| = |E|t ·
(
M
t

)
, |L(1)| = |L(0)|2 · pδ1 · z−1 (recall Section 3.1), and

for i = 2, . . . , ν, |L(i)| = |L(i−1)|2 · p−δ(i) .
Indeed, the cost of building 2ν initial lists of t-error samples is lower bounded

by
2ν · |L(0)|

(
k · log p+ δ(1) · log p

)
,

where |L(0)| = |E|t ·
(
M
t

)
as each t-sample is obtained from combining t oracle

calls and multiplying with elements in E. Each sample is of size k, and they are
sorted according to δ(1) positions; hence, we need at least k · log p + δ(1) · log p
binary operations. On average, we have roughly |L(1)| = |L(0)|2 · p−δ(1) · z−1

collisions for each pair, and we again sort them according to δ(2) positions. The
same arguments apply to later layers. Lastly, for the bottom layer, we have the list
L, and the cost here is at least

|L(ν−1)|2 · p−δ(ν) · k · log p.

4.2 The covering_codes() step

In this step, we look at every sample of L and replace them with the closest code-
word in the concatenated repetition code C. Recall that in Section 3.2, we decode
blocks of length ` to its nearest codeword(s). To efficiently decode our samples, we
can construct, in advance, a query table that stores the nearest codeword(s) of F`

p

vectors. Then, we can retrieve the nearest codeword for every sample by parsing
them into `′ = k′/` blocks and checking the table for each block.

The cost of this step, denoted by Ccovering_codes, revolves around building
the table of p` items and decoding the list L. For each item in the table, one
goes through all p codewords in the [`, 1] repetition code over Fp and computes
the error and its weight. Therefore, the cost of constructing the table is, up to a
constant, p · |F`

p| = p`+1.
For decoding on samples in L, we need to decode `′ blocks for each sample.

Hence, it takes `′ · |L|. In conclusion, the complexity of the covering_code step
is

Ccovering_codes = O(p`+1 + `′ · |L|). (14)

Again, in terms of concrete complexity, decoding the list L has no additional cost.
However, when constructing the table, computing the error and its weight consti-
tutes 2 · ` · log(p) operations.



230Paper VI: A BKW-Style Solver for the Restricted Syndrome Decoding Problem

The number of samples for guessing

As we have discussed, the average weight of the error in covering_codes() is t′.
Recall that, in the described algorithm, we assume to select codewords of which
the corresponding error has E-weight t′ and can be decomposed equally to E and
−E. Assume each entry of an error is decomposed intoE and−Ewith probability
1/2 each. Let us denote by Lsht the list of candidates for sht(). Then, on average,
we can keep

|Lsht| = |L| ·
(

t′

t′/2

)
· 2−t′ · Pr[error weight = t′]

samples for the guessing steps. To compute the probability of having errors of
weight t′, we can do as follows: first, we compute the distribution of error weight
in the [`, 1] block code, and we can apply the convolution of probability mass
functions to have the error weight distribution when concatenating `′ blocks.

4.3 The sht() step

As described before, in this step, we use the DFT transform and statistical tests
to recover the most likely guess for the (partial) secret s. Since we are looking at
u ∈ F`′

p , the cost of this step is

Csht = CFFT · p`
′+1(`′ + 1) log2 p+ p`

′+1, (15)

where CFFT is constant for one FFT and is typically set to 1.

4.4 The success probability of our algorithm

From Definition 10, we can estimate our success probability, called Psuccess as fol-
lows. The number of samples for the subspace hypothesis testing is |Lsht|. As-
suming the Square Euclidean Distance between the uniform distribution and the
distribution when randomly combining ω = 2t + t′ elements in E′ is ∆. Then,
let

d = |Lsht| ·∆

and one obtains the success probability given as in Equation (12).

Theorem 6. The complexity of the described algorithm for RSDP is lower bounded as

CRSD_solver ≥ P−1
success · (Csample_create + Ccovering_code + Csht) · log(memory)

(16)
where P−1

success, Csample_create, Ccovering_code, Csht, are defined in Equations (12),
(13), (14), (15), and

memory := max
i=

(|L(i)|).
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5 Applications

This section presents a case study of the CROSS NIST-I parameters, which are
k = 76, p = 127 and E = {2i, i = 0, . . . , 6}. Moreover, the number of
Oracle calls for this parameter set in CROSS is fixed as M = 126, which can pose
a significant challenge for the dual approach. Therefore, we consider a variable
number of oracle calls and investigate the threshold of M when our approach can
offer an improvement over the combinatoric approach. According to [Bal+24c],
the best algorithm for this parameter set is shifted-BJMM, which requires at least
2143 bit operations.

As discussed in Section 2.2, a threshold (for the number of oracle calls) exists
above which algebraic solvers are the best option to solve RSDP. Therefore, we are
interested in the scenario where the number of allowed oracle calls is under the
said threshold.

Example 11. Let ν = 1, t, and δ be our algorithm parameters, and we employ a
direct sum of [3, 1] repetition codes for covering_codes(). Simulation shows that
the average error weight in the covering code steps is 3.95. Therefore, when using the
proposed algorithm parameters, we have an expected total weight of ω = 2t+ 3.95 ·
k−δ
3 .
Let δ = 22, t = 6, resulting in samples of weight ω = 83. This yields the value

of SEI as ∆ ≈ 2−111.45. For these values of parameters, we find that M ≈ 223.1

yields the best results at C ≈ 2157, of which Ccreate_sample() is the dominating term.

Example 12. In the previous example, we have an “imbalanced” error profile as the
covering code steps contribute 71 out of 83 error terms. Moreover, a high value for δ
imposes a high requirement for the number of samples as the SEI is typically very small.
Therefore, an extra reduction step, e.g., ν = 2 with smaller δ(1) and δ(2), allows the
algorithm to work with fewer oracle calls, which can offer significant improvements as
the costs of building lists are the main contributor to the complexity.

• Let δ(1) = 17, δ(2) = 17, and t = 6. In the covering code step, we continue
to employ a direct sum of 14 [3, 1] repetition codes, giving a total error weight
of ω = 4 · t + 14 · 3.95 ≈ 79 and ∆ ≈ 2−105.9. We find that M ≈ 4 ·
218.81 yields C ≈ 2138.97, where Ccreate_sample = 2131.89, Ccovering_codes =

2122.61, Csht = 2111.55, and using 2119 bits inmemory. The success probability
is roughly 1 as the ratio of samples and ∆ is 106.

In Figure 2, we demonstrate how the complexity of our algorithm with ν =
2, 3 as a function of the allowed Oracle calls for k = 76, z = 127, and E =
{2i, i = 0, . . . , 6}. Similarly to the example, we also use a direct sum of [3, 1]
repetition codes. The label, e.g., (16, 15, 6), represents the optimized values of
(δ(1), δ(2), t). One can see a trend that more oracle calls allow for smaller t, which
yields a smaller noise through a decreased ω. We notice a time-memory trade-
off between depth-2 and depth-3. Moreover, the difference in improvement is
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(a) ν = 2

(b) ν = 3

Figure 2: Scatter plot of our algorithm complexity (with ν = 2, 3 reduction steps) as a
function of allowed Oracle calls.



6 Verification with a small experiment. 233

less significant than that of depth-2 and depth-1. An algebraic solver requires
roughly

∑7
i=1

(
k
i

)
≈ 231 oracle calls and solves the RSDP instance in at most 293

operations with plain Gaussian elimination. Hence, our range of investigation is
below 231 oracle calls.

We observe that the memory needed for the algorithm decreases as the number
of available oracle calls increases (due to t becoming smaller). For example, for the
depth-3 instantiation, it ranges from 2124 bits to 2108 bits in the regime where our
approach outperforms shifted-BJMM, which uses roughly 2116 bits in memory.

5.1 RSDP instances with larger restricted error sets

We now study the case when E = {(−2)i, i = 0, . . . , 13}. As discussed in
Section 2.2, applying shifted-BJMMmay not be as straightforward. Moreover, the
algebraic approach also suffers due to the increase in polynomial degree. Therefore,
the Stern-like algorithm seems to be a more reliable tool for estimating the problem
hardness in this scenario.

Our algorithm is adaptable to the new situation as we are only concerned
with the error distribution through various steps of our algorithms. For example,
a change from z = 7 to z = 14 as above yields a more straightforward analysis as
we are no longer requiring a particular error pattern (equal number of positive and
negative coefficients) in covering_codes() (since now E = −E); hence, more
samples for testing. A larger error set makes the guessing more challenging as
the noise distribution is much closer to the uniform distribution. However, it
also allows us to create more samples with create_sample(). Figure 3 shows the
performance of our algorithm within this new setting. For example, we choose
an RSDP instance with z = 14 that requires roughly 147-bit complexity with
the Stern algorithm. As a result of the bigger restricted set, one can achieve this
hardness with smaller k, e.g., k = 50.

We can see that the proposed BKW-style algorithm enjoys even more impres-
sive improvement here. For example, it starts to outperform Stern with fewer
oracle calls (compared to Figure 2b) and drops to 110-bit with 228 Oracle calls.
Note that,

∑z
i=1

(
k
i

)
≈ 240 is the limit when known algebraic attacks can be

applied, so we are well below this limit in our investigation.

6 Verification with a small experiment.

We present our experimental results with very small parameters to rectify our
heuristic arguments. In particular, it is paramount that the final noise distribu-
tion in Equation (10) is modelled correctly. Moreover, in covering_code(), the
samples we obtained with predetermined error patterns must be consistent with
our theory.
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Figure 3: The scatter plot of our algorithm with ν = 3 when z = 14.

Experiment 1.

We set up a known-answer test. Let k = 7, p = 127 andE = {1, 2, 4, 8, 16, 32, 64}.
The algorithm is instantiated with t = 2, ν = 1, δ = 1, which yields weight 4
error samples after create_sample() . Note that these newly created samples all
have 0 in their last position. In the covering_code() step, we employ two [3, 1]
repetition codes. On average, each error block in the code adds 3.95 E-weight;
hence, we select codewords for which the corresponding error has weighted 8.
Adding that the coefficients in the error are equally decomposed into E and −E,
this configuration yields a noise term that can be written as a sum of 8 elements
from E and 4 from −E. The probability of obtaining weight-8 errors in cover-
ing_codes() with the desirable error pattern is 0.273 and 0.352, respectively.

L(0)1 = {
∑2

i=1 eihi}

L(1)1 = {
∑2

i=1 eihi}

1

0

L
ĥi

ĉi

e.g., (1, 1, 1, 32, 32, 32)

êi
e.g., (2, 1,−3, 1, 6, 0,−17)

4E and 4(−E)

Lsht

Figure 4: Visualization of create_sample() and covering_codes() steps
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M = 45 M = 50 M = 55

|L(0)| 15.56(15.56) 15.87(15.87) 16.15(16.15)
|L| 21.33(21.33) 21.95(21.95) 22.51(22.51)
|Lsht| 17.83(17.95) 18.39(18.57) 18.89(19.12)

Table 1: The sizes (in log) of samples in various steps of our algorithm according to heuristic
estimation and experiments.

Let the (partial) secret vector be u = (u1, . . . , u6). Then, with the correct
guess of u′ = (u′1, u

′
2) = (u1 + u2 + u3, u4 + u5 + u6), we expect to obtain a

noise distribution pcorrect that can be distinguished from those that come from all
other (wrong) guesses corresponding to prandom.

In particular, for a noise term as described above, we obtain an “ideal” distribu-
tion denoted by ptheory of which the Square Euclidean Imbalance is approximately
∆ = 2−12.85. The distribution is calculated as

P (X = x) =
∑

P (n1, . . . , n4, n
′
1, . . . , n

′
4|

4∑
i=1

ni +

4∑
i=1

n′
i = x mod 127),

where P (ni) = 1/7 if ni ∈ E and P (ni) = 0 otherwise, and similar for P (n′
i).

As discussed in Section 3.3, we needO( 1
∆) to be able to separate the correct guess

from the wrong ones. Let pcorrect be the sample distribution (type) for the correct
guess and let prandom be the sample distribution for an incorrect guess. We expect
as the number of available samples increases that pcorrect becomes closer to ptheory
than prandom. Vice versa, prandom should be closer to uniform distribution than
pcorrect. Once we have enough samples (as the success probability in Equation (12)
approaches 1), the correct guess can be determined with a high level of confidence.

Table 1 shows (in log) the list sizes in different steps of our algorithm compared
to theoretical predictions in parentheses. As ν = 1, we instantiate the algorithm
with 2 batches ofM samples to create t-samples (i.e., 2·M RSDP oracle calls). We
see that the heuristic argument for Lsht, i.e., samples for guessing, is reasonable.

On the other hand, Table 2 shows the “score” of the correct guess versus ran-
dom guesses. Recall that the SEI of the correct guess is ∆(ptheory) = 2−12.85.
We can clearly see that as the number of available samples increases, so does the
quality of the correct guess compared to the random guess as expected. Note that,
in the case M = 45, several wrong guesses score better than the correct one. In
particular, they can be “farther” from U than the correct guess, but none is closer
to ptheory. However, when M = 50, or M = 55, we see that the correct guess
is always the best candidate. For completeness, we also set up a number gener-
ator that produces sums of 8 elements in E and −E and measure the distance
between the obtained distribution and ptheory. We observe it matches fairly well
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M = 45 M = 50 M = 55

(pcorrect,U) 2−10.56 2−10.92 2−11.41

(prandom,U) 2−11.03 2−11.68 2−12.30

(pcorrect, ptheory) 2−11.00 2−11.69 2−12.32

(prandom, ptheory) 2−10.67 2−11.15 2−11.55

Table 2: The SEI of pcorrect compared to the average prandom, as well as Squared Euclidean
distance to ptheory .

with (pcorrect, ptheory) from the experiment.

7 Conclusion and Discussion

In this work, we have presented a dual-style approach to solve the newly proposed
and interesting Restricted Syndrome Decoding Problem. Our algorithm signifi-
cantly outperforms combinatorial alternatives when the adversary can obtain many
oracle samples and exhibits behaviours similar to those of BKW algorithms for
LPN or coded-BKW for LWE. In particular, the improvement occurs well be-
fore the threshold at which an algebraic attack is a viable option to solve RSDP.
Therefore, our approach is a relevant cryptanalysis tool for future RSDP-based ap-
plications where such scenarios can be applied. In addition, we implemented our
algorithm on small parameter sets, verifying our heuristic arguments.

Limited amount of samples

In scenarios, e.g., CROSS, where the adversary only has a fixed number of sam-
ples, it is still possible to apply the BKW-style algorithm. In particular, in the cre-
ate_sample() step, we can use higher t values and combine all available samples
(instead of separating them into batches) to have a sufficient amount for testing.
However, one has to take into consideration dependencies between t-error sam-
ples. This resembles the situation for the LPN case and the improvement made by
Leveil and Fouque [LF06b] that did not use formal independence between created
samples, but still showed performance as independent samples. Moreover, in later
recombining steps of the procedure, it is inevitable that one creates duplicates of
2t-error samples (4t and so on). On the one hand, the algorithm efficiency suffers
due to duplicates. On the other hand, the quality of the samples also degrades
after each combination and affects the validity of guessing in sht(). Altogether,
further research that addresses the above issues more rigorously must be done to
apply our algorithm in such a setting.
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Using other codes

We instantiate the employed codes with the (concatenated) repetition codes. Al-
though they are adequate for our needs and the heuristics can be validated with
simulations, these codes are not optimal as covering codes. Specifically, they do
not achieve the best possible covering radius or density for a given code rate. Con-
sequently, exploring the integration of more advanced covering codes represents a
promising avenue for future research.
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Popular Scientific Summary

In today’s interconnected digital world, cryptography is an essential and indispens-
able tool underpinning crucial aspects of secure communication, online banking,
digital transactions, anonymity, data integrity, and so on. Imagine all of the above
(nice) things are no longer possible because of quantum computers, which can un-
dermine the security of our digital lives. Researchers are looking for new ways to
protect information - a field called post-quantum cryptography. The process ensures
long-term security, a smooth transition from classical cryptography, and maintains
digital trust.

Among popular approaches, code-based cryptography is a reliable and well-
understood candidate, signified by the selection of an algorithm called Hamming-
Quasi Cyclic (HQC) as one of the selected few by the National Institute of Stan-
dards and Technology (NIST). This standardization organization produces the
main cryptographic standards in the world. There are several other code-based
promising candidates, for example, those that are still in the NIST Additional
Signature Scheme Proposals, an ongoing standardization effort to diversify our
post-quantum digital signature portfolio.

This thesis first examines the security of several code-based cryptographic con-
structions. We then propose novel attacking techniques that can be used to give a
better security understanding for code-based cryptography. Lastly, we explore the
application of code-based cryptography in lightweight cryptography.

Coding theory and code-based cryptography

Coding theory refers to the research area of codes and their applications, such
as data transmission and compression or cryptography. In communication (over
unreliable media), coding theory is crucial for error detection and correction, al-
lowing the correct retrieval of information. For instance, data on scratched CDs
and DVDs can still be recovered. The same idea can be applied to conceal mes-
sages, as unscrambling scrambled messages is usually a very challenging problem
without crucial (trapdoor) information. This is called code-based cryptography.
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Cryptanalysis

Although hard problems in coding theory can provide solid security foundations
for code-based cryptosystems, certain design aspects can negatively affect security.
Cryptanalysis refers to using various techniques to identify weaknesses in cryp-
tographic constructions. This can improve our understanding and help us avoid
pitfalls in the future. The weaknesses often arise when we prioritize performance,
using several (mathematical) features an adversary can exploit. We analyzed sev-
eral code-based cryptographic constructions and improved their security estimates.
In addition, we also proposed novel generic cryptanalysis algorithms for relevant
problems. Other than providing valuable alternatives in suitable scenarios, our
work gives a more complete view of the security picture for novel problems that
can be useful for future applications.

Lightweight cryptography

Lightweight cryptography refers to applications with limitations on hardware re-
sources, power consumption, or minimal processing capacity and memory. From
IoT devices and embedded systems to RFID tags and smart sensors, they pro-
posed unique challenges to efficient cryptography that can protect sensitive data
or ensure authentication. In particular, we are interested in applying code-based
cryptography efficiently and securely, which is shown to be possible and can be an
excellent alternative by our works.

Why it matters

Proactive post-quantum cryptography and cryptanalysis research is essential to de-
velop and standardize new, stable cryptographic methods, whether or not quan-
tum computers come to be. Our work contributes to a smooth transition to the
post-quantum era, where we, hopefully, have a trustworthy cryptographic portfo-
lio.
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