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Abstract Objectives: To review
and update the evidence on predictors
of poor outcome (death, persistent
vegetative state or severe neurologi-
cal disability) in adult comatose
survivors of cardiac arrest, either
treated or not treated with controlled
temperature, to identify knowledge
gaps and to suggest a reliable prog-
nostication strategy.
Methods: GRADE-based system-
atic review followed by expert
consensus achieved using Web-based
Delphi methodology, conference calls
and face-to-face meetings. Predictors
based on clinical examination,

electrophysiology, biomarkers and
imaging were included. Results and
conclusions: Evidence from a total of
73 studies was reviewed. The quality of
evidence was low or very low for almost
all studies. In patients who are comatose
with absent or extensor motor response
at C72 h from arrest, either treated or not
treated with controlled temperature,
bilateral absence of either pupillary and
corneal reflexes or N20 wave of short-
latency somatosensory evoked poten-
tials were identified as the most robust
predictors. Early status myoclonus, ele-
vated values of neuron-specific enolase
at 48–72 h from arrest, unreactive
malignant EEG patterns after rewarm-
ing, and presence of diffuse signs of
postanoxic injury on either computed
tomography or magnetic resonance
imaging were identified as useful but
less robust predictors. Prolonged obser-
vation and repeated assessments should
be considered when results of initial
assessment are inconclusive. Although
no specific combination of predictors is
sufficiently supported by available evi-
dence, a multimodal prognostication
approach is recommended in all patients.
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1 Introduction

Severe neurological impairment caused by hypoxic-ischae-
mic brain injury is common after resuscitation from cardiac
arrest [1]. Early identification of patients with no chance of a
good neurological recovery will help to avoid inappropriate
treatment and provide information for relatives.

In 2006 [2], a landmark review from the Quality
Standards Subcommittee of the American Academy of
Neurology (AAN) recommended a sequential algorithm
to predict poor neurological outcome in comatose survi-
vors within the first 72 h after cardiopulmonary
resuscitation (CPR). According to that algorithm, the
presence of myoclonus status epilepticus on day 1, the
bilateral absence of the N20 wave of somatosensory
evoked potentials (SSEPs) or a blood concentration of
neuron specific enolase (NSE) above 33 lg L-1 at days
1–3, and absent pupillary and corneal reflexes or a motor
response no better than extension (M1–2) at day 3 accu-
rately predicted poor outcome. However, the AAN
recommendations need updating:

1. The AAN 2006 review was based on studies conducted
before the advent of therapeutic hypothermia (TH) for
post-resuscitation care. Both TH itself and sedatives or
neuromuscular blocking drugs used to maintain it may
potentially interfere with prognostication indices,
especially clinical examination [3]. The predictive
value of those indices therefore needs to be re-
evaluated in TH-treated patients.

2. Studies conducted both before [4] and after [5, 6] the
AAN 2006 review showed that the previously recom-
mended thresholds for outcome prediction using
biomarkers were inconsistent [7].

3. Evidence for some prognostic tools such as EEG [8]
and imaging studies was limited at the time of the 2006
AAN review, and needs re-evaluation.

4. The AAN 2006 review and previous reviews did not
adequately address some important limitations of
prognostication studies, such as the risk of ‘self-
fulfilling prophecy’, which is a bias occurring when
the treating physicians are not blinded to the results of
the outcome predictor and use it to make a decision to
withdraw life-sustaining treatment (WLST) [9].

Given the limitations of the current literature and the
need for up-to-date clinical guidance, members of the
European Resuscitation Council (ERC) and the Trauma
and Emergency Medicine (TEM) Section of the European
Society of Intensive Care Medicine (ESICM) planned an
Advisory Statement on Neurological Prognostication in
comatose survivors of cardiac arrest. The aims of this
statement are to:

1. Update and summarize the available evidence on this
topic, including that on TH-treated patients;

2. Provide practical recommendations on the most reli-
able prognostication strategies, based on a more robust
analysis of the evidence, in anticipation of the next
ERC Guidelines on Resuscitation to be published in
October 2015;

3. Identify knowledge gaps and suggest directions for
future research.

2 Methods

2.1 Panel selection

The panel for this Advisory Statement included medical
specialists experienced in the management of comatose
resuscitated patients. All the panel members are authors
of original studies on prognostication in post-resuscitation
care or have previous experience in guideline develop-
ment or systematic evidence review. Panel members
completed a conflict of interest declaration, as recom-
mended [10, 11].

2.2 Group process

Following an initial conference call and a face-to-face
meeting, the panel members agreed on criteria for study
inclusion, grading methods, and the process timeline.
Subsequent consensus on the evidence and the recom-
mendations was achieved using a Web-based Delphi
method. The document was written using a Web-based
collaborative process and collectively reviewed for con-
tent and wording. A final face-to-face meeting was held to
finalize the statements.

2.3 Inclusion criteria and definitions

Given the paucity of evidence on neurological prognos-
tication in children with coma after cardiac arrest, the
evidence evaluation was restricted to adults. Inclusion
criteria are described in detail elsewhere [12]. Briefly, all
studies on adult (C16 years) patients who were comatose
following resuscitation from cardiac arrest and were
treated with TH were considered for inclusion. Patients
defined as unconscious, unresponsive, or having a Glas-
gow Coma Scale score (GCS) [13] B8, were considered
as comatose. Studies including non-comatose patients or
patients in hypoxic coma from causes other than cardiac
arrest (e.g., respiratory arrest, carbon monoxide intoxi-
cation, drowning, and hanging) were excluded, except
when a subpopulation of cardiac arrest patients could be
evaluated separately.

Studies were considered for inclusion regardless of
both the cause of arrest and treatment with TH. Pooling of

1817



data was stratified according to timing of prognostication
and TH treatment. Poor neurological outcome was
defined as a Cerebral Performance Category (CPC) [14]
of 3–5 (severe neurological disability, persistent vegeta-
tive state or death) as opposed to CPC 1–2 (absent, mild
or moderate neurological disability; see ESM Appendix 1
for a detailed CPC description). In some studies, a CPC
4–5 was defined as a poor outcome. When original data
were not available to correct outcome as CPC 3–5, a CPC
4–5 was accepted as a surrogate poor outcome, assigning
the study an indirectness score. When the outcome was
expressed using a modified Rankin Score (mRS) [15], an
equivalent CPC was calculated based on the equivalence
mRS C 4 = CPC C 3 [16].

2.4 Data source

Results from three recent systematic reviews [7, 12, 17]
on post-arrest prognostication were used as a data source.
One of these [7] included 50 studies on 2,828 patients not
treated with TH, the two other reviews [12, 17] included a
total of 39 studies in 2,564 TH-treated patients. In order to
identify further studies published during the grading and
consensus process, the automatic alert system of PubMed
was maintained active and the tables of contents of rele-
vant journals were screened. This led to the inclusion of
five additional studies [18–22].

2.5 Grading

Grading was made according to the Grading of Recom-
mendations Assessment, Development and Evaluation
(GRADE) criteria [23–28]. The grading process for included
studies is described in detail in the ESM Appendix 2.

2.5.1 Quality of evidence

According to GRADE, the quality of evidence (QOE) was
graded as high, moderate, low or very low according to the
presence of limitations, indirectness, inconsistency, and
imprecision. Publication bias was not considered, given the
difficulty of measuring it in prognostic studies [29].

Given the importance of the risk of self-fulfilling
prophecy, limitations were graded as serious when the
treating team was not blinded to the results of the predictor of
poor outcome that was being studied, and very serious when
the investigated predictor was used to decide to WLST.

Imprecision was graded as serious when the upper
limit of the 95 % confidence intervals (CIs) of the esti-
mate of the false positive rate (FPR) was greater than
5 %, and very serious when this value was more than
10 %. Confidence intervals were calculated using the F
distribution method, according to Blyth [30].

This advisory statement covers the four main categories
of prognostic tests: clinical examination, electrophysiol-
ogy, biomarkers and imaging. The relevant Evidence
Profile tables are included in the ESM Appendices 3a–d.

2.6 Recommendations

Recommendations in this document are stated as either
strong (‘we recommend’) or weak (‘we suggest’) [24, 25].
The strength of the recommendations was based on the
following factors [25]: (1) the balance between true and
false predictions given by that test, i.e. the test perfor-
mance as estimated by its sensitivity and specificity; (2)
the confidence in the magnitude of the estimates (i.e., the
quality of evidence); and (3) the resource use, i.e. the cost
of the strategy under evaluation.

3 Clinical examination

3.1 Evidence (ESM Table 1)

3.1.1 Ocular reflexes

Bilateral absence of pupillary light reflex immediately after
recovery of spontaneous circulation (ROSC) [31–33] has a
very limited value in predicting poor outcome [FPR is 8
(1–25) %]. Conversely, at 72 h from ROSC [3, 18, 33–40],
a bilaterally absent pupillary light reflex predicts poor
outcome with 0 % FPR, both in TH-treated and in non-TH-
treated patients (95 % CIs 0–2 and 0–8, respectively);
however, its sensitivity is low (24 and 18 % respectively).

A bilaterally absent corneal reflex is slightly less
specific than the pupillary reflex for prediction of poor
outcome. One reason for this could be the sensitivity of
the corneal reflex to interference from residual effects of
sedatives [3] or neuromuscular blocking drugs. At 72 h
from ROSC, the FPR was 5 (0–25) % in one study [35] in
non-TH-treated patients and 4 (1–7) % in 7 studies [3, 18,
36–40] in TH-treated patients; sensitivities were 29 and
34 % respectively.

3.1.2 Motor response to pain

In non-TH-treated patients [35, 41], an absent or extensor
motor response to pain, corresponding to a motor score 1
or 2 of the Glasgow Coma Scale (M B 2) at 72 h from
ROSC, has a high [74 (68–79) %] sensitivity for predic-
tion of poor outcome, but the FPR is also high [27
(12–48) %]. Similar results were observed in TH-treated
patients [3, 18, 36–40, 42–44]. Like the corneal reflex, the
motor response can be suppressed by the effects of sed-
atives or neuromuscular blocking drugs [3].
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Only a few prognostication studies [3, 18, 21, 38, 42,
44] reported suspension of sedation before clinical
examination and no study ruled out residual effects of
neuromuscular blocking drugs using objective measure-
ments such as median nerve stimulation train-of-four. No
study evaluated the interobserver agreement in clinical
examination. In coma due to multiple causes, this agree-
ment is only moderate (kappa from 0.42 to 0.79) [45].

While predictors of poor outcome based on clinical
examination are inexpensive and easy to use, they cannot
be concealed from the treating team and therefore their
results may potentially influence clinical management and
cause a self-fulfilling prophecy.

3.2 Recommendations

We recommend:

• Using the bilateral absence of both pupillary and
corneal reflexes at 72 h or more from ROSC to predict
poor outcome in comatose survivors from cardiac
arrest, either TH-treated or non-TH-treated.

• Prolonging observation of clinical signs beyond 72 h
when interference from residual sedation or paralysis is
suspected, so that the possibility of obtaining false
positive results is minimised.

We do not suggest using an absent or extensor motor
response to pain (M B 2) alone to predict poor outcome
in those patients, given its high false positive rate.
However, due to its high sensitivity, this sign may be used
to identify the population with poor neurological status
needing prognostication or to predict poor outcome in
combination with other more robust predictors.

3.3 Knowledge gaps

• Prospective studies are needed to investigate the phar-
macokinetics of sedative drugs and neuromuscular
blocking drugs in post-cardiac arrest patients, espe-
cially those treated with controlled temperature.

• Clinical studies are needed to evaluate the reproduc-
ibility of clinical signs used to predict outcome in
comatose post-arrest patients. In particular, clinical
examination tends to underestimate the presence of
pupillary reflex, which can be detected and quantified
using pupillometry [46, 47].

4 Myoclonus and status myoclonus

4.1 Evidence (ESM Table 1)

Myoclonus is a clinical phenomenon consisting of sudden,
brief, involuntary jerks caused by muscular contractions or

inhibitions. A prolonged period of continuous and general-
ised myoclonic jerks is commonly described as status
myoclonus. There is no definitive consensus on the duration
or frequency of myoclonic jerks required to qualify as status
myoclonus; however, in prognostication studies in comatose
survivors of cardiac arrest, the minimum reported duration is
30 min. The names and definitions used for status myoclo-
nus vary among those studies (see ESM Appendix 4). Terms
like status myoclonus, myoclonic status, generalised status
myoclonicus, and myoclonus (or myoclonic) status epilep-
ticus have been used interchangeably. Although the term
myoclonic status epilepticus may suggest an epileptiform
nature for this phenomenon, in post-anoxic comatose
patients clinical myoclonus is only inconsistently associated
with epileptiform activity on EEG [48, 49].

In comatose survivors of cardiac arrest treated with
TH [21, 42, 44, 48, 50, 51], the presence of myoclonic
jerks (not status myoclonus) within 72 h from ROSC is
not consistently associated with poor outcome [FPR 5
(3–8) %; sensitivity 33 %]. In one study [36], the pre-
sence of myoclonic jerks within 7 days from ROSC was
compatible with neurological recovery [FPR 11
(3–26) %; sensitivity 54 %].

A status myoclonus starting within 48 h from ROSC
was consistently associated with a poor outcome [FPR 0
(0–4) %; sensitivity 15 %] in prognostication studies
made in non-TH-treated patients [35, 52, 53], and is also
highly predictive [FPR 0.5 (0–3) %; sensitivity 16 %] in
TH-treated patients [3, 48, 54]. However, several case
reports of good neurological recovery despite an early-
onset, prolonged and generalised myoclonus have been
published. In some of these cases, [55–60] myoclonus
persisted after awakening and evolved into a chronic
action myoclonus (Lance–Adams syndrome). In others
[61, 62], it disappeared with recovery of consciousness.
The exact time when recovery of consciousness occurred
in these cases may have been masked by the myoclonus
itself and by ongoing sedation.

4.2 Recommendations

We suggest:

• Using the term status myoclonus [52] to indicate a
continuous and generalized myoclonus persisting for
C30 min in comatose survivors of cardiac arrest.

• Using the presence of a status myoclonus within 48 h
from ROSC in combination with other predictors to
predict poor outcome in comatose survivors of cardiac
arrest, either TH-treated or non-TH-treated.

• Evaluating patients with post-arrest status myoclonus
off sedation whenever possible; in those patients, EEG
recording can be useful to identify EEG signs of
awareness and reactivity [61] and to reveal a coexistent
epileptiform activity.
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4.3 Knowledge gaps

• A consensus-based, uniform nomenclature and defini-
tion for status myoclonus is needed.

• The distinctive pathophysiological and electrophysio-
logical features of postanoxic status myoclonus, in
comparison with more benign forms of myoclonus, like
the Lance–Adams syndrome, need to be further
investigated.

5 Bilateral absence of SSEP N20 wave

5.1 Evidence (ESM Table 2)

In non-TH-treated post-arrest comatose patients, bilateral
absence of the N20 wave of short-latency somatosensory
evoked potentials (SSEPs) predicts death or vegetative
state (CPC 4–5) with 0 (0–5) % FPR as early as 24 h from
ROSC [35, 63, 64], and it remains predictive during the
following 48 h with a consistent sensitivity (45–46 %) [4,
35, 63, 65, 66]. Among a total of 287 patients with no
N20 SSEP wave at B72 h from ROSC, there was only
one false positive result [67] [positive predictive value
99.7 (98–100) %].

In TH-treated patients, a bilaterally absent N20 wave
accurately predicts poor outcome both during TH [FPR 0
(0–2) %] and after rewarming (at 72 h from ROSC) [FPR
0.4 (0–2) %], even if two isolated cases of false positive
prediction have been reported [68, 69]. In the largest
observational study on SSEP in TH-treated patients [38],
three patients with a bilaterally absent N20 during TH rap-
idly recovered consciousness after rewarming and ultimately
had a good outcome. In a post hoc assessment, two expe-
rienced neurophysiologists reviewed blindly the original
tracings and concluded that the SSEP recordings were
undeterminable because of excessive noise. Correction of
the results after this reassessment led to a FPR of 0 (0–3) %.

Interobserver agreement for SSEPs in anoxic-ischae-
mic coma is moderate to good but is influenced by noise
[70, 71].

In most prognostication studies, absence of the N20
wave after rewarming has been used—alone or in com-
bination—as a criterion for deciding on WLST, with a
consequent risk of self-fulfilling prophecy (see ESM
Appendix 3b). SSEP results are more likely to influence
physicians’ and families’ WLST decisions than those of
clinical examination or EEG [72].

5.2 Recommendations

We recommend:

• Using bilateral absence of N20 SSEP wave at C72 h
from ROSC to predict poor outcome in comatose

survivors from cardiac arrest treated with controlled
temperature.

We suggest:

• Using SSEP at C24 h after ROSC to predict poor
outcome in comatose survivors from cardiac arrest not
treated with controlled temperature.

SSEP recording requires appropriate skills and experi-
ence, and utmost care should be taken to avoid
electrical interference from muscle artefacts or from
the ICU environment.

5.3 Knowledge gaps

• Most of prognostic accuracy studies on SSEPs in post-
anoxic coma were not blinded, which may have led to
an overestimation of the SSEP prognostic accuracy due
to a self-fulfilling prophecy. Blinded studies will be
needed to assess the relevance of this bias.

6 Electroencephalogram (EEG)

6.1 Evidence (ESM Table 2)

6.1.1 Absence of EEG reactivity

In TH-treated patients, absence of EEG background
reactivity during TH is almost invariably associated with
poor outcome [FPR 2 (1–7) %; [21, 44, 50]] while, after
rewarming at 48–72 h from ROSC, it predicts a poor
outcome with 0 (0–3) % FPR [42, 44, 50]. However, in
one study in posthypoxic myoclonus [48], three patients
with no EEG reactivity after rewarming from TH had a
good outcome. Among four prognostication studies on
absent EEG reactivity after cardiac arrest included in this
document, three [21, 42, 44] were made by the same
group of investigators. Limitations of EEG reactivity
include being operator-dependent and non-quantitative,
and lacking standardization. Techniques for automated
analysis of EEG background reactivity are under inves-
tigation [73].

6.1.2 Status epilepticus

In TH-treated patients, the presence of status epilepticus
(SE), i.e., a prolonged epileptiform activity, during TH or
immediately after rewarming [51, 54, 74] is almost
invariably followed by poor outcome (FPR from 0 to
6 %). Among those patients, absence of EEG reactivity
[51, 75] or a discontinuous EEG background [76] pre-
dicted no chance of neurological recovery. All studies on
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SE included only a few patients. Definitions of SE were
inconsistent among those studies (see ESM Appendix 5).

6.1.3 Low voltage EEG

According to recent guidelines [77], the voltage of
background EEG is defined as low when most or all
activity is \20 lV (measured from peak to trough) in
longitudinal bipolar with standard 10–20 electrodes, while
suppression is defined as all voltage being \10 lV.

In two studies [35, 67] in non-TH-treated patients, a
low-voltage EEG (B20–21 lV) at 1–3 days after ROSC
predicted poor outcome with 0 [0–6] % FPR. In one of
these studies [35], however, the presence of this EEG
pattern was used as a criterion for WLST.

In two studies [76, 78] in TH-treated patients, a flat or
low-voltage tracing on continuous EEG recorded during
TH or immediately after rewarming was inconsistently
associated to a poor outcome (FPR from 0 to 6 %). In two
studies [79, 80], a bispectral index (BIS) value of 6 or less
recorded during TH, corresponding to a flat or low-
amplitude EEG, predicted poor outcome with 0 (0–6) %
FPR, while higher BIS values were less specific [81].
However, in a subsequent study [82], a BIS B6 was not
100 % reliable (FPR 17 % [7–32]). There is limited evi-
dence [76, 82] on the predictive value of low EEG voltage
after rewarming from TH.

Amplitude of the EEG signal may depend on the effect
of drugs, body temperature, and on a variety of technical
conditions such as skin and scalp impedance, inter-elec-
trode distances, size, type and placement of the exploring
electrodes, and type of filters adopted, as well as patient-
specific issues [83].

6.1.4 Burst-suppression

According to a recent definition [77], burst-suppression
is defined as more than 50 % of the EEG record
consisting of periods of EEG voltage \10lV, with
alternating bursts. In comatose survivors of cardiac
arrest, either TH-treated or non-TH-treated, burst-sup-
pression is usually a transient finding. During the first
24–48 h after ROSC [67] in non-TH-treated patients or
during TH [44, 78, 84], burst-suppression is common
and it may be compatible with neurological recovery,
while at C72 h from ROSC [35, 76, 85] a persisting
burst-suppression pattern is less common, but is con-
sistently associated with poor outcome. In one case
[61], a good recovery was reported despite an EEG
burst-suppression pattern recorded at 72 h from ROSC;
in that case, EEG reactivity was maintained. Defini-
tions of burst-suppression were inconsistent among
prognostication studies (see ESM Appendix 6).

6.2 Recommendations

We suggest:

• Using EEG-based predictors such as absence of EEG
reactivity to external stimuli, presence of burst-sup-
pression or status epilepticus at C72 h after ROSC to
predict poor outcome in comatose survivors from
cardiac arrest.

• Using these predictors only in combination (i.e.
presence of burst-suppression or status epilepticus plus
an unreactive background) and combining them with
other predictors, since these criteria lack standardisa-
tion and the relevant evidence is limited to a few
studies performed by experienced electrophysiologists.

• Not using a low EEG voltage to predict outcome in
comatose survivors of cardiac arrest, because of the
limited evidence and the risk of interference from
hypothermia, ongoing sedation and technical factors.

We recommend not using burst-suppression for prog-
nostication during the first 24–36 h after ROSC or during
TH in comatose survivors of cardiac arrest.

Apart from its prognostic significance, recording of
EEG—either continuous or intermittent—in comatose
survivors of cardiac arrest both during TH and after
rewarming is helpful to assess the level of conscious-
ness—which may be masked by prolonged sedation,
neuromuscular dysfunction or myoclonus—and to detect
and treat non-convulsive seizures [8], which may occur in
about one-quarter of comatose survivors of cardiac arrest
[54, 76, 86].

6.3 Knowledge gaps

• Larger prospective studies on the prevalence and the
predictive value of EEG changes in comatose survivors
of cardiac arrest are needed, especially in patients who
have been rewarmed from controlled temperature.

• The definition of SE and the modalities for eliciting and
evaluating EEG reactivity need standardisation. In
future studies, definitions of burst suppression and
low-voltage EEG should comply with recent recom-
mendations [77].

• It is not clear whether postanoxic SE is only a marker
of brain injury or whether it contributes directly to
neurological injury, nor if anti-epileptic treatments may
potentially improve its outcome.

7 Biomarkers

NSE and S-100B are protein biomarkers that are released
following injury to neurons and glial cells, respectively.
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Blood values of NSE or S-100B after cardiac arrest are
likely to correlate with the extent of anoxic-ischaemic
neurological injury from cardiac arrest and, therefore,
with the severity of neurological outcome.

Advantages of biomarkers over both EEG and clinical
examination include quantitative results and likely inde-
pendence from the effects of sedatives. Their main
limitation as prognosticators is that it is difficult to find a
consistent threshold for identifying patients destined to a
poor outcome with a high degree of certainty. In fact,
serum concentrations of biomarkers are per se continuous
variables, which limits their applicability for predicting a
dichotomous outcome, especially when a threshold for
0 % FPR is required.

7.1 Evidence (ESM Table 3)

7.1.1 Neuron-specific enolase (NSE)

In non-TH-treated patients, the 2006 AAN review [2]
identified an NSE threshold of 33 lg L-1 at days 1–3
from ROSC as an accurate predictor of poor outcome with
0 % FPR. However, in a study [4] included in that review,
this threshold was 47.6 lg L-1 at 24 h, while, in a large
cohort study [5] published after the AAN review, this
threshold was 65.0 lg L-1 at 48 h and 80 lg L-1 at 72 h.
In three other studies [3, 63, 87], values of NSE between
65 and 85 lg L-1 at 3–5 days were reported as compat-
ible with recovery of consciousness.

In TH-treated patients, the threshold for 0 % FPR
varied between 38.1 and 80.8 lg L-1 at 24 h [20, 74, 88–
90], between 25 and 151.5 lg L-1 at 48 h [20, 22, 38, 74,
88–93], and between 27.3 and 78.9 lg L-1 at 72 h [6, 90,
91]. However, the distribution of NSE values in available
studies [5, 6, 22, 38, 88, 91] indicates that NSE values
above 60 lg L-1 at 48–72 h from ROSC are very rarely
associated with good outcome. Limited evidence [20, 89,
94] suggests that the discriminative value of NSE levels at
48–72 h is higher than at 24 h.

7.1.2 S-100B

S-100B is less well documented than is NSE. As for NSE,
inconsistencies were found in its thresholds for 0 % FPR.
In non-TH-treated patients, these thresholds ranged from
0.19 to 5.2 lg L-1 at 24 h [4, 92, 95] and from 0.12 to
0.25 lg L-1 at 48 h [92, 96, 97]. Precision was very low
in all studies.

In TH-treated patients, the thresholds for a 0 % FPR
ranged from 0.18 to 1.15 lg L-1 at 24 h after ROSC [90,
92, 98], and from 0.30 to 2.15 lg L-1 at 48 h [82, 90].
Finally, in one study [90], the threshold for 0 % FPR at
72 h was 0.92 lg L-1.

The main reasons for the observed variability in bio-
marker thresholds may include the use of heterogeneous
measurement techniques [99, 100], the presence of extra-
neuronal sources of biomarkers (haemolysis and neuro-
endocrine tumours for NSE [101], muscle and adipose
tissue breakdown for S-100B [102]), and the incomplete
knowledge of the kinetics of their blood concentrations in
the first few days after ROSC. Some evidence [89, 90, 94]
suggests that not only the biomarkers’ absolute concen-
trations but also their trends over time may have
predictive value.

7.2 Recommendations

We suggest:

• Using high serum values of NSE at 48–72 h from
ROSC in combination with other predictors for prog-
nosticating a poor neurological outcome in comatose
survivors from cardiac arrest, either TH-treated or non-
TH-treated. However, no threshold enabling prediction
with zero FPR can be recommended.

• Using utmost care and preferably sampling at multiple
time points when assessing NSE to avoid false positive
results due to haemolysis.

7.3 Knowledge gaps

• There is a need for standardisation of the measuring
techniques for NSE and S-100 in cardiac arrest patients.

• Little information is available on the kinetics of the
blood concentrations of biomarkers in the first few days
after cardiac arrest.

8 Imaging

8.1 Evidence (ESM Table 4)

8.1.1 Brain CT

Brain CT is often performed in resuscitated comatose
patients, mainly to exclude further causes of coma, such
as subarachnoid haemorrhage [103]. The main CT finding
of global anoxic-ischaemic cerebral insult following car-
diac arrest is cerebral oedema [104], which appears as a
reduction in the depth of cerebral sulci (sulcal efface-
ment) and an attenuation of the grey matter/white matter
(GM/WM) interface, due to a decreased density of the
GM. In one study [105], the presence of this pattern on
brain CT performed immediately after resuscitation pre-
dicted poor outcome with 81 % sensitivity and 8
(0–38) % FPR. The attenuation of the GM/WM interface
has been quantitatively measured as the ratio (GWR)
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between the GM and the WM densities. The GWR
threshold below which poor outcome was predicted with
0 % FPR ranged between 1.12 and 1.22 [20, 33, 106]. The
methods for GWR calculation were inconsistent among
studies.

8.1.2 MRI

Advantages of MRI over brain CT include a better spatial
definition and a high sensitivity for identifying ischaemic
brain injury; however, its use can be problematic in the
most clinically unstable patients [107].

The earliest post-ischaemic MRI change is hyperin-
tensity in cortical areas or basal ganglia on diffusion
weighted imaging (DWI) sequences. In two small studies
[108, 109], the presence of large multilobar changes on
DWI or FLAIR MRI sequences performed within 5 days
from ROSC was consistently associated with death or
vegetative state while focal or small volume lesions were
not [93]. In patients with poor outcome after resuscitation
from cardiac arrest, MRI can reveal extensive changes
when results of other predictors such as SSEP or ocular
reflexes are normal [93, 107].

Apparent diffusion coefficient (ADC) is a quantitative
measure of ischaemic DWI changes. ADC values between
700 and 800 9 10-6 mm2/s are considered to be normal
[107]. Several methods have been used to quantify the
DWI changes following cardiac arrest in order to predict
outcome. Measured parameters include whole-brain ADC
[110], the proportion of brain volume with low ADC
[111] and the lowest ADC value in specific brain areas,
such as the cortical occipital area and the putamen [88,
112]. The ADC thresholds associated with 0 % FPR vary
among studies. These methods depend partly on sub-
jective human decision in identifying the region of
interest to be studied and in the interpretation of results,
although automated analysis has recently been proposed
[19]. According to one study [109], the optimal time
window for prognostication based on ADC is 3–5 days
from ROSC in the cortical structures and 6–8 days in the
subcortical structures. Both the timing and severity of
MRI changes after arrest differ between cortical areas.

Advanced MRI techniques, such as fractional anisot-
ropy [113] and axial diffusivity in diffusion-tensor (DT)
imaging [114], have recently been tested in humans to
evaluate the white matter disorganisation and the axonal
damage following diffuse anoxic-ischemic brain injury,
respectively. Limited evidence shows that these tech-
niques may be useful to predict outcome in patients who
are persistently comatose after cardiac arrest and that their
accuracy is comparable or superior to that of ADC [113].

All studies on prognostication after cardiac arrest
using imaging have a small sample size with a consequent
low precision, and a very low quality of evidence. Most of
those studies are retrospective, and brain CT or MRI had

been made at discretion of the treating physician, which
may have caused a selection bias and overestimated their
performance.

8.2 Recommendations

We suggest:

• Using the presence of a marked reduction of the GM/
WM ratio or sulcal effacement on brain CT within 24 h
after ROSC, or the presence of extensive reduction in
diffusion on brain MRI at 2–5 days after ROSC, to
predict a poor outcome in patients who are comatose
after resuscitation from cardiac arrest both TH-treated
or non-TH-treated.

• Using brain CT and MRI for prognosticating poor
outcome after cardiac arrest only in combination with
other predictors.

• Using brain imaging studies for prognostication only in
centres where specific experience is available, given the
limited number of studied patients, the spatial and
temporal variability of post-anoxic changes in both CT
and MRI, and the lack of standardisation for quantita-
tive measures of these changes.

8.3 Knowledge gaps

• Evidence on imaging studies in comatose survivors of
cardiac arrest is limited by small sample size and
likely selection bias. Larger prospective studies are
needed to confirm the results of the currently available
studies.

• The severity of brain CT and MRI changes after global
ischaemic injury will need a standardised description,
e.g. using scoring systems similar to those used for
traumatic brain injury [115].

• The prognostic value of quantitative vector indices
derived from DT imaging, such as fractional anisotropy
and axial diffusivity, need to be evaluated in future
studies.

9 Self-fulfilling prophecy

Almost all prognostication studies reviewed in this doc-
ument were assigned a low or very low quality of
evidence (see Evidence Profile Tables on ESM Appendix
3a–d) the main reason being the risk of self-fulfilling
prophecy. In fact, only 9/73 studies (12 %)—3 of which
are from the same group—reported blinding of the
treating team from the results of the predictor under
investigation. In 2 of these studies [37, 38], results of the
predictor (absence of N20 SSEP wave) recorded during
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TH were not disclosed, but if patients remained comatose
after rewarming, a second SSEP was performed and
results were disclosed to the treating team, who used this
information for treatment decisions. A treatment suspen-
sion policy was reported in 37/73 studies (51 %),
although only 27 of those studies described the criteria for
WLST. In 14/37 studies (38 %), the treatment suspension
policy was based, at least in part, on one or more of the
predictors under investigation (see ESM Table 5). Treat-
ment limitations were applied at a minimum of 3 days or
less from cardiac arrest in 12 studies and from 3 to 7 days
in 9 studies, while in the remaining studies the minimal
duration of life support measures was not reported.

Prevention of self-fulfilling prophecy bias would
require blinding of test results to the treating team and
providing sufficiently prolonged life support in patients
who do not recover consciousness after resuscitation and
rewarming. Both those tasks are difficult to accomplish.
Some predictors, such as results of clinical examination,
cannot be concealed to the treating team. Others, such as
EEG, should not be concealed as they can reveal the
presence of potentially treatable complications, like sei-
zures. In some institutions, having a dedicated
investigator not involved in patient management who will
ensure blinding of collected data may not be feasible [80].
On the other hand, indefinite supportive care in poten-
tially hopeless patients raises both ethical and financial
concerns. However, even when the risk of self-fulfilling
prophecy cannot be avoided in order to adequately
account for this bias, it is desirable that future prognostic
accuracy studies report in detail the criteria for with-
drawal or limitation of life-sustaining treatment, as has
been done in recent trials [116].

10 Practical approach: suggested prognostication
strategy

Prognostication is indicated in patients with prolonged
coma after resuscitation. A thorough clinical examination
should be performed daily to detect signs of neurological
recovery such as purposeful movements or to identify a
clinical picture suggesting that brain death has occurred.

Following global post-anoxic injury, the brain will
make a gradual recovery. Brainstem reflexes return first,
then the motor response to pain and, finally, cortical
activity and consciousness [117]. This process is com-
pleted within 72 h from arrest [53, 117]. Consequently, in
the absence of residual sedation, 72 h after ROSC seems
to be a suitable time for prognostication. However, in
patients who have received sedatives B12 h before the
72 h neurological assessment, the reliability of clinical
examination may be reduced [3]. Special care must be
taken in TH-treated patients, since hypothermia prolongs

the effects of both opiates [118] and neuromuscular
blocking drugs [119, 120].

Before decisive assessment is performed, major con-
founders must be excluded [121, 122]; apart from
sedation and neuromuscular blockade, these include
hypothermia, severe hypotension, hypoglycaemia, and
metabolic and respiratory derangements. Sedatives and
neuromuscular blocking drugs should be suspended long
enough to avoid interference with clinical examination.
Short-acting drugs are preferred whenever possible. When
residual sedation/paralysis is suspected, consider using
antidotes to reverse the effects of these drugs. Be careful
if using flumazenil to reverse the effects of benzodiaze-
pines, since this drug may lower the seizure threshold.

We suggest using the prognostication strategy outlined
in the algorithm on Fig. 1 in all comatose patients with an
absent or extensor motor response to pain at C72 h from
ROSC. Results of earlier prognostic tests should also be
considered at this time point.

Evaluate the most robust predictors first. These pre-
dictors have the highest specificity and precision (FPR
\5 % with 95 % CIs \5 % in patients treated with
controlled temperature) and have been documented in [5
studies from at least three different groups of investiga-
tors. They include bilaterally absent pupillary reflexes at
C72 h from ROSC and bilaterally absent SSEP N20 wave
after rewarming (this last sign can be evaluated at C24 h
from ROSC in patients who have not been treated with
controlled temperature). Based on exert opinion, we
suggest combining the absence of pupillary reflexes with
those of corneal reflexes for predicting poor outcome at
this time point. Both these predictors maintain their pre-
dictive value irrespective of hypothermia treatment [18].

If none of the signs above is present, a group of less
accurate predictors can be evaluated, but the degree of
confidence in their prediction will be lower. These have
FPR \5 % but wider 95 % CIs than the previous pre-
dictors, and/or their definition/threshold is inconsistent in
prognostication studies. These predictors include the
presence of early status myoclonus (within 48 h from
ROSC), high values of serum NSE at 48–72 h after
ROSC, an unreactive malignant EEG pattern (burst-sup-
pression, status epilepticus) after rewarming, the presence
of a marked reduction of the GM/WM ratio or sulcal
effacement on brain CT within 24 h after ROSC or the
presence of diffuse ischemic changes on brain MRI at
2–5 days after ROSC. Based on expert opinion, we sug-
gest waiting at least 24 h after the first prognostication
assessment and confirming unconsciousness with M1–2
before using this second set of predictors. We also suggest
combining at least two of these predictors for
prognostication.

No specific NSE threshold for prediction of poor
outcome with 0 % FPR can be recommended at present,
although, in all the studies we analysed, NSE values
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greater than 60 lg L-1 at 48–72 h were very rarely
associated with a false positive prediction. Ideally, every
laboratory hospital assessing NSE should create its own
normal values and cut-off levels based on the test kit used.
Care should be taken to avoid haemolysis when sampling
NSE.

Although the most robust predictors showed no
false positives in most studies, none of them singularly
predicts poor outcome with absolute certainty when the
relevant comprehensive evidence is considered.
Moreover, those predictors have often been used for
WLST decisions, with the risk of a self-fulfilling
prophecy. For this reason, we recommend that prog-
nostication should be multimodal whenever possible,
even in the presence of one of these predictors. Apart
from increasing safety, limited evidence [20, 21, 42,

82] also suggests that multimodal prognostication
increases sensitivity.

When prolonged sedation and/or paralysis is neces-
sary, for example because of the need to treat severe
respiratory insufficiency, we recommend postponing
prognostication until a reliable clinical examination can
be performed. Biomarkers, SSEP and imaging studies
may play a role in this context, since they are insensitive
to drug interference.

When dealing with an uncertain outcome, clinicians
should consider prolonged observation. Absence of clin-
ical improvement over time suggests a worse outcome.
Although awakening has been described as late as
25 days after arrest [54, 61, 123], most survivors will
recover consciousness within 1 week [93, 124–126]. In a
recent observational study [126], 94 % of patients awoke

Fig. 1 Suggested prognostication algorithm. The algorithm is
entered C72 h after ROSC if, after the exclusion of confounders
(particularly residual sedation), the patient remains unconscious
with a Glasgow Motor Score of 1 or 2. The absence of pupillary and
corneal reflexes, and/or bilaterally absent N20 SSEP wave,
indicates a poor outcome is very likely. If neither of the features

is present, wait at least 24 h before reassessing. At this stage, two or
more of the following indicate that a poor outcome is likely: status
myoclonus B48 h; high neuron-specific enolase values; unreactive
EEG with burst suppression or status epilepticus; diffuse anoxic
injury on brain CT and/or MRI. If none of these criteria are met
consider continue to observe and re-evaluate
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within 4.5 days from rewarming and the remaining 6 %
awoke within 10 days.

11 Conclusions

A careful clinical neurological examination remains the
foundation for prognostication of the comatose patient
after cardiac arrest [127]. Adequate time should be given
initially for the early awakeners to regain consciousness
and to avoid interference from residual effects of seda-
tives and/or neuromuscular blocking drugs. This implies
waiting until 72 h or more after ROSC before predicting
poor outcome, although some indicators can be evalu-
ated earlier. Whenever possible, prognosticate using
multiple predictors, depending on locally available tests
and expertise. If the results of prognostic tests produce
conflicting results or prognostication is uncertain, we
recommend further clinical observation and re-
evaluation.
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