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šík, Zdeněk Tošner, Pavel Matějíček
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Populärvetenskaplig
sammanfattning

Under den senaste tiden har det varit ganska populärt att studera smart
materia som kan bilda nya strukturer beroende på externa förhållanden.
Detta arbete är fokuserat på att studera hur man kan designa sådan ma-
teria. Med hjälp av dator simuleringar har vi modellerat partiklar med
riktade interaktioner och studerat deras beteenden i bulk.

Förhoppningen är att om man kan få en modell som beskriver beteen-
det av partiklarna, så kan man ta reda på information om partiklarna
som inte går eller är besvärligt att ta reda på med hjälp av experiment.
Till exempel så är det näst intill omöjligt att ändra en partikels dipolmo-
ment under ett experiment, men det är hur lätt som helst i en simulering.
En annan fördel av att använda sig av simuleringar är att man kan få en
inblick över hur individuella partiklar beter sig vilket för många experi-
mentella system helt omöjligt.

Genom simuleringar kan vi prova olika parametrar, ändra partiklarnas
form och ändra de externa förhållandena så vi systematisk kan stud-
era vilka parametrar ansvarar för vad och till vilken nivå. Med hjälp
av denna information kan experimentalister försöka få fram nya material
som kanske kommer nytta mänskligheten i framtiden.
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Chapter 1

Introduction

When I first learned about colloids, what surprised me the most was the
sheer range of materials that are classified as colloids. Just a quick search
will inlighten one, that such common tings like milk, paint, clouds, dust
and whipped cream are all colloids. Thus one can deduce that colloidal
materials were used and encountered by humans for the greater part our
history. Today people have learned how to make custom made colloidal
materials that can interact in a predictable fashion and serve a specific
purpose. This thesis will describe some of the models and methods that
can be used to study the interactions and phase behaviour of colloidal
particles by the means of computer simulations.

Despite humanity’s use of colloids throughout history, colloidal science
did not really begin until the mid 19th century when Francesco Selmi
performed systematic studies describing the first “pseudo-solutions” of
silver chloride, Prussain blue and sulfur. Thomas Graham introduced the
term colloid (meaning Glue in Greek) nearly 20 years later, noting that
these types of particles deserve to be in a class of their own.1

So how do we define colloidal particles and what is so fascinating about
them? A classical definition of a colloidal particle is that it is a particle
roughly between 1 nm and 1 µm which is dispersed in a solvent and
exhibits Brownian motion. The key word in that description is dispersed,
colloidal particles are not solvated by the solvent but the mixture is still
pseudo-stable. Faraday was one of the first to study this fenomenon by
conducting experiments on colloidal sols2 (solid particles dispersed in
liquid) in the 1850s. Some of the mixtures were so stable that they are
still on display in museums.3
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A big leap in colloidal science came with the development of the DLVO
theory, named after the authors of the pioneering publications of Der-
jaguin and Landau from the USSR4 and Vervey and Overbeek from the
Netherlands.5 The theory describes the way the attractive van der Waals
and repulsive electrostatic forces affect the aggregation and stability of
colloidal particles.

This brings us to the custom made colloidal particles of today. These
particles can be fine tuned to take on several shapes6, 7 (see Fig 1.1) and
interact via isotropic or anisotropic interactions. Another helpful prop-
erty of colloids is that their interactions can be tuned by for example
altering salt concentration, temperature, pH and applying external elec-
tromagnetic fields.1, 8 Thanks to colloidal particles, it became possible
to experimentally confirm theoretical models such as hard-spheres.9 In
return the use of computer simulations became well suited to study col-
loidal systems when the DLVO theory was not enough to describe the
colloidal interactions.

In Paper I we describe the self-assembly of particles with an off cen-
tered dipole moment. In the paper we expanded the model used by
Kantorovich et al.10 to closer resemble the exerimental system studied
by Saccana et al by the means of Monte Carlo simulations. In Paper II
we study the an all atom model of the metallocarborane cluster [3,3’-
cobalt(III)bis(1.2-dicarbolide)](-1 anion) using Molecular dynamcs to bet-
ter understant its aggregation. In Paper III we study the effects of triva-
lent ions on the interaction of charged patchy particles as a means to
understand the phase behaviour of proteins in multivalent electrolytes.
In the last paper Paper IV we developed a new way of calculating the
long range electostatic interactions by expanding the Wolf-method and
comparing our results to some established schemes.
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Figure 1.1: Examples of the different shapes that modern day colloidal particles can be designed
to have, curtosy of Dr. Jerome Crassous7
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Chapter 2

Statistical mechanics and
computer simulations

2.1 Basics of statistical mechanics

The field of statistical mechanics is based on the fundamental postulate
that in an isolated system all microscopic states are equally populated.
This postulate enables us to use statistics and probabilities to determine
macroscopic equilibrium properties of a system.11 The definition of en-
tropy:

S ≡ k ln Ω (2.1)

is one of the main workhorses of statistical mechanics. Here Ω is the
number of microscopic or quantum states and k is Boltzmann’s constant,
conventionally given to achieve a unit of measurement.

Statistical mechanics enables us to calculate macroscopic properties of
a system using microscopic information. Imagine an isolated container
of particles: which enteties describe the system? Well, we could say that
the container has volume V, the number of particles in the container is N
and the total energy inside the container is U. These are the independent
variables describing the system and do not change, thus the total number
of microscopic (quantum) states is.

Ω = Ω(U, V, N) (2.2)

Now the pressure is defined as force per unit area. If we calculate the
force from all the particles on the wall of the container it will wildly dif-
fer from instant to instant. What we experience on the macroscopical

7



level however is a time averaged force. Thus all we have to do is de-
scribe how all the particles in the container should move and calculate
the time average force on the container to get the macroscopic properties
we are looking for. Before computer simulations this was most often an
impossible task. A solution to the problem was suggested by Gibbs via
the ensemble method.11 But what is an ensemble? Well, the ensemble is
all the microscopic states defined by our independent variables. Instead
of averaging over time, one averages over the different microscopic states
thus obtaining the so called ensemble average. This approach uses another
basic postulate of statistical mechanics namely, the ergodic hypothesis:

The infinite time average of any mechanical variable is equal to the ensemble
average of the same variable with an infinite number of member systems in the
ensemble.11

Without going into many more details about statistical mechanics, we
mention that the ensemble method proved to be viable in analytically de-
termining expresions for macroscopic properties. By using the ensemble
method together with the first law of thermodynamics that describes the
changes in energy dU,

dU = δQ̂ + δŴ (2.3)

Where δQ̂ is heat transferred and δŴ is work done. One can determine
the entropy S, pressure P, chemical potential µ and temperature T just by
knowing the partition function Ω(U, V, N).

The ensemble used in the above example is the so called microcanoni-
cal ensemble and is sometimes impractcal to work with. Other ensembles
are the canonical that uses N, V and T as the independent variables with

Q = ∑
i

e−
Ui
kT (2.4)

as its partition function describing the Helmholtz free energy

A = −kT ln Q. (2.5)

Another popular ensemble is the isobaric-isothermal ensemble where the
pressure P and T are constant thus the partition function is

∆ = ∑
i

e
−Ui
kT ∑

j
e
−PVj

kT (2.6)
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with the Gibbs free energy

G = −kT ln ∆ (2.7)

and the grand canonical that uses µ, V and T with

Ξ = ∑
i

e−
Ui
kT ∑

j
e−

Njµ

kT (2.8)

as the partition function describing the grand potential

Λ = −kT ln Ξ. (2.9)

2.2 Simulations

Unlike Gibbs we today have powerful computational tools to our disposal
that can be used to calculate how particles propagate over time. Over the
past 60 years computers have gradually become a household item and are
everywhere from washing machines to smart phones. At the beginning
they were big, so big in fact that they took up several rooms. Now how
could scientists of the time walk past such an amazing piece of technol-
ogy and leave it in the hands of the military12? Thus the famous Monte
Carlo (MC) method was born.13 The MC method makes use of comput-
ers ability to generate a large amount of (pseudo) random numbers and
uses this as a means to perform calculations. When it comes to statisti-
cal mechanics is is quite easy to see that the MC method could be used
to generate different micro states of an ensemble. The approach of us-
ing the more physical time propagation was also developed and got the
name of Molecular dynamics (MD) and uses Newtons, equations of mo-
tion to propagate the system in time. Despite technological advances, the
amount of particles that one can handle in a typical MD or MC simulation
is still well below the number you would have in a macroscopic system
with N in O(1020).

2.3 Periodic boundary conditions

In a simulation, the number of currently manageable particles, is still very
small compared to the number of particles in a macroscopic system. Thus
one faces the problem that a big percentage of particles interact with the
wall of the simulation container. A way to minimize this effect without
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actually increasing the number of particles in the calculation is to use
periodic boundary conditions (PBC). In PBC replicas of the your simulation
box are created in all directions, filling infinite space. In practice, how-
ever one ends up using toroidal boundary conditions where when a particle
leaves the simulation box in one end it enters from the other. This enables
us to find neighboring particles on the other side of the wall so to speak.

2.4 Metropolis Monte Carlo

Let us look at the Monte Carlo method in more detail. As stated above,
the method utilizes pseudo random numbers to perform a statistical anal-
ysis of how a system behaves. Thus the method is used in a variety of
fields for very different purposes. In astronomy you can for example
calculate the probability of the formation of an earth like planet; in par-
ticle physics one can use the method to calculate the paths of the quarks
and bosons after a nuclear collision; and in medicine one can use Monte
Carlo to simulate the treatment of a radiology patient. One popular im-
plementation of the algorithm used in statistical mechanical simulations
is referred to as Metropolis Monte Carlo14 which describes how particles
explore a volume of space. Two main features of the Metropolis Monte
Carlo are importance sampling and detailed balance.

Importance sampling is a term that describes the fact that you only need
to sample in the region of space that you are interested in. Not that this
is inherently necessary, but why should one take samples in Sweden in-
stead of Egypt if you want to know the depth of the Nile.15 In Metropolis
Monte Carlo this is achieved by weighting the choice of a new state by
a Boltzmann factor15 which makes the simplest implementation of the
method inherently perform calculations in the canonical ensemble.

Importance sampling goes hand in hand with detailed balance which
states that the probability of being in the old state (o) and from there
moving to a new state (n) has the same probability as being in the new
state and then moving to the old state. This can be summarized by the
following equation:15

N(o)P(Acc.o → n) = N(n)P(Acc.n→ o) (2.10)

Here N(x) is the probability of being in a certain state and P(Acc.) is the
probability of accepting a specific move.

10



Thus a typical algorithm of a Metropolis Monte Carlo simulation is as
follows,

i) Generate a new configuration by for example moving a particle in
a random direction with a random displacement.

ii) Calculate the difference in energy between the new and old system
∆U = Unew −Uold.

iii) If the energy decreases, accept the move. If the energy increases
compare the Boltzmann weight e−

∆U
kT to a uniform random number

between 0 and 1. If the random number is less than e−
∆U
kT accept the

move, otherwise reject it.

iv) If the new configuration is accepted sample it otherwise sample the
old configuration.

v) Go back to step (i)

In general, Monte Carlo is a robust technique for calculation of static equi-
librium properties i.e. collecting ensemble averages but inherently lacks
dynamics. Also, detailed balance is a condition that should be preserved
(altought not always necessary). This can be tricky when one tries to en-
hance the sampling rate by for example introducing cluster moves like in
Paper I.

2.5 Molecular dynamics

As described previously, the Molecular Dynamics method uses the forces
exerted on the particles to move them for a small time interval using
Newtons equations of motion.

d2ri

dt2 =
F i

mi
;

ri

dt
= vi;

vi

dt
=

F i

mi
(2.11)

The main engine of the MD calculation is the integrator that solves these
equations numerically and propagates the system. The main condition
for these integrators, is that the calculations should be reversible, mean-
ing that starting a subsequent calculation in reverse should lead to the
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initial configuration. There are several integrators but some of the popu-
lar ones are the Verlet algorithm and its derivatives velocity Verlet16 and
the Leap-frog17 algorithms.

The Verlet algorithm is in essence a Taylor expansion of the particles co-
ordinate around time t. This leads the method to not utilize the velocity
of the particles in determination of the new positions, thus leading to
the need to separately calculate the velocities from the trajectory. Which
results in the differing accuracy of the two calculations.

r(t + ∆t) = 2r(t)− r(t− ∆t) +
F(t)

m
∆t2 +O(∆t4) (2.12)

v =
r(t + ∆t)− r(t− ∆t)

2∆t
+O(∆t2) (2.13)

Here and in the following equations, r is the position, v is the velos-
ity, t is the time, ∆t is the time step and F is the force on the particle.

The Leap-frog algorithm got its name because of how it uses positions
r at time t and velocities v at time t− 1

2 ∆t. The algorithm also uses the
forces F(t) at time t to calculate how the velocities and positions should
be updated.

v(t +
1
2

∆t) = v(t− 1
2

∆t) +
∆t
m

F(t) (2.14)

r(t + ∆t) = r(t) + ∆tv(t +
1
2

∆t) (2.15)

Note however that the velocities and positions are not calculated for the
same time which can lead to problems in determining the total energy of
the system.

Unlike the original Verlet algorithm that did not use velocities to up-
date particle positions, the velocity Verlet algorithm was intentionally ex-
panded to include the velocity in the calculation. The algorithm also has
the advantage of having the velocities and the positions defined for the
same time:

r(t + ∆t) = r(t) + ∆tv(t) +
∆t2

2m
F(t) (2.16)
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v(t + ∆t) = v(t) +
∆t
2
[F(t) + F(t + ∆t)] (2.17)

The drawback of the method is that the new velocities can only be com-
puted after the new positions and new forces. Because the total en-
ergy of the system should be conserved when using these algorithms,
MD calculations are inherently in the microcanonical ensemble (N,V,U).
This makes using thermostats18, 19, 20, 21 and barostats18, 22, 23 a common oc-
currence when using this method, since one is usually interested in the
canonical or isotrem-isobar ensembles which resemble experimental sys-
tems. The main advantage of MD calculations, besides its ability to sam-
ple dynamic properties, is that the method is well suited for parallel com-
puting. This feature enables one to compute much bigger systems than
those that are calculated using typical MC methods.
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Chapter 3

Intermolecular Interactions

If we look back at what was discussed in Chapter 2 and derive the ex-
pression for pressure from the partition function of an ideal system we
get:

PV = NkT (3.1)

also known as the ideal gas law.

This expression ignores that particles have size and can interact with
each other. In the second half of the 19th century Johannes Diderik van
der Waals derived an expression that (approximately) took this into ac-
count.24

P =
RT

Vm − b
− a

V2
m

(3.2)

In this equation Vm is the molar volume and a, b are the van der Waal
parameters. Now how these extra parameters look depends in large part
on the way the particles interact and in the following we will present
common interaction potentials.

3.1 Hard-Sphere potential

One of the simplest ways to describe interactions between two particles
is in the form of spheres that cannot overlap. The interaction potential
becomes

u(r) =

{
0 if r ≥ σ

∞ if r < σ
(3.3)

where the potential u(r) is zero if the particles do not overlap and infinity
if they do. It is common to let r represent the center to center distance

15



between the particles and σ to describe the diamater and will in the fol-
lowing adhere to this.

3.2 Lennard-Jones potential

Unlike the Hard-Sphere potential, the Lennard-Jones (LJ) potential25 has
both a repulsive and an attractive term which is often a better description
of how real particles interact. In the early works the potential was of the
form,

u(r) =
λn

rn −
λm

rm (3.4)

where λn and λm are positive, particle dependent numbers. The first term
describes the repulsion between particles, the second attraction. Even in
the early days of development, the attractive term has been linked to the
dispersion energy, thus m = 6 became the standard value to use. The
repulsion however is not linked to any specific theoretical value of n, but
since m = 6 it became standard to use n = 12, sinse doing so provides
a computational advantage. In its current form the potential is usually
written:

u(r) = 4ε

[(σ

r

)12
−
(σ

r

)6
]

(3.5)

Where ε determines the maximum strength of the attraction.

3.3 Weeks-Chandler-Andersen potential

The Hard-Sphere potential is a discontinues model meaning there is a
sharp transition between repulsion and no interaction. Lennard-Jones on
the other hand has a smooth transition between repulsion and attraction
but sometimes you want to separate attraction from repulsion. This is
the idea behind the Weeks-Chandler-Andersen (WCA) potential.26 The
potential separates the repulsion and attraction of a pair potential (in our
case in Paper III and in the original publication this was the LJ potential)
into two separate parts so that one will have all the repulsion and the
other all the attraction.

w(r) = u0(r) + u(r) (3.6)

Here w(r) is the final potential while u0(r) is called the reference system
pair potential that has all the repulsion and u(r) is the perturbation po-
tential that has all the attraction. There is an additional condition that
u0(r)→ 0 as r → ∞ giving us:

16



u0(r) =

{
0 if r ≥ 2

1
6 σ

w(r) + ε if r < 2
1
6 σ

(3.7)

u(r) =

{
w(r) if r ≥ 2

1
6 σ

−ε if r < 2
1
6 σ

(3.8)

The ε in this case is a shift parameter and 2
1
6 σ is where the minimum of

the LJ potential is located. Thus in essence what the WCA potential does
is to cut the LJ into two parts at its minimum and shifting the repulsive
part up to zero at the cutoff giving us soft and purely repulsive potential
that was used in Paper III.

3.4 Electrostatic interactions

Besides size exclusion and dispersion, particles may carry charge or a
charge distribution. This can be described with varying degrees of accu-
racy, but in here we limit ourselves to charges and dipoles.

One of the fundamental laws of nature is Coulombs law that describes
the force between two charges. For our purpose it is more beneficial to
look at the potential,

u(r) =
qiqj

4πε0εrrij
(3.9)

where qi and qj are charges and ε0εr the permittivity and rij is the dis-
tance between the charges.

The first correction to describe electrostatic anisotropy of a charge dis-
tribution is by means of the electric dipole moment,

µ =
N

∑
k=1

qkrk (3.10)

Here qk are the individual charges and rk are their corresponding position
vectors. In the case of only two charges, one positive and one negative, the
dipole moment can be seen as a vector pointing from the negative charge
to the positive. If one would scale the distance between the charges with
1/n and the charges with n, in the limit of n approaching infinity we get a
point dipole moment. The point dipole is a mathematical abstraction but
is nonetheless very useful to use in simulations, since one can describe
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the point dipole moment as a vector alone. The potential between two
dipoles is,

u(rij, µi, µj) = −
1

4πε0εr

[
3
(µi · rij)(µj · rij)

(rij)5 −
µi · µj

(rij)3

]
(3.11)

in this expression rij is the vector between dipole i and j, µi and µj are
their corresponding dipole moments, rij is the scalar distance between
them.

The main challenge of electrostatic interactions in computer simulations
is their long ranged nature. The interactions decay as 1/r in the case
of charge-charge interactions and 1/r3 in the case of dipole-dipole in-
teractions. Specificaly, the problem that one faces is that the decay of
electrostatic interactions is not fast enough to simply use a cut-off within
the simulation box. Several methods to deal with this problem has been
proposed over the years which is the purpose of the next section.

Reaction field

The method was developed to describe how a dipole interacts with its
surrounding medium. This is done by placing a dipole in a cavity sur-
rounded by an infinite medium defined by a dielectric constant, εr. By
letting the dipole polarize the surrounding medium, the resulting po-
larization will in turn create an electric field which affects the dipole in
the cavity, hence the name Reaction Field. As computer simulations be-
came more widespread the method was included by Baker and Watts in
their publication showing that the results achieved with the Reaction field
method are more accurate than if one would just use a spherical cutoff.27

The Reaction field method is a fast method sacling as O(N), with N being
the number of charges in the system, and is easily implemented. However
the methods greatest drawback is the need for a correct parametrization
of the dielectric constant of the surrounding medium wich is not an easy
task in all cases.

Ewald-summation

A widespread way of tackling the problem of long range electrostatics
in computer simulations is to use the so-called Ewald-summation.28 The
method utilizes PBC and splits the system energy into a short range part
which is calculated in real space and a long range part which is calculated
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in reciprocal space. By doing so, one transforms the conditionally con-
vergent system into two parts that are both absolute convergent. Because
the method utilizes PBC it is viable for charge-neutral systems, something
one should always be aware of. The method requires cutoff parameters
in both real and reciprocal space, but the biggest drawback is the compu-
tational cost which scales as O(N2) or O(N

3
2 ) when optimized.

Wolf-method

It has been noticed that in dense systems the electrostatic interactions
become effectively short ranged. Further observations gave insight that,
if the total charge within a certain cutoff is exactly or near zero, one
can calculate the energy using a simple pairwise truncated and shifted
Coulomb potential without getting significant errors.29 Thus Wolf et. al.
proposed to use charge neutralization by placing a counter charge at the
cutoff sphere as a means to utilize the shifted pair potential. The conver-
gence using this approach was later improved upon by using a damping
function, akin to the real-space part of the Ewald summation. The advan-
tage of using the Wolf formalism instead of Ewald summation is that the
computational cost of this method scales as O(N) which would allow for
bigger simulations. In Paper IV we further expanded the formalism to
describe dipolar interactions.
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Chapter 4

Modeling

Modeling is simply a way of describing reality. A model can be complex
or it can be simple, but what defines a good model? There is no single
correct answer to this question, but here are some points that one should
consider,

i) Does the model describe what we want it to describe?

ii) How well does it describe it?

iii) How sensitive is it to the change in details?

In this section we discuss the background behind the models used in
Paper I to III.

4.1 The off-centered dipole

The dipolar particle (DP) as a model has been used in many studies and
is a simple way to model for example ferro-fluids.8 The model is a sum
of two potentials: an isotropic short range (sr) potential plus the dipole-
dipole (dd) potential.

uDP(r) = usr(r) + udd(r) (4.1)

In this model the dipole is positioned at the center of the particle. Now
the dipole-dipole interaction is anisotropic but there is still rotational
symetry in this model.

We now introduce an internal coordinate system for the particle, and
place a dipole moment in the middle of that coordinate system pointing
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in a random direction. We will get different particles, but since we can
simply rotate these particles to get the same overall configuration, the
particles become indistinguishable, see Fig 1a. While this may seem ob-
vious and unnecessarily complicated, this separation in the treatment of
the dipole by itself and of the particle by itself is important components
in the model of the off-centered dipolar particle (ODP).10, 30

a	  

b	  

Z’-‐axis	   Z’-‐axis	  

Z’-‐axis	   Z’-‐axis	  

Z’-‐axis	  

Z’-‐axis	  

Figure 4.1: A schematic representation of the (a) dipolar particle with a central dipole. No
matter in which direction one places the dipole you can always rotate the particle to get the same
configuration, (b) off-centered dipolar particle it is no longer possible to get the same configuration
by simply rotating the particle.

uODP(rsr, rdd) = usr(rsr) + udd(rdd) (4.2)

Several things that happen when moving the dipole from the center of
the particle towards the periphery:

i) There is less symmetry, see Fig 1b.

ii) The dipole-dipole distance may become shorter.

iii) Because of the short range repulsion, the particles can no longer
rotate freely (at contact) to get the “best” dipole-dipole orientation.
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iv) Because the dipoles are closer to the surface of the particle, one side
of the particle will be preferred over the other.

All this only plays a significant role when the particles are in contact but
that is sufficient to yield a completely different self-assembly than normal
dipolar particles, as is shown by Kantorovich et al. and Paper I.

4.2 An all atom model

Another model considered in this work is the metallocarborane cluster
[3,3’-cobalt(III)bis(1.2-dicarbolide)](-1 anion) also referred to as COSAN
or [CoD]−. We will refer to it as COSAN from here on, but the term
[CoD]− is used in Paper II. The term COSAN comes from the shape of
the molecule where the cobalt atom is sandwiched by two dicarbolide
nido − (C2B9H11)

2− clusters, thus the name COSAN is an acronym for
CObalt SANdwich.

Figure 4.2: Cisoid isomer of the negatively COSAN cluster with the corresponding electrical
dipole moment drawn as a blue arrow. The Cobalt atom can be seen in the middle of the cluster
sandwished by the two dicarbolide nido− (C2B9H11)

2− groups
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It is interesting to model the COSAN molecule because of its shape (see
Fig 4.2), the delocalized charge, and quite strong dipole moment that
points out from the short side of the molecule (see Fig 2). It has been
proposed that it is a Θ shaped amphiphile31 which means that unlike a
normal amphiphile that has a hydrophilic head and a hydrophobic tail,
COSAN has two hydrophobic regions with a hydrophilic ring around the
middle. Also like any other amphiphile, the COSAN cluster forms bigger
aggregates in aqueous solutions like micelles and vesicles.31

We modelled the COSAN cluster by using an all atom approach which
would allow us to study the explicit interaction of the COSAN cluster
with the solvent, as well as the solvents effect on the pairwise interac-
tion between two COSAN clusters. The general way of doing this type
of calculation is to model each atom in the simulation as LJ beads that
are connected to each other by springs. How these beads are connected
to each other, how strongly they are connected by the springs and if they
have a charge is generally tabulated in a so-called force field. Note that
since we only knew the positions of the atoms relative too each other and
their charges in the COSAN cluster, we made a simplification by model-
ing COSAN as a stiff molecule in Paper II.

The advantages of using the all atom approach is that we get a detailed
description of the system being studied and the simulation is relatively
easy to setup by just knowing the internal positions of the atoms in the
molecules. These are also some of the drawbacks of the approach because

i) the description is detailed, and a tiny detail somewhere in that de-
scription can have a large effect.

ii) the number of atoms that are calculated can easily reach a million,
which is a number that is barely manageable by todays computers

This second point can be dealt with by for example calculating an effective
potential. In our case we calculated the potential of mean force which is
an angle averaged potential which could possibly be used to calculate the
aggregation of COSAN.

4.3 Patchy Particles

A model that lies between the off-centered dipole model and the all atom
model in terms of detail is the Patchy Particle model (PPM). As the name
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implies the particles are modeled as a series of connected patches each of
which can have a specific characteristic such as for example hydrophobic
or hydrophillic patches. A specific type of patchy particles are Charged
Patchy Particles (CPP)32 used in Paper III and an example of which can
be seen in Figure 4.3. As the name suggests, the CPP is a charged par-
ticle that has negative and positive patches. In our case we modeled the
particle as a soft-sphere using the WCA-potential (see section 3.3) with
explicit charges coating the surface. The overall goal of this model is to

Figure 4.3: Example of a patchy particle the blue and red beads are either negatively or positively
charged while the white beads are neutral. Also one can see a distinct red patch forming on the
surface of the particle. In Paper III the grey beads were replaced by a single big WCA sphere to
reduce the computational cost.

provide a more detailed way of describing proteins and colloidal parti-
cles and at the same time having a lesser computational cost than a fully
atomic model. Another benefit of this model is the flexibility it provides
in tuning the interactions that particles can interact with. In for exmaple
our study we focus solely on electrostatic interactions between particles,
while still having a more detailed charge distribution.

This leads us to how the CPP model was utilized in the scope of this
work. Since 2010 there has been significant strides when it comes to the
effects that multivalent electrolytes have on the phase behavior of pro-
teins. It was noted that trivalent salts such as YCl3 has an enhancing ef-
fect on the crystallization of proteins.33 The follow up studies of this phe-
nomenon saw that some proteins such as Human Serum Albumin would
attract, dissolve and attract again as the salt concentration increased-
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cite.34, 35, 36, 37, 38, 39, 40, 41, 42 Thus the CPP model seemed a good choice to
study the underlying electrostatic interactions of this phenomenon.

4.4 Reduced units

A helpful tool to use when designing a model or performing simulations
are the reduced units. By choosing some convenient basic units we ex-
press all other quantities in terms of those basic units.15 If we take the
Lennard-Jones potential as an example (eq. 16) it is a good idea to express
the unit of length in terms of σ and units of energy in terms of ε.

r∗ ≡ r/σ (4.3)

u∗ ≡ u/ε (4.4)

This will give us an expression for LJ potential that looks the following.

u∗(r∗) = 4

[(
1
r∗

)12

−
(

1
r∗

)6
]

(4.5)

This will also give us for example reduced temperature as T∗ = kTε−1

and reduced density as ρ∗ = ρσ3. The main reason for using reduced
units is that many combinations of ε, σ, T and ρ correspond to the same
state in reduced units. Thus allowing us to see significance of simulations
that we otherwise would have overlooked. Also, by using reduced units
we can model poperties without having to actually implement them. As
an example magnetic dipoles can be modeled as electric dipoles with
reduced units. There is also a practical advantage in that all quantities
of interest are of order 1. This will eliminate problems with floating
numbers overflow from a programming aspect and will enable you to
more easily detect errors and bugs during your calculations.
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Chapter 5

Summary of the Results

Overall this project focused on studying anisotropic interactions and how
they affect the self-assembly of both small and large particles. Here is a
short summary of the results.

5.1 Paper I

In Paper I we studied the self-assembly of colloidal particles as described
experimentally by S.Saccana et al. By means of Monte Carlo simulations
and through the use of the off-centered dipole model (see section 4.1)
we were able to reproduce the observed self-assembly. These simulations
became an indicator to what the model can achieve as well as giving
some estimate of the strength of the dipole moment that is needed for
this self-assembly to work.

5.2 Paper II

In Paper II we focus on the COSAN cluster (see section 4.2). By uti-
lizing a rigid all atom model of the cluster in explicit water by means
of Molecular dynamics simulations. We studied the solvation and the
COSAN-COSAN interaction free energy via the potential of mean force
(PMF). The resulting PMF as well as the solvation of the cluster indicate to
an attraction dominated by hydrophobic interactions with the surround-
ing solvent. Because of this the electrostatics display a counter intuitive
behavior at sort range with anion-anion attraction and anion-cation re-
pulsion that may affect assembly at longer length scales.
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5.3 Paper III

In this paper we focused on the Charged Patchy Particle Model and the
effect that monovalent and trivalent ions have on the interactions between
particles. We found that even milli-molar concentrations of salt will have
a significant effect on the orientational space of the system and thereby
perturb directional interactions. We also found that the valency of the
electrolyte has a strong effect on the attraction or repulsion between two
CPPM particles.

5.4 Paper IV

We focused on expanding the existing Wolf-method (see section 3.4) to
account for long-ranged dipolar interactions. The method’s efficiency
and accuracy was compared to well established techniques such as the
Ewald summation and Reaction field for Stockmayer fluids. We also did
a scan of parameters to know when the method is valid, giving some
rules of thumb to which parameters to use.
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Chapter 6

Conclusions and Outlook

This project has been about studying anisotropic particles using com-
puter simulations. The main advantage of a computational approach to
study these types of particles is the ability to freely alter parameters that
experimentally would be difficult or impossible. Also, the advantage of
computer simulations is the potential to get insight on how a system looks
like on the microscopic level.

In the case of the first paper, a model was designed from basic pair po-
tentials for a specific purpose, namely to study the self-assembly of mag-
netic particles with an off-centered dipole moment. On the other hand
the approach for Paper II was somewhat different. We used an all-atom
approach to get insight on the interaction mechanism between the parti-
cles, thus enabling us to design an effective pair potential that will fit
these particles specifically. The model used in Paper III falls in between
the models of Paper I and II in terms of the details that are present in
the model as we attempt to describe a globular protein as a soft repulsive
sphere with electrostatic patches in an attempt to study its behavior in
the presence of trivalent salt. Finally in paper IV we expanded on the
Wolf-method to calculate electrostatic dipole interactions and studied the
parameter space where the method could be implemented.

The ability to change the details of a model is a powerful tool to con-
ceptualize the important properties of the real system. Tailoring a model
to a specific system is thus a way of speeding up calculations without
losing the overall behavior of the system.

With new challenges that science as a whole faces; be they politically, aca-
demically or industrially motivated. It is clear that the ability to predict
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properties and behavior of materials using “financially cheap” computer
simulations and theoretical models, instead of spending lots of money
and resources on experimental setups, is going to be something that peo-
ple will naturally be drawn to do. As more of the predictions made by
computer simulations lead to experimentalists successfully developing
new materials. Designing new more accurate models that utilize the full
power of the emerging computational technology or better coarse grained
models, that can run on a toaster if need be, will become more and more
important.

Lastly the vast availability of standard computation packages is very use-
ful for science at large, but this can also be a curse since it is easy to fall
into the trap of using these packages as a black box without understand-
ing the underlying theory. It is however only once you get into designing
models yourself that you realize the full potential of simulations as well
as their drawbacks.
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