
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Towards modeling and improving human-centered code review

Gullstrand Heander, Lo

2025

Link to publication

Citation for published version (APA):
Gullstrand Heander, L. (2025). Towards modeling and improving human-centered code review. Department of
Computer Science, Lund University.

Total number of authors:
1

Creative Commons License:
CC BY

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://portal.research.lu.se/en/publications/d29fa690-fb49-450e-8a55-b2bbc1ae7ff3

Towards Modeling and Improving
Human-Centered Code Review

Lo Gullstrand Heander

Licentiate Thesis, 2025

Department of Computer Science
Lund University

ii

Licentiate Thesis 3, 2025
ISSN: 1652-4691

Department of Computer Science
Lund University
Box 118
SE-221 00 Lund
Sweden

Email: lo.heander@cs.lth.se
WWW:
https://portal.research.lu.se/en/persons/lo-heander

Printed in Sweden by Tryckeriet i E-huset, Lund, 2025

© 2025 Lo Gullstrand Heander
Licensed under CC BY 4.0.

https://portal.research.lu.se/en/persons/lo-heander

ABSTRACT

Tool-based code review has been an established software engineering practice for
at least a decade. However, while software development environments have im-
proved significantly during this time with advanced features for code comprehen-
sion, refactoring, and AI support, code review tools have remained more static and
are still centered around a two-way textual diff view with features similar to when
the first code review tools were introduced.

With the rapid development of artificial intelligence (AI), code review is at a
crucial moment. It must adapt to meet the demands of a future where more and
more AI generated code needs to be reviewed, while higher efficiency demands
are placed on software engineering teams. More and more capable AI models will
soon make it feasible to completely automate code review or offer sophisticated
AI support to human code reviewers. Complete automation could potentially offer
increased efficiency, but risk losing many of the interpersonal benefits. This gives
researchers and software engineers reason to stop and reflect on what the purpose
and benefits of code review are and how to best preserve these benefits in the
future.

In this thesis, I present a direction for modeling and improving human-centered
code review, where code review tools are designed to support the human software
engineer, adapt to their needs, and augment their capabilities. The contributions
are a prototype for flexible code block comparisons developed using participa-
tory design, an architecture for AI-supported code review, and a cognitive model
of code review as decision-making (CRDM). Together, these contributions in-
dicate one way toward the next generation of code review tools, practices, and
processes: to use participatory design methodology, cognitive insights from the
CRDM model, and AI agent-based architectures to improve code review while
focusing on the needs of the human reviewers.

ACKNOWLEDGEMENTS

I would like to dedicate this licentiate thesis to my wonderful family, sharing
so much happiness, mutual support, curiosity, and encouragement. My children
Melvin and Leo, my bonus children Vide, Rönn, Lärke and Björk, my amazing
wife Alva, and my parents Jan and Christine. You fill my life with love and inspi-
ration!

My warmest thanks to my supervisors Emma Söderberg and Christofer Ryden-
fält for your guidance, inspiration, support, hard work, and knowledge. The way
you are always open to discuss any aspect of research, thinking, and creativity
makes working together both an inspiration and a joy.

Special thanks to my amazing friends and colleagues Andreas Bexell, Ken
Engström, Carl Wolff, Sebastian Andersson, Peng Kuang, Arthur Nijdam, An-
ton Risberg Alaküla, Daria Rago, and Leo Esson for inspiration, discussions, and
feedback. Being a research student can feel lonely at times, and I’m ever grateful
for your support and community.

Further, I also want to thank all of the study participants for sharing their in-
sights, ideas, and collaboration. For funding this thesis, I thank the Wallenberg
AI, Autonomous Systems and Software Program (WASP) funded by the Knut and
Alice Wallenberg Foundation.

“The creative adult is the child who has survived.”
—Ursula K. Le Guin

Lo Gullstrand Heander
Lund, August 2025

LIST OF PUBLICATIONS

In the introduction chapter of this thesis, the included and related publications
listed below are referred to by Roman numerals.

Publications Included in the Thesis

I Lo Gullstrand Heander, Emma Söderberg, Christofer Rydenfält “Design of
Flexible Code Block Comparisons to Improve Code Review of Refactored
Code” In Companion Proceedings of the 8th International Conference on
the Art, Science, and Engineering of Programming, 2024.
DOI: 10.1145/3660829.3660842

II Lo Gullstrand Heander, Emma Söderberg, Christofer Rydenfält “Support,
Not Automation: Towards AI-supported Code Review for Code Quality and
Beyond” In 33rd ACM International Conference on the Foundations of Soft-
ware Engineering (FSE Companion ’25), 2025.
DOI: 10.1145/3696630.3728505

III Lo Gullstrand Heander, Emma Söderberg, Christofer Rydenfält, “Code Re-
view as Decision-Making – Building a Cognitive Model from the Questions
Asked During Code Review” Submitted to Empirical Software Engineering,
Springer Science, 2025.
DOI: 10.48550/arXiv.2507.09637

Related Publications

VI William Saranpää, Felix Apell Skjutar, Lo Gullstrand Heander, Emma Söder-
berg, Diederick C. Niehorster, Olivia Mattsson, Hedda Klintskog, Luke
Church “GANDER: a Platform for Exploration of Gaze-driven Assistance
in Code Review” In Proceedings of the 2023 Symposium on Eye Tracking

https://doi.org/10.1145/3660829.3660842
https://doi.org/10.1145/3696630.3728505
https://doi.org/10.48550/arXiv.2507.09637

viii List of Publications

Research and Applications, 2023.
DOI: 10.1145/3588015.3589191

VII Andreas Bexell, Lo Gullstrand Heander, Emma Söderberg, Sigrid Eldh, Per
Runeson “Exploring the Performance of ML Model Size for Classification
in Relation to Energy Consumption” Submitted to 26th International Con-
ference on Product-Focused Software Process Improvement, 2025.

Artifacts and Demonstrations Related to the Pub-
lications
Artifact I Lo Gullstrand Heander “Prototype of Flexible Code Block Compar-

isons”
URL: https://figma.com/proto/KZIrsBH8DZ22ZI0B0YD2BC/GBC?hide-ui=1

FIGMA prototype demonstrating the UX design for flexible code block
comparisons in Gerrit. It was used both during the design process and for
design validation with the participants.

Lo Gullstrand Heander led and did almost all of the work.

Artifact II Lo Gullstrand Heander “Replication Package for Code Review as De-
cision Making” DOI: 10.5281/zenodo.15758267

Replication package containing source code for statistical, temporal, and se-
quential analysis, as well as code book and process coded data.

Lo Gullstrand Heander led and did almost all of the work.

Contribution Statement

Paper I Paper II Paper III
Conceptualization
Methodology
Investigation
Analysis
Writing
Visualization

Table 1: Author’s contributions for each paper and category.

All papers included in this thesis have been co-authored with other researchers.
The contributions of Lo Gullstrand Heander are illustrated in Table 1. The defini-
tions for the headings in the table follow the CRediT [1] terminology. The dark

https://doi.org/10.1145/3588015.3589191
https://figma.com/proto/KZIrsBH8DZ22ZI0B0YD2BC/GBC?hide-ui=1
https://doi.org/10.5281/zenodo.15758267

ix

portion of the circles represents the individual contributions by Lo Gullstrand He-
ander for each paper and category:

Lo Gullstrand Heander was a minor contributor to the work.
Lo Gullstrand Heander was a contributor to the work.
Lo Gullstrand Heander led and did a majority of the work.
Lo Gullstrand Heander led and did almost all of the work.

CONTENTS

Abstract iii

Acknowledgements v

List of Publications vii

Introduction 1
1 Introduction . 1
2 Modern Code Review . 3
3 Related Work . 4
4 Methodology . 5
5 Contributions . 10
6 Conclusions . 13
7 Future Work . 14

Included Papers 17

I Design of Flexible Code Block Comparisons to Improve Code Review
of Refactored Code 19
1 Introduction . 20
2 Method . 21
3 Results . 25
4 Discussion . 40
5 Conclusions . 42

Appendices 45
Appendix I.A Focus Group Design Brief 45
Appendix I.B Co-Design Workshop 46

xii CONTENTS

Appendix I.C Prototype Evaluation Questions 47

II Support, Not Automation: Towards AI-supported
Code Review for Code Quality and Beyond 49
1 Introduction . 50
2 Today’s Code Review and Its User Needs 51
3 Design Proposal . 52
4 Analysis of Design . 53
5 Related Work . 55
6 Research Agenda . 56

III Code Review as Decision-Making —Building a Cognitive Model from
the Questions Asked During Code Review 59
1 Introduction . 60
2 Background and Related Work 63
3 Methodology . 69
4 Results . 74
5 Theory . 86
6 Discussion . 90
7 Threats to Validity . 94
8 Conclusions . 96

Bibliography 99

IV Bibliography 99

INTRODUCTION

1 Introduction

Code review is an established industry practice in software engineering [2]. Ben-
efits include defect finding, code improvement, discovering alternative solutions,
knowledge transfer, team awareness, improving developer process, sharing code
ownership, reducing build breaks, tracking rationale, and team assessment [3].
But there are also significant challenges. Some developers view code review as a
boring chore [4], unhelpful comments or other poor code review practices harm
collaboration [5], and there are several misalignments between the task, the devel-
opers’ needs, and the tools [6].

So far, code review tools have not evolved to meet these challenges. The first
dedicated software tool for code review, ICICLE, was launched in 1990 and al-
ready contained a two-way diff view, support for code review comments, annota-
tions by static analyzers, and distributed collaboration over the network [7]. The
most popular code review tools in use today, such as GitHub, GitLab, and Gerrit,
are web-based, integrated with version control, can link to continuous integration
systems, and show the code in full color, but are still based on the same features
and core workflows. I believe there is ample room for improvement to address the
current challenges and misalignments mentioned above.

The pressure to improve code review is increasing. The 2023 Accelerate State
of DevOps industry report finds that teams with faster code reviews have up to 50%
higher overall software delivery performance, marking it as an important area for
improvement [8]. Furthermore, with the accelerating research and application of
Artificial Intelligence (AI) in software engineering, developers are predicted to
spend even more time reviewing and integrating AI-generated code [9, 10]. Code
review is at a crucial moment where it must adapt and become more efficient and
help developers deal with increasing amounts of code to review, and at the same

2 INTRODUCTION

time preserve and increase the interpersonal and quality benefits that made code
review a valued industry practice.

The fast development of AI technologies offers both threats and opportunities
for the future of code review. Although several recent initiatives explore how to
completely automate code review [11–14], I argue that many of the benefits of code
review are interpersonal and risk being lost if the activity is automated. Instead,
improvements in code review tools and processes should preserve the benefits and
values of code review, address its difficulties, and center the human software engi-
neers involved.

Already in 1962, Douglas Engelbart [15] published a seminal report demon-
strating how new technology can augment cognitive and physical abilities and al-
low humans to perform tasks faster and easier. The example he gives in his article
is the workflow of an ‘augmented architect’; a human architect working assisted by
a computer system that can draw the building plans, measure angles and distances,
and update visualizations in real time. When described in the article, a system like
this was still decades away, but today Computer Aided Design (CAD) systems are
widely used for technical design tasks. In Engelbart’s view, when developing a
tool, you should begin by questioning what is hard about the task and then how a
tool can help. Following this principle; to design improved code review tools that
augment humans’ ability and efficiency, a better understanding of code review and
its difficulties from a human perspective is needed.

1.1 Research Goals

This thesis explores how code review tools, practices, and processes work and
how they can be improved to fit the goals and needs of the humans involved. My
vision is to be part of creating a world where developers enjoy doing code reviews
and software teams achieve better collaboration, fewer code defects, increased
knowledge sharing, and stronger team cohesion. The central research question
springing from this goal and vision is “how can code reviews be made fit for
purpose?”. With fit for purpose, I refer to tailored to the needs and goals of
the diverse roles involved in code review. Here, roles imply not only authors or
reviewers, but also variants of these roles. Reviewers may have different units of
attention [6], they may act as an educator in one review and a gatekeeper in the
next [2], or they may just want to keep up to date with what is happening in the
code base. The authors also vary in needs and roles. For example, they may be
very senior on the team or they might have started last week, they might perform
changes as the lead developer in a project or as a guest contributing changes in a
repository outside their regular team.

Specifically, the research goal and the research question are applied to the in-
cluded papers in the following ways. Paper I explores how participatory design
can be used to improve the user experience of code review by designing a flexible
code block comparison interface that addresses common difficulties with review of

2 Modern Code Review 3

refactored code. Paper II proposes an architecture for human-centered AI support
designed to make code reviews faster and more efficient by providing reviewers
with the information they need when it is needed. Finally, Paper III presents a cog-
nitive model of code review that highlights the similarities between code review
and decision-making and can be used to deepen the understanding of developers’
needs and design future tool and process improvements.

1.2 Contributions

The research presented in Paper I, Paper II, and Paper III contributes:

• C1 Prototype of a flexible code block comparison tool (Section 5.1).

• C2 An architecture for AI-supported code review (Section 5.2).

• C3 A cognitive model of code review as decision-making (Section 5.3).

2 Modern Code Review

Checkout
issue/task

Author(s)

1

2
Implement

solution
Author(s)

Unit test

Author(s)

Upload for
code review

Author(s)

Done?
no yes

Changes
required?

yes

no

Perform
code review

Reviewer(s)

Unresolved
comments?

noyes

Team

Integrate,
test & deliver

Accepted?

Respond
to comments

Author(s)

yes

no
Team

Discard or
major revision

Preview
code review

Author(s)

1st iteration

2nd+ iteration

Invite
reviewers

Author(s)

Looks
good?

yes

no

3

4

5 6

7

8

9

10

Figure 1: Example of a software development process with modern code review
steps highlighted in yellow. Takeaway: Code review is an iterative process where
authors and reviewers take turns updating and commenting until the code is ac-
cepted for integration, or, in rare cases, discarded.

In its essence, code review means that code written by one software engineer
(the author) is inspected, commented upon, and eventually approved (or rejected)
by one or more other software engineers (the reviewers). Today, code review is
most often asynchronous and distributed, with each reviewer looking through and

4 INTRODUCTION

commenting on the changed code when they have time and from their own work-
stations over a web-based code review tool such as GitLab, GitHub, Gerrit, and
Critique [2].

Code review has its origins in formal (Fagan-style) code inspection meetings,
where the source code was inspected following a formal process in a meeting with
the author, reviewers, a moderator, a reader, and a recorder [16]. The moderator
led the meeting while the reader paraphrased the code changes out loud. The
reviewers gave feedback on the code, while the recorder documented the meeting
for future archival and analysis. Famous projects using code inspections include
the development of NASA space shuttle software [17]. As software development
workflows became more informal [18] and the use of tools became ubiquitous,
code inspections developed into what Bacchelli and Bird [3] defined as Modern
Code Review: “(1) informal (in contrast to Fagan-style), (2) tool-based, and that
(3) occurs regularly”.

Modern code review is an iterative process (Figure 1) that can involve several
cycles of review, update, and re-review. To take you through an example of a code
review process [2,19], I will describe each step and refer to the corresponding fig-
ure nodes in parentheses. Modern code review is often performed after the issue
or task (node 1) has been implemented (node 2) and tested (node 3) by the author,
but before integration, acceptance testing, and delivery. The first step of the code
review process is to upload the code changes to the team’s code review tool (node
4). Next, the author can preview the code change inside the code review tool to
check if they discover any issues that they did not spot inside their development
environment (node 5). If the preview looks good, the author will invite one or
more reviewers (node 6). The reviewers will usually get some kind of notification
and, when they have time, they will perform the code review by writing review
comments and voting for accepting or rejecting the code changes (node 7). When
the code reviews are done, the author needs to address any unresolved code review
comments, either by updating the code (node 2 and 3) or writing a response ex-
plaining their reasoning (node 8). If the code is updated, the review cycle often
starts over with a re-review of the new state of the code changes. Finally, when all
comments are resolved, the code changes are either accepted for integration and
delivery (node 9) or, in rare cases, rejected and discarded (node 10).

3 Related Work

In the majority of previous research, code review has been characterized from
a process perspective describing the steps and tasks involved [2]; see Section 2.
Gonçalves et al. [20] are among the few studies that propose a cognitive model for
code review. They present the Code Review Comprehension Model (Figure 2),
focusing on the comprehension part of code review. Their model is based on
Letovsky’s cognitive model of code comprehension [21] expanded with elements

4 Methodology 5

Information SourcesKnowledge Base

Mental Model

Code Review
Comprehension

update
supply

guide
evaluate

construct compare

Figure 2: Code Review Comprehension Model by Gonçalves et al. [20].

that allow for iterative comparison and evaluation of changes compared to the
original code, the reviewers’ expectations, their experience, external information
sources, team knowledge base, and their mental model. This thesis aims to model
the entire code review task from start to finish, including cognitive processes that
are beyond the scope of comprehension.

Several recent studies explore how to use AI and machine learning (ML) to
partially or completely automate code review. Lu et al. [11] introduce LLaMA-
Reviewer, where they fine-tune the publicly available LLaMA1 large language
model (LLM) to handle common code review tasks. Yu et al. [12] presents Carllm,
a fine-tuned LLM that improves issue detection and comprehensibility of code re-
view comments in automatic code review. Tang et al. [13] propose CodeAgent,
an approach in which multiple AI-agents are fine-tuned for different code review
tasks and then collaborate to automate the entire review. An industry example is
the Google DIDACT project [14], where ML models are trained on the sequential
steps in software development processes, such as code review, in order to repli-
cate and automate them. In this thesis, I will present an analysis of the potential
impact of automated code review on the benefits of code review and propose an
architecture for AI-supported code review instead.

4 Methodology
Since this thesis focuses on the human aspect of code reviews, we apply an inter-
disciplinary perspective that recognizes that code review tools, processes, and ac-
tivities exist in interaction with a team of humans and in a social environment that
cannot be understood from a single lens. The dynamics of code review are com-
plex and include elements from areas of software engineering, sociology, human-
computer interaction, cognitive psychology, program analysis, and group dynam-
ics. Therefore, I have chosen interdisciplinary methods and applied design sci-

1https://github.com/meta-llama/llama-models

6 INTRODUCTION

ence [22, 23] and ethnography [24, 25] to the research questions presented in the
included papers. My research is rooted in a constructivist epistemology postulat-
ing that all knowledge presented in this thesis is co-constructed together with study
participants, coauthors, related research, and with you, the reader, who interprets
and applies the results. An overview of the research questions, data sources, meth-
ods, and analysis approaches can be found in Table 2.

Table 2: Overview of the included papers, their research questions, data, methods,
and analysis.

Title Research Question Data Methods Analysis
Paper I:
Design of Flexible Code
Block Comparisons to
Improve Code Review of
Refactored Code

RQ1 What developer
experiences during
code review can
cause frustration?
RQ2 How can code
review tools be
modified to improve
the developer
experience?
RQ3 How can
developers be
involved in the
design process to
better discover,
understand and
design tooling
improvements?

Interviews,
participa-
tory design
sessions,
sketches,
and
prototype

Participatory
design

Participant
validation

Paper II:
Support, Not
Automation: Towards
AI-supported Code
Review for Code Quality
and Beyond

Vision for using AI
to support code
review and its users
striving to boost all
the positive effects
of code review,
including
interpersonal effects
such as knowledge
transfer, team
awareness, and
shared code
ownership.

Literature System
design

Analysis of
impact on
code review
benefits

Paper III:
Code Review as
Decision-Making
—Building a Cognitive
Model from the
Questions Asked During
Code Review

RQ1 How can the
cognitive process of
code review be
modeled from a
theoretical
perspective?

Transcribed
think-aloud
sessions and
interviews

Ethnography,
Interviews

Thematic
analysis

4 Methodology 7

4.1 Design Science

Pa
pe

r
I

Paper II

Pa
pe

r
II

I

Figure 3: The included papers mapped onto problem domain, solution domain,
theory, and practice.

In contrast to the Natural Science paradigm, which studies and describes the
natural world, the Design Science paradigm describes the study of the artificial,
the human-created [26]. Van Aken [27] defines the ultimate mission of design sci-
ence as “develop design knowledge, i.e. knowledge that can be used in designing
solutions to problems in the field in question”. Design knowledge can be created
on three different abstraction levels: 1. object design specifies the intervention or
artifact itself, 2. realization design creates a plan for the implementation of the
intervention or artifact, and 3. process design outputs a process for the steps to
take to create a design that solves a set of problems.. The output of any of these
abstraction levels can be formulated as technological rules, defined in the context
of design science by van Aken [27] as “a chunk of general knowledge, linking an
intervention or artifact with a desired outcome or performance in a certain field
of application”.

The design science researcher can go through several cycles of exploring a
problem, building theories about the causes, conceptualizing one or more solu-
tions, implementing solutions, and validating solutions towards the original prob-
lem. A study can start and end anywhere on this cycle. Throughout the cycle both
the design process itself and the design knowledge are continually updated [28].

8 INTRODUCTION

Engström et al. [29] formalizes the design science cycle by introducing a four-
field model that separates the abstraction level into practice and theory, and the
research domain into problem domain and solution domain. The model is illus-
trated in Figure 3, together with a mapping of the included papers to the quadrants.
In the bottom-left practice/problem-domain quadrant, you find concrete instances
of the problems. By problem conceptualization, the researcher can build theo-
retical problem constructs and move up to the theory/problem-domain quadrant.
From here, the model describes an iterative solution design process that goes to the
theory/solution-domain quadrant and creates design constructs. Through instanti-
ation, the researcher can move down to the practice/solution-domain quadrant and
realize one or more solution instances. Solution instances can also be abstracted
back into design constructs, to analyze or improve an existing solution. From
the practice/solution-domain quadrant, iterative empirical validation evaluates the
impact of the implemented design on the problem instances. In this model, the
technological rules are illustrated as spanning the problem and solution domains
on a theoretical level, even if their eventual application might be practical.

Through a meta-study on the alignment between software engineering research
and the design science paradigm, Engström et al. [29] conclude that the lens of de-
sign science helps to emphasize the theoretical contributions, practical relevance,
novelty, and rigor of software engineering research. Runeson et al. [30] builds on
these results and adds that positioning a software engineering study in relation to
the design science framework helps to communicate and evaluate research con-
tributions and limitations. The included papers in this thesis have the following
positioning relative to the design science framework.

Paper I traverses a full design science framework cycle. The study starts with
exploring problem instances through interviews and workshops with industry prac-
titioners and continues with conceptualizing possible causes of a selection of the
problems. From there, we create a conceptual design, build a prototype of the
design, and finally validate the prototype with the practitioners.

Paper II begins from problem constructs such as misalignments, challenges in
navigating the code review, and inefficiencies in the process. It continues to design
a conceptual solution proposal, evaluates this based on the problem constructs,
and proposes an architecture for a solution. Implementation and validation of the
solution proposal is left for future work.

Paper III presents an ethnographic study that goes deep into the concrete ex-
periences of code review. From there, a theoretical model of the cognitive process
during code review is built, which can in future work be used as the basis for novel
design constructs. Having a cognitive model as reference could also guide future
implementations of solutions and empirical validations.

4 Methodology 9

4.2 Participatory Design
Participatory design is based on the idea that involving stakeholders in the design
process of a solution will lead to both a better design and also a higher degree of
adoption of the new solution. As a designer, engineer, or researcher, you likely
have a lot of design knowledge and skill, but the premise of participatory design is
that is important from a democratic perspective and for the quality and adoption of
the design that communities affected by the design are invited and deeply involved
in the work [31]. Costanza-Chock [32] argues that there is an inherent power
imbalance in design where the designer’s world view and values are imposed on
the groups affected by the design, such as users, customers, and the general public.
They present the motivation and methods for Design Justice where design work is
driven by and for affected communities and is done in a way that enhances equity
and accessibility.

The Double Diamond design process [23] is one available framework for im-
plementing participatory design. It consists of four process steps all conducted in
the context of engagement and leadership, which explicitly emphasizes the partic-
ipation of the community.

Discover Explore the challenge; its characteristics, the people affected, limita-
tions, use-cases, etc. Typical actions include surveys, workshops, inter-
views, and observations.

Define Narrow the challenges down to a clear definition of the problem. Typical
actions include requirements analysis, conceptual design, personas, and use
case analysis.

Develop Explore the solution space; evaluate as many different solutions to the
problem as possible. Typical actions include low-fidelity prototyping, sketch-
ing, and design workshops.

Deliver Narrow down to a final design; choose the most promising candidate so-
lution and refine it further. Typical actions include high-fidelity prototyping,
implementation, user validation, interviews, and surveys.

The process is iterative, and individual steps, sequences of steps, or the whole pro-
cess is repeated until a desired outcome is reached. The Double Diamond design
process is described in more detail in Paper I, as the main method used in that
research study.

4.3 Ethnography
The study presented in Paper III uses ethnographic methodology to study questions
and cognitive processes during code review. Ethnography originated in social sci-
ence and anthropology and is a scientific method created to study and describe a
culture or a group of people from the members’ own point of view [33, 34]. It can

10 INTRODUCTION

be defined as a form of participant observation in which the researcher embeds
themselves into the group they wish to study. You study people in their everyday
context by participating in social interactions with them with the goal of under-
standing them. Sharp et al. [24] explore the relevance of ethnography to software
engineering research and present a practical framework on how it can be applied.
Especially, they argue that it is an essential methodology to uncover why software
engineering practices are done a certain way and recommend that ethnographic
studies can and should be used to inform tool design and method development.
Ethnography is work-intensive, requiring extensive note-taking, transcription, and
qualitative analysis, which in practice limits the number of participants. On the
other hand, it presents the possibility of studying the meanings and perspectives of
the participants in depth [25] and collect very rich descriptive data [35].

5 Contributions

5.1 Prototype of Flexible Code Block Comparison Tool

The majority of the code review tools in use today (GitLab, Gerrit, GitHub, etc.)
only support 2-way diff comparisons of code changes within the same file. If
the author moves code between files or breaks out code blocks into a new file, a
common result of refactoring, it becomes difficult and time consuming to verify
whether the code was just moved or also changed in a significant way. During
the initial interviews for the study described in Paper I the participants explored
several common problems experienced during code review, and cross-file com-
parisons were highlighted as frequent and time-consuming for both the authors
and reviewers. To verify the moved code, they often resorted to opening the code
review tool in two separate browser windows, placing them side by side on the
monitor, and manually comparing the code blocks line by line.

Using a Double Diamond design process (Section 4.2) together with industry
practitioners, we explored common code review problems, narrowed the scope to
comparison of refactored code, facilitated a participatory design workshop to find
different solutions, created a conceptual design, implemented a prototype, and fi-
nally validated the prototype. The resulting design, contribution C1, combines a
Lightboard toolbar where reviewers can add code blocks and a flexible comparison
modal that can compare any block in the current file with any block on the Light-
board. Automatic similarity detection assists reviewers in finding blocks that are
interesting to compare. During validation with industry practitioners, all partici-
pants were able to use the design without any instructions and found the function-
ality useful. In addition to validating the prototype itself, these results showcase
the potential of using participatory design to create well-received code review tool
improvements. The design process, the resulting design and the screenshots are

5 Contributions 11

shown in detail in Paper I and the prototype is publicly available for testing in
Artifact I2.

5.2 Architecture for AI-Supported Code Review

Benefit [3] Preserved by AI-automation Preserved by AI-support
Defect finding ✓ Yes ✓ Yes

Code improvement ✓ Yes ✓ Yes

Alternative solutions ✓ Yes ✓ Yes

Knowledge transfer ✗ No ✓ Yes

Team awareness ✗ No ✓ Yes

Improve developer process ✗ No ✓ Yes

Share code ownership ✗ No ✓ Yes

Avoid build breaks ✓ Yes ✓ Yes

Track rationale ✗ No ✓ Yes

Team assessment ✗ No ✓ Yes

Table 3: Code review benefit preservation if automating code review compared
to AI-supported code review (Paper II). Takeaway: Many of the benefits of code
review risk being lost if the activity is automated.

As discussed in Section 1 and Section 3, there are recent research initiatives
toward completely automating code review. In my view, automation risks losing
several of the interpersonal benefits teams and organizations get from the prac-
tice. Instead, I propose working towards AI support to augment the capabilities
of the human reviewers. As shown in Table 3, AI-supported code review has the
potential to preserve or enhance more of the benefits of code review compared to
AI-automation. In Paper II, we propose an AI agent-based architecture, contri-
bution C2, to support code review and analyze its impact on the benefits of code
review, as described by Bacchelli & Bird [3]. The architecture is based on a central
Large Language Model (LLM) handling user interaction combined with a number
of specialized AI-agents taking care of integrations with external documentation,
KANBAN board, issue tracker, team chat, etc. An additional agent is responsible
for storing and updating user preferences to make the system adaptable and cus-
tomized to each user. In this way, context and information can be collected and
shown to the user at the moment in the code review process where it is needed.
The system wraps the user’s favorite code review tool, such as Gerrit, GitHub,
GitLab, etc., so that they can work in a familiar environment but with the benefits
of customized AI support. In Figure 4, we show a user interface proposal in which

2https://figma.com/proto/KZIrsBH8DZ22ZI0B0YD2BC/GBC?hide-ui=1

https://figma.com/proto/KZIrsBH8DZ22ZI0B0YD2BC/GBC?hide-ui=1

12 INTRODUCTION

3

It looks like this block have been
refactored into a new abstract class. This is
part of the rationale of preparing for more
alternative integrations.
Click here to bring up a cross-file diff.

Figure 4: User interface proposal for AI-supported code review. Takeaway: The
AI agent-based support provides contextualized insights into the review and sug-
gest actions the reviewer can take.

the AI agent discovers that a code block is refactored into a new abstract class
and suggest that this is related to parts of the code review rationale. If the user
whishes to investigate further, it offers to open up the cross-file diff tool described
in Section 5.1. The architecture, its rationale, and an analysis of the effects on the
benefits of code review are found in Paper II.

5.3 Cognitive Model of Code Review as Decision-Making

In Paper III, we present an ethnographic study that explores the cognitive process
of the entire code review task by studying the implicit and explicit questions that
reviewers ask during code review sessions. Using thematic, statistical, and sequen-
tial analysis, we build the Code Review as Decision-Making (CRDM) cognitive
model, contribution C3, which highlights the similarity between code review and
recognition-primed decision-making [36]. As a reviewer, you constantly make de-
cisions around which file to look at next, whether to write a review comment, how
to phrase it, how to vote regarding the integration of the code change, if you need
to run the code locally, what documentation to cross reference, and more. These
decisions are based on the reviewers’ expectations and experience, both with code
review in general but also with the specific code base and team context they are
working in and also on their understanding of the rationale and implementation of
the code change.

6 Conclusions 13

The CRDM model has many potential applications, for example, to adapt code
review tools and AI support in a way that matches the cognitive needs of the re-
viewers throughout the code review. The model provides an explanation to results
of previous code review studies, such as the findings of Bosu et al. [37] where it
was shown that even experienced programmers can take up to a year to become
efficient at code review in a new team.

6 Conclusions

The three contributions C1, C2, and C3 together lead to some conclusions regard-
ing the current state and future of code review.

• Participatory design approaches can, with relatively low effort, improve the
user experience and efficiency of today’s code review tools. These ap-
proaches amplifies the wealth of information and experience from users and
aim to create designs that maximize interpersonal benefits and have broad
user adoption. Validation of the prototype in Paper I shows that this ap-
proach has the potential to create useful and well-received code review fea-
tures.

• An AI agent-based architecture is promising for AI-supported code review,
as it can manage a diverse range of integrations with auxiliary systems and
provide information customized to the context and cognitive process of the
user. This keeps the human in the loop, again increasing or preserving the
interpersonal benefits of code review.

• Code review can be modeled as a decision-making process, leading to, for
example, better insight into user needs and guidance for tool improvements.
Having a cognitive model when creating and evaluating tool and process im-
provements increases understanding of the impact from a human perspective
and helps predict what support is needed and when.

From three different directions, these conclusions put the user experience at the
center, strive to increase interpersonal benefits, engage users, and deepen under-
standing while improving both tools and processes. Taken together, they formulate
a technological rule for one way towards the next generation of code review tools,
practices, and processes.

Technological rule: To design improvements to the user experience
and efficiency of modern code review, use insights from the CRDM model
and AI agent-based architecture together with participatory design method-
ologies and focus on the needs of human reviewers.

14 INTRODUCTION

Empirical validation of this technical rule is left for future work. However,
enthusiastic participation of practitioners in the design work described in Paper I,
along with positive reception when validating the prototype, gives a strong in-
dication that participatory design is a viable methodology for code review tool
improvements. The CRDM model and AI agent-based architectures open up in-
teresting paths to find, simulate, and implement new tool improvement ideas.

7 Future Work

7.1 Empirical Validation of Technological Rule

In the future, I would like to validate the technological rule described above (Sec-
tion 6) by implementing and validating an agent-based system for AI-supported
code review. Using the architecture of C1 and the CRDM model of C2, the system
would be designed to provide the right information and context at the right time
during code review. Participatory design approaches should be used to ensure a
good user experience where the support given is experienced as positive, helpful,
and anchored in the software engineering community. Ideally, detailed feedback
from a smaller group of participants is combined with a survey with a larger num-
ber of participants from diverse teams and organizations.

7.2 Strategies for Actions in Code Review

In the data collected from field work with Paper III there are also many examples
of strategies used to answer implicit and explicit questions during code review.
Some examples include how and when users decide to check out the code locally,
message a colleague on the team chat, or search for external API documentation. A
re-coding and thematic re-analysis of the existing ethnographic material from the
angle of actions and strategies could highlight actions connected to information
needs during code review. The results could show use-cases that the code review
tools already support well and others where the users need to switch to other tools
in order to move forward with the code review.

7.3 Motivations Behind Code Review

Intuitively, the benefits of code review should be well aligned with the motiva-
tions for the developers to submit their code for review and conduct code reviews.
In practice, the motivations the developers state are sometimes parallel or even
contradictory to the benefits of code review. For example, Alami et al. [38] find
that the most pronounced extrinsic motivator in open-source projects is that qual-
ity code reviews improve the reputation of the reviewer. But good reputation can
lead to the developer’s own code changes being reviewed less thoroughly or even
integrated without review, thus negating many of the purposes of code review.

7 Future Work 15

In our interview data from Paper III we see a range of responses regarding
motivation; from seeing code review as a mandatory chore, to a way to catch
bugs before production, to an opportunity for learning and teaching. In the future,
conducting a survey or interview study combined with the mining of data from
Paper III could give more insight into developers’ motivations for code review in
industry projects, compared to open source projects. These results could be used
to align processes with developer motivations and reduce lead time and friction in
code reviews.

7.4 Measuring Effectiveness of Code Review
When researching improvement to code review tools, it can be elusive to determine
if a particular feature or intervention achieves desired outcomes. It is easy to say
that the goal is to improve code review efficiency, but that is a concept that is very
hard to define and measure. Mäntylä and Lassenius [39] explore methods to define
and measure defect finding during code review, but other benefits, such as knowl-
edge sharing, team awareness, and shared ownership, lack consistent definitions
and metrics. Defining metrics or indicators for efficient and effective code review
would be valuable in evaluating improvements in tools and processes. Approaches
could include measuring the code review task in isolation, as well as its effect on
the whole software engineering process [8]. The results could allow researchers
and developers to be transparent and explicit about the benefits and trade-offs in-
volved and address the need for improvements without unintended loss of code
review benefits.

INCLUDED PAPERS

PA
P

E
R

I

DESIGN OF FLEXIBLE CODE
BLOCK COMPARISONS TO

IMPROVE CODE REVIEW OF
REFACTORED CODE

Abstract
Code review occupies a significant amount of developers’ work time and is an
established practice in modern software development. Despite misaligments be-
tween users’ goals and the code review tools and processes pointed out by recent
research, the code review tooling has largely stayed the same since the early 90s.
Improving these tools, even slightly, has the potential for a large impact spread out
over time and the large developer community.

In this paper, we use the Double Diamond design process to work together
with a team of industry practitioners to find, refine, prototype, and evaluate ways
to make it easier to compare refactored code blocks and find previously hard-to-
see changes in them. The results show that a flexible comparison modal integrated
into Gerrit could reduce the mental load of code review on refactored code. Poten-
tially, it could also have effects on how code is written by no longer discouraging
refactoring due to it complicating the review. The user interface created in this col-

Lo Gullstrand Heander, Emma Söderberg, Christofer Rydenfält “Design of Flexible Code Block
Comparisons to Improve Code Review of Refactored Code” In Companion Proceedings of the 8th
International Conference on the Art, Science, and Engineering of Programming, 2024.
DOI: 10.1145/3660829.3660842

https://doi.org/10.1145/3660829.3660842

20 DESIGN OF FLEXIBLE CODE BLOCK COMPARISONS

laborative manner was also intuitive enough for all of the participants to be able to
use it without any hints or instructions.

1 Introduction
Software developers today spend between 10-20% [2, 40] of their working time
doing code reviews. With the total number of software developers expected to
reach 28 million people by 2024 [41], this could mean between 22-44 million
hours spent doing code reviews every day! When usage is on this scale, even small
improvements in code review tools and processes can have a significant effect.

Yet, the tools used have not changed in their approach since they were first
introduced with ICICLE in 1990 [7]. Research has shown that there are misalign-
ments [6] between the tools used and the desired goals, such as code quality and
knowledge sharing [3].

There are not very many studies published that explore how changes or new
features in the code review tools can affect the review experience or quality. Bagirov
et. al. [42] investigates if the ordering of the files in the review could be improved.
Baum 2019 [43] studies how code review tools could be improved using cognitive
support techniques to reduce the cognitive load of the task and improve code re-
view quality. Baum et al. [44] study the (mis)alignment between the code review
task and requirements and the tools in use today. They believe that there is room
for improvement and that a new generation of more specialized tools could lead to
“increased review efficiency and effectiveness”.

In this paper, we explore ways to improve the code review developer experi-
ence by applying a double diamond design process (Section 2) to the code review
tooling. Our research questions are:

• RQ1 What developer experiences during code review can cause frustration?

• RQ2 How can code review tools be modified to improve the developer ex-
perience?

• RQ3 How can developers be involved in the design process to better dis-
cover, understand and design tooling improvements?

To answer these questions, we study the code review experience of software
developers, with an established code review process in Gerrit, working at a com-
pany developing embedded systems. Through a focus group session with the de-
velopers, we identify several problems that could be addressed by improved tool-
ing. We select one of these problems and organize a co-design workshop with the
participants, focusing on coming up with a range of possible solutions. One so-
lution, a flexible code comparison modal to compare moved and refactored code
blocks, is chosen. After developing this solution into a high-fidelity prototype, we
bring it back to the software developers for evaluation and feedback.

2 Method 21

The feedback from the participants (Section 3), during both the workshops and
the evaluation, suggests that this feature could simplify code reviews of moved and
refactored code. It could potentially also have effects on how code is written, by no
longer discouraging change and refactoring in moved code to avoid complicating
the review.

2 Method

Figure 1: The Double Diamond design process.
From https://www.designcouncil.org.uk/

To work towards answering RQ3, we wanted to choose a method that involved
the developers using code review tools in the design process. The purpose of this is
both to increase the chance of designing something that would be genuinely useful
to the developers and also to invite their experience and expertise into the project.

For these reasons, we have used the Double Diamond design process [23] (Fig-
ure 1) to structure the work. The double diamond consists of two consecutive
steps both consisting of one exploratory, i.e., divergent, and one converging phase.

22 DESIGN OF FLEXIBLE CODE BLOCK COMPARISONS

These phases live inside a context of Engagement and Leadership which makes the
importance of involving the community explicit. These two steps form two “dia-
monds”. The steps in the project and how they relate to the phases in the process
can be seen in Table 1.

In the first diamond, the process starts with the challenge. The design project’s
purpose and starting point. From here, through the “Discover” phase, the purpose
is to deepen the understanding of the challenge. This is a divergent phase, expand-
ing outwards to discover more and more about the challenge, its characteristics,
the people affected, the limitations, and use cases to work with. In this process,
it is important to refrain from self-censoring or jumping to conclusions based on
your prejudices about the problem.

The second half of the first diamond, the “Define” phase, uses the understand-
ing of the challenge obtained in the Discover phase, narrowing it down to a clear
problem definition. The definition needs to be a real and urgent problem for the
intended users and manageable to tackle within the scope of the project.

The first phase of the second diamond, the expansive “Develop” phase, is an
exploration of the solution space for the previously defined problem. In prac-
tice, this means developing as many different solutions to the problem as possible.
Rough prototyping can take place in this phase to describe the ideas more visually.

In the second half of the second diamond, the “Deliver” phase, the purpose
is to reduce the scope down to a single final design. Here the team can iterate
through a variety of methods. Creating prototypes, evaluating prototypes, and
finally refining the prototype to arrive at a final design choice.

Table 1: Design process steps and participants.

Discover phase
Sep 2023 Literature review 1st author
Sep 2023 Developer meeting 5 developers
Oct 2023 Focus group 5 developers
Define phase
Nov 2023 Definition workshop 3 faculty members
Nov 2023 Problem statement 1st author
Develop phase
Nov 2023 Co-design workshop 5 developers
Dec 2023 Conceptual design 3 faculty members
Deliver phase
Dec 2023 Prototype development 1st author
Dec 2023 Prototype persona verification 3 faculty members
Jan 2024 Prototype evaluations 7 developers
Jan 2024 Prototype refinement 1st author

2 Method 23

2.1 Discover phase
In the Discover phase, we performed a literature review, a developer meeting, and
a focus group (Table 1). The literature review was intended to orient the study
about problems in code review as found by current research [6,45–47] and give us
an idea of what and where to explore for RQ1. After this, we held a first developer
meeting to introduce the project to five professional developers participating in the
study. During the meeting we got to know their backgrounds, the teams’ code
review processes, and collected informed consent for participating in the study.

The participating developers work at a medium-sized embedded software de-
velopment company. Their prior experience ranges from over 20 years for one
system architect, to 2-3 years for some of the software developers. They work in 4
different teams, which all have established code review practices. All new code in
the teams undergoes code review by usually two other developers, who both need
to approve the change before it is merged.

Figure 2: Post-it notes from the focus group.

In the next step, we arranged a focus group [48] with the same five develop-
ers. The output from the literature review and the developer meeting were used as
input to create a design brief and an interview protocol for the focus group (Ap-
pendix I.A). The topics for the interview questions were aiming to explore RQ1

24 DESIGN OF FLEXIBLE CODE BLOCK COMPARISONS

and RQ2. We first explored the practices the developers used when reviewing code
(i.e., “Do you read the files in a code review one time or multiple times?”), and
then experiences reading code in an IDE (i.e., “How is the experience of reading
and understanding new code in other tools, environments or situations?”), and fi-
nally comparing the two (i.e., “How is the experience different compared to code
review in Gerrit?”)

The problems and challenges discussed in the focus group were gathered as
post-it notes on a big sheet of paper (Figure 2) and sorted into categories depending
on if the challenge usually occurred before, in the beginning, middle, or end of
looking through a new code review. The session was held in Swedish and recorded
for later transcription and translation.

To balance the participation in the meeting, the facilitation was done in a way
where every participant got the same time to talk about their perspective and then
with a discussion where everyone could contribute before moving on to the next
person’s perspective. See results in Section 3.1.

2.2 Define phase

The Define phase consisted of a workshop in the research group where the sorted
and categorized challenges from the focus group were described based on potential
impact and feasibility to prototype within the scope and time limits of the project.
Based on the description, the group prioritized the challenges to conclude which
problem areas to move on with. After this, the first author put together a problem
statement as input to the next phase. The results from this process are described in
Section 3.2.

2.3 Develop phase

In the Develop phase, we conducted a co-design workshop [49] where five in-
dustry practitioners (four who also participated in the focus group, plus one more
developer from the same company but a different development team) co-created
different solution designs. The reason for choosing a co-design workshop as the
method was to deeply involve the developers in designing solutions to improve
their own working tools, in accordance with RQ3.

The first author facilitated the co-design workshop and prepared hand-drawn
low-fidelity mockups of the Gerrit user interface (Appendix I.B) and different
kinds of widgets, buttons, and overlays on overhead film. New interfaces and
ideas could be created by cutting and moving parts of the interface around. The
output of the meeting was documented with photos of the mockups and notes on
the ideas and principles behind them.

The ideas from the co-design workshop were elaborated through conceptual
design [50] to make them more rich and substantial. Conceptual design is the
definition of the metaphors, use cases, concepts, and actions that can be involved

3 Results 25

in the design. This also included the creation of two personas [51] based on the
concerns and challenges emphasized by the participants in the focus group and
co-design workshop.

2.4 Deliver phase

The final Deliver phase distilled the solution ideas and conceptual designs from the
Develop phase and reduced this to one high-fidelity prototype that can be evaluated
towards the problem statement developed in the Define phase. The phase contained
4 steps (Table 1). First, a high-fidelity prototype was created using Figma1, a tool
for creating interactive prototypes of computer interfaces.

The prototype was verified by using the personas and their questions. After
some updates, the practitioners from the focus group, co-design workshop, and
one additional external developer from a different company were invited to indi-
vidually test and evaluate the prototype. During the test, the participants did a
code review in a private Zoom meeting without detailed instructions or guidance
(see Appendix I.C. All of them reviewed the same code that contained examples
of blocks moved both within a file and between different files. Their running com-
mentary and their shared screen was recorded to evaluate the interface’s usability
and how well it supported the challenge selected in the Define phase. The meet-
ings were held in Swedish and the recordings were transcribed, referenced, and
translated into English where needed.

Finally, the design of the prototype was adjusted based on the results and sug-
gestions from the evaluations.

3 Results

The result section follows the structure of the Double Diamond process and the
sequence of method steps described in Table 1.

3.1 Discover phase

In the developer meeting and literature review (Section 2.1) several developers
and articles mentioned file order as an important factor in code reviews. For this
reason, the design brief and questions for the focus group, started out exploring
this problem area.

1https://www.figma.com/

https://www.figma.com/

26 DESIGN OF FLEXIBLE CODE BLOCK COMPARISONS

Design brief When doing a code review, the developer often has to
read the files multiple times because they are presented in an order where
early files are not understood until after reading files further down in the
review.

Design questions:
1. In what ways could reading the code in a review be improved so that

fewer passes or even a single pass through the files in the review
would be enough to understand the changes?

2. Are there ways to improve the ordering or let the author convey more
of the narrative when sending the code for review?

However, during the meeting our participants raised six different problem areas
that they felt were more frequent and impacting their experience more. The areas
are described below:

Diff problems

There are many cases when the diff algorithms break down and require tedious
manual comparison word-for-word. For example, if a function is moved within a
file from the bottom to the top, or maybe refactored into two separate functions,
it will all show up as just deleted lines and completely different added lines. This
makes it hard to see if the code was only moved or moved and modified. Also, if
a file is renamed and then changed, or a function is moved into a different file, it is
impossible to use the built-in diff tools to compare the code.

Suggestions from the focus group included manually selecting files, lines or
blocks, to compare sections that the algorithms themselves don’t match for diffing.

Participant 3 “I was working with this today and had to sit with two
separate windows and go through it, just like, Control-F in this file and see
if I find it. Is it added? Is it completely new? Or is it just moved from
further down in the file?”
Participant 1 “Do we want a more semantic diff? Where you can kind
of say that this has been extracted from over there or it has been moved
between here and there?”

Finding similar but unchanged code

It might be the case that a code base contains several similar snippets of code
and that a code change should affect all of them. In the code review tools, this is
difficult to verify. There might be a forgotten snippet left in an unchanged file that

3 Results 27

is never even shown in the review. It would be helpful to have a tool to find similar
code that maybe also should have been changed or looked at.

Participant 1 “It is one of the things that are easiest to miss during a
review, regardless of reviewing a document or code. It is like, you only
look, think, and look at what is in the diff. Not what should have been
there.”

Lack of navigation

Lack of navigation in code review tools causes problems, such as making it diffi-
cult to go from a variable’s or function’s use to its definition, or finding all uses of
a variable or function. In IDEs such as VS Code, this kind of navigation is easy
and commonly just one or two clicks away, but the same convenience is missing
from code review tools.

Participant 4 “I mean, say that you could just press it and «yeah, you
have 5 references here» and then you see that, yeah, but the reference down
there is not changed in this commit. Why? Then it would be very fast to
get to that insight.”

Ordering of files

When changes are big and spread out over many files, the alphabetic ordering of
files in the code review tool is essentially random, in regards to how the code
should be read and understood in the best way. Suggestions for how to address
this problem from our participants include placing generated code last or plac-
ing the tests last. The uploader could also draw a path through the change with
commentary for each file, to clarify the story told by the code under review.

Participant 4 “You could make it easy for yourself and just, like, let the
person uploading the review decide or give a suggestion for an order. Then
people can choose to go back to their own order, but you can say, kind of,
that I suggest you look at it in this way. Then you can do it in call stack
order if you like that.

Overlays and annotations

The continuous integration (CI) pipeline used by our participants already includes
support from running a wide variety of testing and code analysis tools, but these
results are disconnected from the code. In the best case, they are shown as a

28 DESIGN OF FLEXIBLE CODE BLOCK COMPARISONS

pass/fail stoplight in the code review tool with a link to the full logs. It would
be useful to show these results as inline overlays on top of the code. To see,
for example, test coverage, linter warnings, execution traces, loops with frequent
execution, failing tests, etc. The overlays need to be easy to select and toggle on
and off so that the user interface stays easy to use. For adoption, it needs to be
easy to integrate the results from the CI without modifying the linters, tests, etc.

Participant 5 “It would have been nice to have a code coverage overlay
because then you would have been able to see that (if more tests were
needed) in a completely different way.”

Unchanged files

Finally, it was discussed that unchanged files are not shown at all in code reviews
today. It would help to have a way both to find and navigate to unchanged files
and also write review comments in them. There may be places in unchanged files
that have not been changed, but that should have been changed, or that affect some
parts of the changed code.

Participant 5 “But if you don’t want to be marked as the uploader, you
have to do it (commenting on an unchanged file) through URL-hacking.
(...) NN does it fairly often and I do it sometimes when I realize that there
is a change in a nearby file that should have been there.”

3.2 Define phase
When considering the problem areas discussed in the focus group, we made a first
selection of problems that can be addressed by collaborative design (RQ3). This
selection removed Lack of Navigation, Ordering of files and Finding similar but
unchanged code, since these problem areas would have put more of the focus on
deeper code analysis instead.

The three remaining problem areas, Diff problems, Overlays and annotations
and Unchanged files are all very interesting areas to explore under the scope of in-
teraction design. In diff problems, you want an interface that is flexible in choosing
the blocks to compare. It should also be intuitive to use to quickly make compar-
isons, and at the same time not get in the way of the classical code review interface.

For overlays and annotations, completely new concepts of layers would need
to be designed and introduced in a way that fits well into the existing code review
interface. It needs space for rich information and at the same time needs to be easy
to navigate and turn on and off.

To create a design solution for unchanged files, the existing interface for pre-
senting and commenting in the files could largely be reused. The challenge is

3 Results 29

rather in the navigation and to make it clear that the unchanged file is outside the
changed code.

In the end, overlays and annotations was estimated to be too large for the scope
of this project and that diff problems was more important and had a greater impact
on the quality and ease of reviewing than unchanged files. Because of this diff
problems was chosen as the problem area to explore during the next phase.

3.3 Develop phase - co-design workshop
During the co-design workshop (Section 2.3), our industry practitioners were given
hand-drawn cut-and-paste prototyping kits. With these, solution suggestions for
the problem of comparing code, that the diff algorithms do not detect as moved,
could be created and discussed. Two guiding principles, which should always be
present, and three separate solution ideas were formulated:

Principle 1: Show context

One important principle is to always show context for both blocks. The context
lines should be syntax-highlighted and displayed in a muted way but still show
where the two blocks were found originally.

Principle 2: Review comments while comparing blocks

Since it will often be during these more detailed comparisons that ideas or com-
ments about the code will be found, it is an important principle to be able to write
comments right there and then. Maybe it should also be possible to view and
read previous comments from other reviewers or the author, even if these were not
written in the new comparison views.

Principle 3: Support comparison within and across files

The diff problems discovered and defined in the previous phases can occur both
within the same file and across different files depending on the types of changes
and refactorings done. Support for both these cases is needed to get the most
benefit from the tool.

Principle 4: Integrated in code review environment

There are existing software that can do comparisons of any code blocks or texts
that you choose such as Meld2, KDiff3, git diff, etc. The issue with them is that
it requires the reviewer to either check out the code locally or copy-paste the code
blocks they want to compare into another window. This could switch them out of

2Meld is a desktop visual diff tool available for many operating systems https://meldmerge.
org/

https://meldmerge.org/
https://meldmerge.org/

30 DESIGN OF FLEXIBLE CODE BLOCK COMPARISONS

the code review task [6] and would require extra steps and time. To make reviewing
faster and easier the tool needs to be integrated into the code review environment.

Idea 1: Scroll-lock one side

One solution idea that came up was to be able to scroll-lock one side of the diff
view and then scroll only the other side, to be able to align code blocks that you
want to compare so that they are next to each other. In this way, you would not
have to select any lines for a block and would save the extra work and navigation
of opening a new Gerrit tab and trying to place that next to the code you want to
compare.

The idea is to keep the coloring and the diff the same, and just change which
lines are shown next to each other. Probably some kind of snapping at line align-
ments would be nice. A further improvement could be a feature to mark a segment
and then tell the view to scroll through matching segments on the other half.

Idea 2: Switch comparison base

Another idea is for the case of comparing blocks, or whole changes, across differ-
ent changesets, for example after a revert and re-submit with changes. Here, the
proposed solution is to let the user switch the base commit-id to compare against.

Code that has changed independently, by other commits, should be hidden.
Only changes in the diff are highlighted so it becomes easy to compare what the
difference is between the old faulty code and the new suggested changeset.

Being able to input a git commit-id manually could be a first step, with a pos-
sible extension of automatically finding suitable comparison bases that have very
similar diff towards the main branch.

Idea 3: Workspace for blocks

To have a workspace where interesting blocks can be placed as they are seen in the
code, such as a sidebar or a drawer, is another interesting workshop idea. These
blocks could then be brought up and listed in a modal dialog to get an overview of
all the interesting blocks. From here the user could compare them to each other,
or search for other similar blocks to compare them to.

3.4 Develop phase - conceptual design

From the sketches and discussions during the co-design workshop, we developed a
conceptual design meant to capture and enrich the metaphors, concepts, mappings,
objects, and personas that can be involved in the design.

3 Results 31

Figure 3: Developed analog film on a lightboard.
From ‘Museum of Obsolete Media’, used under CC BY-SA 4.0.

Metaphor: Lightboard

In analog photography, a lightboard is a flat luminous surface where the developed
film can be previewed and frames compared to each other before choosing which
to enlarge onto photo paper (Figure 3). It can also be used for drawing, to copy
or compare art drawn on paper. In this project, the lightboard is a metaphor for a
work surface where pieces that you need to illuminate or inspect can be kept and
compared.

Concept: Changeset

The changeset is the central concept in Gerrit and is what you are approving or
rejecting in a code review. It is submitted by an author and contains a commit
message written by the author to describe the contained changes.

Concept: File

A file is part of the changeset and has a name, a path, an old and one or more new
versions. The diff view in Gerrit can show the comparison between any pair of
selected versions for the same file.

Concept: Line

A line in a file within the changeset. Line numbers and contents might not corre-
spond between versions of the same file, so a line only makes sense as a concept
when referring to a specific version.

32 DESIGN OF FLEXIBLE CODE BLOCK COMPARISONS

Concept: Blocks

A block consists of one or more consecutive lines of code in a file. Since it is built
up of lines, it also must refer to a specific version of the file.

Concept: Diff view

A view to show differences between two text-based contents. One content is des-
ignated as the older one, and the other as the newer one. Differences can be shown
interleaved or in a side-by-side view.

Concept: Matches

Two blocks that either have a similarity score above a certain threshold or that the
user has manually selected.

Action: Select block

Select a block by selecting lines on either the old or the new side of the file diff
view.

Action: Compare blocks

Open up a comparison of a match.

Action: Comment on match

While looking at a diff view of a match, write review comments.

Action: Read comments in context

When seeing a review comment in a file, open up the match in a diff view to see
the same context as the comment was written in.

Persona: Willow

Willow is new to the team and inexperienced with the particular code base. They
have some experience in general software development and code review from ed-
ucation and previous projects, but not seasoned enough to feel super secure in a
new code base and environment. Willow is part of a small team with five col-
leagues, two of whom are on a similar level and three who are more experienced,
especially in this particular codebase. Their process is mutual peer reviews where
at least one, preferably two, developers should look at and approve new change-
sets. When reviewing code and finding whole functions or blocks that have been

3 Results 33

removed, Willow often asks the following questions and would like the design to
help them answer them:

• Where did this code go?

• Was this block deleted or moved?

Persona: Raven

Raven has experience with many different software projects in a range of teams,
tools, and programming languages. In the project she is working on, she knows
most of the codebase by heart and is aware of most of the interactions and intrica-
cies in how it interweaves with its environment. Raven is part of a small team with
four colleagues, two on a similar level and two less experienced. Their process in
the team is peer code review where one other developer should look at and approve
all changesets. When finding files, functions, or blocks that have been moved, she
often asks:

• Is this moved block identical to the original?

• Why was it moved?

• How does moving the code affect the surrounding code and projects?

3.5 Deliver phase - first high-fidelity prototype

To converge the ideas and concepts from the Develop phase we focused on Idea
3. Idea 1 was discarded since it would be hard to support comparison across
files intuitively with just scrolling. Also, it would require the reader to compare
manually line for line without diff coloring. Idea 2 was also discarded since it
would need a functional version of Idea 3 to start with so that wherever the blocks
come from (same patchset version, other versions, or other changesets) they could
be compared easily and intuitively.

The prototype3 (Section 2.4) simulates both source code that has been moved
and then modified within a single file, and code that has been broken out into a
new file and modified in the process. The prototype is designed as if being fully
integrated into Gerrit [Principle 4].

Feature I: Comparison modal

The comparison modal (Figure 4) shows a detailed diff view between two blocks of
code with intra-line markings to highlight the changed parts. The context around

3Available at https://figma.com/proto/KZIrsBH8DZ22ZI0B0YD2BC/GBC?
hide-ui=1

https://figma.com/proto/KZIrsBH8DZ22ZI0B0YD2BC/GBC?hide-ui=1
https://figma.com/proto/KZIrsBH8DZ22ZI0B0YD2BC/GBC?hide-ui=1

34 DESIGN OF FLEXIBLE CODE BLOCK COMPARISONS

Figure 4: Modal dialog for detailed comparison of blocks.

the selected blocks is shown without background colors and with lower contrast to
make it clear that it is not part of the current comparison [Principle 1].

Clicking on the row numbers opens up a comment text field, so the reviewer
can write directly in the context that made them notice an issue or questions
[Principle 2].

Feature II: Comparison within a single file

If code has been moved within a single file, that is detected and a hint is shown on
the line above the moved code (Figure 5). The user can click the link to open the
comparison modal with the two blocks loaded.

Feature III: Lightboard toolbar

If the user wants to compare blocks across files [Principle 3], an added or removed
code block can be added to the list of interesting blocks to compare (Figure 6). This
toolbar can be minimized to only take up less space and attention while reviewing
and navigating the files, and then expanded to show the list of selected blocks.

Feature IV: Comparison to lightboard block

When navigating through the files under review, the current file is checked for
blocks that are similar to any block that is on the lightboard. These blocks show a

3 Results 35

Figure 5: Moved code detected within the same file.

hint on the line above the code block (Figure 7). Clicking there will open the com-
parison modal dialog between the block and its closest match on the lightboard.

3.6 Deliver phase - prototype persona verification

The first sanity check of the prototype was done by the research group by checking
if the questions and use cases described by our two personas, Willow and Raven,
could be answered and performed using the flow in the prototype.

Willow: Where did this code go?

This question is answered by the move-detection and the headings that come up
over a block [Feature II, Feature IV] and allows Willow to compare it to similar
blocks in the same file, or files that have been added to their lightboard.

Willow: Was this block deleted or moved?

This question is also answered by the move-detection, where moved blocks will
have headings over them showing Willow where the block was moved to or from
[Feature II, Feature IV]. However, if the block is moved between different files,
and the source or destination blocks are not on the lightboard, the heading will
not show and it will look the same as if the block was deleted or newly created.

36 DESIGN OF FLEXIBLE CODE BLOCK COMPARISONS

Figure 6: Floating toolbar with blocks marked as interesting for comparison.

Figure 7: Moved code that matches marked block on lightboard.

Integrating a clone detection [52] tool could make it possible to scan the whole
changeset for similar blocks to detect those cases.

Raven: Is this moved block identical to the original?

This question is answered by the comparison modal [Feature I]. Here, Raven can
see detailed differences between the block before and after it was moved, with
intra-line diff markers to highlight changes.

Raven: How does moving the code affect the surrounding code and
projects?

This question is a bit more complex. The comparison modal [Feature I] should
give Raven a detailed view of any changes in functionality, which will help judge
the effects on surrounding code. It also shows the context before and after the
blocks, so that Raven can look for potential side effects there as well.

3 Results 37

Raven: Why was it moved?

Not supported - The design of the prototype does not give any extra help for this
question. Knowing the details of the changes might in the best case give you a
hint, but without a clear rationale being stated by the changeset author it is hard to
infer it just from the code.

3.7 Deliver phase - prototype evaluation

The prototype evaluation (Section 2.4 and Table 1) showed that all of the 7 partic-
ipants could complete the code review task, and were able to use the comparison
modal dialog to clarify questions that they had about the moved and refactored
code blocks without any additional instructions except for the user interface.

One thing that stood out, when analyzing the recorded evaluations, was how
positive the sentiment was regarding the usefulness. For example, in the co-design
workshop some of the participants commented on how the solutions they used
today, e.g., opening two browser windows next to each other and comparing the
code line-by-line manually, worked pretty well, but when using the prototype they
expressed surprise at how much easier it was to read and validate the changes by
using the new comparison modal instead.

Participant 3 “So I am, if anything, yes, positively surprised that it is,
yeah, that it feels like it works and is maybe also not a lot of different things
that needs to be developed to still kind of make a pretty big difference to
the better.”
Participant 1 “Well, when code has been moved around and when it is
so easy to use so you get comfortable with it [...] it is a really big difference.
And then, like I said, it makes you able to stay in Gerrit the whole time.
You don’t need to, as said, cut and paste into a Meld-window and figure
out what happened that way.”

One participant also commented that this improvement could potentially change
how they write code themselves. Today, they avoid moving and refactoring code
in the same changeset since it was so difficult to review. They therefore try their
best first to move the code, commit that, send that for review, and only after the
move is approved go ahead and also do the refactoring.

Participant 1 “This thing can really make the difference between how
you today tend to only move code but not touch it. Then you make the
actual changes. [...] One reason today is that it is hopeless to review if you
do, if you don’t separate that into two steps.”

38 DESIGN OF FLEXIBLE CODE BLOCK COMPARISONS

For the case when code had been refactored into a new file, 3 of the 7 par-
ticipants needed several passes back and forth between the two files before they
understood how the feature worked and how the new file could be marked for com-
parison and then used to verify the changes by bringing up the comparison modal
in the old file.

Participant 6 “But then there was a feature here in the second file, file
2. It said «Mark for comparison». At first, I did not understand what to do
with it. Then I understood that I could go to file number 3 and then click
on «Compare to marked block»”

Comments on the functionality and interface included that it was confusing
sometimes which of the selected blocks were shown on the left or the right side of
the modal diff dialog. Also, 4 out of the 7 participants commented that it should
be possible to mark either the new or the old blocks for comparison and add them
to the lightboard in any order. When comparing in a single file, several of the
participants would have wanted a visual marker linking the two blocks that were
detected for comparison.

Participant 5 “But I, I think it would have helped to have an explaining
text from both sides, absolutely.”

Another more general comment from one of the participants was that this fea-
ture might mean that you see and read code in a file you have not fully visited in
Gerrit yet, so when you finally get to that file it should be marked in some way that
these particular lines have already been seen and potentially commented on.

Participant 4 “...so then if I do this review and compare and see that,
well, this block looks good, then I am finished with this part. But I am also
finished with the other file, I just compared to. So then it could like almost
be defined as reviewed. And if I press «Next» here it is nice to know that
in some way, yes like, you have already, you looked at this file just now.
There is not a lot more to see.”

In regards to code review comments written while inside the comparison modal,
it would also be important to include a link so that the author could bring up and
read the comment in the same context as it was written in so that it would be easier
to understand what the comment means and how they saw it.

Participant 2 “But if you click on the comments in the change view do
you come to this view (the comparison modal) then?”

3 Results 39

One other idea from one of the participants was to be able to click a single link
and button and bring up all relevant comparisons for a full file collected in one
single modal to save the time of reading through and clicking each correspondence
one by one.

Participant 7 “To select several from this page would have been nice
so that you can see, just click, like, I want this and this and then look.”

Overall, the participants thought that the user interface, with links above the
blocks, was clear and easy to understand. However, it would take some time to
learn which blocks are useful to mark for comparison and get into the habit of
doing so while passing through a file. Especially, if they are not completely sure if
a matching block to compare to will occur later in the review or not.

3.8 Deliver phase - updates after evaluation

After the evaluation meetings, the prototype was updated to incorporate some of
the feedback, in particular:

Consistent placement of old and new versions

If a selected block is originally on the left side, it should be kept on the left side
also in the comparison modal and vice-versa if it is originally on the right side. If
the user chooses to compare two blocks that are both on the same side, we could
place the first selected one to the right and allowing the user to flip the comparison
with a button in the top part of the modal.

Explicit location of matches

Figure 8: Moved code explicitly marked with arrow, filename, and line numbers.

Every action block with a comparison link lists the file name and the line num-
bers it would open a comparison with to make it more explicit what you would be
comparing to. If the match is in the same file, a line with arrows is drawn linking
the two blocks to give a visual marker (Figure 8).

40 DESIGN OF FLEXIBLE CODE BLOCK COMPARISONS

Mark blocks for comparison from both directions

It should not matter if you encounter the old or the new file first when dealing with
blocks that have been moved between files. Therefore, the links to mark a block
for comparison are made available for both removed and added blocks.

4 Discussion

The goal of this study was to address the three research questions in Section 1 and
through the choice of methodology, the execution and the analysis we have found
new insights into all of them. Concerning RQ1, we found that several issues in the
code review experience causes frustration for the group participating in the study.
These issues are not directly related to the specific code, language, or process these
developers use, so we believe that similar frustrations can be found among other
developers elsewhere.

By designing and evaluating one possible modification to Gerrit, we also pre-
sented one answer to how review tools can be modified to improve the developer
experience (RQ2). While this improvement can be seen as relatively small, we are
convinced that even small improvements can have an impact since so much time
is spent on code review and because the task is so cognitively demanding [53].

Finally, we explored one way to involve developers in improving their tools
(RQ3), specifically code review tools. By centering developers’ experiences and
needs from the beginning, involving them both in the design and evaluation of
solutions, we estimate that we have reached a prototype that is more in line with
processes and flows in code review. Which helps give a larger improvement than
its learning curve or distraction.

Overall, as a recommendation and reflection, we think that since the code re-
view tools and processes today are so accepted and ingrained into modern soft-
ware development practices, we are at a point where completely disrupting and
re-designing these tools from the ground up would have a steep hill before reach-
ing adoption and making a difference. One way around such adoption problems, is
the way shown in this study; to make small improvements that have the potential
to compound and over time, and after continued incremental development, make a
big difference.

4.1 Reflection on the method

We estimate that the choice of method was a good fit for this type of study and we
also discovered some ways in which the execution of it can be improved. During
the co-design workshop, the participants were at first hesitant to directly change
the prototype themselves. The first author, as the facilitator, had to draw, cut, and
paste together the ideas in the room. Both to get things started, to keep the ideas
going, and the solutions evolving.

4 Discussion 41

After discussing this experience during a research group meeting, there were
ideas shared about warming up the co-design team by first collaborating on design-
ing something low-stakes and fun, like a celebratory garbage bin for redundant
code. When the team has warmed up and gotten used to creating and discard-
ing sketches together it could be easier move on to the real design task and see
more confidence in the group to directly change and create prototypes. This would
require 2-3 times as much time from the participants, which can be an issue in
practice, but could have the potential of getting results that are more creative and
more firmly anchored in the whole group.

4.2 Threats to validity
One threat to the validity of this study is that the participating software developers
in the focus group and co-design workshop are a fairly small group of only 6
developers. They are also all working in the same company, albeit in different
teams. While this focus group size falls within the ideal size of 4-8 participants
described by Liamputtong [48], she also recommends conducting several focus
groups with the same interview questions until reaching data saturation (i.e., no
new ideas or data is being found). However, since the study is aimed at finding
some (rather than all) possible improvements we believe that ideas and experiences
from this group are still valid.

The study is also only valid for the code review tool Gerrit. However, since
Gerrit has a large user base, this still means that the results could have broad ap-
plicability. Also, other tools in wide use today, such as GitHub and GitLab, are
similar to Gerrit and there might be findings here that can be generalized to apply
to them as well, but it is beyond the scope of this study to verify or evaluate that.

There is also a risk that the prototype validation has a positive confirmation bias
since the developers evaluating the prototype have participated in the co-design
workshop that led to its creation. In this way, they might both be more familiar
with the concepts and also personally invested in the success of the prototype. To
check for this we also did one extra validation with a software practitioner who
has not been involved in the project at all and works for a different company than
the other participants.

Finally, the prototype evaluation is also exposed to response bias [54]. We
tried to counter-balance this by encouraging feedback.

4.3 Directions for future work
Paths to broader adoption and impact

Exploring the prototype of more flexible diffing between blocks further and im-
plementing it as a feature or a plugin to Gerrit (or GitLab or GitHub) would be
very interesting and something we would like to address in the future. Further
validation with several other teams of industry practitioners would be needed to

42 DESIGN OF FLEXIBLE CODE BLOCK COMPARISONS

refine the prototype into something generally useful. Implementing the features
of the prototype would also require the integration of clone detection tools [52] to
identify blocks to suggest for comparison.

To have any significant benefits compared to already available solutions and
avoid context switches for the developers, we feel that the implementation would
need to be available directly in the review tool. Therefore it is important to anchor
the idea and the implementation in the Gerrit (or GitHub or GitLab) community.
This could increase the support for a plugin implementation or possibilities for
merging the feature into the tool itself. A first step here could be presenting the
prototype and the thoughts behind it to the Gerrit community during the annual
Gerrit User Summit.

Future design explorations

The other problem areas and solution suggestions uncovered during the workshops
are also viable ideas for improving the experience of code review and reduce the
cognitive load of the task while at the same time having the chance of increas-
ing the benefits of a team’s code review process. The idea of overlays or layers
of meta-information from continuous integration systems, tests and source code
analyzers is particularly interesting to study and explore further.

Increase understanding of cognitive demands

While many papers agree [3,43,55,56] that code review seems to be a cognitively
demanding activity, there have not been many studies to measure the cognitive
load during code review and compare that to other tasks that are known to be de-
manding. It would be interesting to do a study integrating EEG measurements [57]
or fNIRS [58] with participants doing code reviews of different sizes and also, for
example, general problems in math or programming. This could give valuable in-
sight into code review’s cognitive demands and guide future exploration into its
design.

5 Conclusions

We used the Double Diamond design process to explore how the Gerrit code re-
view tool could improved. By hosting a focus group we found several problem
areas that are common experiences when doing code reviews. The problem of
comparing moved and refactored blocks that the built-in diff algorithms don’t pick
up was chosen for exploring solutions.

A co-design workshop with industry practitioners was held and the prototype
created collectively there was then refined to a high-fidelity interactive prototype
that could be evaluated in one-on-one testing sessions.

5 Conclusions 43

The results show that making these kinds of comparisons has the potential of
improving the code review experience both by reducing the mental workload and
also give higher accuracy in the comments and the analysis of the code. The user
interface of the prototype was also intuitive enough for all of the participants to be
able to complete the assigned task without any hints or instructions.

APPENDICES

I.A Focus Group Design Brief
Agenda for the focus group meeting (Section 2.1).

I.A.1 Goal
Collect information about challenges in understanding the changes in code reviews
that span multiple files.

I.A.2 Warm-up Questions
• Which is the best tool for code reviews? Gerrit, GitHub, or GitLab?

• Which is your favorite IDE? Vim, Emacs, VS Code, others?

I.A.3 Main Questions
• Do you read the files in a code review one time or multiple times?

• Why?

• How do you choose which file you read first?

• How does it affect your review what kind of file that you read first? (API,
test, etc.)

• In what way?

• What is your experience of reading and understanding new code in other
tools, environments, or situations? (IDE, pair programming, explained by a
colleague, on paper in a book, etc.)

46 DESIGN OF FLEXIBLE CODE BLOCK COMPARISONS

• In what ways do they work?

• Where do you start reading in those cases?

• In what ways is that different compared to code review in Gerrit?

• Are there features and support from there that could have been applied also
in code review tools?

• Is there anything else you would like to tell?

I.B Co-Design Workshop

_as~rlC.:-_i o.._c.
<f- 0-l.~ \ . (...

••• ----- ----------------1-------- ---- -------- --------
lS"' re+\J-m r · \ ,el.,.m ½
~} Tl}
r+

- tB-il"l_-f-- __ ~-a-e-515~e_~_~\\ ¼t (Yoid o,.{_ r11r~ {

:,,c.i ,11'\+, \ci)(-,;:. -f,y,J_ne..~·Lca.\\bo.s:l-,d-d)i
>6 1 f (,dx?::: 'MC..)(-C..c:t\ve-~o..\\ ti::.cb J_ ~ _ _
~ o..c~-,~-c~\\k,h::.: e:AeV1dG-d-\11€..Cc-J\l,.:cL,:5, ~'"'"'-Y- c~~ !(D,\L~c~Jj_~_ b~ ,~-h ... ,Y\ R-Vt_Yl\---"'_'----'-,---=--es"-\..l,-'---\t--l-'---------------1

,;; 1 r ----- il~15) -- - - - --- - 8-~~ve.~\(~c.~sCl-,;:. ·L--17~,; __ ~
,-.N (~u\"'I\ gcc~\·~ ~l\-,c.~'> ~ 11... \""\- ~e(_ca,\\~ck('1o\d ~r k -l

)~} . __ _ i~ ~J)(....:=_ .(,j\cLne.:'.ft::..c.a.\\~5~~1ctr_(~½v__e.-_CJ_F._l~_-++-' ----------1
1(f~ \ _Cc\)(>-= Y'Vla..)cc;.d,-1e.-CA\\~ .(
_ 1" \l\t ~\~"~\~ GJ- ~ ~~V\B {_ _ __ _ _ __ _ 1f _ e-/Te.V\d(~~ve....CA.\l~_ &~_--'-c..,c_t_'1e-_C_c:.I_I\J_~ck-"-''?'-'--'1---------J

- ~ -~\, ~"''I kJ>D J • f p-h-;
1
~ r-cl._,I\ &.C\.d:\.JL-C."-.\\\.;;ck')' -------------+---:---'---'--"--

r111
36

. ...

._, ...

-~·--
~1. _ <eJ,_,Y\ e,ve"' t-::. (es'-'-1 +,;
1'3

---- ------------

bl ~EDF-)

I

----------- - - -

. \ I~ frcP I drw.(f 4
_ cS'f'-l-10.l "7

--------4--

·--------t------------

-------------- --- ·- -
r - - - -
f----

(--- 0-."'>\)'rlC.-\C, C.

-~t~w f \~ · - - -
- - -- - --- -- .

i C.o~vw,,\ \-- ~~';A. '-f,: _
I /'1<-r<

l ,._ Al'PI ,e.c.t\ «ec
'f<-/

- -- - - -~-- - -----

--- ----------

-~ - --• - ---------

________ __L --- ·- -- ---

--+------- - -

- --- - -------·

---------- -· ----

+ - .

-- ---

--- - ·- ----------

I r--

·- ----- --- --·---

Figure I.B.1: The three base views for the co-design workshop.

The top-left corner shows code moved within the same file. The top-right corner
shows a deleted file and the bottom-left corner shows an added file with similar
content.

The material for the co-design workshop consisted of three pre-drawn base
views (Figure I.B.1), blank paper, overhead film, scissors, tape, and pens in dif-
ferent colors. The base views displayed some of the use cases brought up during
the focus group. The participants created simple prototypes and showcased ideas

I.C Prototype Evaluation Questions 47

Figure I.B.2: First sketch of comparison modal.

The red area to the left symbolizes removed code, the green area to the right sym-
bolizes added code.

by overlaying new components on top of the base views. A small example can be
seen in the top-right image where the first sketch of the “Compare” action overlay
is drawn on overhead film and then taped onto the base view.

In Figure I.B.2, we show an example of a rough sketch made during the work-
shop to show the level of fidelity that we think is feasible and appropriate for the
setting. This is the first sketch of the comparison modal and shows the idea of
lining up and comparing blocks that are in different places in the original Gerrit
diff view.

I.C Prototype Evaluation Questions

I.C.1 Task
• You are welcome to think aloud, but I will not respond or give hints until

after the task.

• Perform the code review.

• Find changes in any moved code.

I.C.2 Interview Questions
• What was your experience of trying this prototype?

• How often do you encounter the situation the prototype tries to aid in?

48 DESIGN OF FLEXIBLE CODE BLOCK COMPARISONS

• How much would a fully functional version of the prototype help with the
problem?

• What are the solution’s greatest weaknesses?

• What are the solution’s greatest strengths?

PA
P

E
R

II

SUPPORT, NOT
AUTOMATION: TOWARDS

AI-SUPPORTED
CODE REVIEW FOR CODE

QUALITY AND BEYOND

Abstract

Code review is a well-established and valuable software development practice as-
sociated with code quality, interpersonal, and team benefits. However, it is also
time-consuming, with developers spending 10–20% of their working time doing
code reviews. With recent advances in AI capabilities, there are more and more
initiatives aimed at fully automating code reviews to save time and streamline soft-
ware developer workflows.

However, while automated tools might succeed in maintaining the code qual-
ity, we risk losing interpersonal and team benefits such as knowledge transfer,
shared code ownership, and team awareness. Instead of automating code review
and losing these important benefits, we envision a code review platform where AI

Lo Gullstrand Heander, Emma Söderberg, Christofer Rydenfält “Support, Not Automation: Towards
AI-supported Code Review for Code Quality and Beyond” In 33rd ACM International Conference on
the Foundations of Software Engineering (FSE Companion ’25), 2025.
DOI: 10.1145/3696630.3728505

https://doi.org/10.1145/3696630.3728505

50 SUPPORT, NOT AUTOMATION: TOWARDS AI-SUPPORTED CODE REVIEW

is used to support code review to increase benefits for both code quality and the
development team.

We propose an AI agent-based architecture that collects and combines infor-
mation to support the user throughout the code review and adapt the workflow to
their needs. We analyze this design in relation to the benefits of code review and
outline a research agenda aimed at realizing the proposed design.

1 Introduction

Code review is a valued practice in the software industry. The practice, origi-
nally introduced for quality improvement in the 1980s [59], is today valued for a
number of properties beyond code quality. Bacchelli and Bird [3] report that devel-
opers’ motivation for code review is, in order: defect finding, code improvement,
alternative solutions, knowledge transfer, team awareness, improve the developer
process, share code ownership, avoid build breaks, track rationale, and team as-
sessment. Notably, at least half of these motivations are not directly about code
quality but about user needs or interpersonal benefits. Thus, code review is clearly
an important source of learning and education within a team.

Although code review is valued, it is also a time-consuming practice. Software
developers have been reported to spend between 10-20% of their working time
doing code reviews [2, 40]; with an estimated 28 million software developers dur-
ing 2024 [41] this corresponds to 22-44 million hours every work day. The 2023
DORA State of DevOps report [8], focused on industry best practices, reports that
optimizing code reviews is a key factor in overall developer team productivity.
There is a need to continue to develop code review and its tools to improve the
practice.

With more and more capable AI models available, there is an increased interest
in automated code review. For example, Lu et al. [11] have introduced LLaMA-
Reviewer to automate the code review task. Yu et al. [12] present Carllm for im-
proved precision and clarity in automated code review. Tang et al. [13] introduce
CodeAgent, an approach in which multiple agents collaborate to find code quality
issues. Google’s DIDACT project [14] trains ML models on the sequential steps
in software development processes, such as code review, to automate them. Al-
though these approaches may be able to ensure code quality in the future, we see
an overhanging risk that the interpersonal and team benefits of code review will be
lost in such a development.

In this paper, we present a vision for using AI to support code review and
its users, rather than replacing the activity. We believe that we should strive to
boost all the positive effects of code review, including interpersonal effects such
as knowledge transfer, team awareness, and shared code ownership. We propose
to do this by focusing on the participants of the code review process, the authors
and reviewers – the users, and their needs. We envision an adaptive code review

2 Today’s Code Review and Its User Needs 51

pipeline, with improved user experience and powered by an AI agent-based archi-
tecture, that provides customized support to each code review role and context.

The contributions of this paper are an architectural design for an AI agent-
based code review platform (Section 3), an analysis of the design with respect to
code review benefits (Section 4), and an outline of future research to realize this
vision (Section 6).

2 Today’s Code Review and Its User Needs

Figure 1: Illustration of navigation between tools in modern code review.

Modern code review practices are centered on a web-based code review tool,
such as open source tools like Gerrit, open services like GitHub and GitLab [60],
or proprietary tools like Critique [2] and CodeFlow [3]. These tools contain func-
tionality to list code changes awaiting review, compare the changed and original
code [61], write review comments, respond to review comments, and vote on the
next steps. By integrating with continuous integration (CI) systems [62, 63] they
can show results from automated tests, clean code with automatic formatters, and
reject code based on compiler or linter errors.

There are several challenges with today’s code review practices and tools. The
information needed to complete the review is scattered across different systems
such as issue trackers, requirements databases, KANBAN boards, team chats, API
documentation, and CI reports. Different users involved in code review will have
different needs, processes, and goals when using code review systems [64]. For
example, the author of the change may want to view the code and the rationale
behind it briefly to discover mistakes before submitting it for review. An expert
reviewer might want to get an overview of architectural changes and the perfor-
mance profile before and after the change. A new team member could spend extra
time understanding the rationale and need to ask questions about unfamiliar pat-
terns or APIs. Some team members might skim the rationale and code to stay
up-to-date with changes in the repository, but not vote or write comments.

52 SUPPORT, NOT AUTOMATION: TOWARDS AI-SUPPORTED CODE REVIEW

The reviewer must use their experience and the team processes to navigate be-
tween tools effectively and decide which steps are helpful and when [47]. Some-
times, even check out the code locally to trace variables and execute the code to
verify its behavior and performance. This experience takes time to build up, and
becoming effective at carrying out code reviews in a new workplace can take up
to a year [37]. Even with experience, it demands time, effort, and focus [6]. There
are often difficulties in understanding the rationale for the change [5] and review-
ing large changes [65]. Multiple review cycles between reviewers and authors,
together with long response times, can create delays affecting the overall produc-
tivity [8, 65].

Figure 1 illustrates what this can look like for a developer embarking on a code
review. Carrying their experience as a backpack full of resources and a checklist
with the team code review process, they switch between different tools and sys-
tems. The code review system (Gerrit, GitHub, GitLab, etc.) is in the center, and
the point to return to and start from. With experience, iteration, and help from their
peers, they can reach the “pot of gold” containing improved code quality, better
knowledge distribution, team cohesion, and more.

3 Design Proposal

Figure 2: Proposal for a code review platform architecture driven by AI-agents.

Our design proposal is a code review platform that is built on an agent-based
AI-OS architecture [66]. In the AI-OS architecture, a central LLM takes a role
similar to the kernel in an operating system and is responsible for interpreting user
input, planning, and coordination. Smaller AI agents connected to the central LLM
manage integrations to databases and online APIs; functioning as the input, output,
and memory subsystems in the analogy to an operating system. Several specialized
Small Language Models are trained to create prompts, construct database queries,
build API calls, and combine results [66].

In the case of code review, these agents implement integrations with the version
control system, requirements database, issue tracker, continuous integration, API
documentation, etc., to collect all the information needed before, during, and after
code review. We envision a user interface that embeds existing and familiar tools,
such as Gerrit, GitHub, GitLab, CodeFlow, etc., in the center. Information from,

4 Analysis of Design 53

guidance by, and interaction with the agent-based system is placed below and in
the sidebar.

Figure 2 illustrates our envisioned code review platform architecture with an
example flow. Throughout the review, the reviewer interacts with the LLM trained
to act as the platform’s foundation. Information about the user’s preferences and
the team’s code review process (the backpack filled with experience and the pro-
cess document from Figure 1) can be configured by the team and the user. Parts
of this configuration could potentially be updated with reinforcement learning or
similar approaches to make it adaptable over time and for different contexts. The
LLM customizes the process for each user using the configuration and coordinates
the AI agents to provide the information and support needed at the right time dur-
ing code review.

For example, for an in-depth review use case, the platform could first assist
with picking a change to review, given the reviewer’s time constraints. Then help
throughout the process of understanding the rationale of the change, connecting
it to related work, reading the code changes, finding potential defects, writing
constructive comments, and finally assist in making a decision on accepting the
code for integration or sending it back to the author for adjustments.

4 Analysis of Design

An AI agent-based architecture has the potential to preserve or amplify all the
benefits of code review, as described by Bacchelli and Bird [3], while at the same
time reducing users’ mental load and time spent. The agents are trained or tuned
for each aspect of code review, and the adaptable nature of the platform allows it
to fit the needs of different users and teams.

4.1 Defect finding, code improvement, and alternative so-
lutions

Current and future work on automated defect finding can be integrated into this
architecture as one of the AI agents. An option would be to run a model similar
to CodeAgent [13], but instead of automation support the user by marking parts of
the code that could contain a defect and suggesting code review comments. Other
agents could be trained to look for performance improvements, refactorings, and
alternative solutions.

4.2 Knowledge transfer

Knowledge transfer during code review has, for example, been shown to reduce
the impact of developer turnover by exposing developers to code they have not au-
thored [67]. Achieving this requires keeping the human in the loop, i.e. doing the

54 SUPPORT, NOT AUTOMATION: TOWARDS AI-SUPPORTED CODE REVIEW

code review supported by AI rather than automated with AI. AI agents can further
be used to gather information so that the user does not have to navigate different
systems to piece together the rationale, system architecture, and implementation
details. They can also expand on user code review comments with references to
team guidelines, language conventions, design patterns, and best practices.

4.3 Team awareness

For users reading through code reviews to get awareness of ongoing work, it can be
time-consuming and demanding to read through a large code diff just to understand
what it does. Language models for code comprehension are developing rapidly,
with many options both in open source [68] and in closed source [69]. Receiving a
code summary as soon as you open the review could be enough for users looking
to be aware of current changes with the option of going deeper into the changed
code when needed.

4.4 Improve developer process

A unified platform for the whole code review flow, instead of manually switching
between code review tool, documentation, KANBAN boards, etc. will streamline
the developer process as a whole. Introducing, configuring, and refining the set-
tings and use of the platform can also encourage teams to examine and improve
their process. The adaptability of a multi-agent approach can also help situations
where different teams follow different workflows but still need to work together.

4.5 Share code ownership

Software development teams are at risk of developing a blame culture [70], where
developers are held personally responsible for introduced bugs. This culture can
lead to a reluctance to contribute new features and undermines trust between team
members. Code review can contribute to preventing or mitigating this. It is no
longer solely the fault of the author if a bug is introduced, but also of all the re-
viewers who did not discover it.

This is another benefit that would be at risk if code reviews were automated.
Supporting the author and reviewers in assessing the code and giving them good
grounds for their decision using AI, but leaving the decision of approving, reject-
ing, or revising the code up to the users keeps the developers accountable and
encourages a culture of shared ownership.

4.6 Avoid build breaks

Connecting CI with code reviews is an effective way to encourage reviewer partic-
ipation and ensure passing builds [71]. This kind of system already automatically

5 Related Work 55

rejects changes that break the build. An AI agent could help by suggesting a fix or
pointing out the most likely causes.

4.7 Track rationale
Finding the rationale can involve piecing together information from commit mes-
sage, issue tracker, product plan, recent team meetings, team chat conversations,
and more. Bringing this information together and summarizing it in one place
makes it easier to find the rationale behind a code change and connect it to larger
goals and efforts.

4.8 Team assessment
Code reviews generate metrics such as the number of comments written, accep-
tance rate for posted changes, time from comment to resolution, etc. Measuring
individual and team performance in software development is very difficult, and
looking at reviews may provide additional insight. Our proposed design does not
affect the collection of metrics, but has the potential to make code reviews more
efficient, increase quality, and improve assessment metrics for the whole team.

5 Related Work
There are a few recent studies, also focused on supporting rather than automating
code review, that complement the vision in this paper.

Unterkalmsteiner et al. explore providing reviewers with a better context for
the code under review with a proposal called the Code Review Contextualizer [72].
Using existing literature on what developers need help with during code review,
they present several parts that could be improved by data collection and assistance.
Although they do not go into detail regarding what kind of technologies and ar-
chitectures could be used to implement such a system, their research on use cases
that should be supported is a valuable foundation for building future AI-supported
code review systems.

Almedia et al. present AICodeReview, a plugin for the IntelliJ integrated de-
velopment environment that takes advantage of GPT 3.5 [73]. The plugin analyzes
code snippets while they are being written and identifies potential issues. Com-
ments, resolutions, and improvement suggestions are provided in the editor. This
approach can likely reduce human code review time since changes submitted for
code review are hopefully of higher quality than they would have been without the
AICodeReview plugin.

Wang et al. presents an AI agent-based approach to recommend which review-
ers that should be assigned to each code review [74]. Their work complements
the suggestion in this paper very well in that it seeks to build AI-based support
systems for human reviewers instead of automating the activity. The article shows

56 SUPPORT, NOT AUTOMATION: TOWARDS AI-SUPPORTED CODE REVIEW

better preliminary performance using AI agents compared to previous state of the
art for reviewer recommendation.

Yang et al. investigate machine learning approaches to predict review duration
and merge approval rate prior to code review [75]. This can give code change
authors early feedback and give them the option to rework changes before sending
them out for code review, in order to reduce lead times and number of code review
cycles. They concluded that while the approach was promising, work work was
needed, especially in making the feedback explanatory and actionable.

6 Research Agenda
Here, we list research activities that we believe are important for realizing our
proposed design vision.

6.1 Increased understanding of user needs
Recent work improves our understanding of the causes of confusion [5], anxi-
ety [76], and misalignments [6] in code review. This research helps to provide a
deeper understanding of user needs and user experience in code review, but there
is much more to study here. For example, the needs of each user in code review
vary [6], and this variation goes beyond roles such as author and reviewer, and
may extend into tasks such as gatekeeping [2].

6.2 Measuring effectiveness of code review
Despite the wide use of code review in industry and its time-consuming nature,
there is no unified way to measure the effectiveness of code review. The primary
benefit explored with regard to measuring is ‘defect finding’ [39]. Other benefits,
such as knowledge sharing, team awareness, and shared ownership, have not been
studied as extensively. With a deeper understanding of the effectiveness of code
review, we can consider cases where code review is the most effective with respect
to different benefits. This understanding would open up for addressing the reported
industry need for optimization [8], but without an unintended loss of code review
benefits.

6.3 Effective code review interaction
The interaction with today’s code review tooling has stayed largely the same since
the introduction of the ICICLE tool in the 90s [7], with variations of interfaces
centered around textual diff views of changed files (Gerrit, GitHub, Critique, and
so on). Although this user interface design helps to provide answers to questions
best answered with a textual diff, they are less successful at answering questions
connected to, for example, requirements or execution behavior [6]. There is room

6 Research Agenda 57

for more exploration and innovation here to better align the interaction with user
needs.

An interesting research direction would be to explore the use of collaborative
and user-centered design processes [32] to take advantage of the depth of experi-
ence in the software development community. Another interesting direction would
be to explore new ideas from conversational interaction design [77]. There are ex-
amples on the use of conversational interaction design for software development
tools [78, 79] and recent advances in language models provide interesting new
possibilities.

6.4 Effective AI integration
There are technical challenges in how best to build an AI agent-based code review
pipeline, as outlined in our proposed design. One challenge is to identify suitable
tasks for agents. For example, should an agent focus on one aspect of program
comprehension, like code summation, or rather be trained for larger functional
areas? There is also the challenge of choosing suitable models for different agents,
along with data collection, training, and tuning. The models need to be integrated,
and the main LLM trained to manage orchestration based on configured user needs.

An interesting direction is to identify a minimal viable use case and iterate
on a smaller instance of the design with fewer AI agents. Follow best practices
for AI in software development [80] and maintain close interaction with industry
practitioners for rapid prototyping, early user feedback, and testing.

PA
P

E
R

II
I

CODE REVIEW AS
DECISION-MAKING

—BUILDING A COGNITIVE
MODEL FROM THE

QUESTIONS ASKED DURING
CODE REVIEW

Abstract
Code review is a well-established and valued practice in the software engineering
community contributing to both code quality and interpersonal benefits. However,
there are challenges in both tools and processes that give rise to misalignments and
frustrations. Recent research seeks to address this by automating code review en-
tirely, but we believe that this risks losing the majority of the interpersonal benefits
such as knowledge transfer and shared ownership.

We believe that by better understanding the cognitive processes involved in
code review, it would be possible to improve tool support, with out without AI,

Lo Gullstrand Heander, Emma Söderberg, Christofer Rydenfält, “Code Review as Decision-Making –
Building a Cognitive Model from the Questions Asked During Code Review” Submitted to Empirical
Software Engineering, Springer Science, 2025.
DOI: 10.48550/arXiv.2507.09637

https://doi.org/10.48550/arXiv.2507.09637

60 CODE REVIEW AS DECISION-MAKING

and make code review both more efficient, more enjoyable, while increasing or
maintaining all of its benefits. In this paper, we conduct an ethnographic think-
aloud study involving 10 participants and 34 code reviews. We build a cognitive
model of code review bottom up through thematic, statistical, temporal, and se-
quential analysis of the transcribed material. Through the data, the similarities
between the cognitive process in code review and decision-making processes, es-
pecially recognition-primed decision-making, become apparent.

The result is the Code Review as Decision-Making (CRDM) model that shows
how the developers move through two phases during the code review; first an
orientation phase to establish context and rationale and then an analytical phase to
understand, assess, and plan the rest of the review. Throughout the process several
decisions must be taken, on writing comments, finding more information, voting,
running the code locally, verifying continuous integration results, etc.

Analysis software and process-coded data publicly available at DOI:
10.5281/zenodo.15758266

1 Introduction

Code review is a well-established activity in modern software development val-
ued for both quality assurance and interpersonal benefits [2, 3]. On a global scale,
with more than 28 million software developers [41] spending 10%-20% of their
working time reviewing code [2, 40], more than 22-44 million hours are spent
on code reviews daily. However, despite the importance of code review, there
are significant misalignments between the tools used and the goals and actions
of software developers, which reduces efficiency and adds frustration [6]. The
code review process is also challenging for many teams with a range of common
antipatterns [5]. Improving code review tools and processes has huge potential
benefits for the software engineering community. In addition to saving time on
the code review itself, the 2023 DORA State of Devops industry report finds that
teams with more efficient code review have up to 50% higher software develop-
ment throughput overall [8].

However, despite the potential benefits of improvements, the tools used for
code review today are very similar to the first tools introduced in the early 1990s,
for example, the ICICLE tool [7]. Similarly to today’s code review tools, such
as GitHub1 or Gerrit2, ICICLE was centered around a textual diff view where
comments can be added by humans or by automated analysis. During the same
time, we have seen huge developments in tools for writing, navigating, and under-
standing software [9]. We should not leave code review behind. With the recent
increase in AI assistance capabilities, there has been a growing interest in how to
utilize AI-based assistance in software development tools [81]. This trend also

1https://github.com/
2https://www.gerritcodereview.com/

https://doi.org/10.5281/zenodo.15758266
https://github.com/
https://www.gerritcodereview.com/

1 Introduction 61

Figure 1: Illustration of steps and questions during code review. First, the devel-
oper orients themselves on the context of the code review, next asks how a part
of the code change works, moves on to comprehending the code, and finally have
to make a decision on how to proceed. Considering social effects, performance,
safety, etc., should they Accept, Reject, Comment, or Search for more informa-
tion. The reviewer iterates and looks at more code changes before reaching a final
decision. Takeaway: Code review starts with an orientation phase, followed by
an iterative comprehending-assessing-decision phase. Comprehending the code
change is not the end goal, but rather a prerequisite for deciding how to handle the
review.

extends to AI-powered improvements in code review, specifically automated code
review has received a lot of attention in recent years. For example,Lu et al. [11]
introduced LLaMA-Reviewer to automate the code review task. Yu et al. [12] pre-
sented Carllm for improved precision and clarity in automated code review. Tang
et al. [13] proposed CodeAgent, an approach in which multiple agents collabo-
rate to find code quality issues. Google explored how to automate code review in
their DIDACT project by training ML models on each of the sequential steps [82].
There is also recent research on user experience improvements [61], AI assistance
frameworks [72, 83], and innovative visualizations [84].

Although the focus on automated code review is interesting, several of the
benefits of code review, such as knowledge transfer and shared code ownership,
are interpersonal and risk being lost if the activity is automated [83]. To improve
code review processes and tools while preserving all the important benefits it is
important to understand the activity and its challenges well. However, while the
practical process of code review is well researched and described [2,60], there are
few studies on the cognitive processes during code review. Gonçalves et al. [20]
investigate how developers form and use their understanding of the changed code
under review, building a model for code review comprehension . This is interesting
work contributing to the understanding of code review, but in this paper we want
to look at a wider scope beyond comprehending the changed code and study the

62 CODE REVIEW AS DECISION-MAKING

cognitive process of the code review activity as whole including choosing a review,
writing comments, voting, looking for more information, etc.

Building a theoretical model of cognitive processes in code review grounded
in interviews and observations can facilitate improvements in code review tools
and processes in several ways. By analyzing existing tools to see which parts
of the cognitive process they facilitate or hinder, by using the model to reason
about the effects of new tool ideas, or by adapting the code review process in your
organization to better match the cognitive process of the developers.

1.1 Research Questions

The goal of this study is to investigate the cognitive process during code review
and how it can be modeled to increase our understanding of code review and guide
future improvements to tools and processes. This leads us to the following main
research question:

RQ1 How can the cognitive process of code review be modeled from a theoretical
perspective?

Supporting Research Questions

Since the cognitive processes of the developers during code review are not directly
observable, we must study their actions and behaviors and use that insight to the-
oretically model the cognitive process. A basic assumption of this work is that
developers actions when reviewing code are intentional, that is, that they are tied
to some meaning that gives them direction [85], and that it is this intentional re-
lationship [86] that needs to be analyzed to understand the cognitive processes
involved in code review. In line with the theory of planned behavior, we also
assume that the actual behavior or actions of reviewers are predicted by their in-
tentions [87]. Furthermore, we assume that questions asked during code review
gives an indication of the intention of the reviewer when the question is asked, and
thus that they give valuable insights into the reviewers’ intent or cognitive focus in
different parts of the review process.

To move from a state where you know nothing about the review to a state where
you are ready to vote for accepting or rejecting the code change, many questions
must be answered and different aspects of the code change understood. Similarly
to Letovsky’s study on questions during code comprehension [21], in this paper,
we study the explicit and implicit questions asked during a code review in order
to build a theory about the cognitive process of the reviewers. By analyzing the
patterns of which questions are asked, when questions on certain themes occur
and how they relate to each other, the observed data can build the foundation for
a theory of the cognitive process during code review. This gives us the following
supporting research questions:

2 Background and Related Work 63

RQ2 What questions do developers ask during code review?

RQ3 How do the questions asked during code review connect to each other and
the overall code review process?

To explore these research questions in a context as realistic as possible, we per-
form an ethnographic think-aloud study combined with interviews [25, 35]. The
study is conducted at the software tools department of a multinational software
company (Section 3). In total, we observe 34 code reviews by 10 participants and
analyze the results using thematic, statistic, and sequential analysis (Section 4).
The analyses form a basis for the construction of a theoretical model of the cogni-
tive process during code review, interpreted and illustrated in Figure ?? (Section 5).

1.2 Contributions
The contributions of this research are as follows.

• A theoretical model of the cognitive process of code review closely relating
code review to decision-making processes (Section 5).

• A thematic and statistical analysis of the questions asked during code review
(Section 4).

• Suggested directions for future work to apply the theoretical model to im-
prove code review processes and tools (Section 6).

2 Background and Related Work
The method, interview quotes, analysis, and theory building in this study build
upon an understanding of modern code review practices, challenges, social effects
during code review, the terminology of Gerrit code review tools, as well as cogni-
tive theories around decision-making processes.

2.1 Code Review in Practice
The term “Modern code review” was popularized by Bacchelli and Bird [3], where
they defined it as “(1) informal (in contrast to Fagan-style), (2) tool-based, and
that (3) occurs regularly”. Over the years, the properties of modern code review
have changed. Code review has become more formalized, and many teams have
checklists and processes that, for example, define how to conduct the review, how
many approvals are needed to merge the changed code and how quickly the review
is expected to be done [56]. Modern code reviews are today even more centered
around the code review tools used. The tools define much of the process, how the
code is analyzed and read during the review, how comments and responses clarify
or solve issues, and finally how the changed code is approved or rejected [2, 60].

64 CODE REVIEW AS DECISION-MAKING

Industry and community practices also place an increasing emphasis on per-
forming code reviews regularly and quickly. Since code reviews are mandatory in
many teams and projects, high throughput of new features and bug fixes depends
on code reviews being done as soon as possible. The industry report DORA Ac-
celerate State of Devops finds that teams with faster code reviews have up to 50%
higher software delivery performance overall, marking it as an important area for
improvements [8]. As a reference, Kudrjavets et al. [88] analyzed code review
times in eight different large open source projects and found a median time be-
tween submission and acceptance of less than 24 hours. Sadowski et al. [2] reports
a median time of less than 4 hours between submission and acceptance, and a
median of 4 code reviews per developer per week at Google.

Code review has been shown to have several benefits. Both for its nominal
purpose of finding and reducing software defects, but also, importantly, for code
improvement, finding alternative solutions, increasing knowledge transfer, build-
ing team awareness, improving the development process, sharing code ownership,
avoiding build breaks, tracking rationale, and assessing teams [2, 3]. Code review
is also an efficient way to spread information, such as best practices or informa-
tion about new features, in a software development organization. A recent study
by Dorner et al. [89] shows that the information spreads to up to 85% of the par-
ticipating developers after an average of only 3 code reviews.

Code Review

Gerrit, GitHub, GitLab, etc.

KANBAN/Scrum board

ISSUE #4212

Issue/Requirements tracker

Documentation

Development environmentML

LV

LV

ML

Team chat

Figure 2: Illustration of the experience of navigating between different tools dur-
ing code review. The backpack and checklist represent the reviewer’s experience
and team processes respectively. Takeaway: The code review tool is in the center,
but cross-referencing with several other tools is necessary to understand the full
context of the code review.

There are also several challenges with modern code review practices and tools.

2 Background and Related Work 65

Because of how current tools are designed, the reviewer needs to navigate between
issue trackers, requirements databases, KANBAN boards, team chats, API docu-
mentation, continuous integration reports, etc., to gather the information needed to
complete the code review. As illustrated in Figure 2, the reviewer must use their
experience and the team processes to navigate between tools effectively and decide
which steps are helpful and when [47]. This experience takes time to build up, and
becoming effective at code reviews in a new workplace can take up to a year [37].
Even with experience, it demands time, effort, and focus [6]. Other challenges
include understanding the rationale for the code change [5], long response times,
many repetitions of reviewing the same code change, and reviewing large code
changes [65].

2.2 Social and Team Effects During Code Review

There is recent work on improving code review practices and recommendations
based on social and team effects in code review. Pascarella et al. [55] investigate
the information needs of the reviewers during the code review by analyzing dis-
cussion threads with questions and responses in open-source projects. They find
seven main categories of information needs, such as rationale and code context,
and recommend ways to improve code review by better meeting these needs.

Lee et al. [76] studies anxiety and avoidance in relation to code reviews, both
for code authors and reviewers. Their work outlines the main factors that con-
tribute to code review anxiety and compel developers to avoid or procrastinate
code review tasks, such as fear of judgment and criticism. They also present a
CBT-based intervention that helps developers reduce anxiety after just a single
session.

Coelho et al. [90] analyzes review comments and divides them into “refactoring-
inducing” and “non-refactoring-inducing”. They describe the factors leading to
code refactorings in code changes and code review comments, since refactoring in
the code review stage when the code is almost ready can be time-consuming. They
give guidelines to researchers, practitioners, tool builders, and educators on how
to better handle these situations and improve the code review process.

2.3 Gerrit Code Review

Gerrit Code Review3 is the open source code review platform used by the teams in
this study. It is a widely used code review tool that has its origins in Google Mon-
drian, the code review platform used for many of Google’s internal projects. When
Google released the Android project as open source4, they wanted a code review
tool with features and workflow similar to Mondrian, but built with open source

3https://www.gerritcodereview.com/
4https://source.android.com/

https://www.gerritcodereview.com/
https://source.android.com/

66 CODE REVIEW AS DECISION-MAKING

Figure 3: Annotated screenshot of Gerrit user interface. Takeaway: Note how
the ‘Change Info’, ‘Submit Requirements’, and ‘Commit message’ sections gives
an overview of the state and context of the code change. The log shows examples
of both automated systems and human reviewers voting on different aspects.

software and using Git5 instead of Perforce for version control. Figure 3 shows an
annotated screenshot of Gerrit’s user interface. Some concepts and terminology
from Gerrit show up in the quotes from the study.

Changeset and Patchset A collection of one or more changed files with a
commit message describing the rationale for the change is called a changeset in
Gerrit. A changeset can have many versions, called patchsets, for example if the
first version received some code review comments that led to updating the code
and submitting a new version for re-review.

5https://git-scm.com/

https://git-scm.com/

2 Background and Related Work 67

Voting Gerrit is very flexible in how you can set up your workflows. While
most code review software by default only allows the reviewer to accept or reject
the changed code, Gerrit has a voting system instead. The administrator can create
multiple labels to vote for and configure a range of numeric values for voting.
By default the labels ‘Code Review’ and ‘Verified’ are available, signifying code
review results and testing/verification results, respectively. Rules can be set up to
allow merging the changed code only when certain voting scores are reached. In
the setup used in this study, reviewers can make the decision to vote -2, -1, ±0,
+1, or +2 on the ‘Code Review’ label, and each reviewer’s vote accumulates to the
total score on the code change. The code change must reach a total code review
score of +2 or higher before it is possible to merge it into the main branch. This
means that a vote of -2 will effectively block the code change from being merged,
-1 will strongly discourage it, ±0 will be a neutral vote, +1 means that you approve
but you want someone more to take a look, and +2 signifies approval and ready to
merge. Automated tests, linters, static analyzers, etc., can also vote on the code
change but usually on labels like ‘Verified’, ‘Formatted’, etc., so their votes will
not be confused with the scores from human reviewers.

Commenting Reviewers can decide to leave code review comments on indi-
vidual lines of code as well as for the change as a whole, independently of how
they choose to vote. Comments can be questions that need clarification, sugges-
tions for improvements, pointing out potential issues, requests for fixes, or code
for alternative solutions that the author can accept with just a click. When created,
comments are marked as unresolved and must manually be marked as resolved
by code change author or the reviewer who wrote the comment before the code
change can be merged into the main branch.

2.4 The Recognition-Primed Decision Model

Research on rational choice and decision-making has shown that in practice human
rationality is quite far from living up to the standards of being absolute or globally
rational (i.e., the ability to pick the objectively best choice). Instead, it should be
considered bounded or local and dependent on the problem framing made by the
decision maker and the currently available knowledge [26, 91–93].

However, even then, the decision-making process does not necessarily aim
at the best possible solution. Rather, it has been shown that the decision maker
applies a satisficing approach, that is, looks for the first solution available deemed
"good enough" [26], and that heuristics and biases play an important part in the
decision-making process [94].

Klein defines the ground-breaking and influential recognition-primed decision
model (RPD model) [36] from research on fireground and military commanders,
who need to make critical decisions often and quickly. The RPD model differs
from the more traditional rational choice strategy model [91], in that it does not

68 CODE REVIEW AS DECISION-MAKING

Experience the Situation in a Changing Context

Is Situation Typical?
[Prototype or Analogue]

Diagnose
[Feature Matching]

[Story Building]

Clarify Recognition has Four By-Products

Anomaly Expectancies

Plausible
Goals

Action
1...n

Relevant
Cues

Evaluate
Action (n)

[Mental Simulation]

Will it work?
yes

Modify

Implement
Course of Action

yes, but

no

yesinferencemore
data

no

Figure 4: Recognition-primed decision (RPD) model from Klein [36]. Take-
away: In contrast with previous models of rational decision-making, Klein models
decision-making as a process that starts from experiencing the situation and rec-
ognizing similarities and differences to previous situations. From this recognition
springs possible actions that are tested, first with mental simulation and then in
practice.

list all available actions and their pros and cons. Instead, the RPD model describes
how decision makers use their experience to, often subconsciously, identify analo-
gous situations and take the first action that, by experience and mental simulation,
seems likely to succeed.

The RPD model (see Figure 4) is an iterative model that begins with experi-
encing a situation and evaluating if the situation is typical. If it is deemed typical
in some aspect, i.e. recognized, this elicits expectancies, relevant cues, plausi-
ble goals, and typical actions. From here, there are two iterative flows possible.
First, check if the perceived reality matches the expectations and if it does not
go back, collect more data, and modify the story building until the expectations
match reality. Second, evaluate possible actions by mental simulation and modify
or discard the action until the first action likely to work is found. Then, this action
is carried out, with the decision maker mentally prepared for some of the possible
consequences. If the results differ from the mental predictions, the situation is re-
evaluated and the decision maker carries out a different action they feel is likely to

3 Methodology 69

work under the new circumstances. The process repeats until the desired outcome
is achieved, or there are no more actions likely to work.

3 Methodology

Theory
buildingData collection Data analysis

Interviews
Observations

Thematic
analysis

Statistical
analysis

Audio files Transcriptions Codes Themes

Process
coding

Member
checking

Temporal
diagrams

Code review
sessions

Statistical
analysis

Sequence
diagrams

Cognitive
model

Theoretical
modeling

Modeling

Theme
workshops

Figure 5: Process and method overview. Takeaway: The theoretical output, a
cognitive model of code review, is built upon data collection from real code review
sessions followed by thematic and statistic analysis.

In Figure 5, we present an overview of the process and methods used in this
study. The study design is based on constructivist epistemology applied to ethno-
graphic methodology, as described by Williamson [25], with the purpose of co-
constructing useful and applicable models and theories together with the study
participants. As described by Sharp et al. [24], ethnography applied to software
engineering is well suited to explore not only what practitioners do but also why
they do it. Sharp et al. also find that the results of ethnographic studies can deepen
knowledge on social and human aspects of software engineering, inform improve-
ments to software engineering tools, lead to process development, and point out
directions for future research. All of which are goals for the contributions of this
study.

Specifically, to understand the questions asked during code reviews (RQ2,
RQ3) and the corresponding cognitive processes (RQ1), we designed an ethno-
graphic think-aloud study combined with interviews [35]. We worked with soft-
ware developers in the industry and captured the participants’ normal way of re-
viewing as closely as possible. Our goal was to help developers feel comfortable
and view the study as an exploration, and not an evaluation, of their code review
techniques, habits, and skills. To achieve this, the first author worked from the

70 CODE REVIEW AS DECISION-MAKING

same office as the participants for several weeks to get to know the participants
and to be available whenever someone needed to do a code review.

The first author sat right next to the software developers while they conducted
real code reviews on their usual workstations, in their own workplace, and in their
team context. Everyone was fully informed about the research, and we asked
the participants to treat the first author as a newly hired developer and openly
explain their ways of working. In this role, we could observe code reviews and the
questions asked by developers and document their thought processes and strategies
to choose code reviews, ask and answer questions, write review comments, and
conclude the code reviews.

The first author has worked as a software developer, project manager, team
lead, etc., in similar companies for over 15 years and has extensive first-hand ex-
perience with code reviews. This background contributed to creating good rapport
between the researcher and the participants. Encouraging participants to be more
detailed, vocal, and open in describing their code reviews, backgrounds, and pro-
cesses.

3.1 Study Context

To achieve depth in our interviews and code review sessions, we presented the
study idea to a multinational software company where we already had an ac-
tive industry-academia collaboration agreement. The second author contacted the
company to ask for a meeting in which we could present the study, and after the
company accepted the invitation, the first author gave a presentation about the
background of the study, its goals, and its methodology.

In agreement with the company, we decided to focus the study on their tools
department. The tools department has around 30 developers with different levels
of experience divided into 8 teams and working in several programming languages.
This department was chosen because it would give a broad view of different prac-
tices and levels of experience and because it works almost exclusively with open-
source software, allowing us to conduct the study and report the findings more
openly.

Code Review Process

All teams use Gerrit as their code review platform (Section 2.3), and code reviews
are mandatory for all code changes. Depending on the size of the team, one or two
other team members must approve every code change before it can be merged. The
majority of the repositories have automatic linting, code formatting, unit tests, and
continuous integration (CI), eliminating the most basic code review comments and
allowing reviewers to focus on higher-level issues. The process requires all team
members to review code at least once a week and to try and check their code review
inbox daily so that code changes do not get stuck for too long waiting for review.

3 Methodology 71

3.2 Participants

Table 1: Role, experience, and weekly time spent on code review for the partici-
pants in the study.

Participant Role Code review exp. Role exp. Weekly code reviews

P01 Developer 3 years 3 years 1 hour
P02 SW Architect 14 years 9 years 2 hours
P03 Developer 14 years 9 years 2 hours
P04 Developer 1 year 1 year 0.75 hours
P05 Developer 6 years 1 year 5 hours
P06 Developer 2 years 2 years 5-10 hours
P07 Team Lead 5 years 5 years 2-3 hours
P08 Team Lead 16 years 7 years 6 hours
P09 Developer 11 years 11 years 4-8 hours
P10 Developer 17 years 13 years 5 hours

Average 8 years 6 years 4 hours
Std.dev. 6 years 4 years 2 hours

During the duration of the study, 10 software developers, from the tools de-
partment mentioned above, participated in interviews and code review sessions.
Their role, experience in the role, experience with code reviews, and average time
spent on code reviews weekly are found in Table 1. No participants left the study
during or after field work. The participants are all of Swedish nationality and have
at least a Bachelor degree. The teams involved each have 2-7 developers and work
according to the agile software development methodology. In accordance with the
team process, all participants did code reviews at least every week with many of
the participants reviewing code every workday.

3.3 Data Collection

To test our study design and the interview protocol, we conducted a pilot interview
and code review session at a small local software company. The pilot session went
smoothly and gave us no reason to change the study setup. Data from the pilot
study were kept for reference and comparison, but excluded from data analysis
and results.

For each participant, we collected informed consent for the participation in the
research study and interviewed them about their background, experience with code
review, and role in the team. Whenever a participant had a pending code review to
carry out, the first author sat next to them, observing their work and asking them
to think aloud about what they were doing during the code review sessions. We
asked questions or noted their actions aloud to record them in the sound file and to
encourage the participants to explain and reflect on what they were doing and why.
The code review sessions and the interviews were recorded using a dictaphone.

72 CODE REVIEW AS DECISION-MAKING

3.4 Data Analysis

To analyze the material in this study, we used the principles of Williamson’s con-
structivist ethnographic research [25] and thematic analysis following the general
process described by Braun and Clarke [95, 96]:

1. Familiarizing yourself with your data: We transcribed and annotated the
recorded material and performed member-checking to validate the data.

2. Generating initial codes: We coded the transcriptions using process coding.

3. Searching for themes: Two authors organized the process codes into themes
independently.

4. Reviewing themes: All authors reviewed and analyzed the themes until in-
terpretative convergence.

5. Defining and naming themes: We refined the theme naming by studying
excerpts from transcriptions.

6. Producing the report: We analyzed themes using statistical and sequential
analysis.

Data Transcription

The first author manually transcribed the sound files from all interviews and code
review sessions into Markdown-formatted text. The text files were annotated with
information about the participant, the time and date, and the beginning and end
of each code review session. The interviews were conducted in Swedish mixed
with many software engineering terms and anglicisms. Care had to be taken when
transcribing the material to preserve the meaning and intent faithfully. Due to data
privacy agreements with the company and for language reasons, we did not use
automated transcription software.

Participant Feedback & Member-Checking

To verify emerging themes from the data and establish an approach for coding the
finished transcripts, we invited all participants to a member-checking focus group
meeting [97]. The meeting was planned and facilitated by the first author and
participants P01, P02, P05, P06, P09, and P10 attended. The meeting was recorded
with a tabletop dictaphone to ensure a clear recording of everyone’s voice.

During the meeting, we presented examples from the transcriptions for each
emerging theme. The participants then discussed whether they recognized the sit-
uations in the quotes and what their experiences were like in similar situations.
There were also general discussions on the processes and challenges in code re-
view. The first author took notes that were reviewed during the meeting by the

3 Methodology 73

participants. These notes and the audio recording of the meeting were combined
into meeting minutes that described the points to be taken into account during the
continued analysis of the transcribed data.

Initial Coding

Transcribed text Process codes Themes Topics

Now I know kind of, we have talked about this one so I know more or less what it is about [...]
There is more awareness around stuff like that since the cyber attack one year ago [...] It is not
something that I think is important enough to comment on. [...] How good reasons are required
to motivate deviating from the standard? [...] It was Person A who wrote this, and they have,
they were for several years the owner of the firmware test framework. [...] It is for our
deployment. And then I know I want to, ..., start with this. Because then I give them a fast
review response. [...] This is interesting, I would have assumed that this was just one ID, but
since we are checking here it has to be, we are checking the length of a list.

asking what you already know
asking about risks
asking if they should comment
asking about impl. choices
asking about author
asking about expected timeline
asking how the code works
...

understanding rationale
assessing change
selecting next action
assessing impl.
understanding context
selecting a review task
understanding impl.

orientational
analytical

Figure 6: Example of process coding showing excerpts of transcribed text, a small
selection of process codes, and mappings onto themes and topics. Takeaway: The
transcribed text is abstracted into process codes, process codes are abstracted into
themes, and finally themes are abstracted into topics.

Coding, in qualitative methods, is the practice of assigning a label or code to
each sentence or segment of a text [35]. The purpose is to increase the abstraction
level of the text to facilitate the data analysis and comparison of different parts
of the material. Different ways of coding will highlight different aspects of the
original data. Coding is often done repeatedly, first by abstracting text into codes,
then systemizing the codes into themes, and then grouping the themes into topics
(see Figure 6). Since the study aims to understand the developers’ cognitive pro-
cess during code review, we chose process coding both for the initial coding of the
transcribed data and for constructing the themes. The first author did the initial
coding, with authors two and three reviewing the coding and suggesting changes.

Process coding is a methodology where the first word in every code must start
with a verb in the gerund form (ending with -ing in English) [98]. This form
of coding is designed to capture the action and intention behind each coded seg-
ment [35], making it especially suited to uncover underlying questions and pro-
cesses. Its name comes from how it results in a timeline of actions, a process.

Identifying Themes

The first and second authors independently grouped the process codes into themes
to get two contrasting starting points. Based on these two sets of themes, all three
authors discussed and worked through differences in workshop meetings. In these
meetings, process codes, suggested themes, and excerpts from the transcripts were
used. We drew connections between the sets of themes, regrouped process codes,
and discussed until we reached interpretive convergence [98]. Finally, using the
transcripts, we refined the naming of the themes to capture and communicate the
intent of the segments they covered.

74 CODE REVIEW AS DECISION-MAKING

Statistical Analysis

When codes and themes were established, we wrote a Python program to analyze
the data using temporal and sequential analysis. The sequential analysis deter-
mined the transition rate from each theme of questions to another. We gathered
the transition rates into a transition table and constructed a sequence diagram of
the code review process using the top 3 most common incoming and outgoing
transitions with a rate higher than 0, see Figure 8.

For temporal analysis, we positioned each theme in relation to the start and
endpoints of each code review. Sometimes, code reviews were paused or inter-
rupted due to meetings, the end of the work day, or other more urgent code re-
views. In the analysis program, we detected these interruptions and gathered the
codes and themes for each code review in a linear flow. We normalized the dura-
tion of each review, which ranged from a couple of minutes to almost an hour, to
a scale from 0 at the beginning of the review to 1 at the end. We analyzed the dis-
tribution of each theme, as well as the process codes contained, over the duration
of the code reviews.

3.5 Ethical Considerations

Contributing to the research study would take significant time and effort for the
participants, and neither they nor the company could be reimbursed or compen-
sated for this. Participation was done with informed consent and on an explicitly
voluntary basis. For participants, the upside would be learning something new
about how they perform code reviews by explaining it to someone else, a change
of pace in their workday, and the feeling of contributing to research.

During sessions and interviews, statements might come up that could be neg-
atively interpreted by colleagues or the employer. To protect the participants, we
pseudonymized all interviews and keep audio recordings and transcriptions confi-
dential except for excerpts used to exemplify codes and themes. To allow other re-
searchers to verify and replicate our study, it would be ideal to publish all collected
data, but as discussed above, this is not possible for privacy and confidentiality
reasons. The interview protocols, the data analysis program and the process-coded
data set are available in the replication package (Section 8).

4 Results

The study includes 10 participants (Table 1); 7 out of 10 described their role as
‘Developer’, 2 as ‘Team Lead’, and 1 as ‘Software Architect’. The minimum
work experience among the participants, both in their role and in code reviews,
was 1 year. The most experienced participant had worked with code reviews for
17 years and in their current role for 13 years. The average was 8 years of code
review experience and 6 years of experience in their current role.

4 Results 75

Table 2: Overview of code review sessions from which we collected data. Note
that a coded segment roughly corresponds to a paragraph in the transcription.

Participant # Segments Duration (min.) Outcome

P01 27 26 vote ±0 with comments
P01 7 4 vote +2
P01 17 20 vote ±0 with comments
P01 4 2 vote +2
P01 2 1 vote +2

P02 98 48 vote +1 with comments
P02 7 9 vote +1 with comments
P02 32 6 vote +1
P02 166 75 vote -1 with comments

P03 141 49 vote -1 with comments
P03 15 5 vote +2
P03 7 2 vote +2 with comments

P04 45 42 vote +1 with comments

P05 50 38 vote +1 with comments
P05 15 21 vote +1
P05 15 6 vote +2
P05 9 6 vote +2
P05 49 32 vote +1 with comments
P05 15 37 vote +1 with comments

P06 70 49 vote ±0 with comments

P07 75 41 vote ±0 with comments

P08 20 6 vote +2 with comments
P08 34 9 vote +2
P08 37 17 vote +1 with comments

P09 14 9 vote +1 with comments
P09 25 17 vote +2 with comments
P09 13 7 vote -1 with comments

P10 16 4 vote +1 with comments
P10 16 7 vote +1
P10 43 26 vote -1 with comments
P10 3 1 vote +1
P10 61 21 vote ±0 with comments
P10 4 1 vote +2
P10 7 4 vote +1

Total 1159 648
Average 34 19
Std.dev. 38 18

We gathered data from a total of 34 code reviews (Table 2). The mean code
review duration was 19 minutes with a standard deviation of 18 minutes. The
shortest review took 1 minute, while the longest one took 75 minutes. During all

76 CODE REVIEW AS DECISION-MAKING

the recorded code reviews, we process-coded a total of 1159 segments, meaning
an average of 116 coded segments per participant and an average of 34 segments
per review.

The recorded sessions show a clear majority of positive votes (Table 1); 26 of
34 code reviews receive a vote of at least +1. Often positive votes are given even
when the reviewer wrote code review comments that they wanted to be addressed,
either by updating the code or explaining the current implementation. Many par-
ticipants say that the teams have a culture of trust and in general vote for merging
the code and trust the author to address comments in a good way without needing
re-review.

“To force them to fix this little issue and then them having to wait for
me to get back and approve feels very silly. So I leave a comment, set
+2. [. . .] So if, because I trust them to fix it, I don’t have to come
back and look at it [again].” —P06, post code review interview

“You can trust that people will fix it in a satisfactory way. I don’t need
to look at it again. It is just a waste of time. Especially if you have
several people, it becomes, like, it adds lead time. So then you can
vote +1 or +2 if you anyway think that ‘oh, I trust that this person
will do, do something good regarding my comment’. And then we
have configured it so [. . .] you cannot, you cannot submit the change
when you have unresolved comments.” —P02

analytical themes
73% (848)

understanding context
6% (65)

understanding rationale
15% (171)

selecting a review task
6% (75)

understanding implementation
26% (297)

selecting next action
15% (179)

assessing implementation
315 (27%)

orientational themes
27% (311)

assessing change
5% (57)

Figure 7: Topics, their contained themes, and the number of occurrences in the
data set. Takeaway: Over 70% of the questions fall under the analytical themes
indicating a majority of the code review effort is spent here.

In our thematic analysis (see Section 3.4) we constructed 157 process-codes
to abstract explicit or implicit question underlying the 1159 segments. During the
process-coding, we reached data saturation after coding around 3/4 of the tran-
scribed material and after this very rarely encountered new process codes. We
grouped the process-codes into 7 themes encoding commonality in underlying in-
tentions. The detailed mapping from process codes to themes can be found in the
replication package (Section 8). The three most common themes are assessing
implementation, understanding implementation, and selecting next action, which
were found 315, 297, and 179 times, respectively, in the transcriptions.

4 Results 77

In turn, the themes are grouped into two topics: orientational themes, and
analytical themes. Figure 7 shows the topics, the enclosed themes, and the number
of occurrences in the process-coded segments. The orientational themes revolve
around how to make sense of the context, framing, and rationale of the review,
while the analytical themes are about understanding the changed code, evaluating
it, planning the next action, and making a decision about the change as a whole.
The analytical themes are the most common and make up 73% of the process-
coded segments, with the orientational themes covering the remaining 27%.

4.1 Orientational Themes
In the transcribed data, we found many different kinds of questions asked to ex-
plore the context, framing, and rationale of the code review; orienting the code
review task in relation to author, repository, expected timeline, programming lan-
guage, rationale for the code change, available time for the reviewer, etc. This
topic spans three themes: selecting a review task, understanding context, and un-
derstanding rationale.

Theme: Selecting a Review Task

Questions about how to pick which code change to review. This involves asking
about the amount of time you have available as a reviewer, the urgency of differ-
ent code changes, social factors, competence, and interests. Many reviews begin
from the list showing all code changes that are waiting for code review, where the
reviewer picks one based on available time, code change size, and urgency.

“I get an overview. And here I can somehow, now it is only 3 re-
views, but for the case where it would have been, I don’t know, say
10 reviews. And somewhere, I have, you have 8 hours per day. Then
I have to prioritize somehow what, what it is I will look at. [. . .] I
try to somewhere check a bit what it is that. . . yes, but what is kind of
the most important? Everybody wants to get their code out, but what,
what is the prio-order? If I, like, know Person C is working on some-
thing that is, that they have been doing for a long time and they really
want to get it out. And it is the last thing in the stack, then I will rather
take that than for example this. Then I know the other one is not, is
like, it is not as urgent.” —P05

“And then if there are several things [to code review] you can maybe
make time for a couple of the small ones but have to leave the big
ones, or you take one big [code review] and leave the small ones.”
—P07

A more experienced participant with a software architect role also factored in if
their expertise was required, or if someone else could review the code instead.

78 CODE REVIEW AS DECISION-MAKING

“So the choice of what I will look at is kind of the combination of,
like, urgency and if I, if it is like, so to speak, are they waiting for me
or are there others that can do it?” —P02

One participant kept it simple and usually picked the code change that had been
waiting for the longest time.

“I usually take the oldest.” —P01

Theme: Understanding Context

Questions to orient the change and the review task in regards to who the author
of the change is, what programming language it is written in, which repository it
is, how long ago the change was posted, the expected timeline for deploying the
change, previous reviews, related work, etc. In one review, the reviewer asks about
who the author is and their background and concludes that the changed code will
probably have tests in place:

“It was Person A who wrote this, and they have, they were for several
years the owner of the firmware test framework. [. . .] So that’s good,
you don’t have to nag them to write tests at least.” —P02

During another session, a reviewer asks about repository, author, and author’s re-
cent work.

“I check repo and person. Because then I know a little, I know for
this repo it is mostly Person B working in it right now. And then I can,
like, infer that, ok, I know what Person B is up to and that gives me
some context still. . . ” —P05

One reviewer checks for previous code review comments.

“So that, also the others have had some, a number of comments al-
ready.” —P09

For a code change with previous reviews and multiple versions (patchsets in Gerrit
terminology), one participant asks which version they have seen before and sets
that version as the base version for comparisons.

“I would probably do the same thing here. . . no, right, this is a re-
review so then I think I will compare with patchset 1 that is the, the
one I reviewed last time.” —P02

4 Results 79

Theme: Understanding Rationale

Understanding why a change has been made and what goals it is trying to achieve.
In one example, the reviewer directly asks about the rationale and how it compares
to their expectations.

“. . . otherwise it would have been interesting to know ‘what are we
trying to solve here, really?’. And it seems like maybe the scope has
become a bit bigger, now they have done a bunch of other stuff” —P03

For another participant, it is the first thing they ask about when starting a code
review.

“So then you will, first of all, check if I understand this. Because that
is often a thing for me with his stuff. I mean, do I know what he wants
to do here?” —P04

Many participants investigate the rationale by reading the original issue in the issue
tracker (JIRA in the case of this company).

“Right, let’s see what it says. . . [reading quietly, from JIRA] Yes, so
then I see that this is also just a part towards making us more auto-
mated.” —P10

“If we have an issue then it is, then I often think it is good to go in here
and check because you can get some background. A bit more. People
are different in how much you want to write in your commit-message
and stuff.” —P04

“OK, now we go to the JIRA-issue.” —P01

4.2 Analytical Themes
Many questions in the transcripts involve analytical themes aiming towards solving
the code review task, i.e., finding defects, writing comments, voting, etc. These
are questions that seek to understand and evaluate the implementation details of the
changed code, plan the next action to take in the code review, and also to evaluate
the change as a whole. This topic spans four themes: assessing change, assessing
implementation, selecting next action, and understanding implementation.

Theme: Assessing Change

In this theme, there are questions about whether the change as a whole, regardless
of the specifics of the implementation, meets the reviewer’s expectations. The
reviewer questions security, performance, interoperability, rationale, compatibility
with future development plans, etc. One reviewer asks about the impact of the
changed code:

80 CODE REVIEW AS DECISION-MAKING

“Because this is that kind of change. Here, it is the total opposite
of the last one, this is something that affects a lot of people. It is a
critical piece (of code).” —P10

One example involves questioning what would happen if the change was deployed
as-is.

“In practice we could have rolled out this change today. It is just that
we probably would have gotten support tickets asking ‘how does this
actually work?’ ” —P07

A common example is general reasoning about the risks involved with the
change as a whole, regardless of the specific implementation choices.

“The thing is, what are the risks with this change? Either it doesn’t
work for unknown reasons or it could, it would maybe create, maybe
create a huge amount of tickets in JIRA. It is maybe not great to over-
load JIRA either. But we would have noticed it pretty quickly. . . ”
—P04

Theme: Assessing Implementation

Asking questions about whether the implementation follows the code conventions
for the project, is readable, is correct, has bugs, meets the rationale, etc. An ex-
ample is a session where the reviewer dislikes the implementation choices in the
tests.

“I’m not very fond of what he has done here, in that he uses his own
struct-type for the tests.” —P02

Another reviewer questions the safety of the import statements used.

“So now we have imported something from the backend, from a back-
end project, so to speak. It is maybe not always safe to do that from
the frontend without, what you call like, there is something called iso-
morphic javascript. [..] It is doubtful if you can do what is done here.”
—P03

Asking about or commenting on error handling and system messages is also com-
mon.

“To just say ‘failed to run command’ is not a very good error message
in my opinion.” —P02

Questions verifying that the code looks reasonable and follows expectations is also
frequently found.

“Here we check, check the format, check if things look reasonable.
‘New host replace old machine’, ok. And this looks relatively reason-
able.” —P05

4 Results 81

Theme: Selecting Next Action

Questions about what the next step in a review is. For example, on whether to read
related documentation, run the code locally, read the code again, talk to the author,
reference the issue tracker, and more. One strategy encountered in the code review
sessions is to look for the entry point and read the code in the order it is called
during execution.

“Then I try to identify, if I look at the file list, to find, like, the top of
the call stack. So you do not start by going deep down into, like, a leaf
function.” —P02

Asking if they should write a comment or not is common and often involves rea-
soning about the implementation.

“Do we want a database connection directly from the service layer?
It might be that we have that in other places but that I have just for-
gotten. In that case, like, it is like that. But we will write a comment
on it.” —P06

Choosing how to vote involves different strategies. One participant checks the
overview over all code review comments to inform their decision and to remember
questions they had about the code change.

“And now, sometimes I have not really decided how I will, what I will
do [when voting]. But then you can get an overview here over what,
where you can see, but is that. . . ? [looking at a preview of all code
review comments] Mostly, mostly a lot of small. . . and then it was,
what was the thing again. . . ? Something I did not like a lot that I was
going to look at later, what was it now again. . . ?” —P02

Reviewers often take into account the size of the code change and they want other
reviewers to look at it when reasoning about how to vote. Either deciding they
want at least one more approval:

“Mmm, the change is so small that you could set +2 here. Just to say
that is it OK. But in this case I still think that I would like to set +1.
Because I would like, when you set +1, you are saying ‘looks good to
me, but someone else must approve’.” —P05

. . . or that their own review is sufficient:

“This is such a small thing so then I feel like this, are two [pairs of]
eyes required for this? Except mine? No, here I somehow trust Person
D [commit author] and myself so then I think that, yes, we might as
well set +2.” —P05

82 CODE REVIEW AS DECISION-MAKING

. . . or when they are the second reviewer and give the final approval:

“Yes, yes, and here they have voted code review +1, so then I could
set +2 actually. Because there is no reason [not to] since I think it
looks reasonable.” —P09

Theme: Understanding Implementation

This theme includes questions about, i.e., the execution flow through the code, call
signatures, variable declarations, comparing the code before and after the change,
etc. One participant traces the execution of the code and decides to check it out in
their IDE.

“Then he does a ’findOne’. Then I think I want to look at it in my IDE
here. Because I wonder what is going one. Let’s see, let’s see. . . ”
—P06

There are also general questions about how the code works.

“I’m just trying to understand what, what the change does” —P01

“No, I don’t know what the hell it does.” —P02

Another reviewer traces the execution to finally understand how it fits together.

“Umm, this became a bit strange because here you have, here we get
a context from the. . . or, yes, really from the event-pipeline as a whole
that calls this method to handle an activity-started event and there we
get a context that can contain a timeout or a cancellation. So we need
to. . . and then I get this, but the transaction as a whole has, does not
get any context. But we do send the context in. . . Ah, right! When we
look up, when we fetch a build!” —P02

In other cases, something that looks like a serious mistake makes the reviewer
ask why the code does not crash.

“So this seems weird. It should actually, it should crash there with a
key violation in the database, I think, because you are not meant to be
able to register the same activity on the same build attempt more than
once.” —P02

4.3 Transitions Between Themes
In Figure 8, we visualize the results of the sequential analysis (Section 3.4) as a
sequence diagram. The graph shows the themes and the transition rate of the ques-
tions being asked shifting from one theme to another. In addition to the themes,

4 Results 83

start review

selecting a review task

0.59

understanding context

0.09

understanding rationale

0.26

0.31

0.12

0.21

selecting next action

0.13

0.31

0.17
0.17

assessing change

0.06

0.51

end review

0.02

assessing implementation

0.11

understanding implementation

0.14

0.32

0.11

0.23

0.17

pause review

0.01

0.19

0.04

0.19

0.30

0.02

0.94

resume review

0.06

0.16

0.44

0.26

0.10

0.05

0.31

0.42

0.67

0.33

0.33

0.33

0.33

analytical themes
orientational themes

events

Figure 8: Transitions between themes during code review. Takeaway: After
starting the review, there is a linear flow through the three orientational themes
followed by an iterative loop through the four analytical themes.

the events ‘start review’, ‘pause review’, ‘resume review’, and ‘end review’ are
included as reference points for the process. The 3 most frequent outgoing and
incoming edges are plotted. A full list of transition rates can be found in Figure 9.
The transition rates are normalized to 1 over the outgoing edges, while the sum
over the incoming edges can be higher or lower. For example, for less frequent
themes such as end review, which occurs at most once for every review, the sum
of the incoming transition rates is much lower than 1.

In the diagram, we can see that, right after starting a code review session, the
most common action (60% of cases) is to select which code change to review.
When the review task is selected and its scope and expectations are known, the

84 CODE REVIEW AS DECISION-MAKING

sta
rt

re
vi

ew

se
lec

tin
g a

 re
vi

ew
 ta

sk

un
de

rst
an

di
ng

 ra
tio

na
le

un
de

rst
an

di
ng

 co
nt

ex
t

pa
us

e r
ev

iew

re
su

m
e r

ev
iew

un
de

rst
an

di
ng

 im
pl

em
en

ta
tio

n

se
lec

tin
g n

ex
t a

cti
on

as
se

ss
in

g i
m

pl
em

en
ta

tio
n

as
se

ss
in

g c
ha

ng
e

en
d

re
vi

ew

start review

selecting a review task

understanding rationale

understanding context

pause review

resume review

understanding implementation

selecting next action

assessing implementation

assessing change

end review

analytical themes
orientational themes

events

0.00 0.59 0.26 0.09 0.00 0.00 0.00 0.06 0.00 0.00 0.00

0.00 0.31 0.21 0.12 0.00 0.00 0.12 0.13 0.05 0.04 0.01

0.00 0.08 0.51 0.06 0.00 0.00 0.14 0.05 0.11 0.03 0.02

0.00 0.00 0.17 0.31 0.00 0.00 0.15 0.17 0.12 0.06 0.02

0.67 0.00 0.00 0.00 0.00 0.33 0.00 0.00 0.00 0.00 0.00

0.00 0.33 0.00 0.00 0.00 0.00 0.00 0.33 0.33 0.00 0.00

0.00 0.02 0.06 0.03 0.00 0.00 0.42 0.10 0.31 0.05 0.01

0.00 0.04 0.04 0.03 0.01 0.00 0.17 0.32 0.23 0.04 0.11

0.00 0.01 0.06 0.02 0.00 0.00 0.26 0.16 0.44 0.04 0.01

0.00 0.04 0.04 0.04 0.02 0.00 0.30 0.16 0.19 0.19 0.04

0.94 0.00 0.00 0.00 0.00 0.06 0.00 0.00 0.00 0.00 0.00

Figure 9: Transition probabilities between themes during code review. Take-
away: Three denser clusters appear, one in the top left quadrant between the ori-
entational themes, one in the bottom right quadrant with the analytical themes and
one less dense in the top right quadrant showing the transition from orientational
to analytical themes.

questions first shift to understanding the context and then to understanding the
rationale for the change. If the reviewer has already decided what to review before
starting the session, they usually go straight to trying to understand the rationale,
maybe because in these cases they already know the context.

These first three themes are all more orientational in nature, asking about, for
example, expectations, author, related work, and rationale. Also note that while
the reviewer often iterates on every theme, they never move backward once they
have started asking questions on the next theme. We believe that this is because
there is a causal link between these questions. You need to have selected what
to review before it is meaningful or possible to learn the context and rationale of
what you are reviewing. Likewise, if you after understanding context and rationale
go back and pick another code change to review, it means that you are ending the
current review and starting a new review session. You can see in the diagram that
this actually happened in our dataset, although very few times, as indicated by the
arc going from understanding rationale straight to end review.

After that, the reviewer moves on to the remaining four themes; assessing im-
plementation, selecting next action, understanding implementation, and assessing

4 Results 85

change. These themes are more analytical compared to the initial three themes,
and revolve around understanding, assessment, and planning. In the sequence di-
agram, they form a series of connected loops, and we can see that the reviewer
moves iteratively between them.

Notably, the fact that the selecting next action questions are so central in the
iterative loop highlights that code review is not a linear and straightforward activity
where the reviewer just reads the diffs of the changed files from beginning to end.
Instead, the reviewer constantly plans what to do next and will often revisit the
same files and lines many times during a review.

Interrupted Reviews

If a review is interrupted for some reason, in two thirds of the cases it is resumed
by going directly to assessing implementation or selecting next action and then
into the iterative loop described above. In one third of the cases, we see that even
if the reviewer has read some of the code before they were interrupted, they start
over from the beginning and read all of the code again to gain a full picture of
the code change and be able to reach a decision on how to vote. Also, even if the
reviewer goes straight into assessing implementation, they will often start over and
read from the first code diff in the change.

“I have, I prefer to try to review the whole change in one [sitting].
Because if I get half-way and then get interrupted and have to go do
something else, yes, I have a tendency to get lost a little bit. You have
to go through everything, it is faster the second time but you still have
to do it.” —Participant 7

4.4 Distribution of Themes during Code Review

In Figure 10 we show the distribution of themes over the normalized timeline of
a code review where 0 and 1 represent the start and the end of the review ses-
sion, respectively (see Section 3.4). The themes are sorted ascending by the mean
timestamp.

Supporting the patterns seen in Section 4.3, we see that the themes of the two
topics have similar characteristics within each topic but separate characteristics
between topics. Sorting by mean timestamp separates the themes into two groups
aligned with the topics. The orientational themes selecting a review task, under-
standing rationale, and understanding context occur from the beginning to about
the midpoint of the review with a mean timestamp of 0.2 − 0.3. The analytical
themes understanding implementation, selecting next action, assessing implemen-
tation, and assessing change have a timestamp distribution that is centered around
the middle and extends to the end of the code review with a mean timestamp of
0.5− 0.6.

86 CODE REVIEW AS DECISION-MAKING

selecting a review task
understanding rationale

understanding context
understanding implementation

selecting next action
assessing implementation

assessing change

1.0

0.8

0.6

0.4

0.2

0.0

orientational themes
analytical themes

Figure 10: Distribution of themes relative to the beginning (0) and end (1) of
the code review. Takeaway: The orientational themes and the analytical themes
form two groups respectively. Each group having similar timestamp distributions
internally, but distinct from the other group.

5 Theory

Here, we present a theoretical model of code review as a decision-making process,
first identifying observed phases and then mapping our observations to the RPD
model described by Klein [36] (Section 2.4).

5.1 The Two Phases of Code Review

When thematic, temporal, and sequential analyses of the questions asked during
code review are combined, two distinct phases emerge. A linear phase at the be-
ginning of the review that we call orientation phase, and an iterative phase from
the middle to the end of the review that we call analytical phase.

5 Theory 87

The Orientation Phase

understanding rationaleunderstanding contextselecting a review task

Figure 11: Orientation phase of code review. Takeaway: In this phase, reviewers
explore each theme with several questions before moving forward to the next. All
transitions move forward and the questions are related to rationale, context, and
expectations.

In the orientation phase of code review (see Figure 11) the reviewer asks about
and establishes context, scope, rationale, and expectations. The phase consists of
the three themes selecting a review task, understanding context, and understanding
rationale. The themes fall under the functional topic of orientational themes, share
early mean timestamps in the temporal analysis, and mostly forward transitions in
the sequential analysis.

The reviewer begins by asking one or more questions under the selecting a
review task theme, for example, asking about how big the code change is, which
code base it is in, continuous integration (CI) status, priority, and urgency. Next,
they continue with the theme understanding context asking questions about the
code change author, repository, programming language, and type of change (bug
fix, feature, refactoring, etc.). Finally, the reviewers ask questions on the theme
understanding rationale. For example, about the commit message content, issue
description, feature requirements, and recent team conversations. Sometimes, the
context is well known, from the team stand-up meeting or other recent discussions,
and the reviewer skips directly to understanding rationale. Each theme can be
repeated multiple times with several questions exploring the theme, but once the
questions transition to the next theme, the reviewer rarely goes back again.

88 CODE REVIEW AS DECISION-MAKING

The Analytical Phase

understanding impl.

assessing impl. selecting next action

assessing change

end review

Figure 12: Analytical phase of code review. Takeaway: The analytical phase
iterates over understanding implementation, assessing implementation, assessing
the change, and planning the next step. Both each theme and also the full cycle are
repeated several times before the review is done.

In the analytical phase of code review (see Figure 12), the reviewer iteratively
builds an understanding of the changed code, evaluates the implementation and
the change as a whole based on this new understanding, and plans what action
to take next. The phase consists of the four themes understanding implementa-
tion, assessing implementation, assessing change, and selecting next action. The
themes all fall under the functional topic of analytical themes, share late mean
timestamps in the temporal analysis, have cyclic transitions between them in the
sequential analysis, and have very few transitions going back to the themes in the
orientation phase.

The reviewer could enter the phase on any of the themes. After entering the
analytical phase, the most common scenario is that the reviewer iterates through
all the themes several times before reaching a selecting next action question in
which the reviewer decides to end the review. The final question is often about a
summary of the comments the reviewer has written or about how to vote regarding
the code change.

5.2 Introducing a Model of Code Review as Decision-Making

The expected outcome of code review is to reach a decision on voting for or against
merging the changed code [2]. On the way there, the participants in the study take
several smaller decisions around writing review comments, phrasing of comments,
reading external sources, reading changed source code, checking out the code lo-
cally, choosing next steps, etc. We can also see that while the cognitive model
of code review comprehension [20] is confirmed by our data and can be mapped
to the theme understanding implementation as a whole and to the mental model-

5 Theory 89

Analytical Phase

Experience Changed Code Segment in Context of
Rationale, Author, Previous Reviews, CI results, ...

Implementation
Matches Expectations?

Collect Information
about Implementation,

Behaviour, etc.

Clarify Recognizing Implementation
has Four By-Products

Anomaly Expectancies

Plausible
Assessment

Action
1...n

Plausible
Behaviour

no

yesrelated
to other
segment

no

Select Next Action

Is Action Aligned
With Goals?

Implement Next Action

yes

Review Done?

no

Vote and
Assign to Author

yes

Experience Code Change in Context of Team,
Rationale, Expectations

Context and Rationale
Matches Expectations?

Collect Information
about Rationale,

Expectations, Context

Code Review Contextualization
has Four By-Products

Expectancies

Plausible
Goals

Plausible
Actions

Potential
Issues

yes

no

Orientation Phase

switch review

Figure 13: The Code Review as Decision-Making (CRDM) cognitive model.
Takeaway: Code review can be modeled as two linked decision-making pro-
cesses. The first is preparatory and establish context, plausible goals, and plausible
actions. The second takes decisions on what actions to take during the review, and
how to vote regarding the integration of the code change. It bases these decisions
in understanding the change through both implementation details and as part of a
larger system.

ing parts of the theme selecting next action, it is just a part of a larger cognitive
process.

This leads us to re-frame code review as a kind of decision-making process.
Specifically, the orientation and analytical phases in code review can be mapped
onto the RPD model introduced by Klein [36] (Section 2.4). In Figure 13, we il-
lustrate the Code Review as Decision-Making (CRDM) cognitive model mapping
the orientation and analytical phases of code review onto one preparatory and one
complete RPD model, respectively. Connecting the themes, topics, and phases
from our data analysis to the RPD model allows us to construct a cognitive model
for the code review task as a whole. A model in which the code reviewers’ expe-
rience helps them spot potential issues, find confusing or problematic sections of
code, formulate effective review comments, look for more information, and vote
appropriately for accepting or rejecting the changed code based on their mental
simulation of software and team behavior.

In the orientation phase, the reviewer asks questions about the rationale and
context of the changed code in order to build a story around the change and what it
tries to do and why. This creates expectancies around the changed code, potential
issues to look out for, plausible goals of the review, and plausible actions. If the
context or the rationale does not seem to match expectations, the reviewer collects
more information, for example, by reading in the issue tracker or asking over the
team chat. Since the reviewer usually does not vote or comment during this phase,
it is modeled with the preparatory first half of the RPD model.

After the orientation phase, the reviewer enters the analytical phase that can
be modeled with a complete cycle through the RPD model. The reviewer experi-
ences the changed code in view of the context established in the orientation phase,

90 CODE REVIEW AS DECISION-MAKING

reacts to how well it matches their expectations, evaluates if it is in line with the
rationale as they have understood it, and chooses their next action. If the changed
code triggers a cue for potential issues or does not seem to match the rationale, the
reviewer takes action such as writing a review comment, reading external sources,
asking for clarification, or voting for rejecting the changed code. When the ratio-
nale and the code are coherent, they might perform mental simulation of both what
could happen if the code was deployed and of how their colleagues will respond to
review comments and voting choices. Finally, after as many iterations as needed,
the reviewer implements their decisions on how to vote, which review comments
to write, what to communicate in other channels, and what to do next.

Together, the two phases in the CRDM model form a cohesive cognitive pro-
cess that covers the entire code review task. The orientation phase equips the re-
viewer with context and rationale for the code change, while the analytical phase
enables iterative evaluation, understanding, and action planning. In total, it mod-
els code review as a dynamic, experience-driven decision process that includes but
goes beyond comprehension.

6 Discussion

Our results and theoretical modeling show that code review has much in common
with decision-making processes, specifically the RPD model by Klein [36]. Map-
ping the cognitive phases found during code review onto the RPD model gives us
a novel cognitive model (RQ1) of Code Review as Decision-Making; the CRDM
model (Section 5.2). This model can explain and predict some observations from
empirical studies of code review. For example, since recognition-primed decision-
making requires extensive experience of analogous situations, it can explain how
even experienced programmers can take up to a year to become effective at code
review in a new workplace [37]. It is not just about code comprehension (a well-
developed skill for an experienced programmer), but also about building up a men-
tal index of patterns in a new code base and organization. Furthermore, misalign-
ments between current code review tools and developer needs [6] could be extrap-
olated from current code review tools, which center the code diff-view and thereby
the understanding implementation part of the code review. This design leaves it up
to the developer to plan the review, gather decision-making information, explore
the context, and understand the rationale, thus showing that current tools are not
aligned with all the needs and goals of users.

The CRDM cognitive model also allows insight into how code review com-
pares to more well-studied processes such as decision-making, reflection, and
learning. Being able to relate research results from other disciplines through the
theoretical model can inspire future research, give insight into the challenges of
code review, and indicate directions for improvements in code review tools (Sec-
tion 6.4).

6 Discussion 91

6.1 Insights from Thematic Analysis
Looking at the levels of topics and themes (RQ2) gives us insight into the relative
frequency of questions asked during code review. On topic level, the balance is
roughly 70/30 between questions with analytical themes and orientational themes;
emphasizing the analytical nature of code review while still pointing out context
and orientation as an imprescriptible part.

At the theme level, questions seeking to understand the implementation, ratio-
nale, and context account for slightly less than half of the total questions asked.
These themes can be related to processes of comprehension, as described by both
Letovsky [21] and Gonçalves et al. [20]. Also, on this level, these results show
that while comprehension is a very important part of code review, there is more
involved to complete the task. Planning, decision-making, and assessing account
for the other half of the questions asked. Notably, a significant part of the analyti-
cal work during code review consists of selecting next action, which is concerned
with planning and decision-making and in a way is a metacognitive theme.

6.2 Classification of Questions During the Code Review
When analyzing topics and themes as a sequential process during code review
(RQ3), we see interesting patterns in how participants move between themes in
their questions. Letovsky [21] classifies questions asked during a cognitive pro-
cess into five groups; Why, How, What, Whether, Discrepancy. From the thematic
and sequential analysis, we see that the first orientation phase is dominated by the
Why and What questions exploring the rationale and context of the code review.
In the analytical phase, this emphasis shifts to How, Whether, and Discrepancy
questions that explore how the code works, whether it could have desired or un-
desired behaviors, and assessing it for discrepancies with expectations and code
guidelines. That the questions are different in the two phases we conjecture, also
when applying Letovsky’s classification system in addition to our own thematic
coding, supports the division into orientation and analytical phases.

6.3 Comparison to Previous Models
Existing models for code review focus on and describe the organizational pro-
cess [2, 3, 99], but to our knowledge only one model of the cognitive process has
been presented; the code review comprehension model of Gonçalves et al. [20],
which deliberately only models a part of the entire code review process; com-
prehending code changes. For this part of the review, our results support their
findings. Especially, the reviewer iteratively uses information sources, a knowl-
edge base, and their own mental model to drive comprehension during the code
review. The CRDM model then expands the scope significantly by describing
orientation processes before starting to read the changed code and the recurring
decision-making needs throughout the review.

92 CODE REVIEW AS DECISION-MAKING

6.4 Future Work

CRDM
Model

Inspiring
Future Research

on Cognitive
Processes in Code

Review

Discover
Potential Tool
Improvements

Aligning
Code Review

Processes with
Developer Needs

Understanding
Code Review

Through a
Wider Lens

Adapting
Knowledge

from Decision-
Making Research
to Code Review

Support
Research on

AI-supported
Code Review

Figure 14: Illustration of potential applications of the CRDM cognitive model.
Each surrounding hexagon represents a potential application of the model, such
as adapting knowledge from decision-making research, improving code review
tools, and supporting future research. The center hexagon represents the CRDM
cognitive model itself.

As illustrated in Figure 14, the CRDM model and the results leading up to the
model can have several applications for future research and development.

Adapting Knowledge from Decision-Making Research Given the sim-
ilarities between code review and decision-making processes, code review tools
could learn a lot from decision support systems (DSS). Liu et al. [100] presents
a meta-study of over 100 papers on DSS and shows the advantages of Integrated
Decision Support Systems (IDSS) where the decision support is integrated into ex-
isting systems and processes. This would be an interesting way forward for code
review tools. For example, knowledge graph-based or agentic IDSS could be in-
tegrated into existing tools to support developers throughout their workflow and
make code review more effective and efficient.

Discover Potential Tool Improvements Today’s code review tools come
from a legacy of code inspection meetings and have, on a feature level, not changed
much since the first ever software for code review, ICICLE, was introduced in
1990 [7]. By analyzing the needs of developers during the different steps in the
CRDM model, the features of popular code review tools [101,102], and recent re-

6 Discussion 93

search on misalignment between code review tools and user goals [6] we conclude
that today’s code review tools have significant room for improvement.

Reevaluating code review tools from the lens the CRDM model, or incorpo-
rating ideas and features from DSS software discussed above could give benefits
to development teams around the world. In particular, the tools’ focus on the code
diff view and inline review comments centers its support mostly around the two
themes understanding implementation and assessing implementation. Overall, the
orientation phase as a whole receives less support, and users often choose to leave
the code review tool and look for information in issue tracker, team chat, external
documentation, etc., to better understand the context and rationale.

Support Research on AI-supported Code Review As discussed in Sec-
tion 1, more and more research and development in academia and industry is di-
rected towards supporting or replacing code review with AI models or agents.
Many researchers are calling out the importance of preserving the human per-
spective and emphasizing AI technology that supports rather than replaces current
software engineering practices [83, 103]. A cognitive model can be a useful foun-
dation in finding areas where current tools give insufficient support and where AI
models and agents could augment the capabilities of the human engineers. Train-
ing the CRDM model into an agentic workflow could also provide pre-emptive
support and information and guide developers through the code review task.

Understanding Code Review Through a Wider Lens In much of the lit-
erature today, code review is seen as a process of comprehension and defect find-
ing. While that is certainly part of the truth, we would like to challenge and expand
this view and treat code review as more closely related to decision-making. By ap-
plying this wider lens, we believe that there are new insights and perspectives to
be found that might, for example, change the way we teach code review to new
developers and the way we design tools.

Aligning Code Review Processes with Developer Needs As well as
misalignments between the developer needs and the tools used, Söderberg et al. [6]
also finds misalignments between the process itself and responsibilites and out-
comes of code review. Perhaps there are ways to adapt the accepted code review
processes to better match the needs and cognitive process of the developers in-
volved in the process.

Inspiring Future Research on Cognitive Processes To our knowledge,
few cognitive models of code review have been published today. We hope by
presenting methodology and results from building the CRDM model that we can
inspire future research in studying software engineering processes from a cogni-
tive lens. Certainly, there are parts of general code review, such as which actions

94 CODE REVIEW AS DECISION-MAKING

reviewers take to resolve their questions, that warrant further study. It could also
be illuminating to study code review in different kinds of companies, open source
projects, development methodologies, and team sizes.

7 Threats to Validity
LeCompte and Goetz present a comprehensive investigation of both internal and
external threats to be considered for ethnographic research [104]. They separate
threats to reliability, which concerns to what degree the study is reproducible, and
to validity, describing the accuracy of the conclusions in relation to empirical re-
ality. In the following subsections, we use the threats identified by LeCompte and
Goetz to analyze the threats in this study.

7.1 External Reliability
The external reliability of an ethnographic study is affected by position of the
researcher in the study, choices of the informants, social situations and condi-
tions, analytic constructs and premises, and methods of data collection and anal-
ysis [104]. The researcher conducting the field work has extensive experience
in software engineering and code reviews, contributing to good rapport between
the researcher and the participants. This experience facilitated open sharing of
thoughts and experiences as well as understanding of specific terms, jargon, and
practices (Section 3). In the research team, we also have one more member with
long industry and code review experience, as well as one researcher without in-
dustry experience but with extensive knowledge in human factors, cognition, and
interaction studies. This contributed to building an understanding and theory that
is valid from both an insider and an outsider perspective.

Regarding informant choices, there is inherent bias in the fact that people who
volunteer to participate in ethnographic research studies are introspective and in-
sightful about their own thinking and actions to a greater degree than the average in
most groups [104]. In our case, choosing to work with the outward-facing software
tools department that collaborates with external open source communities and with
all other internal departments gives a bias towards people who are communicative,
outgoing, and used to describing their work to outsiders. This increased the depth
and detail we could achieve in our collected data. We think the risk that less extro-
verted participants would follow a fundamentally different code review process is
small.

All participants and teams in this study have strong similarities (Section 3.2).
Developers with, for example, a different cultural and educational background
working in large teams using waterfall methodology might have a different ap-
proach to code reviews. We have tried to mitigate this risk by actively choosing
participants ranging from inexperienced to very experienced and with different
roles in their teams.

7 Threats to Validity 95

The social context and setting for the code reviews were at the developers’ reg-
ular workplace, on their own computer, monitor, and desk to create conditions for
realistic results. Our analytical constructs are based on our constructivist episte-
mological view, as well as the process codes used to encode the transcripts (Sec-
tion 3). The process codes follow accepted coding practices and are published in
the replication package, see Section 8 Finally, data collection and analysis were
performed using common practices in qualitative studies, such as audio record-
ing, transcription, process coding, and statistical analysis [35, 98]. Transcribing
the recorded interviews carry the risk of subtly shifting the meaning, since spoken
and written language is interpreted slightly differently and the transcriptions lack
prosody and tone of voice. We mitigated this by adding notes in the transcription
where the meaning would otherwise be ambiguous.

7.2 Internal Reliability

The internal reliability of an ethnographic study is affected by low-inference de-
scriptors, multiple researchers, participant researchers, peer examination, and
mechanically recorded data [104]. To achieve low-inference descriptors, the source
materials for analysis in the study were verbatim transcriptions of the recorded
code review sessions with little to no inference. Multiple researchers were in-
volved in the interpretation of the data. Two researchers independently did the
thematic coding of the material. All three researchers discussed process coding,
thematic coding, and topics until agreement [98]. The process coding and its in-
terpretation were further verified with the participants through a member-checking
workshop (Section 3.4). For peer examination, we note that Gonçalves et al. [20]
describes a process, albeit within a more narrow scope, that confirms our model in
the parts where they overlap. Finally, data were recorded using digital dictaphones
for voice clarity, and the original recordings are archived at the university.

7.3 External Validity

The external validity of an ethnographic study is affected by selection effects, set-
ting effects, history effects, and construct effects [104]. To address selection ef-
fects, we selected participants with different age, experience, and roles, but work-
ing for the same company and team. They follow the same or very similar code
review guidelines. This contributes to results from different participants being
comparable. Since the observations were carried out in the same office with mem-
bers of the same development team, the settings were very similar. We think that
the social effects of the setting, group, and researcher are comparable between the
interviews. Regarding history effects and construct effects, all participants have a
comparable cultural and educational background, which contributes to the validity
of comparing their data. Further, the same process-coding and thematic coding

96 CODE REVIEW AS DECISION-MAKING

was used for all recordings and participants, again contributing to comparability
between participants.

7.4 Internal Validity

The internal validity of an ethnographic study is affected by history and matura-
tion, observer effects, selection and regression, mortality, and spurious conclu-
sions [104]. In relation to history and maturation, code review was a well estab-
lished and mature practice in the development team that participated in the study,
and their guidelines remained the same throughout the field work. We may have
had observer effects in that participants might have put in more effort than usual
into the code reviews. That is, participants may have spent more time in code
review and may have been more meticulous with comments and approvals, to be
perceived as competent by the researcher and their peers. During field work, we
tried to mitigate observer effects by being neutral and curious about any approach
the participants took. While we did select as diverse participants as possible from
the members of the participating development teams, they do have similar cultural
and educational backgrounds. It cannot be ruled out that participants with different
culture, education, role, employer, role, etc. would also have different strategies
during code review. No participants left the study (or the team) during the field
work. Finally, conclusions and theories were built bottom-up from the results of
thematic and statistical analysis to avoid drawing spurious conclusions from our
field observations.

8 Conclusions

We studied questions asked during code review using an ethnographic think-aloud
study combined with interviews (Section 3). The study included 10 participants
and a total of 34 code reviews. We performed thematic analysis of the transcribed
interviews followed by temporal and sequential analysis. Through this analysis,
we discovered patterns in the kinds of questions that reviewers asked during code
reviews; when the questions were asked, and how the questions connected to each
other.

From our thematic analysis we identified 2 topics containing a total of 7 themes
(Figure 7). Temporal and sequential analysis indicates that code review can be
modeled by two phases (Section 5), a linear orientation phase (Figure 11) fol-
lowed by an iterative analytical phase (Figure 12). During the orientation phase,
the reviewer seeks information about the expectations, rationale, and context of the
code change within and outside the code review tool. Once those factors are un-
derstood, the reviewer enters the assessment phase. Here, they iterate by seeking
to understand the implementation, assessing the change, assessing the implemen-
tation, and planning their next action until the code review is finished.

8 Conclusions 97

The similarities in the dynamics during these two phases with decision-making
processes in general, and in particular the RPD model defined by Klein [36], lead
us to propose the Code Review as Decision-Making (CRDM) cognitive model
(Section 5.2). In this model, we reframe code review as a decision-making process,
providing new perspectives on the practice, its effects, avenues for future research,
and ideas on how tools can evolve to support code review in a better way.

Notes
Data availability Anonymized data on the level of process coding that support
the findings of this study are openly available in the replication package below.
Due to sensitivity reasons, full recordings and transcriptions are not openly avail-
able and are available from the corresponding author upon reasonable request.

Code availability The program code for data analysis is available in the repli-
cation package at DOI: 10.5281/zenodo.15758266

https://doi.org/10.5281/zenodo.15758266

B
IB

.

BIBLIOGRAPHY

[1] L. Allen, A. O’Connell, and V. Kiermer, “How can we ensure visibility and
diversity in research contributions? How the Contributor Role Taxonomy
(CRediT) is helping the shift from authorship to contributorship,” Learned
Publishing, vol. 32, no. 1, pp. 71–74, 2019. doi:10.1002/leap.1210

[2] C. Sadowski, E. Söderberg, L. Church, M. Sipko, and A. Bacchelli, “Mod-
ern Code Review: A Case Study at Google,” in Proceedings of the 40th
International Conference on Software Engineering: Software Engineering
in Practice, ser. ICSE-SEIP ’18. New York, NY, USA: Association for
Computing Machinery, 2018, pp. 181–190, event-place: Gothenburg, Swe-
den. doi:10.1145/3183519.3183525

[3] A. Bacchelli and C. Bird, “Expectations, outcomes, and challenges of mod-
ern code review,” in 2013 35th International Conference on Software Engi-
neering (ICSE), 2013, pp. 712–721. doi:10.1109/ICSE.2013.6606617

[4] C. D. Egelman et al., “Predicting developers’ negative feelings about code
review,” in Proceedings of the ACM/IEEE 42nd International Conference
on Software Engineering. Seoul South Korea: ACM, 2020, pp. 174–185.
doi:10.1145/3377811.3380414

[5] M. Chouchen et al., “Anti-patterns in modern code review: Symptoms and
prevalence,” in Proceedings of the International Conference on Software
Analysis, Evolution and Reengineering, ser. SANER, 2021, pp. 531–535.
doi:10.1109/SANER50967.2021.00060

https://doi.org/10.1002/leap.1210
https://doi.org/10.1145/3183519.3183525
https://doi.org/10.1109/ICSE.2013.6606617
https://doi.org/10.1145/3377811.3380414
https://doi.org/10.1109/SANER50967.2021.00060

100 BIBLIOGRAPHY

[6] E. Söderberg, L. Church, J. Börstler, D. Niehorster, and C. Rydenfält, “Un-
derstanding the Experience of Code Review: Misalignments, Attention,
and Units of Analysis,” in Proceedings of the International Conference
on Evaluation and Assessment in Software Engineering 2022, ser. EASE
’22. Association for Computing Machinery, 2022, pp. 170–179, event-
place: Gothenburg, Sweden. doi:10.1145/3530019.3530037

[7] L. Brothers, V. Sembugamoorthy, and M. Muller, “ICICLE: Groupware
for Code Inspection,” in Proceedings of the 1990 ACM Conference on
Computer-Supported Cooperative Work, ser. CSCW ’90. New York, NY,
USA: Association for Computing Machinery, 1990, pp. 169–181, event-
place: Los Angeles, California, USA. doi:10.1145/99332.99353

[8] DORA, “Accelerate State of DevOps 2023,” DORA, Tech. Rep., 2023.
Available: https://dora.dev/research/2023/dora-report/

[9] C. Bird et al., “Taking Flight with Copilot: Early Insights and Opportunities
of AI-Powered Pair-Programming Tools,” Queue, vol. 20, no. 6, pp. 35–57,
2023, place: New York, NY, USA Publisher: Association for Computing
Machinery. doi:10.1145/3582083

[10] D. Sobania, M. Briesch, C. Hanna, and J. Petke, “An Analysis of the Auto-
matic Bug Fixing Performance of ChatGPT,” 2023.

[11] J. Lu, L. Yu, X. Li, L. Yang, and C. Zuo, “LLaMA-Reviewer: Ad-
vancing Code Review Automation with Large Language Models through
Parameter-Efficient Fine-Tuning,” in 2023 IEEE 34th International Sym-
posium on Software Reliability Engineering (ISSRE), 2023, pp. 647–658.
doi:10.1109/ISSRE59848.2023.00026

[12] Y. Yu et al., “Fine-Tuning Large Language Models to Improve Accuracy
and Comprehensibility of Automated Code Review,” ACM Trans. Softw.
Eng. Methodol., vol. 34, no. 1, 2024. doi:10.1145/3695993

[13] X. Tang et al., “CodeAgent: Autonomous Communicative Agents for Code
Review,” in Proceedings of the 2024 Conference on Empirical Methods in
Natural Language Processing. Association for Computational Linguistics,
2024, pp. 11 279–11 313. doi:10.18653/v1/2024.emnlp-main.632

[14] Google Research. (2023) Large sequence models for soft-
ware development activities. Available: https://research.google/blog/
large-sequence-models-for-software-development-activities/

[15] D. C. Engelbart, “Augmenting Human Intellect: A Conceptual Framework,”
Stanford Research Institute, Menlo Park, California, Tech. Rep. AFOSR-
3223, 1962.

https://doi.org/10.1145/3530019.3530037
https://doi.org/10.1145/99332.99353
https://dora.dev/research/2023/dora-report/
https://doi.org/10.1145/3582083
https://doi.org/10.1109/ISSRE59848.2023.00026
https://doi.org/10.1145/3695993
https://doi.org/10.18653/v1/2024.emnlp-main.632
https://research.google/blog/large-sequence-models-for-software-development-activities/
https://research.google/blog/large-sequence-models-for-software-development-activities/

References 101

[16] M. E. Fagan, “Design and code inspections to reduce errors in program
development,” IBM Systems Journal, vol. 15, no. 3, pp. 182–211, 1976.
doi:10.1147/sj.153.0182

[17] W. Florac, A. Carleton, and J. Barnard, “Statistical process control: analyz-
ing space shuttle onboard software process,” IEEE Software, vol. 17, no. 4,
pp. 97–106, Aug. 2000, (Accessed 2025-08-17). doi:10.1109/52.854075

[18] N. B. Ruparelia, “Software development lifecycle models,” ACM SIG-
SOFT Software Engineering Notes, vol. 35, no. 3, pp. 8–13, 2010.
doi:10.1145/1764810.1764814

[19] N. Jørgensen, “Putting it all in the trunk: incremental software development
in the FreeBSD open source project,” Information Systems Journal, vol. 11,
no. 4, pp. 321–336, 2001. doi:10.1046/j.1365-2575.2001.00113.x

[20] P. W. Gonçalves, P. Rani, M.-A. Storey, D. Spinellis, and A. Bac-
chelli, “Code Review Comprehension: Reviewing Strategies Seen Through
Code Comprehension Theories,” in 2025 IEEE/ACM 33rd International
Conference on Program Comprehension (ICPC), 2025, pp. 589–601.
doi:10.1109/ICPC66645.2025.00068

[21] S. Letovsky, “Cognitive Processes in Program Comprehension,” Journal of
Systems and Software, vol. 7, no. 4, pp. 325–339, 1987. doi:10.1016/0164-
1212(87)90032-X

[22] Y. Rogers, Interaction Design - Beyond Human-Computer Interaction,
6th ed. New York: John Wiley & Sons Inc, 2023.

[23] Design Council, “Double Diamond framework for innovation,” https:
//www.designcouncil.org.uk/our-resources/framework-for-innovation/,
2023, [Online; accessed 25-October-2023].

[24] H. Sharp, Y. Dittrich, and C. R. B. de Souza, “The Role of Ethno-
graphic Studies in Empirical Software Engineering,” IEEE Transac-
tions on Software Engineering, vol. 42, no. 8, pp. 786–804, 2016.
doi:10.1109/TSE.2016.2519887

[25] K. Williamson, “Research in Constructivist Frameworks Using Ethno-
graphic Techniques,” Library Trends, vol. 55, no. 1, pp. 83–101, 2006.
doi:10.1353/lib.2006.0054

[26] H. A. Simon, The sciences of the artificial, 3rd ed. Cambridge, MA: MIT
Press, 1996.

[27] J. E. V. Aken, “Management Research Based on the Paradigm of the De-
sign Sciences: The Quest for Field-Tested and Grounded Technological

https://doi.org/10.1147/sj.153.0182
https://doi.org/10.1109/52.854075
https://doi.org/10.1145/1764810.1764814
https://doi.org/10.1046/j.1365-2575.2001.00113.x
https://doi.org/10.1109/ICPC66645.2025.00068
https://doi.org/10.1016/0164-1212(87)90032-X
https://doi.org/10.1016/0164-1212(87)90032-X
https://www.designcouncil.org.uk/our-resources/framework-for-innovation/
https://www.designcouncil.org.uk/our-resources/framework-for-innovation/
https://doi.org/10.1109/TSE.2016.2519887
https://doi.org/10.1353/lib.2006.0054

102 BIBLIOGRAPHY

Rules,” Journal of Management Studies, vol. 41, no. 2, pp. 219–246, 2004.
doi:10.1111/j.1467-6486.2004.00430.x

[28] A. R. Hevner, S. T. March, J. Park, and S. Ram, “Design Science in In-
formation Systems Research,” MIS Quarterly, vol. 28, no. 1, pp. 75–105,
2004. doi:10.2307/25148625

[29] E. Engström, M.-A. Storey, P. Runeson, M. Höst, and M. T. Baldassarre,
“How software engineering research aligns with design science: a review,”
Empirical Software Engineering, vol. 25, no. 4, pp. 2630–2660, 2020.
doi:10.1007/s10664-020-09818-7

[30] P. Runeson, E. Engström, and M.-A. Storey, “The Design Science Paradigm
as a Frame for Empirical Software Engineering,” in Contemporary Em-
pirical Methods in Software Engineering, M. Felderer and G. H. Travas-
sos, Eds. Cham: Springer International Publishing, 2020, pp. 127–147.
doi:10.1007/978-3-030-32489-6_5

[31] G. Bjerknes, P. Ehn, and M. Kyng, Eds., Computers and democracy: a
Scandinavian challenge, repr ed. Aldershot, Hampshire: Avebury, 1989.

[32] S. Costanza-Chock, Design Justice: Community-Led Practices to Build the
Worlds We Need. The MIT Press, 2020.

[33] R. M. Emerson, R. I. Fretz, and L. L. Shaw, Writing ethnographic field-
notes, ser. Chicago guides to writing, editing, and publishing. University
of Chicago Press, 2011.

[34] M. Hammersley and P. Atkinson, Ethnography : principles in practice,
4th ed. London :: Routledge, London, 2019.

[35] K. Charmaz, Constructing grounded theory, 2nd ed., ser. Introducing qual-
itative methods. London, UK: Sage, 2014, OCLC: ocn878133162.

[36] G. Klein, Sources of Power : How People Make Decisions. Cambridge,
Mass., USA: The MIT Press, 1998.

[37] A. Bosu, M. Greiler, and C. Bird, “Characteristics of Useful Code Reviews:
An Empirical Study at Microsoft,” in Proceedings of the 12th Working Con-
ference on Mining Software Repositories, ser. MSR ’15. IEEE Press, 2015,
pp. 146–156, event-place: Florence, Italy. doi:10.5555/2820518.2820538

[38] A. Alami, M. Leavitt Cohn, and A. Wasowski, “Why Does Code Review
Work for Open Source Software Communities?” in 2019 IEEE/ACM 41st
International Conference on Software Engineering (ICSE), 2019, pp. 1073–
1083. doi:10.1109/ICSE.2019.00111

https://doi.org/10.1111/j.1467-6486.2004.00430.x
https://doi.org/10.2307/25148625
https://doi.org/10.1007/s10664-020-09818-7
https://doi.org/10.1007/978-3-030-32489-6_5
https://doi.org/10.5555/2820518.2820538
https://doi.org/10.1109/ICSE.2019.00111

References 103

[39] M. V. Mäntylä and C. Lassenius, “What Types of Defects Are Really Dis-
covered in Code Reviews?” IEEE Transactions on Software Engineering,
vol. 35, no. 3, pp. 430–448, 2009.

[40] A. Bosu and J. C. Carver, “Impact of peer code review on peer impression
formation: A survey,” in 2013 ACM/IEEE International Symposium on Em-
pirical Software Engineering and Measurement. IEEE, 2013, pp. 133–142.
doi:10.1109/ESEM.2013.23

[41] Statistia, “Number of software developers worldwide in 2018 to 2024,”
2023, accessed 2025-01-15. Available: https://www.statista.com/statistics/
627312/worldwide-developer-population/

[42] F. Bagirov, P. Derakhshanfar, A. Kalina, E. Kartysheva, and V. Kovalenko,
“Assessing the Impact of File Ordering Strategies on Code Review Pro-
cess,” in Proceedings of the 27th International Conference on Evaluation
and Assessment in Software Engineering. ACM, 2023, pp. 188–191.
doi:10.1145/3593434.3593462

[43] T. Baum, “Cognitive-support code review tools : improved efficiency
of change-based code review by guiding and assisting reviewers,” Ph.D.
dissertation, Universität Hannover, 2019, publisher: Hannover : Institu-
tionelles Repositorium der Universität Hannover.

[44] T. Baum and K. Schneider, “On the Need for a New Generation of
Code Review Tools,” in Product-Focused Software Process Improvement,
P. Abrahamsson, A. Jedlitschka, A. Nguyen Duc, M. Felderer, S. Amasaki,
and T. Mikkonen, Eds. Springer International Publishing, 2016,
vol. 10027, pp. 301–308, series Title: Lecture Notes in Computer
Science. Available: http://link.springer.com/10.1007/978-3-319-49094-6_
19. doi:10.1007/978-3-319-49094-6_19

[45] E. Söderberg, L. Church, J. Börstler, D. C. Niehorster, and C. Ryden-
fält, “What’s Bothering Developers in Code Review?” in Proceedings
of the 44th International Conference on Software Engineering: Software
Engineering in Practice, ser. ICSE-SEIP ’22. Association for Comput-
ing Machinery, 2022, pp. 341–342, event-place: Pittsburgh, Pennsylvania.
doi:10.1145/3510457.3513083

[46] O. Kononenko, O. Baysal, and M. W. Godfrey, “Code Review Qual-
ity: How Developers See It,” in Proceedings of the 38th International
Conference on Software Engineering, ser. ICSE ’16. Association for
Computing Machinery, 2016, pp. 1028–1038, event-place: Austin, Texas.
doi:10.1145/2884781.2884840

https://doi.org/10.1109/ESEM.2013.23
https://www.statista.com/statistics/627312/worldwide-developer-population/
https://www.statista.com/statistics/627312/worldwide-developer-population/
https://doi.org/10.1145/3593434.3593462
http://link.springer.com/10.1007/978-3-319-49094-6_19
http://link.springer.com/10.1007/978-3-319-49094-6_19
https://doi.org/10.1007/978-3-319-49094-6_19
https://doi.org/10.1145/3510457.3513083
https://doi.org/10.1145/2884781.2884840

104 BIBLIOGRAPHY

[47] L. MacLeod, M. Greiler, M.-A. Storey, C. Bird, and J. Czerwonka, “Code
Reviewing in the Trenches: Challenges and Best Practices,” IEEE Software,
vol. 35, no. 4, pp. 34–42, 2018. doi:10.1109/MS.2017.265100500

[48] P. Liamputtong, Focus Group Methodology: Principle and Practice.
SAGE Publications Ltd„ 2011.

[49] M. Steen, “Co-Design as a Process of Joint Inquiry and Imagination,” De-
sign Issues, vol. 29, no. 2, pp. 16–28, 2013. doi:10.1162/DESI_a_00207

[50] J. Johnson and A. Henderson, “Conceptual models: begin by designing
what to design,” interactions, vol. 9, no. 1, pp. 25–32, 2002.

[51] Y.-n. Chang, Y.-k. Lim, and E. Stolterman, “Personas: from theory to prac-
tices,” in Proceedings of the 5th Nordic conference on Human-computer
interaction: building bridges, 2008, pp. 439–442.

[52] Q. U. Ain, W. H. Butt, M. W. Anwar, F. Azam, and B. Maq-
bool, “A Systematic Review on Code Clone Detection,” IEEE Ac-
cess, vol. 7, pp. 86 121–86 144, 2019, conference Name: IEEE Access.
doi:10.1109/ACCESS.2019.2918202

[53] T. Baum, K. Schneider, and A. Bacchelli, “Associating working mem-
ory capacity and code change ordering with code review performance,”
Empirical Software Engineering, vol. 24, no. 4, pp. 1762–1798, 2019.
doi:10.1007/s10664-018-9676-8

[54] N. Dell, V. Vaidyanathan, I. Medhi, E. Cutrell, and W. Thies, “" Yours is
better!" participant response bias in HCI,” in Proceedings of the sigchi con-
ference on human factors in computing systems, 2012, pp. 1321–1330.

[55] L. Pascarella, D. Spadini, F. Palomba, M. Bruntink, and A. Bacchelli,
“Information Needs in Contemporary Code Review,” Proceedings of the
ACM on Human-Computer Interaction, vol. 2, no. CSCW, pp. 1–27, 2018.
doi:10.1145/3274404

[56] P. W. Gonçalves, E. Fregnan, T. Baum, K. Schneider, and A. Bacchelli,
“Do explicit review strategies improve code review performance?
Towards understanding the role of cognitive load,” Empirical Software
Engineering, vol. 27, no. 4, p. 99, 2022. Available: https://doi.org/10.1007/
s10664-022-10123-8. doi:10.1007/s10664-022-10123-8

[57] P. Antonenko, F. Paas, R. Grabner, and T. Van Gog, “Using Electroen-
cephalography to Measure Cognitive Load,” Educational Psychology Re-
view, vol. 22, no. 4, pp. 425–438, 2010. doi:10.1007/s10648-010-9130-y

https://doi.org/10.1109/MS.2017.265100500
https://doi.org/10.1162/DESI_a_00207
https://doi.org/10.1109/ACCESS.2019.2918202
https://doi.org/10.1007/s10664-018-9676-8
https://doi.org/10.1145/3274404
https://doi.org/10.1007/s10664-022-10123-8
https://doi.org/10.1007/s10664-022-10123-8
https://doi.org/10.1007/s10664-022-10123-8
https://doi.org/10.1007/s10648-010-9130-y

References 105

[58] F. A. Fishburn, M. E. Norr, A. V. Medvedev, and C. J. Vaidya, “Sensitivity
of fNIRS to cognitive state and load,” Frontiers in Human Neuroscience,
vol. 8, 2014. doi:10.3389/fnhum.2014.00076

[59] A. F. Ackerman, P. J. Fowler, and R. G. Ebenau, “Software inspections and
the industrial production of software,” in Proc. of a symposium on Software
validation: inspection-testing-verification-alternatives, 1984, pp. 13–40.

[60] N. Davila and I. Nunes, “A systematic literature review and taxonomy of
modern code review,” Journal of Systems and Software, vol. 177, p. 110951,
2021. doi:10.1016/j.jss.2021.110951

[61] L. Gullstrand Heander, E. Söderberg, and C. Rydenfält, “Design of Flexible
Code Block Comparisons to Improve Code Review of Refactored Code,”
in Companion Proceedings of the 8th International Conference on the Art,
Science, and Engineering of Programming, ser. Programming ’24. ACM,
2024, p. 57–67. doi:10.1145/3660829.3660842

[62] C. Sadowski, J. Van Gogh, C. Jaspan, E. Soderberg, and C. Winter, “Tri-
corder: Building a program analysis ecosystem,” in 2015 IEEE/ACM 37th
IEEE International Conference on Software Engineering, vol. 1. IEEE,
2015, pp. 598–608.

[63] A. Ljungberg, D. Åkerman, E. Söderberg, G. Lundh, J. Sten, and L. Church,
“Case study on data-driven deployment of program analysis on an open
tools stack,” in 2021 IEEE/ACM 43rd International Conference on Software
Engineering: Software Engineering in Practice (ICSE-SEIP). IEEE, 2021,
pp. 208–217.

[64] R. G. Kula et al., “Using Profiling Metrics to Categorise Peer Review Types
in the Android Project,” in 2012 IEEE 23rd International Symposium on
Software Reliability Engineering Workshops. IEEE, 2012, pp. 146–151.

[65] E. Doğan and E. Tüzün, “Towards a taxonomy of code review smells,”
Information and Software Technology, vol. 142, p. 106737, 2022.
doi:10.1016/j.infsof.2021.106737

[66] C. Packer et al., “MemGPT: Towards LLMs as Operating Systems,” 2024.
Available: http://arxiv.org/abs/2310.08560

[67] F. Hajari, S. Malmir, E. Mirsaeedi, and P. C. Rigby, “Factoring Exper-
tise, Workload, and Turnover into Code Review Recommendation,” 2023.
doi:10.48550/arXiv.2312.17236

[68] B. Hui et al., “Qwen2.5-Coder Technical Report,” 2024.
doi:10.48550/ARXIV.2409.12186

https://doi.org/10.3389/fnhum.2014.00076
https://doi.org/10.1016/j.jss.2021.110951
https://doi.org/10.1145/3660829.3660842
https://doi.org/10.1016/j.infsof.2021.106737
http://arxiv.org/abs/2310.08560
https://doi.org/10.48550/arXiv.2312.17236
https://doi.org/10.48550/ARXIV.2409.12186

106 BIBLIOGRAPHY

[69] E. Chen, R. Huang, H.-S. Chen, Y.-H. Tseng, and L.-Y. Li, GPTutor: A
ChatGPT-Powered Programming Tool for Code Explanation. Springer
Nature Switzerland, 2023, pp. 321–327.

[70] F. Hein, “The Blame Game,” IEEE Software, vol. 15, no. 6, pp. 89–91,
1998.

[71] M. M. Rahman and C. K. Roy, “Impact of Continuous Integration on Code
Reviews,” in 2017 IEEE/ACM 14th International Conference on Mining
Software Repositories (MSR). IEEE, 2017, pp. 499–502.

[72] M. Unterkalmsteiner, D. Badampudi, R. Britto, and N. B. Ali, “Help Me
to Understand this Commit!-A Vision for Contextualized Code Reviews,”
in Proceedings of the 1st ACM/IEEE Workshop on Integrated Development
Environments, 2024, pp. 18–23. doi:10.1145/3643796.3648447

[73] Y. Almeida et al., “AICodeReview: Advancing Code Quality with AI-
enhanced Reviews,” SoftwareX, vol. 26, p. 101677, 2024.

[74] L. Wang et al., “Unity Is Strength: Collaborative LLM-Based Agents for
Code Reviewer Recommendation,” in Proceedings of the 39th IEEE/ACM
International Conference on Automated Software Engineering. ACM,
2024, pp. 2235–2239. doi:10.1145/3691620.3695291

[75] L. Yang et al., “A preliminary investigation on using multi-task learning
to predict change performance in code reviews,” Empirical Software Engi-
neering, vol. 29, no. 6, p. 157, 2024. doi:10.1007/s10664-024-10526-9

[76] C. S. Lee and C. M. Hicks, “Understanding and effectively mitigating code
review anxiety,” Empirical Software Engineering, vol. 29, no. 6, p. 161,
2024. doi:10.1007/s10664-024-10550-9

[77] H. Dubberly and P. Pangaro, Cybernetics and Design: Conversations for
Action. Springer International Publishing, 2019, pp. 85–99.

[78] L. Church, E. Söderberg, and A. McCabe, “Breaking down and making up-a
lens for conversing with compilers,” in Psychology of Programming Interest
Group Annual Workshop 2021, 2021.

[79] S. I. Ross, F. Martinez, S. Houde, M. Muller, and J. D. Weisz, “The Pro-
grammer’s Assistant: Conversational Interaction with a Large Language
Model for Software Development,” in Proceedings of the 28th International
Conference on Intelligent User Interfaces. ACM, 2023, pp. 491–514.

[80] Y. Wang et al., “Agents in Software Engineering: Survey, Landscape, and
Vision,” 2024. Available: https://arxiv.org/abs/2409.09030

https://doi.org/10.1145/3643796.3648447
https://doi.org/10.1145/3691620.3695291
https://doi.org/10.1007/s10664-024-10526-9
https://doi.org/10.1007/s10664-024-10550-9
https://arxiv.org/abs/2409.09030

References 107

[81] DORA, “Accelerate State of DevOps 2024,” DORA, Tech. Rep., 2024.
Available: https://dora.dev/research/2024/dora-report/

[82] A. Froemmgen et al., “Resolving Code Review Comments with Machine
Learning,” in Proceedings of the 46th International Conference on Software
Engineering: Software Engineering in Practice. ACM, 2024, pp. 204–215.
doi:10.1145/3639477.3639746

[83] L. Gullstrand Heander, E. Söderberg, and C. Rydenfält, “Support,
Not Automation: Towards AI-supported Code Review for Code Qual-
ity and Beyond,” in In 33rd ACM International Conference on the
Foundations of Software Engineering (FSE Companion ’25), 2025.
doi:10.1145/3696630.3728505

[84] A. Krause-Glau, L. Damerau, M. Hansen, and W. Hasselbring, “Vi-
sual Integration of Static and Dynamic Software Analysis in Code Re-
views via Software City Visualization,” 2024, version Number: 1.
doi:10.48550/ARXIV.2408.08141

[85] P. Dourish, Where the action is: the foundations of embodied interaction.
MIT Press, Cambridge, Mass., 2001.

[86] R. Rosenberger and P.-P. Verbeek, “A field guide to postphenomenology,”
Postphenomenological investigations: Essays on human-technology rela-
tions, pp. 9–41, 2015.

[87] I. Ajzen, “The theory of planned behavior,” Organizational Behavior
and Human Decision Processes, vol. 50, no. 2, pp. 179–211, 1991.
doi:10.1016/0749-5978(91)90020-T

[88] G. Kudrjavets, A. Kumar, N. Nagappan, and A. Rastogi, “Mining Code Re-
view Data to Understand Waiting Times between Acceptance and Merging:
An Empirical Analysis,” in Proceedings of the 19th International Confer-
ence on Mining Software Repositories, ser. MSR ’22. Association for
Computing Machinery, 2022, pp. 579–590, event-place: Pittsburgh, Penn-
sylvania. doi:10.1145/3524842.3528432

[89] M. Dorner, D. Mendez, K. Wnuk, E. Zabardast, and J. Czerwonka, “The
upper bound of information diffusion in code review,” Empirical Software
Engineering, vol. 30, no. 1, p. 2, 2025. doi:10.1007/s10664-024-10442-y

[90] F. Coelho, N. Tsantalis, T. Massoni, and E. L. G. Alves, “A qualitative study
on refactorings induced by code review,” Empirical Software Engineering,
vol. 30, no. 1, p. 17, 2025. doi:10.1007/s10664-024-10560-7

[91] H. A. Simon, “A Behavioral Model of Rational Choice,” The Quarterly
Journal of Economics, vol. 69, no. 1, pp. 99–118, 1955. Available:
http://www.jstor.org/stable/1884852

https://dora.dev/research/2024/dora-report/
https://doi.org/10.1145/3639477.3639746
https://doi.org/10.1145/3696630.3728505
https://doi.org/10.48550/ARXIV.2408.08141
https://doi.org/10.1016/0749-5978(91)90020-T
https://doi.org/10.1145/3524842.3528432
https://doi.org/10.1007/s10664-024-10442-y
https://doi.org/10.1007/s10664-024-10560-7
http://www.jstor.org/stable/1884852

108 BIBLIOGRAPHY

[92] A. Tversky and D. Kahneman, “The framing of decisions and the psy-
chology of choice,” science, vol. 211, no. 4481, pp. 453–458, 1981.
doi:10.1126/science.7455683

[93] S. W. Dekker, “Reconstructing human contributions to accidents: the new
view on error and performance,” Journal of safety research, vol. 33, no. 3,
pp. 371–385, 2002. doi:10.1016/S0022-4375(02)00032-4

[94] A. Tversky and D. Kahneman, “Judgment under Uncertainty: Heuris-
tics and Biases: Biases in judgments reveal some heuristics of thinking
under uncertainty.” science, vol. 185, no. 4157, pp. 1124–1131, 1974.
doi:10.1126/science.185.4157.1124

[95] V. Braun and V. Clarke, “Using thematic analysis in psychology,”
Qualitative Research in Psychology, vol. 3, no. 2, pp. 77–101, 2006.
doi:10.1191/1478088706qp063oa

[96] V. Clarke and V. Braun, “Thematic Analysis,” The Journal
of Positive Psychology, vol. 12, no. 3, pp. 297–298, 2017.
doi:10.1080/17439760.2016.1262613

[97] L. Birt, S. Scott, D. Cavers, C. Campbell, and F. Walter, “Member Check-
ing: A Tool to Enhance Trustworthiness or Merely a Nod to Valida-
tion?” Qualitative Health Research, vol. 26, no. 13, pp. 1802–1811, 2016.
doi:10.1177/1049732316654870

[98] J. Saldaña, The coding manual for qualitative researchers, 3rd ed. Thou-
sand Oaks, CA: Sage Publications, 2015.

[99] S. McIntosh, Y. Kamei, B. Adams, and A. E. Hassan, “An empirical
study of the impact of modern code review practices on software qual-
ity,” Empirical Software Engineering, vol. 21, no. 5, pp. 2146–2189, 2016.
doi:10.1007/s10664-015-9381-9

[100] S. Liu, A. H. B. Duffy, R. I. Whitfield, and I. M. Boyle, “Integration
of Decision Support Systems to Improve Decision Support Performance,”
Knowledge and Information Systems, vol. 22, no. 3, pp. 261–286, 2010.
doi:10.1007/s10115-009-0192-4

[101] GitHub Inc., “GitHub Code Review,” 2025, accessed 2025-02-27.
Available: https://github.com/features/code-review

[102] Gerrit, “User Guide,” 2025, accessed 2025-02-27. Available: https:
//gerrit-review.googlesource.com/Documentation/intro-user.html

[103] D. Russo et al., “Generative AI in Software Engineering Must Be
Human-Centered: The Copenhagen Manifesto,” Journal of Systems

https://doi.org/10.1126/science.7455683
https://doi.org/10.1016/S0022-4375(02)00032-4
https://doi.org/10.1126/science.185.4157.1124
https://doi.org/10.1191/1478088706qp063oa
https://doi.org/10.1080/17439760.2016.1262613
https://doi.org/10.1177/1049732316654870
https://doi.org/10.1007/s10664-015-9381-9
https://doi.org/10.1007/s10115-009-0192-4
https://github.com/features/code-review
https://gerrit-review.googlesource.com/Documentation/intro-user.html
https://gerrit-review.googlesource.com/Documentation/intro-user.html

References 109

and Software, vol. 216, p. 112115, 2024, publisher: Elsevier BV.
doi:10.1016/j.jss.2024.112115

[104] M. D. LeCompte and J. P. Goetz, “Problems of Reliability and Validity in
Ethnographic Research,” Review of Educational Research, vol. 52, no. 1,
pp. 31–60, 1982. doi:10.3102/00346543052001031

https://doi.org/10.1016/j.jss.2024.112115
https://doi.org/10.3102/00346543052001031

	Abstract
	Acknowledgements
	List of Publications
	Introduction
	Introduction
	Modern Code Review
	Related Work
	Methodology
	Contributions
	Conclusions
	Future Work

	Included Papers
	Design of Flexible Code Block Comparisons to Improve Code Review of Refactored Code
	Introduction
	Method
	Results
	Discussion
	Conclusions

	Appendices
	Appendix Focus Group Design Brief
	Appendix Co-Design Workshop
	Appendix Prototype Evaluation Questions

	Support, Not Automation: Towards AI-supported Code Review for Code Quality and Beyond
	Introduction
	Today's Code Review and Its User Needs
	Design Proposal
	Analysis of Design
	Related Work
	Research Agenda

	Code Review as Decision-Making —Building a Cognitive Model from the Questions Asked During Code Review
	Introduction
	Background and Related Work
	Methodology
	Results
	Theory
	Discussion
	Threats to Validity
	Conclusions

	Bibliography
	Bibliography

