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Popular Science Abstract 

When you visit dentist to check for cavities, sit for a medical CT scan, or pass 
through airport security, you are likely encountering the capacity of X-rays. At the 
dentist, X-rays help detect decay inside the teeth before it becomes visible on the 
surface. In the hospital, computed tomography (CT) scans, allow doctors to peer 
inside the human body, identifying everything from broken bones to tumors without 
surgery. At airports, your luggage is scanned using an X-ray machine to check for 
hidden items, all without opening your bag. Even in manufacturing, X-rays are used 
for quality control. 

X-rays are a powerful tool and widely used in our daily life. What makes this 
invisible light so versatile? They have such a high energy that they can pass through 
most materials. This property allows X-rays to reveal the internal structures of 
objects without opening them.  

So far, these examples focused on large-scale objects, like your teeth, bones or 
luggage. But thanks to breakthroughs in synchrotron radiation and advanced X-ray 
optics, we can now use X-rays to examine much smaller systems, down to the 
nanoscale. Understanding the internal structure of these tiny materials is critical, not 
only for science but also for the technologies we rely on every day. Devices like 
LEDs, solar cells, and the microchips in our phones and computers are built from 
nanostructured components, such as nanowires, quantum dots, and thin films, whose 
internal arrangements directly affect performance of devices. 

However, imaging these small structures is extremely challenging. The resolution 
of conventional imaging is limited by how tightly we can focus the X-ray beam. To 
go beyond this limit, we turn to a powerful technique: X-ray diffraction. When X-
rays interact with a crystal, they scatter off the atoms and interfere with each other 
to form a diffraction pattern. Just as visible light bends when it passes through a 
lens, X-rays experience similar shifts depending on how atoms are arranged inside 
the crystal. These subtle changes are captured in the diffraction pattern, which acts 
like a fingerprint of the internal structure. Rather than performing a direct image, 
we analyze the diffraction to reconstruct the structure of the crystal. 

A single diffraction pattern represents only a projection of the object from one 
direction. To access the full internal structure, sampling of full three-dimensional 
diffraction pattern is necessary. However, any instability during the sampling can 
distort the diffractions and thus lead to the inaccurate results. 



 vi 

In my PhD project I have worked on mainly two topics, employing X-ray diffraction 
imaging techniques to characterize crystalline materials, such as thin films, isolated 
particles and nanowires, and developing methods to find the unknown angles of 
diffraction data. Together, these efforts demonstrate the potential of synchrotron-
based X-ray diffraction imaging techniques in revealing the internal structure of 
small-scale crystalline materials. The results of my work are summarized in my 
publications and explored throughout this thesis. 

 

  



     1 

1 Introduction 

Understanding the internal structure of crystalline materials is essential for tailoring 
their properties and driving technological innovation. In semiconductors, lattice 
mismatch can shift electronic band structures, altering conductivity and optical 
behavior. In ferroelectric materials, domain configurations govern switching 
performance, which is crucial for memory and sensing applications. Even in 
catalysis, nanoscale lattice distortions can dramatically impact reaction kinetics. 
Across these examples, subtle variations in the crystal lattice, often hidden beneath 
the surface, play an important role in how materials function. 

X-rays have emerged as a powerful and promising tool to access such internal 
structural information in materials. Their short wavelength makes them ideally 
suited for resolving atomic-scale features, while their high penetration depth allows 
them to probe thick samples. Compared to transmission electron microscopy 
(TEM), which offers atomic resolution but often requires destructive sample 
preparation such as thinning or sectioning, X-ray diffraction imaging can probe the 
internal structure of materials in a non-destructive manner.  

When X-rays interact with a crystalline material, they scatter in well-defined 
directions determined by the lattice periodicity, producing a diffraction pattern. This 
pattern encodes information about the arrangement of atoms, and any displacement, 
strain, or tilt within the lattice inherently raises variation in diffraction intensity. 

This thesis presents two advanced X-ray diffraction imaging techniques developed 
to extract nanoscale structural information: Scanning X-ray diffraction imaging 
(nano-XRD) and Bragg coherent diffraction imaging (BCDI). Both techniques rely 
heavily on the modern synchrotron radiation sources, which deliver extremely 
bright and coherent X-ray beams. 

The first technique, nano-XRD, involves scanning a highly focused X-ray beam 
across a sample and recording diffraction patterns at each point. By analyzing the 
subtle shifts in the Bragg peak positions, this method enables quantitative mapping 
of lattice parameters such as strain and tilt. It is especially suited for extended 
materials and enables imaging of hidden domains, such as ferroelectric patterns 
beneath metallic electrodes, which are inaccessible to conventional probes like 
piezoresponse force microscopy (PFM). The advanced nano-focusing optics 
available at synchrotrons push the resolution of nano-XRD imaging down to tens of 
nanometers. 
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The second technique, BCDI employs a coherent beam to illuminate the sample and 
collects the full 3D diffraction pattern surrounding a selected Bragg peak. Using 
iterative phase retrieval algorithms, the complex-valued electron density volume is 
reconstructed, providing access to both the morphology and internal displacement 
field of the crystal at high resolution. 

Despite its powerful capabilities, BCDI is particularly sensitive to experimental 
instabilities and assumes perfect control of the angle of the nanocrystals, but in 
reality, angular distortions introduced during data acquisition can introduce artifacts 
in reconstruction. Even worse, these challenges are more severe for smaller 
nanocrystals and for more intense X-ray beams. This issue limits the broader 
applicability of BCDI, especially in complex or in situ experimental environments. 

A significant portion of this thesis is therefore focused on addressing the challenge 
of different levels of angular distortions. One central contribution involves the 
development of a robust angular correction algorithm capable of mitigating the 
effects of angular distortions in BCDI datasets, thereby improving data quality and 
reconstruction fidelity. 

The final contribution aims to handle data with fully unknown angles. In this case, 
deep learning is used for its strong ability to handle complex data due by learning 
representation directly form the given data. This offers an alternative solution to the 
challenges posed by angular uncertainties in BCDI. Rather than correcting angular 
uncertainties explicitly, the proposed approach uses deep learning to reconstruct the 
diffraction volume directly from randomly sampled data. In principle, this strategy 
can relax the strict experimental constraints of BCDI and ultimately broaden its 
applicability to more complex or dynamic experimental environments. 

The remainder of the thesis is organized as follows:  

Chapter 2 introduces the fundamentals of X-ray diffraction. This chapter describes 
fundamentals of X-ray scattering with crystalline materials, which establishes the 
theoretical framework for nano-XRD and BCDI. 

Chapter 3 provides an overview of synchrotron light sources, and the experimental 
configuration used for nano-XRD and BCDI. Specifically, the data analysis 
procedures for both techniques are introduced in this chapter.  

Chapter 4 presents the projects utilizing nano-XRD, corresponding to Paper I & II. 

Chapter 5 focuses on the projects based on BCDI and the angular correcting 
algorithm, related to Paper III & IV. 

Chapter 6 introduces the project employing deep learning techniques, including a 
brief overview of the underlying methods. This chapter corresponds to Paper V. 
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2 Fundamentals of X-ray Diffraction  

Our eyes allow us to perceive and interpret the world by capturing light. This 
interaction with light provides us with understanding and insight into our 
surroundings. However, light, as an electromagnetic wave, spans a far broader range 
of wavelengths than the human eye can detect. Beyond visible light, there exists an 
invisible spectrum that includes radio waves, microwaves, infrared, ultraviolet, X-
rays, and gamma rays, each revealing unique aspects of the universe. Today, these 
invisible forms of light are widely utilized to explore the world and improve the 
convenience and quality of our daily lives. 

 

 
Figure 2.1 The electromagnetic spectrum. From left to right, the wavelengths of electromagnetic waves 
decrease, while their energy increases. X-rays are positioned on the high-energy side of the spectrum, 
between ultraviolet and gamma rays. 

Among these, X-rays, located on the high-energy side of the electromagnetic 
spectrum as shown in Figure 2.1, hold a special place for their unique properties. 
They were firstly discovered by Wilhelm C. Röntgen in 1895. To his surprise, this 
new radiation1 could easily pass through his hand, revealing the internal bone 
structure. Röntgen named it “X-ray” due to its unknown nature at the time. Shortly 
thereafter, scientists recognized X-rays as an ideal tool for characterizing 
microscopic materials because of their short wavelengths, high energy, and 
exceptional penetration ability. 

The wavelengths of X-rays cover a range from 10 nm to 0.1 Å, which is comparable 
to the size of atoms. The relation between the energy E (in kilo electron volts, keV) 
and the wavelength 𝜆𝜆 (in Å) can be described as2: 

𝐸𝐸 =
ℎ𝑐𝑐
𝜆𝜆
≈

12.398
𝜆𝜆�Å�

 [𝑘𝑘𝑘𝑘𝑘𝑘], (2.1) 
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where h is Plank’s constant, and c is the speed of light in vacuum. Therefore, X-rays 
have an energy range between 0.1 to 100 keV. This is high enough to ionize the core 
electrons of atoms.  

Based on their wavelength, X-rays are classified into two categories: Hard X-rays 
with shorter wavelengths, and soft X-rays with longer wavelengths. The shorter 
wavelength and higher energy of hard X-rays provide superior penetration ability, 
making them suitable for non-destructive investigations of internal structure. 
Throughout this thesis, hard X-rays are employed as the primary tool for studying 
the internal structure of microscale objects.  

In this chapter, I introduce the fundamentals of X-ray diffraction and demonstrate 
its application in studying the internal structure of materials. The chapter is 
organized into three sections: fundamentals of X-ray scattering, diffraction from an 
ideal crystal, and diffraction from a crystal with strain. The first section provides an 
overview of how X-rays interact with matter. The second section delves into the 
principles of X-ray scattering from crystallized materials with a perfect lattice, 
explaining how diffraction patterns are formed. The final section focuses on how 
diffraction patterns encode the internal structure of the scattered crystal. 

2.1 Fundamentals of X-ray Scattering 
Electromagnetic radiation, including X-rays, is considered as continuous waves in 
the classical framework. In this thesis, I adopt the scalar wave approximation to 
describe X-ray propagation, which simplifies the treatment by neglecting all 
polarization effects and using a scalar wave instead of the full electromagnetic 
vector field. The behavior of the scalar wave 𝜓𝜓 is governed by the scalar wave 
equation (d’Alembert equation), which can be derived from Maxwell’s equations3.  

The time-dependent scalar wave equation in vacuum is 

�∇2 −
1
𝑐𝑐2

𝜕𝜕2

𝜕𝜕𝑡𝑡2
�   𝜓𝜓(𝑥𝑥,𝑦𝑦, 𝑧𝑧; 𝑡𝑡) =  0.  (2.2) 

Here, 𝜓𝜓(𝑥𝑥,𝑦𝑦, 𝑧𝑧; 𝑡𝑡) is the wave function of time 𝑡𝑡  and position (𝑥𝑥,𝑦𝑦, 𝑧𝑧) in three-
dimensional (3D) space, and ∇ is the Laplacian operator. 

A basic solution to this equation is the plane wave: 

 𝜓𝜓(𝒓𝒓; 𝑡𝑡) = 𝜓𝜓0 exp(𝑖𝑖𝒌𝒌𝒌𝒌) exp(−𝑖𝑖𝑖𝑖𝑖𝑖) .  (2.3) 

In this expression, and throughout this thesis, 𝒓𝒓 = (𝑥𝑥, 𝑦𝑦, 𝑧𝑧) is the position vector and 
𝜓𝜓0 is the amplitude. This equation describes a wave of frequency 𝜔𝜔 propagating in 
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the direction of the wavevector 𝒌𝒌. The magnitude of the wavevector 𝒌𝒌 is given by 
𝑘𝑘 = |𝒌𝒌| = 2𝜋𝜋

𝜆𝜆
= 𝜔𝜔

𝑐𝑐
= 𝐸𝐸

ℏ𝑐𝑐
, which links the wavelength 𝜆𝜆  and the energy 𝐸𝐸 . The 

intensity of the plane wave is equal to the square of its amplitude: 𝐼𝐼0 = |𝜓𝜓0|2. Here, 
𝒌𝒌𝒌𝒌 denotes the scalar (dot) production of wavevector 𝒌𝒌 and position vector 𝒓𝒓. For 
simplicity, the dot symbol “⋅” is omitted. This notation will be used consistently 
throughout the remainder of the thesis. 

Electromagnetic waves also exhibit the wave-particle duality, meaning that they 
have particle-like properties in addition to the wave properties discussed so far. In 
the particle picture, X-rays are also described as a stream of photons traveling along 
the direction 𝒌𝒌, with each photon carrying energy of 𝐸𝐸 and momentum 𝒑𝒑 = ℏ𝒌𝒌. In 
practice, modern X-ray detectors measure the discrete arrival of these photons, 
recording photon counts rather than continuous wave amplitudes. In this context, 
the measured intensity corresponds to the number of photons detected per pixel per 
unit time. 

Moving forward, I will use both descriptions interchangeably, depending on which 
is most suitable for the explanation. 

2.1.1 Microscopic View: Absorption and Scattering 
For an individual atom, X-rays primarily interact with its electrons. These 
interactions can be categorized into four processes2: photoelectric absorption, 
incoherent scattering, coherent scattering and pair production. Since pair 
production predominantly occurs at photon energies well above the typical X-ray 
range used in this thesis, it will be neglected in the following discussion. The 
element-specific cross sections, as illustrated in Figure 2.2, represent the likelihood 
for these interactions as a function of energy.  

The photoelectric absorption describes the process in which an X-ray photon is 
absorbed by an atom. As shown in Figure 2.2, photoelectric absorption dominates 
at low radiation energies. The cross section for this process is proportional to 𝑍𝑍3−4, 
where 𝑍𝑍 represents the atomic number, and proportional to the inverse incoming 
radiation energy (1/𝐸𝐸3). 

When an X-ray photon is absorbed, its energy is transferred to a core electron, 
exciting it to the vacuum energy level and ejecting it as a photoelectron. This 
excitation leaves a vacancy (hole) in the inner shell (low energy state) and thus 
results in the ionization of the atom. The photon energy required to overcome the 
binding energy of a specific electron shell gives rise to an abrupt increase in cross 
section, known as an absorption edge, as shown in Figure 2.2. To restore a more 
stable state, an electron from an outer shell spontaneously de-excites to fill the 
vacancy. The energy released during this transition is either emitted as an X-ray 
fluorescence photon or transferred to another outer-shell electron, producing an 
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Auger electron. These secondary processes compete, and their relative likelihood 
depends on the atomic number (Z) of the element. Auger emission is dominant in 
low-Z elements, while fluorescence is more likely in high-Z elements (typically 𝑍𝑍 ≥
30)4,5. 

 
Figure 2.2 X-ray attenuation cross sections of iron (Fe) as a function of energy. The data, covering an energy 
range from 1 keV to 1000 keV, is obtained from the NIST database6. High-energy effects such as pair 
production are not included, as they occur beyond 1000 keV. 

X-ray fluorescence (XRF) is a powerful tool for material characterization7, as it can 
identify elements within a sample. When illuminated by incident X-rays, all 
elements with binding energies below the energy of incident beam will generate 
energy-specific fluorescence collected as an XRF spectrum, which can be used for 
precise elemental analysis. In this thesis, XRF has been utilized as a supporting tool 
for locating and aligning samples in various experiments. 

In addition to being absorbed, X-ray photons can also be scattered by electrons, 
resulting in a change in their propagation direction 𝒌𝒌. Incoherent scattering, also 
known as inelastic scattering, involves a change in the wavelength λ (and the energy 
E) of the outgoing X-rays compared to the incident X-rays. In contrast, coherent 
scattering is an elastic scattering process, meaning that the wavelength λ (and the 
energy E) remains unchanged during after scattering.   

Inelastic scattering of X-rays by an electron is known as Compton scattering. The 
Compton scattering is inelastic, meaning that the energy (or wavelength) of 
incoming and outgoing X-rays differs. Due to the energy and momentum 
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conservation, energy is transferred between X-rays and scatterer (in this case, the 
electron) during inelastic scattering This interaction results in the angular 
dependence of the Compton scattering and the ejection of an electron, referred to as 
the Compton recoil electron. 

 
Figure 2.3 Illustration of X-ray scattering from a single free electron. The incident X-rays are shown as 
wave fronts of plane waves with linear polarization along the x-direction and propagation along the z-
direction. 

The coherent scattering with a free single electron is known as Thomson scattering. 
As shown in Figure 2.3, the incident X-rays are represented as plane waves with 
amplitude 𝜓𝜓0, linearly polarized along the 𝑥𝑥- direction and propagating in the 𝑧𝑧- 
direction. The electric field component of the wave drives the electron to oscillate 
along the 𝑥𝑥- direction, acting as a radiating dipole. This oscillating electron emits 
secondary radiation in the form of spherical waves. The resulting scattered wave 
𝜓𝜓(𝒓𝒓) observed at arbitrary angle 𝛼𝛼 in the 𝑥𝑥𝑥𝑥- plane at a distance 𝑟𝑟 is given by2 

𝜓𝜓(𝒓𝒓) = −𝑟𝑟0
𝜓𝜓0𝑒𝑒𝑖𝑖𝒌𝒌𝒌𝒌

𝑟𝑟
cos𝛼𝛼 , (2.4) 

where 𝑟𝑟0 is the Thomson scattering length.  

The factor cos𝛼𝛼 can also be expressed as the scalar product of the polarization 
vectors of incident scattered wave, 𝜺𝜺� ⋅ 𝜺𝜺�′, in the 𝑥𝑥𝑥𝑥- plane. The scattering amplitude 
of Thomson scattering is then equal to −𝑟𝑟𝑜𝑜|𝜺𝜺� ⋅ 𝜺𝜺�′|, which is independent of the 
incident photon energy. The negative sign arises from the negative charge of the 
electron, meaning that the scattered wave is 180° out of phase with the incident X-
ray wave. 

The coherent scattering from multiple bound electrons within an atom is known as 
the Rayleigh scattering. In this process, each electron scatters with the incident X-
ray wave and contributes to the total scattered wave. To analyze this scenario, an 
important assumption, known as the kinematical approximation2, is applied, which 
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states the scattering process occurs at most once for every incident photon, and 
secondary scattering events are negligible. Additionally, both incident and 
scattering waves are observed in the far-field region, where the Fraunhofer 
approximation3 holds. Under these conditions, both the incoming and scattered X-
rays can be treated as plane waves, characterized by the wavevector 𝒌𝒌′  and 𝒌𝒌, 
respectively. For coherent scattering, the magnitude of these wavevectors is equal, 
|𝒌𝒌| = |𝒌𝒌′|, but their directions differ. 

Next, we consider a charge distribution. The electron density 𝜌𝜌(𝒓𝒓)  describes 
probability of finding an electron at position 𝒓𝒓 within the atom. Since the scattering 
is coherent, we have to consider the coherent addition of scattered waves, taking the 
phase into account. For an arbitrary electron located at position 𝒓𝒓 , the path 
difference relative to an electron at the origin introduces a phase shift:  

Δ𝜑𝜑(𝒓𝒓) = (𝒌𝒌 − 𝒌𝒌′)𝒓𝒓 =  −𝑸𝑸𝑸𝑸, (2.5) 

where 𝑸𝑸 = 𝒌𝒌′ − 𝒌𝒌 is the scattering vector, or the momentum transfer vector.  

Each electron thus contributes to the scattered wave 𝒌𝒌′ with a phase factor  𝑒𝑒−𝑖𝑖𝑸𝑸𝑸𝑸, 
and the total scattering amplitude2 from the atom is the sum over all such 
contributions, weighted by the electron density. 

𝐴𝐴(𝑸𝑸) = −𝑟𝑟0𝑓𝑓(𝑸𝑸) =  −𝑟𝑟0 �𝜌𝜌(𝒓𝒓)𝑒𝑒−𝑖𝑖𝑸𝑸𝑸𝑸 𝑑𝑑𝒓𝒓, (2.6) 

where 𝑓𝑓(𝑸𝑸) is known as the atomic form factor. As |𝑸𝑸| → 0, the phase factor  𝑒𝑒−𝑖𝑖𝑸𝑸𝑸𝑸 
approaches unity, and the integral yields the total number of electrons in the atom, 
𝑓𝑓(𝑸𝑸 = 0) = 𝑍𝑍.  

Note that Eq. (2.6) shows that the scattering amplitude of an atom corresponds to 
the Fourier transform of its electron density 𝜌𝜌(𝒓𝒓), and this principle remains valid 
also when 𝜌𝜌(𝒓𝒓) represents a larger object, such as a unit cell or nanocrystal, within 
the approximations of kinematical scattering and Fraunhofer diffraction. This 
foundational result forms the theoretical basis for much of the work in this thesis. 

Eq. (2.6) assumes that the scattering is purely elastic and that the atomic form factor 
𝑓𝑓(𝑸𝑸) is real and energy independent. However, when the incident X-ray photon 
energy near an absorption edge, the interaction becomes more complex and typically 
involves absorption. To account for this, the atomic form factor is extended to 
include energy-dependent dispersion corrections. 

𝑓𝑓(𝑸𝑸,𝐸𝐸) = 𝑓𝑓0(𝑸𝑸)  + 𝑓𝑓′(𝐸𝐸) + 𝑖𝑖𝑓𝑓′′(𝐸𝐸). (2.7) 

As illustrated in Figure 2.2, the cross section for elastic scattering is higher than that 
for inelastic scattering within the X-ray energy range of 0.1-50 keV.  
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2.1.2 Macroscopic View: Refractive Index 
For macroscopic objects, the complex refractive index 𝑛𝑛 is used to characterize the 
material’s interaction with X-rays. It is defined as: 

𝑛𝑛 = 1 − 𝛿𝛿 + 𝑖𝑖𝑖𝑖. (2.8) 

In the X-ray regime, the real part 𝛿𝛿 is typically on the order of 10−5 for solids, while 
the imaging part 𝛽𝛽 is usually even much smaller2. 

The definitions of 𝛿𝛿  and 𝛽𝛽  can be derived by comparing the mathematical 
description of the X-ray propagation in materials (using refractive index 𝑛𝑛) with the 
interaction of X-rays photons with multiple electrons within a given volume. They 
are given as  

𝛿𝛿 =
2𝜋𝜋𝜌𝜌𝑎𝑎𝑎𝑎𝑟𝑟0
𝑘𝑘2

(𝑓𝑓0(0) + 𝑓𝑓′), 𝛽𝛽 = −
2𝜋𝜋𝜌𝜌𝑎𝑎𝑎𝑎𝑟𝑟0

𝑘𝑘2
𝑓𝑓′′, (2.9) 

Definitions in Eq . (2.9) elegantly link the macro view and the micro view of the X-
ray-matter interactions. The real part 𝛿𝛿 introduces a phase shift to the scattered wave 
and is associated with elastic scattering. The imaginary part 𝛽𝛽, on the other hand, 
accounts for absorptions within the material.  

2.1.3 Coherence 
In the previous sections, outgoing X-rays are described as the result of interference 
between the scattered waves from individual electrons. This process introduces one 
important concept in this thesis, coherence. Coherence refers to the ability of waves 
to maintain a consistent phase relationship, determining whether waves can interfere. 
This property is necessary for creating observable interference or diffraction 
patterns. 

There are two types of coherence: longitudinal/temporal coherence and 
transversal/spatial coherence.  Longitudinal coherence is related to the spectral 
bandwidth of the wave, which determines its degree of monochromaticity. 
Transversal coherence, on the other hand, depends on the uniformity of the 
wavefront and the direction of wave propagation. A simple threshold for defining 
the visibility of interference is the coherence length. 
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Figure 2.4 Illustration of longitudinal and transversal coherence. a) Longitudinal coherence, which is related to spectral 
bandwidth of the source. b) Transversal coherence, which arises from the finite size of the source. 

As shown in Figure 2.4(a), consider two waves with slightly different wavelengths, 
𝜆𝜆 and 𝜆𝜆 + Δ𝜆𝜆, propagating along the 𝑥𝑥- direction. At the point 𝑥𝑥0,  they are in-phase. 
The longitudinal coherence length quantifies the distance over which two waves 
become completely out-of-phase (phase difference of 𝜋𝜋): 

𝐿𝐿𝐿𝐿 =
𝜆𝜆2

2Δ𝜆𝜆
. (2.10) 

Now, consider a finite light source, as illustrated in Figure 2.4(b). Points A and B 
on the source are separated by a distance of 𝐷𝐷. Waves emitted from these two points 
propagate in different directions. At the observation point P, the waves are in-phase. 
The transversal coherence length defines the distance from P to the position where 
they are completely out-of-phase: 

𝐿𝐿𝑇𝑇 =
𝜆𝜆𝜆𝜆
2𝐷𝐷

. (2.11) 

Together, longitudinal and transversal coherence lengths form the coherence 
volume 𝑉𝑉𝑐𝑐 . The coherence volume 𝑉𝑉𝑐𝑐  represents the maximum scale that waves 
remain coherent or partially coherent and thus contribute to the interference patterns. 
Beyond this volume, incoherent waves will blur and even eliminate the interference 
fringes. For X-ray diffraction imaging techniques, as discussed in this thesis, it is 
vital that the sample is within the coherence volume of the incoming X-ray beam.  
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2.2 Diffraction from an Ideal Crystal 
The previous section demonstrated that, in the X-ray regime, the scattering 
amplitude is proportional to the Fourier transform of the object’s electron density 
𝜌𝜌(𝒓𝒓). In the following section, I will focus on materials with periodic structure, 
known as crystals, and explore how their symmetry and periodicity influence the X-
ray diffraction. 

2.2.1 Crystal Structure: Lattice in Direct and Reciprocal Space 
For perfectly crystalline materials, the distribution of atoms can be represented as a 
regular, repeating grid, known as a crystal lattice. There are two types of crystalline 
materials: single crystals and polycrystals. A single crystal refers to the material in 
which the entire structure shares the same crystal lattice and orientation. In contrast, 
polycrystalline materials consist of multiple grains, where each grain varies in size 
and has different orientation of the crystal lattice. 

 

 
Figure 2.5 An ideal crystal lattice with basis vectors. The shaded volume is a crystal unit cell, in which a 
single-atom basis is assumed for simplicity. 

As shown in Figure 2.5, the entire crystal lattice is constructed from many identical 
blocks called unit cells. Each unit cell contains the identical fundamental 
components that make up the crystal. The lattice vector of the 𝑛𝑛-th unit cell can be 
represented as: 

𝑹𝑹𝑛𝑛 = 𝑢𝑢𝒂𝒂 + 𝑣𝑣𝒃𝒃 + 𝑤𝑤𝒄𝒄, (2.12) 
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where (𝒂𝒂,𝒃𝒃, 𝒄𝒄) are the basis vectors of a unit cell and (𝑢𝑢, 𝑣𝑣,𝑤𝑤) are corresponding 
integer factors. The length of basis vectors (𝒂𝒂,𝒃𝒃, 𝒄𝒄)  called lattice constants 
represent the lattice spacings along each axis of the crystal lattice. In general, 
(𝒂𝒂,𝒃𝒃, 𝒄𝒄) might not be mutually perpendicular, and the angles between them are 
denoted as  (𝛼𝛼,𝛽𝛽, 𝛾𝛾). The volume of a single unit cell can be calculated as 𝑉𝑉uc =
𝒂𝒂 ∙ (𝒃𝒃 × 𝒄𝒄). 

An ideal infinite crystal lattice can be mathematically expressed as a Dirac comb 
function 

|||(𝒓𝒓) = �𝛿𝛿(𝒓𝒓 − 𝑹𝑹𝑛𝑛)
𝑛𝑛

. (2.13) 

The Fourier transform of the lattice results in another lattice, known as the 
reciprocal lattice. Based on its definition, the basis vectors of the reciprocal lattice 
are given by 

𝒂𝒂∗ = 2𝜋𝜋
𝒃𝒃 × 𝒄𝒄
𝑉𝑉uc 

,𝒃𝒃∗ = 2𝜋𝜋
𝒄𝒄 × 𝒂𝒂
𝑉𝑉uc

, 𝒄𝒄∗ = 2𝜋𝜋
𝒂𝒂 × 𝒃𝒃
𝑉𝑉uc

. (2.14) 

Naturally, the basis vectors in real and reciprocal space satisfy the reciprocal 
relationship 𝒂𝒂 ∙ 𝒂𝒂∗ = 2𝜋𝜋. Thus, the reciprocal lattice vector 𝑯𝑯ℎ𝑘𝑘𝑘𝑘 constructed from 
these basis vectors is defined as 

𝑯𝑯ℎ𝑘𝑘𝑘𝑘 = ℎ𝒂𝒂∗ + 𝑘𝑘𝒃𝒃∗ + 𝑙𝑙𝒄𝒄∗, (2.15) 

where ℎ𝑘𝑘𝑘𝑘 are the Miller integer indices. In crystallography, the Miller indices are 
used to denote specific lattice directions and its corresponding sets of planes within 
the crystal.  

The distance between {ℎ𝑘𝑘𝑘𝑘}  planes is called the d-spacing, denote 𝑑𝑑ℎ𝑘𝑘𝑘𝑘 . The 
relationship between d-spacing and its corresponding lattice vector 𝑯𝑯ℎ𝑘𝑘𝑘𝑘 is  

𝑑𝑑ℎ𝑘𝑘𝑘𝑘 =
2𝜋𝜋

|𝑯𝑯ℎ𝑘𝑘𝑘𝑘|
. (2.16) 

2.2.2 X-ray Scattering from a Finite Crystal 
The discussion so far has assumed an infinite crystal, but real crystals are finite. The 
real shape function 𝑚𝑚(𝒓𝒓) is introduced here to describe the shape of the crystal: 

𝑚𝑚(𝒓𝒓) = �1, 𝒓𝒓 ∈ 𝑉𝑉,
0, 𝒓𝒓 ∉ 𝑉𝑉, (2.17) 



     13 

where 𝑉𝑉 is the volume of the crystal. 

The electron density 𝜌𝜌(𝒓𝒓) of the finite crystal can then be mathematically expressed 
as the product of the crystal lattice and the shape function8 

𝜌𝜌(𝒓𝒓) = 𝜌𝜌𝑢𝑢𝑢𝑢(𝒓𝒓) ⊗ [|||(𝒓𝒓) ⋅ 𝑚𝑚(𝒓𝒓)]. (2.18) 

Here, symbol ⊗ denotes the convolution operation. 𝜌𝜌𝑢𝑢𝑢𝑢 is the electron density of a 
single unit cell, given by summing over all atoms in the unit cell. 

𝜌𝜌𝑢𝑢𝑢𝑢(𝒓𝒓) = �𝜌𝜌𝑗𝑗�𝒓𝒓 − 𝑹𝑹𝑗𝑗�
𝑗𝑗

, (2.19) 

with 𝜌𝜌𝑗𝑗(𝑟𝑟)  representing the electron density of the 𝑗𝑗 -th atom and 𝑹𝑹𝑗𝑗  being the 
position vector of the 𝑗𝑗-th atom in the unit cell. Adopting the definition of atomic 
form factor 𝑓𝑓(𝑸𝑸) in Eq. (2.6), the unit cell structure factor2 is given by the Fourier 
transform of  𝜌𝜌𝑢𝑢𝑢𝑢(𝒓𝒓). 

𝐹𝐹uc(𝑸𝑸) = � 𝑓𝑓𝑗𝑗(𝑸𝑸)𝑒𝑒𝑖𝑖𝑸𝑸∙𝑹𝑹𝑗𝑗
atoms

𝑗𝑗

, (2.20) 

Finally, the total scattering amplitude from a finite crystalline material is obtained 
by taking the Fourier transform of its electron density 𝜌𝜌(𝒓𝒓). This results in: 

𝐴𝐴(𝑸𝑸) = 𝐹𝐹uc(𝑸𝑸) ⋅ |||�(𝑸𝑸) ⊗𝑚𝑚�(𝑸𝑸)

= �𝑓𝑓𝑗𝑗(𝑸𝑸)𝑒𝑒−𝑖𝑖𝑸𝑸⋅𝑹𝑹𝑗𝑗
𝑗𝑗�����������

Unitcell

⋅ �
(2𝜋𝜋)3

𝑉𝑉uc
�𝛿𝛿(𝑸𝑸 −𝑯𝑯ℎ𝑘𝑘𝑘𝑘)
ℎ𝑘𝑘𝑘𝑘

�
�����������������

Lattice

⊗𝑚𝑚�(𝑸𝑸), (2.21) 

where 𝑚𝑚�(𝑸𝑸) is the Fourier transform of the real shape function 𝑚𝑚(𝒓𝒓). 

2.2.3 Laue Condition, Bragg’s Law and Ewald’s Sphere 
Eq. (2.23) demonstrates that the diffraction pattern of a finite crystal arises from the 
coherent superposition of waves scattered from atoms at each lattice point. It reflects 
the combined contribution from the unit cell structure, the crystal lattice periodicity 
and the overall shape of the crystal.  

Laue Condition 
Let’s us examine the lattice part in Eq. (2.21). Diffraction occurs when 
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𝑸𝑸 = 𝑯𝑯ℎ𝑘𝑘𝑘𝑘 , (2.22) 

as the scattering from all unit cells are in phase. This condition is known as the Laue 
condition9, and the resulting maxima in intensity are referred to as the Bragg peaks. 
At these points, the intensity of the diffraction pattern is determined by the combined 
contributions of the unit cell structure factor and the shape function.  

Bragg’s Law 
The magnitude of the momentum transfer vector 𝑸𝑸 can be calculated as  

𝑄𝑄 = |𝑸𝑸| = |𝒌𝒌 − 𝒌𝒌′| = 2𝑘𝑘 sin𝜃𝜃 , (2.23) 

where 𝜃𝜃 is the half-angle between wave vectors 𝒌𝒌 and 𝒌𝒌′. When the Laue condition 
(Eq. (2.22)) is satisfied, substituting Eq. (2.16) into Eq. (2.23) yields Bragg’s law10: 

n𝜆𝜆 = 2𝑑𝑑ℎ𝑘𝑘𝑘𝑘 sin𝜃𝜃𝐵𝐵 . (2.24) 

From the perspective of traditional optics, Bragg’ law2 describes the condition for 
maintaining an in-phase relationship between the parallel waves incident on a 
crystalline material orientated along the [ℎ𝑘𝑘𝑘𝑘] direction, as illustrated in Figure 2.6. 
It specifies the angle 𝜃𝜃𝐵𝐵, known as the Bragg angle, at which the selected Bragg 
peak appears. The direction associated with the Bragg angle is also referred to as 
the rocking direction. Bragg’s law is a fundamental concept in X-ray diffraction and 
is widely used in crystal structure analysis. 

 

 

Figure 2.6 Illustration of Bragg’s law. Two parallel incident X-rays illuminates planes separated by a 
spacing with 𝑑𝑑 at an angle 𝜃𝜃. The X-rays are in-phase at the initial point. The dashed-line triangles 
demonstrates the optical path difference between scattered waves. 

Ewald’s Sphere 
The Laue condition requires the Bragg peak appear at the reciprocal lattice points, 
while the Bragg’s law specifies the scattering geometry needed to select a target 
Bragg peak. Together, these principles describe where and how diffraction occurs 
within a crystalline material. However, visualizing the relationship between the 
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reciprocal lattice and the scattering geometry can be challenging. Ewald’s sphere11 
provides a practical and intuitive tool for this purpose. It represents the diffraction 
condition in reciprocal space, illustrating how the orientation of the crystal and the 
wavelength (or energy) of the X-ray influence which reciprocal lattice points satisfy 
the principles and result in Bragg peaks. 

 

 
Figure 2.7 Illustraction of the Ewald’s sphere. Gray dots represent the reciprocal lattice points, with the 
origin at [000]. The incoming wavevector 𝒌𝒌 and outgoing wavevector 𝒌𝒌′ define the scattering vector 𝑸𝑸. 

Ewald’s sphere is defined as a spherical shell with its radius equal to the magnitude 
of the wavevector 𝑘𝑘 = 2𝜋𝜋/𝜆𝜆. In 2D, it is represented as a circle as shown in Figure 
2.7. The incoming wave vector 𝒌𝒌 points at the origin [000] of the reciprocal lattice. 
As the crystal is rotated in the rocking direction, the reciprocal lattice also rotates 
around the origin. When the Ewald’s sphere intersects a reciprocal lattice point [ℎ𝑘𝑘𝑘𝑘], 
the momentum transfer 𝑸𝑸 satisfied the Laue condition, and the angle between 𝒌𝒌 and 
𝒌𝒌′ is twice the Bragg angle. The geometry defined by this intersection specifies the 
experimental parameters, including the rotation angle of the sample and detector 
position, required for measuring the target Bragg peak.  
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2.3 Diffraction from a Crystal with Strain  
So far, the discussion has focused on a perfect crystal, where the lattice remains 
undistorted. However, such a perfect crystalline material is nearly impossible to be 
realized physically. Even slight displacements of lattice points naturally disrupt the 
periodic order, leading to local distortions that can significantly affect material 
properties, such as energy state, charge carrier mobility, and other physical 
parameters. Therefore, understanding the internal structure and imperfections of 
crystalline materials has become a central topic in modern solid-state physics and 
chemistry. The following section explores how these displacements alter diffraction 
patterns. 

2.3.1 Deformation, displacement and strain 
In physics, deformation is defined as changes in position and shape of a body. In the 
context of a crystal lattice, deformation primarily refers to variations in atomic 
positions within the ordered structure. Factors such as strain, ferro-elasticity and 
ferro-electric domains cause the distort the lattice order. Such a deformation is 
mathematically described by the displacement field2: 

𝒖𝒖(𝒓𝒓) = 𝑹𝑹𝑛𝑛′ − 𝑹𝑹𝑛𝑛, (2.25) 

where 𝑹𝑹𝑛𝑛 represents the ideal lattice positions, and 𝑹𝑹𝑛𝑛′  denotes the actual atomic 
positions in the deformed crystal lattice. The displacement field 𝒖𝒖(𝒓𝒓) =
�𝑢𝑢𝑥𝑥 ,𝑢𝑢𝑦𝑦,𝑢𝑢𝑧𝑧� captures the local shift at each lattice point in the crystal. 

During X-ray scattering, a non-zero displacement field 𝒖𝒖(𝒓𝒓)  induces additional 
phase shift in the scattered wave, given by: 

𝜑𝜑(𝒓𝒓) = −𝑸𝑸 ⋅ 𝒖𝒖(𝒓𝒓). (2.26) 

This phase shift represents the projection of the displacement field 𝒖𝒖(𝒓𝒓) onto the 
scattering vector 𝑸𝑸. According to the Laue condition, diffraction occurs only when 
𝑸𝑸 coincides with a lattice vector 𝑯𝑯ℎ𝑘𝑘𝑘𝑘. Therefore, in X-ray scattering, the projection 
of the displacement field is directly encoded in the phase of the diffracted wave, 
which will be discussed in detail later. 

The degree of deformation can be quantified by strain, which is generally defined 
as the relative displacement of points within the crystal lattice. Considering the 
phase term defined in Eq. (2.26), the strain component along the 𝑥𝑥- direction as an 
example can be derived as  
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𝜀𝜀𝑥𝑥𝑥𝑥 =
∂𝑢𝑢𝑥𝑥
∂𝑥𝑥

=
1

|𝑯𝑯ℎ𝑘𝑘𝑘𝑘|
∂𝜑𝜑
∂𝑥𝑥

(2.27) 

If the lattice spacing 𝑑𝑑 along a specific direction [ℎ𝑘𝑘𝑘𝑘] is known, the corresponding 
strain can also be calculated as  

𝜀𝜀 =
𝑑𝑑𝑠𝑠 − 𝑑𝑑0
𝑑𝑑0

, (2.28) 

where 𝑑𝑑𝑠𝑠 is the strained lattice parameter and 𝑑𝑑0 is the ideal lattice parameter. 

2.3.2 X-ray Scattering from a Finite Crystal with Strain 
To account for the effect of strain, the shape function in Eq. (2.21) is modified to a 
complex form12 with a phase term defined in Eq. (2.26): 

𝑠𝑠(𝒓𝒓) = 𝑚𝑚(𝒓𝒓)𝑒𝑒𝑖𝑖𝜑𝜑(𝒓𝒓) = 𝑚𝑚(𝒓𝒓)𝑒𝑒−𝑖𝑖𝑸𝑸𝑸𝑸(𝒓𝒓).. (2.29) 

Inserting Eq. (2.29) into Eq. (2.21), the scattering amplitude is derived as13  

𝐴𝐴(𝑸𝑸) = 𝐹𝐹uc(𝑸𝑸) ⋅ |||�(𝑸𝑸) ⊗ 𝑠̂𝑠(𝑸𝑸)

= �𝑓𝑓𝑗𝑗(𝑸𝑸)𝑒𝑒−𝑖𝑖𝑸𝑸⋅𝑹𝑹𝑗𝑗
𝑗𝑗

⋅ �
(2𝜋𝜋)3

𝑉𝑉uc
�𝛿𝛿(𝑸𝑸 −𝑯𝑯ℎ𝑘𝑘𝑘𝑘)
ℎ𝑘𝑘𝑘𝑘

� ⊗ 𝑠̂𝑠(𝑸𝑸)

=
(2𝜋𝜋)3

𝑉𝑉uc
�𝑓𝑓𝑗𝑗(𝑸𝑸)𝑒𝑒−𝑖𝑖𝑸𝑸⋅𝑹𝑹𝑗𝑗
𝑗𝑗

��𝛿𝛿(𝑸𝑸′ − 𝑯𝑯ℎ𝑘𝑘𝑘𝑘)𝑠̂𝑠(𝑸𝑸 − 𝑸𝑸′)𝑑𝑑𝑸𝑸′

ℎ𝑘𝑘𝑘𝑘

 (2.30)

=
(2𝜋𝜋)3

𝑉𝑉uc
�𝑓𝑓𝑗𝑗(𝑸𝑸)𝑒𝑒−𝑖𝑖𝑸𝑸⋅𝑹𝑹𝑗𝑗
𝑗𝑗

��𝛿𝛿(𝑸𝑸′ − 𝑯𝑯ℎ𝑘𝑘𝑘𝑘)𝑠̂𝑠(𝑸𝑸 − 𝑸𝑸′)𝑑𝑑𝑸𝑸′

ℎ𝑘𝑘𝑘𝑘

 

=
(2𝜋𝜋)3

𝑉𝑉uc
�𝑓𝑓𝑗𝑗(𝑸𝑸)𝑒𝑒−𝑖𝑖𝑸𝑸⋅𝑹𝑹𝑗𝑗
𝑗𝑗

� 𝑠̂𝑠(𝑸𝑸−𝑯𝑯ℎ𝑘𝑘𝑘𝑘)
ℎ𝑘𝑘𝑘𝑘

.

 

The term 𝑠̂𝑠(𝑸𝑸−𝑯𝑯ℎ𝑘𝑘𝑘𝑘) is given by 

𝑠̂𝑠(𝑸𝑸−𝑯𝑯ℎ𝑘𝑘𝑘𝑘) = �𝑠𝑠(𝒓𝒓)𝑒𝑒−𝑖𝑖(𝑸𝑸−𝑯𝑯ℎ𝑘𝑘𝑘𝑘)𝒓𝒓𝑑𝑑𝒓𝒓 . (2.31) 

Therefore, Eq. (2.30) becomes  
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𝐴𝐴(𝑸𝑸) =
(2𝜋𝜋)3𝐹𝐹uc(𝑸𝑸)

𝑉𝑉uc
�𝑠𝑠(𝒓𝒓)𝑒𝑒−𝑖𝑖(𝑸𝑸−𝑯𝑯ℎ𝑘𝑘𝑘𝑘)𝒓𝒓

ℎ𝑘𝑘𝑘𝑘

𝑑𝑑𝒓𝒓. (2.32) 

According to the Laue condition, the scattering vector is 𝑸𝑸 ≈ 𝑯𝑯ℎ𝑘𝑘𝑘𝑘 in the vicinity 
of a selected Bragg peak along the specific [ℎ𝑘𝑘𝑘𝑘] direction. The deviation 𝒒𝒒 from 
the Bragg peak can be introduced as 𝒒𝒒 = 𝑸𝑸 −𝑯𝑯ℎ𝑘𝑘𝑘𝑘 . At a given lattice point, the 
complex shape function13 takes the form 𝑠𝑠(𝒓𝒓) = 𝑚𝑚(𝒓𝒓)𝑒𝑒−𝑖𝑖𝑯𝑯ℎ𝑘𝑘𝑘𝑘𝒖𝒖(𝒓𝒓) . Thus, the 
scattering amplitude around the selected Bragg peak is derived as 

𝐴𝐴(𝒒𝒒) =
(2𝜋𝜋)3𝐹𝐹uc(𝑸𝑸)

𝑉𝑉uc
�𝑚𝑚(𝒓𝒓)𝑒𝑒−𝑖𝑖𝑯𝑯ℎ𝑘𝑘𝑘𝑘𝒖𝒖(𝒓𝒓) 𝑒𝑒−𝑖𝑖𝒒𝒒𝒒𝒒𝑑𝑑𝒓𝒓. (2.33) 

The scattering intensity is defined as the absolute square of the scattering amplitude 
𝐴𝐴(𝒒𝒒), 

𝐼𝐼(𝒒𝒒) = |𝐴𝐴(𝒒𝒒)|2 = �
(2𝜋𝜋)3𝐹𝐹uc(𝑸𝑸)

𝑉𝑉uc
�
2

��𝑚𝑚(𝒓𝒓)𝑒𝑒−𝑖𝑖𝑯𝑯ℎ𝑘𝑘𝑘𝑘𝒖𝒖(𝒓𝒓) 𝑒𝑒−𝑖𝑖𝒒𝒒𝒒𝒒𝑑𝑑𝒓𝒓�
2

. (2.34) 

If for example 𝒖𝒖(𝒓𝒓) is assumed to scale linearly with r, i.e. for homogeneous and 
constant strain, the additional phase term exp(−𝑖𝑖𝑯𝑯ℎ𝑘𝑘𝑘𝑘𝒖𝒖(𝒓𝒓))  introduced by the 
displacement field can be interpreted as a linear phase ramp in real space. According 
to shift theorem of the Fourier transform, this corresponds to a shift of the diffraction 
pattern in reciprocal space. This relationship is expressed as: 

ℱ�𝜌𝜌(𝒓𝒓)𝑒𝑒−𝑖𝑖𝒒𝒒d𝒓𝒓� = ℱ{𝜌𝜌(𝒒𝒒 + d𝒒𝒒)}. (2.35) 

This property also holds in reverse. Higher-order variations in 𝒖𝒖(𝒓𝒓) , which is 
normally what we are interested in, give rise to more complex changes in the 
diffraction pattern. 

Eq. (2.33) and Eq. (2.34) show that strain in a finite crystal introduces an additional 
phase term exp(−𝑖𝑖𝑯𝑯ℎ𝑘𝑘𝑘𝑘𝒖𝒖(𝒓𝒓)) at the Bragg peak along the selected [ℎ𝑘𝑘𝑘𝑘] direction. 
Figure 2.8 compares the simulated diffraction patterns for a perfect lattice and a 
strained lattice. As seen, the diffraction pattern from the perfect crystal exhibits 
central symmetry, consistent with Friedel’s law14. In contrast, the presence of strain 
breaks the symmetry and introduces the local intensity variation in the diffraction 
pattern. Additionally, a slight shift in the Bragg peak happens. 

By utilizing the sensitivity of X-ray diffraction to lattice displacements, X-ray 
diffraction imaging techniques provide critical insights into the internal structure 
and functional properties of crystal, especially in complex or integrated systems. 
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Figure 2.8 Simulated diffraction patterns from a perfect cubic crystal and a strained cubic crystal. 
a) Schematic illustration of the crystal lattices. The black lattice represents the perfect crystal, while the 
red lattice represents the strained crystal. b) Simulated diffraction pattern for a perfect crystal. c) 
Simulated diffraction pattern, displayed in logarithm, for the strained cubic crystal, with 2% strain applied 
in a harmonic distribution. 

The theoretical framework introduced in this chapter is based on the kinematical 
approximation. This approximation is valid under the condition of weak scattering, 
typically satisfied in systems with small sample volumes or low atomic numbers. In 
this thesis, most of the samples studied are at the nanoscale, where the kinematical 
approach remains applicable. However, for thick crystalline materials, multiple 
scattering events become significant, and the kinematical approximation breaks 
down. In such cases, a more rigorous treatment using dynamical diffraction theory 
is required. Although this thesis does not cover dynamical diffraction theory, readers 
interested in a deeper understanding are referred to standard textbooks2,15. 
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3 Bragg Diffraction Imaging 
Methods 

The use of X-ray diffraction to investigate the internal structure materials dates back 
to the early 20th century, when scientist first recognized the crystalline materials 
diffract X-rays in predictable way9,10. The earliest studies was conducted using 
laboratory-based X-ray sources, such as X-ray tubes firstly invented by W. 
Crookes16 in the 1870s-1880s. In this design, electrons emitted from a cathode are 
accelerated by an electric field and then collide with a fixed anode to produce X-ray 
waves. These devices were limited by low intensity, poor flux and insufficient 
coherence. As a result, the resulting diffraction patterns were often weak and blurred, 
restricting both spatial resolution and sensitivity to subtle structure features. 

With the evolution of synchrotron light sources, these limitations have been largely 
overcome. Modern synchrotron light sources provide X-ray beams with 
exceptionally high quality, enabling detailed studies of materials with nanometer 
resolution.  

This chapter begins with an introduction to synchrotron light sources, as all the 
experiments discussed in this thesis were conducted using synchrotron-based X-rays. 
The experimental configuration is then presented, followed by a discussion of the 
associated coordinate transformation. Two diffraction imaging techniques, 
scanning X-ray diffraction imaging (nano-XRD) and Bragg coherent diffraction 
imaging (BCDI), which share a similar experimental setup, are introduced in 
separate sections, with details on their underlying principles and applications. 

3.1 Synchrotron Light Sources  
Synchrotron radiation refers to the electromagnetic radiation emitted when 
relativistic electrons are accelerated along a curved trajectory by magnetic fields. It 
was first observed in 1947 as a secondary effect in a particle accelerator at General 
Electric Research Laboratory in New York. Since then, synchrotron technology has 
advanced significantly, progressing through several generations. Today, fourth-
generation synchrotron light sources provide highly coherent, ultra-bright X-ray 
beams that have become indispensable tools in a wide range of scientific disciplines. 
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3.1.1 Production of X-ray Radiation  
Figure 3.1 illustrates the MAX IV Laboratory17–19, the world’s first 4th generation 
synchrotron light source. It consists of two storage rings20 and one linear 
accelerator (LINAC) for electron acceleration. Electrons are initially produced by 
the electron gun and then accelerated to the designated energy in LINAC before 
being injected into the target storage ring.  

Inside the storage ring, electrons circulate along closed orbit, maintained by a 
magnetic lattice composed of achromats. Each achromat includes a specific 
arrangement of magnets serving different functions. For instance, bending 
magnets21 are used to keep the electrons in a curved trajectory. The circulating 
electrons then emit synchrotron radiation in the shape of a cone in the direction of 
velocity, which is subsequently delivered to individual beamlines for specific 
scientific experiment. The energy lost by the electrons due to radiation emission is 
compensated by radiofrequency (RF) cavities placed around the storage ring, which 
re-accelerate the electrons to maintain their nominal energy. To sustain a constant 
electron current stable over time, fresh electrons are periodically injected from the 
LINAC in a process known as top-up injection, ensuring a continuous and consistent 
electron beam.   

Compared to the traditional lab-based X-ray sources produced by X-ray tube, 
synchrotron light source can produce X-ray with much higher quality in terms of 
brilliance2, intensity and energy range. Brilliance 𝐵𝐵(𝜆𝜆)  is a key parameter for 
evaluating an X-ray source, as it describes how the spectral X-ray photon flux Φ(𝜆𝜆) 
is distributed spatially and angularly. It is defined as: 

𝐵𝐵(𝜆𝜆) =
Φ(𝜆𝜆)

(2𝜋𝜋)2𝜀𝜀ℎ𝜀𝜀𝑣𝑣
= �

number of photon/s
mrad2 ⋅ mm2 ⋅ 0.1% bandwidth

� . (3.1) 

Here, 𝜀𝜀ℎ  and 𝜀𝜀𝑣𝑣  represents the emittance in horizontal and vertical directions, 
respectively. Emittance is determined by both the beam size 𝜎𝜎 and its divergence 𝜎𝜎′, 
such that 𝜀𝜀 = 𝜎𝜎𝜎𝜎′. 

To achieve higher brilliance, modern storage rings rely on insertion devices installed 
in the straight sections of the ring. These devices are classified into two types: 
wigglers and undulators2. Both share a similar structure, consisting of a series of 
alternating dipole magnets that force electrons to follow a sinusoidal trajectory. In 
undulators, the magnetic field strength and period are relatively small, allowing the 
radiation emitted from successive oscillations to interfere constructively. This 
produces a highly collimated, quasi-monochromatic X-ray beam with significantly 
enhanced brilliance. 
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Figure 3.1 Illustration of the MAX IV synchrotron facility. The MAX IV synchrotron source features two rings: 
a smaller ring operating at 1.5 GeV for soft X-rays and a larger ring operating at 3GeV for hard X-rays. 
NanoMAX is the longest beamline at MAX IV. 

One key advancement at the MAX IV Laboratory, compared to other third-
generation synchrotron facilities, is the implementation of a diffraction-limited 
storage ring22 (DLSR) in the hard X-ray ring. It employs a multi-bend achromat 
(MBA) lattice with denser magnetic arrangement to better control the size and 
divergence of the electron beam. This directly enhances the brilliance of emitted X-
ray radiation.  

The brilliance is tightly tied to another important property of the X-ray source, 
coherence, which is also essential for X-ray diffraction imaging techniques. The 
coherent flux23 of an X-ray source is related to its brilliance 𝐵𝐵(𝜆𝜆) by:  

Φ𝑐𝑐(𝜆𝜆) = 𝐵𝐵(𝜆𝜆) �
𝜆𝜆
2
�
2

. (3.2) 

This equation shows that the coherent flux is directly proportional to the brilliance 
of the X-ray source. Therefore, high-brilliance sources, such as synchrotrons, can 
also produce high coherent flux, which is essential for advanced X-ray imaging 
techniques such as coherent diffraction imaging (CDI). 

3.1.2 Beamline Configuration 
Figure 3.2 illustrates the configuration of the NanoMAX beamline at MAX IV 
Laboratory, at which most work in this thesis was conducted. In this section, 
NanoMAX is used as a representative example to demonstrate how the emitted X-
rays are tailored to meet specific experimental requirements. 
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Figure 3.2 Sketch of the  NanoMAX beamline. The beam from the storage ring is tailored to the experiment 
using a set of optical components. 

The NanoMAX beamline is capable of providing a nano-sized focused beam with 
high coherence24–26. To satisfy these requirements, the radiation from the undulators 
is firstly collimated using a set of slits, followed by focusing to a smaller beam using 
focusing mirrors. A monochromator consisting of two Si <111> crystals is then used 
to select the desired wavelength of the X-ray by rotating the crystals to a specific 
angle that satisfies Bragg’s law, thereby enhancing the temporal coherence of the 
beam. The beam is further spatially refined by a secondary source aperture (SSA), 
which improves its spatial coherence in an adjustable way. To achieve nanoscale 
focusing, a pair of Kirkpatrick-Baez (KB)27 mirrors is used, with one focusing the 
beam vertically and another horizontally. For effective focusing, the incident angle 
of the beam on the KB mirror must be grazing to ensure the total external reflection. 

In a beamtime experiment at NanoMAX, the sample is secured by a sample holder 
mounted on a scanning stage. The scanning stage has a three-layered structure. The 
bottom layer, a goniometer stage, allows the sample to be rotated in three directions 
to achieve the required Bragg geometry. Above it is a scanning stage, which 
provides coarse positioning. The piezoelectric scanning stage, mounted on the 
coarse scanning stage, moves the sample with high precision along three axes. 
Additionally, a Eiger 500K detector is mounted on the robot arm, providing the 
necessary degrees of freedom to collect diffraction patterns during a beamtime 
experiment. 

3.2 Experimental Configuration 
To collect the diffraction pattern indicated by Eq. (2.34) under beamline conditions, 
a special experimental configuration must be employed to satisfy the Bragg 
condition for the selected Bragg peak.  
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3.2.1 Configuration in Bragg Geometry 

 
Figure 3.3. Illustration of CDI in Bragg geometry. The configuration is designed to capture the specific 
Bragg diffraction from crystal planes [ℎ𝑘𝑘𝑘𝑘]. Blue line represents the targeted crystal planes. 

Figure 3.3 illustrates a general configuration for the Bragg diffraction28. Since the 
incident beam 𝒌𝒌 is fixed at the beamline, the detector is positioned at 2𝜃𝜃𝐵𝐵 with a 
detector-to-sample distance 𝑟𝑟 to collect a sufficiently large diffraction pattern. To 
meet the Bragg condition, the sample is rotated using the stage so that the targeted 
reflected plane forms an angle 𝜃𝜃𝐵𝐵 with the incident beam 𝒌𝒌. This configuration can 
be implemented in either transmission (Laue) or reflection (Bragg) geometry, 
depending on whether the X-rays pass through or are reflected by the sample. Both 
geometries are compatible with nano-XRD and BCDI, and the choice primarily 
depends on the sample. For simplicity, this setup will be referred to as the Bragg 
geometry throughout the remainder of this thesis. 

In the context of the Ewald’s sphere, as illustrated in Figure 2.7, the detector can be 
considered as a flat plane fixed at the angular position, where the Ewald’s sphere 
intersects with the selected Bragg peak. To record the full 3D diffraction volume 
around this peak, the sample is rotated over a small angular range, known as the 
rocking range, along the rocking direction 𝜃𝜃. As the sample is rocked, the detector 
on the Ewald’s sphere moves correspondingly in and out of the Bragg peak, slicing 
the entire 3D diffraction pattern. Due to the long detector-to-sample distance 𝑟𝑟, 
these slices are effectively parallel with a step size defined by the nominated rocking 
increment Δ𝜃𝜃. The rocking angles refer to angles within the rocking range. 

3.2.2 Coordinate Transformation 
The coordinate system in an experimental setup plays a crucial role, not only in 
controlling motors and positioning the sample but also in ensuring consistency and 
accuracy in data analysis. In a configuration introduced by Figure 3.3, the sample is 
typically represented and controlled within an orthogonal coordinate system (𝑥𝑥,𝑦𝑦, 𝑧𝑧), 
referred to as the lab coordinate system. However, the recorded diffraction data 
follows a different coordinate convention, known as the natural coordinate29 system 



 26 

(𝑟𝑟1, 𝑟𝑟2, 𝑟𝑟3 ). This distinction arises due to the detector being tilted at an angular 
position of 2𝜃𝜃𝐵𝐵  to satisfy Bragg’s law. The transformation between these two 
coordinate systems is essential for the data analysis. 

 

 
Figure 3.4 Illustration of lab and natural coordinate systems. Geometry relative to the selected reflecting 
crystal planes.  

For convenience, a configuration relative to the selected reflecting crystal planes as 
shown in Figure 3.4 is employed to illustrate the coordinate transformation.   

In this configuration, 𝑞𝑞1 × 𝑞𝑞2 defines the detector plane, while 𝑞𝑞3 corresponds to 
the rocking direction. Here, 𝑞𝑞1 and 𝑞𝑞2 represent the horizontal axis and vertical axes 
of the detector plane, respectively. The detector is pixelated with pixel size of (Δℎ,  
Δ𝑣𝑣) in the horizontal and vertical directions. 

As shown in Figure 3.6 𝑞𝑞1 and 𝑞𝑞3 are dependent, while both are independent of 𝑞𝑞2. 
The reciprocal space resolution (d𝑞𝑞1, d𝑞𝑞2, d𝑞𝑞3 ) can be calculated based on the 
detector pixel size and the rocking angle increment Δ𝜃𝜃, as given by30: 

d𝑞𝑞1,2 = 𝑘𝑘
Δℎ,𝑣𝑣

𝐷𝐷
, d𝑞𝑞3 = |𝑸𝑸|Δ𝜃𝜃 = 2𝑘𝑘 sin𝜃𝜃𝐵𝐵 Δ𝜃𝜃.  (3.3) 

Here, the scattering vector satisfies Laue condition, 𝑸𝑸 = 𝑯𝑯ℎ𝑘𝑘𝑘𝑘 . 𝐷𝐷 is the distance 
between sample and the detector, 𝑘𝑘 is the wavenumber. The unit of Δ𝜃𝜃 is in radians.  

Based on the geometric relationships between lab and natural coordinate systems, 
the coordinate transformation29 from the natural coordinate system to the lab 
coordinate system is: 

𝑞𝑞𝑥𝑥 = 𝑞𝑞1 cos𝜃𝜃𝐵𝐵
𝑞𝑞𝑦𝑦  = 𝑞𝑞2  (3.4)

𝑞𝑞𝑧𝑧  = 𝑞𝑞3 − 𝑞𝑞1 sin𝜃𝜃𝐵𝐵
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Similarly, the transformation of coordinates in real space from (𝑟𝑟1, 𝑟𝑟2, 𝑟𝑟3) to 
�𝑟𝑟𝑥𝑥 , 𝑟𝑟𝑦𝑦 , 𝑟𝑟𝑧𝑧� can be written as: 

𝑟𝑟𝑥𝑥 = 𝑟𝑟1 −𝑟𝑟3sin𝜃𝜃𝐵𝐵
𝑟𝑟𝑦𝑦  = 𝑟𝑟2  (3.5)

𝑟𝑟𝑧𝑧  = 𝑟𝑟3cos𝜃𝜃𝐵𝐵
 

Note that the coordinate transformations shown in Eq. (3.4) and (3.5) are 
approximations based purely on the geometric relationships, considering only 
rotation around the rocking axis. It is valid for the experiments presented in this 
thesis. For more complex experiments involving multiple rotational degree of 
freedom, a more accurate transformation method is to use a full rotation matrix 
formalism31, though this is not detailed here. 

3.3 Scanning X-ray Diffraction Imaging 
As illustrated in Figure 2.8, the phase shift induced by lattice displacement directly 
results in variations in the diffraction patterns around a selected Bragg peak. 
Scanning X-ray diffraction imaging, also referred as to nano-XRD, is one of the X-
ray diffraction imaging techniques that exploits this sensitivity to probe internal 
structural of crystalline materials. It integrates X-ray diffraction with precise 
scanning control using motorized stages, which makes it particularly well-suited for 
extended samples. 

The real-space resolution of scanning XRD is limited by the focus size. Thanks to 
advancements in X-ray focusing optics and the high flux provided by state-of-the-
art synchrotron light sources, the beam can now be focused down to the 
nanoscale24,32. Therefore, nano-XRD is capable of measuring fine structural 
inhomogeneities of nanoscale material with high resolution32–42. 

Paper I and Paper II employed nano-XRD on different material systems, which will 
be introduced in Chapter 4. 

3.3.1 Process of Data Analysis 
The idea of nano-XRD is to capture subtle shifts in the detected Bragg peak caused 
by lattice displacements, as discussed in Chapter 2. The lattice displacement can 
modify the lattice spacing 𝑑𝑑  and the orientation of lattice planes (tilt), thereby 
changing the magnitude or the direction of the scattering vector 𝑸𝑸. Nano-XRD links 
these Bragg peak shifts to changes in 𝑸𝑸 , enabling the mapping of lattice 
displacement distribution within the sample. 
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Figure 3.5 illustration of scanning X-ray diffraction. a) A simulated sample with a triangular shape. The red 
grid represents the scanning trajectory. The yellow shaded rectangle indicates the focus X-ray beam on 
the sample. b) Diffraction patterns at each scanning point. c) Map of diffraction intensity 

As illustrated in Figure 3.5, the sample is moved along the horizontal (𝑥𝑥) and 
vertical (𝑦𝑦) axes using piezo motors. The scanning ensures that each grid point 
within the sample is systematically illuminated by the focused X-ray beam, 
producing diffraction patterns. By summing the intensity of each diffraction pattern 
and mapping it to its corresponding grip point, a diffraction intensity map is obtained 
that reveals the overall morphology of the sample. Nano-XRD normally includes 
rocking scans to collect 3D diffraction data, capturing Bragg peak shifts along the 
rocking direction. Note that while the method measures Bragg peak shifts in 3D 
reciprocal space, the real space imaging is 2D.  

The diffraction data are recorded in the natural coordinate system. Prior to further 
analysis, they need to be mapped to the orthogonal reciprocal space using the 
coordinate transformation shown in Eq. (3.4). 

The Bragg peak shifts in each diffraction can be determined using the center-of-
mass (COM) method, which is defined as: 

𝑄𝑄𝑗𝑗COM =
∑ 𝐼𝐼𝑖𝑖𝑞𝑞𝑖𝑖,𝑗𝑗
∑ 𝐼𝐼𝑖𝑖

. (3.6) 

Here, 𝑗𝑗 = (𝑥𝑥,𝑦𝑦, 𝑧𝑧) denotes the three orthogonal components of reciprocal space. 𝐼𝐼𝑖𝑖 
represents the photon counts at pixel 𝑖𝑖, and 𝑞𝑞𝑖𝑖,𝑗𝑗 is the coordinate of pixel 𝑖𝑖 along the 
𝑗𝑗-th reciprocal space direction.  

Since the diffraction data is already mapped in reciprocal space, the scattering vector 
𝑸𝑸 can be represented by its COM components. Therefore, the magnitude of the 
scattering vector 𝑸𝑸 for each individual diffraction pattern is calculated as: 
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𝑄𝑄 = |𝑸𝑸| =  �𝑄𝑄𝑥𝑥2 + 𝑄𝑄𝑦𝑦2 + 𝑄𝑄𝑧𝑧2. (3.7) 

With the calculated 𝑄𝑄 at each scanning point, obtaining the 𝑑𝑑- spacing map becomes 
straightforward using Eq. (2.16). This map provides spatially resolved information 
about lattice spacing variations across the sample. To further convert the 𝑑𝑑-spacing 
map to a strain map, a reference lattice spacing 𝑑𝑑0 is required, as described in Eq. 
(2.28). Typically, the bulk or theoretical lattice spacing for a given [ℎ𝑘𝑘𝑘𝑘] crystal 
direction is chosen as 𝑑𝑑0. If an absolute reference is not available, an alternative 
approach is to take the average 𝑑𝑑- spacing from the measured map and use it as the 
reference. 

 

 
Figure 3.6 Illustration of  lattice tilts. The gray rectangules indicate the substrates. Note that the 
experimental configuration is assumed to follow the transmission geometry. In this setup, an 𝛼𝛼 tilt of the 
object causes a shift of diffraction in the detector plane, corresponding to an in-plane tilt with respect to 
the substrate plane. A 𝛽𝛽 title results in a shift of diffraction along 𝜃𝜃- axis, corresponding to an out-of-
plane tilt relative to the substrate plane.  

Shifts in the diffraction pattern can arise not only from changes in lattice spacing 
but also from lattice tilts within the sample. When the dataset includes rocking 
scans, the shifts along the rocking direction can also be captured, allowing for a 
more comprehensive analysis of lattice tilts. These tilts can be categorized into in-
plane (IP, 𝛼𝛼) and out-of-plane (OOP, 𝛽𝛽) components relative to the detector plane, 
as illustrated in Figure 3.6. To quantify these tilts, one can evaluate the angular 
differences between the components of the scattering vector. Following the 
established notation, 𝑄𝑄𝑥𝑥  and 𝑄𝑄𝑦𝑦  represent the in-plane components, while  𝑄𝑄𝑧𝑧 
corresponds to the out-of-plane component. 

Based on these components, the definitions for the 𝛼𝛼 and 𝛽𝛽 tilts are defined as 

𝛼𝛼 = sin−1
𝑄𝑄𝑦𝑦
|𝑸𝑸| , 𝛽𝛽 = tan−1

𝑄𝑄𝑥𝑥
𝑄𝑄𝑧𝑧

. (3.8)  

Following these definitions, 𝛼𝛼 and 𝛽𝛽 tilts are considered as rotation around 𝑄𝑄𝑧𝑧 and 
𝑄𝑄𝑦𝑦, respectively. 

Summary of data processing steps for nano-XRD experiment: 
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1. Perform necessary coordinate transformation on the diffraction data to align it 
consistently with the sample’s coordinate system. 

2. Pre-process the diffraction data 
3. (Optional) Generate the diffraction intensity map to show the overall 

morphology of sample. 
4. Calculated COM and scattering vector 𝑸𝑸 for diffraction at each grip point 
5. Generate the 𝑑𝑑-spacing map. 
6. Compute the strain map. 
7. Calculate the tilt maps.  

The procedures outlined above also applied to the work presented in Chapter 4, as 
well as in Paper I & II. 

3.3.2 Limitations 
While nano-XRD reveals the internal strain distribution within the extended sample 
by analyzing the shifts of diffraction peaks, several limitations must be considered 
when interpreting the results. Chief among these are spatial resolution and the 
averaging effects inherent in the technique. 

The real-space resolution of the reconstructed maps described above is 
fundamentally limited by the focused beam size. In practice, the resolution can also 
be constrained by the precision of the motorized stages used for scanning and the 
optics the beamline, including the stability and focusing performance of the X-ray 
beam. 

At each grid point, the magnitude of the scattering vector |𝑸𝑸|, derived from the 
corresponding diffraction data, reflects an average over a finite probe volume. This 
volume is determined by the beam footprint and the angular step size of the rocking 
scan. As a result, fine-scale strain variations within this region may be averaged out, 
potentially blurring local structural features. Moreover, nano-XRD is a 2D 
measurement technique, limiting its ability to fully resolve the three-dimensional 
internal structure of materials. 

3.4 Bragg Coherent Diffraction Imaging 
Bragg coherent diffraction imaging (BCDI) is an advanced coherent diffraction 
imaging (CDI) technique that fully leverages the high coherence of fourth-
generation synchrotron light sources. Unlike nano-XRD, BCDI offers a 3D 
structural information by reconstructing the complex electron density of the object 
from its diffraction pattern. This approach enables higher spatial resolution and 
allows for detailed, 3D mapping of internal strain.  
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The foundation of CDI was established by Fienup43 in 1978, who proposed iterative 
phase retrieval algorithms to address the ‘lost phase’ problem, which will be 
discussed later in this section. Building on this progress, Miao et al. demonstrated 
the first diffraction imaging (CDI) experiment in transmission geometry44 with X-
rays in 1999. Shortly after, Robinson and his collaborators demonstrated a 2D CDI 
experiment on a gold nanocrystal in Bragg geometry45, leveraging the high 
penetration power of X-rays. They also highlighted the potential to extend this 
method to 3D to access full strain information in single crystalline grains.  

Since then, advancements in brilliant synchrotron sources and detector technology 
have made BCDI a practical and powerful technique to study internal strain 
distributions of crystalline materials in a non-destructive manner46–52. 

Paper III, Paper IV and Paper V are related to BCDI, which will be discussed in 
detail in in Chapter 5 and Chapter 6. 

3.4.1 Coherent Diffraction Imaging 
In an traditional optical imaging system, the resolution 𝑑𝑑  is fundamentally 
constrained by the Abbe diffraction limit3, 

𝑑𝑑 =
𝜆𝜆

2𝑁𝑁𝑁𝑁
. (3.9) 

Here, NA refers to the numerical aperture of the optical system. For visible light, 
the NA can easily exceed 1, meaning the resolution is primarily limited by the 
wavelength. In contrast, although X-rays have much shorter wavelengths, achieving 
a high NA with X-ray optics is extremely challenging due to the refractive index 
being very close to unity.  

On the other hand, CDI, including BCDI, avoids the Abbe limit by extracting the 
structural information of illuminated crystal from the diffraction patterns using a 
phase retrieval process, which will be discussed in detail later. This method enables 
resolution far better than the optics can provide. Note that in practice, although CDI 
is a called a lensless technique, it normally uses lenses for collimation of the primary 
beam. However, the role of the optics in CDI is to increase the flux density on the 
sample, not to give spatial resolution.  

The resolution of CDI is determined by the finest diffraction features, commonly 
referred to as fringes, that are recorded by the detector. As shown in Figure 2.8, the 
fringe intensity at higher 𝑄𝑄-values (peripheral regions of the diffraction pattern) 
decays fast compared to that at the low 𝑄𝑄 -values (central region). In fact, the 
intensity of coherent diffraction, 𝐼𝐼(𝑸𝑸), typically falls off2 as 𝐼𝐼(𝑸𝑸) ∝ 1/|𝑸𝑸|4. This 
means that achieving high resolution in CDI requires an intense and brilliant X-ray 
source capable of capturing high-𝑄𝑄 diffraction fringes. For this reason, synchrotrons 
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are considered as the ideal X-ray source for CDI due to their high flux and 
exceptional brilliance. 

3.4.2 Phase Problem and Iterative Phase Retrieval 
The phase problem53,54 refers to the loss of phase information in diffraction 
experiments, as detectors can only record intensity. However, the high coherence of 
the X-ray beam used in BCDI enables the phase to be computationally retrieved. 

Phase retrieval is the iterative computational algorithm used to reconstruct the phase 
from a coherent diffraction intensity pattern. The foundation of this approach was 
first proposed by Sayre55, who demonstrated the possibility of reconstructing object 
from its well-sampled diffraction magnitude. Later, Fienup56 and many others 
contributed to the development of phase retrieval algorithms. 

Process of a Typical Phase Retrieval Algorithm 
Here, the Error-reduction (ER) algorithm43 is used as an example to illustrate the 
workflow of the iterative phase retrieval algorithm reconstruction, as shown in 
Figure 3.7. In this framework, 𝜌𝜌(𝒓𝒓) represents the reconstructed complex object in 
real space, while 𝐴𝐴(𝑸𝑸) denotes the complex amplitude in reciprocal space. 

The first step in ER is to initialize the phase estimate. A random initial phase is 
assigned to an initial guess of binary shape function representing the object 𝜌𝜌. This 
estimated object is then transformed into reciprocal space via a Fourier transform 
(ℱ), producing the estimated diffraction 𝐴𝐴. Next, the real part of 𝐴𝐴 is replaced by 
the measured modulus of the diffraction intensity (√𝐼𝐼 ), while the phase is left 
unchanged, generating an updated estimate 𝐴𝐴′. The inverse Fourier transform (ℱ−1 ) 
is then applied to 𝐴𝐴′, yielding a new complex object 𝜌𝜌′ in real space. To refine the 
solution, a real-space support constraint is applied on 𝜌𝜌′. This updated 𝜌𝜌′′ is used 
as the input for the next iteration. The algorithm iteratives this process until 
convergence, which is achieved when the reconstructed diffraction satisfies |𝐴𝐴| =
√𝐼𝐼. 

The support constraint in this process enforces the prior knowledge of the object, 
such as a finite size. This constraint is represented as a binary shape function, where 
values inside the support are set to one and those outside are set to zero. If no prior 
knowledge about the object’s shape is available, the initial support is generally 
estimated as the autocorrelation function calculated from the measured diffraction 
intensity 𝐼𝐼. Since the autocorrelation is twice larger than the object and the exact 
object boundary is always unknown, an adaptive support updating strategy is 
necessary for refinement. One commonly used method is the Shrink-wrap57 
algorithm, where the support is updated by applying a Gaussian blur to the real-
space estimate, followed by thresholding to refine the boundary.  
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Figure 3.7 Basic steps in the Error-reduction phase retrieval algorithm. The illustration depicts a single 
iteration of the iterative reconstruction process. 

Most other phase retrieval algorithms are developed based on the ER method, with 
necessary modifications in how real-space support constraints are applied. For 
example, the hybrid input output (HIO)43 method introduces a feedback mechanism 
of the support constraint from the previous iterations. The relaxed averaged 
alternating reflection (RAAR)58 algorithm introduces a weighting parameter to 
balance the behaviors of ER and HIO. 

Phase retrieval is a powerful tool for reconstructing the missing phase information 
from coherent diffraction patterns. However, it is not the primary focus of this thesis. 
Instead, it is treated as a standard computational method for data analysis. To 
maintain consistency and minimize variability in the analysis, the involved phasing 
process is performed using the software PyNx59 developed by Favre-Nicolin et al., 
applying default phase retrieval algorithms with the same preset parameters in most 
analysis discussed in this thesis. 

Phase Wrap and Phase Ramp 
Once the phase is reconstructed by the phase retrieval algorithm, certain 
considerations needed to be addressed before proceeding with analysis. 

One such issue is the phase wrap. The reconstructed phase is inherently limited to 
the range of (−𝜋𝜋,𝜋𝜋) due to the nature of the Fourier transform operation. However, 
the actual phase 𝜙𝜙(𝒓𝒓) may exceed this range, causing discontinuities known as 
phase wrap in the reconstruction. Since phase values are cyclic during phase 
retrieval process, exceeding the range results in abrupt jump between −𝜋𝜋 and 𝜋𝜋. 
This issue can be corrected by phase unwrapping, where the phase range is extended 
by adding integer multiples of  2𝜋𝜋 to the region where abrupt phase jump occurs. 

Another issue is the phase ramp. If the original diffraction is not centered correctly 
in reciprocal space, the corresponding reconstructed phase in real space will exhibit 
a phase ramp instead of a uniform phase distribution. This can be corrected by 
identifying the phase ramp over the reconstruct object and multiplying the object 
with a complex conjugate phase term. 
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Resolution of Reconstruction 
Since BCDI relies on both diffraction data and phase retrieval, evaluating the 
resolution of the reconstruction is not straightforward60. Unlike nano-XRD, where 
the resolution is defined by the focused beam size, in BCDI the resolution depends 
on the quality of diffraction data and the accuracy of the phase retrieval process. 
Here, two methods are introduced to evaluate the resolution of BCDI 
reconstructions: the phase retrieval transfer function (PRTF)61 and the Gaussian 
fitting criteria62.  

PRTF quantifies the reliability of the reconstructed phase at different spatial 
frequency 𝑄𝑄. By radially integrating the diffraction volume over 𝑄𝑄, the PRTF is 
defined as the ratio of the diffraction amplitude obtained from the reconstructed 
complex electron density to the measured amplitude over shells of constant spatial 
frequency 𝑄𝑄: 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑄𝑄) =  
|ℱ{𝜌𝜌}|(𝑄𝑄)

�𝐼𝐼(𝑄𝑄)
. (3.10) 

For a typical BCDI reconstruction, PRTF values are close to 1 at low 𝑄𝑄, indicating 
that the phases at these spatial frequencies are consistently recovered. As 𝑄𝑄 
increases, the PRTF drops, suggesting increasing uncertainty in the retrieved phase. 
The resolution is commonly defined as the point 𝑄𝑄𝑒𝑒 at which PRTF < 1/𝑒𝑒, where 
𝑒𝑒 is Euler’s number. The real-space resolution can be calculated as Δ𝑟𝑟 = 2𝜋𝜋/𝑄𝑄𝑒𝑒. 
This method was used in Paper III to evaluate the reconstruction resolution. 

The Gaussian fitting criteria evaluates the resolution of phase retrieval 
reconstruction by analyzing the sharpness of reconstructed sample edges at different 
directions. This method involves a line read-out of intensity across edges in the 
reconstructed image. Edge locations are first determined by fitting the intensity 
profiles with error functions (erf functions). Gaussian fitting is then applied to the 
derivatives of the fitted edges, and the full widths at half maximum (FWHMs) of 
the fitted Gaussian functions provide a quantitative measure of the spatial resolution 
at different directions. This method was employed in Paper IV to assess the 
resolution of the reconstruction. 

3.4.3 Data Acquisition and Data Analysis 

Data Acquisition and Data Analysis 
As described earlier, rotating the sample along the rocking direction allows the 
detector to slice and record the complete 3D diffraction pattern. In practice, BCDI 
involves rotating the sample over a small angular range (typically ~1°) in hundreds 
of steps. To accurately capture fine features of the diffraction pattern, the 
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measurement must satisfy the Nyquist-Shannon theorem. This ensures that the 
diffraction data are sufficiently sampled to retain all spatial frequency information 
necessary for phase-retrieval reconstruction. Additionally, the sample must be 
precisely positioned at the center of rotation to avoid real space shift of the sample 
during the measurement. 

A simple way to illustrate the 3D diffraction volume is by using a rocking curve. To 
obtain a rocking curve, the intensities of each slice of the diffraction volume are 
summed up and plotted against the angular position along the rocking axis. Since 
the rocking curve is directly related to the intensity distribution of diffraction along 
rocking direction, it also reflects the strain situation to some extent.  

The complex electron density of the sample is obtained after applying the phase 
retrieval algorithms. Before further analysis, the coordinate transformation (Eq. 3.5), 
also referred as to rectification, should be performed to the reconstruction. The 
phase term 𝜑𝜑  represents the projection of lattice displacement on the selected 
direction, as stated in Eq. (2.34). The strain can be obtained using Eq. (2.27) 

In conclusion, the data analysis process for BCDI measurements can be summarized 
as follows: 

1. Pre-process the diffraction data. 
2. Perform phase retrieval on the data and rectify the reconstruction.  
3. Visualize the reconstruction and unwrap the reconstructed phase if necessary. 
4. Calculate the strain distribution. 
The procedure outlined above applied to the work presented in Chapter 5 and 
Chapter 6, as well as in Paper III, Paper IV & V. 

3.4.4 Limitations 
BCDI typically requires that the probed sample be relatively small and fully 
illuminated by the coherent X-ray beam, and well-isolated from surrounding 
structures to avoid interference effects in the diffraction pattern. However, recent 
studies have demonstrated the feasibility of applying BCDI to extended samples63,64, 
where only a portion of the sample is illuminated. In such cases, phase retrieval can 
still be successfully performed, as the targeted Bragg peaks remain well-isolated in 
the reciprocal space, even though the material is continuous in real space. In Paper 
IV, such a strategy was employed to measure the strain in a heterostructured 
nanowire.  

Additionally, the accuracy of the BCDI results relies heavily on the recorded 
diffraction data. As mentioned earlier, satisfying the sampling condition55 is crucial 
to ensure the correct reconstruction of fine details within the sample. Other than this, 
the quality of diffraction data also plays a significant role. 
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Any unpredicted angular distortions caused by unstable experimental conditions 
external factors, such as beam radiation pressure, heating or applied electromagnetic 
field65–67 during data acquisition, can affect the measurements. These angular 
uncertainties may lead to unexpected artifacts68 in the reconstructions. This issue is 
particularly common in complex setups, such as in situ experiments. Such 
limitations undoubtedly constrain the broader applicability of BCDI. 

Methods to mitigate the effects of angular uncertainty have been studied recently68,69.  
In Paper III, we proposed a state-of-the-art algorithm capable of handling large 
angular distortions in diffraction datasets. This algorithm was subsequently applied 
in Paper IV to improve data quality. In Paper V, we introduced a novel strategy to 
reconstruct the diffraction volume from datasets with completely unknown angles.  
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4 Strain and Lattice Tilt Analysis via 
Scanning X-ray Diffraction  

In this chapter, two studies are presented to demonstrate the application of nano-
XRD in resolving different aspects of crystalline structure. The first focuses on a 
heterostructured metal halide perovskite nanowire, where nano-XRD is used to 
probe the lattice spacing across the entire nanowire (Paper I). The second 
investigates a bismuth ferrite (BiFeO3, BFO) thin film, where nano-XRD enables 
imaging of ferroelectric domains by detecting variations in lattice orientation (Paper 
II). Notably, this work also highlights the capability of nano-XRD to resolve 
ferroelectric domains beneath metallic electrodes, an area inaccessible to 
conventional methods such as piezoresponse force microscopy (PFM), underscoring 
the unique advantages of X-rays. 

Together, these studies illustrate how nano-XRD can be adapted to reveal both 
lattice spacing and orientation in complex nanostructured materials. 

4.1 Heterostructures and Ferroic Domains 
To aid the interpretation of the results discussed in the following sections, a brief 
overview of heterostructures and ferroic domains is presented below. 

4.1.1 Heterostructures 
Heterostructures are formed when two or more crystalline materials are joined 
together, generally with different lattice parameters. The lattice mismatch at the 
interface introduces strain, which can significantly alter the electronic band structure 
and carrier mobility of the system. This band structure engineering enables tunable 
optoelectronic properties, making heterostructures valuable in a wide range of 
applications such as photovoltaics70,71, light-emitting diodes72–74, and quantum 
devices75–78. 
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However, if the lattice mismatch exceeds the elastic strain accommodation limit of 
the materials, i.e. the coherency limit79, the system may form dislocations or other 
defects, which can degrade device performance or cause failure. 

At the nanoscale, the devices often exhibit higher strain tolerance than in bulk80,81, 
because their high surface-to-volume ratio allows more effective stain relaxation. 
This makes it possible to interface a broader range of materials, opening new 
opportunities for designing heterostructures with tailored functionalities.  

4.1.2 Ferroic Domains 
The ferroic family82 of materials includes ferromagnetic, ferroelastic and 
ferroelectric materials.  

In ferroelastic materials, a structural phase transition, for example, from cubic to 
tetragonal lattice, changes the shape of unit cell. This transformation creates 
domains with different lattice orientations coexisting within the same crystal. Each 
domain exhibits distinct spontaneous strain state, which can be modified by external 
mechanical stimuli, such as stress or temperature. 

Analogous to the spontaneous strain state in ferroelastic materials, ferroelectric 
materials are characterized by spontaneous electric polarization, which arises from 
a relative displacement between positive and negative ions within the unit cell. 
When many unit cells align with the same polarization direction, ferroelectric 
domains form. These domains can be switched by the external electric field, and 
importantly, maintain their polarization state upon removal of the external field. 

Domain walls are the boundaries that separate regions of different domain states and 
typically lie along preferred crystallographic directions.  From a lattice perspective, 
these walls introduce local lattice mismatches due to discontinuities in strain or 
polarization. In ferroelastic system, such lattice mismatches are characterized as 
spontaneous strain. In ferroelectric system, the domains instead correspond to 
spontaneous electric dipole moments.  

Ferroelectricity and ferroelasticity are often coupled, meaning for instance that 
strain can affect the ferroelectric properties. Thus, in some cases, information about 
the ferroelectric properties can be inferred by analyzing the variation in diffraction 
pattern induced by the strain or tilt.  
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4.2 Strain Mapping of Heterostructured Perovskite 
Nanowires 

Semiconductor nanowires have emerged as a versatile platform for nanoscale 
electronics and optoelectronics83–85. While early research focused on silicon-based 
nanowires, the field quickly expanded to include III–V compound semiconductors 
such as InP, GaAs, and GaN. Compared to silicon, these materials offer higher 
electron mobility and direct, tunable bandgaps, making them well-suited for high-
speed electronics, light emitting diodes, and laser applications. More recently, 
halide perovskite nanowires86–89 have garnered significant interest due to their 
superior light absorption, low production costs, and scalability. Their defect-tolerant 
nature also gives them a competitive edge under non-ideal fabrication conditions. 

A major advancement in nanowire technology has been the engineering of axial and 
radial heterostructures within individual nanowires. The strain can significantly 
affect the band structure, and in many cases, can be tuned to enhance device 
performance. Therefore, characterizing the internal structural state of 
heterostructured nanowires is critical for guiding device design. 

In this section, nano-XRD has been employed to examinate the internal structure 
state of CsPbBr3/ CsPb(Br₁₋ₓClₓ)₃  perovskite nanowires, as reported in Paper I.  

4.2.1 Sample Synthesis 
The synthesis of the heterostructured CsPbBr₃/ CsPb(Br₁₋ₓClₓ)₃ nanowire90,91 was 
carried out by our colleague Nils Lamers. The overall process consists of two main 
steps: the growth of pure CsPbBr₃ nanowires and the subsequent anion exchange to 
create the heterostructure. 

In the growth process92,93, anodized aluminum oxide (AAO) membranes with 
cylindrical pores of 200 nm diameter are used as templates. Nanowires nucleate 
from a precursor solution containing CsBr and PbBr₂ and grow inside the pores of 
the AAO structure. After emerging from the template as free-standing nanowires, 
they are collected by gently scraping the AAO surface with a tissue. These 
nanowires are then transferred to a Si₃N₄ membrane substrate for further processing. 

To form the heterostructure, a part of each nanowire is selectively masked with a 
polymer, while the exposed section is subjected to chlorine gas. During this anion 
exchange process, some bromide (Br) ions in the exposed regions are replaced by 
chloride (Cl) ions, resulting in the formation of a CsPb(Br₁₋ₓClₓ)₃ segment. 
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4.2.2 Results and Discussion 
The research was conducted on both pure CsPbBr₃ and heterostructured 
CsPb(Br₁₋ₓClₓ)₃ nanowires. A 60 nm² focused X-ray beam with an energy of 15 keV 
was used for the measurements. The setup was configured to probe the (004) Bragg 
peak of the nanowires, which aligns with their growth axis. Additionally, X-ray 
fluorescence (XRF) was employed to assist in sample localization and to support 
elemental analysis. The 15 keV incident energy was sufficiently high to excite the 
𝐾𝐾𝛼𝛼 emission line of Br, enabling direct detection of its distribution. 

 

 
Figure 4.1 Illustration of nanowires and their corresponding diffraction patterns. a) Pure CsPbBr3 nanowire 
and its corresponding (004) Bragg diffraction. b) Schematic of a heterostructured nanowire, showing 
two separated (004) diffraction peaks. The left diffraction peak corresponds to CsPbBr3, and the right 
peak corresponds to CsPb(Br₁₋ₓClₓ)₃. 

Figure 4.1 displays the diffraction patterns from a reference CsPbBr₃ nanowire and 
from the chlorinated (CsPb(Br₁₋ₓClₓ)₃) segment of a heterostructured nanowire. The 
rectangular shape of the Bragg peaks originates from the slits before KB mirrors. In 
Figure 4.1(b), two distinct peaks are observed, corresponding to the CsPbBr₃ and 
CsPb(Br₁₋ₓClₓ)₃ regions. The slight difference in their lattice spacings, originating 
from the smaller size of Cl compared to Br, leads to a separation of Bragg peaks in 
reciprocal space. The Bragg peak appearing at the high 𝑄𝑄 (right side) corresponds 
to CsPb(Br₁₋ₓClₓ)₃, which has a smaller lattice spacing. By also rotating the 
nanowires along the rocking direction, nano-XRD can extract the detailed lattice 
spacing map and tilt maps through COM analysis of the entire 3D reciprocal 
volume. 

The results of the nano-XRD measurements of both the reference and 
heterostructured nanowires are presented in Figure 4.2. X-ray fluorescence (XRF) 
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maps for Br and Cl are also included to support the structural analysis. For the 
reference nanowire, only the central region is shown in Figure 4.2, as both ends are 
slightly bent and deviate from the Bragg condition.  

 

 
Figure 4.2 Nano-XRD results from perovskite nanowires. a) Pure CsPbBr₃ nanowire and b) CsPbBr₃/ 
CsPb(Br₁₋ₓClₓ)₃ heterostructured nanowire. The first row in both (a) and (b) shows X-ray fluorescence 
(XRF) maps. Green indicates the spatial distribution of bromine, while blue corresponds to chlorine. 

The reference nanowire shows a highly uniform Br distribution in the XRF map. 
Consistent with this, its lattice spacing map also exhibits a homogeneous 
distribution, with an average of 𝑑𝑑 = 2.941 Å, which is very close to the expected 
value d= 2.940 Å.  In contrast, the heterostructured nanowire reveals a distinct 
deviation in lattice spacing between the unchlorinated and chlorinated regions. The 
transition boundary in lattice spacing map coincides with the compositional 
interface identified by XRF signal. The average lattice spacing in the unchlorinated 
region is 𝑑𝑑 = 2.928 Å , while it decreases to 𝑑𝑑 = 2.845 Å  in the chlorinated 
segment. The slightly reduced lattice spacing in unchlorinated region compared to 
the pure CsPbBr₃ suggests partial diffusion of chlorine from the chlorinated side 
into the unchlorinated side. 

Using the average value 𝑑𝑑004 = 2.941 Å as the lattice spacing for pure CsPbBr₃, the 
chlorine concentration 𝑥𝑥 can be estimated by Vegard’s law together with tabulated 
values for orthorhombic CsPbCl₃ and the measured lattice spacings. The calculation 
yields average values of 𝑥𝑥 = 9% in the unchlorinated segment and 𝑥𝑥 = 66% in the 
chlorinated segments. These calculations are in good agreement with the estimation 
from the XRF signal, which indicates 𝑥𝑥 = 3% and 𝑥𝑥 = 70%, respectively. 

The 𝛼𝛼 tilt map clearly reveals the bending of the reference nanowire. In the case of 
the heterostructured nanowire, a distinct difference in tilt angle of approximately 
0.2° is observed between the different segments. Additionally, a sharp positive peak 
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in 𝛼𝛼 tilt appears around 𝑥𝑥 = 3 𝜇𝜇m, which lies between the two plateau regions in 
the 𝛽𝛽 tilt map where the tilt angle remains close to zero. 

Similar periodic tilts with opposite signs, separated by a plateau, are observed in 
both the reference and the heterostructured nanowire in the 𝛽𝛽  tilt map. When 
correlated with the lattice spacing map, it becomes evident that the regions 
exhibiting opposite tilt signs do not correspond to significant variations in lattice 
spacing. These observations suggest the formation of ferroelastic domains, which 
are widely reported for CsPbBr₃ in literature39,94. The regions with opposite tilt 
angles can be interpreted as domains with different crystal orientations, i.e., twin 
phases. In our configuration, these domains may be rotated around the c-axis of the 
crystal lattice. The plateau likely corresponds to a domain wall separating adjacent 
domains. In addition to these ferroelastic domains, a clear angular mismatch at the 
heterojunction interface is observed in the heterostructured nanowire. 

While the structural features observed in the lattice spacing map and tilt maps offer 
valuable insights, it is important to acknowledge the limitations of the measurement 
technique. As explained in the previous chapter, the spatial resolution of nano-XRD 
maps is primarily constrained by the beam size. Even with a focused beam as small 
as 60 nm², the technique may still struggle to fully capture subtle, localized 
variations in lattice spacing or tilts. Additionally, the Bragg geometry inherently 
alters the beam footprint on the sample and skews the illumination geometry, 
potentially introducing further resolution limitations and spatial distortions. These 
factors should be considered when interpreting fine structural features. 

4.3 Imaging Ferroelectric Domains in Bismuth Ferrite 
Thin Films 

Ferroelectric thin films have been widely investigated for computing and data 
storage applications due to their switchable polarization95. The performance of such 
devices largely depends on the nano to microscale architectures of ferroelectric 
domains. These domain structures are typically complex. Given the possibility of 
domain switching under external stimuli like electric fields, multiple domain 
variants often coexist within a thin film. Imaging the domain structure is crucial for 
understanding its structure-property relation and is therefore essential for optimizing 
device performance. 

Conventional optical microscopy struggles to achieve a resolution that is high 
enough for distinguishing domains. Piezoresponse force microscopy (PFM) is one 
of the most commonly used techniques for imaging ferroelectric domains. It is a 
scanning probe technique that image domains by detecting the piezoelectric 
response of a sample under an applied AC voltage. The voltage is applied through 
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a conductive cantilever tip, which also served as the detector. The resulting electric 
field induces mechanical deformation in the sample via the inverse-piezoelectric 
effect, causing it to expand or contract depending on the polarization direction. Out-
of-plane polarization results in vertical surface deformation, while in-plane 
polarization leads to lateral (sideways) deformation. By measuring the 
corresponding cantilever deflections, PFM enables high-resolution imaging of 
ferroelectric domains. 

Despite its high spatial resolution and sensitivity, PFM has limitations, particularly 
when characterizing the electrical properties of ferroelectric devices with top 
electrodes. In such cases, the presence of a top electrode not only blocks the direct 
mechanical contact between the cantilever tip and the sample surface but also 
prevents local electrical coupling, as any applied electric field is distributed across 
the entire electrode. As a result, PFM is unable to image or measure the domain state 
beneath the electrode. These limitations make it challenging to investigate domain 
behavior in fully integrated devices or capacitor structures where electrodes are 
necessary for electrical testing. 

Nano-probe X-ray imaging techniques, such as scanning nano-XRD, shows great 
potential to fill the gap, as the X-ray source provides excellent penetration to pass 
through thick electrodes and offers high strain sensitivity. As discussed earlier in 
this chapter, ferroic domains may induce lattice distortion and orientation, which 
can be effectively detected by nano-XRD96–99. 

In the rest of this section, I will present the study employing nano-XRD to map 
ferroelectric domains in a bismuth ferrite (BiFeO3, BFO) thin film100. For further 
details, readers are referred to Paper II. 

4.3.1 Sample and Experimental Configurations 
The rhombohedral (R3c) structured BFO thin film101 was grown on a SrRuO3 
(SRO)-buffered DyScO3 (DSO) substrate by our collaborators in the group of 
Morgan Trassin at ETH Zürich. In the BFO system, ferroelectric domains are 
coupled with ferroelastic domains. As illustrated by Figure 4.3(a), the epitaxial 
strain results in stripe-like ferroelastic domains orientated about 71° apart along 
DSO [001] directions, forming the overall ferroelectric domain architecture. The 
ferroelectric polarizations generally point along four distinct [111] pseudo-cubic (pc) 
directions, resulting in a total of eight possible polarization orientations in BFO. The 
small white arrows in Figure 4.3(a) display examples of these polarization directions. 

Nano-XRD was conducted on these BFO thin films. The experimental configuration 
was set to align the BFO (003)pc Bragg peak and led to the beam footprint on the 
sample becoming elongated to 60 nm ×  180 nm. Diffraction datasets for BFO 
sample were obtained by scanning with a step size of 50 nm in the 𝑥𝑥𝑥𝑥- plane. 
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Figure 4.3(b–d) illustrates the experimental setups and the definitions of the tilts 𝛼𝛼 
and 𝛽𝛽, which is slightly different here compared with paper I. In the context of the 
BFO system, 𝛼𝛼  represents tilts between ferroelectric domains (along the [100]pc 
direction), while 𝛽𝛽  corresponds to tilts along the domains (along [010]pc). 
Depending on how the sample is mounted relative to the incident beam direction 𝒌𝒌𝑖𝑖, 
the measurement configuration can be classified as either parallel or perpendicular. 
Due to the differing sample orientations, the 𝛼𝛼 and 𝛽𝛽 tilts in this study are both 
calculated as rotations around 𝑞𝑞𝑧𝑧, but in parallel and perpendicular configurations, 
respectively. 

 

 
Figure 4.3 Schematic of the BFO sample and experimental configurations. a) Illustration of BFO thin film 
grown on SRO-buffered DSO substrate. b) Tilts 𝛼𝛼 and 𝛽𝛽 with respect to the stripe-like domain direction. 
c) Experimental setups of nano-XRD measurements with domains aligned either parallel (c) or 
perpendicular (d) to the incident beam 𝒌𝒌𝑖𝑖 direction. The yellow ellipses on the sample represent the 
footprint of the incident beam. e) PFM results on a box-in-box region of BFO thin film and the 
corresponding f) tilt maps and g) strain maps. 

The box-in-box feature observed in the measured BFO was created by PFM, 
applying opposite voltages to different regions, as clearly illustrated by the OOP 
PFM map in Figure 4.3(e). The area outside the box corresponds to the as-grown 
(AG) BFO. In the AG region, ferroelectric domains are clearly resolved in both the 
𝛼𝛼 and 𝛽𝛽 tilt maps (see in Figure 4.3(f)). However, within the box areas, the tilt maps 
struggle to visualize the domain structures clearly. This limitation may be due to 
interference effects arising from complex domain structure in the poled (box) 
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regions. Even so, the tilt maps still reveal a strip-like structure that is consistent with 
the PFM results. Overall, 𝛼𝛼  tends to correlate with the IP PFM, while 𝛽𝛽  shows 
closer agreement with the OOP PFM, consistent with their respective definitions. 

It is important to note that the 𝛼𝛼 and 𝛽𝛽 tilt maps presented in this study and in Paper 
II are approximations of the true tilt distributions. This is because the full 3D 
diffraction datasets typically required for accurate tilt calculations (as described in 
Equations (3.16) and (3.17)) were not measured in this case. 

The strain maps displayed in Figure 4.3(g) exhibit high contrast in both the AG 
region and the box areas. In particular, under the perpendicular configuration, the 
strain map clearly reveals the edges of the boxes, where polarization switching 
occurs. As explained in Paper II, the X-ray beam footprint covers multiple domain 
stripes, and the inherent averaging effect enhances the contrast associated with 
polarization changes. 

This example demonstrates that nano-XRD offers spatial resolution required to 
resolve comparable features to PFM, while additionally providing structural 
information such as strain. 

4.3.2 Domains Underneath Electrodes 
Here, the case of device integration is considered. The BFO thin film was configured 
in a capacitor structure, with a platinum (Pt) top electrode. During the measurement, 
the sample was aligned such that the majority of the stripe-like domains were 
aligned parallel to the incident beam direction.  

 
Figure 4.4 Microscopy of domains beneath a metal electrode. a) IP PFM result around the electrode area. 
b) 𝛼𝛼 tilt map of the same region. c) Corresponding 𝜀𝜀003 strain map. The white dashed lines indicate the 
boundary of the electrode. 

As indicated by the Figure 4.4(a), the PFM fails to image the domains beneath the 
electrode area, whereas both 𝛼𝛼 tilt map and the strain map successfully resolve the 
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domain structures under the Pt electrode. Outside the electrode, the α tilt and strain 
maps display high-contrast stripe patterns in AG region, that match well with the 
features observed with PFM. 

In the 𝛼𝛼 and strain maps, the domain structure under the electrode appears slightly 
different from that in the adjacent free as-grown (AG) region, with the stripes under 
the electrode showing a subtle tilt compared to the parallel stripes observed in the 
AG region. The domains are less ordered and well-defined underneath the electrode.  
This result shows that the electrode itself influences the underlying film structure, 
which potentially affects the performance of the device. 

These examples demonstrate that nano-XRD is well-suited for imaging ferroelectric 
domains when the domain walls are comparable in size to the X-ray beam. This 
capability is particularly valuable for investigating integrated devices, where 
conventional PFM techniques often fall short. In Paper II, this method was further 
employed to study the reversal of ferroelectric domains in capacitor structures, 
helping to address the previously underexplored influence of electrodes and device 
integration on functional performance. 
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5 3D Strain Imaging under Angular 
Distortion  

As mentioned in Chapter 3, any angular distortion introduced during data 
acquisition can lead to artifacts or even failure of phase retrieval in BCDI. This 
chapter introduces work focused on addressing such distortions.  

First, a correction algorithm developed to mitigate these distortions is introduced, 
as detailed in Paper III. The performance and limitations of this approach are 
systematically evaluated. Following this, we present a BCDI study on a single 
segment of a barcode heterostructured nanowire, as described in Paper IV. In this 
work, a tailored data analysis strategy incorporating the proposed correction 
algorithm was employed to minimize the effects of possible angular uncertainty and 
enhance the data quality.  

5.1 Likelihood-maximization Based Correction 
Algorithm 

Adjacent diffraction slices of a 3D Bragg peak will generally be quite similar to 
each other. This property can be leveraged to extract orientation information within 
the dataset. Such an idea serves as the foundation of the expand-maximize-compress 
(EMC) algorithm102,103, which is widely used to assemble diffraction slices from 
random orientations in a 3D diffraction volume. The EMC algorithm has been 
widely applied in experiments utilizing forward scattering geometries, such as those 
conducted with X-ray free electron lasers (XFELs), where individual diffraction 
must be merged to reconstruct a full 3D diffraction volume.  

Unlike experiments with forward scattering geometries, where diffraction slices 
converge at the reciprocal origin, in BCDI, these slices are nearly parallel. Therefore, 
the uncertainty in sample orientation is reduced compared to forward scattering 
experiments. Instead of full angle variations, the primary unknown rotational 
components in BCDI measurements arise along three specific axes: the rocking 
angle 𝜃𝜃, the roll angle 𝜔𝜔, and the azimuthal angle 𝜙𝜙. 
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As described earlier, the rocking angle 𝜃𝜃 systematically scans through the entire 
diffraction volume. Rotation in 𝜔𝜔  can shift the Bragg peak off the detector, 
significantly affecting data collection and quality. Meanwhile, rotation 𝜙𝜙 around the 
azimuth axis modifies the in-plane orientation of the diffraction pattern. Since a 
BDCI dataset is acquired from a single object, the azimuth rotation 𝜙𝜙 is generally 
assumed to be minimal to have an obvious impact on the recorded diffraction slices. 

Due to the different geometry in BCDI and the negligible impact of the azimuthal 
rotation 𝜙𝜙, the complexity of determining orientation information—specifically the 
rocking angle 𝜃𝜃 and roll angle 𝜔𝜔—from the measured slices and reconstructing the 
3D diffraction volume is significantly reduced. Björling et al. modified the original 
EMC algorithm and successfully implemented it in an extreme scenario in BCDI69 
where particle rotation was fully driven by the beam. The algorithm managed to 
recover the angles from these fully unknown and uncontrolled particle rotations and 
reconstruct a 3D diffraction intensity for further analysis. 

In paper III, the method was further simplified by only focusing solely on 𝜃𝜃, the 
most challenging direction to recognize and correct. We systematically explored 
how this algorithm could be applied in a scenario with both intentional and non-
intentional rotations, assessing its robustness and effectiveness. 

5.1.1 Theoretical Foundation for Algorithm 
The algorithm seeks to reconstruct the 3D diffraction intensity volume (model) 𝑊𝑊 
from diffraction slices (statistical data) 𝐾𝐾, which is incomplete due to the unknown 
orientation in 𝜃𝜃. This is achieved through an iterative process, where the update rule 
for 𝑊𝑊 → 𝑊𝑊′ is derived by maximizing the likelihood. 

First, start with a likelihood function 𝑅𝑅𝑗𝑗𝑗𝑗 . The function 𝑅𝑅𝑗𝑗𝑗𝑗 describe the probability 
of observing the measured diffraction dataset 𝐾𝐾 (index 𝑘𝑘), given the projection at 
offset positions 𝜃𝜃  (bin 𝑗𝑗) of the specific model 𝑊𝑊 . Since photon detection by a 
pixelated detector follows a random process, one assumes Poisson counting 
statistics as the main noise contributor. Thus, the likelihood 𝑅𝑅𝑗𝑗𝑗𝑗 over each pixel 𝑖𝑖 at 
the detector is expressed as: 

𝑅𝑅𝑗𝑗𝑗𝑗 = �𝑊𝑊𝑖𝑖𝑖𝑖
𝐾𝐾𝑖𝑖𝑖𝑖 exp�−𝑊𝑊𝑖𝑖𝑖𝑖�

𝑖𝑖

. (5.1) 

To reduce computational effort and numerical instability, it is more convenient to 
calculate the logarithm of 𝑅𝑅𝑗𝑗𝑗𝑗 instead: 

log𝑅𝑅𝑗𝑗𝑗𝑗 = ��𝐾𝐾𝑖𝑖𝑖𝑖 log�𝑊𝑊𝑖𝑖𝑖𝑖� −𝑊𝑊𝑖𝑖𝑖𝑖�
𝑖𝑖

. (5.2) 
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The term 𝐾𝐾𝑖𝑖𝑖𝑖 log�𝑊𝑊𝑖𝑖𝑖𝑖� in Eq. (5.2) computes the cross correlation (later sum on 𝑖𝑖) 
between photon counts in each measurement 𝐾𝐾 and the logarithm of the model at 
angular offsets 𝜃𝜃. In this context, cross correlation is a direct way to access the 
similarity of two data sets.  

The conventional way to determine the missing orientation information is 
classifying the entire diffraction dataset by comparing frame-to-frame cross 
correlation, which is highly sensitive to noise. The criterion of noise for this 
conventional method introduced in Loh et al.102 is that the number of total photon 
counts must be much larger than the square root of the total number of pixels. In 3D 
diffraction datasets, this criterion becomes significantly stricter, leading to an 
algebraical growth in computational complexity. 

By replacing direct frame comparisons with statistical alignment in a shared model 
𝑊𝑊 , the algorithm remains stable even for low-photon-counts scenarios and 
sufficiently reduces the computational complexity. However, to accurately retrieve 
the implicit orientation information, the algorithm relies on sufficient oversampling, 
meaning that the dataset should contain enough redundancy across diffraction slices 
𝐾𝐾𝑘𝑘. 

A normalized probability 𝑃𝑃𝑗𝑗𝑗𝑗 distribution can then be calculated from the likelihood 
function 𝑅𝑅𝑗𝑗𝑗𝑗: 

𝑃𝑃𝑗𝑗𝑗𝑗 =
�𝑅𝑅𝑗𝑗𝑘𝑘�

𝛽𝛽

∑ �𝑅𝑅𝑗𝑗𝑗𝑗�
𝛽𝛽

𝑗𝑗

. (5.3) 

Here, 𝛽𝛽 is an annealing parameter used to avoid the local optima during the iteration 
process. Based on the definition of 𝑃𝑃𝑗𝑗𝑗𝑗 , it can be interpreted as the orientation 
trajectory 𝜃𝜃(𝑘𝑘)  to show where each single measurement 𝐾𝐾𝑘𝑘  belongs in rocking 
direction 𝜃𝜃 of the 3D diffraction volume.  

Due to the center-symmetry property of Fourier transform, frames at the same 
distance but on either side of the Bragg peak center can be very similar. As a result, 
the algorithm might struggle to determine whether a given single measurement 𝐾𝐾𝑘𝑘 
belongs to positive or negative side of the rocking direction, potentially introducing 
an artificial symmetry in the model 𝑊𝑊 and resulting in an X-shaped probability 
matrix 𝑃𝑃𝑗𝑗𝑗𝑗.  

To break this symmetry and ensure that the trajectory 𝜃𝜃(𝑘𝑘) remains single-valued, 
a Gaussian bias with width 𝑛𝑛𝜎𝜎 is imposed onto 𝑅𝑅𝑗𝑗𝑗𝑗 before normalization. However, 
this modification introduces an assumption into the algorithm: the measurement 𝐾𝐾𝑘𝑘 
should exhibit a certain degree of continuity within the diffraction dataset. 
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During the iteration process, the normalized probability 𝑃𝑃𝑗𝑗𝑗𝑗 is calculated based on 
the current model 𝑊𝑊𝑗𝑗. Substituting it into the log-likelihood function from Eq. (5.2), 
the log-likelihood function for the algorithm can be written as  

�𝑃𝑃𝑗𝑗𝑗𝑗(𝑊𝑊𝑗𝑗) ⋅ log𝑅𝑅𝑗𝑗𝑗𝑗′
𝑘𝑘

= ���𝑃𝑃𝑗𝑗𝑗𝑗�𝑊𝑊𝑗𝑗� 𝐾𝐾𝑖𝑖𝑖𝑖 log�𝑊𝑊𝑖𝑖𝑖𝑖′� − 𝑃𝑃𝑗𝑗𝑗𝑗�𝑊𝑊𝑗𝑗� 𝑊𝑊𝑖𝑖𝑖𝑖′�
𝑖𝑖𝑘𝑘

= ��𝐴𝐴𝑖𝑖𝑖𝑖 log�𝑊𝑊𝑖𝑖𝑖𝑖′� − 𝐵𝐵𝑗𝑗  𝑊𝑊𝑖𝑖𝑖𝑖′�
𝑖𝑖

. (5.4)
 

Maximizing the log-likelihood is an optimization process102. Here, only the 
conclusion is presented: the global maximum of Eq. (5.4) is achieved when: 

𝑊𝑊𝑗𝑗
′ =

𝐴𝐴𝑖𝑖𝑖𝑖
𝐵𝐵𝑗𝑗

=
∑ 𝑃𝑃𝑗𝑗𝑗𝑗𝐾𝐾𝑘𝑘𝑘𝑘

∑ 𝑃𝑃𝑗𝑗𝑗𝑗𝑘𝑘
. (5.5) 

The Patterson function of a diffraction pattern represents the autocorrelation of the 
object in real space, resulting in a reconstructed volume that is twice the size of the 
original object. In the final step of the update process, a physical constraint is applied 
in real space, effectively limiting the field of view in reciprocal space. This 
constraint accounts for the fact that the spatial range in the 𝑞𝑞3 (rocking direction) is 
generally much smaller compared to the other two directions. By imposing this 
constraint, the reconstruction remains physically meaningful while improving the 
convergence of the algorithm.  

Denoting the extent in real space as 𝐷𝐷, the envelop constraint for model 𝑊𝑊 can be 
expressed as: 

ℱ(𝑊𝑊′′) =  �ℱ(𝑊𝑊′), where |𝑟𝑟3| ≦ 𝐷𝐷,
0, elsewhere.  (5.6) 

Generally, the extent 𝐷𝐷 is related to the size of the object. While constraint is applied 
only in 𝑟𝑟3 direction here, it is feasible to extend it to all three spatial directions when 
necessary. 

In conclusion, a single iteration of the algorithm consists of the following steps: 

1. If first iteration, generate an initial guess of the model 𝑊𝑊  with Gaussian 
distribution. 

2. Calculate the log-likelihood function log𝑅𝑅𝑗𝑗𝑗𝑗  based on the current model 𝑊𝑊 
and the measured dataset 𝐾𝐾. 

3. Calculate the normalized probability distribution matrix 𝑃𝑃𝑗𝑗𝑗𝑗  from the log-
likelihood function log𝑅𝑅𝑗𝑗𝑗𝑗 , considering the annealing parameter 𝛽𝛽  and the 
Gaussian bias 𝑛𝑛𝜎𝜎. 
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4. Update the model to 𝑊𝑊′ based on the update rule (Eq. (5.5)). 
5. Apply the envelope constraint to get the new iterate 𝑊𝑊′′. 

5.1.2 Impact of Angular Uncertainty  
Before investigating of algorithm’s performance, it is essential to quantify the 
degree of unintended rotation. In paper III, this is described by the factor Γ𝜃𝜃 as: 

Γ𝜃𝜃 =
< 𝛿𝛿𝛿𝛿 >
Δ𝜃𝜃

, (5.7) 

where 𝛿𝛿𝛿𝛿 represents angular perturbation at each 𝜃𝜃 position, and Δ𝜃𝜃  is the nominal 
step size of the rocking scan. 

A truncated-octahedral gold nanoparticle was simulated to evaluate the performance 
of the algorithm. The simulation details and the subsequent phase retrieval strategy 
using PyNx software59 are described in the paper III. A dataset with an average 
distortion level of Γ𝜃𝜃 = 2.81 (281%) was generated to demonstrate the impact of 
angular uncertainty and to serve as a representative example to show the 
effectiveness of the algorithm.  

 

 
Figure 5.1 Impact of angular distortion. a) Rocking curves (i.e. total intensity or total photon counts over 
each frame) plotted in logarithmic scale as a function of nominal angle. For clarity, the curve of the 
distorted dataset was vertically shifted by 0.25. b) Ground-truth morphology of the simulated 
nanoparticle. c) Reconstruction result obtained directly from phase retrieval applied to the distorted 
dataset. 
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The angular distortion manifests as intensity fluctuations, as illustrated in Figure 
5.1(a). These fluctuations lead to a poor reconstruction, with multiple side-blobs 
appearing in the reconstructed morphology, as shown in Figure 5.1(c). Although the 
main feature of this poor reconstruction still bears some resemblance to the 
reference, it is important to note that this example represents a relatively mild level 
of angular uncertainty, with the distortion level of Γ𝜃𝜃 = 2.81. At the higher distortion 
levels, the phase retrieval algorithm may fail to converge, making it difficult to 
obtain a meaningful reconstruction. 

 

 
Figure 5.2 Phase retrieval result for case 𝜞𝜞𝜽𝜽=2.81. a) Ground-truth orientation trajectory (left panel) 
and probability 𝑃𝑃𝑗𝑗𝑗𝑗 (right panel). b) Estimated perturbation 𝛿𝛿𝛿𝛿 distribution (orange shaded area) and the 
ground truth (solid blue line). c) Rocking curves (i.e. total intensity or total photon counts over each 
frame) plotted in logarithmic scale as a function of nominal angle. For clarity, the curves corresponding 
to corrected datasets were vertically shifted by 0.25. d) Ground-truth morphology of the simulated 
nanoparticle and reconstructed particle morphology from the corrected dataset. e) Reference internal 
phase distribution (top panel) and reconstructed phase distribution (bottom panel) from the corrected 
dataset, shown at same positions along the 𝑧𝑧 direction. 

The correction algorithm was then applied to the distorted dataset. The probability 
matrix 𝑃𝑃𝑗𝑗𝑗𝑗, shown in Figure 5.2(a), captures the orientation trajectory recovered by 
the algorithm and shows excellent agreement with the ground-truth orientations, 
even in fine details. As illustrated in Figure 5.2(d), the estimated perturbation 𝛿𝛿𝛿𝛿 
region, obtained by applying a threshold of 10−3  on the probability matrix, 
effectively overlaps with the preset 𝛿𝛿𝛿𝛿. The correction algorithm benefits from the 
redundant information within the dataset, which is reflected in the shape of 
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perturbation distribution: it is narrow and well-defined in the central region, where 
photon counts are high, and gradually broadens toward both ends, but shows 
reduced accuracy in low-photon-count regions. 

A similar trend is observed in the rocking curves shown in Figure 5.2(c). The 
corrected dataset closely matches the reference within the high-intensity rocking 
range 𝜃𝜃 = [−0.3°, 0.3°], while small fluctuations appear outside this central region, 
corresponding to lower photon-count areas. 

The high intensity rocking range (𝜃𝜃 = [−0.3°, 0.3°]) from the corrected dataset was 
selected for phase retrieval reconstruction. As shown in Figure 5.2(d-e), the 
resulting reconstruction accurately recovers both the morphology and internal phase 
distribution of the particle, closely resembling the reference case without any 
angular distortion. The reconstructed harmonic phase distribution aligns well with 
the preset internal phase, confirming the effectiveness of the correction. 

5.1.3 Investigation of the Algorithm’s Robustness 

 

 

Figure 5.3 Recovered perturbation 𝛿𝛿𝛿𝛿 for different distortion level Γ𝜃𝜃. The angular perturbation 𝛿𝛿𝛿𝛿 is shown 
for each frame in datasets with increasing distortion level Γ𝜃𝜃, ranging from a) 0 up to 2.81, and b) 
further up to 20.87. For clarity, each distributions is vertically offset. The dash black lines indicate the 
preset 𝛿𝛿𝛿𝛿 for each case, while the coloured shaded areas represent the estimated perturbation 
distributions calculated from probabilities 𝑃𝑃𝑗𝑗𝑗𝑗 after applying a threshold of 10−3. 

To evaluate the robustness of the algorithm, a series of numerical simulations was 
conducted across a range of distortion levels Γ𝜃𝜃. These simulations span values of 
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Γ𝜃𝜃 from 0 to 20.87 and were processed by the algorithm to assess the effectiveness 
of algorithm under varying levels of angular distortion. For each case, the field of 
view in reciprocal space, defined by the parameter pair (d𝑞𝑞3,𝐷𝐷), was adjusted 
accordingly to optimize the correction performance. 

The perturbation distributions 𝛿𝛿𝛿𝛿 shown in Figure 5.3 indicate that the algorithm 
performs extremely well up to the distortion level Γ𝜃𝜃 = 6.11, especially in the 
central regions with high photon counts (𝜃𝜃 = [−0.3°, 0.3°] ). For mild angular 
uncertainty (Γ𝜃𝜃 ≤ 2.81), the recovered distributions 𝛿𝛿𝛿𝛿 exhibit a similar systematic 
linear deviation outside the central region. This behavior may stem from the 
imposed Gaussian bias 𝑛𝑛𝜎𝜎  or other high-order errors introduced during the 
calculation of probability 𝑃𝑃𝑗𝑗𝑗𝑗. 

For the case with even higher distortion level, the algorithm still gives a good 
correction result up to Γ𝜃𝜃 = 16.41. At both ends of the recovered distributions, 
truncation effects become visible. These truncations are directly linked to the field 
of view defined by the parameter pair (d𝑞𝑞3,𝐷𝐷). They demonstrate that, in these cases, 
the diffraction datasets cover a larger reciprocal space than expected. This 
phenomenon is particularly pronounced at Γ𝜃𝜃 = 20.87, where the trajectory 𝜃𝜃(𝑘𝑘) 
can almost be considered as random. Nevertheless, even under such an extreme 
scenario, the algorithm successfully recovers the central portion of the dataset, 
where the photon counts are higher. 

 

 

Figure 5.4 Phase retrieval reconstruction for different levels of distortion Γ𝜃𝜃. Plane 1 and Plane 2 show two 
perpendicular slices through the particle. Plane 1 corresponds to the central cross-section, while Plane 
2 is slightly offset from the center to better highlight phase features. 

The high intensity rocking range (𝜃𝜃 = [−0.3°, 0.3°]) from the corrected datasets 
was selected for phase retrieval reconstruction. As shown in Figure 5.4, the resulting 
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reconstructions exhibit consistent morphology and internal phase across different 
distortion levels, demonstrating the robustness of the algorithm. 

Readers interested in more details, including intentioned angular uncertainty under 
fly scan mode and the distortion cases considering Poisson noise, are referred to 
Paper III. 

5.2 Strained Single Segments in Heterostructured 
Nanowire  

As discussed earlier, lattice mismatch at heterointerfaces can induce strain, which 
in turn shifts the electronic bandgap. While this strain can be engineered to improve 
device performance, it also risks creating defects when the mismatch exceeds the 
coherency limit. 

 

 

Figure 5.5 Illustration of BCDI for an axially heterostructured nanowire. a) Schematic of a single barcode-
type InP/GaInP nanowire. The nanowire consists of 5 InP segments with varying lengths along the 
axial direction. b) Geometry for BCDI measurement. The yellow shaded area denotes the area 
illuminated by the focused coherent X-ray beam. c) Logarithmic-scale integrated diffraction pattern for a 
single angular scan. Note that the coordinate system appears flipped compared to the setup in (b), due 
to the inverted mounting configuration of the detector at the NanoMAX beamline.  

In Paper IV, Bragg Coherent Diffraction Imaging (BCDI) with a nanofocused X-ray 
beam was applied to investigate a single InP/GaₓIn(₁₋ₓ)P axially heterostructured 
nanowire. Its bandgap can be tuned from the near infrared to the visible range by 
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adjusting the gallium composition, making these structures highly promising for 
photovoltaic applications.  

The nanowire studied in this work has a reported gallium composition of 𝑥𝑥 = 0.21, 
corresponding to a nominal mismatch of 1.52% - close to the predicted limit for 
defect formation79. Under such conditions, probing the internal strain distribution 
becomes critical for understanding material behavior and guiding device design. 

In addition to its technological relevance, this sample offers a practical advantage 
for BCDI measurements. Typically, BCDI requires isolated samples to avoid 
interference effects under a coherent beam. However, as shown in Figure 5.5(a), this 
nanowire has 5 InP segments embedded in a GaInP matrix, with varying segment 
lengths along 𝑥𝑥- direction. Although these segments cannot be physically separated 
in real space, the difference in lattice constants between InP and GaInP allows their 
respective Bragg peaks to be well separated in reciprocal space, as illustrated in 
Figure 5.5(c). This makes it possible to isolate and analyze diffraction from 
individual InP segments. 

This section presents the work published in Paper IV, where the internal 3D strain 
distribution of the largest InP segment with approximately 180 nm length along the 
growth direction ([111]) is reconstructed and analyzed. 

5.2.1 Data Processing 
 

 

Figure 5.6 Observed spontaneous particle rotations. a) Rocking curves of the raw datasets collected from 
different scans. b) Rocking curves of the corrected datasets after applying correction algorithm to the 
corresponding raw datasets. A vertical shift of 0.15 was applied for clarity. 

As illustrated in Figure 5.5(b), multiple rocking scans were performed on the same 
InP segment under identical experimental conditions. Figure 5.5(c) displayed the 
integrated diffraction pattern for one of these scans. Since the lattice constant of InP 
(𝑎𝑎InP) is larger than that of the GaInP (𝑎𝑎GaInP), the Bragg peak at high 𝑄𝑄 (left) 
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corresponds to the adjacent GaInP segments, while the diffraction pattern at low 𝑄𝑄 
(right) originates from the targeted InP segments. In the following, only the 
diffraction corresponding to InP will be discussed. 

Figure 5.6(a) shows the rocking curves obtained from each scan. Although all scans 
were performed under identical experimental conditions and targeted the same InP 
segment, a significant angular shift along the rocking direction (𝜃𝜃 ) is clearly 
observed. A possible explanation for this shift is the torque induced by the beam 
pressure, which could cause the nanowire to rotate. This is reasonable considering 
that the nanowire is only weakly fixed to the Si3N4 window by van der Waal forces. 

Additionally, periodic fluctuations with an approximate spacing of 0.05° can also 
be observed in the rocking curves for the raw datasets. Considering the experimental 
geometry, a 0.05° oscillation in the rocking direction corresponds to about 370 nm 
in the real space, roughly center to center distance of two InP segments. Therefore, 
these fluctuations are attributed to interference effects from neighboring InP 
segments, caused by the long tail of the incident beam.  

To mitigate the possible impact from the angular shifts, the correction algorithm 
introduced in the previous section was applied to the raw datasets. The resulting 
rocking curves of the corresponding corrected datasets are plotted in Figure 5.6(b). 
After correction, similar features align consistently among the corrected datasets. 
From the perspective of signal processing, the constraint on Patterson function of 
the diffraction datasets (Eq. 5.6) acts effectively as a low-pass filter, suppressing 
high-frequency components and thereby reducing the observed fluctuations. 

 

 

Figure 5.7 Merging datasets. The purple rocking curve corresponds to the combined dataset. After 
combination, the correction algorithm was applied to the combined dataset. The green rocking curve 
represent the resulting corrected dataset. 

Apart from directly applying the correction algorithm to each individual scan, a 
merging strategy was proposed to further enhance data quality. Since all scans 
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measured the same InP segment and showed similar features after correction, the 
raw datasets from scans 2–4 were selected for merging. The frames were aligned 
based on their relative angular positions, as illustrated in Figure 5.7. Merging the 
datasets can in principle increase the signal-to-noise ratio and provide greater 
redundancy of information, which improves the robustness of the reconstruction. 
After merging, the correction algorithm was applied to the combined dataset. The 
resulting rocking curve shows good agreement with those from the individually 
corrected scans. 

5.2.2 Reconstruction and Strain Analysis  
Here, the scan 3 dataset was selected as a representative example. The PyNx 
software was employed to perform phase retrieval reconstructions on the raw 
(uncorrected) scan 3 dataset, its corrected dataset, and the corrected combined 
dataset.  

 

 
Figure 5.8 Reconstructions obtained from phase retrieval algorithm. The phase has been unwrapped for all 
datasets. 

As shown in Figure 5.8, the reconstructed morphologies from both corrected scan 3 
dataset and corrected combined dataset accurately preserve the cylindrical feature 
of the nanowire, demonstrating a significant improvement in data quality compared 
to the reconstruction from the raw (uncorrected) scan 3 dataset. Additionally, 
reconstructions from the corrected datasets exhibit similar unexpected features: 
Instead of sharp, flat interfaces, the middle section appears slightly elongated 
compared to the region near the surface. The estimated spatial resolutions for these 
reconstructions are approximately 14 nm and 13 nm in the 𝑥𝑥- and 𝑦𝑦- directions, 
respectively. 
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The reconstructed phase distributions from corrected datasets are also shown in 
Figure 5.8. For comparison, a Finite Element Method (FEM) simulation, conducted 
using the commercial software COMSOL, is presented alongside. Details of 
simulation setup and parameters are described in Paper IV. Both reconstructed 
phases successfully recover the harmonic variation observed in the central region 
and at the corners, consistent with the FEM result. However, the reconstructed phase 
range (–3.8 to +5.6) is broader than that of the simulation (–3.5 to +1.1). 

The strain distribution was obtained from the phase distribution using Eq. 3.16, as 
shown in Figure 5.9(a). The calculated strain distributions from the reconstructed 
phases show excellent agreement with the simulation. In general, a sign reversal is 
observed between the central region and the edges, accompanied by a gradual strain 
variation toward the center along the top and bottom boundaries. Although the 
simulation predicts symmetric strain distributions in 𝑥𝑥𝑥𝑥 - and 𝑥𝑥𝑥𝑥 - planes in the 
simulation, the reconstructed strain distribution in 𝑥𝑥𝑥𝑥 - planes shows more 
asymmetry. This deviation is likely attributed to an inhomogeneous gallium 
distribution, leading a slightly higher lattice mismatch on one side of the nanowire. 

 

 
Figure 5.9 Reconstructed strain distribution. a) 2D strain maps extracted from the reconstructed 3D 
phase distributions.b) Lineouts of the strain distributions calculated from: center for 𝑥𝑥𝑥𝑥- and 𝑦𝑦𝑦𝑦- planes 
and slight offsets from the center for 𝑥𝑥𝑥𝑥- plane.  

The lineouts shown in Figure 5.9(b) clearly indicate that the experimentally 
reconstructed dataset exhibits a higher strain magnitude compared to the simulation. 
In the 𝑥𝑥𝑥𝑥- and 𝑥𝑥𝑥𝑥- planes, the average reconstructed strains in the central region are 
around -0.5%, compared to -0.3% in the simulation. In the 𝑦𝑦𝑦𝑦 - plane, the 
reconstructed strains are closer to the simulated value, with an average of -0.4% 
compared to -0.25%. The larger measured strain is consistent with the broader phase 



 60 

variation discussed above. This difference is likely attributed to a higher actual 
average gallium composition in the nanowire than the nominal value of 21%, 
leading to an increased mismatch. 

The skewing observed in the 𝑦𝑦𝑦𝑦- plane in Figures 5.8 and 5.9 is attributed to the 
unintended spontaneous rotation of the sample around the rocking axis. Such 
rotation leads to a deviation from the correct Bragg angle 𝜃𝜃𝐵𝐵, which is critical for 
the rectification process. As a result, a geometric distortion appears in the 
reconstructed real-space object. A detailed investigation of this skewing effect, 
together with the FEM simulations, phase retrieval strategy, and reconstructions 
from other scans, is presented in Paper IV. 
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6 Bragg CDI for Unknown Angles 
with Deep Learning 

Consider a scenario in which the measured object in a Bragg coherent diffraction 
imaging (BCDI) experiment is extremely unstable. The resulting spontaneous 
rotations drive the object in and out of the Bragg condition very quickly, allowing 
only a few diffraction slices to be collected during a single rocking scan. Even 
worse, these collected slices correspond to unknown orientations, further 
complicating the subsequent analysis process. Such scenarios are becoming 
increasingly common as more complex in-situ BCDI experiments are performed 
using advanced facilities like 4th-generation synchrotron sources and X-ray Free 
Electron Lasers (XFELs). 

The correction algorithm introduced in the previous chapter is capable of effectively 
handling the dataset with angular distortion. However, the approach does require a 
certain degree of continuity in the angular sampling. This limitation makes the 
method unreliable for datasets with completely random orientations, such as the 
scenario described above. 

Meanwhile, deep learning techniques have demonstrated outstanding capabilities in 
handling complex data within the field of X-ray imaging. Recent published studies 
have shown its successful applications in 2D and 3D phase retrieval104,105, as well as 
in 4D imaging for X-ray computed tomography106,107. Moreover, deep learning has 
been employed to enhance data quality, including denoising108 and correcting 
artifacts109. This broad applicability stems from the ability of deep neural networks 
(DNNs) to automatically extract meaningful features from raw data and learn 
complex mappings to desired outputs. 

Given its remarkable potential, deep learning presents a possible solution to solve 
the challenge of completely unknown or random orientations in BCDI datasets. In 
our sketch, the trained neural network (NN) is designed to independently predict the 
angular orientation of individual diffraction slices. Rather than treating the BCDI 
dataset as a single coherent volume, analyzing each frame independently introduces 
greater flexibility and robustness to the subsequent reconstruction process. 

This solution lays the groundwork for a new data acquisition strategy, which we 
refer to as serial BCDI as mentioned in Paper V. In this method, diffraction data is 
collected from single or multiple identical objects. Statistically, if a sufficient 
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number of diffraction slices with random orientations are collected, they can 
together cover the full diffraction volume and meet the sampling condition. This 
strategy has the potential to relax the strict experimental constraints of conventional 
BCDI and may further extend its use to pump-probe experiments using XFELs, 
which offer outstanding high temporal resolution. 

In Paper V, the feasibility of this approach is demonstrated. A neural network was 
trained to predict the angular orientation of individual diffraction slices in the serial 
BCDI setting, focusing on the rocking direction (𝜃𝜃). Combined with the correction 
algorithm introduced earlier, our method shows promising results in reconstructing 
the diffraction volume. The potential to extend this method to predict both azimuthal 
and rocking angles was also explored in Paper V. 

The rest of this chapter introduces the basic concepts of deep learning and explains 
the proposed strategy in more detail. 

6.1 Basic Concept of Deep Learning 
In our daily life, you can easily find the trace of artificial intelligence (AI). One 
familiar example is voice assistants such as Siri, Alexa, or Google Assistant.  When 
you say, “Hey Siri”, “OK Google” or “Alexa”, the program recognizes the wake 
words and makes a simple prediction, yes or no, to activate the assistant. If you then 
say, “Call my mother”, the machine not only understands the action “call” and the 
object “mother,” but can also associate “mother” with the correct person in your 
contacts, even if you haven’t explicitly labeled someone as “mother” in your phone. 
This capability relates to machine learning, where the system extracts relevant 
features from the data and makes the predictions based on them. However, in 
traditional machine learning, feature selection often relies on human input. Thus, 
the final prediction might be strongly biased by the human. 

Tools like ChatGPT, Claude or Gemini can generate human-like responses and 
process more complex tasks than the voice assistant. These advancements are made 
possible by deep learning, a subset of machine learning. Deep learning110,111 relies 
on deep neural networks (DNNs) to process vast amounts of data and automatically 
learn meaningful representations. It is a data-driven technique. For example, the 
neural networks behind ChatGPT require an incredibly large amount of high-quality 
data to understand language and context at a deep level, which also demands 
powerful hardware. In fact, although the concept112 of deep learning dates back to 
the 1950s, it didn’t gain widespread attention and rapid development until the 
introduction of AlexNet113 in 2012. The success of AlexNet, and deep learning itself, 
was made possible by access to large, high-quality datasets like ImageNet114 and the 
growing use of graphics processing units (GPUs), marking the beginning of the “big 
data era.” Recognizing the transformative impact of these developments, the 2024 
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Nobel Prize in Physics was awarded to J. J. Hopfield and G. Hinton, whose 
pioneering contributions115,116 laid the foundation for today’s AI revolution. 

In mathematical terms, the deep learning process can be formulated as an 
optimization problem. It aims to find the optimal set of parameters (𝜉𝜉) for a neural 
network that minimizes the difference between its predictions and the target outputs. 
This difference is quantified by a loss function ℒ, which measures the expected error 
over the input data. A typical expression of ℒ is 

ℒ(𝜉𝜉) =  ℰ𝒙𝒙,𝒚𝒚~𝑝𝑝data𝐿𝐿(𝑓𝑓(𝒙𝒙, 𝝃𝝃),𝒚𝒚), (6.1) 

where 𝑓𝑓(𝒙𝒙, 𝝃𝝃) represents the prediction made by the network for the input 𝒙𝒙, while 
𝒚𝒚 is the ground truth or target output. 𝐿𝐿 is the specific loss function (e.g. mean 
squared error or cross-entropy) used to evaluate the prediction error for each sample. 
ℰ𝒙𝒙,𝒚𝒚~𝑝𝑝data  denotes the expectation over the true data distribution 𝑝𝑝data. This 
expectation can be interpreted as a weighted average, where each sample’s 
contribution to the total loss ℒ is implicitly weighted by its likelihood under the data 
distribution.  

The choice or design of the loss function ℒ is crucial in determining the performance 
of the network, and it is typically task-oriented. Once the loss function is defined, 
the process of minimizing it is referred to as the training process. During training, 
the parameter set (𝜉𝜉 ) is iteratively updated toward an optimal solution using 
optimization methods such as backpropagation and gradient descent. The size of 
each update step is controlled by a parameter known as the learning rate. Because 
datasets are often large, it is common practice to divide them into smaller subsets 
called batches. Batch training not only accelerates computation but can also help 
the model escape local minima by introducing stochasticity into the optimization. A 
full pass through the entire training dataset is referred to as an epoch. 

6.1.1 Supervised Learning and Unsupervised Learning 
Deep learning can be further categorized into supervised learning and unsupervised 
learning, depending on the data used to train the model. As the name suggests, 
supervised learning involves training on a dataset that includes both input data and 
corresponding labels. The model learns to map inputs to their correct outputs and is 
then used to predict labels for new, unseen data. In contrast, unsupervised learning 
involves only input data without any labels. The neural network attempts to uncover 
hidden patterns or relationships within the data on its own. 

In supervised learning, the input data is typically divided into three subsets: training, 
validation and test datasets. The model is trained using the training dataset while the 
validation dataset is used to tune model parameters and select the best-performing 
version of the model. Finally, the test dataset, which should be completely unseen 



 64 

by the model during training process, is used to evaluate its generalization 
performance. On the other hand, unsupervised learning doesn’t require the input 
data to be divided. The entire dataset can be used in both training and evaluation. 

Given the nature of these two learning types, supervised learning typically offers 
faster training and higher accuracy for well-defined tasks, while unsupervised 
learning tends to be more flexible and generalizable, making it better suited for 
complex or poorly defined problems where labeled data is unavailable. In Paper V, 
a supervised learning approach to train the neural network as adopted.  

6.1.2 Deep Neural Networks 
Deep neural networks (DNNs) are the core computational models behind deep 
learning, enabling machines to automatically extract relevant features from raw data 
and make complex predictions. In this section, two fundamental layered model 
architectures, fully connected networks and convolutional neural networks (CNNs), 
are introduced and discussed. 

Fully Connected Networks 
The basic unit of a fully connected networks is called a neuron, also known as a 
perceptron. The calculation processed in a neuron can be expressed as 

𝑦𝑦 = 𝑓𝑓(𝒘𝒘 ⋅ 𝒙𝒙 + 𝑏𝑏), (6.2) 

where 𝒙𝒙 represents the input vector, 𝒘𝒘 is the corresponding weight vector and 𝑏𝑏 is 
the bias term. The output 𝑦𝑦 is obtained by applying an activation function 𝑓𝑓 to the 
weighted sum of inputs and bias. This process is illustrated in Figure 6.1(a). 

 

 
Figure 6.1 Schematic of a fully connected network. a) Illustration of a neuron. The input vector consists of 
three elements (𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3), and the weight vector includes the corresponding weights (𝑤𝑤1,𝑤𝑤2,𝑤𝑤3). b) An 
example of fully connected network with three inputs nodes, two hidden layers and two outputs nodes. 
Every neuron in a layer is connected to every neuron in the adjacent layer. 



     65 

Figure 6.1(b) shows an example of multi-layer fully connected network, also 
referred as to multi-layer perceptron (MLP)117. In a neural network, nodes at the 
same depth form one layer. The role of a node depends on its layer: in the input 
layer, each node represents one element of the input data; in the output layer, each 
node corresponds to one output value; in the hidden layers, nodes are often referred 
as to neurons. 

As illustrated in Figure 6.1(b), the output of each neuron serves as the input to 
neurons in the adjacent layer. If the activation functions are linear, the entire 
network reduces to a single linear transformation, and the final output becomes a 
linear combination of the input elements. This severely limits the capability of the 
network to model complex, nonlinear relationships in the data. By contrast, the 
introduction of nonlinearity through activation functions allows the MLP to act as a 
universal approximator, which can approximate any continuous functions. Common 
activation functions include the sigmoid function, rectified linear unit (ReLU), and 
the softmax function. The selection of appropriate activation functions depends on 
the specific task and the desired output behavior. 

For image data, such as the diffraction data discussed in this thesis and in Paper V, 
fully connected networks (or MLP) are not ideal. In an MLP, each node is connected 
to every node in the adjacent layer, resulting in a large number of parameters. This 
dense connectivity demands significant computational resources and can quickly 
lead to memory issues, especially when processing high-dimensional data like 
images. Furthermore, the architecture of MLPs inherently treats all input features 
independently and equally, ignoring the spatial structure and local correlations 
inherent in image data. Adjacent pixels in an image often contain related 
information. Ignoring these local dependencies not only prevents MLPs from 
effectively capturing meaningful features but also leads to unnecessarily complex 
models. 

Convolutional Neural Networks 
Convolutional neural networks118 (CNNs) are specifically designed to capture local 
correlations and hierarchical features119 in data, making them particularly effective 
for spatially structured inputs such as images or diffraction patterns. 

The basic architecture of a CNN model, as illustrated in Figure 6.2(a), involves two 
types of layers: convolution and pooling. Feature maps are generated by applying 
convolution kernels to the input data in the convolution layer. These feature maps 
are then downsampled into pooled feature maps through max pooling operations in 
the pooling layer. The number of feature maps at each stage corresponds to the 
number of different kernels included in one convolutional layer. The use of 
convolutional kernels and pooling layers not only reduce the computing demands 
but also effectively captures multi-scale features from local to global. 
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Figure 6.2 Convolution neural network. a) Basic architecture of a CNN. Different colors represent different 
types of data: blue means the input data; orange is the feature map after convolutional operation; beige 
denotes the pooled feature map after pooling (downsampling) operation. b) Illustration of convolutional 
operation. The matrix with white background is the input. The beige-shaded area indicates the region 
where the convolutional kernel is applied. The isolated 2×2 brown matrix is an example of the 
convolution kernel. c) Illustration of max pooling operation. The dark-shaded area is an example region 
where max pooling is applied.  

Figure 6.2(b–c) illustrate examples of convolutional and pooling operations. A 
convolutional kernel performs element-wise multiplication over a local region of 
the input, followed by summation, to produce a single value in the output feature 
map. The complete feature map is obtained by sliding the kernel across the input 
data, and this stepwise movement is controlled by a parameter called the stride. 
Interestingly, although referred to as a “convolutional” kernel, the operation is 
technically a cross-correlation rather than a true mathematical convolution. 
Typically, the resulting output feature map is smaller than the input unless padding 
is applied to preserve the spatial dimensions. The pooling operation further reduces 
the dimensionality of the feature map by binning the elements. One of the most 
commonly used methods is max pooling, which selects the maximum value within 
each sub region to represent that area in the downsampled output. 
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In Paper V, a CNN was used as an encoder to extract the features from the diffraction 
data, while a subsequent MLP was employed to predict the orientation information 
of the input diffraction pattern based on the extracted features. 

6.2 Orientation Prediction Using Neural Network 
Based on convolutional neural networks and fully connected layers, the model’s 
architecture is illustrated in Figure 6.3. Each convolutional layer contains multiple 
distinct 3 × 3 kernels and is followed by a batch normalization operator. Batch 
normalization helps stabilize and accelerate the training process by normalizing the 
output of each layer to have a consistent mean and variance, which prevents large 
shifting in the data as it passes through the network. The activation function used in 
both the convolution and the fully connected layers is ReLU. 

 

 
Figure 6.3 Neural network architecture. The model begins with an encoder that extracts features from the 
input data. These features are then passed through a multilayer perceptron to predict the angular 
position of the input diffraction pattern. 

Returning to the scenario described at the beginning of this chapter, the dataset 
collected under such conditions consists of diffraction slices with completely 
random orientations. This poses a significant challenge for the EMC angular 
correction algorithm introduced in the previous chapter, as it relies on continuity 
between frames. The strategy proposed in Paper V aims to predict the angular 
orientation of each individual diffraction using the network described above. These 
predicted orientations are then used to assemble the full 3D diffraction volume from 
the set of randomly oriented frames.  

Since large amounts of real experimental data are not accessible for training, a 
simulation-based method was adopted in Paper V to generate the training dataset. A 
key challenge in this method is bridging the gap between simulated data and real 
experimental data, particularly in ensuring the model trained on synthetic data can 
generalize effectively to real diffraction measurements. 
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Several key factors have been considered in designing the simulation approach. 
Each factor poses specific demands on the robustness and effectiveness of the 
network.  

The first is the shape of the object, as it largely determines the overall diffraction 
pattern. In the proposed approach, the 3D shape of object used for simulation can 
be obtained from other complementary method, such as scanning electron 
microscopy (SEM) or by assuming an idealized morphology. However, differences 
between the simulated shape and the true object may directly affect the performance 
of the network. 

Another important factor is the phase distribution, which introduces local variations 
in the diffraction pattern. While the overall shape of a sample can often be estimated 
from complementary techniques, accessing the internal phase distribution of a real 
object remains highly challenging. Therefore, the network must be capable of 
generalizing to “unseen” phase distributions that were not part of the training data. 

The final factor considered is the signal-to-noise ratio (SNR).  The measured 
diffraction intensity depends on the flux intensity and the possible air scattering and 
absorption. From an information theory perspective, each detected photon in a 
diffraction pattern contributes with information. Therefore, the SNR directly 
impacts the information encoded in the diffraction pattern and thus affect the 
performance of the network. 

In Paper V, the network’s robustness with respect to these factors was systematically 
studied. The model showed tolerance to moderate variations in object shape. For the 
SNR challenge, the network was trained using datasets with noise levels matched to 
experimental conditions. To address the unseen phase problem, the training dataset 
included a variety of phase distributions to help the network generalize. 

6.2.1 Performance on the simulated data 
To assess the baseline performance of the proposed method, it was first applied to a 
noiseless dataset composed of diffraction slices with completely random rocking 
angles 𝜃𝜃. The results are presented in Figure 6.3. 

The predictions shown in Figure 6.3(c) deviate noticeably at both ends of the preset 
rocking angle range, while exhibiting a more linear trend in the central region. This 
behavior is also reflected in the cross-section of the CNN-processed dataset. 
Although the overall diffraction pattern appears smooth and continuous, the 
prediction inaccuracies at both ends lead to local fluctuations in the reordered data. 

The mismatches in the predictions are primarily attributed to differences in shape 
between the simulated morphology used for training and the actual ground truth. 
Although the predictions are not perfectly accurate, the network still achieves a 
significant improvement by imposing a certain degree of order on an otherwise 
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completely random dataset. The continuity shown in the CNN-processed dataset 
enables the subsequent application of the EMC angular correction algorithm 
discussed in the previous chapter, providing a chance to further refine the reordered 
data and improve the result. 

 

 
Figure 6.3 Network performance on simulated dataset. a) Ground-truth particle and ideal particle. The test 
data was generated from the ground-truth particle illustrated at the left, while the training data was 
generated using the ideal particle shown at the right. Both training data and test data are noise-free. 
The test data contains one single phase distribution that is distinct from any phase distributions used in 
training. b) Cross-sectional plot along the rocking direction 𝑞𝑞3 of the test data.  c) Normalized rediction 
results from the NN. d)Cross-section plots along the rocking direction 𝑞𝑞3 of different datasets. The 
reference was generated with ordered rocking angles 𝜃𝜃 from the ground-truth particle shown in (a). 
Note that the CNN-process predicts the angle of each frame individually, unlike the EMC angular 
correction algorithm. The corrected data (CNN+EMC) was produced by applying the EMC angular 
correction algorithm to the CNN-processed data.  

In Paper V, the EMC angular correction algorithm presented was applied to the 
CNN-processed dataset, and it proved to be highly effective in further improving 
the data quality. As shown in Figure 6.3(d), the cross section of the corrected dataset 
after angular correction shows a strong alignment with the reference. The slightly 
narrower field of view was from the setting of the correction algorithm.  

6.2.2 Experimental Serial Bragg Coherent Diffraction Imaging 
The proposed strategy worked successfully on simulated data with the assistance of 
the EMC angular correction algorithm. It is now time to evaluate its effectiveness 
on real experimental data. For this purpose, the network was trained on a dataset 
with a SNR matched to that estimated from the real experimental measurements. 
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The BCDI experiment was conducted on (111) reflection planes of 60 nm gold 
particles. The data were collected by Alexander Björling at the NanoMAX 
beamline, MAX IV Laboratory, Sweden, and they were also used for the first paper 
using the EMC angular correction algorithm69. Unlike the regular BCDI, this 
measurement relies on the spontaneous rotations of the small particles by the intense 
flux. Björling and his colleagues reported that such spontaneous rotations in 𝜃𝜃 can 
cover the entire diffraction volume. In this measurement, the detector mode operated 
at burst mode with 100 Hz frame rate. The gold particles, assumed to be identical, 
were mounted on a sample holder and spatially scanned in both the 𝑥𝑥- and 𝑦𝑦- 
directions with a step size of 0.1𝜇𝜇m, controlled by piezo motors. At each position, 
the detector collected 1000 frames. A post-processing program was used to extract 
sufficient diffraction dataset by selecting continuous diffraction slices.  

Two datasets from the experiment were used to evaluate the proposed strategy 
presented in Paper V. Figure 6.4 shows one of the datasets as an example. 

 

 
Figure 6.4 Network performance on experimental data. The cross-section plots along rocking direction 𝑞𝑞3 
for different datasets: a) the reference dataset, b) the CNN-processed dataset and c) the corrected 
dataset processed by CNN and EMC angular correction algorithm. 

The reference dataset was generated by applying the EMC angular correction 
algorithm directly to an experimental dataset, in which the frames were sampled 
continuously. To test the CNN approach, each frame from the raw dataset was 
processed individually to estimate its corresponding 𝜃𝜃  position. The CNN-
processed dataset was then obtained by combining the frames based on these 
predicted positions. Compared to the reference, the CNN-processed dataset already 
shows a good overall alignment, though minor fluctuations remain due to residual 
prediction errors. After applying further refinement using the EMC angular 
correction algorithm, the corrected dataset aligns very closely with the reference. 
The results shown in Figure 6.4 highlight the promising performance of this 
combined approach. 

Since the diffraction slices collected in this measurement are, in principle, from 
identical particles, the concept of serial BCDI was explored by merging the raw 
diffraction slices from the two datasets and randomizing their order, before any 
processing by the proposed strategy. The merged dataset was then used to test the 
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strategy, while the reconstruction from original datasets (particle 1 & particle 2), 
processed by the proposed strategy and the correction algorithm, served as the 
reference.  

 

 
Figure 6.4 Network performance on serial BCDI-type data. a) Cross-section plots along rocking direction 𝑞𝑞3 
for different datasets. c) Slices of the reconstructed strain distribution from the corrected dataset 
(CNN+ EMC) and its original datasets after being processed by the proposed strategy. c) 
Reconstructed morphologies for different datasets obtained after phase retrieval. The parameters used 
in the phase retrieval are the same for all datasets. 

As indicated by the cross-section plots in Figure 6.4(a), the predictions from the 
network successfully reordered the raw input datasets. The CNN-processed dataset 
reveals a generally correct diffraction pattern, although some fluctuations remain. 
The long tails and irregular (compressed-like) shape observed in the corresponding 
cross-section plot are attributed to unequal step sizes between adjacent frames. After 
refinement using the correction algorithm, the reassembled dataset demonstrates 
enhanced data quality. 

The reconstruction of the CNN+EMC dataset obtained through phase retrieval is 
shown in Figure 6.4(b-c). The reconstructed morphology exhibits very similar 
features to the reference as shown in Figure 6 (particle 1) and S10 (particle 2) of 
Paper V. Compared to the reference, the reconstructed strain distribution appears to 
be grainier at edges. This noise might originate from the differing intensities of two 



 72 

original datasets as shown in Figure S10 of Paper V. Aside from this, the 
reconstructed strain shows similar gradient-like distribution to that of the references.  

The example shown above demonstrates the potential of a deep learning-based 
approach, combined with angular correction, to handle complex data that would be 
expected in a serial BCDI experiment. In this work, we focused only on the rocking 
angle 𝜃𝜃. However, Paper V also explored the model’s performance with respect to 
additional azimuthal angles 𝜙𝜙, which represents the next step toward refining this 
approach for full serial BCDI applications. The success of this method relaxes 
experimental constraints in conventional BCDI measurement and increased the 
robustness of BCDI to the extreme experimental conditions. We believe it opens 
significant opportunities for advancing the science, particularly in fields such as 
material science and catalyst.  

  



     73 

7 Conclusions and Outlook 

In this thesis, I have illustrated the capabilities of synchrotron-based X-ray 
diffraction imaging techniques, specifically, nano-XRD and BCDI, for probing the 
internal structure of crystalline materials. In particular, methods to address the 
angular distortion problem in BCDI have been introduced.  

To begin, I presented studies using nano-XRD on axially heterostructured 
nanowires and ferroic thin films. These works demonstrate that nano-XRD not only 
enables quantitative mapping of lattice spacing and tilt but also the imaging of 
ferroic domains with a resolution defined by the focused beam size. Notably, nano-
XRD is particularly effective in scenarios where conventional microscopy falls 
short. For instance, nano-XRD can image ferroelectric domains beneath metallic 
electrodes, where techniques such as piezoresponse force microscopy (PFM) are 
ineffective. 

A major component of this work is the development of a robust algorithm to correct 
angular distortions in diffraction datasets. This method significantly improves the 
reliability of BCDI in scenarios involving intense beam flux, heating from nano-
focused synchrotron radiation, or external factors such as sample charging. Notably, 
the algorithm remains effective even when angular deviations reach up to 16.4 times 
the nominal rocking increment. 

This correction method was also applied in the study of a single segment within a 
barcode heterostructured nanowire. Although BCDI is generally challenging to 
apply to extended samples, the well-separated Bragg peaks resulting from lattice 
mismatch between the segments made the measurement feasible. The reconstructed 
3D strain distribution revealed a unique gradient pattern in excellent agreement with 
finite element method (FEM) simulations. A merging strategy was also employed 
alongside the angular correction to enhance the quality of the phase retrieval 
reconstruction. 

Another key advancement presented in this thesis is a deep learning–based strategy 
to predict the angular positions of individual diffraction frames. When combined 
with the angular correction algorithm, this approach enables reconstruction of a 3D 
diffraction volume from frames acquired in completely random order. I 
demonstrated this method on a serial BCDI-type dataset, created by merging two 
datasets from identical particles. The success of this approach shows strong 
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potential for relaxing the strict data acquisition requirements in BCDI, thus enabling 
its use under extreme or dynamic experimental conditions. 

Looking forward, the ongoing transition to fourth-generation sources will provide 
even brighter and more coherent X-ray beams. Advances in X-ray optics and 
detector technology allow for smaller spot sizes and more sensitive diffraction 
measurements. Together, these developments will push the resolution and 
applicability of both nano-XRD and BCDI further. 

For BCDI in particular, the methods presented in this thesis (Papers III, IV, and V) 
establish a foundation that empowers the technique to operate under more complex 
and challenging experimental conditions. More importantly, they also provide a 
roadmap toward a new data acquisition and processing method, serial BCDI, which 
has potential to enable more versatile and comprehensive structural investigations.  

One envisioned application of serial BCDI is the study of catalytic nanoparticles. 
These particles, often just a few or tens of nanometers in size, are sensitive to intense 
X-ray beam illumination. Serial BCDI could enable tracking of morphology 
changes and strain evolution in such particles during the catalytic process, by 
sharing the dose over multiple particles. Furthermore, adapting serial BCDI to X-
ray free-electron lasers (XFELs) could unlock ultrafast structural dynamics studies 
with femtosecond resolution. 

To realize this vision, several developments are needed. First, the deep learning 
framework must be expanded to accommodate additional rotational degrees of 
freedom. Second, an effective interpolation method must be devised to map 
arbitrarily rotated diffraction frames into a unified 3D volume. Lastly, an automated 
pre-processing pipeline will be essential for filtering high-quality frames from large, 
unordered datasets.  

X-ray diffraction imaging will continue to benefit from advances in synchrotron 
light sources, optics, detectors, and computational techniques. The work presented 
in this thesis contributes a small step toward making these techniques more robust 
and adaptable to complex experimental conditions. As we are in an era where 
materials are engineered with ever-increasing complexity and precision, the ability 
to visualize internal structure and strain becomes not just valuable, but essential. 
With continued innovation, X-ray diffraction imaging will remain at the forefront 
of materials characterization. 
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