LUND UNIVERSITY

Algebraic System Theory as a Tool for Regulator Design

Astrém, Karl Johan

Published in:
Acta Polytechnica Scandinavica: Mathematics and Computer Science Series

1979

Document Version:
Publisher's PDF, also known as Version of record

Link to publication

Citation for published version (APA):
Astrom, K. J. (1979). Algebraic System Theory as a Tool for Regulator Design. Acta Polytechnica Scandinavica:
Mathematics and Computer Science Series, 52-65.

Total number of authors:
1

General rights

Unless other specific re-use rights are stated the following general rights apply:

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.

* You may not further distribute the material or use it for any profit-making activity or commercial gain
* You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00


https://portal.research.lu.se/en/publications/cb73d5ab-1309-40d3-b8d7-f74c4cc31c6e

ALGEBRAIC SYSTEM THEORY AS A TOOL FOR
REGULATOR DESIGN

BY

KARL J. ASTROM

Reprint from Acta Polytechnica Scandinavica
Ma 31, Helsinki 1979, p. 52—65




ALGEBRAIC SYSTEM THEORY AS A TOOL FOR
REGULATOR DESIGN

BY

KARL J. ASTROM

Reprint from Acta Polytechnica Scandinavica
Ma 31, Helsinki 1979, p. 5265




Algebraic system theory as a tool for regulator design

KARL J. AsTROM

Abstract

When the characteristics of a system, its environment and the specifications are
given in terms of external models it is very natural to use algebraic system theory to
design control systems. Different problems of this type are discussed in the paper. It
is shown that many design problems can be solved in a uniform, simple and direct
way using algebraic system theory. Relations to other methods of solving the design
problem are also discussed. The importance of Blomberg’s contributions to the pole-
zero cancellation problem is also discussed.

1 Introduction

My first contacts with algebraic system theory were in basic courses on Heaviside
operator calculus, Laplace transform theory and linear control theory. I believe that
my reactions were fairly typical for a genetration who learned automatic control in a
similar way. Initially it was very pleasing to see how simple it was to reduce analysis
and design of control systems to pure algebra. It was also interesting to see how simple
the algebraic manipulations were and how easy it was to get insight into properties of
control systems using the algebraic tools. As more familiarity about the algebraic methods
were obtained there was an increasing dissatisfaction about certain matters that remained
obscure. The problem of cancellation of poles and zeros was the heart of the difficulties.
It seemed $o strange that pure algebra had to be augmented either by analysis or by
rules which at that time seemed rather arbitrary in order to get a full picture of linear
control systems. Intellectually it was also very dissatisfying to resort to nonalgebraic
methods to obtain a sensible theory. Gradually it became clear that Laplace transform
algebra was not the right framework for linear systems problems. ¢

State space theory, particularly the notions of reachability and observability and KAL-
MAN's decomposition theorem [1] and [2], give a good insight into the nature of the
pole-zero cancellation problem. It is, however, also possible to understand the problem
in other ways. I remember my first scientific contacts with Hans Blomberg in the early
sixties very well, Blomberg had an unusually clear picture of the difficulties of pole-zero )
cancellation and also a very good feel for how the Laplace-transform algebra should be
modified to obtain the desired results. Intuitively the idea is to describe linear systems
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by polynomials but not to allow division. An appropriate mathematical structure is to in-
terprete the signal space algebraically as a module over the ring of polynomial operators.
The germ of the idea is expressed in [3]. It has been worked out in fine detail in many
of Blomberg’s later works, [4, 5, 6]. A modification is to allow division of polynomials
whose factors correspond to well damped modes [7].

The purpose of this paper is to show how several design problems for control sys-
tems can be solved using algebraic system theory. The approach given here is probably
the most natural one if the system to be controlled is characterized as a rational trans-
fer function. My own first work along these lines was the development of the minimum
variance control law [8]. In that case a model of a system and its environment were
given in transfer function form. A model of this form was actually obtained from
system identification. To determine a feedback a realization of the transfer function
was first introduced and the solution was then obtained by applying standard state
space theory. It was interesting to see that the problem could be solved in a much
simpler way by direct application of algebraic methods to the input output model.

In this paper it is shown how several design problems can be formulated and solved
‘using pure algebraical polynomial manipulation. The discussion includes design of
observers, servos and regulators. It is also shown how the algebraic methods relate
to other design techniques.

2 Preliminaries

The notations used will now be discussed together with the basic assumptions.
Lower case letters u, x, ¥, z denote signals i.e. real time functions. Time can be
either the real numbers (the continuous time problem) or the integers (the discrete
time problem). Upper case letters A, B, C etc. denote polynomials.

Dynamical systems are represented as

Ay = Bu ¢y

where the independent variable of the polynomials is a differential operator p for con-
tinuous time problems and a forward shift operator ¢ for discrete time problems. For
discrete time systems it is natural to require that

deg B< deg 4 2)

which means that the discrete time system is causal. For continuous time systems the
inequality (2) means that the input output relation does not contain any pure deriva-
tives. Since there are problems where it is meaningful to have systems which are differ-
entiators the condition (2) can not always be imposed on continuous time systems.
Let Z be a region of the complex plane which corresponds to sufficiently well

damped modes. For continuous time systems Z can be chosen as a sector in the left
half plane. For discrete time systems Z can be chosen as a region well inside the unit
disc. Introduce a ring ® of rational functions of the form B/A where the denominator
polynomial has all its zeros in Z. The signal space is taken as a module M over R .
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This means for example that if y e 9 and
Ay =0 (3)

then y = 0 if the polynomial A has all its zeros in Z.

Equation (3) represents a differential equation in the continuous time case and a
difference equation in the discrete time case. In both cases the solution is a sum of
decaying exponentials. The rate of decay is determined by the choice of the region Z.
The chosen signal space is a convenient way to formalize the statement that solutions
of differential equations that decay sufficiently fast are regarded as zero or equivalently
that it is possible to cancel factors which correspond to sufficiently well damped modes
The module introduced here is a slight generalization of Blomberg’s modules. A formal
treatment is given in [7].

3 Observers

Consider a system with one input signal « and two output signals Yy and z. The
input signal « is known and the output signal y is measured. It is desired to determine
the output signal z. Let the signals be related through

Az = By (4)

Cy =Dz (%)
where 4, B, C and D are polynomials in the differential operator p or the shift operator
q. The pairs (4, B) and (C, D) are assumed to be coprime. It is assumed that the poly-
nomials 4 and D do not have any common factors. If 4 and D have common factors
the signal z is not observable from ¥ and the stated problem can not be solved. Strictly
speaking it is sufficient to assume that 4 and D are coprime in . This means that z

is detectable from y.
Since all signals are scalars we have

ACy = BDu. ©6)
It is assumed that
deg B < deg A (7
and
deg BD < deg AC. (8)
T

o determine the signal z from the signals « and y the following estimate is formed

AZ = Bu + (1/G)H (Cy — D3)
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where G and H are polynomials. This equation is the result obtained if 2 is determined
from the model (4) with feedback from the output signal. The equation can be written
as

(GA + HD) z = GBu + HCy. 9)

Notice that the same result is obtained if the signal z is predicted from (§) with a
feedback from (4) i.e.

D? = Cy + (1/H)G(Bu — AZ2).

Equation (9) is called an observer for 2. It is a dynamical system with « and y as
inputs. The output z will be close to z as is seen in the following.

Analysis

Having obtained an observer its properties will now be analysed. Equations (4), (5)
and (9) give

(GA + HD) 2 = GAz + HDz = (GA + HD) z.
Hence
(GA + HD) (z —2) = 0.
This shows that if the polynomial
F=GA4 +HD (10)
is stable then the observer (9) will give an estimate Z that converges to z as time goes

to infinity. Moreover if z = 7 over a time interval then Z will equal z for all times and
all input signals.

Design of observers

If A and D are coprime there always exists a solution of equation (10). This solu-
tion is unique if it is required that

deg H < deg A. (11)
It is reasonable to require that

deg GB < deg (GA + HD) (12)
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and
deg HC < deg (GA + HD). (13)

For discrete time systems this means that the observer (9) is causal and for continuous
time systems it means that the observer does not use derivatives. Equation (12) always
holds because of (7). )

It follows from (11) that (13) is always satisfied if

deg F = deg AC— 1. (14)

This means that the degree of the observer polynomial F is chosen as the degree of
the order of the system (6) minus one. For specific A and C it may actually be possible
to choose an observer polynomial of lower degree.

The design of the observer (9) is straightforward. The observer polynomial is first
chosen subject to the constraint (14). Equation (10) is then solved for G and H subject
to (11).

If only detectability is assumed 4 and D have a common factor 4; in Z. The prob-
lem can still be solved in this case provided that the observer polynomial is chosen so
that it is divisible by 4.

4 Pole and zero placement

The problem of designing a servo with a given closed loop transfer function will now
be described and solved.

Formulation

Consider a process characterized by the rational operator
¢ =B (15)
where 4 and B are polynomials. It is assumed that 4 and B are coprime and that
deg B < deg A4. (16)

It is desired to find a controller such that the closed loop is stable and that the
transfer function from the command input «_ to the output is given by

Gy =7% (17)

where P and Q are coprime and

deg P — deg Q > deg A — deg B. (18)
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Design procedure

A general linear regulator can be described by
Ru = Tu, — Sy. (19)

The regulator can be thought of as a combination of a feedback having the transfer
function —S/R with a feedforward with the transfer function T/R. The closed loop
system is then characterized by the operator

TB

C=4R+Bs

Since G should equal the desired closed loop response Gy, given by (17) we get

8 @
AR +BS P’ (20)
The design problem is thus equivalent to the algebraic problem of finding polyno-
mials R, S and T such that (20) holds. It follows from (20) that factors of B which
are not also factors of Q must be factors of R. Factors of B which are not desired

closed loop zeros are thus cancelled by corresponding factors of R. Factor B as
B=BTB", 1)

where all the zeros of BT are in Z and all zeros of B~ outside Z. This means that all
zeros of BT correspond to well damped modes and all zeros of B~ correspond to
unstable or poorly damped modes.

A necessary condition for solvability of the servo problem is thus that the specifi-
cations are such that B divides Q in & ie.

0=0,B". 22)

Since deg P is normally less than deg(4R + BS) it is clear that there are factors in
(20) which cancel. In state space theory it can be shown that the regulator (19) cor-
responds to a combination of an observer and a state feedback. See [9]. It is natural
to assume that the observer is designed in such a way that changes in command signals
do not generate errors in the observer. This means that the factor which cancels.in the
right hand side of (20) can be interpreted as the observer polynomial ¥.

The design procedure can be formulated as follows.

Data: Given the desired response specified by the polynomials P and Q, subject to
deg A = deg P and the conditions (18), (22), and the desired observer polynomial F.
Step 1: Solve the equation

AR, + B~S =PF (23)

with respect to R, and S.
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Step 2: The regulator which gives the desired closed loop response is then given by
(19) with

R=R,B" (24)
and

T = FQ,. (25)
The equation (23) can always be solved because it was assumed that A and B were

relatively prime. This implies of course that 4 and B~ are also relatively prime. Equa-
tion (23) has infinitely many solutions. The unique solution determined by

deg S < deg 4 (26)

is chosen here. Since deg P = deg A4 it then follows that deg R; = deg F. If the observer
polynomial is chosen in such a way that

deg F = deg A — deg BT — 1 Q7)
then

degR =deg A —1>degsS
(28)
deg T=degA — 1 =degR.

This means in the continuous time case that the regulator does not include any
pure derivatives and in the discrete time case that the regulator is causal. Notice that
in special cases the regulator may still have the property (28) even if (27) does not
hold. Also notice that the choice (27) corresponds to a Luenberger observer in the
state space interpretation. Further discussions including examples are found in [9].

Analysis
A direct calculation gives
B FOB'BT  FOBT o b
AR +BS ~ ptur +87s) PF P

R s

which shows that the regulator gives the desired closed loop response. Notice that in
this calculation we have divided with the factors B and F. This is permitted since it
was assumed that all their zeros are well damped.

A direct calculation shows that the closed loop system has the characteristic poly-
nomial BT FP. The polynomial B has all its zeros in Z by definition. Since the
observer polynomial F and the polynomial P were chosen to have all their zeros in
Z it follows that the closed loop system has all its poles in Z.
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Interpretation as model following
The results obtained will now be used to give an interpretation of the regulator
(19). It follows from (23), (24) and (25) that
T FQ, B (AR, + B7 Y, _AQ1 +SB”Q1 4 Q+§ 0
R ptR, PBR, gtp B'Rrp B P R P
The feedback law (19) can thus be written as
A4 S
=2y, T -7 (29)
where
ye =L, (30)

The signal y, can be interpreted as the output obtained when the command signal
u, is applied to the model Q/P. When the regulator (19) is re-written as (29) it is clear
that it can be thought of as composed of two parts, one feedforward term (4/B)y, =
(A/BYQ/P)u,and one feedback term (S/R)(y, — »). The feedforward is a combination
of the ideal model and an inverse of the process model. Notice, however, that the sys-
tem A/B is not realizable although the combination AQ/(BP) is realizable because of
(18). The feedback term is obtained by feeding the error-y, — y through a dynamical
system characterized by the operator S/R. It is thus clear that the regulator can be in-
terpreted as a model following servo.

The MISO regulator

So far it has been assumed that there is only one measured output signal. In practice
it often happens that there are additional signals which are measured and that the
regulator can be simplified and improved by using these additional signals. This will in
general require a complete multivariable theory. It will be shown, however, that the
problem can also be handled by marginal extensions to the single output theory. Let
it be assumed that a regulator has been determined for the case of one measured
output ¥ and that the feedback operator S/R has been determined. Furthermore
assume that one additional measurement y, is available. Let this signal be related to

v as

=g (31
where D, and B, are coprime. It is easy to show that B; must divide B in (15). To
find a feedback from y and y, which is identical to the signal (S/R)y the polynomial

R is first factored as

R=RR, ~ (32)
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It is then attempted to find two polynomials S; and S, such that

S, S, (S_1+5201)y
R =R TR T \R, "R,

If this is possible B; must divide §,. Hence

S, = B,S, (33)
and §; and S, satisfy
S =S8R, +S8;D,R,. (34)

This equation can be solved with respect to S; and S5 if D;R, and R, are relatively
prime. Since the factoring (32) may be done in many ways there may be several solu-
tions. The choice among the different possibilities can be made with respect to simplic-
ity, disturbance sensitivity, and causality.

It is possible to proceed recursively in a similar way if there are several measured
signals. The regulator obtained when this procedure is used is of the form

T Sy S S3
=ZuU, — 5V 5 Vs, 5 Vst
“=RU TR TR R, V3 (35)
where
R =R.R,R,...

This regulator is called the MISD regulator because it has many inputs, u, »,, ¥,,...,
and a single output u. An implementation of the MISO regulator with a highly interactive
operator communication is described in [10].

5 Linear quadratic control

In the problems discussed in Section 4 the desired closed loop polynomial P and
desired- observer polynomial F are considered as given. There are many ways to deter-
mine P and F. They can e.g. be regarded as tuning parameters which are adjusted to
obtain a suitable performance or the polynomial P can be chosen from tables of stand-
ard forms. Another possibility is to formulate the control problem as an optimization
problem. The polynomials P and F can then be determined from the optimization
criterion. This problem will be briefly discussed in this section.

Preliminaries

It is first assumed that the process to be controlled is governed by

Ay = Bu (36)
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and that the control problem is formulated as to minimize the quadratic criterion
7 =[2® + pur()] e (37)

It is well known [11] that the solution of this optimization problem gives a closed
loop system whose characteristic polynomial P is given by

PP, = pAA, + BB, (38)
where A, denotes the conjugate of the polynomial 4. If

A(X) = apx™ + a;x* 1 + . +ay
then the conjugate polynomial is defined by

4y +ax+.. tax" discrete time systems

A (x) = {

A(—x) continuous time systems.

The design of a regulator which minimizes (37) is thus reduced to the following
algebraic problems:

— Find a polynomial P which satisfies (38). This is called spectral factorization
problem.

— Apply the algebraic design procedure given in Section 4.

Notice that in the second step it is necessary to choose the observer polynomial and
to choose an appropriate solution of the equation (23). It will next be shown how the
observer polynomial can be determined if mathematical models of the disturbances are
included.

Deterministic control

Assume that the process to be controlled is described by
Ay = Bu + Ce 39)

where e is an impulse disturbance. and C a stable polynomial. Let the criterion be to
minimize (37).

Representing the signals as infinite power series and invoking Parseval’s theorem
the criterion (37) can be written as

1

T= o

dz
f(yy* +pl/lLl*)—2‘ .
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Using (36) the integrand can be written as
Bu + Ce)(Bu + Ce PP uu, + (CB, + C,Bue, + CC,ee
[ . * + _ *
- AA, puth, = AA,

where P is stable and given by (38). To complete the squares the polynomial § defined
by

PS, + P,S = CB, + C,B (40)

is introduced. Then

PP uu, + PS,ue, + P.Su,e + CC,ee,
r= AA, -

(Pu + Se)(Pu + Se), + (CC, — SS,)ee,
B AA,

The loss function (37) is thus minimized for the control signal

”

u= —}%e. 41

This is an open loop control or a control program. To find the corresponding control
law introduce this signal into (39). Hence

APy = (CP — BS)e.
The polynomial CP — BS is divisible by 4. Hence
AR = CP - BS
or
AR + BS = CP. (42)
This implies
y=pe
The feedback law is thus

S

RV (43)

u=—-

It is easy to find all solutions to (42). The particular solution which also satisfies
(40) is given by
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deg S = deg B + deg C — deg P. (44)
If the polynomial C is not stable it can be factored as
c=crc
provided that it has no zeros on the critical line. Equation (42) is then replaced by
AR +BS=CTCP (45)

and the optimal feedback is given by (43).

The solution of the factorization problem is not unique, if P; is a stable solution
then zXP, is also a solution. The integer k can then e.g. be chosen as the smallest integer
which gives a causal feedback or as the feedback which does not include any derivatives.

Notice that the solution can also be interpreted as follows. Choose the observer poly-
nomial C and the polynomial P as the solution to the factorization problem. Then apply
the design procedure of the previous section with Bt = 1, where the appropriate solu-
tion to equation (23) is determined by condition (44).

Stochastic control

In this case it is assumed that the process to be controlled is described by (36) where
e is a white noise stochastic process and that C is stable. The purpose of control is to
minimize

E(y? + pu?) (46)

in steady state. It is straightforward to show that the control law (43) minimizes (46).
For discrete time minimum variance control we have p = Q and

P = ydegd— degB” p—pt

See [12].

6 Conclusions

It has been shown that algebraic system theory is a simple and convenient tool for
solving several control system design problems. Using the algebraic tools the design
problems are simply reduced to polynomial manipulation. In particular it was demon-
strated that design of observers and regulators and servos could be reduced to the
soiution of the diophantine equation

AX+BY=C (47)
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and that linear quadratic optimal control problems can be reduced to solving the
factorization problem

PP, = pAA, + BB,. (48)

Relations between the algebraic methods and state space theory has also been given.

For further discussions see [6, 7, 9, 13—17].
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