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Abstract

Visualizing the interior of a turbid scattering media by means light-based
methods is not a straightforward task because of multiple light scattering,
which generates image blur. To overcome this issue, a technique called Struc-
tured Laser Illumination Planar Imaging (SLIPI) was developed within the
�eld of spray imaging. The method is based on a light coding strategy to dis-
tinguish between directly and multiply scattered light, allowing the intensity
from the latter to be suppressed by means of data post-processing. Recently,
the performance of the SLIPI technique was investigated, during which devi-
ations from theoretical predictions were discovered. In this paper, we aim to
better understand the origin of these deviations, and to achieve this end, we
have performed several SLIPI measurements under well-controlled conditions.
Our experimental results are compared with a theoretical model that is based
on the large scatterer approximation of the Radiative Transfer Equation but
modi�ed according to certain constraints. Speci�cally, our model is designed
to (1) ignore all o�-axis intensity contributions and (2) to treat unperturbed-
and forward-scattered light equally as we believe these to the rules governing
the SLIPI technique. The comparison conclusively shows that optical me-
asurements based on scattering and/or attenuation in turbid media can be
subject to signi�cant errors if not all aspects of light-matter interactions are
considered. Our results indicate, as were expected, that forward-scattering
can lead to deviations between experiments and theoretical predictions, espe-
cially when probing relatively large particles. However, rather unexpectedly,
the model also suggests that the dimensions as well as the spreading of the
light-probe are important factors one also needs to consider.

1 Introduction

Structured Laser Illumination Planar Imaging (SLIPI) is an optical imaging techni-
que primarily used to visualize spray-related phenomena, such as the disintegration
of liquid into �ne, spherical droplets [1]. SLIPI is based on (1) laser sheet ima-
ging [2], where a laser beam is formed into a thin sheet of light and (2) structured
illumination [3], which employs an intensity modulation scheme to permit added
post-processing possibilities. The purpose of a laser sheet is to illuminate only a
single plane of the sample, i.e., to optically select a "slice" of the sample. A camera
positioned at a 90 degrees angle records the signal that is generated by the laser
sheet, resulting in a 2D view of the illuminated sample.

The laser sheet technique has been widely used in several �elds, such as com-
bustion research, biology and �uid dynamics [2, 4, 5]. However, when the method
is applied to optically dense, highly scattering environments, the electromagnetic
�eld interacts in a complex way with the entire medium � not only with the drop-
lets in the laser sheet, but also with the ones outside. Multiple scattering e�ects
dominates in this situation. As the laser sheet method assumes direct scattering
only, the detection of multiply scattered light causes measurement errors such as
a reduced image contrast, concealment of structures and incorrect intensity levels
[6]. To address this issue, laser sheet imaging can be combined with the structured
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illumination method � a uni�cation named SLIPI. With SLIPI, the laser beam is
guided through a transmission Ronchi grating, which adds a sinusoidal line structure
to the otherwise homogeneous (top-hat like) intensity pro�le of the laser sheet. The
line structure has one primary purpose: providing means to di�erentiate between
light that has been repeatedly scattered within the sample and light that has only
interacted with the sample once. Only light that is directly scattered from the laser
sheet to the detector is guaranteed to preserve this superimposed line structure in
the detected image, whereas light that has been scattered several times lose this
structural information. By post-processing the acquired data, the latter unwanted
contribution can be greatly suppressed, leading to improved visualization of turbid,
scattering objects.

In an attempt to better understand the potential and limitations of the SLIPI
technique Kristensson and coworkers performed measurements on several cuvettes
with a homogeneous mixture of water and polystyrene spheres, which both scattered
and absorbed light [7]. Number density and particle size were altered in a controlled
fashion, allowed them to compare the results with the Bouguer-Beer law.1 It was
discovered that the SLIPI technique did not produce results in complete agreement
with this well-known law. In particular, an increased particle size resulted in larger
deviations from theoretical predictions, a trend that the authors attributed to dif-
ferences in the scattering phase function of the particles. In the size-range 1 to 30
µm, larger particles have a pronounced forward scattering lobe that grows in mag-
nitude with size. This implies that the light intensity is enhanced in the forward
direction � the more the larger the particle. Since light that does not deviate from
its initial trajectory will preserve the line structure employed in SLIPI, it cannot
be suppressed with the technique, thus resulting in the observed deviations from
the Bouguer-Beer law. Figure 1 illustrates this forward-scattering lobe structure for
three particle sizes.
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Figure 1: Mie scattering phase functions for three particle sizes (λ = 447 nm), shown
in a linear scale. The (unconventional) linear representation of the scattering phase
functions illustrates the strong forward-scattering phenomenon.

1Also known as Beer's law, the Beer-Lambert law, the Lambert-Beer law, or the Beer-Lambert-
Bouguer law etc., but it is incorrect to accredit Lambert to this law, since Bouguer made the
original contributions [8]. For a comprehensive survey of the history of the law see [9].
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This paper seeks to investigate the accuracy of this proposed explanation. To
achieve this end and thereby better understand the physics governing light-matter
interactions in general and the SLIPI technique in particular, we have performed
SLIPI measurements under well-controlled conditions. The results are compared
with theoretical prediction based on a solution of the Radiative Transfer Equation
(RTE) using the large scatterer approximation.

2 Experimental arrangements

2.1 SLIPI optical setup

A schematic of the experimental setup is presented in Figure 2. The laser light
(λ = 447 nm) was �rst expanded using a telescope of two lenses and then guided
through an aperture to select the central, top-hat like region. The light was then
guided through a Ronchi transmission grating, which di�racts the laser light, and a
cylindrical lens focused the interference orders onto a so-called frequency cutter. The
purpose of this device was to physically block all but the two fundamental orders.
As these two identically intense beams overlapped they created, by interference, a
sinusoidally modulated intensity pro�le. A second cylindrical lens was then used to
focus the modulated light into a thin sheet of light (≈ 100 µm). A second telescope
arrangement (cylindrical lenses) was used to alter the frequency of the intensity
modulation. A sensitive EM-CCD (Andor Luca), mounted at a 90 degrees angle,
was used to collect the signal from the laser sheet.

CL SFG CL CL

EM-CCD

SL SL

Top view

Side view

A

100050

Figure 2: The experimental setup. SL = Spherical Lens. A = Aperture. G =
Grating. CL = Cylinder Lens. SF = Spatial Filter.

The purpose of the modulation scheme is, as mentioned, to di�erentiate between
the intensity contribution originating from singly- and multiply scattered light. Light
that is repeatedly scattered within the sample tend to loose the modulation feature
that is encoded into the illumination whereas directly (singly) scattered light re-
mains faithful to this spatial structure. If the phase of the modulation structure
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is slightly altered, the spatial distribution of the directly scattered light shifts ac-
cordingly, while the intensity contribution stemming from multiply scattered light
remains una�ected. By calculating the pixel-wise root-mean-square (RMS) between
three so-called subimages having spatial phases of 0, 2π/3 and 4π/3 the modulated
component � the singly scattered light � is extracted and the DC-component �
the multiply scattered light � is suppressed. An example of the process is given in
Figure 3.

φ = 0 φ = 2π/3 φ = 4π/3

SLIPIConventional

Figure 3: The SLIPI process, illustrated on one of the cuvettes used in the current
study. To suppress the contribution from multiply scattered light (and other signal
interferences), three so-called subimages are recorded, between which the spatial
phase is altered 1/3 of the superimposed sinusoidal period. The "conventional"
image shows the laser sheet signal without any suppression of the multiply scattered
light, where unwanted signal stemming from non-irradiated regions of the sample
can be observed. Such interferences are e�ciently removed using the SLIPI data
post-processing.

The SLIPI concept can be also understood in terms of spatial frequencies. All
signal of interest is modulated by a well-de�ned spatial frequency while unwanted
background features are characterized by other (not necessarily low) spatial frequen-
cies. Calculating the pixel-wise RMS between the three subimages corresponds to
extracting the image information modulated by the spatial frequency of the laser
sheet.

2.2 Sample preparation

Six mixtures of water and non-absorbing microspheres were used in the experiments,
having diameters of 4.5, 6, 10, 15, 20 and 25 µm, respectively. These particles were
assumed to be spherical. All mixtures were prepared to have an opacity of OD = 2
(optical depth) over the distance 44 mm, corresponding to an average extinction of
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0.045 mm−1. The particles were delivered in 5 ml containers, with the total number
of particles speci�ed in each batch. By knowing the scattering cross-sections (σs)
for the particles, the required number density corresponding to the desired average
extinction could be calculated, see Table 1. Each sample was prepared according to
the following procedure:

1. An empty 2 liters bottle was placed on a scale with milligram precision and
its weight was noted.

2. The particles were emptied into to the bottle and the container carefully rinsed.
The weight of the particles was neglected.

3. The amount of water speci�ed in Table 1 was added to the bottle using the
scale to monitor the added volume. Since the amount of water needed in each
case di�ered, the precision of mixing process varied slightly.

4. 100 ml of the mixture was poured into a glass cuvette (44× 34× 100 mm3).

5. To avoid particles sticking onto the glass surfaces, the cuvette was placed in
an ultrasonic cleaner prior to the measurement.

Size [µm] 4.5 6 10 15 20 25

N 2.495·109 1.05·109 2.275·108 6.75·108 2.84·107 1.455·107

σs [µm2] 35.0 60.9 208 407 571 984
H2O [ml] 1986.46 1376.15 831.506 561.564 411.594 321.192
C [mm−3] 1330 807 218 109 85.7 47.7

Table 1: Sample-related characteristics. N corresponds to the total number of
particles in a 5 ml bottle, σs is the scattering cross-section, H2O is the amount of
water needed to achieve the desired concentration, C, that gives an OD of 2 over 44
mm. The explicit diameters delivered by the manufacturer were: 4.518, 5.94, 11.00,
15.66, 18.79, 24.90 µm, respectively.

2.3 Measurement scheme

Although the purpose of the investigation was to understand how di�erences in
the Mie scattering phase function a�ected the outcome of a SLIPI measurement,
direct comparison with the scattered light had to be avoided for experimental rea-
sons. When visualizing the Mie scattered light from a spatially homogeneous sample
with a polydisperse particle distribution, even minute changes in the collection- and
acceptance angle will a�ect the resulting image because of the rapid angular varia-
tions in the Mie scattering phase function. Comparing the experimental data with
the theoretical model would, in such a case, require the exact knowledge of the an-
gle between laser sheet and the detector as well as the acceptance angles, which are
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Figure 4: Cross-sections from two images where only elastically scattered light was
collected, together with the decay of light intensity as predicted by the Bouguer-Beer
law (dashed line). Both SLIPI and conventional data clearly show how the in�uence
of the Mie scattering lobes make any theoretical comparisons challenging.

both di�cult to assess with su�ciently high precision. Figure 4 shows Mie scattering
images of the mixtures, where the in�uence of the lobe structures are noticeable.

To circumvent the issue with the side-scattering lobes experimentally, a small
amount of �uorescing dye was added to each mixture. Since the in-elastic �uores-
cence signal is nearly isotopic and identical for all mixtures under study, the exact
position of the camera with respect to the laser sheet is no longer a critical factor. By
compensating for the loss of light introduced by the added dye (OD ≈ 0.1), the ap-
proach thus allowed monitoring of the relative loss of photon energy as a function of
distance, without being in�uenced by the speci�cs of the detection system. Figure 5
illustrates this procedure.
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Figure 5: To avoid measurement uncertainties caused by the lobe structure of the
scattering phase function, a small amount of �uorescing dye was added to the cu-
vette. SLIPI measurements were carried out both prior to and after the dye was
added, thus permitting us to assess the slightly increased OD (left panel). As the
dye emitted light nearly isotropically, the local light intensity within the cuvette
could be monitored. However, since only the loss of energy caused by scattering was
of interest, the added opacity of the dye was compensated for (right panel).
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The refractive index of the spheres immersed in water is determined by [10]

n(λ) = A+
B

λ2
+
C

λ4

where, if λ is the wavelength in vacuum measured in nm, the constants A = 1.5725,
B = 3108.0, and C = 34779 · 104.

3 Theory

The quantitative modeling of the SLIPI experiment is now addressed in detail. The
aim of the theoretical model is to understand and explain the results of the SLIPI
experiments, both qualitatively and quantitatively. To achieve this end, the model
needs to accurately model the signal generated in a SLIPI measurement. The two
main challenges of this task are: (1) the signal is generated by a laser sheet and (2)
light contributions from other directions must be neglected (as these are suppressed
with the SLIPI technique). Indeed, the theoretical model presented in this section
corroborates all essential details of the experimental results and can, in fact, be used
to design future experiments.

The radiative transfer equation (RTE) [11, 12] is commonly adopted as a model
for computations of the intensity variations in random media. The RTE quanti�es
the intensity I(r, n̂) at a point r in the medium in a speci�c direction n̂. The e�ect
of the polarization state of the intensity is ignored in the scalar version of RTE. A
vector formulation of RTE is available, which also quanti�es the polarization e�ects
by an employment of the Stokes parameters [13, 14]. However, the experimental
results in this paper have very little polarization information, and, therefore, the
scalar version of RTE su�ces. Moreover, the RTE holds for sparse suspensions,
which is assumed to hold for the suspensions used in this paper.

The RTE has no closed form solutions, and numerical techniques have to be
employed. However, in several experimental situations approximations apply, which
leads to closed form solutions of great value. One such approximation is the assump-
tion of electrically large scatterer in the medium. In the results presented in this
paper the scatterers are electrically large, ka ≈ [30, 165], where k is the wave number
of the microspheres relative to the background material in the cuvette [10], and a
is the average radius of the spheres. In this section, a review of the approximation
employed in this paper is presented.

3.1 The radiative transport equation

The pertinent scalar version of the radiative transfer equation (RTE), or transport
equation, for the intensity I(r, n̂) at the position r in the direction n̂ is, see e.g.,
[12, Ch. 7 & 11] or [13, Eq. (8.11.5)]

n̂ · ∇I(r, n̂) = −n0(r)σext(r, n̂)I(r, n̂) +
n0(r)

4π

∫∫
Ω

dσ

dΩ
(r, n̂, n̂′)I(r, n̂′) dΩ′
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where Ω denotes the unit sphere, dΩ the surface measure on the unit sphere, n0(r)
the number density (number of scatterers per unit volume) at r, σext(r, n̂) the
extinction cross section at r (incident direction of the excitation is n̂), and where
dσ
dΩ

(r, n̂, n̂′) denotes the di�erential scattering cross section of the scatterer at r in
the direction n̂ (incident direction n̂′). The scattering cross section σs(r, n̂

′) is

σs(r, n̂
′) =

1

4π

∫∫
Ω

dσ

dΩ
(r, n̂, n̂′) dΩ

Introduce the phase function p(r, n̂, n̂′) de�ned as2

p(r, n̂, n̂′) =
1

4πσext(r, n̂
′)

dσ

dΩ
(r, n̂, n̂′)

with normalization ∫∫
Ω

p(r, n̂, n̂′) dΩ =
σs(r, n̂

′)

σext(r, n̂
′)

= α(r, n̂′)

where α(r, n̂′) denotes the single scatterer albedo. For spherical objects in a ho-
mogeneous material, the phase function depends only on the di�erence between the
directions n̂ and n̂′ (more precisely the absolute value of the di�erence,3 |n̂− n̂′|).
The phase function for a homogeneous material of spherical scatterers then has the
form

p(n̂− n̂′) =
1

4πσext

dσ

dΩ
(n̂− n̂′)

and the RTE simpli�es to

n̂ · ∇I(r, n̂) = −n0σextI(r, n̂) + n0σext

∫∫
Ω

p(n̂− n̂′)I(r, n̂′) dΩ′

or if all distances are measured in units of the optical distance, OD (scale with
n0σext)

n̂ · ∇ODI(rOD, n̂) = −I(rOD, n̂) +

∫∫
Ω

p(n̂− n̂′)I(rOD, n̂
′) dΩ′ (3.1)

3.2 Large scatterer approximation

The slab geometry is of interest in this paper, see Figure 6. The spheres are sub-
merged in water between 0 ≤ z ≤ d or in terms of the scaled variables, τ = n0σextz,
between 0 ≤ τ ≤ τ0 = n0σextd. The scaled lateral variables are denoted η =
n0σext(xx̂+ yŷ).

2Other de�nitions occur � a factor of 4π di�ers and occasionally the scattering cross section
is used instead of the extinction cross section.

3The independent variable is cos θ = n̂ · n̂′ = 1− |n̂− n̂′|2/2.
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k̂i 2w

z = 0

y

z = d

z(τ)

Figure 6: The geometry of a slab illuminated with a beam (laser sheet) of limited
extent as seen from above. The width of the laser sheet at τ = 0 is 2w, and the
direction of the exterior excitation is k̂i (normal incidence).

The analysis reviewed in this section follows Ishimaru closely [12, Chapter 13]
and [15]. An electrically large object scatters strongly in the forward direction, and
less in all other directions. This fact motivates the large scatterer approximation,
which neglects all scattering contributions except for a cone in the forward direction.

The direction n̂ = sxx̂+syŷ+szẑ, expressed in Cartesian coordinates, is subject
to the constraint s2

x + s2
y + s2

z = 1. Most of the scattering takes place in the forward
direction sz ≈ 1, i.e., the scattering angle is always small. Therefore, the directional
derivative is approximated with

n̂ · ∇OD = sz
∂

∂τ
+ s · ∇OD ≈

∂

∂τ
+ s · ∇OD

In the integral over the unit sphere, the lateral variable s = sxx̂+ syŷ is restricted
by s2

x + s2
y ≤ 1, but due to the vanishing contribution of the phase function when

s2
x + s2

y > 1, the integration in s can be extended to the entire x-y plane, without a
major change in the value of the integration.

As a consequence of the assumptions made above, the RTE in (3.1) is approxi-
mated by

∂

∂τ
I(η, τ, s) + s · ∇ODI(η, τ, s) = −I(η, τ, s) +

∫∫
R2

p(s− s′)I(η, τ, s′) ds′
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where s = sxx̂ + syŷ, η = n0σext(xx̂ + yŷ), τ = n0σextz, and where the phase
function p(s− s′) is4

p(s− s′) ≈ 1

4πσext

dσ

dΩ
(n̂− n̂′)

It is assumed that the phase function has its main contribution for small arguments
|s− s′|.

Proceed by a Fourier transform of the RTE w.r.t. to η. The result is

d

dτ
I(κ, τ, s) = −(1− is · κ)I(κ, τ, s) +

∫∫
R2

p(s− s′)I(κ, τ, s′) ds′

where

I(κ, τ, s) =

∫∫
R2

I(η, τ, s)eiκ·η dη

with inverse

I(η, τ, s) =
1

4π2

∫∫
R2

I(κ, τ, s)e−iκ·η dκ

A simpli�ed notation is introduced to facilitate the analysis.

I(κ, τ, s) = F (κ, τ, s)e−(1−is·κ)τ

and F (κ, τ, s) satis�es

d

dτ
F (κ, τ, s) =

∫∫
R2

p(s− s′)e−i(s−s′)·κτF (κ, τ, s′) ds′

Now introduce the Fourier transform w.r.t. the variable s. The following notation
is used:

p(q) =

∫∫
R2

p(s)eiq·s ds, F (κ, τ, q) =

∫∫
R2

F (κ, τ, s)eiq·s ds

with inverses

p(s) =
1

4π2

∫∫
R2

p(q)e−iq·s dq, F (κ, τ, s) =
1

4π2

∫∫
R2

F (κ, τ, q)e−iq·s dq

Collecting the terms leads to the following di�erential equation

d

dτ
F (κ, τ, q) = p(q − κτ)F (κ, τ, q)

The solution is (neglecting re�ections at the back wall)

F (κ, τ, q) = F (κ, 0, q) exp

{∫ τ

0

p(q − κτ ′) dτ ′
}

4Holds as an approximation in the forward direction, and the phase function is assumed to
depend only on s− s′ � in reality |n̂− n̂′|2 = |szẑ + s− s′zẑ − s′|2 ≈ |s− s′|2.
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To obtain the intensity, the inverse Fourier transforms in the variable κ and q
are applied. The intensity in the slab at the location (η, τ) in an arbitrary direction
s is

I(η, τ, s) =
e−τ

16π4

∫∫
R2

∫∫
R2

I(κ, 0, q)e−i(η−sτ)·κ−iq·s

· exp

{∫ τ

0

p(q − κτ ′) dτ ′
}

dκ dq (3.2)

where

I(κ, 0, q) =

∫∫
R2

I(κ, 0, s)eiq·s ds

Without any multiple scattering, p(s) = 0, which implies that the exponential
is replaced with one, and

I(η, τ, s) = I(η − sτ, 0, s)e−τ

The intensity in (3.2) models the intensity at the position η and depth τ in the
direction s. At this point this intensity excites the �uorescing dye, which has been
added to the mixture to avoid the previously mentioned issues with Mie scattering
detection (see Figure 5) and to improve the accuracy in the measuring process. To
model the physics that we expect the SLIPI technique to be governed by, we ignore
intensity contributions to the excitation of the �uorescing dye from all directions
except the forward direction. Light contributions from other directions are not
expected to carry the superimposed line structure used in SLIPI and are therefore
removed in the data post-processing. In contrast, all light that maintains a straight
path through the sample, despite being scattered on its way, will keep the structural
imprint and, consequently, are una�ected by the SLIPI �ltering. In the forward
direction, s = 0, the intensity is

I(η, τ,0) =
e−τ

16π4

∫∫
R2

∫∫
R2

I(κ, 0, q)e−iη·κ exp

{∫ τ

0

p(q − κτ ′) dτ ′
}

dκ dq (3.3)

This is the �nal expression of the intensity in the large scatterers approximation.
For a given phase function p(s), the two-fold inverse Fourier transform has to be
performed to �nd the intensity I(η, τ, s) or I(η, τ,0).

If the background material is di�erent, there is a re�ection at τ = τ0 with
re�ection coe�cient R. The intensity close to the back wall in the forward direction
is altered, and the total intensity at τ in the forward and backward directions, at
the center η = 0, is

Itotal(0, τ,0) = I(0, τ,0) +RI(0, τ0 − τ,0)
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3.3 Laser sheet

Assume the intensity at τ = 0 has a Gaussian distribution in the η = ηyŷ direction
with beam width5 2w, and an angular spread at τ = 0 modeled by the parameters
σx and σy. The explicit form of the intensity at τ = 0 is assumed to be

I(η, 0, s) = I0

√
8

π3

1

wσxσy
e−2η2y/w

2−2s2x/σ
2
x−2s2y/σ

2
y

The parameter in the vertical direction, σx, shows little e�ect on the �nal result,
but avoids a delta distribution in the coherent part of the intensity.

The constant I0 is the total incident power �ux per unit length in the vertical x
direction, see Figure 6, since∫∫

R2

∫ ∞
−∞

I(η, 0, s) dηy ds = I0

This intensity characterizes the laser sheet, radiating in ẑ, see also [16, 17, 18].
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Figure 7: The normalized phase function p(θ) for a sphere with diameter d =
24.90µm. A comparison between the numerical (exact) and two approximate com-
putations is depicted.

One critical point in the theory is the approximation of the phase function p(s).
This function is approximated by a Gaussian function, see Figure 7.

p(s) =
2α

πβ2
e−2s2/β2

where β is a measure of the width of the phase function in the forward direction
(proportional to λ/D), and α is the single particle albedo. The normalization of the
phase function is ∫∫

Ω

p dΩ ≈
∫∫
R2

p(s) ds = α

5The 1/e2 beam width de�nition is used. If another beam width, say half intensity width w1/2,

is measured, let w = w1/2

√
2/ ln 2 in the expressions. In the limit of zero beam width, a delta

contribution is obtained.
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The intensity in the s direction, see (3.2), is (details of the derivation are found
in Appendix A)

I(η, τ, s) =
I0

8π3
e−τ

∫∫
R2

∫ ∞
−∞

e−κ
2
yw

2/8−q2yσ2
y/8−iκy(ηy−syτ)−iq·s

· exp

{
α

∫ τ

0

e−(q2x+(qy−κyτ ′)2)β2/8 dτ ′
}

dκy dq

This expression quanti�es the intensity in the laser sheet as a function of the lateral
position η and depth τ in the direction s. The intensity at the left hand side of the
cuvette, τ = 0, is assumed to have the following properties:

• No dependence of the vertical coordinate ηx.

• Gaussian beam shape of width 2w in the lateral direction ηy.

• The spread of the light intensity in the lateral direction is modeled with the
constant σy.

• The spread of the light intensity in the vertical direction is modeled with the
constant σx. It is convenient to give this parameter a non-zero value to avoid
delta function contributions in the coherent contribution to the intensity.

From the general expression above, we identify two extreme cases, which are
solved analytically.

1. If the multiple scattering can be neglected, p(s) = 0, the intensity is

I(η, τ, s) = I((ηy − syτ)ŷ, 0, s)e−τ

2. If the width of the phase function in the forward direction becomes in�nitely
small compared to the width parameter w (alternatively, the laser sheet is very
wide), i.e., let β → 0, then

I(η, τ, s) =
I0

8π3
e−(1−α)τ

∫∫
R2

∫ ∞
−∞

e−κ
2
yw

2/8−q2xσ2
x/8−q2yσ2

y/8−iκy(ηy−syτ)−iq·s dκy dq

= e−(1−α)τI((ηy − syτ)ŷ, 0, s) = e−n0σazI((ηy − syτ)ŷ, 0, s)

where σa is the single particle absorption cross section.

3.3.1 The Wentzel summation method

To proceed, we apply the Wentzel method, see Appendix A. The result is

I(η, τ,0) =
∞∑
m=0

Im(η, τ,0)
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where, see (A.2)

Im(η, τ,0) = I(0, 0,0)
αm

m!
e−τAm

∫ τ

0

dτ1 . . .

∫ τ

0

dτm
e−2η2y/am

√
am

where the coe�cients Am are independent of τ1, . . . , τm

Am =
wσxσy√

σ2
x +mβ2

√
σ2
y +mβ2

and where

am = w2 + (τ 2
1 + . . .+ τ 2

m)β2 − (τ1 + . . .+ τm)2β4

σ2
y +mβ2

The term m = 0 is assumed to contain no integration w.r.t. the τ variable.
The �rst three terms have explicit expressions in the forward direction s = 0,

see Appendix A.1.1. The �rst contribution, m = 0, is the coherent contribution

I0(η, τ,0) = I(η, 0,0)e−τ (3.4)

and the second, m = 1, is at the center of the laser sheet, ηy = 0

I1(0, τ,0) = I(0, 0,0)e−τ
αwσx

β
√
σ2
x + β2

arcsinh(ξ) (3.5)

where

ξ =
βσyτ

w
√
σ2
y + β2

=
(β/w)√

1 + (β/σy)
2
τ (3.6)

The third term, m = 2, at the center ηy = 0 is

I2(0, τ,0) =
I0α

2

2π2
e−τ

1√
σ2
x + 2β2

1√
σ2
y + 2β2

∫ τ

0

dτ1

∫ τ

0

dτ2

√
8π

a2

where

a2 = w2 + (τ 2
1 + τ 2

2 )β2 − (τ1 + τ2)2β4

σ2
y + 2β2

The higher order terms contain additional integration w.r.t. τ . A proof of the
convergence of the Wentzel summation method is given in Appendix A.1.2. It is
shown that the method always converges.

4 Results

To model the experimental results, the large scatterer approximation was used to
solve the RTE. In particular, the Wentzel summation method was employed to
�nd explicit results of the theoretical results. It was proved that this summation
method always converges, and that su�cient accuracy is obtained with only a few
terms. Speci�cally, the maximum error made by approximating the in�nite sum in
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M 0 1 2 3 4 5

∆M(%) 43 14 5.5 1.9 0.6 0.1

Table 2: The maximum error made in replacing the exact intensity by the �rst M
terms in the Wentzel method for the largest sphere d = 24.90µm for the baseline
parameters. This is the sphere size that produces the largest error.

d (µm) 4.518 5.94 11.00 15.66 18.79 24.90

β (rad) 0.0761 0.0606 0.0332 0.0232 0.0192 0.0145

Table 3: The calculated value of β in radians for each value of the diameter of the
spheres. The e−2 width is given.

Wentzel summation method with just the M �rst term is displaced in Table 2, see
Appendix A.1.3.

Comparing simulations and experiments would require exact knowledge of w,
β, σx, and σy, which are di�cult to assess experimentally with adequate accuracy.
The correct value of β was obtained by Mie series calculations, see Table 3. Ten
di�erent simulations were therefore performed, each having a di�erent set of input
parameters, permitting us to �nd the settings which best agreed � qualitatively
� with our SLIPI results. Note, however, that the aim of the current study is not
achieving absolute agreement between experiments and simulations � this would
require a more rigorous optical setup � but rather capturing and explaining the
trends previously observed with SLIPI. The explicit values of the input parameters
for the ten cases are given in Table 4.

No 1 2 3 4 5 6 7 8 9 10

w (µm) 50 50 100 100 200 200 300 300 400 400
σy (rad) 0.001 0.005 0.01 0.02 0.01 0.02 0.05 0.1 0.2 0.4

Table 4: The parameters in the comparison between theory and experiment. The
vertical spread, σx, was set to 0.02 for all simulated cases. No 6, which gives the best
agreement between simulations and experiments, is used as baseline in this paper.

Figure 8 displays the agreement between the SLIPI experiments and the ten
simulated cases, compared by estimating the extinction of light along the x-direction
(assuming a single exponential intensity decay). The �fth case gives the overall
best agreement and is therefore referred to as the "baseline". Although deviations
between experiments and simulations are observed even in the baseline case, both
show a similar trend � as the particle size increases, the extinction reduces. Note
that this is not in agreement with the Bouguer-Beer law, which predicts a constant
extinction of 0.045 mm−1 for all particle sizes (dashed line). We consider the ability
to reproduce this somewhat contradicting trend as a validation of the �delity of our
theoretical model and will now study its implications on extinction measurements
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in more detail.
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Figure 8: Comparison between the experiments and the ten simulated cases. To
quantify the agreement, the extinction of light is estimated (in mm−1). The ex-
tinction is estimated for 11 < x < 33 mm, i.e., in the center of the cuvette. The
�fth case agrees best with the experimental data and is therefore set as a "baseline".

Our computations verify that the observed reduced extinction of light intensity
couple to an increased forward-scattering for larger scatterers as was suggested by
Kristensson et al. [7]. However, the model also reveals additional, rather unexpected
factors that will a�ect experimental attempts to measure the extinction of light
caused by scattering, namely the width of the laser sheet, w, and its spread along
the y-direction, σy, (the spread along the x-direction, σx, was found to a�ect the
outcome less). The in�uence of these factors can be seen in Figure 9, showing both
experimental results and simulations for �ve di�erent cases. Case 1 is considered an
ideal measurement situation, having a thin laser sheet with a very low divergence
� conditions which are, in principle, contradictory. The simulations still show a
spread in the decay curves, i.e., larger particles extinct light less e�ectively, yet the
e�ect is not too pronounced and would probably be regarded as a measurement
error if observed experimentally. Case 3 is a more realistic situation, where both the
width of the laser sheet and its spreading along the x direction is slightly increased.
The e�ect seen in case 1 is now augmented, showing a 85% higher intensity at
τ = 2 for the largest particles (25 µm) compared to the smallest one (4.5 µm).
The "extreme" case � case 10 � displays strong deviations from the Bouguer-
Beer law. Interestingly, the decay curves appears to be characterized by two stages;
initially a weak reduction of light intensity is observed, followed by a more rapid one.
Although not as apparent, the e�ect can also be observed in the experimental results.
This characteristic can be understood by studying the incoherent contribution �
the higher order M -terms. The local contribution from each M -term is illustrated
in Figure 10, where the left graphs show the relative strength of each term as a
function of OD. Here it can be observed how the M = 1 term steadily increase
up to OD ≈ 0.6, thus �attening the single exponential decay given by the coherent
M = 0 term. The right graphs in Figure 10 show the contribution (in percentage)
of eachM -term relative to all light being detected. For 4.5 µm, the coherentM = 0
term is dominating, which explains why the model gives a good agreement with
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the classic Bouguer-Beer relation for scattering upon smaller particles. However, as
the particle size increases, higher M -terms are no longer negligible. At OD = 2
in the 25 µm case, the M = 0 term contributes merely with 41% (with respect to
all detected light) and M = 1 with 32%, i.e., their individual contributions are of
similar magnitude and the incoherent contribution (M > 1 terms) is dominating. At
OD = 5, the model predicts the four �rstM -terms to contribute with approximately
equal magnitudes, for this particular case.
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Figure 9: Results from experiments and �ve of the simulations, showing the local
light intensity as a function of optical depth. The trend observed in the SLIPI data
is clearly captured by the model, which further predicts signi�cant deviations from
the Bouguer-Beer law as the divergence as well as the thickness of the laser sheet
increase.

From the results shown in Figure 8 and 9, it becomes clear that forward-scattering
(i.e., the β term) is not solely responsible for the observed deviations from the
Bouguer-Beer law. Experimental factors, such as the thickness and the divergence
of the laser sheet, are also important and will a�ect the outcome of a measurement.
To investigate how these parameters in�uences the extinction of light, the sensitivity
of the intensity w.r.t. the parameters w and σy were calculated, see Table 5. Note
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Figure 10: (Left graphs) The relative strength of each M -term as a function of OD
for three particle sizes. Notice the local maxima of the M = 1 term around OD ≈
0.6, which explains the double-exponential decay observed in both experiments and
simulations. (Right graphs) The contribution of each M -term as a function of OD,
given in percentage. When light scatters upon small particles, the extinction of light
follows the Bouguer-Beer law with su�cient accuracy (94% at OD = 2). This is no
longer true for the 25 µm case, where theM > 1 terms (the incoherent contribution)
are responsible for nearly 60% of the extinction at OD = 2. The calculations are
based on the baseline parameters.
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that the actual value of the derivative depends on the units that is used, which a�ects
the interpretation of the results, and only relative comparisons in each column make
sense.

The analysis shows that the intensity detected at a certain optical depth will
vary depending on the width of the laser sheet and that the e�ect increases both
with optical depth and particle size. Interestingly, the trend is somewhat di�erent
for the σy parameter; larger particles still give a higher variation in intensity at a
given optical depth as σy varies (compared to smaller particles), but, in contrast,
the e�ect is less pronounced at higher optical depths. The results may seem coun-
terintuitive. However, two competing processes a�ect the intensity at a given OD.
The coherent intensity � the Bouguer-Beer law � causes a divergence of the in-
tensity that depends directly on the divergence of the intensity at τ = 0, see (3.4).
This agrees with the intuitive picture, that the intensity diverge more as the OD
increases.

In contrast to this coherent contribution, the incoherent intensity � caused by
multiple scattering � causes the intensity to line up in the forward direction, see
Figure 1. This contribution has the opposite e�ect and reduces the divergence of the
intensity. A closer look at the term I1(0, τ,0) in (3.5) also shows that the parameters
w and σy in (3.6) are in the denominator and the numerator, respectively. The e�ect
of these parameter w.r.t. the variation of the intensity at di�erent OD therefore
acts in the opposite direction. The higher OD, the more dominant the second,
incoherent contribution becomes, see Figure 10, and it will eventually dominate
over the coherent intensity, and the sensitivity w.r.t. variation in σy for higher OD
follow the trend of the incoherent intensity.
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Figure 11: Deviations between the Bouguer-Beer law and the attenuation predicted
by our model, given in percentage. The curves show that measurements performed
on smaller particles agree better with the Bouguer-Beer law whereas measurements
performed on larger particles give a signi�cantly reduced extinction.

5 Discussion and conclusions

In summary, we have conducted SLIPI measurements in several turbid (OD = 2),
scattering environments having monodisperse particle distributions with known con-
centrations. SLIPI was employed to suppress interferences caused by multiply scatte-
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τ d (µm) ∂wI(µm−1) ∂σyI(rad−1)

2 24.90 5.6 1.1
0.5 24.90 2.2 2.8
2 4.52 0.53 0.19
0.5 4.52 0.40 0.62

Table 5: The sensitivity of the normalized intensity I(0, τ,0)/I(0, 0,0) for two dif-
ferent depths (τ) and two particle sizes (d), for the baseline parameters. The in-
tensity is approximated by the �rst two terms in Wentzel summation method, i.e.,
I(0, τ,0) = I0(0, τ,0) + I1(0, τ,0).

red light that otherwise make imaging in such turbid situations di�cult, permitting
us to visualize the local extinction of light from the side. A theoretical model was
developed that calculates how a laser sheet is transferred through such scattering
environments. The model uses the large scatterer approximation to solve the Ra-
diative Transfer Equation, yet has additional constrains to best model the SLIPI
process. Light that diverges from its initial trajectory during a scattering event is
suppressed by the SLIPI technique. However, should the initial trajectory be main-
tained as light scatters upon the spherical, non-absorbing particles, its energy is
una�ected. This e�ect, which in�uences other measurement techniques as well, was
included in the model (see Equation 3.3).

The experiments and the theoretical predictions are in good agreement, both
clearly showing how the current conception of light extinction � the Bouguer-Beer
law � is not completely accurate in these turbid environments from an experimental
perspective. For example, the model shows that the measurable opacity of a homo-
geneous sample with particles of 25 µm in diameter is reduced by roughly 140% at
an (expected) optical depth of 2 � a deviation that should be considered in quan-
titative measurements that are based on light attenuation caused partly or entirely
by scattering. The deviation from the Bougour-Beer law is illustrated in Figure 11.

Another interesting �nding revealed by the model concerns the incoherent contri-
bution, which can be expressed as a summation of in�nitely many terms of varying
local strengths (see Figure 10). These are thus fundamentally di�erent from the
coherent contribution � the Bouguer-Beer relation � that predicts light to decay
as a single exponential. When probing small particles (and/or at a low opacity),
higher order M -terms are negligible, whereas they grow in magnitude for samples
containing relatively large scattering particles. Experimentally, this can be obser-
ved as a reduced extinction initially (contribution from M = 1), followed by a more
rapid decay (see Figure 9).

We have summarized the main discoveries of the current study below:

• Probing turbid, scattering samples having di�erent monodisperse particle sizes
but (theoretically) equal opacities leads to measurable di�erences in terms of
light extinction.

• For a given OD, samples with larger particles appear less opaque, i.e., they
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transmit more light. This, in turn, is bene�cial in terms of visualization, yet
may render di�culties making quantitative assessments.

• The Bouguer-Beer law in its current form does not take the preservation of the
energy in the forward direction into account. Experimentally, unperturbed-
and forward-scattered light can be very di�cult (if possible) to di�erentiate.

• Light energy being preserved in the forward direction is not a unique concern
for SLIPI measurements but should be classi�ed as a general light-matter
interaction feature, a�ecting, in principle, all light-based probing techniques
employed in scattering environments.

• The thickness as well as the lateral divergence of the laser sheet also a�ects
the magnitude of the deviations from the Bouguer-Beer law.

• The thicker the laser sheet, the less the light extinction. In the extreme case
(in�nite thickness), scattering losses are negligible and only extinction due to
absorption can be detected. The magnitude of this e�ect increases with optical
depth.

• The higher the divergence of the laser sheet, the less the light extinction.
However, the magnitude of this e�ect decreases with optical depth.

• The incoherent contribution that maintains the incident trajectory can be
expressed as a sum of in�nitely many terms. The coherent contribution (the
Bouguer-Beer relation) is only the �rst of these terms.

• Di�erent terms contribute di�erently and, for example, the shape of the second
term explains the initially lower extinction that has been observed experimen-
tally.

• The coherent term (M = 0) describes the intensity losses occurring within the
sample whereas the incoherent terms (M > 1) describes the positive intensity
contributions caused by forward-scattering.

To the best of our knowledge, the trends presented in this study have not been
observed in the past, which we believe is due to two factors. First, the deviation from
the Bouguer-Beer law is not observed at low optical depths and imaging through/in
turbid media is associated with a great experimental di�culty. Only a few optical
methods with this capacity do exist, SLIPI being one of them. Ballistic imaging [19],
which is used both for tissue imaging and for spray visualization, has the capability
of visualizing thorough strongly scattering media, yet provides "only" line-of-sight
information. Since the e�ects discovered in this study are occurring locally within
the sample, they are unlikely to be observed with line-of-sight techniques. Second,
measurements based on side-scattering detection of light in scattering environments
are often deteriorated by out-of-plane contributions stemming from multiple light
scattering. The e�ects discovered in this study are probably to minute in comparison
to have been observed using such conventional techniques.
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Despite a generally good agreement between experiments and our theoretical
model, there are, however, several sources of error that should be addressed. First,
since the particle number density varied between samples, so did the accuracy on
the concentration. This could potentially generate similar trends as those observed,
yet we �nd this scenario unlikely. Second, unlike simulations, experimental measu-
rements face obstacles such as a limited dynamic range, detector noise, laser power
�uctuations, etc., which will a�ect the �delity of the measurements and thereby also
the agreement with simulations. Third, the initial �attened decay that we believe
to be coupled with the �rst incoherent term could also be caused by vignetting,
although measures were taken to minimize it (using a small collection angle).

In the companion paper we expand the theoretical model to further include the
sinusoidal modulation in the SLIPI laser sheet intensity pro�le and we compare
simulations with measurements, where the spatial frequency of the modulation is
altered in a controlled fashion. The aim of the study is to investigate if and to what
magnitude the modulation frequency of the SLIPI laser sheet a�ects the �delity of
a measurement of a scattering environment.

Appendix A Laser sheet (Gaussian shape)

This appendix contains the details of the computations of the intensity for an in-
cident intensity at τ = 0 of Gaussian form. Moreover, the phase function is also
assumed to have a Gaussian distribution. These approximations are reasonable for
the problem under consideration.

The intensity of the incident laser sheet at τ = 0 is (no dependence on the
vertical coordinate ηx) simulates a laser sheet of width 2w.

I(η, 0, s) = I0

√
8

π3

1

wσxσy
e−2η2y/w

2−2s2x/σ
2
x−2s2y/σ

2
y

The intensity contains two spread parameters, σx and σy, which models the diver-
gence of the light intensity. The parameter in the vertical direction, σx, has little
e�ect on the �nal result, but is set to a non-zero value to avoid a delta distribution
in the coherent contribution.

The Fourier transform is easily computed, see Appendix B.

I(κ, 0, q) =

∫∫
R2

∫∫
R2

I(η, 0, s)eiκ·η+iq·s dη ds = I02πδ(κx)e
−κ2yw2/8−q2xσ2

x/8−q2yσ2
y/8

The phase function is approximated by a Gaussian function.

p(s) =
2α

πβ2
e−2s2/β2

The Fourier transform of the phase function is

p(q) =
2α

πβ2

∫∫
R2

e−2s2/β2+iq·s ds = αe−q
2β2/8
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The intensity in the s direction, see (3.2), is

I(η, τ, s) =
I0

8π3
e−τ

∫∫
R2

∫ ∞
−∞

e−κ
2
yw

2/8−q2xσ2
x/8−q2yσ2

y/8−iκy(ηy−syτ)−iq·s

· exp

{
α

∫ τ

0

e−(q2x+(qy−κyτ ′)2)β2/8 dτ ′
}

dκy dq

This is the general expression of the intensity in the laser sheet.

A.1 The Wentzel summation method

To proceed with the general case, expand the exponent in a power series.

exp

{
α

∫ τ

0

e−(q2x+(qy−κyτ ′)2)β2/8 dτ ′
}

=
∞∑
m=0

αm

m!
e−mq

2
xβ

2/8

{∫ τ

0

e−(qy−κyτ ′)2β2/8 dτ ′
}m

and evaluate the q and κy integrations in the calculations of the intensity �rst.
This method was suggested by Wentzel [17, 20, 21] in a di�erent application, but is
here used to explicitly calculate an approximate value of the intensity I(η, τ, s). In
essence, the method divides the intensity into an in�nite series of contributions �
the more terms, the more accurate approximation.

I(η, τ, s) =
∞∑
m=0

Im(η, τ, s) (A.1)

where

Im(η, τ, s) =
I0α

m

8π3m!
e−τ

∫ τ

0

dτ1 . . .

∫ τ

0

dτm

∫ ∞
−∞

dκy

∫∫
R2

dq

· e−κ2yw2/8−q2xσ2
x/8−q2yσ2

y/8−iκy(ηy−syτ)−iq·s−mq2xβ2/8−(qy−κyτ1)2β2/8−...−(qy−κyτm)2β2/8

The termm = 0 is assumed to contain no integration w.r.t. the τ variable. Explicitly,
the m = 0 term is

I0(η, τ, s) =
I0

8π3
e−τ

∫ ∞
−∞

dκy

∫∫
R2

dq e−κ
2
yw

2/8−q2xσ2
x/8−q2yσ2

y/8−iκy(ηy−syτ)−iq·s

= e−τI0

√
8

π3

1

wσxσy
e−2(ηy−syτ)2/w2−2s2x/σ

2
x−2s2y/σ

2
y = I((ηy − syτ)ŷ, 0, s)e−τ

The �rst term I0(η, τ, s) shows a damping and a broadening of the intensity at τ = 0.
The m = 0 term is the coherent contribution to the intensity in the laser sheet, and
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the higher order terms, m = 1, 2, . . ., are incoherent, or di�use, contributions. This
zero order term is also the complete solution if there are no scatterers present.

Simplify the exponent in the general expression for m = 1, 2, . . ..

Im(η, τ, s) =
I0α

m

8π3m!
e−τ

∫ τ

0

dτ1 . . .

∫ τ

0

dτm

∫ ∞
−∞

dκy

∫∫
R2

dq

· e−κ2y(w2+(τ21 +...+τ2m)β2)/8−q2x(σ2
x+mβ2)/8−q2y(σ2

y+mβ2)/8−iκy(ηy−syτ)−iq·s+qyκy(τ1+...+τm)β2/4

In the forward direction, s = 0, the expression simpli�es to

Im(η, τ,0) =
I0α

m

8π3m!
e−τ

∫ τ

0

dτ1 . . .

∫ τ

0

dτm

∫ ∞
−∞

dκy

∫∫
R2

dq

· e−κ2y(w2+(τ21 +...+τ2m)β2)/8−q2x(σ2
x+mβ2)/8−q2y(σ2

y+mβ2)/8−iκyηy+qyκy(τ1+...+τm)β2/4

The qx and qy integrations give

Im(η, τ,0) =
I0α

m

8π3m!
e−τ

√
8π

σ2
x +mβ2

√
8π

σ2
y +mβ2

∫ τ

0

dτ1 . . .

∫ τ

0

dτm

∫ ∞
−∞

dκy

· e−κ2y(w2+(τ21 +...+τ2m)β2)/8+κ2y(τ1+...+τm)2β4/(8(σ2
y+mβ2))−iκyηy

and the κy integration entails

Im(η, τ,0) = I(0, 0,0)
αm

m!
e−τAm

∫ τ

0

dτ1 . . .

∫ τ

0

dτm
e−2η2y/am

√
am

(A.2)

where the coe�cients Am are independent of τ1, . . . , τm, given by

Am =
wσxσy√

σ2
x +mβ2

√
σ2
y +mβ2

and where

am = w2 + (τ 2
1 + . . .+ τ 2

m)β2 − (τ1 + . . .+ τm)2β4

σ2
y +mβ2

The sequence {Am}∞m=1 is a decreasing sequence

w = A0 > . . . > Am > Am+1, m = 1, 2, 3, . . .

Note that the factors am are always positive, since (let p = 2 in (C.1), τi ≥ 0,
i = 1, . . . ,m)

m
m∑
i=1

τ 2
i ≥

(
m∑
i=1

τi

)2

, m = 1, 2, . . .

which implies

am ≥ w2 + (τ 2
1 + . . .+ τ 2

m)β2 − m(τ 2
1 + . . .+ τ 2

m)β4

σ2
y +mβ2

= w2 + β2(τ 2
1 + . . .+ τ 2

m)
σ2
y

σ2
y +mβ2

≥ 0
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Moreover, the sequence {am}∞m=1 is an increasing sequence in m if all other parame-
ters are kept �xed. In fact, using the inequality in Appendix C.2 (x = (τ1+. . .+τm)β,
y = τm+1β, and a = σ2

y/β
2) implies

w2 = a0 ≤ . . . ≤ am ≤ am

+ τ 2
m+1β

2 +
(τ1 + . . .+ τm)2β4

σ2
y +mβ2

− (τ1 + . . .+ τm + τm+1)2β4

σ2
y + (m+ 1)β2

= am+1

with equality when (τ1 + . . .+ τm)β = τm+1β(σ2
y/β

2 +m).

A.1.1 Evaluation of terms

The �rst two contributions in the series can be evaluated analytically. The �rst
term, m = 0, in Equation (A.2), is the coherent contribution

I0(η, τ,0) = I(η, 0,0)e−τ

and the second, m = 1, is

Im(η, τ,0) = I(0, 0,0)αe−τA1

∫ τ

0

dτ1
e−2η2y/a1

√
a1

A1 =
wσxσy√

σ2
x + β2

√
σ2
y + β2

and where

a1 = w2 + τ 2
1β

2 − τ 2
1β

4

σ2
y + β2

= w2 +
τ 2

1β
2σ2

y

σ2
y + β2

At the center of the laser sheet, ηy = 0, the term is evaluated in elementary functions,
see Appendix B

I1(0, τ,0) = I(0, 0,0)e−τ
αwσx

β
√
σ2
x + β2

arcsinh(ξ)

where

ξ =
βσyτ

w
√
σ2
y + β2

The third term, m = 2, at the center ηy = 0 is

I2(η, τ,0) = I(0, 0,0)
α2

2
e−τ

wσxσy√
σ2
x + 2β2

√
σ2
y + 2β2

∫ τ

0

dτ1

∫ τ

0

dτ2
e−2η2y/a2

√
a2

where

a2 = w2 + (τ 2
1 + τ 2

2 )β2 − (τ1 + τ2)2β4

σ2
y + 2β2

This term has to be integrated numerically. The integrand is well-behaved and the
numerical integration can easily be performed without any problems.
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A.1.2 Proof of convergence

In this appendix the Wentzel summation method is proved to converge. To accom-
plish this, we utilize that the sequence {am}∞m=1 is an increasing sequence in m if
all other parameters are kept �xed, and that sequence {Am}∞m=1 is an decreasing se-
quence in m. These facts prove the convergence of the Wentzel summation method
in the forward direction s = 0. The intensity at the position ηy and τ is, see (A.2)

I(η, τ,0) = I(0, 0,0)e−τ
∞∑
m=0

Am
αm

m!

∫ τ

0

dτ1 . . .

∫ τ

0

dτm
e−2η2y/am

√
am

In fact, the positive series is bounded, i.e.,

I(η, τ,0) ≤ I(0, 0,0)e−τ
∞∑
m=0

A0
αm

m!

∫ τ

0

dτ1 . . .

∫ τ

0

dτm
1
√
a0

= I(0, 0,0)e−τ
∞∑
m=0

(τα)m

m!
= I(0, 0,0)e−τ(1−α) ≤ I(0, 0,0)

which is a �nite quantity. Since all terms in the Wentzel summation method are
real and positive, this estimate proves the convergence.

A.1.3 Estimate of error

Let ∆M denote the error made in the computation of the intensity in the forward
direction, s = 0, if the �rstM terms are included in the Wentzel summation method.
Since the sum in (A.1) converges, the error is

∆M = I(0, 0,0)e−τ
∞∑

m=M+1

αm

m!
Am

∫ τ

0

dτ1 . . .

∫ τ

0

dτm
e−2η2y/am

√
am

where

am = w2 + (τ 2
1 + . . .+ τ 2

m)β2 − (τ1 + . . .+ τm)2β4

σ2
y +mβ2

The largest error occurs at ηy = 0.

∆M ≤ I(0, 0,0)e−τ
∞∑

m=M+1

αm

m!

wσxσy√
σ2
x +mβ2

√
σ2
y +mβ2

∫ τ

0

dτ1 . . .

∫ τ

0

dτm
1
√
am

For �xed m apply the inequality in Appendix C with p = 2. The result is

am = w2 + β2
(τ 2

1 + . . .+ τ 2
m)(σ2

y +mβ2)− (τ1 + . . .+ τm)2β2

σ2
y +mβ2

≥ w2 + (τ 2
1 + . . .+ τ 2

m)
β2σ2

y

σ2
y +mβ2

=
β2σ2

y

σ2
y +mβ2

(
w2(σ2

y +mβ2)

β2σ2
y

+ τ 2
1 + . . .+ τ 2

m

)
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and the error is

∆M ≤ I(0, 0,0)e−τ
∞∑

m=M+1

αm

m!

wσx

β
√
σ2
x +mβ2

×
∫ τ

0

dτ1 . . .

∫ τ

0

dτm
1√

w2(σ2
y+mβ2)

β2σ2
y

+ τ 2
1 + . . .+ τ 2

m

Estimate the denominator from below.

∆M ≤ I(0, 0,0)e−τ
wσx

β
√
σ2
x + (M + 1)β2

∞∑
m=M+1

αm

m!

× τm−M
∫ τ

0

dτ1 . . .

∫ τ

0

dτM
1√

w2(σ2
y+(M+1)β2)

β2σ2
y

+ τ 2
1 + . . .+ τ 2

M

or

∆M ≤ I(0, 0,0)e−τ
wσx

β
√
σ2
x + (M + 1)β2

τ−M

×
∫ τ

0

dτ1 . . .

∫ τ

0

dτM
1√

w2(σ2
y+(M+1)β2)

β2σ2
y

+ τ 2
1 + . . .+ τ 2

M

∞∑
m=M+1

(ατ)m

m!︸ ︷︷ ︸
eατ−

∑M
m=0

(ατ)m

m!

It is easy to prove that this error, viewed as a function of τ , attains its maximum
value at τ = τ0.

Appendix B Useful integrals

A few of the pertinent integrals are listed here, see page 337 (3.323) in Ref [22].∫ ∞
−∞

e−2x2/a2±bx dx = a

√
π

2
ea

2b2/8, Re a2 > 0

Another useful integral is [22, page 94 (2.261)].∫
dx√

a2 + b2x2
=

1

b
arcsinh

(
bx

a

)

Appendix C Inequalities

A few important inequalities are employed in the paper. In this appendix these
inequalities are proved.
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C.1 Inequality 1

Let 1 ≤ p <∞ and m a positive integer. Then(
m∑
i=1

xi

)p

≤ mp−1

m∑
i=1

xpi , x ∈ Rm
+ (C.1)

This inequality is proved by induction in m. For m = 1 we have the trivial
inequality

xp1 ≤ xp1

Next assume the inequality is correct for m = 1, 2, . . . , k, and prove the inequality
for m = k + 1. To this end, de�ne

f(x) = (k + 1)p−1
k+1∑
i=1

xpi −

(
k+1∑
i=1

xi

)p

, x = (x1, x2, . . . , xk+1) ∈ Rk+1
+

and prove that f(x) ≥ 0 in x ∈ Rk+1
+ . Especially, due to the induction assumption

kp−1

k∑
i=1

xpi −

(
k∑
i=1

xi

)p

≥ 0 (C.2)

A local minimum in Rk+1
+ is characterized by

∂f(x)

∂xj
= p

(k + 1)p−1xp−1
j −

(
k+1∑
i=1

xi

)p−1
 = 0, j = 1, 2, . . . , k + 1

which implies

(k + 1)xj =
k+1∑
i=1

xi, j = 1, 2, . . . , k + 1

or
x1 = x2 = x3 = . . . = xk+1

at which f(x) = 0. Moreover, at the boarder of the domain Rk+1
+ , we have for p ≥ 1

f(xj = 0) = (k + 1)p−1
k+1∑
i=1
i 6=j

xpi −

(
k+1∑
i=1
i 6=j

xi

)p

, j = 1, 2, . . . , k + 1

which due to the induction assumption, (C.2), is guarantied to satisfy

f(xj = 0) ≥ 0, j = 1, 2, . . . , k + 1

since (k + 1)p−1 > kp−1. The function f(x) ≥ 0 everywhere in Rk+1
+ , and the

inequality (C.1) is proved.
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C.2 Inequality 2

A second inequality is also used. Let x, y, a ≥ 0, m = 1, 2, 3, . . ., and de�ne

y2 +
x2

a+m
− (x+ y)2

a+m+ 1

=
y2(a+m)(a+m+ 1) + x2(a+m+ 1)− (x2 + y2 + 2xy)(a+m)

(a+m)(a+m+ 1)

=
y2(a+m)2 + x2 − 2xy(a+m)

(a+m)(a+m+ 1)
=

(y(a+m)− x)2

(a+m)(a+m+ 1)
≥ 0
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