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Popular science summary

Medical imaging technologies provide visual representations of the tissues and organs
in the body, which are widely utilized for diagnosis and monitoring of treatment in
healthcare. A recently developed non-invasive medical imaging modality, photoa-
coustic imaging, combines light and sound to produce high-resolution images of the
structural and functional properties of the tissues. Chromophores, which are light-
absorbing molecules in the body, absorb light at particular wavelengths. This creates
a distinct pattern in the photoacoustic signal, which can be employed to distinguish
between chromophores such as hemoglobin in the blood. This novel technique offers
the potential for early detection of diseases such as cancer, as well as for monitoring
tissue oxygen levels.

Skin cancer is among the most common types of cancer in Sweden, with ultra-
violet light exposure being a major risk factor. The standard diagnostic procedure is
a biopsy followed by a histopathological analysis, which is invasive, time-consuming,
and relies on surgical excision. This makes it challenging for lesions placed on sensi-
tive areas such as the face, head, or neck. Photoacoustic imaging has recently shown
promising results as a non-invasive approach for detecting skin cancers, although fur-
ther development is needed to enable its use in clinics.

Another clinically relevant application of photoacoustic imaging is the estimation
of oxygen levels in tissues in the body. Measuring the spatial distribution of oxygen in
the body is important for assessing organ health and evaluating cardiovascular func-
tion, a unique ability offered by photoacoustic imaging. It can also be utilized for
monitoring cancer progression, especially regarding tissue hypoxia, which is defined
as the deficiency of oxygen in the tissue, as well as treatment response.

Despite recent advances and the clinical approval of a few photoacoustic imag-
ing devices, the technique is not yet widely used in clinical settings. One of the key
challenges is the lack of standardized approaches to compare the quality of new imag-
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ing systems, monitor performance over time, and evaluate the effectiveness of novel
quantitative techniques. Tissue-mimicking phantoms are artificial materials designed
to replicate the characteristics of human tissue. Tissue-mimicking phantoms with
tunable properties are commonly used to validate and assess the performance of new
imaging modalities and methods.

Paper I of the thesis addresses this lack of tissue-mimicking phantoms required
for the development and validation of quantitative approaches in photoacoustic imag-
ing. We developed novel tissue-mimicking phantoms with tunable optical properties
by mixing copolymer-in-oil with oil-based inks. We also demonstrated their long-
term stability; photoacoustic imaging measurements taken after 14 months of storage
at room temperature showed consistent photoacoustic amplitude and spectrum. The
material is also suitable for creating phantoms in various custom shapes, adding flexi-
bility for research and clinical development.

Given that histology is the gold standard of skin cancer detection, developing
methods that detect and delineate these tumors non-invasively is highly needed. These
methods can act as a guide for the physician to detect cancer lesions that may not be
visible during the examination or surgery. In paper II, an automatic method capa-
ble of separating malignant melanoma tumors from healthy tissues was developed,
enabling the estimation of tumor boundaries, including the thickness and width. In
paper IV, a novel technique based on the frequency characteristics of photoacoustic
data, called center frequency analysis, showed the feasibility of tissue characterization
in a phantom study. The extent of this method was used in paper V and demon-
strated the potential to detect both malignant melanoma and basal cell carcinoma
from healthy tissues.

Photoacoustic imaging provides a deeper spatial distribution of oxygen than tradi-
tional optical techniques in the body. However, the accuracy of these measurements
decreases with depth due to wavelength-dependent light attenuation, which alters
the spectral pattern and reduces the accuracy of oxygen estimation. In paper III, we
adapted two correction methods to our photoacoustic imaging system to improve oxy-
gen estimation in deeper tissues under human in vivo conditions, helping to overcome
the common challenge of wavelength-dependent light attenuation. In addition, in pa-
per V, the center frequency analysis was used to monitor changes in the oxygenation
during occlusion-recovery of the finger.

In summary, the five papers included in this thesis contribute to improving its
progress toward clinical translation by suggesting a novel phantom material, improv-
ing tumor boundary delineation, making two spectral colouring techniques ready for
in vivo measurements on humans, as well as suggesting a novel tissue characterisation
method using center frequency analysis of the photoacoustic signal.



Abstract

This thesis encompasses an introductory part and five papers related to developing
techniques and phantoms required for the further growth of photoacoustic imaging
(PAI). In PAI, images are created by detecting acoustic waves followed by the absorp-
tion of laser light, enabling high spatial resolution while maintaining high optical
contrast. Due to the distinct absorption patterns of various chromophores in the
body, a unique photoacoustic response can be detected by changing the wavelength
of the laser light. This unique photoacoustic response, called photoacoustic spectrum,
is employed in a wide range of biomedical applications such as skin cancer detection
and estimation of the spatial distribution of oxygen in the body. Although there have
been significant advancements in the research field, this technique has not yet been
adopted in healthcare, and challenges need to be addressed for its translation into clin-
ical practice. This thesis revolves around technical advancements in PAI in different
aspects that support its pathway to the clinics.

Paper I introduces a tuning approach of a stable tissue-mimicking phantom (TMP)
for usage in PAI studies. The results show that artists’ oil-based inks dissolved in tur-
pentine can be utilized to tune the optical absorption properties of SEBS-gel with
high accuracy, creating various photoacoustic spectral shapes and amplitudes. In ad-
dition, the long-term stability investigation of these TMPs proved their effectiveness
in preserving their optical properties.

Paper II presents a novel automatic threshold selection (ATS) approach that
can be applied to the adaptive matched filter spectral unmixing method to distin-
guish the target from the background. The approach was utilized on a TMP con-
taining inclusions, and the feasibility of its use in detecting the border of malignant
melanoma (MM) skin cancers was investigated. The thickness estimated by the ATS
algorithm showed a root mean squared error of 0.26 mm for the phantom inclusions
and 0.19 mm for the MM skin samples compared to the ground truth and histology
examination.
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iv Abstract

Paper III compares the performance of two previously proposed techniques to
compensate for the spectral coloring. Both approaches build upon existing techniques
and are modified to be adapted to the context of human in vivo and our PAI imaging
system. Results showed that both methods led to similar oxygen saturation (sO2)
estimates and minimized the depth-dependent variations in sO2 that are typically
observed with linear unmixing, decreasing the gradient of saturation as a function of
depth as physiologically expected in a normal situation.

Paper IV introduces the center frequency (CF) spectra, the mean frequency of
photoacoustic data across all wavelengths. The feasibility of using the CF spectra in
separating the microspheres with various sizes and colors in a phantom study is in-
vestigated. The results showed microspheres with different pigmentation in the same
size exhibited different CF spectra shapes across the utilized wavelength. Moreover,
changing the size of microspheres resulted in a change in the CF offset while preserv-
ing the shape.

Paper V presents the clinical application of CF spectra in PAI. A normalization
was applied to remove the system dependency, defined as alpha spectra. The shape
and the slope of a linear model applied to the alpha spectra were evaluated as poten-
tial biomarkers for distinguishing MM and basal cell carcinoma (BCC) from healthy
tissue. The median of CF spectral slopes and spectral shapes showed significant separa-
tion, with higher alpha slope values for the tumors. In another application, changes in
the alpha spectra related to variations in oxygenation of the finger during an occlusion-
recovery model were investigated. Results showed significant differences in the alpha
spectra, with an increase in the alpha slope observed during the occlusion phase.
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Chapter 1

Introduction

1.1 Background

Photoacoustic imaging (PAI), a novel imaging technique capable of providing molecu-
lar information with the high spatial resolution of ultrasound, has attracted significant
interest in recent years [1]. This hybrid imaging technique combines ultrasound and
optical imaging. Ultrasound is a real-time, cost-effective, non-ionizing, and clinically
available technique for visualizing the body’s structures. In contrast, optical imaging
offers high molecular optical contrast but is limited by high light scattering, which
leads to reduced resolution and restricted penetration depth [2]. Combining these two
modalities presents an opportunity to achieve high optical contrast at greater depths
and with high spatial resolution of ultrasound, potentially leading to the discovery of
new biomarkers that can be utilized in clinical diagnosis [3]. This modality enables vi-
sualization of endogenous chromophores in the body, such as melanin, hemoglobin,
fat, and water, making it valuable for a wide range of clinical applications. These
applications encompass cancer diagnosis, dermatologic imaging, neuroimaging, vas-
cular and cardiovascular imaging, and monitoring the spatial map of oxygen in the
body [4].

1.2 Motivation and aims

PAI is a unique imaging modality with many potential clinical applications. Despite
the advancement, PAI is a complex technology to be translated into the clinic [5]. So
far, the majority of PAI applications are focused on preclinical and clinical research,
and the clinical breakthrough has not yet occurred. The need for further technical
developments regarding the PAI is recognized. Our group has been focusing on re-
search related to clinical translation of PAI system with access to human tissue samples
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4 Introduction

ex-vivo and in-vivo. The projects presented in this thesis were defined to support this
translation with the technical developments required to promote future patient out-
comes with access to human clinical data.

1.3 Thesis outline

The projects in this thesis are closely related to the developments of approaches needed
for clinical translation of PAI. This thesis consists of two parts: the first part provides
an introductory overview of the projects, along with a review of state-of-the-art litera-
ture related, and the second part comprises the five research papers. The introductory
part begins with presenting the history and fundamental principles of PAI, along with
a comparison to other medical imaging modalities, presented in chapter 2. Chapter
3 outlines the clinical motivation for PAI in this thesis, which includes oxygenation
measurements and skin cancer detection. Chapter 4 provides a brief introduction
to the tisue-mimicking phantoms (TMPs) usage in PAI and various kinds of TMPs
manufactured and used in this thesis. Chapter 5 provides an overview of processing
analysis used in PAI, including spectral unmixing, spectral coloring, and frequency
analysis. Chapter 6 presents a short summary of the papers included in this thesis.
Finally, chapter 7 presents the conclusion and outlook of this work.

1.4 Ethical considerations

The work included in this thesis was carried out with approval from the Swedish
Ethical Review Authority, which complies with the World Medical Association’s Dec-
laration of Helsinki for medical research concerning human subjects, as updated in
2013. In this thesis work, we have used human clinical data ex vivo and in vivo. All
subjects voluntarily agreed to participate in these studies and provided informed con-
sent. All data were stored anonymously. The in vivo studies included in this thesis
were designed to be non-invasive. The energy output of the ultrasound and laser as
well as electrical safety have been taken into consideration. The staff handling the data
received necessary training, including laser safety procedures.



Chapter 2

Photoacoustic imaging

2.1 History and fundamental principles

Photoacoustic (PA) effect was first discovered by Alexander Graham Bell in 1880 when
he found that sound waves can be generated by exposing substances to interrupting
light beams [6], [7]. However, the use of the PA effect in the biomedical field started
later with the innovation of laser light sources and ultrasound transducers. PA was
initially used in gas spectroscopy, where the term ’optical-acoustic’ was introduced [8],
and then its theory continued to be developed for condensed solid materials and its
application in biomedicine [9], [10].

PAI is an emerging non-invasive imaging modality that combines ultrasound and
optical imaging benefits. In PAI, nanosecond laser pulses illuminate the tissue. Light
absorption creates heat and a localized temperature increase, followed by a thermoelas-
tic expansion that generates acoustic waves that propagate through the tissue. Using
an ultrasound transducer, the location of the local absorber can be detected and pro-
cessed to create high-resolution images [1], [11] (see Fig. 2.1). The combination of
the high contrast of optical imaging in combination with the high penetration depth
of ultrasound imaging enabled PAI to be used in a wide range of clinical applica-
tions [12], [13]. PAI grants access to novel imaging biomarkers indicative of diseases
that were not possible with pure optical or ultrasound imaging [14].

The amplitude of the PA signal is highly dependent on the distribution of ab-
sorbed optical energy [1], [15], which is mainly dependent on the optical absorp-
tion properties of the tissue and the amount of light that has reached the tissue. In
PAI, various wavelengths of laser light are being used based on the unique absorp-
tion spectra of chromophores such as hemoglobin, melanin, lipid, and water (see
Fig. 2.2). PAI can be performed in the wavelength range of 650-1000 nm (NIR-
I) and 1000-1700 nm (NIR-II) [16], [17]. Due to the unique absorption of these

5



6 Photoacoustic imaging

Figure 2.1: Illustration of PAI system. The tissue is illuminated with laser light, and the
absorption of light creates a localized temperature rise. This leads to thermoelastic expansion,
generating acoustic waves that are detectable by an ultrasound transducer, and undergoes
image processing to create PA images.

chromophores in the body, multi-wavelength excitation allows selective imaging of
specific chromophores. For instance, oxyhemoglobin (hemoglobin bound to oxygen)
and deoxyhemoglobin (hemoglobin not bound to oxygen) exhibit distinct absorp-
tion at approximately 850 nm and 760 nm, respectively, enabling the assessment of
blood oxygenation levels. Similarly, melanin absorbs strongly in the visible and NIR-
I, while lipids, water, and collagen have higher absorption in the NIR-II, allowing for
targeted imaging of the chromophore of interest [1]. This has enabled PAI to provide
functional imaging to map the concentration and spatial distribution of the selective
chromophore of interest in the body. In the studies included in this thesis, we used
a wavelength range of 680-970 nm, which is non-ionizing and is well suited for deep
tissue imaging due to low water absorption and tissue scattering [1].
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Figure 2.2: Absorption coefficients of biological chromophores in the wavelength range of
680–970 nm for melanin, deoxyhemoglobin, oxyhemoglobin, water, and fat. Different chro-
mophores exhibit unique absorption spectra, which enables multi-wavelength photoacoustic
imaging for tissue characterization. Reproduced from data in [18].

The local pressure rise in PAI can be written as:

p0 = ΓΦµa (2.1)

where p0 is the generated photoacoustic pressure, Γ the Grüneisen parameter (de-
pends on the efficiency of heat conversion to pressure waves), µa the optical absorp-
tion coefficient, and Φ is the light fluence, the energy of laser per unit area [19]. By
substituting µa with a product of molar absorption coefficient spectra αi(λ) and their
concentration Ci(x) for K chromophores present in the tissue, the formula can be
written as :

p0 = ΓΦ(r, λ, µa, µs)

K∑
i=1

αi(λ)Ci(r) (2.2)

where the fluence component depends on the position r, the laser wavelength λ, the
optical absorption coefficient µa, and the scattering coefficient µs [11], [20].
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In PAI, multispectral PA images are acquired by varying the wavelengths of the
illuminating light. PA spectrum is generated by calculating the PA amplitude as a
function of wavelength, as shown in Fig. 2.3. PA spectrum conveys valuable informa-
tion regarding the optical absorption of chromophores present in the tissue. Applying
spectral unmixing techniques (detailed in chapter 5) can be used to estimate the spatial
map of various chromophores in the tissue.

Figure 2.3: (a) PA images of a tissue sample at 700, 750, 800, 850, 900, and 950 nm, with
the selected region of interest (ROI) indicated. (b) PA spectrum computed by averaging the
PA amplitude within the selected ROI across all wavelengths.

2.2 Photoacoustic imaging system

The PAI system and the measurement setup used in this thesis were based on the Vevo
LAZR-X imaging platform (FUJIFILM VisualSonics Inc., Toronto, ON, Canada).
The system uses two laser beams on each side of the ultrasound transducer to illumi-
nate the object of interest with nanosecond laser pulses and a frequency of 20 Hz. PA
data were acquired using the VisualSonics MX250 linear array transducer, with an
ultrasound center frequency of 21 MHz and frequency range of 15–30 MHz. The
axial and lateral resolutions of the transducer are 75 μm and 165 μm, respectively.
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In this thesis, high-frequency ultrasound detection was used, enabling the capture of
higher-frequency components that usually originate from small targets [21]. Three-
dimensional (3D) imaging was achieved using an adjustable arm driven by a stepper
motor. Calibration of laser energy was performed at the beginning of each measure-
ment by using an energy meter, and the PA signal at each wavelength was corrected
for the differences in the laser energy at different wavelengths. The data were recorded
in the wavelength range of 680 nm to 970 nm in 5 nm increments.

A shielding box was used to image the tissue-mimicking phantoms and ex vivo
tissues. In the in vivo measurements, laser goggles were used for eye protection. A 10
mm aquaflex ultrasound gel pad (Parker Laboratories Inc.) was placed between the
ultrasound transducer and the object of interest to have the laser focus on the surface
of the phantom or tissue and limit the maximum permissible exposure of the laser
radiation on the skin. The laser exposure has been measured in a previous study by
our group and has been less than 20mJ/cm2, which is the recommendation level for
the wavelength range of 400- 700 nm [22].

2.3 Comparison to other imaging modalities

PAI is a rapidly evolving hybrid imaging modality that uses non-ionizing laser pulses
to obtain tissue characteristics unlike the ionizing imaging modalities such as X-ray.
Positron emission tomography (PET) and single-photon emission computed tomogra-
phy (SPECT) are highly sensitive imaging modalities capable of providing molecular
and metabolic information. However, their limited spatial resolution and reliance on
ionizing radiation restrict their long-term usage in clinical applications [23]. Mag-
netic resonance imaging (MRI) is a non-ionizing, high-resolution imaging modal-
ity, but it is slow and expensive [24]. Optical imaging, including diffuse reflectance
spectroscopy (DRS), optical coherence tomography (OCT), and hyperspectral imag-
ing (HSI), offers high optical contrast and the ability to monitor molecular proper-
ties [25], [26]. Still, their application is limited to a superficial depth due to light
scattering. Ultrasound imaging is a real-time, low-cost imaging technique with less
scattering compared to optical imaging. So, combining optical and ultrasound, PAI
combines the high contrast of optical imaging with the high spatial resolution of ultra-
sound imaging in the order of cm compared to mm [27]. This imaging technique can
be combined with ultrasound or used separately and is capable of creating real-time
images.
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2.4 Artifacts in photoacoustic imaging

In PAI, the acoustic signal is generated from the absorption of light, and multiple arti-
facts can arise [28]. One of the artifacts is fluence decay, especially due to a strong ab-
sorber. The nonhomogeneous laser energy at various wavelengths and depths, referred
to as spectral coloring [11], could cause uncertainty in the quantitative analysis, which
will be detailed in chapter 5. In most PA processing, a homogeneous PA efficiency
is assumed. However, the Grüneisen parameter can be temperature-dependent [29],
[30]. On the acoustic part, various tissues inside the body have different speeds of
sound and acoustic attenuation. Assuming homogeneous acoustic properties will also
create sources of artifacts in the PA images, causing wrong absorber location detection
or blurring of the image [31], [32]. Using dual PA-Ultrasound systems can aid in
identifying some artifacts by using the ultrasound images from the same target region.
In addition, the transducer characteristics, such as the limited frequency bandwidth,
create artifacts in the image.

2.5 Clinical translation of photoacoustic imaging

An important step in the clinical translation of PAI has happened with some com-
mercial PAI modalities being approved for clinical usage with a CE mark [33], [34].
MSOT Acuity Echo system (iThera Medical GmbH, Munich, Germany) has been
CE-certified for handled PA and ultrasound imaging since 2021. The Imagio breast
imaging system (Seno Medical Instruments, San Antonio, USA), which contains PA
and ultrasound, gained the FDA’s approval in 2021 for breast imaging applications.
This clearly shows the potential of PAI in medical applications. The research in this
thesis has been performed with a preclinical imaging system (FUJIFILM VisualSon-
ics Inc., Toronto, ON, Canada) with approval from the Ethics Committee of Lund
University, Sweden, on ex vivo and in vivo human data.

Despite the approval of these imaging systems and increasing research in the field,
PAI has not been integrated into healthcare, and most of its usage focuses on preclin-
ical and clinical research. Hardware improvement and more advanced image process-
ing techniques are required to integrate this novel modality into clinics [5], [35]. As
an example, biological chromophores exhibit a broad frequency range, so the ultra-
sound transducers need to have a wide bandwidth to capture most of the signal [36].
Furthermore, integrating the laser systems with the ultrasound modalities requires rou-
tine laser checkups, a special operating room, and additional training to ensure the
safety, high energy output and wavelength sensitivity [5]. Spectral coloring is another
challenge, arising from heterogeneous light distribution in the body, which makes
accurate estimation of the chromophore’s contribution difficult [37]. Additionally,
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since PAI utilizes multiple wavelengths, motion compensation techniques are impor-
tant to achieve a better signal-to-noise ratio [38]. Moreover, the impact of skin color
on changing the received signal is another issue in quantitative PAI that needs to be
addressed [39]. To ensure the reproducibility of PAI results and validate the novel
methods, test objects like phantoms that are stable and keep their characteristics for
a long time are needed [40]. The projects in this thesis were defined to address some
of these challenges and help move PAI one step closer to clinical use with access to
human clinical data.





Chapter 3

Clinical motivation

3.1 Oxygenation measurement

Measuring oxygen supply in the body is a crucial indicator of the health of various
organs. Monitoring oxygen levels can be used to assess the function of the cardiovascu-
lar system [41] and is essential for patient monitoring during surgical procedures [42].
Furthermore, oxygen deficiency in various organs can be associated with organ failure
or cancer progression. In addition, tumor hypoxia is a parameter that can be utilized
to track the cancer treatment and tumor aggressiveness in the body [43], [44]. One
of the key parameters that can be used to estimate the level of oxygen in the body
is oxygen saturation (sO₂), the ratio of oxyhemoglobin (HbO2) to total hemoglobin
(HbO2 and deoxyhemogloin (HbR)) in the body [23] as below:

sO2 =
[HbO2]

[HbR] + [HbO2]
(3.1)

where [HbO2] and [HbR] are the concentrations of HbO2 and HbR, respectively.
Several techniques are available to measure sO₂ in the body. Among these, pulse
oximetry is one of the most commonly used in healthcare. The two wavelengths
utilized in this technique are usually 660 nm and 940 nm. However, it only estimates
arterial oxygen level and lacks spatial resolution [45]. Furthermore, the accuracy of
oxygen measurements obtained by pulse oximetry is limited by its calibration range.
It has been shown to overestimate oxygen levels in individuals with darker skin tones,
particularly at lower oxygen levels [46].

Various optical techniques, such as near-infrared spectroscopy (NIRS) and DRS,
can be utilized to estimate tissue oxygen level (sO₂). NIRS, for instance, employs
near-infrared light to illuminate biological tissues and measures the absorption and
scattering of light to calculate oxygenation levels [47]. Similarly, DRS analyzes the

13
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reflected light in the visible to near-infrared wavelength range to assess tissue oxygena-
tion based on absorption characteristics [48]. These pure optical techniques are used
in superficial depth and are inherently limited in penetration depth and spatial reso-
lution due to the significant scattering of light in biological tissues, restricting their
capability to investigate deeper tissue in the body and provide a spatial map of tissue
oxygenation.

In contrast, PAI overcomes this depth resolution and estimates the spatial map
of sO₂ in the body with high optical contrast and deeper than common optical tech-
niques by transforming the light to sound. The feasibility of estimating depth-resolved
sO₂ maps using PAI in several pre-clinical studies has been shown. PAI has shown
promise in monitoring ischemia-reperfusion model in humans by providing depth-
resolved sO₂ maps during induced vascular occlusion in the finger [49]. It has been
used in oncology applications to assess tumor hypoxia [50], giving insight into cancer
progression, as well as to estimate sO₂ to monitor tumor vessel disruption and cancer
treatment [51]. The use of two wavelengths, selected to exploit the differential absorp-
tion of endogenous chromophores such as HbO2 and HbR, is typically sufficient for
estimating sO₂. However, employing additional wavelengths allows for the inclusion
of other chromophores, depending on the application, such as melanin, fat, water,
and collagen. This multi-wavelength approach enables more accurate sO₂ estimation
by accounting for complex tissue compositions [52] and provides greater flexibility in
post-processing analysis to select the best wavelength subset. In papers III and V, the
wavelengths of 680 nm to 970 nm, in steps of 5 nm, were used for oxygenation mea-
surements in the finger data. The setup used for measuring sO₂ in the finger is shown
in Fig. 3.1, along with an example of the sO₂ map estimated using linear unmixing.

3.1.1 Occlusion versus recovery

PAI can be utilized to monitor changes in the oxygenation with spatial resolution, for
example, during the vascular occlusion or adrenaline injection [49], [53]. A pressure
cuff can be utilized to change the oxygenation levels in the finger. A pressure cuff
exceeding 220 mmHg causes hypoxia, and releasing it leads to a recovery phase. Fig-
ure 3.2 shows a setup where a pressure cuff has been used to lower the oxygenation
in the finger, together with the spatial map of sO₂ in three phases of baseline, occlu-
sion, and recovery. Linear spectral unmixing was applied to the averaged PA signal.
The original spectrum, fitted spectrum, and corresponding contribution spectra for
each chromophore are displayed (linear spectral unmixing is detailed in chapter 5). In
paper V, this model has been used to change the oxygenation in the finger.
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Figure 3.1: Illustration of the PAI system for oxygenation measurement in finger. The ultra-
sound, PA image at 680 nm, and the oxygenation map of the finger estimated using linear
unmixing are shown.

Figure 3.2: (a) Illustration of the PAI system used for finger occlusion measurements. (b)
Baseline, occlusion, and recovery phases are shown with spatial maps of sO₂. Linear spectral
unmixing was applied to the averaged PA signal, where the original spectrum, fitted spectrum,
and the contribution of each chromophore are shown.
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3.2 Skin cancer detection and delineation

3.2.1 Skin anatomy

Skin, as the outer layer of the body, is responsible for certain essential functions, in-
cluding working as a waterproof protective shield, protection against infections and
ultraviolet (UV) light, acting as a storage for water and fat, and regulating the temper-
ature of our body [54]. It consists of three layers: the epidermis, dermis, and hypo-
dermis. The epidermis is the external layer of human skin and is primarily composed
of keratinocytes and melanocytes cell types. Keratinocytes produce keratin, which
protects the skin from outer damage, while melanocytes create melanin, the pigment
that determines skin color and protects against UV radiation. This layer contains no
blood vessels, and its thickness varies between approximately 0.02 mm on the face to
0.5 mm on the fingertips [55]. The second layer of skin is the dermis, with a thick-
ness of approximately 1 mm, including collagen fibers, blood vessels, muscles, and
nerves [56]. The third layer of skin is the hypodermis, which contains subcutaneous
fat, blood vessels, and connective tissue [57].

3.2.2 Skin cancer

Skin cancers are cancer cells that develop from the skin layer. One of the main risk
factors is exposure to the sun’s UV radiation. The three primary skin cancers include
malignant melanoma (MM), basal cell carcinoma (BCC), and cutaneous squamous
cell carcinoma (CSCC) [58]. The gold standard method for diagnosing skin can-
cer is a biopsy, followed by a histopathological examination. After surgical excision,
the tumor is sent for examination, where a pathologist evaluates its type, thickness,
width, and margins. The Breslow is a parameter defining the thickness of the tu-
mor, correlated with a greater risk of metastases [59]. Given its invasive nature, time
consumption, reliance on excised tissue analysis, and the sensitive locations of most
skin cancers on the face and head, there is a great need for non-invasive techniques
for early detection of these tumors rather than biopsy. In addition, the surgery may
need to be repeated if the tumor cells are found on excision margins, which is a high-
cost and time-consuming procedure [60]. Several non-invasive techniques such as
dermoscopy, OCT, DRS, fluorescence spectroscopy, and high-frequency ultrasound
have shown promise. However, optical techniques are limited by their penetration
depth, and high-frequency ultrasound lacks molecular and functional information.
PAI has recently demonstrated significant effectiveness in non-invasive cancer detec-
tion [61], [62]. In this thesis, the potential of PAI to distinguish the ex vivo tumor
region from the surrounding healthy tissue has been explored. The samples were col-
lected after the surgery and transported to the PA laboratory. Following the removal
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of hairs from the samples, sutures were attached to hold the samples in a container
filled with salt solution. The 3D scan of the sample with both ultrasound and PA
images was acquired (see Fig. 3.3). The samples were sent for histopathological ex-
amination following the imaging. In the following sections, the literature review of
various skin cancers imaged with PAI along with their use in this thesis is described.

Figure 3.3: Illustration of the PAI system for ex vivo skin cancer imaging.

Malignant melanoma
MM cancers originate from melanocytes in the epidermis layer and are the deadli-
est kind of skin cancers [63]. PAI has demonstrated encouraging results in detecting
MM borders and analyzing their molecular composition. The most dominant chro-
mophore in the PA signal of these samples is melanin [61], [64]. In papers II and V,
the feasibility of using two developed techniques to distinguish these tumors from the
surrounding healthy tissue was investigated.

Basal cell carcinoma
BCCs are the most common skin tumors. In terms of chromophore contributions to
the PA signal, there is a lower melanin contribution compared to the MM. Analysis
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of eyelid BCCs samples showed higher HbO2 contribution compared to the adjacent
healthy tissues due to higher vascularization to transfer nutrition and oxygen to the
tumors [62]. In paper V, the frequency analysis of PAI was utilized as a non-invasive
tool to detect these tumors from the surrounding healthy tissue.

Cutaneous squamous cell carcinoma
CSCC cancer cells are the second most common type of non-melanoma, originating
from the keratinocytes in the epidermis layer. High exposure to the UV light and
aging are two risk factors for developing this kind of tumor [65]. PAI has shown great
ability to visualize the tumor border in CSCCs samples in the wavelength range of
765 nm to 960 nm using tumors’ unique spectral signatures [66].



Chapter 4

Tissue-mimicking phantoms

4.1 The role of phantoms

The demand for tissue-mimicking phantoms (TMPs) has grown with the advance-
ment of novel multimodal imaging techniques such as PAI. These TMPs are essential
for calibrating and routine control of imaging systems prior to the measurement, as-
sessing the performance of novel quantitative methods, providing a standardized ap-
proach for comparative studies, and aiding in clinical training [40], [67]. TMPs used
for PAI need to mimic both acoustic and optical tissue properties. The most critical
properties include acoustic attenuation, speed of sound, optical scattering, and ab-
sorption [68]. TMPs should ideally be long-lasting, capable of being stored at room
temperature, inexpensive, easy to produce, and tunable for desired properties [40],
[69].

4.2 Fabrication and characteristics of phantoms

In this thesis, various types of phantoms suitable for PAI imaging have been developed
and used, as described below. The use of these phantoms offers a ground truth, which
is essential for the development of new methods.

4.2.1 Agar-based phantoms

Agar-based phantoms are straightforward to produce. They are created by mixing agar
(Agar-Agar, Merck KGaA, Darmstadt, Germany) with water. The solution needs to
be heated while stirring until the agar dissolves in the water. Next, the solution can
be poured into a mold and allowed to cool at room temperature or in a refrigerator.

19
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These phantoms exhibit a speed of sound close to soft tissues. Their acoustic attenua-
tion properties can be adjusted by incorporating ingredients, such as graphite powder,
which has been utilized to increase attenuation to the values compatible with soft tis-
sue [70]. Agar-based phantoms usually mix with additives like titanium dioxide and
inks to tune their optical properties similar to human tissue, such as skin layers [71].
In paper III, to enhance the PA signal, water-based colors were added to the agar phan-
tom to make them suitable for PAI measurements (see Figure 4.1(a)). These TMPs
are nontoxic, easy to fabricate, inexpensive, and have the flexibility of incorporating
various additives. However, they are prone to bacterial degradation and have limited
mechanical stability and long-term usage [72], [73].

4.2.2 SEBS phantoms

Oil-based materials are less prone to microbial degradation and dehydration, making
them well-suited for producing tissue-mimicking materials (TMMs). In recent years,
a gel made from copolymer styrene-ethylene/butylene-styrene (SEBS) in mineral oil
has shown great potential due to its stable properties and optical and acoustic char-
acteristics close to soft tissue [74], [75]. Additives can be used to tune their acoustic
and optical properties. As an example, glycerol can be utilized to increase the speed
of sound [75]. Pure SEBS gels show low optical absorption in the wavelength range
suitable for PAI. To tune their optical properties, titanium dioxide, oil-soluble dyes,
or commercial pigments can be utilized [76], [77]. In paper I, artists’ oil-based inks in
four colors dissolved and diluted in balsam turpentine are proposed to tune the optical
properties of these phantoms. The optical and acoustic characteristics of TMMs with
various colored inks and concentrations are investigated. The potential of oil-based
SEBS phantoms with tunable optical characteristics in PAI is demonstrated by mak-
ing heterogeneous smiley phantoms. These non-toxic TMPs are cost-effective, can be
stored at room temperature, provide mechanical strength and long-term stability, and
have the ability to tune their optical properties. However, fabrication of these phan-
toms requires heating the material to approximately 130 ◦C, making them unsuitable
for incorporating additives that melt at such high temperatures, such as polyethylene
microspheres. In addition to paper I, these phantoms have been used in paper II for
making a TMP with various sizes of inclusions (see Figure 4.1(b)).

4.2.3 Microspheres phantoms

To test the effect of various sizes of particles in changing the content of the PA sig-
nal, phantoms containing polyethylene microspheres (Cospheric, Santa Barbara, CA,
USA) can be produced [78]. These phantoms were prepared by adding mineral oil
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into the colored microspheres of green and blue at a concentration of 1% by mass
and pouring the solution into a cuvette as shown in Figure 4.1(c). The liquid forms
of these phantoms were easy to prepare, but they showed issues such as aggregation
and sticking to the inner walls of the cuvette, which required shaking before the PAI
measurements. These phantoms were used in Paper IV. The solid form of these phan-
toms was created by incorporating microspheres into an agar solution to solve the
aggregation problem.

Figure 4.1: Various types of tissue-mimicking phantoms used in this work: (a) Agar-based
phantoms, (b) SEBS-based phantoms, and (c) Microsphere-based phantoms.





Chapter 5

Processing approaches in pho-
toacoustic imaging

5.1 Spectral unmixing

In multispectral PAI, the tissue is illuminated with multiple wavelengths, and multi-
spectral images are acquired. The optical absorption of chromophores, and thus the
PA response, varies with the wavelength of the transmitted laser pulse. This provides a
specific spectral signature for each tissue chromophore [18], [66]. Spectral unmixing
is a well-known technique that enables the classification of various optical absorbers
based on their distinct spectral signatures. It has shown a high ability to classify the tar-
get of interest from the absorbing background using both exogenous contrast agents,
such as Indocyanine green and metal nanoparticles [79], [80], and endogenous con-
trast agents, such as hemoglobin, melanin, fat, collagen, and water [81], [82]. Spectral
unmixing has been employed in the detection of skin cancers [61], [62], blood oxy-
genation mapping [49], [53], [83], detection of instable carotid plaque [84], breast
cancer diagnosis [85], and monitoring the cancer treatment [51].

Spectral unmixing techniques aim to decompose the PA spectra at each pixel into
contribution maps of a set of chromophores based on their spectral signature [86].
The effectiveness of spectral unmixing methods relies on the range of excitation wave-
lengths, the spectral signature of tissue chromophores and tissue type, the number of
chromophores involved, and the ability to distinguish the chromophore of interest
from the background tissue [87]. Several spectral unmixing approaches have been
developed, such as linear spectral unmixing, statistical sub-pixel detection, and blind
source unmixing methods [88], [89].
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5.1.1 Linear spectral unmixing

In the linear spectral unmixing, the measured PA spectrum in each pixel indicated
as P (r, λ), is modeled as a linear combination of the spectral signatures of a set of
chromophores, Si(λ), with the weights indicating their fractional contribution to the
measured spectra, Ci(r)[90], [91].

P (r, λ) =
K∑
i=1

Ci(r)Si(λ) (5.1)

where r denotes the spatial location, λ is the wavelength of the laser, andK represents
the number of chromophores present in the tissue. This problem can be solved us-
ing non-negative least squares to estimate the fractional contributions, ensuring that
the respective coefficients remain non-negative to be realistic [49]. The spectral sig-
natures of chromophores can either be chosen from known spectra, such as those of
hemoglobin, melanin, and water, or be estimated from tumor or healthy tissue. In
paper III, linear spectral unmixing was applied to PA data with and without spectral
coloring compensation to estimate oxygen saturation. Linear spectral unmixing is the
most widely used unmixing method due to its simplicity [92]. However, it requires
prior knowledge of all chromophores present in the tissue, and the lack of relevant
chromophores can introduce errors in the estimated relative contribution maps [52].
Furthermore, it may be challenging to identify low-absorbing chromophores in the
presence of dominant background absorption spectra [93]. In addition to the pa-
per III, in paper I, linear spectral unmixing has been utilized to show the distribution
map of oil-based inks in smiley phantoms. Figure 5.1 shows an example of linear
spectral unmixing applied to the PA signals from finger data, segmented into three
anatomical layers: epidermis, dermis, and hypodermis. The epidermis layer can be
distinguished in the ultrasound image. However, the boundary between the dermis
and hypodermis is not clearly visible, so an approximate dermis thickness of 1 mm
was used to separate these two layers [56]. The average PA signal from these layers,
the fitted spectrum, and the contribution map of each chromophore are shown. As
shown, the signal in the epidermis layer is primarily dominated by melanin contribu-
tions from melanocytes. The dermis layer contains HbO2 and HbR, reflecting the
vascular plexus. In the hypodermis layer, the signal from blood and fat is dominant,
consistent with the anatomical presence of subcutaneous fat in this layer that has been
shown in a previous study by our group [49].
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Figure 5.1: (a) Ultrasound image of finger where epidermis, dermis, and hypodermis are
separated with a dashed line. (b) Linear spectral unmixing was applied to the averaged PA
signal in each layer, where the received PA spectrum, fitted spectrum, and the contribution of
each chromophore are shown.

5.1.2 Adaptive matched filter

Adaptive matched filter (AMF) is a statistical sub-pixel target detection approach [88].
A pixel-wise detection value D at each location in the image is estimated, which
presents the similarity between the target and proposed pixel spectrum. AMF can
be calculated using the formula below:

D(xr) =
(µt − µb)

TΣ−1(xr − µb)

(µt − µb)TΣ−1(µt − µb)
, (5.2)

where µt is the target spectrum, µb is the background spectrum, Σ represents the
background covariance matrix, T shows the matrix transpose operation, and xr corre-
sponds to the multispectral data at position r [94]. Applying a threshold to D divides
pixels into either the target or the background. In the AMF models, the background
spectral variability is modelled as a multivariate Gaussian distribution. AMF spectral
unmixing technique can be used when the target spectrum is known, but there is no
information on the specific background chromophores’ spectra [87]. This assumption
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makes this method suitable for skin cancer detection, where the target can be set to
the skin tumor spectrum. It has also been shown that AMF methods can increase the
detection sensitivity compared to the linear spectral unmixing and are more robust
in the case of sparse targets present in the background [91], [93]. In paper II, AMF
has been used as an unmixing method to delineate the MM tumors from the healthy
tissues.

5.1.3 Blind source unmixing

In this unmixing approach, no prior knowledge of chromophores’ absorption spectra
is needed. Independent component analysis (ICA) and principal component analysis
(PCA) have been used as two blind source approaches to find the exogenous contrast
agents from the absorbing background [89]. Recently, Non-negative matrix factor-
ization, which assumes non-negative sources, has shown great potential in separating
the exogenous contract agents in PAI [80]. Although these approaches can be used
to automatically separate the target of interest from the background, they may also
generate components that represent no real chromophore spectrum, limiting their
clinical interpretation [89], [95].

5.2 Spectral coloring compensation

Laser wavelength and tissue composition affect the propagation of light fluence through
tissues, resulting in a spatially variant and wavelength-dependent absorption pattern.
For instance, a uniform fluence spectrum at the surface of the tissue will be nonuni-
form when reaching deep tissue. This alternation to the light fluence leads to changes
in both the amplitude and shape of the PA spectrum, called ”spectral coloring” [93],
[96], [97] (see Figure 5.2). In this figure, the changes to the PA spectra in a homo-
geneous blue phantom due to spectral coloring are shown. This corruption of PA
spectra is an important and complex issue in the quantitative PAI. Uncertainty in
light fluence as a function of depth contributes to errors in the interpretation of PA
data, which subsequently affects the accurate quantification of tissue chromophore
concentrations, particularly in deeper tissue [98].

Compensating for spectral coloring has been a key focus in quantitative PAI re-
search. To compensate for the spectral coloring, light fluence distribution informa-
tion in the tissue is needed. However, the complexity and computational time of these
methods limit their clinical application. Several model-based techniques have been
utilized, including Monte Carlo simulations [99]–[101] and approaches using the dif-
fusion equation [102], [103]. However, these methods require prior knowledge of the
tissue’s optical properties. Another category of methods involves eigenspectra-based
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Figure 5.2: Spectral coloring effect in tissue-mimicking phantom. (a) Ultrasound image of a
homogeneous phantom. (b) PA spectra at various depths of regions of interest (ROIs) from
1 mm to 5 mm below the surface show changes not only in amplitude but also in spectral
shape.

approaches, which decompose the light fluence into a set of eigenspectra at each lo-
cation in the image to estimate the tissue sO2 [37]. Moreover, the use of frequency
information of radio frequency (RF) PA data has been used to estimate the light flu-
ence in the tissue [104]. Machine learning-based methods constitute another class of
post-processing techniques that tend to compensate for the spectral coloring. As data-
driven approaches, they require extensive training datasets and are highly dependent
on the quality and realistic nature of these data for clinical applications [105]–[108].
In paper III, two spectral coloring approaches that exist in the literature were mod-
ified to be adopted to our in vivo human data and PAI system. Their performance
was then evaluated and compared using the same finger dataset for estimating the
oxygenation.

5.3 Frequency analysis

Despite progress in the quantitative PAI, the frequency analysis of RF PA data has
gained less attention over the years. The frequency analysis of RF PA data usually
involves extracting quantitative parameters from the linear model fitted to the nor-
malized power spectra. The common parameters encompass midbandfit, intercept,
and slope. Previous studies have shown the relation of these parameters with changes
in concentration and size of optical absorbers [78], [109]. These parameters have been
used as quantitative measurements to distinguish the cancer cells from the healthy tis-
sue [110]–[113] and monitor the responders to thermosensitive liposome treatment
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in breast cancer tissue [114].
Our group has utilized another quantitative parameter, center frequency (CF) of

ultrasound RF data, for tissue characterization. The feasibility of using the CF in
the ultrasound for tissue characterization has been demonstrated in plaque analysis,
where high-risk carotid plaques have been identified by analyzing the CF of ultrasound
data [115]. Furthermore, this parameter has been used in determining the arteries
affected by giant cell arteries from the ones without [116]. In this thesis, the feasibility
of using the CF spectrum in PA data for tissue characterization was investigated using
both phantom and clinical data.

The CF is defined as the frequency at which most of the signal’s energy is con-
centrated. The CF is calculated in the time domain using the autocorrelation func-
tion. This estimate has been used in Doppler ultrasound imaging for observing blood
flow in real-time [117]. This calculation enhances accuracy and reduces noise, as
well as overcomes the trade-off between time and frequency resolution compared to
FFT analysis [118], [119]. Using an autocorrelation function, the phase difference
between two consecutive samples can be calculated. The autocorrelation function,
R(n), is given by

R(n) =
1

N

n+N
2∑

i=n−N
2

RF (i) ·RF ∗(i− 1) (5.3)

where the beamformed RF data at sample i is represented by RF (i) and RF ∗(i− 1)
shows the complex conjugate of data at sample i− 1. N shows the size of averaging
window and n is the sample in the axial direction.

This phase shift can be converted to actual frequency (CF) by

CF (n) =
fs
2π

arctan
(
Im(R(n))

Re(R(n))

)
(5.4)

where fs represents the sampling frequency, and Re and Im show the real and the
imaginary content of the autocorrelation function [119].

The CF value can be estimated using Equation 5.4. By varying the wavelength of
light, the corresponding CF values across the optical spectral range can be determined
for each pixel, defined as CF spectrum. CF spectrum represents the mean frequency
with respect to wavelength and conveys information about tissue properties. In Pa-
per IV, the CF spectrum is defined for the first time, and its potential to distinguish
phantoms of microspheres with varying sizes and colors is explored. In paper V, the
CF spectrum analysis has been used to distinguish the ex vivo MM and BCC skin
cancers from the healthy tissue. In addition, changes in the CF spectrum with vary-
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ing oxygenation levels in the in vivo finger by using an occlusion-recovery model were
also explored.





Chapter 6

Summary of papers

The five papers included in this thesis are all connected to the development of PAI
and how to improve the clinical usage of this imaging modality. The connection of
each paper’s content to the thesis has been shown in the Figure. 6.1.

Figure 6.1: Block diagram illustrating the connection of each of the five parts of this thesis
to the development and clinical translation of PAI.

As shown in Figure. 6.1, Paper I focuses on developing and characterizing tissue-
mimicking phantoms for PAI. Paper III and part of paper V address in-vivo oxy-
genation measurements. Paper II and another part of paper V present non-invasive
approaches for the detection of skin cancers. Paper IV explores the feasibility of us-
ing CF spectra for tissue characterization in a phantom study, the findings of which
contributed to the further development of paper V.

31
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6.1 Paper I: Optical Tuning of Copolymer-in-oil Tissue-
mimickingMaterials forMultispectral Photoacous-
tic Imaging

Tissue-mimicking materials (TMMs) are crucial for producing robust phantoms. These
phantoms are essential for the calibration and evaluation of the performance of novel
imaging systems, routine control of these systems, and assessment of new quantita-
tive methods. In this paper, a gel consisting of SEBS in mineral oil was used as a
base material. Furthermore, oil-based inks in four colors, carbon black, prussian blue,
light green, and rubine magenta dissolved in turpentine, were added to tune the op-
tical absorption properties of these phantoms. Various phantoms with different con-
centrations of SEBS-gel and oil-based inks were produced using cuvettes and cubic
containers.

The optical properties of the phantoms, including the correlation between oil-
based ink concentrations and their corresponding optical absorption, were investi-
gated using collimated transmission spectroscopy in the wavelength range of 450–
1550 nm. Subsequently, the speed of sound and acoustic attenuation coefficients were
measured using the transmission method in a water tank filled with deionized water.
Finally, multispectral PAI of the phantoms in a wavelength range of 680–970 nm was
conducted.

The pure SEBS gel, without any additives or inks, exhibited translucency across
the examined wavelength range. In contrast, the incorporation of oil-based inks dis-
solved in turpentine proved effective for accurately tuning the optical properties of
the phantoms. Incorporating oil-based inks into the SEBS-gel showed no effect on
changing the speed of sound of these phantoms. For two of the colors, rubine magenta
and prussian blue, no clear relationship was observed between the acoustic attenua-
tion coefficient and the mass fraction of oil-based inks. However, a slight decrease in
acoustic attenuation was noted for the other two pigments, which may be attributed
to a reduction in the SEBS mass fraction by adding larger volumes of oil-based inks.

Different colors of oil-based inks exhibited distinct PA spectra, while increasing
their concentration resulted in higher PA amplitudes without altering the spectral
shape. TMMs demonstrated long-term stability, while a repeated measurement af-
ter 14 months revealed the same PA spectra across different ink colors. Furthermore,
a consecutive 12-minute measurement showed the highest temperature and PA am-
plitude increase in carbon black, which can be explained by the correlation between
temperature and PA signal amplitude (see Fig. 6.2). Their applicability in supporting
the clinical translation of PAI, including the investigation of spectral coloring effect,
was also demonstrated. This was achieved by calculating the PA spectra in a homoge-
neous phantom as a function of depth from the surface. Furthermore, the feasibility
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of producing custom-shaped phantoms was shown, while their 3D abundance maps
were visualized using the linear spectral unmixing.

Figure 6.2: Example of PA spectra of two TMPs with varying concentrations of oil-based
inks in (a) Prussian blue and (b) Carbon black. (c) Stability of PAI measurements for both
TMPs at a concentration of 0.8 %, comparing the first measurement and a repeated one after
14 months. (d) Box plots showing the amplitude of the PA signal at a wavelength of 760 nm
in a consecutive measurement.
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6.2 Paper II: Automatic Threshold SelectionAlgorithm
toDistinguish a Tissue Chromophore from the Back-
ground in Photoacoustic Imaging

The AMF is a statistical sub-pixel detection unmixing method for classifying the target
(chromophore of interest) from absorbing background in PAI. Using the multispec-
tral PA images and applying the AMF spectral unmixing results in a detection image
in which the pixels’ amplitude is proportional to the target probability. However, a
threshold is required to be applied to the AMF detection image to separate the chro-
mophore of interest from the background. This threshold is important since it allows
us to estimate the thickness and width of the tumors, which are parameters related to
the tumors’ invasive stage. Selecting a threshold manually by highly skilled operators
may introduce bias into the outcome. Therefore, automated approaches for threshold
selection are necessary to improve reproducibility. In this paper, we have proposed
an automatic threshold selection (ATS) algorithm that can be applied to the AMF
detection image to classify the target from the absorbing background.

The method uses two features extracted from the AMF detection image: the num-
ber of connected components and the number of pixels in the largest connected com-
ponent, to find the suitable threshold that separates the target from the background.
To validate the approach, a SEBS tissue-mimicking phantom with four hemispherical
inclusions was designed, and 3D multispectral PAI was performed. Furthermore, the
method was applied to seven MM skin samples, and the thickness and width of the
tumors, together with the delineation, were estimated and compared with histological
examination.

The root mean squared error between the estimated thickness obtained using the
ATS algorithm and the ground truth values was 0.26 mm for the phantom inclusions
and 0.19 mm for the MM skin samples. The use of the ATS algorithm resulted
in lower absolute errors in tumor thickness and width measurements compared to
applying fixed threshold values to the AMF image (see Fig 6.3). In this study, the
feasibility of using ATS in determining the thickness and width of MM skin samples
without a highly skilled operator is demonstrated.
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Figure 6.3: Example of result obtained for the largest inclusion in a TMP (a) AMF detection
map without and with ATS, where the approximate extent of the inclusion and its thickness
in shown. (b) Comparison of the thickness of four inclusions in a TMP with the known
values. (c) An example of the AMF detection map in ex vivo human sample of MM without
and with ATS, and the histological slide showing the thickness and extent of the tumor. (d)
Boxplot of the absolute difference of the tumor thickness estimate with ATS and a number of
fixed thresholds in MM tissue samples.
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6.3 Paper III: Two Photoacoustic Spectral Coloring Com-
pensation Techniques Adapted to the Context of
Human In-vivo Oxygenation Measurements

Monitoring the sO2 in the body provides valuable information about blood perfusion,
health of the cardiovascular system, and the respiratory system. Furthermore, it has
been shown to be a key biomarker in cancer treatment and monitoring. The spatial
map of sO2 in the body can be measured using the PAI and the endogenous chro-
mophores in the body. However, the accuracy of in-vivo sO2 estimation, especially
in deeper tissue, is affected by the spectral coloring effect. A wavelength-dependent
light attenuation that alters the PA spectra as light penetrates deeper into the tissue.
Consequently, this results in uncertainty in the estimation of chromophore concen-
tration.

In this paper, the performance of two previously proposed techniques to compen-
sate for the spectral coloring was compared on the same in vivo human data. Both
methods build upon existing approaches and are modified to be adapted to the context
of human in-vivo and our PAI system. The first method uses the frequency content
of RF PA data to estimate the fluence changes based on the slope of a linear fit to the
ratio of power spectra at two wavelengths, called ”method A”. The second method
utilizes eigenspectra decomposition to model the light fluence at each location in the
image, called ”method B”. Both methods were modified, including automatic skin
and epidermis segmentation to correct for the non-flat surface of the skin and the lack
of hemoglobin in the epidermis layer, an automatic bandwidth selection accounting
for lower frequency content of in-vivo data, adding more chromophores to improve
accuracy, and usage of more wavelengths.

An agar-based tissue-mimicking phantom was used to evaluate the first method’s
performance, where an induced spectral coloring situation was created using a green
agar phantom with three concentrations on top of a black agar phantom. Spatial
map of sO2 using the 10 human finger data with both methods was estimated. The
performance of these methods was compared to the classic linear unmixing. The
gradient of sO2 with respect to depth has been used as a parameter to compare the
performance of spectral coloring compensation techniques.

In the tissue-mimicking phantom, using method A, the original spectrum of the
black phantom was restored by decreasing the relative mean square from 65% to
1.2% when using the highest concentration of green phantom. Both methods yielded
similar sO2 estimates and minimized the depth-dependent variations in sO2 that are
commonly observed with linear unmixing, reducing the gradient of saturation as a
function of depth as physiologically expected in a normal situation (see Fig. 6.4).
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Figure 6.4: (a) The relative mean squared error (%) between the black phantom spectrum
and the reference spectrum before and after correction using three different concentrations of
the green phantom ( 0.25, 0.5, and 1 μl/ml). (b) The mean and standard deviation of sO2 in
one subject after 10 repetitive measurements. (c) Ultrasound image and spatial sO2 maps in
in vivo human finger of the same subject using Linear unmixing, method A, and method B.
The observed sO2 values for the selected roi (vein) are 44%, 59%, and 60%.
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6.4 Paper IV: The Feasibility of Using Center Frequency
Spectra in Photoacoustic Imaging for Tissue Char-
acterization

The amplitude of the PA signal over the wavelength range, PA spectra, conveys infor-
mation about the optical absorption of various chromophores in the body. Despite a
great interest in the PAI analysts, fewer studies have explored the frequency content
of PA data. In this study, we introduced the use of CF spectra as the mean frequency
with respect to the wavelength. Here, in a phantom study, the effect of two parame-
ters, color and size, on changing the CF spectra was explored.

Phantoms were manufactured by mixing mineral oil with microspheres of various
sizes and two different colors: green and blue. The prepared mixtures were poured into
cuvettes, and the PAI measurement of these phantoms using the MX400 ultrasound
transducer was performed.

Microspheres with green and blue pigmentation in the same size exhibited differ-
ent CF spectra shapes. The reason for the two distinct PA spectra could be that various
colors absorb the laser energy differently over the wavelength range. Moreover, larger
microspheres resulted in a lower CF offset. This could happen because larger micro-
spheres develop a slower thermal expansion and generate lower frequency content (see
Fig. 6.5). These findings suggest that CF analysis has the potential for distinguishing
chromophores with varying optical properties within biological tissues.

Figure 6.5: The CF spectra in TMPs with (a) Colors of blue and green and the same size of
approximately 75 µm. (b) Color of blue and various sizes of approximate 75 µm, 53 µm, and
38 µm.
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6.5 Paper V: Center Frequency Spectrum Analysis in
Photoacoustic Imaging for Clinical Tissue Charac-
terization

The frequency information of RF PA data is related to the absorbers’ properties, such
as size and shape. This study explores the possibility of using CF analysis in differen-
tiating the ex vivo MM and BCC skin samples from the healthy tissue in a clinical
setting. Furthermore, the changes in the CF spectra in an occlusion-recovery model
using in vivo human finger data are investigated.

CF is estimated using phase differences between consecutive RF PA data. By cal-
culating the CF for all wavelengths, a CF spectrum is acquired. CF contains informa-
tion about the tissue properties and imaging system. A normalization was employed
to remove the system dependency, and the normalized CF spectrum was defined as
the alpha spectrum. The shape and the slope of the linear model fitted to the alpha
spectra were investigated as potential biomarkers to differentiate between the tumors
and healthy tissue, and the changes in the oxygenation.

Analysis of the normalized alpha spectra revealed statistically significant differ-
ences at 42 and 29 out of 59 wavelengths for MM and BCC tumors, respectively,
when compared to healthy tissue. Furthermore, the median of alpha spectral slopes
demonstrated significant differences with p-values of less than 0.05 and 0.001 for MM
and BCC tumor parts and healthy tissue, respectively, with higher alpha slope values
observed in the tumor regions (see Fig. 6.6). In the occlusion-recovery measurement,
the normalized alpha spectra revealed statistically significant differences at 36 out of
59 wavelengths with a 60% decrease in the normalized alpha value at 755 nm during
the occlusion phase. The median of the alpha spectral slope in all subjects revealed a
statistically significant difference (p-value< 0.05) between the occlusion and recovery
phases, with a higher slope for the occlusion phase.

In this study, the CF is calculated in the time domain, which overcomes the trade-
off between time and frequency resolution. The slope of a linear model fitted to the
alpha spectra indicated the ability of this spectral parameter as a potential biomarker,
with tumors exhibiting consistently higher slope values compared to healthy tissue.
Furthermore, a higher alpha slope was observed in the occlusion phase compared to
the recovery phase. These findings indicate that CF spectrum analysis could serve
as a potential biomarker for non-invasive skin tumor detection. It is also capable of
tracking oxygenation changes in tissue.
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Figure 6.6: (a) Normalized alpha spectra with dashed lines indicating different levels of sig-
nificance in MM, BCC, and oxygenation measurements. (b)The median alpha spectral slopes
show significant differences between MM and BCC tumors and healthy regions, as well as
between the occlusion and recovery phases.



Chapter 7

Conclusion and outlook

7.1 Conclusion

PAI is an innovative imaging technique with a wide range of potential clinical applica-
tions. This thesis mainly focused on technical developments to facilitate PAI clinical
usage in the future, addressing the aims outlined in chapter 1. All papers in this
thesis are connected by three central themes in PAI: the development of TMPs for
performance evaluation, non-invasive skin cancer detection, and in vivo oxygenation
measurements. In this chapter, the key conclusions from the projects, along with my
reflections and suggestions for future work, are presented.

SEBS-gel, a non-toxic material which can be stored at room temperature, has been
recently used to produce TMPs [69], [75]. Pure SEBS-gel has low intrinsic optical
absorption, requiring the addition of pigments to tune its absorption properties [77].
However, there was a gap in the literature regarding the concentration-dependent ef-
fects of oil-based pigments on the PA spectra, as well as their depth-dependent behav-
ior. Understanding these effects is crucial for the further development and validation
of phantoms. In Paper I, we addressed this gap by developing a novel approach for
creating TMPs using SEBS-gel, turpentine, and oil-based inks with tunable optical
properties. These phantoms demonstrated long-term stability at room temperature
and produced high PA signal amplitudes with different spectral shapes using various
ink colors. Furthermore, we investigated the PA spectrum as a function of increasing
the absorption and depth. I believe this optical tuning is an important step toward
achieving the desired PA spectrum and more realistic phantoms. I also think that the
development of such phantoms offers a robust platform for assessing and validating
new technical methods in PAI.

PAI has shown potential to detect skin tumors non-invasively [64], [120], [121].
In my research group, non-invasive skin tumor detection has been a key objective,
given access to human skin samples. However, most existing methods for skin tu-
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mor detection rely on operator expertise. Our goal was to develop a more automatic
approach to distinguish skin tumors from healthy tissue. In paper II, an ATS algo-
rithm applied to AMF spectral unmixing showed better performance in estimating
the thickness and width of MM tumors compared to using fixed threshold values. In
this study, we demonstrated the potential of an automatic approach for tumor delin-
eation in MM skin cancer. Additionally, since the PA amplitude spectra of BCC are
difficult to distinguish from healthy tissue, there is a limitation in detection methods
that only utilize the amplitude information. To address this, we explored the use of
frequency-domain features, specifically the center frequency spectrum, as an alterna-
tive approach. In paper V, CF spectrum analysis using novel alpha spectral parameters
demonstrated the ability to distinguish MM and BCC from healthy tissue. The alpha
slope showed higher values in tumor regions, indicating its potential as a non-invasive
biomarker for skin cancer detection. In this study, the use of frequency information
of RF PA data was explored to address this challenge, and the results suggest a promis-
ing direction for future research. I believe these findings highlight PAI’s promise for
non-invasive skin cancer diagnostics.

PAI has the potential to estimate the spatial map of sO₂ in the body [53], [107].
In Paper III and a part of paper V, methods were used to explore the in vivo oxygena-
tion. One of the aims of my project was to explore the common problem of spectral
coloring in the context of human in vivo oxygenation. Paper III explores the adapta-
tion of two spectral coloring approaches to our PAI system and in vivo oxygenation
situations. Both methods effectively decreased the depth-dependent changes in sO₂,
typically observed with linear unmixing. In paper V, for the first time, we investigated
the potential of CF spectrum analysis in detecting the changes in the oxygenation. The
alpha spectrum exhibited a shift toward higher slope values during the occlusion phase
compared to recovery, indicating its potential for distinguishing between these phys-
iological states. I think the observed change in the CF spectrum shape with varying
oxygenation is a unique observation and has the potential to provide valuable insights.
Paper IV introduces the CF spectrum in a TMP study, showing different CF spectra
in phantoms with different colors and sizes. The findings of this paper served as a
foundational step for further development of paper V.

Overall, the five papers included in this thesis aim to contribute to the develop-
ment of PAI and to advance its potential for clinical applications.

7.2 Future works

The present thesis explores the potential clinical applications of PAI. In this thesis, I
had the opportunity to work with human clinical data. However, future studies with
larger clinical datasets will be beneficial in evaluating the methods’ robustness.
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In Paper I, the use of four different oil-based color inks resulted in distinct PA
spectra. By combining various inks, it may be possible to produce spectra that more
closely mimic the absorption characteristics of endogenous chromophores such as
hemoglobin. This will be beneficial for testing new algorithms intended for clinical
use, such as oxygenation estimation.

Furthermore, spectral coloring compensation approaches hold potential for ap-
plications in clinical contexts beyond sO₂ estimation and improving the accuracy of
spectral unmixing in other clinical applications. For example, when it comes to deeper
skin cancer tissues, spectral coloring compensation can improve tumor delineation,
particularly for tumors with greater thickness.

In the context of skin cancer detection, comparative investigations across a broader
range of skin cancers, including squamous cell carcinomas, could yield valuable in-
sights. In papers IV and V, we introduced and utilized CF spectrum analysis for
tissue characterization. While the slope of alpha spectra showed a significant differ-
ence between the tumors and healthy tissues, other spectral parameters within the
alpha spectrum may also offer valuable diagnostic information. Furthermore, the ob-
served changes in the shape of the alpha spectra during the occlusion and recovery
phases open up interesting directions for future research, which could be linked to
the endothelial function evaluation. In my opinion, the novel relationship between
CF spectral features and varying tissue oxygenation levels is particularly promising
and worth further investigation. In addition, spectral coloring may have less impact
on frequency information such as CF, which remains a challenge when analysing in
vivo clinical data. Finally, the combination of CF and PA spectra has the potential
to enhance diagnostic accuracy, as the two approaches may provide complementary
information.

In conclusion, the projects presented in this thesis contribute to the validation of
methods’ performances, advancement of non-invasive detection and delineation of
skin cancers and in vivo oxygenation measurement. I believe that PAI holds strong
potential for integration into clinical practice, either as a complementary tool to ul-
trasound or as an independent diagnostic modality.
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