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Abstract

We summarize the theory and implementation of an open source solver for
rotationally symmetric scatterers. The purpose of the code is to compute refer-
ence solutions for electrically large radome problems. The rotational symmetry
decouples the azimuthal modes, enabling the three-dimensional problem to be
broken down into a sequence of decoupled two-dimensional problems which re-
quire much less memory than the original problem. The code is based on the
open source finite elements code FEniCSx, which also supports parallelization
using MPI, allowing further scaling of the problem size. The developed code
can handle excitation as incident plane waves or a transmitting antenna, and
can output near field data for visualization as well as far field data in cuts or
projected on spherical vector wave expansions for further post processing. The
performance is verified for Mie scattering agains metal and dielectric spheres,
and a realistic radome geometry is simulated and discussed.

1 Introduction
For several applications, there is a need for accurate solutions of electrically large
problems, that is, where the geometry is large in terms of wavelengths. A particular
case is in the design and analysis of radomes, which are structures enclosing antennas
in order to protect them from wear and tear [6, 14]. The antenna is often a large array
antenna with hundreds or thousands of elements, making the radome necessarily in
the order of tens or hundreds of wavelengths [10]. When designing these radomes,
various approximations are usually necessary in the simulations and it is of interest
to develop reference cases where the approximate methods can be benchmarked.

Previous efforts in this direction based on spherically symmetric structures were
presented in [7, 8], and for rotationally symmetric structures with a highly symmetric
excitation in [15]. In this paper, we generalize the results in [15] to enable arbitrary
excitations. The methodology is based on the fact that for rotationally symmetric
geometries, Maxwell’s equations decouple into a sequence of two-dimensional prob-
lems for each azimuthal mode, where each problem is much smaller than the original
three-dimensional problem. This makes it feasible to simulate large geometries with
limited memory resources, and enables the development of realistic reference prob-
lems for approximate methods. In this paper, we study an ogive-shaped radome
containing a circular antenna with an amplitude tapering that provides low side
lobe levels. The interaction of the antenna boundary with the radome structure has
been studied in more detail in [16].

2 Rotational symmetry
The simulation of a three-dimensional geometry that has rotational symmetry can
be broken down into a sequence of two-dimensional cross-sectional problems. This
represents a huge saving in computational complexity, making it possible to simulate
very large problems using moderate hardware in terms of memory, although the total
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Figure 1: Cartesian, cylindrical, and spherical coordinate systems.

amount of azimuthal modes to be simulated may still be significant. The number of
modes necessary is determined from the Wiscombe criterion for Mie scattering [18],
which in its most restrictive form is

N > ka+ 4.05(ka)3 + 2, (2.1)

where a is the radius of the scattering region, and k = 2π/λ is the free space
wavenumber, λ being the free space wavelength. The azimuthal modes are indexed
by m with −N ≤ m ≤ N . The number N can be significantly reduced if the
excitation also has high symmetry, for instance for waves propagating along the
symmetry axis [15].

2.1 Representation in cylindrical coordinates

To demonstrate how a rotationally symmetric problem can be decomposed into
a sequence of cross-sectional problems, we consider the representation of a time-
harmonic (time convention ejωt where ω is the angular frequency) electromagnetic
field in cylindrical coordinates (ρ, φ, z), see Figure 1. The result is

E(r) =
∞∑

m=−∞
E(m)(ρ, z)e−jmφ =

∞∑
m=−∞

[
E(m)

ρ (ρ, z)ρ̂+ E(m)
φ (ρ, z)φ̂+ E(m)

z (ρ, z)ẑ
]
e−jmφ,

(2.2)

H(r) =
∞∑

m=−∞
H(m)(ρ, z)e−jmφ =

∞∑
m=−∞

[
H(m)

ρ (ρ, z)ρ̂+H(m)
φ (ρ, z)φ̂+H(m)

z (ρ, z)ẑ
]
e−jmφ,

(2.3)
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where the importance is that the azimuth angular dependence e−jmφ has been fac-
tored out from each term in the series. By defining the differential operator ∇m

as

∇m ×E(m) = ejmφ∇× (E(m)e−jmφ)

= ρ̂

(
− jm

ρ
E(m)

z − ∂E
(m)
φ

∂z

)
+φ̂

(
∂E

(m)
ρ

∂z
− ∂E

(m)
z

∂ρ

)
+ẑ

(
1

ρ

∂

∂ρ
(ρE(m)

φ ) +
jm

ρ
E(m)

ρ

)
,

(2.4)

it is clear that after multiplying with ejmφ and integrating over φ (assuming ϵ and
µ are independent of φ), Maxwell’s equations become

∫ 2π

0

ejmφ(∇×E + jωµH) dφ = 0∫ 2π

0

ejmφ(∇×H − jωϵE) dφ = 0

⇒
{
∇m ×E(m) + jωµH(m) = 0

∇m ×H(m) − jωϵE(m) = 0
(2.5)

where ∇m differentiates in ρ and z only. Hence, we have a two-dimensional cross-
sectional problem to solve for the modal amplitudes E(m)(ρ, z) and H(m)(ρ, z). In
a finite element context, it is customary to use Faraday’s law to eliminate the mag-
netic field, providing the second order partial differential equation in two spatial
dimensions (ρ, z)

−∇m × (µ−1
r ∇m ×E(m)) + k2ϵrE

(m) = 0 (2.6)

for the electric field E(m), where we introduced the relative permeability µr = µ/µ0,
relative permittivity ϵr = ϵ/ϵ0, and the vacuum wavenumber k = ω

√
ϵ0µ0 = 2π/λ.

The weak formulation of (2.6) is found by multiplying with a test function v
and integrating over the domain. By also performing a partial integration, one of
the curl operations is transferred to the test function and we have∫∫ {

−µ−1
r (∇m ×E(m)) · (∇m × v) + k2ϵrE

(m) · v
}
ρ dρ dz = 0, (2.7)

where we have neglected any boundary conditions in order to illustrate the basic
structure of the expression. Note the multiplication with ρ at the end, which comes
from the differential volume element in cylindrical coordinates, dV = ρ dρ dz dφ.

2.2 Finite element formulation

The finite element method (FEM) formulation of the problem is based on the weak
formulation (2.7). The sought field is expanded in basis functions as E(m)(r) =∑

n E
(m)
n En(r), and for each test function v(r), the equation (2.7) represents a

row of a linear system of equations Ax = b with x as the vector of unknowns
{E(m)

1 , E
(m)
2 , . . .} which can be solved for. The process can be significantly automated

with the use of, for instance, the open source FEM project FEniCSx [2, 3, 12, 13],
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Figure 2: Geometry of the finite element simulation. The material region has mate-
rial parameters different than air, and the air region has ϵr = µr = 1. The antenna
consists of a closed surface where one part is an aperture with a prescribed antenna
field Ea, and the other parts are PEC. The field on the far field surface is saved and
postprocessed for each simulation. The simulation region (air and scatterer) Ω is
surrounded by a region Ωpml of perfectly matched layers, having relative permittivity
tensor ϵr,pml and relative permeability tensor µr,pml.
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where all necessary basis functions and infrastructure for mesh handling, computing
integrals and much more is already implemented. In this paper, the finite element
is chosen as a mixed element, representing (Eρ, Ez) with curl conforming first kind
Nédélec (N1curl), and Eφ with node based Lagrange (CG) elements. The polynomial
degree of the finite element can be chosen as a parameter in FEniCSx.

In order to truncate (2.6) to a finite domain Ω, we surround the domain of interest
with an absorbing perfectly matched layer (PML) with complex and anisotropic
material parameters ϵr,pml and µr,pml based on stretched coordinates, see Figure 2
and Appendix A for explicit expressions of the material parameters.

We include two different excitations: an antenna field Ea which is present only as
tangential components on the aperture Γant of an antenna, and a background field
Eb which corresponds to an incident wave propagating in a background medium
characterized by ϵr,b and µr,b. Typically, the background medium is considered to
be free space and we have ϵr,b = µr,b = 1. We need to enforce boundary conditions
on the antenna surfaces, consisting of both perfect electric conductor (PEC) parts,
and an antenna aperture. On the PEC surfaces Γpec, we require the boundary
condition n̂ × (E(m) +E

(m)
b ) = 0, where n̂ is the surface normal and E(m) +E

(m)
b

represents the total electric field. This is usually implemented as Dirichlet boundary
conditions, where the degrees of freedom corresponding to the tangential electric
fields are prescribed. However, it can also be straight-forwardly implemented in
weak form by Nitsche’s method [9]. This uses the functional

α

h

∫
Γpec

[n̂× (E(m) +E
(m)
b )] · [n̂× v]ρ dℓ, (2.8)

where h is the triangle diameter and α is a tuning parameter, chosen as α = 10
in this work. On the antenna aperture Γant, we require the boundary condition
n̂× (E(m) +E

(m)
b −E(m)

a ) = 0, which can be implemented by the functional

α

h

∫
Γant

[n̂× (E(m) +E
(m)
b −E(m)

a )] · [n̂× v]ρ dℓ. (2.9)

This treats the antenna aperture surface as a metal boundary with reflection coef-
ficient −1 for the background field. The excitation Ea for an antenna transmitting
in a certain direction can be approximated as the field values of a plane wave propa-
gating in the same direction evaluated on the antenna surface Γant, see Appendix B.
In total, our finite element formulation of the problem is then∫∫

Ω

{
−µ−1

r [∇m ×E(m)] · (∇m × v) + k2ϵrE
(m) · v

}
ρ dρ dz

+

∫∫
Ωpml

{
−[µ−1

r,pml · (∇m ×E(m))] · (∇m × v) + k2[ϵr,pml ·E(m)] · v
}
ρ dρ dz

+
α

h

∫
Γpec

[n̂×(E(m)+E
(m)
b )]·[n̂×v]ρ dℓ+

α

h

∫
Γant

[n̂×(E(m)+E
(m)
b −E(m)

a )]·[n̂×v]ρ dℓ

+

∫∫
Ω

k2(ϵr − µ−1
r µr,bϵr,b)E

(m)
b · vρ dρ dz = 0. (2.10)
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The last row is what remains after considering Maxwells’ equations for the total
field E(m) + E

(m)
b , and using that the background field E

(m)
b satisfies the equation∫∫

Ω
µ−1
r,b(∇m×E

(m)
b ) · (∇m×v)ρ dρ dz =

∫∫
Ω
ϵr,bk

2E
(m)
b ·vρ dρ dz. Usually, only one

of the excitations Ea or Eb is nonzero.

2.3 Symmetries

Considering each polarization of an incident plane wave or antenna excitation ac-
cording to Appendix B and the general relation J−n(x) = (−1)n Jn(x), it is clear the
solution has the parities

θ-polarization ϕ-polarization

E(−m)
ρ = +E(m)

ρ E(−m)
ρ = −E(m)

ρ (2.11)

E(−m)
z = +E(m)

z E(−m)
z = −E(m)

z (2.12)

E(−m)
φ = −E(m)

φ E(−m)
φ = +E(m)

φ (2.13)

Hence, for a fixed polarization it is sufficient to compute the solution for m ≥ 0, and
synthesize the solution in postprocess. When polarizations are mixed, for instance
one polarization of an incident wave and another for the antenna excitation, no
symmetries can be used.

3 Implementation in FEniCSx
The formulation (2.10) has been implemented in FEniCSx, and is available at https:
//github.com/dsjoberg-git/rotsymsca. The implementation is largely inspired
by the dolfinx demo Electromagnetic scattering from a sphere (asisymmetric) at
https://docs.fenicsproject.org/dolfinx/v0.9.0/python/demos/demo_axis.html.
The key steps of the code are

• Create a mesh for the geometry using the Python interface to the open source
mesh program Gmsh (https://gmsh.info/) [4]. At this stage, it is important
to correctly label the geometry to identify regions with different materials and
boundary conditions and pass this on to the main FEniCSx code.

• Represent the three-dimensional electric field with a mixed finite element,
where the in-plane field components (Eρ, Ez) are represented with Nédélec
curl-conforming elements, and the out-of-plane field Eϕ is represented with
scalar node-based Lagrange elements. The polynomial degree of the finite
elements can be chosen freely.

• Set up material parameters and boundary conditions of the problem. This
includes computing the PML material parameters using the expressions in
Appendix A.

• Compute the solutions for each azimuth mode index m, and save relevant data
for postprocessing.

https://github.com/dsjoberg-git/rotsymsca
https://github.com/dsjoberg-git/rotsymsca
https://docs.fenicsproject.org/dolfinx/v0.9.0/python/demos/demo_axis.html
https://gmsh.info/
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• Perform relevant postprocessing such as far field computation, near field plots,
and projection on spherical vector harmonics.

Parallel processing using message passing interface (MPI) is mostly transparent in
FEniCSx, but requires attention in the postprocess stage, where results from the
different processes need to be gathered in one single process. As of fall 2024, it
is not possible to save the solution when running in parallel (this is under current
development in FEniCSx), so only processed data is saved.

The code is provided as a main library rotsymsca.py, which can be loaded in
simulation scripts, see verification.py and radome_simulations.py for exam-
ples. The mesh is generated in mesh_rotsymradome.py.

4 Post processing
Since the field is computed for each azimuthal mode, some non-trivial post processing
is necessary to obtain the desired output data. This data is primarily the far field
amplitude, which can either be computed directly or by first projecting the solution
on the spherical vector harmonics. For visualization purposes, we also need to
consider near field data.

4.1 Far field computations

If the tangential electric and magnetic fields on a general surface S with outward
normal n̂ have been computed, the far field amplitude in direction k̂ is given by

F (k̂) =
jk

4π
k̂ ×

∫∫
S

[
E(r)× n̂+ η0k̂ × (n̂×H(r))

]
ejkk̂·r dS. (4.1)

In the specific case of a rotationally symmetric structure, the surface S is described
by a curve γ in the ρ-z plane, and we have F (k̂) =

∑
m F (m)(k̂) where

F (m)(k̂) =
jk

4π
k̂×
∫
ρ∈γ

∫ 2π

φ=0

[
E(m)(ρ, z)× n̂+ η0k̂ × (n̂×H(m)(ρ, z))

]
ej(kk̂·r−mφ)ρ dφ dℓ

(4.2)
The integral in the φ-direction is explicitly computed in Appendix C, using the
parameterization k̂ = x̂ sin θ cosϕ+ ŷ sin θ sinϕ+ ẑ cos θ, where θ is the polar angle
and ϕ the azimuth angle. Note that we distinguish between the far field direction
azimuth angle ϕ and the azimuth angle φ used in the cylindrical coordinate system
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where the vector components of the electric field are defined. The result is

F (m)(θ, ϕ) = θ̂
jk

2
jme−jmϕ

∫
ρ∈γ

{
−
[
CmnzE

(m)
φ − Sm(nρE

(m)
z − nzE

(m)
ρ )

]
sinϕ

+
[
SmnzE

(m)
φ + Cm(nρE

(m)
z − nzE

(m)
ρ )

]
cosϕ

− η0
[
CmnzH

(m)
φ − Sm(nρH

(m)
z − nzH

(m)
ρ )

]
cos θ cosϕ

− η0
[
SmnzH

(m)
φ + Cm(nρH

(m)
z − nzH

(m)
ρ )

]
cos θ sinϕ

+ η0AmnρH
(m)
φ sin θ

}
ejkz cos θρ dℓ

+ ϕ̂
jk

2
jme−jmϕ

∫
ρ∈γ

{
−
[
CmnzE

(m)
φ − Sm(nρE

(m)
z − nzE

(m)
ρ )

]
cos θ cosϕ

−
[
SmnzE

(m)
φ + Cm(nρE

(m)
z − nzE

(m)
ρ )

]
cos θ sinϕ

+ AmnρE
(m)
φ sin θ

+ η0
[
CmnzH

(m)
φ − Sm(nρH

(m)
z − nzH

(m)
ρ )

]
sinϕ

− η0
[
SmnzH

(m)
φ + Cm(nρH

(m)
z − nzH

(m)
ρ )

]
cosϕ

}
ejkz cos θρ dℓ (4.3)

where

Am = Jm(kρ sin θ) (4.4)

Cm =
1

2

[
ejϕ Jm−1(kρ sin θ) + e−jϕ Jm+1(kρ sin θ)

]
(4.5)

Sm =
j

2

[
ejϕ Jm−1(kρ sin θ)− e−jϕ Jm+1(kρ sin θ)

]
(4.6)

This integral has been implemented in FEniCSx. It is important to restrict the
evaluations of the Bessel functions to cells adjacent to the farfield boundary, in
order to keep the overhead computations to a minimum.

4.2 Projection on spherical vector harmonics

In order to limit the data needed to be saved from each simulation, the far field
results can be projected on spherical vector harmonics, which also enables post-
processing of a three-dimensional radiation pattern. We follow the definitions of
spherical vector harmonics presented in [5], which is based on time convention e−iωt,
whereas this document uses time convention ejωt. Define

(E(c)
smn,H

(c)
smn) =

(
k
√
ηF (c)

smn(r, θ, φ),
−ik√
η
F

(c)
3−s,m,n(r, θ, φ)

)
(4.7)

where F (c)
smn(r, θ, φ) denotes the spherical vector waves as defined in [5], and η =√

µ0/ϵ0 is the wave impedance (note that [5] uses the letter η for the wave admit-
tance, that is, ηHansen =

√
ϵ0/µ0). The outgoing field is given by c = 3 as

(E(r),H(r)) =
∑
smn

Q(3)
smn(E

(3)
smn(r),H

(3)
smn(r)), (4.8)
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where the expansion coefficients Q
(3)
smn are determined from the integral (where E

and H are the electric and magnetic field from the simulation, respectively)∫∫
S

{
E ×H

(1)
s,−m,n −E

(1)
s,−m,n ×H

}
· n̂ dS = (−1)m+1Q(3)

smn. (4.9)

The far field amplitude is

F (θ, φ) = lim
r→∞

r

eikr

∑
smn

Q(3)
smnE

(3)
smn(r, θ, φ) = lim

r→∞
kr

eikr

√
4π

√
η

4π

∑
smn

Q(3)
smnF

(3)
smn(r, θ, φ)

=

√
η

4π

∑
smn

Q(3)
smnKsmn(θ, φ), (4.10)

where the functions Ksmn(θ, φ) are given in [5]. In order to use this procedure
together with our fields that have been computed using time convention ejωt, we
first take the complex conjugate of our fields (E,H) that are recorded on a far field
boundary. We then compute the expansion coefficients Q

(3)
smn, and compute the far

field amplitude using (4.10), and finally take the complex conjugate of this result to
obtain the expansion coefficients relevant for the time convention ejωt.

When only a cut of the far field amplitude is necessary, it is usually faster to
just compute the far field directly using the method in Section 4.1. But when the
far field should be evaluated on the whole sphere, there is a clear benefit in first
computing the expansion coefficients Q

(3)
smn which can subsequently be used for any

postprocessing of the far field.

4.3 Near field plots

For visualization purposes, it is necessary to compute the complex amplitude of the
near fields. We then need to compute the following sum

E(r) =
N∑

m=−N

E(m)(r)e−jmφ (4.11)

for a fixed azimuth angle φ (typically φ = 0). Since each azimuth mode is computed
sequentially, we create a stored field E(r) and add each mode sequentially according
to (4.11) until all modes have been computed. In order to plot a full cross section,
this means we need to compute the near field not only for φ = 0, but also for φ = π.
Animations of the near field can be created by plotting a sequence of Re{E(r)ejωt}
for ωt ∈ [0, 2π].

5 Verification
The code has been verified by computing the differential scattering cross section for
two spheres, one having radius λ/2 and the other having radius 3λ. We consider both
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Figure 3: Results for h-convergence of E-plane differential scattering cross section
of some spheres. (a) PEC sphere radius λ/2, (b) PEC sphere radius 3λ, (c) lossy
dielectric sphere radius λ/2, (d) lossy dielectric sphere radius 3λ.

PEC spheres and lossy dielectric spheres, having relative permittivity 3(1 − 0.1j).
The degree of the finite elements is kept constant at 3, and the mesh size is varied
as h/λ ∈ [0.4, 0.2, 0.1, 0.05, 0.025]. The farfield surface is at λ/2 from the sphere
surface, the PML starts at λ/2 from the farfield surface, and is λ/2 thick. The
differential scattering cross section is computed for a wave incident at θ = 0 and
ϕ = 0, where it is sufficient to use only modes m = ±1 to represent the plane wave.
The error is computed using the results from miepython [11] as reference value. The
results for E-plane scattering are shown in Figure 3, and the H-plane results are in
Figure 4.

It is seen that there is a clear convergence of the results with decreasing mesh
size for all considered cases.

6 Application to a radome geometry
We analyze an ogive-shaped radome, which is a common design for a nose cone
radome, see Figure 5. This design has several features of a realistic radome, in



11

101

λ/h

10−3

10−2

10−1

100

max rel error

rms rel error

101

λ/h

10−3

10−2

10−1

100

max rel error

rms rel error

(a) (b)

101

λ/h

10−2

10−1

100

101

max rel error

rms rel error

101

λ/h

10−3

10−2

10−1

100

101

102
max rel error

rms rel error

(c) (d)

Figure 4: Results for h-convergence of H-plane differential scattering cross section
of some spheres. (a) PEC sphere radius λ/2, (b) PEC sphere radius 3λ, (c) lossy
dielectric sphere radius λ/2, (d) lossy dielectric sphere radius 3λ.
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w

2Ra

2Rb

H

La
Lb

d

x =
√

ρ2b − z2 +Rb − ρb

x =
√

ρ2a − z2 +Ra − ρa

x

z

Figure 5: Geometry parameters of the ogive radome, adapted from https://en.
wikipedia.org/wiki/Nose_cone_design. The radius of curvature for the ogive
parts is computed from the other parameters as ρa,b = (R2

a,b + L2
a,b)/(2Ra,b), and

the thickness of the radome at the base is d = Rb − Ra. The antenna width is w,
and the distance between the antenna and the radome is d0 = Ra − w/2.

https://en.wikipedia.org/wiki/Nose_cone_design
https://en.wikipedia.org/wiki/Nose_cone_design
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particular a pointed tip. The baseline parameters of the radome, corresponding to
Figure 5, are chosen as

• f0 = 10GHz (frequency)

• λ0 = c/f0 (wavelength)

• w = 10λ0 = 0.300m (diameter of antenna)

• d0 = λ0/2 = 0.0150m (distance from antenna to radome)

• ϵr = 3 (relative permittivity of radome, lossless)

• d = λ0/(2
√
ϵr) = 8.7mm (thickness of radome)

• α = 2 (ogive shape factor)

• Ra = w/2 + d0 = 0.165m

• La = αRa = 0.330m

• ρa = (R2
a + L2

a)/(2Ra) = 0.412m

• Rb = w/2 + d0 + d = 0.174m

• Lb = αRb = 0.347m

• ρb = (R2
b + L2

b)/(2Rb) = 0.434m

• H = 5λ0 = 0.150m

The antenna is implemented as a circular antenna with thickness 0.1λ0 and a cosine-
tapering in the radial direction, that is, the antenna field is

Ea(r) = E0e
−jk·r cos(πρ/w), r ∈ Γant (6.1)

where the expression for a plane wave in (B.14) is used to express E0e
−jk·r in az-

imuthal modes. The baseline antenna is ten wavelengths in diameter, making the
radiation highly directive.

The excitation corresponding to an incident plane wave is Eb(r) = E0e
−jk·r. In

both the antenna excitation and the plane wave excitation, the azimuth modes are
found from the expressions in Appendix B.

6.1 Parameter variations

From the baseline geometry we make a number of parameter variations in the sim-
ulations:

• Electric field in θ (TM, in plane) or ϕ (TE, out of plane) polarization.

• Angle of incidence θ ∈ [0◦, 10◦, 20◦, 30◦, 40◦, 50◦].
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• With and without radome.

• Either with a transmitting antenna or scattering from an incident plane wave.

• Antenna width w ∈ [10λ0, 20λ0, 30λ0]. Note that the radome thickness is
λ0/(2

√
ϵr) in all cases, that is, the radome is always transparent.

All combinations of these parameters have been run, and the results are discussed in
the following subsection. The mesh size was chosen as h = λ0/10, and the structure
was surrounded by a cylindrical PML with thickness λ0/2 at distance λ0 from the
radome in all directions.

6.2 Results

Typical examples of near field plots are given in Figure 6, where the scattered field
is plotted for a plane wave excitation, and the total field is plotted for a trans-
mitting antenna excitation. The results are given for three different radome sizes,
corresponding to antenna widths w = 10λ0, 20λ0, 30λ0, using ϕ-polarization.

For the incident plane wave (top row), it is seen there is a significant scattered
field inside the radome cavity; this is due to the delay through the radome wall, and
does not necessarily mean the radome scatters in the monostatic direction. There
is also a strong scattered field in the region beneath the antenna, which is necessary
to cancel the incident field in this shadow region. Some significant scattering is
observed near the pointed tip of the radome, especially for the larger radome.

For the transmitting case, we can clearly see a reflection lobe travelling to the
left. This is due to imperfect transmission of the wave through the radome wall,
which was designed with normal incidence in mind. The curvature of the radome
further shapes this reflection lobe.

Far field results in the plane of incidence for an incident plane wave are shown
in Figure 7 for antenna width w = 10λ0. Both polarizations and the cases with
and without radome are reported. It is seen that there is a significantly increased
bistatic scattering at some angles for the ϕ-polarization when the radome is present,
whereas the corresponding effect is smaller for the θ-polarization.

In Figure 8, the corresponding results are plotted for the transmitting antenna
excitation. Here, we observe significantly increased and broad side lobe levels with
the radome present, for both polarizations. This is the reflection lobe earlier ob-
served in the near field plots in Figure 6, due to imperfect transmission through
the radome wall. A somewhat increased side lobe around −40◦ can be observed in
the ϕ-polarization without radome for high steering angles, in particular θ = 40◦.
This indicates there is some scattering occurring at the edges of the antenna for this
polarization, even without the radome present.

Figures 9 and 11 show the same results as Figure 7 but for antenna widths
w = 20λ0 and 30λ0, respectively. It is seen that the trend of increased side lobes for
the ϕ-polarization is maintained for the larger radome sizes, with a more moderate
increase for the θ-polarization.
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Figure 6: Near field plots of scattered field when subjected to an incident plane
wave from θ = 30◦ (top row) and total field with transmitting antenna towards
θ = 30◦ (bottom row) from antenna with radome present, antenna widths w =
10λ0, 20λ0, 30λ0 (from left to right).
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Scattering case, w = 10λ0, θ = 0◦
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Scattering case, w = 10λ0, θ = 10◦
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Scattering case, w = 10λ0, θ = 20◦

pol = θ, radome = True

pol = φ, radome = True

pol = θ, radome = False

pol = φ, radome = False

−90 −60 −30 0 30 60 90

theta (degrees)

−50

−40

−30

−20

−10

0

10

20
B

is
ta

ti
c

cr
os

s
se

ct
io

n
(d

B
sm

)

Scattering case, w = 10λ0, θ = 30◦
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Scattering case, w = 10λ0, θ = 40◦
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pol = φ, radome = True

pol = θ, radome = False

pol = φ, radome = False

−90 −60 −30 0 30 60 90

theta (degrees)

−60

−40

−20

0

20

B
is

ta
ti

c
cr

os
s

se
ct

io
n

(d
B

sm
)

Scattering case, w = 10λ0, θ = 50◦

pol = θ, radome = True
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Figure 7: Scattering from antenna with and without radome, antenna width w =
10λ0.
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Transmitting case, w = 10λ0, θ = 20◦
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Transmitting case, w = 10λ0, θ = 40◦
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Transmitting case, w = 10λ0, θ = 50◦

pol = θ, radome = True
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Figure 8: Transmission from antenna with and without radome, antenna width
w = 10λ0.
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Scattering case, w = 20λ0, θ = 20◦
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Scattering case, w = 20λ0, θ = 30◦
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Scattering case, w = 20λ0, θ = 40◦
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Scattering case, w = 20λ0, θ = 50◦

pol = θ, radome = True

pol = φ, radome = True
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Figure 9: Scattering from antenna with and without radome, antenna width w =
20λ0.
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Finally, Figures 10 and 12 show the same results for a transmitting antenna as
Figure 8 but for antenna widths w = 20λ0 and 30λ0, respectively. The reflection
lobe is clearly visible in both polarizations when the radome is present. Also, the
increased side lobe for the ϕ-polarization without radome remains, in particular for
w = 30λ0 at θ = 40◦ and 50◦.

7 Conclusions
We have described the theory and implementation of a finite elements code for
the simulation of a rotationally symmetric geometry, with the purpose to provide
benchmark cases for large radome simulations. The code has been verified using
scattering against PEC spheres and lossy dielectric spheres using a Mie scattering
code. The code can handle excitation both with a transmitting antenna (with or
without a tapering for low side lobes), and an incident plane wave, with arbitrary
polarization. Both far field and near field data can be considered, where the far field
data can also be projected on the spherical vector harmonics.

An application case has been illustrated, where a simple ogive-shaped half-
wavelength radome in various sizes has been simulated. An increased bistatic scat-
tering was observed for an incident plane wave of ϕ-polarization, and a reflection
lobe in the transmitting case was observed in both near field and far field data for
both polarizations. It should be emphasized that the radome studied has not been
optimized in any way, and the results presented here are only intended to provide a
reference case for other codes, not to represent a good design.



20

−90 −60 −30 0 30 60 90

theta (degrees)

−120

−100

−80

−60

−40

−20

0

N
or

m
al

iz
ed

ga
in

(d
B

)

Transmitting case, w = 20λ0, θ = 0◦

pol = θ, radome = True

pol = φ, radome = True

pol = θ, radome = False

pol = φ, radome = False

−90 −60 −30 0 30 60 90

theta (degrees)

−120

−100

−80

−60

−40

−20

0

N
or

m
al

iz
ed

ga
in

(d
B

)

Transmitting case, w = 20λ0, θ = 10◦

pol = θ, radome = True

pol = φ, radome = True

pol = θ, radome = False

pol = φ, radome = False

−90 −60 −30 0 30 60 90

theta (degrees)

−100

−80

−60

−40

−20

0

N
or

m
al

iz
ed

ga
in

(d
B

)
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Transmitting case, w = 20λ0, θ = 40◦
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Transmitting case, w = 20λ0, θ = 50◦
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Figure 10: Transmission from antenna with and without radome, antenna width
w = 20λ0.
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Scattering case, w = 30λ0, θ = 50◦
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Figure 11: Scattering from antenna with and without radome, antenna width w =
30λ0.
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Transmitting case, w = 30λ0, θ = 50◦
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Figure 12: Transmission from antenna with and without radome, antenna width
w = 30λ0.
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A Perfectly matched layer
A perfectly matched layer (PML) region is used to absorb the outgoing scattered
field. We follow the dolfinx v0.7 demo on axisymmetric scattering,1 and consider a
spherical region with stretched cylindrical coordinates ρ′(ρ, z), z′(ρ, z), and φ′ = φ.
The coordinate transformation has the Jacobian

J = A−1 = ∇r′(r) =


∂ρ′

∂ρ
∂z′

∂ρ
0

∂ρ′

∂z
∂z′

∂z
0

0 0 ρ′

ρ
∂φ′

∂φ

 , (A.1)

and the PML material parameters are (with A = det(A))

ϵr,pml = A−1AϵbA
T (A.2)

µr,pml = A−1AµbA
T. (A.3)

We consider stretching with a polynomial profile in spherical radius r =
√
ρ2 + z2

such that [17, p. 663]

ρ′ = ρ

(
1− j

(n+ 1) ln(1/R0)

2k(rpml − rdom)

(
r − rdom

rpml − rdom

)n)
(A.4)

z′ = z

(
1− j

(n+ 1) ln(1/R0)

2k(rpml − rdom)

(
r − rdom

rpml − rdom

)n)
. (A.5)

where R0 is the desired (amplitude scale) reflection coefficient at normal incidence,
and n is the polynomial order. Suitable choices are R0 = 10−10 and n = 3.

Another option is to stretch coordinates in ρ and z independently, which allows
for structures parallel to the z-axis extending into the PML (and hence considered
infinite in this direction). This is obtained by

ρ′ = ρ

(
1− j

(n+ 1) ln(1/R0)

2k(ρpml − ρdom)

(
ρ− ρdom

ρpml − ρdom

)n)
ρdom < ρ < ρpml (A.6)

z′ = z

(
1− j

(n+ 1) ln(1/R0)

2k(zpml,t − zdom,t)

(
z − zdom,t

zpml,t − zdom,t

)n)
zdom,t < z < zpml,t (A.7)

z′ = z

(
1− j

(n+ 1) ln(1/R0)

2k(zdom,b − zpml,b)

(
zdom,b − z

zdom,b − zpml,b

)n)
zpml,b < z < zdom,b (A.8)

and unstretched coordinates otherwise. In the overlap regions, both ρ′ and z′ are
stretched by the formulas above. We can write a stretching function (note the use
of the absolute value in order to have positive quantities regardless of the sign of
xpml − xdom)

s(x, xdom, xpml) = 1− j
(n+ 1) ln(1/R0)

2k|xpml − xdom|

(
x− xdom

xpml − xdom

)n

, (A.9)

1https://docs.fenicsproject.org/dolfinx/main/python/demos/demo_axis.html

https://docs.fenicsproject.org/dolfinx/main/python/demos/demo_axis.html
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where x denotes the coordinate normal to the PML, with xdom and xpml denoting
the coordinates at the end of the domain and the end of the PML, respectively.
Hence, a spherical PML has

ρ′ = ρs(r, rdom, rpml) rdom < r < rpml (A.10)
z′ = zs(r, rdom, rpml) rdom < r < rpml (A.11)

with r =
√
ρ2 + z2, whereas a cylindrical PML has

ρ′ = ρs(ρ, ρdom, ρpml) ρdom < ρ < ρpml (A.12)
z′ = zs(z, zdom,t, zpml,t) zdom,t < z < zpml,t (A.13)
z′ = zs(z, zdom,b, zpml,b) zpml,t < z < zdom,t. (A.14)

We note that this is not strictly the correct scaling since s depends on the coordi-
nates, we should have s = ∂ρ′/∂ρ etc. However, it seems to work in practice.

B Plane wave in cylindrical coordinates
An incident plane wave is described by

Eb(r) = E0e
−jk·r, (B.1)

where
k = k(x̂ sin θ cosϕ+ ŷ sin θ sinϕ+ ẑ cos θ), (B.2)

The Cartesian unit vectors can be written in terms of the cylindrical as

x̂ = ρ̂ cosφ− φ̂ sinφ (B.3)
ŷ = ρ̂ sinφ+ φ̂ cosφ (B.4)
ẑ = ẑ, (B.5)

implying

k · r = kρ sin θ(cosϕ cosφ+ sinϕ sinφ) + kz cos θ = kρ sin θ cos(φ− ϕ) + kz cos θ.
(B.6)

Using the Jacobi-Anger expansion [1, pp. 9.1.42–45]

ejz cosφ =
∞∑

n=−∞
jn Jn(z)e

jnφ, (B.7)

we can then write

e−jk·r = e−jkρ sin θ cos(φ−ϕ)e−jkz cos θ = e−jkz cos θ

∞∑
n=−∞

(−j)n Jn(kρ sin θ)e
−jn(φ−ϕ). (B.8)

The polarization of the wave is

E0 = θ̂Eθ + ϕ̂Eϕ, (B.9)
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where the unit vectors are

θ̂ = cos θ cosϕx̂+ cos θ sinϕŷ − sin θẑ

= cos θ(cosϕ cosφ+ sinϕ sinφ)ρ̂+ cos θ(− cosϕ sinφ+ sinϕ cosφ)φ̂− sin θẑ

= cos θ cos(φ− ϕ)ρ̂− cos θ sin(φ− ϕ)φ̂− sin θẑ (B.10)

and

ϕ̂ = − sinϕx̂+cosϕŷ = (− sinϕ cosφ+cosϕ sinφ)ρ̂+(sinϕ sinφ+cosϕ cosφ)φ̂

= sin(φ− ϕ)ρ̂+ cos(φ− ϕ)φ̂. (B.11)

Using Euler’s formula we have

cos(φ− ϕ) =
ej(φ−ϕ) + e−j(φ−ϕ)

2
and sin(φ− ϕ) =

ej(φ−ϕ) − e−j(φ−ϕ)

2j
, (B.12)

and the final version of the plane wave expansion is

E0e
−jk·r = Eθe

−jkz cos θ

{[ ∞∑
n=−∞

(−j)n Jn(kρ sin θ)
1

2
(e−j(n−1)(φ−ϕ) + e−j(n+1)(φ−ϕ))

]
cos θρ̂

+

[ ∞∑
n=−∞

(−j)n Jn(kρ sin θ)
1

2j
(e−j(n−1)(φ−ϕ) − e−j(n+1)(φ−ϕ))

]
(− cos θ)φ̂

+

[ ∞∑
n=−∞

(−j)n Jn(kρ sin θ)e
−jn(φ−ϕ)

]
(− sin θ)ẑ

}

+ Eϕe
−jkz cos θ

{[ ∞∑
n=−∞

(−j)n Jn(kρ sin θ)
1

2j
(e−j(n−1)(φ−ϕ) − e−j(n+1)(φ−ϕ))

]
ρ̂

+

[ ∞∑
n=−∞

(−j)n Jn(kρ sin θ)
1

2
(e−j(n−1)(φ−ϕ) + e−j(n+1)(φ−ϕ))

]
φ̂

}
. (B.13)

Rewriting in terms of azimuthal modes, we find

E0e
−jk·r = Eθe

−jkz cos θ

{ ∞∑
n=−∞

1

2

[
(−j)n+1 Jn+1(kρ sin θ) + (−j)n−1 Jn−1(kρ sin θ)

]
e−jn(φ−ϕ) cos θρ̂

+
∞∑

n=−∞

1

2j

[
(−j)n+1 Jn+1(kρ sin θ)− (−j)n−1 Jn−1(kρ sin θ)

]
e−jn(φ−ϕ)(− cos θ)φ̂

+
∞∑

n=−∞
(−j)n Jn(kρ sin θ)e

−jn(φ−ϕ)(− sin θ)ẑ

}

+ Eϕe
−jkz cos θ

{ ∞∑
n=−∞

1

2j

[
(−j)n+1 Jn+1(kρ sin θ)− (−j)n−1 Jn−1(kρ sin θ)

]
e−jn(φ−ϕ)ρ̂

+
∞∑

n=−∞

1

2

[
(−j)n+1 Jn+1(kρ sin θ) + (−j)n−1 Jn−1(kρ sin θ)

]
e−jn(φ−ϕ)φ̂

}
, (B.14)
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which is our final expression. This expression can also be used to compute an antenna
excitation Ea: simply evaluate it on the antenna surface, possibly multiplied by an
amplitude taper.

C Computation of far field amplitudes
In this Appendix, we give explicit derivations of how the far field amplitudes used in
the computational examples can be derived. The general setup of solving Maxwell’s
equations in a rotationally symmetric geometry is provided in Section 2. There, it
is seen that the fields can be represented in cylindrical coordinates (ρ, φ, z) as

E(r) =
∞∑

m=−∞

[
E(m)

ρ (ρ, z)ρ̂+ E(m)
φ (ρ, z)φ̂+ E(m)

z (ρ, z)ẑ
]
e−jmφ (C.1)

H(r) =
∞∑

m=−∞

[
H(m)

ρ (ρ, z)ρ̂+H(m)
φ (ρ, z)φ̂+H(m)

z (ρ, z)ẑ
]
e−jmφ. (C.2)

In this Appendix, we demonstrate how to solve the azimuthal part of the far field
integral

F (k̂) =
jk

4π
k̂ ×

∫∫
S

[
E(r)× n̂+ η0k̂ × (n̂×H(r))

]
ejkk̂·r dS (C.3)

for arbitrary azimuthal mode index m. The radiation direction k̂ is parameterized
by the standard polar angle θ and azimuth angle ϕ.

The fields E(m)(ρ, z) and H(m)(ρ, z) depend only on ρ and z, whereas the φ-
dependence is in a factor e−jmφ. Hence, the far field integrals to be computed are
proportional to∫

ρ∈γ

∫ 2π

φ=0

[E(m) × n̂]ej(k·r−mφ)ρ dφ dℓ and
∫
ρ∈γ

∫ 2π

φ=0

[n̂×H(m)]ej(k·r−mφ)ρ dφ dℓ,

(C.4)
where γ is the curve in the ρ-z plane where the integral is to be computed, ρ and
z are coordinates on this curve, with dℓ as a line element. The unit normal vector
is n̂ = nρρ̂ + nzẑ, meaning the electric and magnetic tangential fields are (using
ρ̂× φ̂ = ẑ)

E(m) × n̂ = (nρE
(m)
z − nzE

(m)
ρ )φ̂− nρE

(m)
φ ẑ + nzE

(m)
φ ρ̂ (C.5)

n̂×H(m) = (−nρH
(m)
z + nzH

(m)
ρ )φ̂+ nρH

(m)
φ ẑ − nzH

(m)
φ ρ̂. (C.6)

The unit vectors are

ρ̂ = x̂ cosφ+ ŷ sinφ (C.7)
φ̂ = −x̂ sinφ+ ŷ cosφ, (C.8)
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meaning the tangential fields are

E(m) × n̂ = [nzE
(m)
φ cos(φ)− (nρE

(m)
z − nzE

(m)
ρ ) sin(φ)]x̂ (C.9)

+ [nzE
(m)
φ sin(φ) + (nρE

(m)
z − nzE

(m)
ρ ) cos(φ)]ŷ − nρE

(m)
φ ẑ (C.10)

n̂×H(m) = −[nzH
(m)
φ cos(φ)− (nρH

(m)
z − nzH

(m)
ρ ) sin(φ)]x̂ (C.11)

− [nzH
(m)
φ sin(φ) + (nρH

(m)
z − nzH

(m)
ρ ) cos(φ)]ŷ + nρH

(m)
φ ẑ. (C.12)

The phase factor is

ej(k·r−mφ) = ej(k·(ρρ̂+zẑ)−mφ) = ej(kρ sin θ cos(φ−ϕ)−mφ)ejkz cos θ, (C.13)

where we used k·r = kρ sin θ cos(φ−ϕ)+kz cos θ, with k = k[sin θ(cosϕx̂+sinϕŷ)+
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cos θẑ]. Thus, the typical azimuth integrals to be computed are:∫ 2π

0

ej(kρ sin θ cos(φ−ϕ)−mφ) dφ
φ′=φ−ϕ+π/2

=

∫ 2π

0

ej(kρ sin θ cos(φ′−π/2)−m(φ′+ϕ−π/2)) dφ′

= e−jm(ϕ−π/2)

∫ π

−π

ej(kρ sin θ sin(φ′)−mφ′) dφ′

= e−jmϕjm2π Jm(kρ sin θ)

= 2πjme−jmϕAm (C.14)∫ 2π

0

sin(φ)ej(kρ cos(φ−ϕ)−mφ dφ =
1

2j

[∫ 2π

0

ej(kρ sin θ cos(φ−ϕ)−(m−1)φ) dφ

−
∫ 2π

0

ej(kρ sin θ cos(φ−ϕ)−(m+1)φ) dφ

]
=

1

2j

[
e−j(m−1)ϕjm−12π Jm−1(kρ sin θ)

− e−j(m+1)ϕjm+12π Jm+1(kρ sin θ)
]

= 2πjme−jmϕ 1

2j

[
ejϕj−1 Jm−1(kρ sin θ)− e−jϕj Jm+1(kρ sin θ)

]
= −2πjme−jmϕ1

2

[
ejϕ Jm−1(kρ sin θ) + e−jϕ Jm+1(kρ sin θ)

]
= −2πjme−jmϕSm (C.15)∫ 2π

0

cos(φ)ejkρ cos(φ−ϕ)−mφ dφ =
1

2

[∫ 2π

0

ej(kρ sin θ cos(φ−ϕ)−(m−1)φ) dφ

+

∫ 2π

0

ej(kρ sin θ cos(φ−ϕ)−(m+1)φ) dφ

]
=

1

2

[
e−j(m−1)ϕjm−12π Jm−1(kρ sin θ)

+ e−j(m+1)ϕjm+12π Jm+1(kρ sin θ)
]

= 2πjme−jmϕ1

2

[
ejϕj−1 Jm−1(kρ sin θ) + e−jϕj Jm+1(kρ sin θ)

]
= −2πjme−jmϕ j

2

[
ejϕ Jm−1(kρ sin θ)− e−jϕ Jm+1(kρ sin θ)

]
= −2πjme−jmϕCm, (C.16)

where we used the representation [1, p. 9.1.21]

Jm(z) =
1

π

∫ π

0

cos(z sin θ−mθ) dθ =
1

2π

∫ π

−π

ej(z sin θ−mθ) dθ =
1

2π

∫ 2π

0

ej(z sin θ−mθ) dθ,

(C.17)
where m is a positive integer or zero. Thus, after integration over φ, we have
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(premultiplying with the factor 1/(2πjmej(kz cos θ−mϕ)) for simplicity)

1

2πjmej(kz cos θ−mϕ)

∫ 2π

0

[E(m) × n̂]ej(k·r−mφ) dφ

= −
[
nzE

(m)
φ Cm − (nρE

(m)
z − nzE

(m)
ρ )Sm

]
x̂

−
[
nzE

(m)
φ Sm + (nρE

(m)
z − nzE

(m)
ρ )Cm

]
ŷ − nρE

(m)
φ Amẑ, (C.18)

and

1

2πjmej(kzz−mϕ)

∫ 2π

0

[n̂×H(m)]ej(k·r−mφ) dφ

=
[
nzH

(m)
φ Cm − (nρH

(m)
z − nzH

(m)
ρ )Sm

]
x̂

+
[
nzH

(m)
φ Sm + (nρH

(m)
z − nzH

(m)
ρ )Cm

]
ŷ + nρH

(m)
φ Amẑ. (C.19)

The remaining cross products are (rewriting x̂, ŷ, and ẑ in terms of (θ, ϕ) as the
polar angle and azimuth angle in the direction k̂)

k̂ × x̂ = k̂ × (k̂ sin θ cosϕ+ θ̂ cos θ cosϕ− ϕ̂ sinϕ) = ϕ̂ cos θ cosϕ+ θ̂ sinϕ

(C.20)

k̂ × ŷ = k̂ × (k̂ sin θ sinϕ+ θ̂ cos θ sinϕ+ ϕ̂ cosϕ) = ϕ̂ cos θ sinϕ− θ̂ cosϕ
(C.21)

k̂ × ẑ = k̂ × (k̂ cos θ − θ̂ sin θ) = −ϕ̂ sin θ (C.22)

k̂ × (k̂ × x̂) = [k̂k̂ − 1] · (k̂ sin θ cosϕ+ θ̂ cos θ cosϕ− ϕ̂ sinϕ)

= −θ̂ cos θ cosϕ+ ϕ̂ sinϕ (C.23)

k̂ × (k̂ × ŷ) = [k̂k̂ − 1] · (k̂ sin θ sinϕ+ θ̂ cos θ sinϕ+ ϕ̂ cosϕ)

= −θ̂ cos θ sinϕ− ϕ̂ cosϕ (C.24)

k̂ × (k̂ × ẑ) = [k̂k̂ − 1] · (k̂ cos θ − θ̂ sin θ) = θ̂ sin θ. (C.25)
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Bringing it all together, the far field is then

F (m)(θ, ϕ) =
jk

4π
k̂ ×

∫∫
S

[
E(m)(r)× n̂+ η0k̂ × (n̂×H(m)(r))

]
ej(kk̂·r−mφ) dS

=
jk

2
jme−jmϕ

∫
ρ∈γ

(
−
[
nzE

(m)
φ Cm − (nρE

(m)
z − nzE

(m)
ρ )Sm

]
(ϕ̂ cos θ cosϕ+ θ̂ sinϕ)︸ ︷︷ ︸

=k̂×x̂

−
[
nzE

(m)
φ Sm + (nρE

(m)
z − nzE

(m)
ρ )Cm

]
(ϕ̂ cos θ sinϕ− θ̂ cosϕ)︸ ︷︷ ︸

=k̂×ŷ

− nρE
(m)
φ Am (−ϕ̂ sin θ)︸ ︷︷ ︸

=k̂×ẑ

+ η0
[
nzH

(m)
φ Cm − (nρH

(m)
z − nzH

(m)
ρ )Sm

]
(−θ̂ cos θ cosϕ+ ϕ̂ sinϕ)︸ ︷︷ ︸

=k̂×(k̂×x̂)

+ η0
[
nzH

(m)
φ Sm + (nρH

(m)
z − nzH

(m)
ρ )Cm

]
(−θ̂ cos θ sinϕ− ϕ̂ cosϕ)︸ ︷︷ ︸

=k̂×(k̂×ŷ)

+ η0nρH
(m)
φ Am θ̂ sin θ︸ ︷︷ ︸

=k̂×(k̂×ẑ)

)
ejkz cos θρ dℓ. (C.26)

Our final result is then

F (m)(θ, ϕ) = θ̂
jk

2
jme−jmϕ

∫
ρ∈γ

{
−
[
CmnzE

(m)
φ − Sm(nρE

(m)
z − nzE

(m)
ρ )

]
sinϕ

+
[
SmnzE

(m)
φ + Cm(nρE

(m)
z − nzE

(m)
ρ )

]
cosϕ

− η0
[
CmnzH

(m)
φ − Sm(nρH

(m)
z − nzH

(m)
ρ )

]
cos θ cosϕ

− η0
[
SmnzH

(m)
φ + Cm(nρH

(m)
z − nzH

(m)
ρ )

]
cos θ sinϕ

+ η0AmnρH
(m)
φ sin θ

}
ejkz cos θρ dℓ

+ ϕ̂
jk

2
jme−jmϕ

∫
ρ∈γ

{
−
[
CmnzE

(m)
φ − Sm(nρE

(m)
z − nzE

(m)
ρ )

]
cos θ cosϕ

−
[
SmnzE

(m)
φ + Cm(nρE

(m)
z − nzE

(m)
ρ )

]
cos θ sinϕ

+ AmnρE
(m)
φ sin θ

+ η0
[
CmnzH

(m)
φ − Sm(nρH

(m)
z − nzH

(m)
ρ )

]
sinϕ

− η0
[
SmnzH

(m)
φ + Cm(nρH

(m)
z − nzH

(m)
ρ )

]
cosϕ

}
ejkz cos θ, ρ dℓ (C.27)

which gives the far field amplitude for azimuthal mode m at any direction (θ, ϕ).
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