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Abstract

In this paper theoretical results regarding a generalized minimum rank matrix approxi-

mation problem in the spectral norm are presented. An alternative solution expression

for the generalized matrix approximation problem is obtained. This alternative ex-

pression provides a simple characterization of the achievable minimum rank, which is

shown to be the same as the optimal objective value of the classical problem consid-

ered by Eckart-Young-Schmidt-Mirsky, as long as the generalized problem is feasible.

In addition, this paper provides a result on a constrained version of the matrix ap-

proximation problem, establishing that the later problem is solvable via singular value

decomposition.

Keywords: Matrix approximation; Rank minimization; Singular value decomposition

1. Introduction

This paper considers the following generalized minimum rank matrix approxima-

tion problem:

minimize
X

rank(X)

subject to ‖A+BXC‖2 < 1.
(1)
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Here the data matrices areA ∈ R
m×n, B∈ R

m×mX , andC ∈ R
nX×n. The symbol‖·‖2

denotes the spectral norm of a matrix (i.e., the maximum singular value).

Assumption 1.1. In this paper, it is assumed that m> mX and B has full column rank.

In addition, n> nX and C has full row rank.

Remark 1.1. The assumed dimensions and ranks on B and C ensure that (1) cannot

be trivially reduced to the classical problem to be described in (2).

The problem in (1) is a generalization of the following classical problem:

minimize
X

rank(X)

subject to ‖M+X‖2 < 1
(2)

for any data matrixM, which plays the role ofA in (1). The classical problem in (2) can

be solved efficiently using singular value decomposition (SVD). In addition, the mini-

mum rank in (2) can easily be characterized using the singular values ofM. Though less

well-known, (1) can in fact be solved via SVD using matrix dilation/Parrott’s Lemma

results (e.g. [1, 2, 3]). However, to the authors’ best knowledge, no simple charac-

terization of the minimum rank in (1) in terms of problem dataA, B andC is known.

This characterization is based on an alternative solution expression for (1), which can-

not be found in [1, 2, 3]. In addition, this paper provides an SVD based solution to a

constrained version of (1). This is also not available in [1,2, 3].

There have been many efforts for the generalizations of (2) (e.g. [4, 5, 6, 7, 8]).

However, none of these results apply to problem (1) considered in this paper. The

most related result is [8], which considers a variant of (1) with the constraint being

‖A+BXC‖F < 1 (i.e., the Frobenius norm). However, this paper is fundamentally

different from [8]. In particular, (1) is not a special case of the problem in [8] or vice

versa. Moreover, the result and proof technique in [8] do notapply to the problem

considered in this paper. Most importantly, none of the previous work, including [8],

provide any simple characterization of the achievable minimum rank analogous to the

main result of this paper.

In summary, this paper contains the following contributions which, to the authors’

best knowledge, have not been published:
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1. An alternative solution expression for (1).

2. A simple characterization of the achievable minimum rankin (1).

3. An SVD based solution procedure for a constrained versionof (1).

The rest of this paper is organized as follows. In Section 2 some background mate-

rial and notations necessary to the development of the paperare described. In Section 3

the main result concerning the simple characterization of the minimum rank of (1) is

presented. In Section 4 the SVD based solution procedure fora constrained version of

(1) is described. Finally, conclusions are made in Section 5.

2. Background

2.1. Definitions of Notations

To describe the main result, it is necessary to introduce thefollowing SVD com-

putable terms related to the data matricesB andC. Denote the SVD ofB andC as

B=
[

UB NB

]




SB

0



VB
T =UBSBVB

T

such that UB ∈ R
m×mX , UB

TUB = ImX

NB ∈ R
m×(m−mX), NB

TNB = Im−mX

SB ∈R
mX×mX , diagonal and positive definite

VB ∈ R
mX×mX , VB

TVB = ImX ,

(3)

C=UC




SC

0





[

VC NC

]T
=UCSCVC

T

such that UC ∈ R
nX×nX , UC

TUC = InX

SC ∈ R
nX×nX , diagonal and positive definite

VC ∈ R
n×nX , VC

TVC = InX

NC ∈ R
n×(n−nX), NC

TNC = In−nX .

(4)
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Also from the SVD, the matrices
[

NB UB

]

and
[

NC VC

]

are orthogonal. Hence,

UB
TNB = 0

VC
TNC = 0

NBNB
T +UBUB

T =
[

NB UB

][

NB UB

]T
= Im

NCNC
T +VCVC

T =
[

NC VC

][

NC VC

]T
= In.

(5)

2.2. Classical minimum rank matrix approximation via SVD

For any matrixM of rank r and an integerk ≥ 0, the following operation is im-

portant for the solutions of the matrix approximation problems in this paper. Let the

SVD of M be M =
r
∑

i=1
uiσivi

T , whereui andvi are the left and right singular vectors

andσi > 0 are the non-increasing singular values ofM. Then the rankk truncation of

M, denoted as[M ]k, is defined as

[M ]k ,







M k> r
k
∑

i=1
uiσivi

T 1≤ k≤ r

0 k= 0.

(6)

The classical problem in (2) can be written as

minimize
k∈ Z+

k

subject to
min

X
‖M+X‖2

subject to rank(X)≤ k
< 1

⇐⇒
minimize

k∈ Z+
k

subject to σk+1(M) < 1,
(7)

whereσi(M) > 0 for i = 1,2, . . . are the non-increasing singular values ofM and the

equivalence above is due to the theorem by Eckart-Young-Schmidt-Mirsky (e.g. [9]).

Therefore, the minimum value ofk in (7) (i.e., the minimum rank in (2)) is the number

of singular values ofM which are greater than or equal to one. In subsequent, this

number will be referred to as thesingular value excess of M, and denoted as sve(M).

That is,

sve(M),







k such that σ1(M)≥ . . .≥ σk(M)≥ 1> σk+1(M)≥ . . .

0 if 1 > σ1(M)

rank(M) if σrank(M)(M)≥ 1.

(8)
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Note that the definition of singular value excess in (8) also applies to matrices other

thanM considered here. Finally, by the theorem by Eckart-Young-Schmidt-Mirksy, an

optimal solution to (2) can be obtained asX⋆ =− [M ]sve(M).

3. Simple Characterization of Minimum Rank

This section describes the main result of the paper, providing a simple charac-

terization of the minimum rank of (1). Before the main resultis presented, several

preliminary results should be described first.

3.1. Preliminary Results: A new equivalent constraint of (1)

The first preliminary result, stated without proof, is knownas the Parrott’s Lemma

(e.g. [1], p.43). It provides the sufficient and necessary conditions for the generalized

minimum rank matrix approximation problem in (1) to be feasible.

Proposition 3.1. Let A∈ R
m×n, B ∈ R

m×mX , C ∈ R
nX×n satisfy assumption 1.1. In

addition, let the matrices UB, NB, SB, VB be defined in (3) and UC, SC, VC, NC be

defined in (4). Then there exists a matrix X∈ R
mX×nX such that

‖A+BXC‖2 , σ1 (A+BXC)< 1 (9)

if and only if
∥
∥NB

TA
∥
∥

2 < 1 and ‖ANC‖2 < 1. (10)

Remark 3.1. If (10) holds, then the following two symmetric positive definite matrices

can be defined:

∆B ,
(
In−ATNBNB

TA
)−1

≻ 0

∆C ,
(
Im−ANCNC

TAT
)−1

≻ 0.
(11)

∆B and∆C will be used in the subsequent discussions.

The second preliminary result is an equivalent expression of the generalized Par-

rott’s Lemma (e.g. [1, 3]). The expression to be presented isnew, and it is required to

prove the main theorem in Section 3.
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Proposition 3.2. Let the data matrices be defined in the statement of Proposition 3.1.

If (10) is true (i.e., (9) is feasible), then the inequality in (9) is equivalent to the follow-

ing inequality with a new unknowňX:

∥
∥Ǎ+ X̌

∥
∥

2 < 1 (12)

whereǍ∈ R
mX×nX , and is defined as

Ǎ ,
(
UB

T ∆CUB
)−

1
2 UB

T∆CAVC
(
VC

T∆BVC
)1

2 , (13)

where∆B and ∆C are defined in (11). The equivalence means that there is a one-

to-one correspondence between the feasible solutions X in (9) and X̌ in (12). The

correspondence and its inverse are defined by

X = VBSB
−1

(
UB

T ∆CUB
)− 1

2 X̌
(
VC

T∆BVC
)− 1

2 SC
−1UC

T

X̌ =
(
UB

T∆CUB
) 1

2 SBVB
TXUCSC

(
VC

T∆BVC
) 1

2 .

(14)

PROOF. See Appendix. �

Remark 3.2. Many alternative forms of (12) exist (e.g. Corollary 2.24 of[1] (p. 43)).

However, the proof development of the main theorem in Section 3 requires expressions

(12) and (13). The authors are not aware of any straightforward approach to arrive

at the conclusion in the main theorem using any expression other than (12) and (13).

Moreover, it is not known if there is any simple transformation between the alternative

expressions and (12) and (13), other than the fact that they are all equivalent to (9).

The expression in (12) and (13) is obtained using a subspace projection idea. This is

different from the matrix dilation point of view in [1, 2, 3].

The equivalence in Proposition 3.2 implies the following statement, connecting the

generalized matrix approximation problem in (1) and its classical version:

Corollary 3.1. Problem (1) is equivalent to

minimize
X̌

rank(X̌)

subject to
∥
∥Ǎ+ X̌

∥
∥

2 < 1,
(15)

whereǍ is defined in (13). The equivalence means (a) that the minimizers of the two

optimization problems are one-to-one correspondent as defined in (14), and (b) the
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minimum ranks of the two problems are the same. Also, an optimal solution to (1) can

be obtained as

X⋆ =−VBSB
−1(UB

T∆CUB
)− 1

2
[
Ǎ
]

sve(Ǎ)

(
VC

T∆BVC
)− 1

2 SC
−1UC

T
, (16)

where the matrices UB, SB, VB are defined in (3), UC, SC, VC are defined in (4),∆B, ∆C

are defined in (11) and the rank constrained truncation operation
[
Ǎ
]

sve(Ǎ) is defined

in (6).

PROOF. See Appendix. �

Remark 3.3. To characterize all optimal solutions to (1), it suffices to characterize all

optimal solutions to (15). The later task is standard (e.g. [9]).

3.2. Main Result

While Corollary 3.1 provides an SVD based solution expression for the general-

ized matrix approximation problem in (1), it does not provide an intuitive relationship

between the rank ofX⋆ and the original problem dataA, B andC. This is to be com-

plemented by the main result as follows.

Theorem 3.1. Let the data matrices be defined in the statement of Proposition 3.1.

Consider the following generalized minimum rank matrix approximation problem (i.e.,

problem (1)):

minimize
X

rank(X)

subject to ‖A+BXC‖2 < 1.
(17)

If the above problem is feasible (i.e., (10) is true), then the minimum rank of the problem

in (17) is sve(A), wheresve(A) is the singular value excess of A (i.e., the number of

singular values of A which are greater than or equal to one, see (8)).

Remark 3.4. Theorem 3.1 provides a simple characterization of the minimum rank of

(17) in terms ofsve(A), and states that B and C affect the optimization problem only

through the feasibility condition in (10). No analogous result is known for the case

where the spectral norm in (17) is replaced with the Frobenius norm.
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Remark 3.5. Theorem 3.1 states that, under the feasibility assumption in (10), the

minimum rank of X∈R
mX×nX is sve(A) with A∈R

m×n. Since it is assumed in (1.1) that

m> mX and n> nX, can a contradiction arise thatrank(X) = sve(A)> min{mX,nX}?

Fortunately the answer is no. In particular, the proof of Theorem 3.1 (cf. (19)) implies,

under the assumption in (10), thatsve(A) = sve(Ǎ)≤ min{mX,nX}. In another words,

max
{∥
∥NB

TA
∥
∥

2,
∥
∥ANC

∥
∥

2

}

< 1 =⇒ σ(min{mX , nX}+1)(A)< 1. (18)

Now the proof of Theorem 3.1 begins.

PROOF. As it was argued in the proof of Corollary 3.1, the optimal rank in (17) is

the same as that of its equivalence (15), which is sve(Ǎ). To complete the proof, it

remains to show that sve(Ǎ) = sve(A). Alternatively, denotek−(M) as the number of

non-positive eigenvalues of any matrixM with real eigenvalues only, then the desired

statement to prove isk−(I − ǍǍT) = k−(I −AAT). This proof is divided into two steps

via an intermediate matrix̃A defined in the proof of Proposition 3.2:

k−(I −AAT) = k−(I − ÃTÃ) = k−(I − ǍǍT). (19)

With the definition ofÃ in (33), the termk−(I − ÃT Ã) in the first equality in (19)

becomesk−(I −VC
TAT∆CAVC) = k−(I −AVCVC

TAT∆C), where the later equality is due

to the fact that the sets of nonzero eigenvalues ofVC
TAT∆CAVC andAVCVC

TAT∆C are

the same. Using the definition and invertibility of∆C in (13), the term further becomes

k−(((∆C)
−1−AVCVC

TAT)∆C) = k−((I −A(NCNC
T +VCVC

T)AT)∆C). With the identity

NCNC
T +VCVC

T = I in (5), the above term simplifies tok−((∆C)
1
2 (I −AAT)(∆C)

1
2 ).

Finally, by the Sylvester’s law of inertia (e.g. [9], p.223), k−(I −AAT) = k−((∆C)
1
2 (I −

AAT)(∆C)
1
2 ). Therefore, it has been established that

k−(I − ÃTÃ) = k−((∆C)
1
2 (I −AAT)(∆C)

1
2 ) = k−(I −AAT). (20)

This shows the first equality in (19). Next, the second equality in (19) can be proved in

similar fashions. In particular, using the following four items: (a) The definition of̌A

in (13), (b) The definition of̃A in (33), (c) The expression of∆B̃ in (37) in Section 6.1

(proved in Section 6.2) and (d) The expression ofUB̃ in (39) in Section 6.1 (proved in
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Section 6.3), the matrix̌A in (19) can be represented as

Ǎ=

(
(
UB

T∆CUB
)−

1
2 UB

T(∆C)
1
2

)(

(∆C)
1
2 AVC

)(
(
VC

T∆BVC
)1

2

)

= QUB̃
T Ã(∆B̃)

1
2 ,

whereQ in the above expression is an orthogonal matrix whose exact value is not

relevant. Using the above expression ofǍ, the last term in (19) can be written as

k−(I −QUB̃
T Ã∆B̃ÃTUB̃QT) = k−(I −UB̃

T Ã∆B̃ÃTUB̃). By expandingUB̃ andÃ, a simi-

lar statement as in the case of (20) shows that

k−(I − ÃTÃ) = k−((∆B̃)
1
2 (I − ÃTÃ)(∆B̃)

1
2 ) = k−(I − ǍǍT). (21)

Combining (20) and (21) leads to (19). This concludes the proof of the main result.�

4. Constrained Generalized Matrix Approximation Problem: SVD Solution

This section describes an SVD based solution procedure for aconstrained version

of (1), which will be defined in (26). To arrive at this conclusion, a preliminary result

based on the work in [4] should be described first.

4.1. Preliminary: SVD solution for a constrained version of(2)

For any matricesM ∈R
p×q2 andL∈R

p×q1 such thatL has full column rank (= q1),

consider the following problem:

minimize
X

rank
([

−L X
])

subject to ‖M+X‖2 < 1.
(22)

This problem is a variant of (2), by replacing rank(X) in (2) with rank
([

−L X
])

.

Using the result in [4], the above problem can be solved as follows. Denote

L = USVT as the SVD ofL

PLM = UUTM asM projected on the range ofL

P⊥
L M = M−PLM as the orthogonal complement ofPLM

Then it is claimed that the achievable minimum rank in (22) isq1+ sve(P⊥
L M), and an

optimal solution can be constructed as

X⋆ =−

(

PLM+
[

P⊥
L M

]

sve(P⊥
L M)

)

. (23)

9



To see the assertion, note that by [4], for anyk≥ q1 it holds that

argmin

X rank

([

−L X
])

≤k

‖M+X‖2 =−

(

PLM+
[

P⊥
L M

]

k− q1

)

. (24)

Therefore, using (24) and the fact thatM = PM+P⊥M, it can be verified that

min
X rank

([

−L X
])

≤k

‖M+X‖2 =

∥
∥
∥
∥
P⊥

L M−
[

P⊥
L M

]

k−q1

∥
∥
∥
∥

2
= σk−q1+1

(

P⊥
L M

)

. (25)

For any integerk, it is an upper bound of the achievable minimum rank in (22) ifand

only if k renders the last term in (25) less than one. Therefore, the minimum upper

bound, denoted ask⋆, satisfies the condition thatk⋆−q1+1 is the index of the largest

singular value ofP⊥
L M which is less than one. In other words, the minimum rank of

(22) isk⋆ = q1+ sve(P⊥
L M). Finally, substituting the expression ofk⋆ into (24) gives

rise to the solution in (23).

4.2. Result

The equivalence in Proposition 3.2 (or any of its alternatives) provides an SVD

based solution to the following constrained generalized matrix approximation problem.

Theorem 4.1. Let A∈ R
m×n, B∈ R

m×mX , C ∈ R
nX×n satisfy assumption 1.1. In ad-

dition, let M1 ∈ R
mX×nX1, X2 ∈ R

mX×nX2 and nX = nX1+nX2. Partition C into CT =
[

C1
T C2

T
]

, with C1 ∈ R
nX1×n and C2 ∈ R

nX2×n.

Assume the data(A,B,C,M1) are chosen such that the following optimization prob-

lem is feasible:

minimize
X2

rank
([

M1 X2

])

subject to
∥
∥
∥A+B

[

M1 X2

]

C
∥
∥
∥

2
< 1.

(26)

Then (26) is equivalent to

minimize
X̌

rank
([

−Ľ X̌
])

subject to
∥
∥Ǎ+ X̌

∥
∥

2 < 1,
(27)

10



where

Ľ , −(PL)
−1M1

Ǎ ,
(
UT

B ∆C2UB
)−

1
2 UT

B ∆C2 (A+BM1C1)VC2

(

VT
C2

∆BVC2

) 1
2

X̌ , (PL)
−1X2(PR)

−1

PL , VBSB
−1

(
UB

T∆C2UB
)− 1

2

PR ,
(
VC2

T∆BVC2

)− 1
2 SC2

−1UC2
T

B =
[

UB NB

]




SB

0



VB
T is the SVD of B

C2 = UC2




SC2

0





[

VC2 NC2

]T
is the SVD of C2

∆B ,
(
In− (A+BM1C1)

TNBNB
T(A+BM1C1)

)−1

∆C2 ,
(
Im− (A+BM1C1)NC2NC2

T(A+BM1C1)
T
)−1

.

(28)

PROOF. Optimization problem (26) can be written as

minimize
X2

rank
([

M1 X2

])

subject to ‖(A+BM1C1)+BX2C2‖2 < 1.
(29)

The constraint in (29) has the same form as the inequality in (9). Under the feasi-

bility assumption, this constraint is equivalent to (12) asspecified by Proposition 3.2.

Therefore, the problem in (29) is equivalent to

minimize
X̌

rank
([

M1 PLX̌PR

])

subject to
∥
∥Ǎ+ X̌

∥
∥

2 < 1,
(30)

with Ǎ, X̌, PL, PR given in (28). The desired statement is resulted by noting that in

(30)PL andPR are invertible and left and right multiplying invertible matrices does not

change the rank of a matrix. �

Remark 4.1. Problem (27) has the same form as (22), and hence the solutionexpres-

sion in (23) can be applied. Once a solutionX̌⋆ is found, the expression from (28) can

be used to find an optimal solution to (26) as X2
⋆ = PLX̌⋆PR.
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5. Conclusion

Under feasibility assumption, the generalized matrix approximation problem in (1)

is similar to its classical version in (2). (1) possesses itsequivalent “classical” form

in (15). In addition, the minimum rank of (1) is sve(A), the singular value excess of

A. This is analogous to the minimum rank in the classical case in (2). A more general

constrained version of (1), as described in (26), turns out to be SVD solvable as well.

Even though no simple minimum rank characterization can be reported in this case.

The practical applications of the results in this paper, notdiscussed here, are described

in [10, 11].

Acknowledgements

Support from the Swedish Research Council through the Linnaeus Center LCCC is

gratefully acknowledged.

6. Appendix

6.1. Proof of Proposition 3.2

The general idea of the proof is that (9) will be shown, successively, to be equiva-

lent to some intermediate inequalities until (12) is finallyreached. To begin, note that

because of (3), (4) and (5), inequality (9) is equivalent to

(AVCVC
T +BXC)(AVCVC

T +BXC)
T
≺ I −ANCNC

TAT = (∆C)
−1
, (31)

where the last equality is due to (11), and it is valid becauseof the assumption in

(10). Inequality (31) is equivalent to
∥
∥
∥(∆C)

1
2 AVC+(∆C)

1
2 BXUCSC

∥
∥
∥

2
< 1, after some

algebraic manipulations. Rewrite the above inequality in terms of new notations

∥
∥Ã+ B̃X̃

∥
∥

2 < 1 (32)

with

Ã, (∆C)
1
2 AVC and B̃, (∆C)

1
2 B and X̃ , XUCSC. (33)

12



Before the next step of the proof, certain notations need to be introduced first.

Since∆C is invertible, B̃ in (33) has the same dimension and rank asB assumed in

(1.1). Therefore, the SVD of̃B can be written as

B̃=
[

UB̃ NB̃

]




SB̃

0



VB̃
T =UB̃SB̃VB̃

T

such that UB̃ ∈ R
m×mX , UB̃

TUB̃ = ImX

NB̃ ∈ R
m×(m−mX), NB̃

TNB̃ = Im−mX

SB̃ ∈R
mX×mX , diagonal and positive definite

VB̃ ∈ R
mX×mX , VB̃

TVB̃ = ImX .

(34)

By the definition of SVD,
[

NB̃ UB̃

]

is an orthogonal matrix and hence

UB̃
TNB̃ = 0 and NB̃NB̃

T +UB̃UB̃
T =

[

NB̃ UB̃

][

NB̃ UB̃

]T
= I . (35)

Now the proof of the equivalence between (9) and (12) can be resumed, with the

starting point being (32). From (34) and (35) it can be seen that (32) is equivalent to

(

UB̃UB̃
T Ã+ B̃X̃

)T(

UB̃UB̃
T Ã+ B̃X̃

)

≺ I − ÃTNB̃NB̃
T Ã. (36)

It can be shown (in Section 6.2) that, under the assumption in(10), the termI −

ÃTNB̃NB̃
T Ã in the right-hand-side of (36) is positive-definite, and itsinverse, denoted

as∆B̃ can be described by the “non-tilde” matrices as

∆B̃ ,
(
I − ÃTNB̃NB̃

T Ã
)−1

=VC
T∆BVC ≻ 0. (37)

Then, multiplying both sides of (36) with(∆B̃)
1
2 , expandingB̃ asB̃ = UB̃SB̃VB̃

T , and

simplifying using the relationshipUB̃
TUB̃ = I , inequality (36) becomes

∥
∥
∥UB̃

T Ã(∆B̃)
1
2 +SB̃VB̃

T X̃(∆B̃)
1
2

∥
∥
∥

2
< 1. (38)

To obtain (12) withǍ andX̌ represented by the original “non-tilde” matrices as in (13).

The following expressions (proved in Section 6.3) are needed.

UB̃ = (∆C)
1
2UB

(
UB

T∆CUB
)− 1

2 Q

SB̃VB̃
T = QT

(
UB

T∆CUB
) 1

2 SBVB
T

NB̃ = (∆C)
− 1

2 NB
(
NB

T(∆C)
−1NB

)− 1
2 Q1,

(39)
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whereQ andQ1 are orthogonal matrices whose exact forms are irrelevant tothe dis-

cussion in here. Using the expressions of the “tilde” quantities in (39), (33) and (37),

inequality (38) becomes
∥
∥
∥
∥
QT

(
UT

B ∆CUB
)−

1
2 UT

B ∆CAVC
(
VT

C ∆BVC
)1

2

︸ ︷︷ ︸

=Ǎ

+

QT
(
UB

T∆CUB
) 1

2 SBVB
TXUCSC

(
VC

T∆BVC
) 1

2

︸ ︷︷ ︸

=X̌

∥
∥
∥
∥

2
< 1,

with Q being a unspecified orthogonal matrix. However, since the spectral norm is

unitarily invariant, the above inequality is equivalent tothe one withoutQ. This is the

same as (12) witȟA defined in (13) andX̌ defined in (14). Finally, the one-to-one

correspondence and its inverse in (14) can be obtained from the above expression as

both
(
UB

T∆CUB
) 1

2 SBVB
T andUCSC

(
VC

T ∆BVC
) 1

2 are invertible. �

6.2. Proof of the expression in (37)

Using the definition of∆B in (11), the matrixVC
T∆BVC ≻ 0 is expanded into

VC
T∆BVC =VC

T(I −ATNBNB
TA

)−1
VC =VC

T
(

I −ATNB
(
NB

TAATNB− I
)−1

NB
TA

)

VC,

with the second equality due to the matrix inversion lemma [12]. Using the definition

of ∆C in (11) and the identityVCVC
T +NCNC

T = I in (5), the last term becomes

I −VC
TATNB

(
NB

T(AVCVC
TAT− (∆C)

−1)NB
)−1

NB
TAVC.

With another application of the matrix inversion lemma, theabove term becomes

(

I −VC
TATNB

(
NB

T(∆C)
−1NB

)−1
NB

TAVC

)−1
=
(
I − ÃTNB̃NB̃

T Ã
)−1

,

where the last equality is due to the definition ofÃ in (33) and the expression ofNB̃ in

(39), which will be shown next. �

6.3. Proof of the expressions in (39)

To show the first line of (39), notice from (34), (33), (3) thatthe SVD ofB̃ is

B̃=UB̃SB̃VB̃
T = (∆C)

1
2UBSBVB

T = (∆C)
1
2 B. (40)
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SinceSB̃VB̃
T is invertible, the second equality above implies thatUB̃ has the form

UB̃ = (∆C)
1
2UBP, (41)

with P being an invertible matrix. By the definition ofUB̃ in (34), it holds thatUB̃
TUB̃ =

PTUB
T∆CUBP= I . Since(UB

T∆CUB)
1
2 P is a square matrix, the above equality implies

that there exists an orthogonal matrixQ such thatP = (UB
T∆CUB)

− 1
2 Q. Substituting

the above expression into (41),UB̃ yields the first line in (39).

From the second equality in (40) and the expression ofUB̃ in the first line in (39) it

can be seen that

SB̃VB̃
T =UB̃

T(UB̃SB̃VB̃
T) =UB̃

T(∆C)
1
2UBSBVB

T = QT(UB
T∆CUB)

1
2 SBVB

T .

This is the same as the second line in (39).

To show the third line of (39), the relations in (35) and the first line in (39) imply

thatUB̃
TNB̃ = QT(UB̃

T∆CUB̃)
− 1

2UB
T(∆C)

1
2 NB̃ = 0. The fact thatQT(UB̃

T∆CUB̃)
− 1

2 is

invertible implies thatUB
T(∆C)

1
2 NB̃ = 0. Hence,(∆C)

1
2 NB̃ is in the kernel ofUB

T , and

there exists a square matrixY such that

NB̃ = (∆C)
− 1

2 NBY. (42)

Also, by the definition ofNB̃ in (34),NB̃
TNB̃ =YTNB

T(∆C)
−1NBY= I . Since the matrix

(NB
T(∆C)

−1NB)
1
2 is square, the above identity implies that there exists an orthogonal

matrixQ1 such thatY = (NB
T(∆C)

−1NB)
− 1

2 Q1. Substituting the above expression ofY

into (42) yields the third line in (39). �

6.4. Proof of Corollary 3.1

The equivalence between the optimization problems in (1) and (15) is a conse-

quence of the equivalence of the inequalities in (9) and (12), as well as the correspon-

dence in (14). Since an optimal solution to the classical problem (15) is−
[
Ǎ
]

sve(Ǎ), an

application of (14) results in the desired expression in (16). �
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