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Abstract

This paper presents a novel adaptive autotuning strategy for controlling the pH in microalgae raceway reactors, a
critical variable in optimizing biomass productivity under dynamic environmental conditions. The method expands on
existing relay-based autotuning principles, tailored to suit the seasonally variable dynamics of microalgae cultivation
systems influenced by CO, injection and photosynthetic activity. The novelty of the proposed approach relies on
the use of a relay-based autotuning technique that applies the relay signal to the setpoint and not to the control
signal. This method allows for seamless integration into existing control loops without manual recalibration across
seasons. Moreover, the method is coupled with a classification algorithm to assess weather conditions, enhancing
the reliability of autotuning under fluctuating solar radiation. Using the developed autotuning method, low-order
models are identified, and the autotuner is coupled with a Proportional-Integral controller plus a static feedforward
compensation to counteract solar radiation disturbances. The designed algorithm has been successfully evaluated
for five consecutive days in a real semi-industrial-scale raceway reactor and compared with a classical PI with a
feedforward strategy. The results demonstrate reliable performance across clear and cloudy conditions, offering a

scalable and automated solution for adaptive pH regulation in microalgae production systems.

Keywords: Autotuning, Process control, pH regulation, Microalgae production

1. Introduction

In recent decades, microalgae have garnered increas-
ing attention for their potential to address critical chal-
lenges related to climate change. Their applications
span diverse sectors, including food, energy, wastewater
treatment, and carbon dioxide fixation [1, 2]. Microal-
gae offer a sustainable solution, as they do not compete
with food crops for arable land, exhibit high oil con-
tent suitable for biofuel production, can be cultivated in
various aqueous media (including wastewater), generate
oxygen, and effectively capture CO; [3].

However, the large-scale cultivation of microalgae
presents several control challenges. Efficient microal-
gae production relies on precisely regulating key culture
variables within the cultivation system. These variables
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include pH, dissolved oxygen, culture temperature, and
nutrient levels [2, 4, 5].

Among these, pH is particularly critical, as it pro-
foundly influences the growth, metabolism, and avail-
ability of essential nutrients in the microorganisms. In
[6] and [7], it was proven that a lack of pH control leads
to significantly less favourable conditions. Uncontrolled
pH results in a decrease in inorganic carbon availability,
leading to minimal biomass productivity. Keeping pH
under control is essential to avoid carbon limitation and
increase productivity. In addition to directly impact-
ing carbon metabolism and productivity, pH control is
crucial to ensure a stable culture, reducing the risk of
system collapse and cell death due to disturbances. It
also influences the microbial community, promoting the
growth of the desired algal strain, reducing contamina-
tion by fungal predators and rotifers, impacting the ac-
tivity of nitrifying bacteria, and enhancing the elimina-
tion of pathogens through synergy with solar radiation
and temperature. Therefore, implementing pH control
strategies is indispensable to overcoming the limitations
of open raceway systems and improving the efficiency
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and sustainability of large-scale microalgae production.

This wvariable is characterized by having com-
plex dynamics that can have significant variations.
These changes can arise from diurnal cycles, seasonal
changes, and fluctuations in culture conditions such as
biomass concentration and culture state. For instance,
the rate of photosynthesis, and consequently the rate
of pH increase, varies significantly throughout the day,
with higher rates observed during periods of intense so-
lar radiation. Similarly, seasonal changes in solar irra-
diance and temperature can alter the overall metabolic
activity of the microalgae culture, impacting both the
consumption of CO; and the efficiency of CO; injec-
tion for controlling pH. These factors contribute to the
time-varying nature of the system’s dynamics, making it
challenging to maintain optimal conditions [8]. There-
fore, a key challenge in controlling microalgae cultiva-
tion systems is obtaining accurate and reliable models,
but the inherent complexity and variability of biological
processes hinder this identification.

In the last decades, several efforts have been made in
the scientific community to obtain these models [9, 10].
This has resulted in a wide variety of descriptions, with
different complexities, advantages, and disadvantages.
The simplest models that can be found are linear mod-
els, as developed in [9], which relate the pH with the
CO; injection and the solar radiation through low-order
transfer functions. However, they frequently fail to cap-
ture the full complexity of the system dynamics, partic-
ularly in the presence of nonlinearities and time-varying
parameters. Consequently, controllers designed based
on these models may exhibit suboptimal performance
under changing operating conditions. Furthermore, in
[11], it is shown that the parameters of these simple
models strongly depend on the culture conditions. Other
types of models that can be found in the literature are
data-based ones, with more complex structures. They
can consist of machine or deep learning techniques,
such as the artificial neural networks developed in [12].
These types of models require a large amount of data
with a wide variety of conditions in order to obtain
an accurate description of the system. Lastly, first-
principles-based models like the one developed in [10]
are the most accurate, allow a deep comprehension of
the system, and are very suitable for process optimiza-
tion and development of simulators. However, they in-
clude several parameters whose values are hard to esti-
mate accurately and can make the design of controllers
difficult.

The limitations of these types of models highlight
the need for control strategies that can effectively han-
dle the inherent uncertainties and time-varying dynam-

ics of microalgae cultivation systems. Adaptive con-
trol techniques offer a promising solution to this chal-
lenge. Unlike traditional control methods with fixed
parameters, adaptive controllers can maintain perfor-
mance even when the system’s behaviour changes over
time [13]. This is particularly advantageous in microal-
gae cultivation, where environmental conditions, cul-
ture characteristics, and system parameters vary signif-
icantly. In previous works, adaptive control techniques
were developed for this problem. In [11], an adaptive
control algorithm based on regression-tree models was
developed for pH, where the controller parameters were
adapted based on the weather and reactor conditions. In
[14], a hybrid MRAC algorithm was instead tested in
a raceway reactor to demonstrate how the performance
could be improved by adapting the setpoint to the con-
trol loop. Although those solutions demonstrated that
adaptive control approaches can highly contribute to im-
proving the performance of the pH control, they pre-
sented significant limitations with respect to the need of
a large dataset to train the model in the case of [11], or
the sensitivity of the tuning parameters in the MRAC
algorithm in [14].

Another approach to adaptive control involves the use
of autotuners, which can contribute to reducing the limi-
tations of the already tested solutions mentioned above.
An autotuner is an algorithm that automatically tunes
the parameters of a controller. Traditional methods for
tuning controllers often rely on manual adjustments or
offline experiments, which can be time-consuming and
require specialized expertise. Autotuners, on the other
hand, automate the tuning process, reducing the need
for manual intervention and improving the efficiency of
controller implementation. The relay autotuner method-
ology, first introduced in [15], is a well-established
technique for automatically tuning controllers. It in-
volves introducing a relay feedback into the control
loop, which induces oscillations in the system output.
By analyzing these oscillations, the autotuner can esti-
mate key parameters of the system dynamics, such as
the static gain and time constant, and use this informa-
tion to tune the controller parameters.

In this work, two different autotuning control strate-
gies are studied: the first one is the classical approach,
in which the controller is disconnected when the identi-
fication experiment is performed, and the relay signal is
directly applied to the control signal. The second strat-
egy introduces a novel approach to this technique by
applying the relay signal to the setpoint and maintain-
ing the controller working during the experiment. No-
tice that this approach allows a better management of
initially unknown model parameters and reduces sensi-



tivity with respect to disturbance effects. Both meth-
ods were implemented in the real facilities and, while
proving in both cases a proper excitation of the system,
the novel approach presented advantages over the clas-
sical procedure. Maintaining the controller plugged in
allows a straightforward extrapolation of the method to
facilities with different configurations, can properly ex-
cite the system during a wider variety of conditions, and
dampens the oscillations in pH measurement, allowing
a better model fit.

Moreover, the control strategy designed in this work
includes a proportional-integral (PI) controller with a
static feedforward to compensate for part of the solar
radiation’s effect on pH. Unlike previous works [11],
where only the PI controller parameters are adapted, this
work also suggests a simple adaptation for the feedfor-
ward gain, obtaining an enhanced performance of the
autotuning method.

The controller was designed and implemented in a
real, semi-industrial-scale raceway reactor, demonstrat-
ing a reliable algorithm for retuning the controller’s pa-
rameters without requiring expert intervention.

2. Materials and methods

2.1. Facilities

During the development of this work, two raceway
reactors located at the IFAPA (Andalusian Institute for
Agricultural, Fisheries, Food and Organic Production
Research and Training) research center, next to the Uni-
versity of Almeria, Spain, were used (see Figure 1).
Both reactors are built the same, and are located next to
each other to ensure the same environmental conditions.
They consist of two channels, each measuring 40 meters
in length and 1 meter in width, connected by a U-shaped
bend, resulting in a total area of 80 square meters. While
their maximum depth is 30 centimeters, studies suggest
optimal production is obtained when working at a depth
of 15 centimeters [16].

Three different components can be distinguished in
raceway reactors: (i) a paddlewheel that mixes and im-
pulses the culture along the channels, (ii) a sump right
after the paddlewheel, where CO, and air injection take
place to regulate pH and dissolved oxygen, and (iii) the
channels through which microalgae circulate while ab-
sorbing sunlight and performing photosynthesis.

The system is fully equipped with sensors and oper-
ates autonomously. With a sample time of 1 second, ev-
ery variable involved in the process (pH, dissolved oxy-
gen, culture temperature, etc.) and weather conditions
(solar radiation, ambient temperature, relative humidity,
etc.) are recorded.

Figure 1: Raceway reactors located at the IFAPA research center.

The studied strain is Scenedesmus, which is well
adapted to the environmental conditions found in South-
ern Spain. It exhibits rapid growth and can thrive across
a diverse range of temperature and pH levels [6, 17].
Cultivation of microalgae is done in freshwater, with nu-
trients being supplemented throughout the dilution pro-
cess.

2.2. pH control problem

The pH is mainly influenced by CO, injection and
solar radiation, with their effects being opposite. Upon
injecting CO,, pH starts decreasing. However, this ef-
fect is not noticed on the variable’s measurement until
a characteristic delay has elapsed. This time delay is
caused by the distance between the sump where the CO,
is injected and the sensor where the pH is measured, lo-
cated at the end of the channel. Conversely, cessation of
CO; injection allows the photosynthesis of microalgae
to raise the pH [18]. Both dynamics are significantly
influenced by environmental factors like sunlight, tem-
perature, and culture conditions, including biomass con-
centration and culture depth.

These dynamics can be easily distinguished in Fig-
ure 2, where an on/off controller with hysteresis is im-
plemented to control pH with CO, injection. The first
subplot shows the measured pH in blue, and the set-
point and hysteresis values in a dashed line. The sec-
ond and third subplots show the CO, flow injection, in
L/min, and the PAR radiation, in W/, respectively. It
can be observed that pH starts surging as soon as photo-
synthetically active radiation (PAR) is available. Once
its value has exceeded the value of the upper hysteresis
(8.3), CO; is injected into the reactor. The pH contin-
ues to grow until the time delay (5 minutes) has passed,
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Figure 2: pH on/off controller with hysteresis. The first subplot shows the measured pH in blue, and the setpoint and hysteresis values in a dashed
line. The second and third subplots show the CO, flow injection and the PAR radiation, respectively. A great variation in the pH’s dynamic response

can be observed throughout the day.

when it starts declining. Gas injection is held until the
inferior hysteresis (7.7) is reached, at which instant it
ceases. Once again, after the time delay has elapsed, the
pH reaches a minimum and starts increasing thanks to
the photosynthetic activity performed by microalgae.

It can also be noticed that the slope of the pH curve
varies significantly throughout the day. It becomes clear
that in the middle of the day, when solar radiation is
higher, and so is photosynthetic activity, it takes longer
to drop pH than in the first and last hours. On the other
hand, pH rises gently when irradiance is lower, and it
increases rapidly when irradiance is higher.

Another strong disturbance on pH is the dilution rate.
This reflects the medium added to the reactor, and it can
be done for two different reasons. The first one is the
daily harvesting, which consists of extracting a certain
amount of culture from the reactor to post-process it and
obtain the final product. Then, the same volume of cul-
ture taken from the reactor must be replaced with wa-
ter and nutrients. The other reason to dilute the reactor
is for evaporation compensation. Depending on factors
such as temperature, humidity, and wind, water is evap-
orated from the reactor during the whole day. Therefore,
water is added to the reactor when the level has dropped
below a specific value to maintain the culture level at its
optimum. Depending on the application, the medium
added during the dilution can be freshwater with chem-
ical fertilizers, greenhouse effluents, or wastewater. The
origin of the water will cause it to have a different pH
in each case, which may differ from the pH at which
the reactor operates, resulting in a possibly strong dis-

turbance. In the case of this work, the dilution is made
with freshwater with added fertilizers, provoking a drop
in pH when added to the reactor.

Lastly, continuous fluctuations can be appreciated
during the whole experiment. These are due to the re-
circulation of the culture along the raceway, and their
period is equal to the time delay. However, these are
not relevant from a modeling and control point of view
since their impact on productivity is negligible.

Around the operating point, the influence of CO, flow
injection on pH measurement can be modeled with a
first-order plus time delay (FOTD) transfer function, de-
scribed by equation (1),

G(s) = pH(s)  k

— — . —14S 1
COys) 1s+1 ¢ 7 M

where pH is measured with the sensor located at the end
of the channel, CO, is flow in L/min, s is the Laplace
domain variable, k is the static gain in min/L, 7 is the
time constant in s and #; is the characteristic time delay
also in s. The time delay is a fixed parameter, given that
the paddlewheel rotates at a constant rotational speed,
fixing the speed at which the culture moves along the
channel. However, the static gain and the time constant
strongly depend on the conditions to which the culture
is subjected [11]. These parameter variations occur dur-
ing the day and fundamentally vary between the dif-
ferent seasons of the year. Typically, faster dynamics
are observed in spring and summer, when higher values
of solar radiation are obtained. However, strong vari-
ability can also be observed in different seasons based



on the biomass concentration, passing clouds, culture
depth, and others. This hinders the development of a
simple model that accurately describes the system’s dy-
namics throughout the year, and promotes the devel-
opment of adaptive models that can change their pa-
rameters according to the current dynamics. This work
proposes an autotuner methodology to obtain a simple
model whose parameters vary daily if the conditions are
different enough to alter the model.

2.3. Autotuner methodology

The relay autotuner methodology was first introduced
in the 1980s in [15], and some industrial applications
of the technique can be found in the following years
[19, 20]. However, it was not until the last decade that
this approach was studied again, and some adaptations
and improvements of the method were suggested [21].
The method provides a simple way of finding PID con-
troller parameters for a process with unknown dynam-
ics. The auto-tuning test is done under closed-loop con-
trol, ensuring the process is kept close to the setpoint.
This maintains the process within a linear range where
the dynamic of the response is of interest, which is why
this method is effective for highly nonlinear processes
[22]. The identification experiment is also character-
ized for its briefness, which is optimal to avoid the ap-
parition of disturbances, which can strongly change the
controlled variable dynamics and affect the identifica-
tion negatively.

The first step is designing the experiment, where the
type of experiment and the parameters to be used must
be decided [21]. The experiment usually consists of a
nonlinear function that can be described as a relay with
hysteresis, and causes the process to oscillate with a
small and controlled amplitude [23]. The first relay-
based model identification methods were based on the
following steps. When an operator decided to tune the
controller, the PID was replaced with the relay function.
Once the experiment was finished, the PID controller
parameters were tuned, and the system switched back
to PID control [15]. The experiment aimed to find the
critical gain and critical period systematically and auto-
matically [24].

Although there are several guidelines for developing
an autotuner, the experiments from this work were de-
signed considering the specific dynamics of the stud-
ied system, and previous knowledge of it was taken ad-
vantage of. Moreover, two relay-based autotuner ap-
proaches were tried, explained in detail in Section 3,
introducing a novel approach in which the relay sig-
nal is applied to the setpoint and the PI controller stays
plugged in during the experiment.

3. Algorithm design

3.1. Experiment design

The initial stage of the experiment design aims to
determine the viability of the experiments to identify
models that correctly represent the dynamics of the pH
concerning the CO,. Two options were studied for the
experiment: the first one uses the original autotuner
approach, by disconnecting the PI controller when the
identification needs to be done (explained in Section
3.1.1). In contrast, the second one maintains the con-
troller running and makes relay changes in the setpoint
(explained in Section 3.1.2). Both options were imple-
mented in the raceway reactors described in Section 2.1
over several days, and their parameters were tuned to
obtain a sufficient excitation of the pH when perform-
ing the experiment.

In both cases, the pH was maintained at a fixed set-
point with a PI controller, and, at 1.00 p.m., the identi-
fication experiment was performed. The reason for im-
plementing the experiment around noon is that solar ra-
diation is at its maximum, and photosynthesis is at its
highest. Therefore, pH rises faster when CO, flow is
drastically lowered. On the contrary, if the experiments
were performed during the first or last hours of the day,
solar radiation would have too little effect on photosyn-
thesis, provoking a quick drop in pH when CO, flow
is increased, but a too slow rise when it is reduced.
This would eliminate the possibility of having several
switches in the behaviour in a short period.

Another essential characteristic of the implemented
experiments is their hybrid nature. This means that two
time-related conditions are imposed apart from the de-
sired output hysteresis imposed in the relay experiment,
which is characteristic of the classic relay autotuners.
The time-related additional conditions are the follow-
ing:

e The relay must remain in the same position for at
least 5 minutes. The objective of this condition is
to avoid a switch before the time delay has elapsed
since the last change in the relay. This can other-
wise be provoked by the measurement noise or the
pH oscillations produced by the culture recircula-
tion along the channel.

o The relay can stay at the same position for a maxi-
mum of 12 minutes. If solar radiation is too weak,
photosynthetic activity may be low, and pH may
take too long to rise to the established hysteresis.
With this time limit, a minimum of three switches
can be obtained during the 45 minutes of the ex-
periment.



The timed-relay behaviour can be observed in the
scheme shown in Figure 3, where the horizontal axis
represents the error (e) between the setpoint (equal to
8) and the measured pH and the coordinate axis repre-
sents the amplitude of the output signal of the relay (x).
The relay initially switches when the error e reaches 0.2,
but this value can be increased if this error is reached
before the minimum time has elapsed (7},;, = 5 min)
or it can be decreased if the maximum time has passed
(T )0x = 12 min) but the 0.2 error has not been achieved.
On the other hand, the output of the relay will depend on
the experiment performed. In the case of the classic ap-
proach (explained in detail in Section 3.1.1), the output
will be CO, flow. However, when the relay is applied to
the setpoint (see Section 3.1.2), the output of the relay
means a change in the pH setpoint.

T < Twmin T > Trmax T > Twmay T < Tomin

Figure 3: Timed-relay diagram. The ordinate axis (x) represents the
amplitude of the output signal, and the abscissa axis (e) represents the
error between the setpoint and the measured pH. This error provokes
the relay switch originally when it reaches 0.2, but this value may be
modified depending on the elapsed time.

It must also be mentioned that the PI controller in
both cases is tuned using the SIMC rules [25], and in-
corporates a static feedforward gain to reject the solar
radiation effect. The tuning method is detailed in Sec-
tion 3.4. Finally, it is important to point out that the
dilution pulses were anulled during the performance of
the experiment and this operation turned back to normal
once it was finished.

3.1.1. Classic relay-based experiment

In this first experiment, the classical approach was
implemented. The PI controller is disconnected when
the experiment is to be performed, and it is connected
back after the experiment is finished, as shown in Figure
4.

Process

Figure 4: Classic relay-based autotuner setup, where the PI controller
is disconnected when the experiment is to be performed.

In this case, the experiment consists of switching be-
tween an u,, and a u, s, control signal that will provoke
changes in the dynamics of the measured output. In this
experimental setup, when the experiment starts, the last
value of CO, flow in the operating point is saved (i)
The on and off control signals from the experiment are
calculated as u,, = uop + x and uyrr = U,p — X, rESPeC-
tively, where x = 2 L/min is the amplitude of the relay,
as shown in Figure 3. The amplitude of the relay applied
to the control signal is fixed, and its mean value is equal
to the operating point, to ensure the pH is maintained as
close to its optimal value given by the setpoint (SP) as
possible.

Two examples of implementing this experiment can
be seen in Figures 5 and 6. The first plot shows the pH
and its setpoint, set at 8. The second and third plots
show the CO, flow in L/min and the PAR in W/m?, re-
spectively. In both cases, the pH is maintained on its set-
point before starting the experiment with a PI controller,
ensuring that, when the experiment begins, the system
is at the operating point. During the experiment period,
highlighted in light pink, the CO, flow presents a pulse
train shape, switching between u,, and u,y;, allowing
the pH excitation. It should also be noticed that, apart
from the desired oscillations, the fluctuations produced
by culture recirculation are also present. These are char-
acterized for presenting a shorter period (5 minutes, as
explained in Section 2.2), and a smaller amplitude.

Results shown in Figure 5 correspond to a clear-sky
day, where PAR during the experiment is almost con-
stant at around 240 W/m?, while results shown in Fig-
ure 6 present strong passing clouds during the course
of the experiment. This is observed in the PAR profile,
which presents several abrupt drops and surges during
the central hours of the day. This behaviour is typical
of passing clouds and is undesirable during the identi-
fication experiment, given that it can severely affect the
parameters and therefore the goodness of the obtained
model.

As seen in both Figures, the experiment can excite
the system properly. However, the value of x was es-
tablished by trial and error. While properly exciting the
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Figure 5: Classic relay-based autotuner results - Clear-sky day. The first subplot shows the pH response in blue and its setpoint in a red dashed
line. The second and first subplots show the CO, flow and the PAR radiation, respectively. The area highlighted in pink represents the experiment

duration.

Classic Relay Experiment

—pH
8.2 - gp
781
76 :

12:00:00 13:00:00 14:00:00 15:00:00
6
—co2
4l
<
€
S
2
0 I
12:00:00 13:00:00 14:00:00 15:00:00
300 -
—PAR

o 200F

£

=
100 -

o I
12:00:00 13:00:00 14:00:00 15:00:00

Figure 6: Classic relay-based autotuner results - Cloudy day. The first subplot shows the pH response in blue and its setpoint in a red dashed
line. The second and first subplots show the CO, flow and the PAR radiation, respectively. The area highlighted in pink represents the experiment

duration.

pH during the winter season, it could not be enough to
provoke these changes during summer, where photosyn-
thetic activity is much higher, thanks to higher solar ra-
diation. Moreover, this amplitude value is adequate for
the specific characteristics of the used reactor. If this
experiment were implemented in a reactor of a differ-
ent surface or configuration, this amplitude would not
work with the same efficiency. Therefore, this type of
experiment must be recalibrated as the climatic condi-
tions change. This encourages the implementation of

a setpoint relay-based experiment, as described in Sec-
tion 3.1.2, which needs no adaptation between seasons
or reactors with different dimensions.

3.1.2. Setpoint relay-based experiment

In the second identification experiment, a PI con-
troller is fixed, and the relay signal is applied to the set-
point signal, as shown in the scheme in Figure 7. There-
fore, the PI controller will be in charge of changing the
CO; flow in order to achieve the specified amplitude on



the pH measurement. The amplitude established for the
relay is x = 0.2, and the direction of the first change
made to the setpoint depends on the sign of the error.
This means that, if when the experiment is about to start,
pH > S P, then the first setpoint of the experiment will
be S Preqy = SP — x. Otherwise, if the pH is smaller
than the setpoint (pH < S P), then the setpoint will grow
(S Pretay = S P+ x). As it can bee seen, when the excita-
tion signal is introduced, a first change in the CO, flow
is performed, due to the proportional gain, and after-
wards, the integral action of the controller starts affect-
ing the control signal.

2
+u +_/_\ { Pl } L {Process}———

-O—{7]

Figure 7: Setpoint relay-based autotuner setup. The relay signal is
applied to the setpoint, and the PI controller is maintained during the
identification experiment.

The results of implementing this scheme are shown in
Figures 8 and 9. The changing setpoint can be seen with
the pH measurement in the first subplot. The second and
third subplot show the CO, flow and the PAR profile,
respectively.

In both cases, as the pH is higher than its setpoint
when the experiment starts, the first setpoint change is
lower than the optimal setpoint. It can also be seen that
the control signal changes abruptly when a change is
made to the setpoint, and the CO, flow injected during
the experiment is no longer square-shaped. This ensures
a correct excitation of the pH regardless of the condi-
tions, both of the culture and the weather. It should be
noticed that, in this experiment, the oscillations due to
the microalgae recirculation present a smaller amplitude
and their attenuation is faster than the ones presented in
the experiments shown in Section 3.1.1. This is mainly
due to keeping the controller working while exciting the
system, which is an advantage of the suggested method-
ology. This setup is also directly applicable to other re-
actors, different in shape and dimensions.

This experiment was implemented in the raceway re-
actor during several days, distributed along three dif-
ferent months, in order to tune the parameters correctly
to achieve a sufficient excitation of the system without
taking it far from the operating point. As it has proven
to work correctly and, given the advantages it presents
over the classic relay-based feedback experiment, it was
chosen over the previous one in order to be implemented

for control purposes.

3.2. Model identification

As mentioned in Section 2.2, the pH can be modeled
as a first-order plus time delay (FOTD) transfer func-
tion with respect to CO, flow injection. This can be
expressed as shown in Equation (2):

pH(s) b
COy(s) s+a

G(s) = e, @)
where 1/a represents the time constant (1) and b/a rep-
resents the static gain (k) shown in Equation (1). This
representation of the transfer function was chosen given
that, when the optimization process fits the model, an
integrating system can also be fitted by choosing a = 0.

The proposed identification procedure seeks to ob-
tain suitable model parameters while always comply-
ing with the computational cost limitation imposed by
the sampling time. It begins by defining the parame-
ter search space. Based on prior system knowledge, an
array of candidate values is constructed for a, ensuring
the search is conducted within a relevant range [11]. It
has been seen that the time constant values may vary
between 200 and 8000 seconds, but their most common
values are concentrated between 500 and 2000, approx-
imately. Therefore, the array of a candidates has been
designed to contain approximately 5000 values between
1.25-10~* and 5-1073, and it also includes 0, to allow the
integrator. This choice allows having a bigger concen-
tration of elements in the range in which the time con-
stant is usually found, while still allowing rarer values.
Once this set of values is established, each candidate’s
system response is simulated by assuming an initial uni-
tary gain (b = 1), which results in a model output (y,,).
Next, the real system gain is determined by performing
the left matrix division b = y,,\y, where y represents the
system output. This allows adjusting the model output
by scaling it with the computed gain. This ensures the
modeled response is correctly scaled to match the sys-
tem’s behaviour.

To evaluate each model’s accuracy, a cost function J
is computed to measure the difference between the ad-
justed model output and the real system output. A com-
mon choice for the cost function is the mean squared
error (MSE), given by Equation (3),

1 N
I=5 Zl O0G) = ym(D))? 3)

with N being the number of samples. This cost function
quantifies the discrepancy between the modeled and ac-
tual outputs, providing a basis for model selection.
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Figure 8: Setpoint relay-based autotuner results - Clear-sky day. The first subplot shows the pH response in blue and its setpoint in a red dashed
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Finally, after evaluating all candidate values of a, the
model corresponding to the lowest cost function value
is selected as the best representation of the system. This
approach systematically refines the parameter selection
process, ensuring an optimal fit to the system response.
The identification process is done fast enough to always
be under the control sampling time, being 20 seconds.

The obtained models for the experiments shown in
Section 3.1 can be seen in Figure 10. Sub-figures 10b
and 10a show the identified models for the classic relay-
based experiments, while Sub-figures 10d and 10c show

the obtained models for the experiment where the re-
lay is applied to the setpoint. In all four examples, the
model successfully captures the main dynamic of the
pH, but the model’s fit is severely affected by a sec-
ondary dynamic: an oscillatory behaviour whose period
is equal to the recirculation time of the culture, as ex-
plained in Section 2.2. Although there is no interest in
capturing these oscillations with the model, given that
they can not be controlled or eliminated, they provoke
a drop in the model’s fit, even after filtering them. Af-
ter implementing these experiments for several weeks
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Figure 10: Validation of the identified models for the experiments shown in Section 3.1. Figures 10a and 10b correspond to the results obtained
during the classic relay-based experiments shown in Figures 5 and 6, respectively. Figures 10c and 10d correspond to the results obtained during

the setpoint relay-based experiments shown in Figures 8 and 9, respectively.

and performing the identification process for almost 50
days, it has been seen that a 40% fit is good enough
to represent the main dynamic, and that this low value
is mainly due to these oscillations. The model’s fit was
calculated using Matlab’s Goodness of Fit function with
the normalized root mean squared error (NRMSE) as
cost function. It can also be noticed that maintaining
the closed-loop controller during the system excitation
provokes a decrease in the amplitude of these oscilla-
tions, allowing a better model fit, introducing a new ad-
vantage of the proposed method. It is important to note
that the pH response presents recirculation-induced os-
cillations, which have a period equal to the culture’s re-
circulation time. In [9], a second-order transfer func-
tion was included to capture these oscillations. How-
ever, notice that this high-frequency dynamics is not rel-
evant for control design purposes in accordance with the
dominant dynamics captured by the FOTD and the re-
quired closed-loop system bandwidth. Thus, it can be
neglected in the control design process.

Table 1 shows the parameters of each model, as well
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as its fit percentage, for the experiments shown in Fig-
ure 10. It can be seen that, thanks to the followed
identification methodology, the pH can be modeled as
a first-order plus time delay or as an integrator plus time
delay. This will exclusively depend on the cost func-
tion defined in Equation (3), prioritizing the model’s
fit percentage. It is important to remark that, in pres-
ence of CO; injection, the system can be modeled as
a first order, while in its absence it presents an expo-
nential growth. Also, the first-order time constant can
present large values with respect to the time delay, in
which cases it may be convenient to represent the sys-
tem with an integrator.

Once the experiment has proven to obtain an ap-
propriate pH’s dynamic that allows the obtention of a
model, it is necessary to establish an automatic way to
determine the goodness of the experiment. The model
must be discarded if one of the following happens: the
model’s fit is not good enough, the model’s parameters
are not appropriate, or there are strong disturbances dur-
ing the experiment that can affect the model’s parame-



Experiment a b k T Fit (%)
Classic relay - Cloudy day  0.0011 -2.217E-04 -0.2099 946.9 57.2
Classic relay - Clear day 0 -2.215E-04 - - 49.8
Setpoint relay - Cloudy day 0.0015 -1.124E-04 -0.0757 673.8 61.4
Setpoint relay - Clear day 0 -9.861E-05 - - 58.7

Table 1: Models’ parameters and fit percentage for experiments in Figure 10.

ters.

3.3. Goodness of the experiment

After the experiment is finished and the parameters
are estimated, a decision must be made on retuning the
PI controller.

The model’s FIT and the parameters’ values are anal-
ysed to evaluate the model’s validity. First, b must be
negative, given that an increase in CO, flow injection
will provoke a decrease in pH. On the other hand, a can
have any value from the defined search space. Lastly,
the model’s fit must be above 40% to ensure good sys-
tem representation.

Apart from the model analysis, disturbances during
the experiment must be considered. Significant distur-
bances entering the system during the relay experiment
can create problems, such as stopping the process from
oscillating as expected and not obtaining proper excita-
tion of it [24].

As mentioned in Section 2.2, the main disturbances
affecting pH are the dilution and the solar radiation. In
this work, two strategies are followed to ensure there are
no disturbances during the experiment. Given that dilu-
tion is an operational process that can be manipulated,
this is annulled during the 45 minutes of the experiment,
and its operation returns to normal once it is finished.

Radiation, however, can not be manipulated. There-
fore, once the experiment is finished, days with passing
clouds must be detected to reject those experiments in
the adaptation procedure. For this purpose, the PAR
is analysed and the period is classified as “cloudy” or
“clear” using a Fine Tree model trained with the Classi-
fication Learner Toolbox from Matlab. The model uses
as features the difference between the maximum and
minimum values,

APAR = max(PAR) — min(PAR), @)
and the integral of the noise in the PAR signal. For this
last feature, the radiation is previously filtered with a
high-pass filter to eliminate the slow trend and maintain
the high frequency of passing clouds. After, the inte-
gral of the absolute value must be applied to the filtered
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signal, calculated as follows,
PARp(i) =PAR(i) — PAR(i — 1)+
(1-a-Ty)- PARF(i— 1),

where PAR is the measured value of PAR, PARF is its
filtered value, i is the discrete time instant, 7' is the sam-
ple time, and « is the filter cut-off frequency, which has
been established by testing the filter on a clear-sky radi-
ation profile. The filtered radiation PARF is integrated
during the period of the experiment, obtaining

&)

N

Intpsg, = Z PARp(i),
]

(6)

where i = 1 and i = N are the initial and final time
samples of the experiment, and PARf(i) is the filtered
value of the radiation in the sample time i.

In Figure 11, two examples of this process can be
seen. The superior row shows the results of filtering
a clear sky time period, while the inferior row shows a
PAR profile typical of a cloudy day. The graph on the
left shows the complete day data, the middle one shows
the irradiance during the period in which the experiment
is done, and the graph on the right shows the result of
filtering the PAR. A clear difference can be observed be-
tween filtered radiation on a clear day and on a cloudy
day.

After calculating APAR and Intpsg,, and manually
classifying the intervals of a total of 98 days in similar
seasons, a Fine Tree was trained using the Classifica-
tion Learner Toolbox from Matlab, obtaining a 98.9%
of accuracy when a prediction is made. The model uses
both parameters as features to predict the presence of
passing clouds. The training data can be observed in
the scatter plot shown in Figure 12, where a clear differ-
ence between both types of day can be easily observed.
Notice that although this model presented promising re-
sults and worked perfectly in the experiments performed
in this work, the dataset should be periodically updated
with more data to make it more robust.

Thus, once the model’s parameters and FIT have been
validated and the PAR profile has been classified as a
clear day using the model described above, the algo-
rithm proceeds with the PI controller retuning.
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Figure 11: High-pass filtered PAR in clear and cloudy days. The first row shows the results for a clear-sky day, while the second shows a day with
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Figure 12: Classification model training data, where the vertical axis
represents the integral of the filtered PAR (Intpag,. ) and the horizontal
axis represents the difference between the maximum and minimum
value (APAR). Cloudy days are represented with orange dots, while
blue dots represent clear-sky profiles.

3.4. Controller tuning method

A PI controller was selected over a PID structure due
to the dominant FOTD behavior observed in the pro-
cess. The absence of significant oscillatory dynamics in
the pH response, combined with the presence of high-
frequency noise, makes derivative action unnecessary
and potentially counterproductive. Therefore, a PI con-
troller was deemed sufficient to achieve stable regula-
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tion, in line with established industrial practices and rec-
ommendations such as those found in [25]. The con-
troller, which is of the form shown in Equation (7), was
tuned using the SIMC rules, developed in [25].

1
T,"S ’

where K, is the proportional gain, and 7 is the integral
time constant. Due to the form of the system identi-
fied (Equation (2)), the model can turn into a first order
(FOTD) or an integrator (ITD), both with time delay.

Therefore, the PI parameters are tuned, depending on
the form of the model, following the equations shown
in Table 2, where 7,; is the closed-loop time constant,
chosen equal to the time delay, #,, following the recom-
mendations in [25].

C(s) = K, (1 + 7)

FOTD ITD

K l T+1;/3 l I
P k T+t b T+t
T, min{t+1t;/3,4-(tyg+1t3)} 4 -(taq+1ty)

Table 2: PI parameters tuning equations

The PI controller also includes back-calculation anti-
windup, one of the most common anti-windup methods,
where the integrating term is dynamically changed with



a tracking time constant (7;) when the control signal sat-
urates [26]. There are several suggestions to tune the
tracking time constant in the literature, but, in general,
it is recommended to set it in the interval 0 < T, < T;.
However, if the tracking time is set too small (T, << T5),
it may cause an extremely fast resetting of the controller,
provoking a saturation at the upper limit and a severe
performance deterioration [27]. In this work, the track-
ing time was established equal to the integrating time
constant (7, = T)).

Lastly, a static feedforward compensator (FF) is
added so as counteract solar radiation disturbances on
pH. The feedforward gain (Krp) is obtained as the ra-
tio between the static gains of the controlled variable
in relation to the control signal (P,) and the load distur-
bance (P,), which in this case is the PAR radiation. This
means that K

d

FF—KFF—KM, (®)
where K; and K, are the static gains of the disturbance
and the control signal transfer functions, respectively.
Despite its easy tuning methodology, this feedforward
compensator provides a significant improvement in the
disturbance rejection. To tune this gain, the proce-
dure suggested in [28] was followed, by observing the
required change in the control signal when there is a
change in the disturbance, once the controlled variable
is in the fixed setpoint and the control loop is in steady
state.

Adding up the different structures, the final controller
structure is shown in Figure 13, where PI represents the
Proportional-Integral controller plus antiwindup strat-
egy and FF represents the static feedforward. During
regular operation, the reference is established at the op-
timal pH value, equal to 8. When an experiment is to
be performed, a +0.2 relay signal is added to the origi-
nal setpoint during 45 minutes. Once the experiment is
done, the model is identified, the validity of the data is
analysed, and the controller’s parameters are retuned, if
necessary.

Figure 13: Final controller diagram. The full control structure in-
cludes the PI controller, the static feedforward for radiation compen-
sation, and antiwindup. When the identification experiment is per-
formed, the relay signal is added to the setpoint.

4. Results

After designing the experiment and proving the sys-
tem’s excitation is enough to obtain an accurate model,
the structure shown in Figure 13 was implemented in
one of the reactors available at the IFAPA research cen-
ter, explained in Section 2.1. In parallel, in the second
reactor, a fixed PI controller with static feedforward was
implemented. This controller was tuned using a nomi-
nal model that is good enough to represent the pH’s dy-
namics through various conditions [11]. The model is
the one shown in Equation (9) and, by using the tuning
rules described in Section 3.4, the controller results as
shown in Equation (10).

Gisy = PHO) _ =018

-300s
- _ 3005, 9
COx(s)  1100s+1 € ©)

C(s) = -11.11(1 + 1200S). (10)

The static feedforward was designed as described in
Section 3.4, resulting in

Kpp = % =—-0.01 (m* - L)/(W - min), (11)

with K, = —0.18 min/L and K; = 0.0018 m?*/W, calcu-
lated based on previous experiments. Then, when a new
model is fitted, the static feedforward can be retuned by
calculating the ratio between the new process gain, K,,,
and the fixed disturbance gain, K,;. Notice that although
K, can slightly change along the seasons, the more rele-
vant contribution to the feedforward action comes from
the variation in K,. For this reason, it was decided to
keep K, constant along the experiments.

The implementation of both strategies began with
the same parameters in both the adaptive and the fixed
controller, in order to make a fair comparison between
them. Each day, at 13.00 p.m., the experiment is per-
formed and, if the conditions explained in Section 3 are
met, the controller’s parameters are retuned.

The results of implementing both strategies for five
consecutive days are shown in Figure 14. The first sub-
plot shows the pH obtained by both, the fixed (in blue)
and the adaptive (in red), control strategies, as well as
the setpoint for the adaptive controller, which includes
the relay changes when the identification experiment is
performed, between 1.00 and 1.45 p.m. The pink shad-
owed region represents the period corresponding to the
relay-based experiment. The second subplot shows the
CO,; flow injected by each strategy, while the third sub-
plot shows the dilution pulses corresponding to each re-
actor. Lastly, the fourth subplot shows the PAR for each
day.
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Each day, the controllers start running when the PAR
is higher than 20 W/m? and the pH’s value reaches the
setpoint. As explained previously, on the first day, both
controllers start running with the same parameters’ val-
ues. The adaptive controller is updated every day af-
ter the experiment, except for the last day, when the
model’s fit is not good enough, and there is a strong
presence of passing clouds. The obtained models can
be seen in Figure 15, where they are compared with the
measured pH.

During the first day, it can be seen that the fixed PI
controller is able to maintain pH close to the setpoint
during the entire day and presents a better behaviour
than the adaptive strategy. After the experiment, the
controller is updated, and its performance seems to im-
prove, but a dilution pulse at around 5.00 p.m. slightly
drops the pH, taking it away from the operating point.
On the second day, the fixed controller presents an ag-
gressive behaviour, resulting in a noisy measurement of
the pH, while the adaptive controller obtains a smoother
dynamic. An important aspect to mention is that, be-
tween 11.00 am. and 12.20 p.m., there is a sudden
change in the irradiance, to which the adaptive con-
troller reacts aggressively, provoking a quick rise in pH.
In the reactor with the fixed controller, this change in
the irradiance happens simultaneously with two dilution
pulses that cause the contrary effect, a sudden drop in
pH. Both controllers are able to get pH back to the set-
point after a short period. During the third day, the be-
haviour obtained by the designed strategy is also better
than the classical approach, obtaining a better pH reg-
ulation and maintaining it closer to the setpoint. The
controller is once more tuned after the experiment is
performed, as the model’s fit is over 50%, and there
is no presence of passing clouds. A strong disturbance
can be seen at around 5.00 p.m., where radiation drops
abruptly to almost zero. In this case, the CO, injected by
the adaptive controller presents a more aggressive be-
haviour attributed to the adaptation of the feedforward
gain, allowing a much quicker rejection of the distur-
bance and maintaining pH closer to the operating point
than the fixed controller. On the fourth day, a sudden
change in the pH and the CO, flow can be observed
at noon, due to a communication loss with both con-
trollers. This provoked an increase in pH in both reac-
tors, which the adaptive controller could control faster,
taking the controlled variable back to the setpoint faster
than the fixed PI. Finally, the last day presents a cloudy
profile in the irradiance, and both controllers present a
noisy behaviour, although the adaptive one is able to
reject the clouds more efficiently. In this case, as the
model’s fit is not good enough (less than 30%), and
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there are passing clouds during the experiment, the pa-
rameters were not changed, and the ones obtained in the
previous day were maintained.

Apart from obtaining a better pH regulation during
the day, the adaptive strategy is able to keep the pH
closer to the setpoint during the night in almost every
case. This is particularly important for the microalgae
activity during the daily period, as they perform better
and with less stress if pH is close to 8 at sunrise. Al-
though the adaptive controller generally injects more
CO,; during the day, this is done efficiently and with
small pH oscillations, allowing the microalgae to absorb
all the carbon from the medium during the light hours
and perform photosynthesis with it. In this way, there
is less accumulated carbon in the medium at sunset, and
the pH drop during the night is much lower than in the
case of the classical controller. This can be especially
appreciated during the second and third nights, where
the pH of the fixed strategy decreases more than that of
the adaptive controller. During the last night, although
the adaptive strategy presents a more abrupt decrease in
pH, it exhibits a much faster recovery as soon as solar
radiation is available, reaching the operating point prac-
tically simultaneously with the fixed strategy at sunrise.

Regarding the dilution pulses, these occur at different
times for each reactor, depending on the measured level
in each case. However, their effect is not too strong, and
has the form of little peaks, as can be seen especially
during the second and third nights in the fixed strategy
pH (Figure 14). It must also be reminded that dilution
is either a planned operation or a response from the au-
tomated system to level measurement but, in any case,
this can be manipulated without further consequences.
In future works, the operation could be enhanced by tak-
ing dilution’s effect into account in the control loop.

Figure 15 shows the models obtained each day. It can
be seen that, except for the last day, a very good fit is
obtained. Table 3 shows the parameters for each model
and the resulting controller. For each day, the parame-
ters of the fitted model (a, b, K, and 7) can be observed,
as well as the goodness of fit in each case. It can be seen
that the fit is always above 50%, except for the last day.
Therefore, the first four days, the controller is adapted
with the parameters K, T;, T;, and Kpr shown in the
Table, while the last day maintains the previous ones.
In the first row of the table, the initial parameters can be
seen, which are the same as the ones used in the fixed
controller. Notice that high variability of the process
parameters in consecutive days, which confirms the ne-
cessity of adaptive controllers to account for this control
problem. pH dynamics is affected by multiple phenom-
ena, such as biomass concentration, culture depth, total



inorganic carbon, dilution rate, nutrient concentrations,
etc., which make the dynamics really changing.

Apart from the benefits that can be seen graphically
from Figure 14, metrics such as the IAE (Integral Abso-
lute Error), ISE (Integral Square Error), ITAE (Integral
of Time multiplied Absolute Error), ITSE (Integral of
Time multiplied Square Error), Control Effort (the vari-
ation in the control signal), and CO, consumption were
calculated to compare both performances numerically.

As a result, the adaptive strategy improved the met-
rics related to the error: it obtained a reduction in the
IAE and the ISE of 12 and 7%, respectively. The
ITAE and ITSE obtained by the autotuner were 48 and
68% smaller than the ones obtained by the classical ap-
proach. Finally, although the CO, consumption was
increased by 20%, the control effort was lowered by
10% with respect to the fixed controller. Therefore,
the results prove a better performance of the designed
methodology for autotuning a simple controller, both
graphically and quantitatively.

5. Discussion

This paper presents an adaptive autotuning strategy
for pH control in microalgae raceway reactors, based
on relay-based autotuners principles. The approach is
specifically designed to handle the daily and season-
ally varying dynamics of the culture systems. Two relay
self-tuning schemes were explored and experimentally
validated: a classical approach with controller discon-
nection and a novel setpoint relay method. Although
successful in exciting the system, the classical approach
could require manual recalibration to adapt to seasonal
changes or different reactor configurations. In contrast,
the setpoint relay method operates with the PI controller
in a closed loop, applying the relay signal to the set-
point. This approach allows seamless integration into
existing control loops without the need for manual re-
calibration across seasons or for different reactors. Ex-
perimental validation showed that this method excites
the system adequately, producing appropriate dynamic
responses for model identification.

The adaptive strategy couples a Proportional-Integral
(PI) controller, tuned using SIMC rules, with a static
feedforward compensation to counteract solar radiation
disturbances. Model identification is based on first-
order or integrator structures with delay, selecting the
model that best fits the experimental data by minimiz-
ing the mean square error.

Model validation and disturbance handling measures
were implemented to ensure the reliability of the auto-
tuning. The model’s validity is assessed by analysing

16

the fit percentage and parameter values. Disturbances,
such as dilution, were cancelled out during the exper-
iment. For the solar radiation, a classification algo-
rithm was introduced to evaluate the presence of pass-
ing clouds by analysing its profile. Data from exper-
iments performed under strong disturbances or with a
poor model fit are discarded for retuning.

The adaptive control strategy was validated in an
industrial-scale raceway reactor for five consecutive
days and compared to a fixed PI controller. The re-
sults showed that the adaptive controller outperformed
the fixed controller most days, achieving a smoother pH
regulation closer to the setpoint. It could reject distur-
bances such as abrupt changes in solar radiation or com-
munication losses quicker and more efficiently. In addi-
tion, the adaptive strategy resulted in less carbon accu-
mulated at the end of the day, leading to a lower pH drop
during the night compared to the fixed controller. As a
result of the enhanced pH control, not only is culture
stability ensured and biomass production maximized,
but also availability of inorganic carbon is guaranteed
and the growth of the desired strain promoted, helping
mitigate biological risks such as contamination by fun-
gal predators and nitrogen accumulation. It must also
be taken into account that this algorithm allows an easy
adaptation of the models and the controller throughout
the entire year.

6. Conclusions

In conclusion, this work presents and experimentally
validates an adaptive relay-based autotuning strategy,
highlighting the superiority of the novel set-point re-
lay method for pH regulation in microalgae reactors.
The strategy provides a reliable, scalable, and low-
intervention solution for adaptive pH control, demon-
strating reliable performance in variable weather condi-
tions and improving culture productivity by maintaining
pH within the optimal range more effectively.
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Figure 15: Models’ fit during implementation of the adaptive controller (Figure 14). The pH measurement is shown in blue, while the model output
is represented in red.

Day | « b K T FIT (%) Pi;?ﬁ?;egrs , ToT,  Kpr
- - - - - - 1 1100 001
1 | 00002 -191E-04 -0.8744 4587 5926 Yes -8.93 2400 0.0021
2 | 00004 -1.67E-04 -03794 2267 52.67 Yes 1040 2367  0.0047
3 00001 -1.55B-04 -1.2396 8000 51.87 Yes -10.89 2400 0.0015
4 |00016 -1.52B-04 -0.0966 633  58.72 Yes 11266 733 0.0186
5 | 0003 -1.17E-04 -0.0392 335  28.95 No 11266 733 0.0186

Table 3: Model and controller parameters for the results shown in Figure 14.

research stay in Lund, allowing the collaboration be-
tween both institutions.
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