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Abstract

Accurate and efficient evaluation of the stored energy is essential for Q-factors, physical
bounds, and antenna current optimization. Here, it is shown that the stored energy can
be estimated from quadratic forms based on a state-space representation derived from the
electric and magnetic field integral equations. The derived expressions are valid for small
antennas embedded in temporally dispersive and inhomogeneous media. The quadratic forms
also provide simple single frequency formulas for the corresponding Q-factors. Numerical
examples comparing the different Q-factors are presented for dipole and meander line antennas
in conductive, Debye, and Lorentz media for homogeneous and inhomogeneous media. The
computed Q-factors are also verified with the Q-factor obtained from the stored energy in
Brune synthesized circuit models.

1 Introduction
Antennas are placed in the proximity of, or inside, lossy media in applications involving mobile
phones, body area networks, implants, submarines, and plasmonics [2, 41, 54]. The losses in
such systems are associated with conduction or relaxation phenomena. These effects lead to a
frequency dependent permittivity, and hence temporal dispersion. Temporal dispersion is present
in natural [4, 33, 39] and artificial materials [6, 9, 15]. Dispersion can often be neglected for
antenna modeling in the microwave range, but it is usually necessary for modeling of phenomena
in the mm, THz, and optical range. Electromagnetic energy density in dispersive media builds on
the classical results in [39] with extensions to applications such as antennas, metamaterials, and
photonics [45, 48, 53, 58].

Stored energy is instrumental for antenna analysis in terms of the Q-factor [8, 11, 14, 24, 27, 51,
59]. In [29, 57, 58] stored energy is considered for small antennas composed of dispersive or lossy
media, embedded in free space. However, when calculating stored energy for antennas embedded
in lossy background media, new challenges arise. The classical subtraction technique, where the
energy in the far-field is subtracted from the total energy density, is difficult to generalize to lossy
media due to the exponential decay of the far-field and its associated coordinate dependence [42].
Here, we follow the approach [17, 31, 49] and express the stored energy and Q-factors in terms of
the current density on the antenna structure. The derivation is based on a state-space represen-
tation [55] together with frequency differentiation of the method of moments (MoM) impedance
matrix.

Stored energy is investigated for state-space models in [55], where it is shown that the stored
energy is associated with minimal systems having internal symmetry, i.e., reciprocity. We use
this approach to construct symmetric state-space models for antennas in dispersive media, and
calculate their stored energy. The explicit results are given for conductivity, Debye, Drude, and
Lorentz models and are simply generalized to models with multiple terms [4, 33, 39]. The resulting
models are classical state-space models for small antennas, but contain a phase shift (time delay)
for larger structures that is not considered in [55]. Here, we use a local approximation based on
differentiation with respect to the frequency to include time-delay effects [26]. In total, this offers
a stored energy that is identical to the stored energy defined by subtraction of the far-field energy
term for the free space coordinate independent case [22]. Moreover, the stored energy derived from
the state-space model in dispersive media equals the stored energy determined from synthesized
circuit models for small antennas.

This paper is organized as follows. In Sec. 2, the Q-factor and stored energies are discussed.
A state-space model based on the MoM impedance matrix and its stored energy is introduced in
Sec. 3. The state-space models and stored energies are generalized to temporally dispersive and
inhomogeneous media in Secs 4 and 5, respectively. The paper is concluded in Sec. 6. The symbol
( *) is used to indicate that a figure can be animated.
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Figure 1: The three different approaches to express stored energy, electromagnetic fields, current
density, and input impedance. Here all are illustrated for the same capacitive dipole. a) snapshot
of the magnetic field around the antenna. b) stored energy density around the antenna. c) current
density on the antenna. d) input impedance and circuit model for the antenna.

2 Stored energy, Q factor, and state-space models
Stored energy for antennas is a concept which arose by necessity to calculate the Q-factor [11, 27,
43, 51, 59]. The Q-factor measures how well an oscillating system stores energy as opposed to
dissipating it. The Q-factor for an antenna tuned to resonance is defined as [27, 51, 59]

Q =
2ωmax{We,Wm}

Pd
= ω

W + |Wm −We|
Pd

, (2.1)

where W = We + Wm, We, and Wm denote the stored electromagnetic, electric, and magnetic
energies, respectively, ω is the angular frequency, and Pd is the dissipated power. The dissipated
power Pd and energy difference Wm −We are well defined and follows directly from Poynting’s
theorem [19, 22]. Because of its relation to the bandwidth the Q-factor is an important parameter
for antenna design. Thus it has become imperative to define stored energy for antennas [8, 11, 27,
51, 59]. However, this is not trivial as electromagnetic fields, current densities, and circuit models
can give different interpretations of the stored energy, see Fig. 1. In this section follows a brief
overview of previous methods used to define stored energy.

The classical way of interpreting stored energy is as the energy stored in the fields that radiate
from the antenna, but do not escape its vicinity, see Fig. 1b. This naturally leads to the subtraction
calculation method, where the stored energy, WF, is calculated by subtracting the power flow or
the far-field power from the total energy [14, 16, 27, 51, 59]. Subtraction of the far-field term yields

WF =
1

4

∫
R3

r

ε|E(r)|2 + µ|H(r)|2 − 2ε
|F (r̂)|2
r2

dV, (2.2)

where ε is the permittivity, µ is the permeability, E and H are the electric and magnetic fields,
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and F (r̂) is the electric far-field; F ∼ ejkrrE as r →∞ with r = |r| and r̂ = r/r. This definition
of stored energy has been generally accepted since the classical work by Collin and Rothschild [14],
see also [16, 40, 59]. The stored energy (2.2) can also be expressed in the current density on the
antenna structure [18, 22, 49, 50], see Fig. 1c. This simplifies the evaluation of stored energy
and enables antenna current optimization [7, 23, 24, 25, 34]. The main drawbacks with (2.2) are
possible coordinate dependence [22, 59] and negative stored energies [25, 59]. Moreover, as soon
as losses are introduced in the background material, the far-field vanishes, i.e., F (r̂) = 0. This
implies thatWF equals the total energy and it is hence not possible to distinguish the stored energy
from the total energy in lossy backgrounds using (2.2) [59].

Using the same concept of stored energy defined as energy in the fields around the antenna,
subtraction of the power flow from the energy density suggests the stored energy

WP =
1

4

∫
R3

r

ε|E(r)|2 + µ|H(r)|2 − 4|√εµP (r)|dV, (2.3)

where P = 1
2 Re{E ×H

∗} is the time-average Poynting vector. This definition is coordinate in-
dependent and can be used in inhomogeneous and lossy backgrounds. However, the integral needs
to be evaluated numerically and it is not clear how to generalize the formulation to temporally
dispersive backgrounds. As an alternative, the radial component of the Poynting vector r̂ · P
can be subtracted instead of the far-field amplitude [14, 40]. This leads to a coordinate depen-
dent expression that differs from (2.2) by the radiated energy of the standing waves within the
structure [22].

The problems with (2.2) and (2.3) call for alternative methodologies to define and evaluate
the stored energy. To circumvent some of these problems, we consider the stored energy for the
antenna as the stored energy seen from the input impedance, Zin, see Fig. 1d. This has several
advantages, such as being related to the impedance bandwidth, coordinate independent, and valid
in arbitrary surrounding materials.

The input-impedance is separated into a resistive and reactive part, where the resistive part
relates to dissipated energy and the reactive part relates to stored energy. For a lumped circuit
network the reactance is proportional to the difference between energy stored capacitively and
energy stored inductively

Zin = Rin + jXin =
2Pd + 4jω(Wm −We)

|Iin|2
, (2.4)

where Rin is the input resistance, Xin the input reactance, and Iin the input current. The input
impedance of the antenna can be modeled with circuit elements using, e.g., Brune synthesis [5,
21], see also Fig. 1d. Kirchoff’s laws are used to relate the currents I and voltages V = ZI via the
impedance matrix Z, in the circuit network. The impedance matrix is further decomposed in its
resistance R, inductance L, and capacitance C = C−1i matrices:

Z = R + jX = R + jωL +
1

jω
Ci = R + sL +

1

s
Ci, (2.5)

where s is the Laplace parameter. The impedance matrix (2.5) can be considered as a second order
state-space model for the input impedance Zin = Vin/Iin with the input V = BVin and output
Iin = BTI, where the superscript T denotes the transpose. For the analysis in the paper, the
second order state-space model (2.5) is rewritten as the first order model [55]

s

(
L 0
0 C

)(
I
U

)
+

(
R 1
−1 0

)(
I
U

)
=

(
sL + R 1
−1 sC

)(
I
U

)
=

(
V
0

)
or Z̃Ĩ = Ṽ, (2.6)

where the voltage state U = 1
sCiI is introduced, and 1 is the identity matrix. The time-domain

(s→ ∂
∂t ) stored energy is defined from the energy balance that is derived by multiplication of (2.6)

with the states, (I U)T, from the left and temporal integration, i.e.,[
IT(t)LI(t) + UT(t)CU(t)

2

]t2
t1

+

∫ t2

t1

IT(t)RI(t) dt =

∫ t2

t1

IT(t)V(t) dt, (2.7)
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where for notational simplicity the time t is used to define time-domain quantities. The first and
second terms in the left-hand side are identified as the change of stored energy and dissipated
energy during the time interval [t1, t2], respectively. The right-hand side is the supplied energy
during the same period. The time-average stored energy for a time-harmonic signal in (2.7) is
alternatively obtained from the quadratic form constructed from the matrix multiplying s in (2.6),
i.e.,

W =
IHLI

4
+

UHCU

4
=

IHLI

4
+

IHCH
i CCiI

4ω2
=

1

4
IH
(

L +
Ci

ω2

)
I =

IHX′I
4

=
ĨHX̃′Ĩ

4
, (2.8)

where the superscripts H and prime ′ denotes the conjugate transpose and differentiation with
respect to ω, respectively, and Z̃ = R̃+ jX̃. It is essential that the matrices L = LT and Ci = CT

i

are symmetric, frequency independent, and real valued to determine the stored energy [55].
The stored energy expression (2.8) is a Hermitian quadratic form in terms of the frequency

derivative of the reactance or state-space reactance matrix. The difference between the stored
magnetic and electric energies (2.4) gives the explicit formulas for the stored magnetic and electric
energies

Wm =
1

8
IH
(
∂X

∂ω
+

X

ω

)
I =

1

4
IHLI (2.9)

and
We =

1

8
IH
(
∂X

∂ω
− X

ω

)
I =

1

4ω2
IHCiI, (2.10)

respectively. The stored energy (2.8) can hence be interpreted as the sum of the electric energy in
the capacitors and the magnetic energy in the inductors. The relations (2.9) and (2.10) resemble
the expressions in [19, 30] for the input impedance of single and array antennas. Here, it is
essential to note that (2.9) and (2.10) are expressed in the state-space matrix and not in the input
impedance, cf., [19, 30]. The expressions based on the input impedance are only valid for single
resonance RLC circuits and lossless circuit networks [30]. The Brune synthesized circuit and the
state-space representation are mathematical models created from a rational approximation of the
input impedance. Here, it is also important to realize that the circuit model is non-unique and
that there are several methods to synthesize circuit models [56].

The Q-factor (2.1) is expressed in the reactance matrix and its frequency derivative as

Q =
max{IH(ωX′ ±X)I}

2IHRI
=
ωIHX′I + |IHXI|

2IHRI
, (2.11)

where we used the time average dissipated power Pd = 1
2 Re{IHV} = 1

2IHRI. The Q-factor (2.11)
is determined from the input impedance (2.4) and hence related to the fractional bandwidth of
the antenna. However, the dependence on the input impedance is also the main draw back of
this method, as it is based on the antenna geometry including its feed. In this paper we view the
antenna as a black box system, but instead of synthesizing an equivalent circuit model we create
a state-space model based on the MoM impedance matrix.

We consider antennas in an inhomogeneous temporally dispersive background medium, see
Fig. 2. The background medium has permittivity ε = ε0εr and permeability µ = µ0µr which
depend on the angular frequency ω or Laplace parameter s = jω. The wave impedance η =

√
µ/ε,

the index of refraction n =
√
s2εrµr/s, the wavenumber k = −jκ, where κ =

√
s2εµ, speed of

light c0 = 1/
√
ε0µ0, and the intrinsic impedance of vacuum η0 =

√
µ0/ε0 are also used to simplify

the notation. To start, we restrict the analysis to electric surface current densities in free space in
Sec. 3. This case is thoroughly analyzed using (2.2) in [21, 22, 49, 50]. The background material is
subsequently generalized to temporally dispersive in Sec. 4, piecewise inhomogeneous in Sec. 5.1,
and inhomogeneous in Sec. 5.2.
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Figure 2: Illustration of an antenna geometry composed of three materials modeled by their per-
mittivity εn and permeability µn, n = 1, 2, 3 in the regions Ωn. The electromagnetic fields are
denoted En and Hn in Ωn. The equivalent (surface) currents Jm and Mm have support on the
boundary between Ωm and Ωm+1, m = 1, 2. (left) three dimensional and (right) two dimensional
cut.

3 Stored energy for antennas in free space
The state-space model is based on the electric field integral equation (EFIE) impedance matrix Z.
A standard MoM implementation of the EFIE determines the impedance matrix [10, 44, 52] which
can be written as

Z = sµL +
1

sε
Ci = ηκL +

η

κ
Ci, (3.1)

where the matrices L and Ci depend on the wavenumber and have the elements

Lmn =

∫
∂Ω

∫
∂Ω

ψm(r1) ·ψn(r2)
e−jkR12

4πR12
dS1 dS2 (3.2)

and

Cimn =

∫
∂Ω

∫
∂Ω

∇1 ·ψm(r1)∇2 ·ψn(r2)
e−jkR12

4πR12
dS1 dS2, (3.3)

where R12 = |r1 − r2| is the distance between the spatial points r1 and r2 and ∂Ω denotes the
antenna boundary modeled as a perfect electric conductor (PEC). The material parameters are
ε = ε0 and µ = µ0 for the free space case. The basis functions, ψm(r), are assumed to be real valued
and divergence conforming with vanishing normal components at the antenna boundary [30, 44].
The decomposition of the MoM impedance matrix (3.1) resembles the impedance matrix for lumped
circuits (2.5) with the major differences that R is missing and that L and Ci are complex valued
and depend on s in (3.1). The MoM impedance matrix (3.1) can alternatively be decomposed
as (2.5) using the real and imaginary parts, see App. B. It is however advantageous to keep (3.1)
for the presentation in this paper.

The state-space model is constructed for the input impedance, Zin = Vin/Iin, with the voltage
excitation Vin and current output Iin. The current column matrix I contains the expansion coeffi-
cients In for the current density J(r) =

∑N
n=1 Inψn(r) that is determined from the linear system

ZI = V = BVin and Iin = BTI. (3.4)

Inspired by the stored energy in circuit models (2.8) and more general state-space models [55],
we use a state-space approach to determine the stored energy for antennas. This changes the
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interpretation of stored energy from energy stored in the electromagnetic fields to energy stored in
the sources (states), see Fig.1. The state-space model also shows that the stored energy determined
from the current density is related to the stored energy determined from the input impedance for
small antennas ka� 1, where a denotes the radius of the smallest circumscribing sphere [11].

A PEC antenna structure embedded in a homogeneous isotropic media is modeled by the
EFIE (3.1) and (3.4). The system can be written

ZI = (sµL +
1

sε
Ci)I = sµLI + U = V = BVin and Iin = BTI, (3.5)

where a voltage state U = 1
sεCiI is introduced, cf., (2.6), to rewrite the second order system (3.5)

to the first order system

s

(
µL 0
0 εC

)(
I
U

)
=

(
0 −1
1 0

)(
I
U

)
+

(
B
0

)
Vin. (3.6)

The system is a classical state-space model for the free space case, ε = ε0 and µ = µ0, in the limit
of small antennas ka � 1. Moreover the symmetry of the system implies that the stored energy
is defined for minimal representations [55]. Following the approach in Sec. 2, the stored energy
is given by the quadratic form generated by the matrix that multiples s (temporal derivative).
However, the frequency dependence of L and Ci cannot be neglected for finite sized antennas.
Moreover, the matrices L and Ci have an imaginary part for ω > 0, see App. B. To resolve the
issue of frequency dependence, we use differentiation with respect to s of the state-space model to
estimate the term that is proportional to s. This expresses the time average stored energy as

WX̃′ =
1

4
ĨH ∂X̃

∂ω
Ĩ =

Re

4

(
I
U

)H(
µ0(L + ωL′) 0

0 ε0(C + ωC′)

)(
I
U

)
=

Re

4

(
µ0I

H(L + ωL′)I + ε0U
H(C + ωC′)U

)
' Re

4
IH(µ0(L + ωL′) +

1

ω2ε0
(Ci − ωC′i)

)
I =

1

4
IH ∂X

∂ω
I, (3.7)

where C′ = −CC′iC is used and the differentiated matrices have the entries

L′mn =
∂Lmn
∂ω

= −j ∂k
∂ω

∫
∂Ω

∫
∂Ω

ψm(r1) ·ψn(r2)
e−jkR12

4π
dS1 dS2, (3.8)

and

C ′imn =
∂Cimn

∂ω
= −j ∂k

∂ω

∫
∂Ω

∫
∂Ω

∇1 ·ψm(r1)∇2 ·ψn(r2)
e−jkR12

4π
dS1 dS2. (3.9)

The use of frequency differentiation is an approximation to handle the frequency dependence
of L and Ci. The stored energy (3.7) is dominated by the contribution from L and Ci for small
antennas [22] and the contributions from L′ and C′i are lower order corrections. The ' in (3.7) is
used to indicate that we neglect the low order correction term Re{IH(1−C∗i C

−1
i )C′iI} ≈ 0. These

terms are neglected in the remainder of this paper.
The expression (3.7) for the stored energy is identical to the expressions proposed by Harrington

and Mautz [31], and Vandenbosch [49] which is equal to the stored energyWF in (2.2) for the cases
where (2.2) is coordinate independent [22]. The stored electric and magnetic energies, and Q-factor
are determined as for the circuit network case in (2.9) to (2.11). The time average dissipated power
is determined from the Poynting vector and can be expressed as the quadratic form [19, 22, 49]
Pd = 1

2 Re{IHV} = 1
2IHRI. The stored energy expression (3.7) is compared with the stored energy

determined from Brune synthesized circuit models in [21], see also [12, 13, 24, 32]. The results
agree very well for antenna sizes up to approximately half-a-wavelength and Q-factors above 5. The
problems with larger antennas are caused by the frequency dependence of the matrices L (3.2) and
Ci (3.3). This frequency dependence implies that (3.5) is not a first order state-space model, hence,
the frequency differentiation in (3.7) is only an approximation. This interpretation is analogous to
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the difficulties to define the radiated energy in (2.2) and (2.3) for larger antenna structures and
originates in the wave nature of the electromagnetic fields that causes phase, or equivalently time,
shifts. The state-space approach suggest a possible remedy using rational approximations of the
Green’s function in (3.2) and (3.3). The problem with the frequency dependence of L and Ci is,
however, negligible for small antennas with Q� 1 that are the main focus of this paper.

4 Stored energy for temporally dispersive background media
The classical approach to define stored energy by subtraction of the far-field (2.2) is difficult to
generalize to lossy background materials as the far-field vanishes. This implies that WF equals the
total energy in a lossy background and thatWF →∞ as the losses approach zero. Here, we use the
state-space approach to generalize the expressions for the stored energy in Sec. 3 to background
materials with losses and temporally dispersive permittivity in Sec. 4.1, and combined permittivity
and permeability in Sec. 4.2.

4.1 Temporally dispersive permittivity
The MoM impedance matrix in temporally dispersive media is formally identical to the free space
case (3.1) with the use of the complex-valued wavenumber k in the background medium. Con-
sider for simplicity a non-magnetic media with the permittivity described by a single Lorentz
resonance [4, 33]

ε(s) = ε∞ +
α2

β2 + γs+ δs2
= ε∞ +

α2

χ
, (4.1)

where ε∞ is the instantaneous response, α, β, γ, δ are the Lorentz parameters, and χ is introduced
for notational simplicity. This model reduces to conductivity, Debye, and Drude models with
specific parameter choices and is easily extended to multiple resonances. The system (3.5) is
rewritten to a first order system by introduction of the voltage state U, polarization state P, and
its temporal derivative Ṗ = β−1sP, i.e.,

I = sεCU =
(
sε∞ +

sα2

β2 + γs+ δs2

)
CU = sε∞CU + αṖ, (4.2)

where C = C−1i is used for simplicity. Note that Ci has a null space and is not invertible. This is
resolved in the final expressions for the stored energy below. The rational and second order s-term
in αṖ are removed by multiplication with χCi/(sα), i.e.,

αU = (β2 + γs+ δs2)
1

s
CiṖ = βCiP + (γ + δs)CiṖ. (4.3)

Collecting the equations (3.5), (4.2), sCiP = βCiṖ, and (4.3) gives the linear system

Z̃Ĩ =


sµL 1 0 0
−1 sε∞C 0 1α
0 0 sCi −βCi

0 −1α βCi (sδ + γ)Ci




I
U
P

Ṗ

 =


V
0
0
0

 = B̃Vin, (4.4)

with the output Iin = BTI = B̃TĨ, and input Vin. This is a classical state-space representation [55]
in the limit of small antennas, where the s-dependence of the matrices L and Ci is negligible.
Furthermore, the representation is reciprocal with internal symmetry diag(1,−1,−1,1), see [55].

To calculate the stored energy of the system (4.4), the term proportional to s is estimated by
differentiation with respect to s

∂Z̃

∂s
=


µL + ωµL′ 0 0 0

0 ε∞C + ωε∞C′ 0 0
0 0 Ci + ωC′i jβC′i
0 0 −jβC′i δCi + (ωδ − jγ)C′i

 , (4.5)
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where frequency dependence of the matrices L and Ci are approximated locally using frequency
differentiation [26]. The stored energy is finally calculated by the quadratic form obtained by
multiplication of (4.5) with the states from the left and right. A closed form expressions is derived
by back substitution of the explicit expressions of the states expressed in the current I. Use that
CU = 1

sεI, Ṗ = s
βP, P = αβ

sεχI, and

β
(
−PHC′iṖ + ṖHC′iP

)
=
(
−jωPHC′iP− jωPHC′iP

)
= −2jωPHC′iP

to express the stored energy as

WX̃′ =
Re

4
IH
(
µL +

ε∞
|ωε|2 Ci + ωµL′ − ωε∞

|ωε|2 C′i

)
I

+
Re

4
PH

(
Ci + Ciδ

ω2

β2
+ ωC′i + ω2ωδ − jγ

β2
C′i − 2ωC′i

)
P, (4.6)

where the low-order term in (3.7) is neglected. The second part multiplying P can be written as

(β2 + δω2)Ci − ω(β2 − ω2δ + jωγ)C′i = (β2 + δω2)Ci − ωχC′i, (4.7)

that together with elimination of P express the stored energy as the quadratic form

WX̃′ =
Re

4
IH
(
µL +

ε∞
|ωε|2 Ci + ωµL′ − ωε∞

|ωε|2 C′i +
α2
(
(β2 + ω2δ)Ci − ωχC′i

)
|ωε|2|χ|2

)
I (4.8)

in the current I. The solution simplifies for the reduced models, e.g., the conductivity model
ε = ε∞ + σ/s with α2/γ = σ, β = δ = 0, and χ = sγ has the stored energy

WX̃′ =
Re

4
IH
(
µL +

ε∞
ω2ε2∞ + σ2

Ci + ωµL′ − jσ + ωε∞
ω2ε2∞ + σ2

C′i

)
I. (4.9)

It is also straight forward to generalize the stored energy expressions to multiple resonances.
We follow (2.9), (2.10), and (2.11) to determine the stored electric and magnetic energies and

Q-factor for the state-space model. The frequency derivative of the state-space matrix X̃′ produces
the quadratic forms for the stored energies in (3.7), i.e.,

WX̃′ =WeX̃′ +WmX̃′ =
1

4
ĨH ∂X̃

∂ω
Ĩ =

1

4ω
IH(Xe + Xm)I, (4.10)

where (4.8) is used to introduce the electric, Xe, and magnetic, Xm, reactance matrices for dis-
persive media [23, 24]. The difference between the stored magnetic and electric energies give the
explicit formulas for the stored magnetic and electric energies

WmX̃′ =
1

8
ĨH

(
∂X̃

∂ω
+

X̃

ω

)
Ĩ =

1

4ω
IHXmI (4.11)

and

WeX̃′ =
1

8
ĨH

(
∂X̃

∂ω
− X̃

ω

)
Ĩ =

1

4ω
IHXeI, (4.12)

respectively. The relations (4.11) and (4.12) are formally identical to the stored energy expressions
for the lumped circuit networks (2.9) and (2.10). The Q-factor for antennas tuned to resonance (2.1)
is

QX̃′ =
max{ĨH(ωX̃′ ± X̃)̃I}

2IHRI
=
ωĨHX̃′Ĩ + |IHXI|

2IHRI
=

max{IHXeI, I
HXmI}

IHRI
(4.13)

for the stored energy (4.10).
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Figure 3: Q-factors for strip dipoles with length `, width `/100, and fed in the center and 0.27`
from the center to the left and right, respectively. The antennas are placed in a homogeneous
medium with relative permittivity εr = 1−αj/ω, where ω = 2π`/λ. The Q-factors are determined
from the state-space matrix QX̃′ in (4.13), the Brune synthesized circuit model QZB

in
as in [21], the

differentiated input impedance QZ′
in

in (A.1), and fractional bandwidth Q0.3 (A.3) with Γ0 = 0.3.

We compare the Q-factor determined from the state-space model QX̃′ using (4.8) with the
differentiated input impedance QZ′

in
(A.1), Brune synthesis QZB

in
[21], and Γ0 = 0.3 reflection

coefficient Q0.3 (A.3) in Figs. 3, 4, and 5. The antenna parameters are computed using a MoM
code based on rectangular elements for planar (negligible thickness) structures modeled as PECs.
We consider non-dispersive, conductivity, and Lorentz permittivity models for dipole antennas
with length ` and width 0.01` in Figs 3 and 4. The results are presented in the dimensionless
parameter `/λ, where λ is the free space wavelength. The material parameters are functions of the
dimensionless parameter ω = 2π`/λ.

Fig. 3 depicts strip dipoles, fed at the center and 0.27` from the center, in a homogenous medium
with relative permittivity εr = 1 − jσ/ω. The off-center feed is chosen to eliminate some of the
symmetries of the induced current density distribution in comparison to the center-fed case, and
increase the phase shift of the induced current density. The calculated Q-factors are depicted in
Fig. 3 for free space and background media with relative permittivity εr = 1−j0.25/ω ≈ 1−j0.04λ/`.
All Q-factors seem to agree well for the center fed dipole in the left hand figure. For the off-center
fed dipole in the right hand figure the Q-factors agree well for low frequencies, but tend to deviate
slightly at higher frequencies. At low frequencies the loss tangent 0.25/ω is high and thus all
Q-factors are small. The Q-factor from the Brune circuit QZB

in
follow QX̃′ but gives slightly lower

values. The Q-factor from the differentiated input impedance QZ′
in

is similar to QZB
in

except for
`/λ ≈ 2 in the off-center fed case, where QZ′

in
has a dip. This dip is mimicked in the free space

case where QZ′
in
≈ 0 , see also [21]. Q0.3 also deviates from QX̃′ at `/λ ≈ 2 where it has a fixed

lower level. QX̃′ and QZB
in
do not seem to be affected by these effects and predict values of around

7 in this region.
Fig. 4 shows the Q-factors for a center fed dipole in a background Lorentz media. The back-

ground has been modeled by the Lorentz model

εr = 1 +
ν2ω2

0/2

ω2
0 + sνω0 + s2

, (4.14)

with the values
εr(ω0) = 1− jν/4 and (ωεr)

′|ω=ω0
= 0, (4.15)

where ω0 is the resonance frequency of the material. All Q-factors agree well outside the resonance
ω0 ≈ 0.25. The state-space model QX̃′ and Brune circuit QZB

in
are similar at ω0, whereas QZ′

in
and

Q0.3 are lower. The similarities between QX̃′ and QZB
in

indicate that (4.8) is accurate for small
antennas in highly dispersive backgrounds. The lower values for QZ′

in
show that Zin is not well
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Figure 4: Q-factors for a center fed strip dipole with length `, and width `/100, placed in a
homogeneous medium with relative permittivity (4.14), where ω = 2π`/λ and ν = {0.25, 0.05}.
The permittivity is depicted in the bottom right. The Q-factors are determined from the state-
space matrix QX̃′ in (4.13), the Brune synthesized circuit model QZB

in
as in [21], the differentiated

input impedance QZ′
in

in (A.1), and fractional bandwidth Q0.3 (A.3) with Γ0 = 0.3.

approximated with a single resonances model around ω0. The fractional bandwidth Q0.3 agrees
with QZ′

in
as Γ0 → 0, but is closer to QZB

in
for larger values of Γ0.

Fig. 5 depicts the Q-factors for a meander line antenna following the design in [3]. The Q-
factors have been calculated for an intervall around the operating frequency of the antenna and
seem to agree well with QZB

in
and QZ′

in
predicting slightly lower values than QX̃′ for greater losses.

This illustrates the state-space methods ability to also accurately calculate the Q-factor for more
advanced antenna structures.

4.2 Temporally dispersive permittivity and permeability
Temporally dispersive permittivity and permeability are used to model metamaterials and can
produce exotic phenomena such as negative refraction [1, 2, 9]. These are very challenging material
models and good cases to verify the accuracy of the stored energy expressions [28]. Here, the state-
space model is generalized to Lorentz models in the permittivity and permeability, i.e.,

ε(s) = ε∞ +
α2

β2 + γs+ δs2
and µ(s) = µ∞ +

α2
1

β2
1 + γ1s+ δ1s2

, (4.16)

where the parameters are defined in analogy to (4.1), and are assumed to be non-negative. Fol-
lowing the approach in Sec. 4.1, we introduce the voltage state U, electric polarizability P and Ṗ,
and the magnetic polarizability Pm and Ṗm. The EFIE MoM system is rewritten,

ZI = (sµL +
1

sε
Ci)I = sµ∞LI + α1Ṗm + U = V = BVin, (4.17)

with the magnetic polarizability Ṗm = sα1

β2
1+γ1s+δ1s

2 LI. The equation is divided into its electric
and magnetic parts relating to the permittivity and permeability, respectively. The electric part is
identical to (4.2) and analyzed as in Sec. 4.1. The magnetic part is similarly rewritten using

α1LI = (
β2
1

s
+ γ1 + δ1s)Ṗm = β1Pm + γ1Ṗm + δ1sṖm. (4.18)
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Figure 5: Q-factors for meander line antenna ’M1’ in [3], with height `, width 0.56`, and placed
in a homogeneous Debye medium with relative permittivity (4.1). The Lorentz parameters are
chosen as α = {0.2, 0.4, 0.6, 0.8, 1.0}, β = 1, γ = 4, δ = 0 ( *). The antenna geometry is depicted in
the upper right hand corner as well as the permittivity over the frequency interval. The Q-factor
has been calculated with the state-space model QX̃′ , Brune synthesis QZB

in
, and differentiation of

the impedance matrix QZ′
in
.

Collecting the terms gives the state-space model
sµ∞L 1 0 0 0 α11
−1 sε∞C 0 1α 0 0
0 0 sCi −βCi 0 0
0 −α1 βCi (sδ + γ)Ci 0 0
0 0 0 0 sL−1 −β1L−1
−α11 0 0 0 β1L

−1 (sδ1 + γ1)L
−1





I
U
P

Ṗ
Pm

Ṗm

 =


B
0
0
0
0
0

Vin. (4.19)

The stored energy is approximated as the quadratic form generated by the differentiated system
matrix in (4.19),
µ∞L + ωµ∞L′ 0 0 0 0 0

0 ε∞C + ωε∞C′ 0 0 0 0
0 0 Ci + ωC′i jβC′i 0 0
0 0 −jβC′i δCi + (ωδ − jγ)C′i 0 0
0 0 0 0 Li + ωL′i jβ1L

′
i

0 0 0 0 −jβ1L′i δ1Li + (ωδ1 − jγ1)L
′
i

 .
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Figure 6: Q-factors for a strip dipole with length `, width `/100, fed at the center, and placed in
a homogeneous electric and magnetic Lorentz medium with relative permittivity and permeabil-
ity (4.16) as depicted in the bottom left inset, where ω = 2π`/λ and ν = 10−1. The Q-factors
are determined from the state-space matrix QX̃′ , the Brune synthesized circuit model QZB

in
, the

differentiated input impedance QZ′
in
, and fractional bandwidth Q0.3.

The electric terms are analyzed in Sec. 4.1 and the magnetic terms are similarly simplified as

(
Pm

Ṗm

)H(
L−1 − ωL−1L′L−1 −jβ1L−1L′L−1

jβ1L
−1L′L−1 δ1L

−1 − (ωδ1 − jγ1)L
−1L′L−1

)(
Pm

Ṗm

)

=

(
α1β1

χ1
LI

α1s
χ1

LI

)H(
L−1 − ωL−1L′L−1 −jβ1L−1L′L−1

jβ1L
−1L′L−1 δ1L

−1 − (ωδ1 − jγ1)L
−1L′L−1

)(α1β1

χ1
LI

α1s
χ1

LI

)

'
(
α1β1

χ1
I

α1s
χ1

I

)H(
L− ωL′ −jβ1L′
jβ1L

′ δ1L− (ωδ1 − jγ1)L
′

)(α1β1

χ1
I

α1s
χ1

I

)

=
α2
1

|χ2
1|

IH(β2
1(L− ωL′) + 2ωβ2

1L′ + ω2(δ1L− (ωδ1 − jγ1)L
′)
)
I

=
α2
1

|χ2
1|

IH((β2
1 + ω2δ1)L + ω(β2

1 − ω2δ1 + jωγ1)L
′)
)
I =

α2
1

|χ2
1|

IH((β2
1 + ω2δ1)L + ωχ1L

′)I, (4.20)

where we again neglect the lower order terms.
If we consider a medium with permittivity and permeability according to the Lorentz model (4.16)

and µr = εr. This synthesizes a case where Z′ ≈ 0 for antennas that are resonant at ω0 [28] for any
ν > 0. Furthermore, the corresponding impedance matrix does not change significantly as ν → 0,
i.e., Zν ≈ Zν=0 as ν � 1. Therefore, the energy distribution in the fields, currents, or circuit
models of the antenna depend weakly on ν as ν � 1.

In Fig. 6 a strip dipole with length ` and width 0.01` are used to illustrate the estimated
Q-factors. Consider the resonance frequency ω0 = 2π`/λ = 3 and the damping ν = 0.1 in the
Lorentz model (4.16). The maximal susceptibility is |1 − εr| = ν/

√
4− ν2 ≈ ν/2 for ν � 1. The

Q-factors give similar results away from the resonance frequency ω0, which coincides with the
dipole resonance of the antenna. At ω0 QZ′

in
has a substantial dip, whereas QX̃′ and QZB

in
increase

slightly. QZB
in

has slightly lower values than QX̃′ at the resonance ω0. Q0.3 on the other hand also
displays a bottoming out of its values around the resonance, cf., with [28]. This in conjunction
with QZ′

in
behavior indicate that the single resonance approximation for Zin is not satisfied in this

kind of resonant media.
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5 Stored energy for inhomogeneous media
The numerical examples in Sec. 4 indicate that the state-space approach produces accurate es-
timates of the stored energy for homogeneous background media. Following this approach, we
analyze piecewise homogeneous background media using the surface equivalence principle, and
inhomogeneous media with volume integral equations in Secs 5.1 and 5.2, respectively.

5.1 Piecewise homogeneous media
The surface equivalence principle is used to express the electromagnetic fields in piecewise homo-
geneous media [4, 10, 35, 44, 52]. Consider for simplicity a PEC antenna structure embedded in
a media with permittivity and permeability as depicted in Fig. 2. The geometry is divided into
three regions Ωp p = 1, 2, 3, with corresponding material parameters εp and µp. Let ∂Ωp denote
the exterior surface of Ωp, i.e., the boundary of

⋃p
q=1Ωq. The field in region Ωp is expressed by

the equivalent currents Jp−1,Jp,Mp−1, andMp, where J0 =M0 = 0. We follow the state-space
approach and construct a system for the input impedance Zin = Vin/Iin.

The EFIE and magnetic field integral equation (MFIE) for the inner region Ω2 is written Z2,11 Z2,12 K2,12

Z2,21 Z2,22 K0 + K2,22

−K2,21 K0 −K2,22
1
η22

Z2,22

 I1
I2

M2

 =

V1

0
0

 , (5.1)

where Zp,oq denotes the EFIE impedance matrix (3.1) connecting the surfaces o and q through
their respective currents, evaluated using materials εp and µp. Kp,oq is the corresponding MFIE
operator with elements

Kp,oq,mn =

∫
∂Ωo

∫
∂Ωq

ψm(r1) ·ψn(r2)×∇1G12 dS1 dS2 (5.2)

and K0 is the free term of the MFIE. Since region 1 is a PEC, there exists no magnetic surface
current M1. The EFIE and MFIE for the exterior region Ω3 is similarly(

Z3,22 −K0 + K3,22

−K0 −K3,22
1
η23

Z3,22

)(
I2

M2

)
=

(
0
0

)
. (5.3)

The EFIE and MFIE in (5.1) and (5.3) can be combined in different ways to mitigate internal
resonance problems of the MoM solution, e.g., the PMCHWT and Müller integral equations [10,
35]. Here, we choose the PMCHWT formulation and add the equations (5.1) and (5.3) together
to get  Z2,11 Z2,12 K2,12

Z2,21 Z2,22 + Z3,22 K2,22 + K3,22

−K2,21 −K2,22 −K3,22
1
η22

Z2,22 +
1
η23

Z3,22

 I1
I2

M2

 =

V1

0
0

 , (5.4)

where the K0 term cancels out. This can be considered as a second order state-space model for
the input impedance with the decomposition (3.1). Because the material parameters are different
in the two regions it is, however, advantageous to first divide (5.4) as a sum of its inner and outer
parts. This creates two parts that are formally identical and can be written as(

Z K
−K Z

)(
I

M

)
=

(
sµL + Ci

sε K

−K sεL + Ci

sµ

)(
I

M

)
, (5.5)

where the material parameters εp and µp are used in region Ωp. The second order system (5.5) is
rewritten as a first order system, in analogy with (3.5), by the introduction of a magnetic voltage
state Um = 1

sµCiM, 
sµL 1 K 0
−1 sεC 0 0
−K 0 sεL 1
0 0 −1 sµC




I
U
M
Um

 . (5.6)
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This system can determine the stored energy of each region with the same approximation used
in (3.7). For simplicity, we consider non-dispersive material models with a single Lorentz resonance
in the permittivity. Multiple Lorentz resonances and temporal dispersion in the permeability are
analyzed similarly and are not detailed here. It is sufficient to use differentiation with respect to
the Laplace parameter s for the non-dispersive cases to illustrate the method, giving

µL + ωµL′ 0 −jK′ 0
0 εC + ωεC′ 0 0
jK′ 0 εL + ωεL′ 0
0 0 0 µC + ωµC′

 (5.7)

with L′ as in (3.8), C′ = −CC′iC as in (3.9), and

K ′p,mn = κ′κ
∫
∂Ωp

∫
∂Ωp

ψn(r1) ·ψm(r2)× (r1 − r2)GdS1 dS2, (5.8)

where we used

∂

∂κ
∇2G = ∇2

∂

∂κ
G = −∇2

e−κR

4π
= −κe

−κR(r1 − r2)
4πR

= −κ(r1 − r2)G. (5.9)

The K′ term in vacuum is recognized as being proportional to the K2 term used in [37], see also [38].
The terms that contribute to the stored energy are expanded in the wavenumber k in [36] and it is
shown that the K1-term and the potentially coordinate dependent terms K3 and K4 used in [37]
are one order smaller than the K2-term. These terms are not present in the state-space based
approach presented here. The contribution to the stored energy from the region Ωp is finally given
by the real part of the quadratic form

I
U
M
Um


H

µL + ωµL′ 0 −jK′ 0
0 εC + ωεC′ 0 0
jK′ 0 εL + ωεL′ 0
0 0 0 µC + ωµC′




I
U
M
Um


= IH

(
µL + ωµL′ +

ε

|ωε|2 C− ωε

|ωε|2 C′
)

I + MH
(
εL + ωεL′ +

µ

|ωµ|2 C− ωµ

|ωµ|2 C′
)

M

− jIHK′M + jMHK′I =

(
I

M

)H(
X′ −jK′
jK′ X′

)(
I

M

)
(5.10)

and the total stored energy by summation over all regions.
The expression (5.10) resembles the stored energy from electric and magnetic current densi-

ties [36, 37, 38]. The stored energies in [36, 37, 38] are derived from the subtraction of the far-field
in a non-dispersive homogeneous background as in (2.2). The equivalence principle states that
the fields generated by currents at ∂Ωn vanish outside Ωn and for that reason produces the total
energy in Ωn. The exterior region is an exception for which the energy produced is similar to the
case of far-field subtraction. Consequently, the stored energy (5.10) resembles (2.2) with spatially
dependent permittivity and permeability in the energy density terms, and the exterior permittiv-
ity in the subtracted far-field energy term, for small structures. The expressions differ for larger
structures, where K1 together with the coordinate dependent terms in [36] contribute.

Figs. 7 and 8 depicts Q-factors QX̃′ based on the energy expressions (5.10) for multilayer
structures. Fig. 7 shows Q-factors for a cylindrical dipole embedded in a dielectric cylinder. The
figure contains two cases, when the permittivity of the cylinder is higher than the background,
and when the permittivity of the background is higher than the cylinder. For both cases QX̃′

agrees very well with QZB
in

and QZ′
in
. However, QZB

in
and QZ′

in
have slightly lower values than QX̃′

for {ε1, ε2} = {10, 1} at higher frequencies. Fig. 8 instead shows what occurs when the dielectric
cylinder encasing the dipole varies in size for the two cases. The Q-factors agree well except for
higher frequencies when the cylinder is large. There is also a dip in QZ′

in
at 0.2`/λ for cylinder size

2.6`× 1.6`.
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Figure 7: Q-factors for a cylindrical dipole with length `, width `/100, fed at the center, and
placed in a dielectric cylinder with permittivity ε1 and background permittivity ε2. The cylinder
has height 1.1` and diameter 0.4`. The Q-factors are computed using (5.10), Brune synthesized
circuits [21], and (A.1) for the two cases {ε1, ε2} = {1, 10} and {ε1, ε2} = {10, 1}.

The piecewise inhomogeneous case can be expanded to temporally dispersive permittivity as
was done for homogeneous media in Sec. 4.1. The system matrix (5.6) is expanded to a first order
state-space model for the Lorentz model (4.1) in analog with (4.4). However, the magnetic currents
give rise to the states Um,Pm, Ṗm in addition to the voltage U and polarization states P and Ṗ
used in (4.4). The resulting system matrix is

Z̃Ĩ =



sµL 1 K 0 0 0 0 0
−1 sε∞C 0 0 0 1α 0 0
−K 0 sε∞L 1 0 0 0 1α
0 0 −1 sµC 0 0 0 0
0 0 0 0 sCi −βCi 0 0
0 −1α 0 0 βCi (sδ + γ)Ci 0 0
0 0 0 0 0 0 sLi −βLi

0 0 −1α 0 0 0 βLi (sδ + γ)Li





I
U
M
Um

P

Ṗ
Pm

Ṗm


, (5.11)

where we used

(sεL +
Ci

sµ
)M = (sε∞L +

Ci

sµ
+
sα2

χ
L)M = sε∞LM + Um + αṖm, (5.12)

and sαLM = χṖm = χsPmβ
−1 with LMα = χPmβ

−1 to get

αLM = (β2 + sγ + s2δ)Pmβ
−1 = βPm + (γ + sδ)Ṗm. (5.13)

From here the electric and magnetic terms are analyzed as in 4.2.
Fig. 9 displays Q-factors calculated for a cylindrical dipole encased in both a dielectric cylinder

with dispersive permittivity in a normal background and a vacuum cylinder in a dispersive back-
ground. The dispersive permittivity is modeled by the Lorentz model (4.1). For the case when the
background is dispersive and the cylinder is vacuum, the Q-factors agree well. For the second case,
when the cylinder is dispersive, QX̃′ and QZB

in
agree for the whole interval. However, QZ′

in
has a

dip around 0.2 to 0.35`. This is most likely caused by multiple resonances in the input impedance.
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Figure 8: Q-factors for a cylindrical dipole with length `, width `/100, fed at the center, and
placed in a dielectric cylinder with permittivity ε1 and background permittivity ε2. The cylinder
has heights {1.4, 2.6, 3.8, 5}` and diameters {0.4, 1.6, 2.8, 4}` ( *). The Q-factors are computed
using (5.10), Brune synthesized circuits [21], and (A.1) for the two cases {ε1, ε2} = {1, 2} and
{ε1, ε2} = {2, 1}.

5.2 Inhomogeneous media
To handle fully inhomogeneous background media we use volume integral equations [10], the im-
plementation of which is much more arduous than surface based integral equations. However, the
method for constructing the state-space system and calculating the stored energy is principally the
same. For completeness, we present here the analysis needed to calculate the stored energy with
volume integral equations.

Consider a dielectric body with relative permittivity εr(r). The volume EFIE is

E(r1) = Ei(r1)− k2
∫
Ω

G(r1 − r2) · (1− εr(r2))E(r2) dV2, (5.14)

where G = (1+ k−2∇∇)G is the Green dyadic, k the free-space wavenumber, and Ei the incident
electric field. Introduce the contrast current density J = κ(1 − εr)E to reformulate (5.14) to an
integral equation in that quantity

J(r1)

κ(1− εr(r1))
= Ei(r1) + κ

∫
Ω

G(r1 − r2) · J(r2) dV2. (5.15)

Multiply both sides with test functions Ψ and integrate over the volume∫
Ω

Ψ(r) · J(r)
κ(1− εr(r))

dV =

∫
Ω

Ψ(r) ·Ei(r) dV

+

∫
Ω

∫
Ω

κG(r1 − r2)Ψ(r1) · J(r2) +
1

κ
G(r1 − r2)∇1 ·Ψ(r1)∇2 · J(r2) dV1 dV2, (5.16)

where we split the Green’s dyadic G into two parts. The differentiated term is partially integrated
to reduce the singularity of the Green’s function∫

Ω

∫
Ω

J(r1) · ∇∇G · J(r2) dV1 dV2 = −
∫
Ω

∫
Ω

∇1 · J(r1)G∇2 · J(r2) dV1 dV2. (5.17)
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Figure 9: Q-factors for a cylindrical dipole with length `, width `/100, fed at the center, and placed
in a dielectric cylinder with permittivity ε1 and background permittivity ε2. The cylinder has height
1.1` and diameter 0.4`. The Q-factors are computed using (5.10), Brune synthesized circuits [21],
and (A.1) for the two cases {ε1, ε2} = {1, εr} and {ε1, ε2} = {εr, 1}, εr = 1 + 9/(1 + 0.5s+ s2).

To obtain the MoM formulation we expand the contrast current density J in basis functions Ψn

as
In =

∫
Ω

Ψn(r) · J(r) dV =

∫
Ψn(r) · κ

(
1− εr(r)

)
E(r) dV. (5.18)

This enables the introduction of matrix quantities similar to those used in (3.1), and thus, the
construction of the state-space system. The inductance matrix is defined as

Lmn =

∫
Ω

∫
Ω

G(r1 − r2)Ψm(r1) ·Ψn(r2) dV1 dV2, (5.19)

the capacitance matrix as

Cimn =

∫
Ω

∫
Ω

G(r1 − r2)∇1 ·Ψm(r1)∇2 ·Ψn(r2) dV1 dV2, (5.20)

and the material matrix as
Mmn =

∫
Ω

Ψm(r) ·Ψn(r)

1− εr(r)
dV. (5.21)

With these three matrices equation (5.16) can be written as the second order system(
sµ0L +

Ci + M

sε0

)
I = V. (5.22)

Similarly to previous sections it can be transformed to the first order state-space model by the
introduction of a voltage state U = 1

sε0
(Ci + M)I(

sµ0L 1
−1 sε0(Ci + M)−1

)(
I
U

)
=

(
V
0

)
. (5.23)

Finally, the stored energy is given by the quadratic form of the frequency differentiation of the
state-space matrix

W =
Re

4

(
I
U

)H(
µ0(L + ωL′) 0

0 ε0(Ci + M)−1 − ε0ω(Ci + M)−1C′i(Ci + M)−1

)(
I
U

)
=

Re

4
IH(µ0(L + ωL′) +

1

ω2ε0
(Ci + M− ωC′i)

)
I =

1

4
IH ∂X

∂ω
I. (5.24)
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6 Conclusions
State-space models for the input impedance based on the integral equations EFIE and MFIE have
been used to determine the stored electromagnetic energy for small antennas. These expressions
have been calculated by synthesizing first order state-space models. The stored energy is expressed
as a quadratic form of the frequency differentiated system matrix and the states. This quadratic
form is advantageous because it enables us to utilize these stored energy expressions in fast and
efficient optimization techniques [7, 12, 23, 24].

For the free-space case it is shown in Sec. 3 that the proposed expression is identical to the
stored energy introduced by Vandenbosch [49], see also [31]. This energy expression has been
verified for several antennas with good results [12, 13, 21, 32]. In [25], it is, however, shown that
the quadratic form can be indefinite for sufficiently large structures. This partly questions the
validity of the energy expression, although the same problem appears in the commonly used stored
energy [59] defined by subtraction of the far-field [22]. The energy expressions presented here are
restricted to electrically small antennas where they are positive definite. The open question of
defining and efficiently evaluating the stored energy for electrically large structures remains, as of
yet, unsolved.

In Sec. 4 the state-space models are generalized to temporally dispersive background media.
The results produced by the state-space method seem to be reliable and produce similar values as
Brune circuit synthesis [21] and differentiation of the input impedance QZ′

in
for single resonance

cases. However, the main advantage over other contemporary methods is that the state-space
model is written as a quadratic form in the current, and hence enables fast and effective use in
antenna current optimization [8, 12, 20, 23, 24, 34].

The state-space model was further generalized to piecewise inhomogeneous media in Sec. 5.
Here it was shown that the method is stable for cases where there are lossy media present but
radiation still exists. These cases are of special interest since they have similarities with applications
such as implanted antenna system. By offering a stable method of calculating the Q-factor for
inhomogeneous media the state-space method opens up avenues of research for calculating optimal
Q values for application based cases. This suggests the possibility to construct Q-factor bounds
for more applications than free space [23, 24] and infinite ground planes [47].
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Appendix A Q-factors QZ′in and QΓ0

By taking the frequency derivative of the input impedance, the stored energy can be approximated
through the Q-factor [43, 59],

QZ′
in
=

ω

2Rin(ω)
|Z ′in0(ω)|, (A.1)

where Zin0 is the input impedance tuned to resonance. This simple expression (A.1) gives an
accurate measure of the fractional bandwidth, but can overestimate the bandwidth for multiple
resonance cases [26, 46].

The corresponding fractional bandwidth, B, is

B ≈ 2

Q

Γ0√
1− Γ 2

0

, (A.2)

for single resonance antennas [59], where Γ0 denotes the threshold for the reflection coefficient. The
relationship between the fractional bandwidth and Q-factor (A.2) for the RLC resonance circuit
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can also be used to define an equivalent Q-factor for a given threshold level Γ0 i.e.,

QΓ0 =
2

BΓ0

Γ0√
1− Γ 2

0

, (A.3)

where BΓ0
denotes the fractional bandwidth for the threshold Γ0.

Appendix B MoM impedance matrix
The MoM impedance matrix is divided into two parts in (3.1). This decomposition is non-unique
and Z can alternatively be divided as

Z = jωµ0L +
1

jωε0
Ci + η0R (B.1)

for the free space case, where

Lmn =

∫
∂Ω

∫
∂Ω

ψm1 ·ψn2
cos(kR12)

4πR12
dS1 dS2, (B.2)

Cimn =

∫
∂Ω

∫
∂Ω

∇1 ·ψm1∇2 ·ψn2
cos(kR12)

4πR12
dS1 dS2, (B.3)

and
Rmn =

∫
∂Ω

∫
∂Ω

(kψm1 ·ψn2 −
1

k
∇1 ·ψm1∇2 ·ψn2)

sin(kR12)

4πR12
dS1 dS2, (B.4)

Here, ψni is a short hand notation for basis functions ψn(ri) with n = 1, ..., N , i = 1, 2, ri denotes
the position vector, and R12 = |r1 − r2|.
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