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Popular Science

It has been more than two decade since we passed the point when majority
of earth’s population connected to the internet and gained full access to mo-
bile communications. The number of connected devices however has been con-
stantly and rapidly growing due to the emerging applications and services, such
as smart vehicles, smart home, self-controlled robot workers, remote-controlled
machinery, and so on. During recent years, not only the number of connected
devices is increasing rapidly, but also the amount of information transmitted
by each device over the wireless networks have been growing explosively. For
example, smartphones are now capable of recording videos with resolutions be-
yond 4K and very high refresh rates, and most streaming platforms offer 4K
quality by default. Online video games are constantly increasing their con-
nectivity requirements, and new applications, such as virtual reality (VR) and
augmented reality (AR), are now commercialized at a large scale. Therefore,
the network demands are increasing significantly on a daily basis and the ad-
vancements in wireless technology are constantly struggling to keep up with
the level of users demands.

Massive multiple-input multiple-output (MIMO) and large intelligent sur-
face (LIS) are two of the major key technologies in the recent wave of ad-
vancements in 5G and 6G wireless networks. These technologies enable the
network to serve multiple users with very high data rates and high reliability,
by exploiting the spatial domain of the wireless channel. The performance
gain from deploying these systems highly depends on the possibility to increase
the number of transmit and receive antennas up to hundreds or thousands of
elements. While in theory there can be infinite gain from scaling up these
systems, deploying hundreds to thousands of transceiver chains with high-end
hardware components limits the scalability of massive MIMO in terms of cost
efficiency. High-end hardware components not only increase the deployment
cost of such networks, but also may increase the power consumption of the
transceivers and system infrastructure, which is not favorable both for the ven-
dors and the environment. On the other hand, it may not be efficient to scale
these systems arbitrarily with low-end hardware, since the real-world low-end
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hardware components introduce distortion into these systems and limit their
performance. Therefore, reducing the requirements on hardware components
quality while maintaining the system performance is of great importance to
enable the scalability of massive MIMO for future wireless networks.

In this thesis, we focus on scaling up massive MIMO and beyond with im-
perfect transceivers. In particular, we study the performance of massive MIMO
and LIS systems with imperfect hardware components to analyze the scalabil-
ity of these systems in practice. We also propose solutions to optimize the
system performance while taking into account the non-ideal effects in hard-
ware components. We propose compensations schemes to mitigate the effects
of imperfect transceivers and we show that by adopting the proposed schemes,
we can improve the overall systems efficiency, which paves the way for scaling
up massive MIMO systems to meet the increasing demands in future wireless
networks.



Abstract

The number of users and the information transmitted over wireless networks
have been growing constantly during the last decades. Nowadays, the pace of
this growth is extremely sharp because of the new applications which heavily
rely on wireless networks to meet users’ demands. Wireless networks infrastruc-
tures are constantly developing to meet these demands. Massive MIMO and
LIS are two of the main technologies which are the key-enablers for the current
and future wireless networks. The performance gains achieved from these sys-
tem are mainly due to the large number of deployed transceiver chains, which
enables serving more users by exploiting spatial domain multiplexing to meet
the higher service requirements. The possibility to scale up these systems is a
necessity to constantly meet the network demands. Deploying massive MIMO
and LIS systems with non-ideal hardware components is of great importance
to make the scalability of these systems feasible. In theory, the performance of
these systems can grow unboundedly by scaling up the number of transceiver
chains. However, assuming ideal hardware components for the transceivers is
not realistic from a practical point of view, since the number of transceiver
chains are in the order of hundreds to thousands, and the deployment cost,
processing complexity, and power consumption can limit the scaling of such
systems.

This work presents an analysis of hardware quality, complexity, power con-
sumption, versus performance of wireless communication systems, with a par-
ticular focus on massive MIMO and LIS architectures. We derive closed-form
scaling laws that relate analogue front ends (AFEs) power consumption to key
system and environmental parameters, such as bandwidth, signal-to-noise-plus-
distortion-ratio (SNDR), and fading conditions, enabling informed decisions for
low-power design. For massive MIMO systems, we explore both traditional and
machine learning-based digital pre-distortion (DPD) strategies. In particular,
we propose optimization of per-antenna DPD sizes under hardware constraints
and adaptive neural DPD allocation strategies based on channel conditions,
demonstrating substantial capacity improvements and system cost reductions.
We further analyze the effects of non-ideal receiver chains on LISs, and propose
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efficient antenna and panel selection schemes to sustain LIS performance with
fewer number of transceiver chains. Finally, we propose an over-the-air (OTA)
method to jointly perform DPD and reciprocity calibration in massive MIMO
and LIS systems, mitigating transmitter non-linearity and non-reciprocity with-
out dedicated hardware or iterative algorithms. Collectively, these contribu-
tions provide new insights and tools for the design of energy- and cost-efficient
wireless systems that remain robust under realistic hardware constraints.
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RF radio frequency
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Notation

The following notation will be used throughout the remainder of this thesis:

• Lowercase, bold lowercase and bold uppercase letters are used for scalars,
column vectors, and matrices, respectively.

• The operations (·)T, (·)∗ and (·)H denote transpose, conjugate, and con-
jugate transpose, respectively. Euclidean norm of a vector a is denoted
by ∥a∥.

• A diagonal matrix Q with diagonal elements a1, a2, . . . , aN is denoted by
diag(a1, a2, . . . , aN ). For a vector v, diag(v) denotes a diagonal matrix
with elements of v on the main diagonal.

• Identity matrix of size N ×N is denoted by IN .

• ℜ{A} and ℑ{A} denote real and imaginary parts of a complex variable
A, respectively.

• Zero-mean complex Gaussian random vector a with covariance matrix C
is denoted by a ∼ CN (0,C), and E{·} denotes the expectation operator.

xvii





Contents

Popular Science v

Abstract vii

Preface ix

Acknowledgements xiii

List of Acronyms and Abbreviations xv

I Overview of Research Field 1

1 Introduction 3
1.1 Thesis Context and Motivation . . . . . . . . . . . . . . . . . . 3
1.2 Thesis Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Thesis Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Related Background 7
2.1 Communication System and Capacity . . . . . . . . . . . . . . 7
2.2 MIMO Communication Systems . . . . . . . . . . . . . . . . . 8

2.2.1 MIMO Capacity . . . . . . . . . . . . . . . . . . . . . . 9
2.2.2 MU-MIMO . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Massive MIMO and Beyond . . . . . . . . . . . . . . . . . . . . 11
2.3.1 Channel Hardening . . . . . . . . . . . . . . . . . . . . . 11
2.3.2 OFDM vs Single-Carrier . . . . . . . . . . . . . . . . . . 11
2.3.3 TDD mode . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3.4 Reciprocity Calibration . . . . . . . . . . . . . . . . . . 13
2.3.5 LIS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4 Wireless Transceivers . . . . . . . . . . . . . . . . . . . . . . . . 15
2.5 Transceivers Imperfection . . . . . . . . . . . . . . . . . . . . . 15

2.5.1 Modeling Hardware Impairment . . . . . . . . . . . . . 16
2.5.2 DPD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.5.3 Non-linearity . . . . . . . . . . . . . . . . . . . . . . . . 18
2.5.4 Bussgang Decomposition . . . . . . . . . . . . . . . . . 19

xix



xx Contents

3 Overview of thesis contributions 21
3.1 Paper I: Massive MIMO with Per-Antenna Digital Predistortion

Size Optimization: Does it Help? . . . . . . . . . . . . . . . . . 21
3.2 Paper II: Machine Learning Based Digital Pre-Distortion in Mas-

sive MIMO Systems: Complexity-Performance Trade-offs . . . 22
3.3 Paper III: Large Intelligent Surfaces with Low-End Receivers:

From Scaling to Antenna and Panel Selection . . . . . . . . . . 23
3.4 Paper IV: Hardware Distortion Modeling for Panel Selection in

Large Intelligent Surfaces . . . . . . . . . . . . . . . . . . . . . 24
3.5 Paper V: Over-the-Air DPD and Reciprocity Calibration in Mas-

sive MIMO and Beyond . . . . . . . . . . . . . . . . . . . . . . 24
3.6 Paper VI: Over-the-Air DPD and Reciprocity Calibration for

Panel-based Large Intelligent Surfaces . . . . . . . . . . . . . . 25
3.7 Paper VII: Power Scaling Laws for Radio Receiver Front Ends 26

4 Conclusions and Future Work 27
4.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

References 29

II Included Papers 37

Paper I: Massive MIMO with Per-Antenna Digital Predistor-
tion Size Optimization: Does it Help? 41
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2 System and channel model . . . . . . . . . . . . . . . . . . . . . 44

2.1 System Model . . . . . . . . . . . . . . . . . . . . . . . . 45
2.2 Hardware Impairment Model . . . . . . . . . . . . . . . 45

3 Downlink Capacity with per-antenna DPD . . . . . . . . . . . . 46
4 per-antenna DPD size Optimization . . . . . . . . . . . . . . . 47

4.1 Sub-optimal Solution I: max-SNDR . . . . . . . . . . . 48
4.2 Sub-optimal Solution II: min-Distortion . . . . . . . . . 49

5 Asymptotic Analysis . . . . . . . . . . . . . . . . . . . . . . . . 50
6 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . 51
7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

Paper II: Machine Learning Based Digital Pre-Distortion in
Massive MIMO Systems: Complexity-Performance Trade-offs 61
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
2 System Model and General Considerations . . . . . . . . . . . . 65
3 NN-DPD Architecture . . . . . . . . . . . . . . . . . . . . . . . 66

3.1 NN-DPD complexity . . . . . . . . . . . . . . . . . . . . 66
3.2 NN-DPD training . . . . . . . . . . . . . . . . . . . . . 67



Contents xxi

3.3 System-Level performance of the NN-DPDs . . . . . . . 68
3.4 NN-DPD Size Selection . . . . . . . . . . . . . . . . . . 69

4 Performance Analysis . . . . . . . . . . . . . . . . . . . . . . . 70
5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

Paper III: Large Intelligent Surfaces with Low-End Receivers:
From Scaling to Antenna and Panel Selection 79
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

1.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . 83
1.2 Paper Outline . . . . . . . . . . . . . . . . . . . . . . . . 83
1.3 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

2 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
2.1 Hardware distortion model . . . . . . . . . . . . . . . . 85
2.2 Automatic gain control (AGC) and back-off . . . . . . . 87

3 SNDR Characterization . . . . . . . . . . . . . . . . . . . . . . 89
3.1 The cost of ideal-hardware assumption . . . . . . . . . . 92

4 LIS Antenna Selection . . . . . . . . . . . . . . . . . . . . . . . 95
5 LIS Panel Selection . . . . . . . . . . . . . . . . . . . . . . . . . 97
6 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . 100

6.1 Scaling Analysis Example . . . . . . . . . . . . . . . . . 100
6.2 Antenna and Panel selection . . . . . . . . . . . . . . . 102
6.3 Distortion Correlation . . . . . . . . . . . . . . . . . . . 107

7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
8 Proof of Lemmas . . . . . . . . . . . . . . . . . . . . . . . . . . 110
9 Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

PAPER IV: Hardware Distortion Modeling for Panel Selection
in Large Intelligent Surfaces 119
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
2 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

2.1 RX-chain non-linearity . . . . . . . . . . . . . . . . . . . 122
2.2 SNDR for MRC . . . . . . . . . . . . . . . . . . . . . . 123
2.3 Exponential Model for Distortion Power . . . . . . . . . 124

3 Panel Selection in LIS . . . . . . . . . . . . . . . . . . . . . . . 125
4 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . 127
5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
6 Proof of Approximations . . . . . . . . . . . . . . . . . . . . . . 129

PAPER V: Over-the-Air DPD and Reciprocity Calibration in
Massive MIMO and Beyond 135
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
2 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

2.1 Uplink . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
2.2 Downlink . . . . . . . . . . . . . . . . . . . . . . . . . . 139



xxii Contents

2.3 Background: OTA Reciprocity Calibration . . . . . . . 139
3 OTA DPD and reciprocity calibration . . . . . . . . . . . . . . 140

3.1 OTA non-linearity characterization . . . . . . . . . . . . 141
3.2 DPD linearization . . . . . . . . . . . . . . . . . . . . . 142
3.3 Reciprocity calibration . . . . . . . . . . . . . . . . . . . 143

4 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . 145
5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

Paper VI: Over-the-Air DPD and Reciprocity Calibration for
Panel-based Large Intelligent Surfaces 153
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
2 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
3 OTA-DPD and reciprocity Calibration . . . . . . . . . . . . . . 157
4 OTA-based techniques for panel-based LIS . . . . . . . . . . . . 160
5 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . 163
6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

PAPER VII: Power Scaling Laws for Radio Receiver Front Ends171
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
2 Optimal power consumption of AFEs . . . . . . . . . . . . . . . 175
3 Scaling laws of AFE power consumption . . . . . . . . . . . . . 177

3.1 Deriving the Scaling Laws . . . . . . . . . . . . . . . . . 178
3.2 Validation of the Scaling Laws: Theory . . . . . . . . . 180
3.3 Validation of the Scaling Laws: Published Performance 182
3.4 Detailed discussion of the scaling laws . . . . . . . . . . 183

4 Ramifications of the scaling laws . . . . . . . . . . . . . . . . . 186
4.1 Preliminaries: limitations on hardware relaxation . . . . 186
4.2 Power- and energy-efficient AFEs through intentional degra-

dation of performance, uncoded case . . . . . . . . . . . 187
4.3 Power- and energy-efficient AFEs through use of error

control coding . . . . . . . . . . . . . . . . . . . . . . . 190
4.4 Power-efficient AFEs through adaptation to fading . . . 193
4.5 Power-efficient AFEs through adaptation to out-of-band

interference . . . . . . . . . . . . . . . . . . . . . . . . . 197
5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199



Part I

Overview of Research Field





Chapter 1

Introduction

This chapter provides a general introduction to this thesis. In Section 1.1, the
main motivations behind the research conducted in this thesis is presented.
Section 1.2 provides the scope of the thesis. In Section 1.3, the main goals of
this thesis are remarked. Section 1.4, provides the outline of the thesis.

1.1 Thesis Context and Motivation

During the last 20 years, the number of wireless devices and the information
transmitted over wireless networks have grown explosively [1], (see Fig. 1.1).
Modern applications which heavily rely on the wireless networks to meet the
users demands have emerged. As a result, wireless networks and circuit de-
sign for wireless transceivers have been two of the most important research
topics in the world of technology. The development of 5G and emerging 6G
infrastructures continues to evolve to meet these growing network demands
[2]. Two key technologies driving this progress are Massive MIMO [3] and LIS
[4], which serve as critical enablers for both current and future wireless net-
works. Their impressive performance gains largely stem from the deployment
of a high number of transceiver chains, enabling greater user capacity through
spatial multiplexing and supporting more demanding network requirements [5].

To keep pace with increasing demand, the ability to scale up massive MIMO
systems is essential. In theory, the performance of these systems may increase
indefinitely by deploying more transceiver chains [6]. However, this only holds
under specific condition, such as assuming ideal hardware components, which
is impractical in real-world scenarios—particularly when dealing with hundreds
or thousands of transceiver chains. The associated costs, processing complexity,
and power consumption present significant limitations. The power consumption
of each transceiver can also become a bottleneck, especially if there are tight

3
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Figure 1.1: Global mobile network data traffic and year-on-year growth (Exa byte
(EB) per month) [1]

requirements on the non-linearity of amplifiers and the out-of-band emissions
[7]. As a result, implementing Massive MIMO and LIS with imperfect hardware
is crucial to ensure the scalability of these systems remains practical and cost-
efficient [4], [5], [8]. Therefore, it is of high importance to, first, analyze the
effects of imperfect transceivers when scaling up massive MIMO systems, and
second, design compensation methods and optimizations to increase the cost
efficiency when scaling up massive MIMO systems.

1.2 Thesis Scope

In practical wireless communication systems, hardware components often show
non-ideal effects, introducing imperfections that can degrade system perfor-
mance. These non-ideal effects include nonlinearities in power amplifiers, phase
noise, I/Q imbalance in mixers, and quantization errors. Such impairments can
affect the reliability of data transmission and quality of service for the users.
To mitigate these effects, signal processing-based compensation techniques are
used, including DPD, phase noise estimation, and calibration algorithms. Addi-
tionally, distortion-aware system design and smart signal processing algorithms
can improve resilience against these non-ideal effects.

To deal with these challenges when scaling up massive MIMO systems, we
need to make the transceiver design as efficient as possible. A potential direc-
tion to follow is to optimize the signal processing schemes and system archi-
tectures while maintaining the hardware quality at a minimum level. In other
words, we want to get the most gain from each transceiver chain while limit-
ing the implementation costs, e.g., by using inexpensive hardware components.
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Figure 1.2: Thesis scope and papers categorization.

Therefore, providing methodologies and smart design through system-level op-
timizations is of great importance.

In this thesis, we first analyze the non-ideal effects with precise models
and information theoretical derivations, and subsequently design smart opti-
mization methods to mitigate the adverse effects of these non-ideal effects. To
study the effects, we leverage statistical signal processing and information the-
ory methods. However, the model selection is of high importance as well, since
it implies a trade-off between accuracy and analytical tractability. We analyze
the performance with different non-ideal effects and derive performance metrics
which can be used for optimizing systems. Then, we leverage the mentioned
analysis and define optimization problems to mitigate the effects of non-ideal
hardware components. We also develop novel compensation methods based on
low-complexity OTA measurements and machine learning to further improve
systems performance.

1.3 Thesis Goals

The main thesis goal is to investigate the feasibility of scaling up massive MIMO
and LIS systems with imperfect transceiver chains. In particular, the first goal
of this thesis is to propose frameworks and provide analytical results to study
the effects of imperfect transceivers when scaling up massive MIMO and be-
yond. Secondly, the thesis focuses on providing optimized schemes to mitigate
the effects of hardware distortion on the system performance, by proposing
DPD size optimization, OTA-DPD compensation, and antenna selection so-
lutions. The thesis includes 7 papers, which are categorized as illustrated in
Fig. 1.2. Connections between the papers contributions and the thesis goals
are described with more details in Chapter 3.
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1.4 Thesis Outline

This thesis consists of two parts. In Part I, an overview of the research field
of the thesis is provided. In Chapter 1, an introduction to the subject is
presented, including the thesis motivation and goals. Chapter 2 provides some
related background knowledge which is essential to understanding the results
of this thesis. Chapter 3 provides a detailed discussion of the contributions
and results from the included papers. Chapter 4 presents the main conclusions
based on the results of this thesis, and provides directions for future work based
on the content of this thesis. In Part 2, the 7 papers included in the thesis are
provided, with some changes of formatting to match the rest of the thesis.



Chapter 2

Related Background

In this chapter, fundamental concepts and definitions used in the thesis are
briefly introduced. We first present basics of a communication system and the
definition of capacity in Section 2.1. In Section 2.2, we provide some fundamen-
tal concepts of MIMO systems and their advantages with a general description
of Multi-user MIMO (MU-MIMO) systems, which provides the basic framework
for the technologies studied in this thesis. Section 2.3 includes fundamentals of
massive MIMO system and beyond, including LIS systems, which are the two
major technologies considered in this thesis. Then, we introduce basic compo-
nents of a wireless transceiver in Section 2.4, followed by the non-ideal effects
of imperfect transceivers in sections 2.5 and 2.5.1.

2.1 Communication System and Capacity

In the simplest format of a communication system, a transmitter sends some in-
formation, over a channel, to a receiver. The term channel refers to the medium
connecting the transmitter and receiver, which can be wired or wireless. In the
context of wireless communication systems, channel refers to the radio channel
between a transmitter a receiver. In order to analyze a communication link,
mathematical models are used for both the information transmitted between
transmitter and receiver, and for the channel. In a simple form of a digital
communication system, the signal received at a single-antenna receiver after
going through a narrow-band channel can be modeled as

r = hs+ n, (2.1)

where the complex-valued variables s, h, and n model the symbols transmitted
by a single-antenna transmitter, the channel, and the additive noise at the

7
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receiver, respectively.
The concept of capacity was introduced by Claude Shannon, who is widely

known as the ”Father of Information Theory”. In one of his main works ti-
tled ”A mathematical theory of communication”, he provided the definition
of channel capacity, defined as ”the highest information rate over a channel
that can be achieved with arbitrary small error probability” [9]. For the single-
input-single-output (SISO) communication system model in (2.1), the channel
capacity is defined as

CSISO = max
p(s)

I [s; r] , (2.2)

where I [s; r] is the average mutual information between s and r. The maxi-
mization is performed over all the possible probability distributions of s given
by p(s). If we assume a zero-mean Gaussian distribution for n, with σ2 =
E[|n|2], and perfect knowledge of h at the receiver, we can calculate the capac-
ity as [10], [11]

CSISO = log2

(
1 +

P |h|2

σ2

)
(2.3)

where P = E[|s|2]. In general, calculating the channel capacity is not trivial,
and in many cases, we are only able to find some bounds on the capacity [12].
It can be seen from equation (2.3) that the SISO capacity grows with the ratio
of received signal power and the noise variance, which we refer to as signal to
noise ratio (SNR).

2.2 MIMO Communication Systems

MIMO technology has been a key technology in wireless networks for more than
two decades. MIMO, in its original form, is also called point-to-point MIMO,
and refers to a communication system where both the transmitter and the
receiver have two or more antennas, as depicted in Fig. 2.1. By equipping the
transmitter and receiver with multiple antennas, higher reliability and capacity
can be achieved in the wireless channel, without requiring additional bandwidth
or transmit power. In particular, there are three main advantages in MIMO
scenarios [10], [13], [14]:

• Multiplexing: Increasing data throughput by sending independent data
streams across different antennas, improving the capacity of wireless com-
munication systems.

• Diversity: Transmitting the same data signal over multiple paths be-
tween antennas, improving the reliability of communication systems and
reducing the system bit error rate (BER).
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Figure 2.1: MIMO Wireless System.

• Array Gain: Increases the SNR by exploiting beamforming of the signal
from transmitter to the receiver, focusing the transmitted energy in spe-
cific directions to improve signal quality and reduce interference, which
improves the capacity of wireless communication systems.

2.2.1 MIMO Capacity

To define the MIMO capacity, we can generalize the formulation in Section 2.1,
to a multiple-antenna transmitter and receiver. Assume that the transmitter
and receiver have NTX and NRX antennas respectively. The received signal is
modeled as

r = Hs+ n, (2.4)

where H is a NRX×NTX channel matrix, s is the complex-valued transmitted
symbol, and n is the additive zero-mean Gaussian noise. The capacity for the
MIMO system can be derived as [10], [15]

CMIMO = max
Rss

log2

(
det

[
INRX +

1

σ2
HRssH

H

])
(2.5)

where the transmitted signal and additive noise distributions are zero-mean
Gaussian with covariance matrix Rss and σ2INRX

, respectively. The MIMO
channel is a random matrix and the capacity defined above is calculated for one
realization of the channel. To evaluate the performance of the MIMO system
over all the possible realizations of the channel, we can use the concept of
ergodic capacity, which is defined as the average of the capacity, defined above,
over all the realizations of the random channel matrix H.

2.2.2 MU-MIMO

The concept of point-to-point MIMO was not directly applicable to a cellular
wireless network where single-antenna users are not co-located and they can not
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Figure 2.2: MU-MIMO Wireless System.

co-operate in the same way as one multi-antenna system. Therefore, a new class
of MIMO systems were developed based on the original MIMO concept where
many single-antenna user equipments (UEs) communicate with a multi-antenna
base station (BS), commonly known as MU-MIMO, as illustrated in Fig. 2.2.
It was shown that with smart signal processing steps during transmission and
reception, i.e., in downlink (DL) and uplink (UL), the advantages of the original
point-to-point MIMO technology can also be achieved in MU-MIMO systems
[16], [17], [18].

Assume that a MIMO transceiver, i.e., BS, with M antennas, is serving K
single-antenna UEs. The channel between the BS and UEs is modeled by a
M × K matrix H. In the UL, each UE transmits a signal sk to the BS over
H. The received signal at the BS can be modeled as

y = Hs+ n, (2.6)

where s is a K × 1 vector containing all the signals sk. Each column of the
matrix H contains the channel vector hk between the k’th UE and the BS.
The BS can have an estimate of H if the UEs transmit pilots over the channel.
Then, the BS can exploit the channel knowledge to recover the transmitted
signals, by selecting a combining scheme. For example, the BS can use a zero-
forcing (ZF) scheme, and multiply y with the pseudo-inverse of H, given by

VZF = (HHH)−1HH (2.7)

which can effectively cancel the inter-user interference.
To quantify the capacity of MU-MIMO, let’s assume that the BS has full

knowledge of H while the UEs have no information about the channel and
cannot cop-operate. The constraint of the UEs not being able to cooperate
means that they can only transmit independent symbols, thus enforcing Rss

to be diagonal. Assuming UEs with equal power available for transmission gives
Rss = PsIK , which incidentally coincides with the MIMO capacity-achieving
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distribution when the channel is unknown at the transmitter. Therefore, the
capacity of a MU-MIMO, with the setup as described above, is given by

CMU-MIMO = log2

(
det

[
IM +

Ps

σ2
HHH

])
. (2.8)

The MU-MIMO framework is the fundamental system model for massive MIMO
and LIS, which we repeatedly consider throughout this thesis and the included
papers.

2.3 Massive MIMO and Beyond

Massive MIMO was introduced in 2010 as a major advancement in MU-MIMO
systems, in which the number of antennas at the BS scales up by one or more
orders of magnitude [3]. This enhancement enables the system to exploit the
spatial domain more effectively and serve many UEs with higher reliability and
data rates [19]. It has been proven in both theory and practice that massive
MIMO can provide a significant capacity boost in the communication network,
which helps the system designers and the operators to meet the network require-
ments in 5G and beyond [5], [20]. With tens to hundreds of antenna elements
deployed at the BS, massive MIMO has the potential to serve many UEs using
space division multiple access (SDMA) with only linear and simple precoding
and combining schemes, such as maximum ratio transmission (MRT) in DL
and maximum ratio combining (MRC) in UL [6], [11]. Examples of massive
MIMO array deployment scenarios are illustrated in Fig. 2.3.

2.3.1 Channel Hardening

One of the main properties of the wireless channels in massive MIMO systems is
the channel hardening effect. It has been shown that by increasing the number
of antenna elements, the wireless channel starts to behave deterministically
[21], averaging out the small-scale fading effects. This results in a more stable
effective channel to each UE, which is defined as the channel after performing
precoding/combining. With a more deterministic and stable channel, the need
for frequent power allocation and channel estimation is reduced, and the UEs
can experience a more robust and reliable connectivity [22], [23], [24].

2.3.2 OFDM vs Single-Carrier

Massive MIMO can operate in both single-carrier and orthogonal frequency-
division multiplexing (OFDM) transmission mode [25]. OFDM has shown
great benefits for wide-band digital communications systems, especially for
frequency-selective radio channel with multi-path propagation, by providing
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Figure 2.3: Massive MIMO array deployment examples in Wireless Networks [5].

better orthogonality in transmission channels without the need for complex
equalization filters, improving inter-user interference cancellation [26], [27].
The authors in [25] proved that in massive MIMO, the performance of single-
carrier and OFDM transmission are close in terms of the achievable rate, es-
pecially when the channel hardening effect is strong. The reason is that with
channel hardening, all sub-carriers have equally good channels and the advan-
tage of OFDM, which is the possibility to do water-filling in frequency domain,
results in minor gain. Interestingly, the computational complexity of both
transmission modes is also identical for massive MIMO [25]. However, there
are differences when deploying massive MIMO in practice. For example, an
OFDM massive MIMO system is less sensitive to time synchronization errors,
while single-carrier system is less sensitive to errors in frequency synchroniza-
tions [25].

2.3.3 TDD mode

Massive MIMO was initially developed for time-division duplexing (TDD) sys-
tems, where UL and DL data are transmitted over the same frequency range,
at different time intervals [3], [5]. The main advantage of this assumption is
that the BS can rely on channel reciprocity to acquire the downlink channel
from the uplink channel estimates [28], [29]. When massive MIMO was intro-
duced, most of the commercial networks were operating in frequency-division
duplexing (FDD) mode, and there were initial debates and discussions to en-
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able deploying massive MIMO in FDD mode, mainly to reduce deployment
costs [30]. However, later it was shown that to achieve the benefits of massive
MIMO, operating in TDD mode is crucial. In TDD mode, the DL and UL
channels are reciprocal and the number of pilots for channel estimation scales
with the number of UEs. On the other hand, FDD mode could not exploit the
channel reciprocity, and the number of downlink pilots for channel estimation
scales with the number of BS antennas. For massive MIMO, where the number
of BS antennas can grow large, the pilot overhead issue can limit the perfor-
mance gain of increasing the number of antennas [31], [32]. Therefore, TDD
was a clear choice and it is the standard mode considered in massive MIMO
deployments [20].

2.3.4 Reciprocity Calibration

In an ideal TDD system, the massive MIMO BS can rely on perfect channel
reciprocity, which means the BS can acquire the DL channel directly by trans-
posing the estimated channel in UL. However, in practical deployments, the
differences between transmitter (TX) and receiver (RX) hardware may com-
promise this assumption. In fact, ignoring these differences and directly using
the UL channel can result in significant performance loss [28]. To deal with this
problem, reciprocity calibration methods are used to compensate the difference
between TX and RX hardware. There are several approaches for reciprocity
calibration in massive MIMO. OTA-based reciprocity calibration methods re-
lying on mutual-coupling measurements are specially promising since they do
not require dedicated hardware for reciprocity calibration [28], [33], [34], [35].

In the literature of reciprocity calibration, the response of TX and RX
hardware at both the BS and UEs are modeled by linear complex gains 1. Let
us denote the propagation channel from K UEs to the M -antenna BS by a
M ×K matrix H. The effective UL channel which is affected by the BS RX
and UEs TX hardware responses, is

HUL = RBHTU, (2.9)

where RB = diag(rB1 , . . . , r
B
M ) and TU = diag(tU1 , . . . , t

U
K) include the linear

response of the BS RX and the UE TX hardware. If the BS simply transposes
this matrix, it cannot acquire the DL channel, since the effective DL channel
is

HDL = RUH
TTB, (2.10)

where RU = diag(rU1 , . . . , r
U
K), TB = diag(tB1 , . . . , t

B
M ) are associated with the

linear response of the UEs RX and BS TX hardware. The goal of reciprocity

1This assumption is idealistic. We propose reciprocity calibration methods with non-
linearity at TX hardware in Paper V and Paper VI
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Figure 2.4: LIS deployment examples [4].

calibration is to compensate this difference. It has been shown that by esti-
mating the reciprocity calibration matrix given by

C = TBR
−1
B . (2.11)

The BS can effectively find a scaled version of HDL from HUL, which can
be deployed in DL precoding with a minimal performance loss compared to an
ideal case with perfect knowledge of HDL [28], [36]. The OTA-based reciprocity
calibration methods are considered in Paper V and Paper VI, where we propose
OTA-based methods to perform both the DPD and reciprocity calibration.

2.3.5 LIS

LISs have emerged as one of the potential development directions after the
deployment of massive MIMO systems. The LIS technology was introduced
in [4], [37] as a large surface of electromagnetically active material, improving
the communication system performance by enabling much higher degrees of
freedom compared to massive MIMO systems. The initial theoretical model
assumes a continuous model where any point of a surface can transmit and re-
ceive signals. While this continuous model is useful to understand the concepts
and fundamental limits of a LIS system, it can not be implemented in that form
with current technology. Instead, a dense antenna array deployed throughout
a large surface is more realistic, which can also be interpreted as a sampled
version of the continuous LIS model [4], [38]. More practical implementations
of LIS consider dividing the surface into dense multi-antenna panels with a
lower number of antennas on each panel, which is a more flexible and scalable
design with reduced system complexity [39]. We deal with LIS and panel-based
LIS systems in Paper III, Paper IV, and Paper VI.
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Figure 2.5: Wireless Transceiver.

2.4 Wireless Transceivers

Wireless transceivers are the core components of communication systems, en-
abling transmitting and receiving signals over the wireless channels. In a mod-
ern digital wireless system, the transmitter converts a source of information
into a digital data by sampling and quantization. Then, the digital signal is
transformed into an analog radio frequency (RF) signal using digital to ana-
logue convertor (DAC) and modulation. The RF signal is transmitted through
the channel from the transmit antennas. The receiver at the other side of the
channel, receives the analogue signal from its receive antennas. An inverse oper-
ation is then performed on the received signal, where the signal is demodulated
and digitized after going through an analogue to digital convertor (ADC) to re-
cover the transmitted data. The main task of the receiver is to recover (detect)
the transmitted information with minimum error. This whole process involves
several stages, including filtering, amplification, frequency conversion, etc. The
hardware architecture of a wireless transceiver includes many key components
such as antennas, low noise amplifier (LNA), power amplifier (PA), mixers, os-
cillators, etc. In Fig. 2.5 a simple scheme of a wireless transceiver is illustrated
[40].

2.5 Transceivers Imperfection

In practical wireless transceivers, hardware components often show non-ideal
behavior, introducing various imperfections that can degrade the system perfor-
mance. Most of the theoretical work in the area of massive MIMO disregard the
non-ideal behavior of transceivers for analytical tractability. These non-ideal
effects are mainly due to non-linearity in power amplifiers, phase noise in oscil-
lators, In-phase Quadrature (I/Q) imbalance in mixers, and quantization errors
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in low-resolution ADCs. Such impairments can lead to signal distortion, spec-
tral regrowth, and reduced SNDR, limiting the performance of wireless systems
[41]. For example, power amplifier non-linearities can cause inter-modulation
distortion which generates in-band and out-of-band distortion and degrade the
SNDR [40]. Understanding and addressing these non-ideal effects is essential
for designing reliable and efficient wireless communication systems. It has been
suggested that massive MIMO is generally more resilient to some effects from
hardware impairments [42] mainly because those impairments are averaged out
over many transceiver chains. However, those studies are only considering sim-
ple statistical models to analyze the imperfect hardware effects. On the other
hand, the problem with imperfect transceiver is still crucial to consider when
scaling up massive MIMO systems, mainly because in massive MIMO and be-
yond, due to a large number of TX-chains and RX-chain, deploying low-power
and low-cost components are favorable for the sake of cost-efficiency. Accurate
modeling and analysis of the non-ideal effects, and compensation methods to
mitigate the effects of the hardware distortion are of great importance for such
systems.

To deal with the challenges mentioned above, we need to make the mas-
sive MIMO and LIS transceiver design as efficient as possible. In general, the
path to follow is to optimize the signal processing schemes and system designs
to enable deploying lower-quality and lower-cost hardware components while
maintaining the performance at a favorable level. In other words, we want to
get the most gain from each transceiver chain while limiting the implementa-
tion costs, e.g., by using inexpensive hardware components. The main aim of
this thesis is to provide methodologies and smart design through system-level
optimizations to mitigate the effects of non-ideal hardware components in fu-
ture MIMO systems. We need to study these effects by selecting high-accuracy
models, performing information theoretical analysis, and subsequently design-
ing smart optimization methods to mitigate the adverse effects. However, the
model selection is of high importance as well since it results in a trade-off
between accuracy and analytical tractability. In this thesis, we analyze the
performance with different non-ideal effects and derive performance metrics
which can be used for optimizing the systems. Then, we can leverage the
analysis from above and define optimization problems to mitigate the effects
of non-ideal hardware components. We can also develop novel compensation
methods based on low-complexity OTA measurements and machine learning to
further improve the system performance.

2.5.1 Modeling Hardware Impairment

One of the most crucial steps in analyzing massive MIMO systems with im-
perfect transceivers is the model selection. As remarked earlier, the model
selection is important because it leads to a trade-off between accuracy and



Contents 17

analytical tractability. For this reason, most of the theoretical works on this
subject consider the most simplistic models for hardware impairment. It is
very common in the literature to model the residual hardware impairment2

as an additive complex Gaussian distortion at the output, which is therefore
treated as noise. This model is partly motivated based on the central limit
theorem, by assuming that the residual hardware impairment is an aggregate
effect of several hardware impairment effects [42], [43]. When considering this
model for a transceiver with hardware impairment, the variance of the additive
distortion term, i.e., distortion power, is proportional to the input power of the
transceiver [43], [44], [45]. Let us consider the SISO system from Section 2.1,
where both the TX and RX have hardware impairment. The received signal
can be modeled as

r = h(s+ ηt) + ηr + n, (2.12)

where ηt ∼ CN (0, κtP ) and ηr ∼ CN (0, κrP |h|2), as remarked above. The
scalar variables κt and κr can be interpreted as the level of hardware impair-
ment, i.e., for an ideal system κt = κr = 0. The additive distortion terms in
this model are assumed independent of the desired signal s. Therefore, we can
treat them as noise in the capacity calculation, resulting in

CSISO = log2

(
1 +

P |h|2

κtP + κrP |h|2 + σ2

)
. (2.13)

While this statistical model can be adopted to gain insights about the hardware
impairment effects with high analytical tractability, it is not accurate enough
when considering specific hardware impairment effects. There are more com-
plicated models with higher accuracy, which are generally known as behavioral
models [46], [47], [48].

2.5.2 DPD

To mitigate the performance degradation caused by non-ideal hardware ef-
fects in wireless transceivers, compensation methods such as linearization and
calibration are performed at both TX and RX. Linearization techniques are
primarily employed to address the nonlinear behavior in PAs. A prominent
method is DPD, which applies an inverse nonlinear function to the input sig-
nal, effectively canceling the distortion introduced by the amplifier [46], [49],
[50], [51], [52]. This allows for more efficient amplifier operation near satu-
ration without significantly increasing distortion, thereby improving spectral
efficiency and power usage. We deal with DPD and optimization problems
regarding DPDs in Paper I, Paper II, Paper V, and Paper VI.

2It is called the ”residual” hardware impairment since it is assumed that mitigation tech-
niques have been applied to compensate the impairment effects while some of the adverse
effects remain even after the compensations.
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DPDs are mainly designed based on the Volterra series and memory polyno-
mial models [46]. Another class of DPDs, gaining more interest in recent years
due to the new wave of machine learning applications, is neural network (NN)-
DPD. It has been shown that a well-designed and well-trained NN-DPD can
outperform the conventional DPDs at the same level of complexity and power
consumption [53], [54], [55]. Most of the works in this regard are focusing on
designing a novel low-complexity design of an NN-DPD for a single transceiver
chain. We deal with NN-DPD schemes for massive MIMO in Paper II.

2.5.3 Non-linearity

Non-linearity is one of the most dominant effects when analyzing imperfect
transceivers in MIMO system. While the main source of non-linearity is the
PA in TX, other components in TX and RX can also show adverse non-linear
behaviors. To understand the effect of non-linearity in a transceiver, let us
consider an amplifier where the output is y = f(x). For an ideal amplifier,
f(x) = Gx, where G is the amplifier gain. However, when the input power
of the amplifier grows large, the output is no longer a linear function of the
input, and non-linearity effects appear. The non-linearity effect in this model is
memory-less, while in practice there can be non-linearity with memory, i.e., the
output at time t depends on the input at t and before [56]. For the memory-
less case, approximating the non-linear function f(x) can effectively model the
non-linear effects of amplifier with high accuracy [40], [46]. In that case, the
output is modeled by

y = f(x) =

L−1∑
k=0

a2k+1 x|x|2k, (2.14)

where a2k+1 are the model parameters. As it can be seen, only the odd-order
terms are considered in the model. The motivation behind ignoring even-order
terms is because those terms result in harmonics which are typically far from the
frequency band of the signal. On the other hand, the odd-order terms are the
ones with a dominant in-band and out-of-band distortion, due to adverse effects
such as gain compression and inter-modulation [40]. Behavioral models such as
the memory-less polynomial model above or memory polynomial models as the
one considered in [56], can be leveraged to model and analyze other hardware
impairment effects such as cross-talk [47], or the aggregated non-linear effects
of all the components in a TX-chain or RX-chain. The model parameters can
be estimated based on input-output measurements of the non-linear component
[57], or by exploiting OTA measurements [58].

The effect of non-linearity in a massive MIMO system is more severe when
the input power to the amplifiers grows high. This is especially important in
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the PA of the BS, and dealing with the non-linearity at the TX in BS side
with DPD methods is crucial to improve the DL performance. The PA non-
linearity issue can be more severe when deploying massive MIMO with an
OFDM transmission. The main reason is that, compared to a single-carrier
transmission, OFDM has a higher peak-to-average power ratio (PAPR) which
can result in higher non-linear effects at the PAs. Therefore, considering higher-
complexity DPDs and memory-effects is more important for an OFDM massive
MIMO system [59], [60].

2.5.4 Bussgang Decomposition

As remarked previously, analyzing the performance of a wireless system with
non-linear components results in high-complexity formulations, which reduces
the analytical tractability of the analysis. To deal with this high-complexity
and simplify the problems, we can leverage the Bussgang decomposition [61],
[62], [63], which is a direct result of the original Bussgang theorem [64]. Let us
assume a non-linear component with input-output function given by

y = f(x), (2.15)

where x and y are two complex random variables. In the context of wireless
transceivers, x and y can be the input and output of a PA. The Bussgang
decomposition can be applied to this non-linear function as

y = Bx+ η, (2.16)

where

B =
Cyx

Cxx
=

E [yx∗]

E [|x|2]
, (2.17)

is the Bussgang gain, and η = f(x) − Bx is a zero-mean random variable
uncorrelated to both x and y [62]. One should note that, while η and x are
uncorrelated, they are generally not independent. The Bussgang decomposition
can be interpreted as the linear minimum mean squared error (LMMSE) of y
given x, where η is the estimation error. In case of a MIMO non-linear system
with input x and output y, the same decomposition can be applied with the
Bussgang gain defined as a matrix given by

B = CyxC
−1
xx = E

[
yxH

]
(E
[
xxH

]
)−1. (2.18)

The Bussgang decomposition is a very useful tool in analyzing the perfor-
mance of imperfect transceivers with non-linear TX and RX chains, including
non-linear amplifiers, low-resolution ADCs, etc [62]. We have leveraged this
decomposition in Paper III and Paper IV.





Chapter 3

Overview of thesis
contributions

In this chapter, a summary of thesis contributions is presented. The thesis
includes 7 papers, all related to the general background covered in Chapters 2,
categorized as illustrated in Fig. 1.2. For each paper, a brief summary of the
results is provided, all in connection to the thesis goals from Chapter 1.

3.1 Paper I: Massive MIMO with Per-Antenna
Digital Predistortion Size Optimization: Does
it Help?

When deploying large arrays in massive MIMO scenarios, not all the antennas
contribute equally to the system performance. Therefore, antenna selection
schemes can be performed to use only a portion of the array for signal trans-
mission [65]. With the same motivation, we have proposed to optimize the
per-antenna DPD sizes in a DL massive MIMO system with residual hardware
impairment. In particular, we first quantify the capacity after applying per-
antenna DPD with different numbers of coefficients at each antenna and then
maximize the capacity by finding optimum values of the per-antenna DPD sizes
under a constraint on the total number of DPD coefficients in the system. Two
closed-form sub-optimal solutions are derived and numerical examples illustrate
that their performance is very close to the optimal solution. It is shown that,
when the channel large-scale gains have high variation over the transmitter
array, which is the case in practical scenarios, using our proposed optimized
DPD sizes can improve the system capacity significantly. This allows us to
scale down the massive MIMO system but still maintain performance. We also

21
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Figure 3.1: CDF of SINDR (dB) for a UE randomly located at the cell area [67],(Pa-
per II).

study the asymptotic behavior of the derived capacity and show that by using
the optimized DPD sizes, the system performance can approach the asymptotic
bound with a significantly smaller number of antennas [66],(Paper I).

3.2 Paper II: Machine Learning Based Digital
Pre-Distortion in Massive MIMO Systems:
Complexity-Performance Trade-offs

With the same motivation and based on the results from [65], [66], we have
considered the trade-off between complexity and performance in massive MIMO
systems with NN-DPD blocks at the base station. In particular, we consider
a multi-user massive MIMO system with per-antenna NN-DPDs, each with an
adjustable NN architecture in terms of the size and the number of NN hidden
layers. We first analyze the system performance in terms of compensation of
the non-linear hardware distortion for different levels of NN-DPD complexity
and number of antennas. We illustrate the required level of complexity in the
trained NN-DPD blocks to approach the performance of an ideal conventional
DPD. The statistics of the signal to interference and noise plus distortion
ratio for a randomly located UE are selected as the performance metrics. We
then assume a limited total digital computation power to be allocated among
the NN-DPD blocks and propose to select the NN-DPD architecture of each
TX branch based on the channel conditions of its corresponding antenna. To
illustrate the importance of such a smart DPD resource allocation, we have
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Figure 3.2: Achievable data rate with perfect AGC vs LIS radius in terms of number
of wavelengths, λ, with fixed back-off for optimal antenna selection solved from (42)
and dominant antenna selection where the antennas with highest received power are
selected [68],(Paper III).

analyzed the performance of a massive MIMO system with different NN-DPD
architecture selection strategies. Numerical results, such as Fig. 3.1, indicate
that by adopting the smart NN-DPD resource allocation, a significant boost in
the system performance can be achieved, making room for reducing the overall
system cost when scaling a massive MIMO system [67],(Paper II).

3.3 Paper III: Large Intelligent Surfaces with
Low-End Receivers: From Scaling to An-
tenna and Panel Selection

We analyze the performance of LIS with hardware distortion at its RX-chains.
In particular, we consider the memory-less polynomial model for non-ideal
hardware and derive analytical expressions for the signal to noise plus distortion
ratio after applying MRC at the LIS. We also study the effect of back-off and
automatic gain control on the RX-chains. The derived expressions enable us to
evaluate the scalability of LIS when hardware impairments are present. We also
study the cost of assuming ideal hardware by analyzing the minimum scaling
required to achieve the same performance with non-ideal hardware. Then,
we exploit the analytical expressions to propose optimized antenna selection
schemes for LIS and we show that such schemes can improve the performance
significantly, with Fig. 3.2 included here as an example. In particular, the
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antenna selection schemes allow the LIS to have lower number of non-ideal
RX-chains for signal reception while maintaining a good performance. We
also consider a more practical case where the LIS is deployed as a grid of
multi-antenna panels, and we propose panel selection schemes to optimize the
complexity-performance trade-offs and improve the system overall efficiency
[68],(Paper III).

3.4 Paper IV: Hardware Distortion Modeling
for Panel Selection in Large Intelligent Sur-
faces

Hardware distortion in LISs may limit their performance when scaling up such
systems. It is of great importance to model the non-ideal effects in their
transceivers to study the hardware distortions that can affect their perfor-
mance. Therefore, we have focused on modeling and studying the effects of
nonlinear RX-chains in LISs. We first derive expressions for SNDR of a LIS
with a memory-less polynomial-based model at its RX-chains. Then, we pro-
pose a simplified double-parameter exponential model for the distortion power
and show that, compared to the polynomial based model, the exponential
model can improve the analytical tractability for SNDR optimization prob-
lems. In particular, we consider panel selection optimization problems in a
panel-based LIS scenario and show that the proposed model enables us to de-
rive two closed-form sub-optimal solutions for panel selection, and can be a
favorable alternative to high-order polynomial models in terms of computation
complexity, especially for theoretical works on hardware distortion in MIMO
and LIS systems. Numerical results show that the sub-optimal closed-form
solutions have a near-optimal performance in terms of SNDR compared to the
global optimum found by high-complexity heuristic search methods [69],(Paper
IV).

3.5 Paper V: Over-the-Air DPD and Reciprocity
Calibration in Massive MIMO and Beyond

Non-linear transceivers and non-reciprocity of downlink and uplink channels
are two major challenges in the deployment of MIMO systems. We consider
an OTA approach for DPD and reciprocity calibration to jointly address these
issues. In particular, we consider a memory-less non-linearity model for the BS
transmitters, and we propose a method to linearize the transmitters and per-
form the calibration by using mutual coupling OTA measurements between BS
antennas. We show that, by using only the OTA-based data, we can linearize
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Figure 3.3: Average mean square error (MSE) of calibration matrix estimation using
the proposed OTA-based DPD and Calibration. [58],(Paper V)

the transmitters and design the calibration to compensate for both the non-
linearity and non-reciprocity of BS transceivers effectively. This allows us to
alleviate the requirement to have dedicated hardware modules for transceiver
characterization. Moreover, the proposed reciprocity calibration method is
solely based on closed-form linear transformations, achieving a significant com-
plexity reduction over state-of-the-art methods, which usually rely on costly
iterative computations. Simulation results, such as Fig. 3.3, showcase the po-
tential of our approach in terms of the calibration matrix estimation error and
downlink data-rates when applying ZF precoding after using our OTA-based
DPD and reciprocity calibration method [58],(Paper V).

3.6 Paper VI: Over-the-Air DPD and Reciprocity
Calibration for Panel-based Large Intelli-
gent Surfaces

We consider OTA-based DPD and reciprocity calibration methods for LISs sys-
tems. We first show the feasibility of performing OTA-DPD and calibration in
LIS with non-linear transmitters modeled by an arbitrarily-high order polyno-
mial. While the OTA-based method can be effective for LIS systems in general,
its performance can be degraded under specific channel conditions, especially
in panel-based LIS deployments which, is widely considered as a more prac-
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tical implementation scheme for LIS. Therefore, we propose specific methods
to improve the performance of the OTA-based methods for panel-based LIS
scenarios. We show that, under certain conditions such as severe channel at-
tenuation between certain panels, the original OTA-based method performance
degrades. We propose two techniques to improve the performance under such
conditions. Numerical results show that the proposed techniques can improve
the performance of the OTA-based methods significantly, effectively enabling
the OTA-DPD and calibration for practical panel-based LIS systems [Paper
VI].

3.7 Paper VII: Power Scaling Laws for Radio
Receiver Front Ends

We combine practically verified results from circuit theory with communication-
theoretic laws. As a result, we obtain closed-form theoretical expressions link-
ing fundamental system design and environment parameters with the power
consumption of analog front ends (AFEs) for communication receivers. This
collection of scaling laws and bounds is meant to serve as a theoretical refer-
ence for practical low power AFE design. We show how AFE power consump-
tion scales with bandwidth, SNDR, and SIR. We build our analysis based
on two well established power consumption studies and show that, although
they have different design approaches, they lead to the same scaling laws. The
obtained scaling laws are subsequently used to derive relations between AFE
power consumption and several other important communication system param-
eters, namely, digital modulation constellation size, symbol error probability,
error control coding gain, and coding rate. Such relations, in turn, can be
used when deciding which system design strategies to adopt for low-power ap-
plications. For instance, we show how AFE power scales with environment
parameters if the performance is kept constant and we use these results to
illustrate that adapting to fading fluctuations can theoretically reduce AFE
power consumption by at least 20x [7],(Paper VII).



Chapter 4

Conclusions and Future
Work

This chapter summarizes the main conclusions of the thesis, and provides a con-
nection between the papers results and the thesis goals introduced in Chapter 1.
Directions for future work based on this thesis, and a general outlook on the
topic is also provided at the end of this chapter.

4.1 Conclusions

In this thesis, we have mainly focused on two questions:

1. How does transceivers imperfection affect the scaling of massive MIMO
and LIS for future wireless networks?

2. What possible compensation problems and system optimizations can be
performed to mitigate the effects of the imperfect transceiver when scaling
up massive MIMO?

To answer question 1, we first focused on studying the performance of mas-
sive MIMO and LIS systems with non-ideal hardware distortion. In particu-
lar, we conducted a theoretical work on this subject by selecting precise but
analytically friendly models for the imperfect transceiver chains, and derived
analytical expressions to study the scaling behaviors of massive MIMO and
LIS systems with non-linear transceivers. We show that hardware distortion
can be an important factor which limits the potential gains of these systems
when scaling up the number of antennas and transceiver chains. Such analysis
provides a better understanding on the impact of deploying hardware compo-
nents of a certain quality in the design and implementation of massive MIMO

27
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and LIS systems. Furthermore, we derive scaling laws relating the power con-
sumption, bandwidth, non-linearity, and performance of receiver AFEs, which
can be leveraged for receiver design and power budgeting of the AFEs for low-
power receivers in massive MIMO and beyond. These results, which are partly
answering question 1, are presented in all the 7 included papers.

For question 2, we use the results and analytical expressions to propose
smart compensation methods, define optimization problems, and propose so-
lutions to mitigate the adverse effects of non-ideal hardware components in
imperfect transceivers. The mitigation solutions are mainly proposed in terms
of DPD schemes, DPD resources optimization, and antenna selection methods,
which are presented in papers I-V and VII. We explain the proposed solutions
briefly here. We show that by optimizing the DPD resources, both conven-
tional and NN-DPDs, based on antennas contribution, we can improve the sys-
tem performance significantly, which means that the designer can use hardware
components with lower quality while maintaining the system performance. We
have also proposed OTA-based methods to perform the DPD and reciprocity
calibration in massive MIMO and LIS systems. We show that we can leverage
the same hardware and links that are already used for reciprocity calibration
to perform the DPD, effectively reducing the need for complex DPD blocks
and enabling higher scaling gains. We also proposed antenna selection and
panel selection schemes for LIS systems with hardware distortion, and showed
that by taking into account the hardware distortion in antenna and pane se-
lection schemes, we can improve the system performance, which can alleviate
the scaling challenges in LIS systems.

To summarize the conclusions, this thesis provides analytical results to il-
lustrate and formulate the adverse effect of non-ideal hardware components in
massive MIMO and LIS systems, and shows that, although the hardware dis-
tortion can be a limiting factor when scaling up these systems, we can deploy
smart DPD and antenna selection schemes to mitigate the adverse effects of
hardware distortion and therefore facilitate the scaling of massive MIMO and
beyond.

4.2 Future Work

While we have tried to study the effect of hardware distortion on massive MIMO
and LIS, and we have proposed solutions to improve system performance and
mitigate the adverse effects of hardware distortion, there are still many open
problems and unanswered questions around the subject. In general, higher
accuracy in the models considered for hardware distortion can strengthen the
analysis, with the cost of higher complexity and less analytical tractability. The
main challenge for those models is the computation complexity of the corre-
sponding schemes, which may suggest that more focus on data-based methods
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such as NN-DPDs is of great importance. On the other hand, considering
other non-ideal effects such as low-resolution ADCs, phase noise, and out of
band distortions from amplifiers, either jointly or individually, can be bene-
ficial to further generalize the results of this thesis. OTA-based methods to
compensate non-linearity and reciprocity calibration with more general hard-
ware models and different channel models, combined with more rigorous and
optimized estimation methods, can be a potential follow-up path for future
work based on this thesis. Generalizing the results from this thesis for wide-
band OFDM transmission method and studying the differences can also be a
potential direction for future work.
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Does it Help?

In this paper, we study the effect of optimizing the per-antenna digital

predistortion (DPD) sizes on the performance of the downlink massive

MIMO system with residual hardware impairment. In particular, we first

quantify the capacity after applying some per-antenna DPD with different

numbers of coefficients at each antenna and then maximize the capacity by

finding optimum values of the per-antenna DPD sizes under a constraint

on the total number of DPD coefficients in the system. Two closed-form

sub-optimal solutions are derived and numerical examples illustrate that

their performance is very close to the optimal solution. It is shown that

when the channel large-scale gains have high variation over the trans-

mitter array, which is the case in practical scenarios, using our proposed

optimized DPD sizes can improve the system capacity significantly. This

allows us to scale down the massive MIMO system but still maintain per-

formance. We also study the asymptotic behavior of the derived capacity

and show that by using the optimized DPD sizes, the system performance

can approach the asymptotic bound with a significantly smaller number

of antennas.
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1 Introduction

Massive multiple-input-multiple-output (MIMO) has emerged as a new technol-
ogy to replace conventional multi-user MIMO systems in which the number of
antennas at the base station (BS) scales up by one or more orders of magnitude
[1]. This enhancement enables the system to exploit the spatial multiplexing
and serve many user equipments (UEs) using the same time and frequency re-
sources and improve the spectral efficiency by orders of magnitude. The success
of massive MIMO technology to improve the system performance can be huge
when fully digital beamforming is adopted at the BS, which requires one RF
chain per antenna. When the number of antennas at the BS grows large, the
digital beamforming complexity and RF chain power consumption also grow
large which, in practice, limits the scaling [2], [3].

Massive MIMO is already commercialized and a significant number of pro-
totypes and products labeled as massive MIMO are being produced. However,
deploying a massive MIMO system with an arbitrarily large number of an-
tennas introduces a lot of practical challenges to be resolved, which makes the
achieved gains in the system performance by deploying massive MIMO to be far
away from what theory suggests, mainly on the grounds of non-ideal effects of
the hardware. There has been a body of work studying the effect of distortion
caused by hardware impairment in massive MIMO systems. One of the main
sources of distortion in a communication system is the non-linear behavior of
amplifiers in the transceiver chains [4]. Digital predistortion (DPD) is widely
known as an effective technique to mitigate the non-linear distortions in the
output of amplifiers. In massive MIMO systems, due to the large number of
antennas at the BS, adopting a MIMO DPD scheme results in high complexity
and it will introduce a lot of challenges in the implementation [5]. Therefore,
deploying per-antenna DPD is a more practical solution for massive MIMO.
Being able to adjust the configuration and the DPD size, i.e. the number of
DPD coefficients, can help the massive MIMO system to adapt to large-scale
fluctuations in channel gains and signal power. Dynamic DPD model sizing
is shown to be feasible with a low cost and many dynamic DPDs have been
proposed in the literature, e.g. [6], [7], [8].

In this paper, we study the performance of the downlink massive MIMO
system with non-ideal hardware when optimizing the per-antenna DPD sizes at
the BS transmitter. Based on the measurements in realistic environments with
implemented massive MIMO systems [9], we know that the contribution of each
antenna to the system capacity is not equal and the large-scale variations have
a high variation over the array. We also know that DPD power consumption
grows linearly with total available number of coefficients [10]. Therefore, we
propose to distribute the available DPD coefficients across the antennas based
on their large-scale fading conditions to make sure that the antennas with more
contribution to the system experience less hardware distortion.
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We first select a model to characterize the residual impairment after ap-
plying the DPD with an arbitrary number of coefficients at each antenna in
Section II and quantify the capacity by finding an upper bound in Section
III. Then, we define an optimization problem in Section IV to maximize the
capacity over the per-antenna DPD sizes which can be converted to a convex
optimization problem and solved numerically with low complexity. Two sub-
optimal closed-form solutions are also presented and the numerical results in
Section VI show that the sub-optimal solutions deliver very close performance
to the optimal numerical solutions. It is illustrated that a considerable gain in
the capacity can be achieved by optimizing the per-antenna DPD sizes based on
the channel gain variations compared to the case of using uniform DPD sizes.
In Section V we do an asymptotic analysis to see how using optimized DPD the
system capacity approaches its asymptotic bounds with a smaller number of
antennas at the BS. Numerical results in Section VI verifies that adopting the
optimized DPD sizes enables us to scale down the system significantly while
still maintaining performance.

Throughout the paper, boldface uppercase, boldface lowercase, and italic
letters, are used to denote matrices, vectors, and scalars, respectively. For a
matrix A, tr(A), AT , A∗, and Aii represent trace, transpose, conjugate, and
the i’th element on the main diagonal of A. We indicate circularly symmetric
complex Gaussian random vectors with covariance matrix C as a ∼ CN (0,C)
and the expectation of a random variable by E{·}. We denote a diagonal matrix
with elements a1, ..., aN on its main diagonal by diag (a1, ..., aN ).

2 System and channel model

We consider the downlink of a massive MIMO system with an M -antenna BS
serving a single-antenna UE in the presence of additive interference coming
from other links and hardware distortion at both BS and UE sides. Although
we have, for the sake of analytical clarity, focused on the performance of a
single link under arbitrary interference conditions, the same methodology can
be used for a multi-user scenario with inter-user interference at the cost of
more complex derivations. The fading channel from the BS to the UE h ∈
CM×1 changes independently in each coherence period according to a zero-
mean complex Gaussian distribution h ∼ CN (0,R) with covariance matrix
R.
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2.1 System Model

We consider the system model adopted in [11] where the received signal at the
UE is modeled as

y = hT (s+ dBS) + dUE + ninterf + nnoise. (1)

where s is the transmitted signal from the BS after precoding, with covari-
ance matrix W and the average power tr(W ) = PT . The additive distortion
resulting from BS and UE non-ideal hardware are denoted by dBS and dUE,
respectively, which are characterized in the next section. The interference from
other transmissions is denoted by ninterf and nnoise ∼ CN (0, σ2) models the
additive noise at the UE receiver.

2.2 Hardware Impairment Model

We assume a fully digital system where each antenna is connected to an RF
chain with non-ideal hardware components and a DPD block with nDPD

m co-
efficients is paired with the m’th antenna RF chain. The UE is also assumed
to have non-ideal hardware in its receiver. It is known by experimental verifi-
cation that the distortion level at the output of each RF chain is proportional
to the signal power at input of this RF chain [12], [13]. The proportionality
factor for the m’th RF chain distortion power which can also be interpreted
as the level of residual impairment is denoted by κBS

m . The residual hardware
impairment proportionality factor at the UE receiver is also denoted by κUE.
The distribution of additive hardware distortion terms dBS and dUE are also
known both theoretically and through experiments to be dBS ∼ CN (0,QBS)
and dUE ∼ CN (0, qUE) in each channel coherence period [13].

The level of residual impairment in each RF chain depends on the perfor-
mance of its corresponding DPD block. It has been shown by experiments on
power amplifiers that the performance of the DPD block in terms of removing
the distortion is in the form of a decreasing homographic function of the num-
ber of the DPD coefficients [14], which also agrees with intuition as we know
that there is a decreasing gain from adding more coefficients to the DPD after
applying a DPD with a certain number of coefficients. Therefore, we assume
the following model for evaluating the level of residual impairment in each RF
chain after applying the DPD

κBS
m =

κBS

nDPD
m

, (2)

where κBS is a constant which represents the basic hardware impairment level in
each RF chain when there is no DPD or a reference-level DPD on each antenna
RF chain. This constant depends on the DPD architecture and characteristics
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of the deployed hardware such as the non-linearity of power amplifiers and can
be found through similar measurements as in [14].

By exploiting the above models and definitions, for a given signal covariance
matrix W and channel vector h, the additive distortion distributions after
performing per antenna DPD at the BS are characterized by

QBS = κBSdiag

(
W11

nDPD
1

, ...,
WMM

nDPD
M

)
, (3)

and

qUE = κUEhTWh∗. (4)

In the next section, we find the downlink capacity of the system under the
above hardware impairment model with given fixed per-antenna DPD sizes{
nDPD
1 , ..., nDPD

M

}
.

3 Downlink Capacity with per-antenna DPD

To characterize the system capacity with the hardware impairment model and
per antenna DPD sizes introduced in the previous section, we can exploit the
upper bounding technique adopted in [11], where by assuming perfect interfer-
ence cancellation, and perfect channel state information at the BS and the UE,
an upper bound on the downlink channel capacity can be found as

CUB = log2

(
1 +

GDL

1 + κUEGDL

)
, (5)

where

GDL =

M∑
m=1

E

 |hm|2
κBS|hm|2
nDPD
m

+ σ2

PT

 . (6)

By exploiting the techniques introduced in appendices A and C of [11], for a
given channel distribution h ∼ CN(0,R), the BS distortion related term GDL

in the capacity upper bound can be computed as

GDL =
1

κBS

M∑
m=1

nDPD
m [1− τmeτmE1(τm)], (7)

where τm =
σ2nDPD

m

κBSPTRmm
and E1(x) =

∫∞
1

e−tx

t dt is the exponential integral. In
the next section, we are interested in maximizing this capacity upper bound to
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find the optimum values of nDPD
m .

Due to the exponential integral in GDL, it is not easy to maximize the
capacity in the current form. Therefore, we use the logarithmic approximation
for the exponential integral [15] and find a new upper bound

C̃UB = log2

(
1 +

G̃DL

1 + κUEG̃DL

)
, (8)

where

G̃DL =
1

κBS

M∑
m=1

nDPD
m

[
1− 1

2
τm ln(1 +

2

τm
)

]
. (9)

The capacity upper bound in (8) is adopted in the next section to optimize
the per-antenna DPD size at the BS. Numerical results show that using C̃UB

instead of CUB for optimization and capacity evaluation, gives very close results
and C̃UB is an appropriate bound for our purpose.

4 per-antenna DPD size Optimization

It has been shown that in a massive MIMO system, the contribution of each
antenna to the system performance has a huge variation over the array and
only a portion of the antennas with stronger large-scale fading in their channels
determines the system performance. Measurements in realistic environments
with implemented massive MIMO systems have verified that even in wide-band
multi-user scenarios, this property holds [9]. In a fully digital system, there is
one RF chain per antenna, which demands a high power consumption in the
analog front ends if all the RF chains have to meet the demanded linearity
constraints. On the other hand, performing a DPD with the same number of
coefficients on each RF chain to mitigate the non-linearity distortion, which is
usually designed for the worst-case scenarios, also results in a huge leap in the
digital circuit power consumption. Therefore, in order to increase the energy
efficiency and reduce power consumption, we propose to adapt the level of
RF chains non-linearity distortion to the channel gain variations by optimizing
their corresponding number of DPD coefficients.

To quantify the achievable gain by performing this adaptation, we assume
that there is a limited number of maximum DPD coefficients nDPD

max , that can be
used by the RF chains in the system. This number can also be interpreted as a
power constraint as it is shown that the DPD power consumption grows linearly
with the number of DPD coefficients [10]. By leveraging the derived upper
bound in (8) and given the facts that log(.) is an increasing concave function

and G̃DL

1+κUEG̃DL
is an increasing function of G̃DL, we define the optimization
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problem

max
nDPD
m

1

κBS

M∑
m=1

nDPD
m

[
1− 1

2
τm ln(1 +

2

τm
)

]
(10)

s.t. nDPD
m ≥ 1 m = 1, 2, ...,M

M∑
m=1

nDPD
m ≤ nDPD

max

nDPD
m ∈ N m = 1, 2, ...,M

to optimize the per-antenna DPD sizes nDPD
m . The objective function of this

problem is a concave function of
{
nDPD
1 , ..., nDPD

M

}
. Also the first and second

constraints include convex and affine functions of
{
nDPD
1 , ..., nDPD

M

}
. However,

the last constraint makes the problem infeasible to solve in the current form.
One way to deal with this optimization problem is to relax this constraint and
find the non-integer solutions, and round them up to the closest integer at
the end. By using this technique, the relaxed optimization problem is now a
standard convex one [16] and can be solved efficiently using available numerical
tools, e.g. CVX [17]. In the following subsections, we introduce two sub-optimal
solutions in closed form.

4.1 Sub-optimal Solution I: max-SNDR

In this subsection, we propose a sub-optimal solution for nDPD
m in a closed form.

For this purpose, instead of maximizing the BS distortion related term GDL,
we maximize the summation of each BS antenna contribution in received signal
to-noise-plus-distortion-ratio (SNDR) as

max
nDPD
m

M∑
m=1

Rmm

κBSRmm

nDPD
m

+ σ2

PT

(11)

s.t. nDPD
m ≥ 1 m = 1, 2, ...,M

M∑
m=1

nDPD
m ≤ nDPD

max

This optimization problem is also convex can be solved by leveraging the KKT
conditions [16] for the optimal solution. The following lemma gives the solution
to this problem.
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Lemma 1 The optimal value n̂DPD
m for the above optimization problem satisfies

n̂DPD
m = max

{
1,

⌈
Rmm

−κBS
√
ν ±

√
κBS

√
ν σ2

PT

⌉}
, (12)

and

M∑
m=1

max

{
1,

⌈
Rmm

−κBS
√
ν ±

√
κBS

√
ν σ2

PT

⌉}
≤ nDPD

max , (13)

where ν is the Lagrangian multiplier for the equality constraint. A simple closed
form solution can be found for a large enough nDPD

max as

n̂DPD
m =

⌈
Rmm∑M

m=1 Rmm

nDPD
max

⌉
. (14)

Proof By formulating the KKT conditions for the above problem and solving
for the inequality Lagrangian constraints, one can derive (12) and (13). For
a large enough nDPD

max even the antennas with weakest channel gain will have
n̂DPD
m > 1 which results in (14) after solving (12) and (13) under this condition.

□

4.2 Sub-optimal Solution II: min-Distortion

Another sub-optimal solution can be found analytically by minimizing the sum-
mation of each BS antenna contribution to the distortion power at the UE by
solving the optimization problem

min
nDPD
m

M∑
m=1

Rmm

nDPD
m

(15)

s.t. nDPD
m ≥ 1 m = 1, 2, ...,M

M∑
m=1

nDPD
m ≤ nDPD

max

This problem is convex as well can be solved using the following lemma.

Lemma 2 The optimal value n̂DPD
m for the above optimization problem satisfies

n̂DPD
m = max

{
1,

⌈√
Rmm

ν

⌉}
, (16)
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and

M∑
m=1

max

{
1,

⌈√
Rmm

ν

⌉}
≤ nDPD

max , (17)

where ν is the Lagrangian multiplier for the equality constraint. A simple closed
form solution can be found for a large enough nDPD

max as

n̂DPD
m =

⌈ √
Rmm∑M

m=1

√
Rmm

nDPD
max

⌉
. (18)

Proof Similar to the previous Lemma we can formulate the KKT conditions
for and solve for the inequality Lagrangian constraints to derive (16) and (17).
Also for the same reason as in previous Lemma, when nDPD

max is large enough,
we have n̂DPD

m > 1 which results in (18). □

Simulation results illustrate that by using the above sub-optimal solutions
for adjusting the per-antenna DPD size, the achieved performance is very close
to the optimal solutions of (10). In the next section, we analyze the asymptotic
behavior of the capacity when the proposed optimized DPD size selection is
adopted at the BS.

5 Asymptotic Analysis

In this section, we analyze the system performance in the asymptotic bounds of
very large number of antennas and very high SNR. By considering the capacity
upper bound in (5), it can be seen that

lim
PT→+∞

CUB = log2

(
1 +

nDPD
avg M

κBS + κUEnDPD
avg M

)
, (19)

and

lim
M→+∞

CUB = log2

(
1 +

1

κUE

)
, (20)

where nDPD
avg =

∑M
m=1 nDPD

m

M is the average size of the per-antenna DPD. As we
see, these bounds are independent of how the DPD coefficients are distribute
across antennas. However, we show that optimizing the per-antenna DPD size
can cause the capacity to approach the asymptotic bound much faster, i.e. for
a smaller number of antennas. We are interested to find the minimum number
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of antennas to achieve a certain fraction of the asymptotic bound when using
optimized DPD size selection and compare it to the uniform size selection case.

The dependency of the capacity on M arises from GDL. Therefore, we

consider the ratio GDL

1+κUEGDL as the performance metric which means that the

asymptotic bound of the performance is 1
κUE . We try to find the minimum

number of antennas so that GDL

1+κUEGDL = β
κUE where 0 ≤ β ≤ 1. In order to be

able to compare the asymptotic behavior of the uniform and optimized DPD
size selections analytically, we use SNDR approximation which was also used
for the first sub-optimal DPD size optimization. As it is stated in the previous
section, and it is verified in the numerical results, such an approximation has
a very close performance compared to the case of adopting the exact value of
GDL.

By selecting the max-SNDR as the optimal DPD size selection and nDPD
m =

⌈nDPD
max

M ⌉ as the uniform DPD size selection, the minimum number of antennas,

Mopt
min and Muni

min to have GDL

1+κUEGDL = β
κUE , for the optimal and uniform cases,

respectively, can be calculated as follows. To make the results easier to inter-
pret, we assume that the channel large-scale gain from each antenna to the UE
has two possible levels, Rmm = Rs for ⌈γM⌉ antennas, where 0 < γ < 1, and
Rmm = Rw for the others. Under these conditions, we have:

Mopt
min =


β

κUE(1−β)

nDPD
avg (γRs+(1−γ)Rw)

κBS(γRs+(1−γ)Rw)+nDPD
avg

σ2

PT

 (21)

and

Muni
min =


β

κUE(1−β)

nDPD
avg γRs

κBSRs+nDPD
avg

σ2

PT

+
nDPD
avg (1−γ)Rw

κBSRw+nDPD
avg

σ2

PT

 . (22)

In the next section, we illustrate by numerical examples that Mopt
min is signif-

icantly smaller than Muni
min, which implies that by adopting the optimized DPD

size selection, the system performance can approach the asymptotic bounds
much faster, and by leveraging this effect, we can reduce the number of anten-
nas and still get the same performance.

6 Numerical Results

In this section, the performance of the proposed DPD size optimizations is
studied and the possible gains in the downlink spectral efficiency by adjusting
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Figure 1: Spectral efficiency vs number of BS antennas for different values of SNR
when nDPD

avg = 20, Rs = 10, and Rw = 1.

the per-antenna DPD size is illustrated for different scenarios. We assume that
the channel large-scale gain from each antenna to the UE has two possible
levels, Rmm = Rs for ⌈γM⌉ antennas, where γ = 0.20, and Rmm = Rw for
the others. The basic hardware distortion factor before applying DPD at the
BS is κBS = 0.5 and for UE κUE = 0.052. CVX [17] is used to solve convex
optimization problems numerically when needed.

Fig. 1 compares the downlink spectral efficiency of the system when adopt-
ing different DPD size selection strategies. As it can be seen from the figure,
the max-SNDR and min-distortion sub-optimal solutions performance is very
close to the optimal solution. Also, we can see a significant improvement in
SE compared to the uniform DPD size selection case, which implies that in a
massive MIMO system with fairly large number of antennas, we can mitigate
the distortion more efficiently by adopting our proposed solutions. The perfor-
mance gain reduces in very high SNR scenarios and when the number of BS
antennas is very large.

Fig. 2 illustrates the downlink spectral efficiency of the system when adopt-
ing different DPD size selection strategies with changing the available number
of DPD coefficients. We can see that for small to fairly large number of DPD
size, adopting the optimal DPD size selection can improve the performance of
the system significantly for both small and large number of antennas.
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Figure 2: Spectral Efficiency vs average DPD size for different number of BS anten-
nas when SNR = 10dB, Rs = 10 and Rw = 1.

In order to see the effect of variations in antennas channel large-scale gain,
Fig. 3 shows the downlink spectral efficiency of the system for different ratios
between the strong and week channels defined as r = Rs

Rw
. As it can be seen

from the figure, the capacity improvement relies significantly on the channel
gain variation. Exploiting this channel gain variation by adopting the optimal
DPD size selection can make a huge impact on the performance. For example,
if the channel gain variation is high and the optimal size selection is adopted,
the spectral efficiency for M = 64 antennas with DPD size optimization can
approach the case with M = 128 antennas without the DPD size optimization.
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Figure 3: Spectral Efficiency vs the channel gains ratio (r = Rs
Rw
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number of antennas when SNR = 10dB and nDPD
avg = 20

Fig. 4 illustrates the spectra efficiency with the proposed optimal DPD size
selection when the basic hardware impairment level κBS = 0.5 increases from
0 to 100%. The reference lines illustrate the spectral efficiency when uniform
DPD size selection is used and κBS is fixed at 0.5. Interestingly, when using
the DPD size optimization, we can increase the basic distortion level around
40% depending on the number of antennas and still maintain performance
which enables massive MIMO to be deployed using cheaper hardware without
a significant loss in performance.
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Figure 4: Spectral Efficiency vs the percentage increase of the basic impairment level
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avg = 20, Rs = 10,
and Rw = 1.

To illustrate the asymptotic behavior of capacity which was discussed in
Section V, Fig. 5 illustrates the percentage decrease in Mopt

min compared to
Muni

min for β = 0.9, which basically shows the available room for scaling down
the system and still achieve 90% of the asymptotic performance by adopting
the proposed DPD size selection. As it can be seen from the figures, for average
values of channel gain variation, moderate SNR values, fairly small κBS, and
fairly large average DPD size, the system can scale down by 20% and even 30%
in some cases.
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Figure 5: Possible Scaling down in the number of antennas to achieve 90% of the
asymptotic performance. (a): SNR = 20dB and nDPD

avg = 10. (b): nDPD
avg = 10,

Rs = 10, and Rw = 1. (c): SNR = 20dB, nDPD
avg = 10, Rs = 10, and Rw = 1. (d)

SNR = 20dB, Rs = 10, and Rw = 1.

7 Conclusion

In this paper, we show that as the contribution of the antennas is not the
same in massive MIMO systems, one can improve the system performance by
optimizing the number of coefficients used in the per-antenna DPD based on
the channel gain variations over the array. We quantify the capacity for given
DPD sizes and maximize it by finding the optimal DPD sizes with convex
optimization and two sub-optimal solutions. Numerical results show that when
there is a high variation in large-scale gains over the array which is the case in
practical scenarios, by adopting the optimized DPD sizes the massive MIMO
performance can be improved significantly compared to a uniform size selection
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scenario. We also study the asymptotic bound on the performance and show
that if one adopts the optimized DPD sizes, the capacity can approach the
asymptotic value with a smaller number of antennas, which enables us to reduce
the system cost and still maintain performance.
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Systems: Complexity-Performance

Trade-offs

In this paper, we study the trade-off between complexity and perfor-

mance in massive MIMO systems with NN-DPD blocks at the base sta-

tion. In particular, we consider a multi-user massive MIMO system with

per-antenna NN-DPDs, each with an adjustable NN architecture in terms

of the size and the number of NN hidden layers. We first analyze the

system performance in terms of compensation of the non-linear hardware

distortion for different levels of NN-DPD complexity and the number of

antennas. We illustrate the required level of complexity in the trained

NN-DPD blocks to approach the performance of an ideal conventional

DPD. The statistics of the signal to interference and noise plus distor-

tion ratio for a randomly located UE are selected as the performance

metrics. We then assume a limited total digital computation power to

be allocated among the NN-DPD blocks and propose to select the NN-

DPD architecture of each TX branch based on the channel conditions of

its corresponding antenna. To illustrate the importance of such a smart

DPD resource allocation, we have analyzed the performance of a massive

MIMO system with different NN-DPD architecture selection strategies.

Numerical results indicate that by adopting the smart NN-DPD resource

allocation, a significant boost in the system performance can be achieved,

making room for reducing the overall system cost when scaling a massive

MIMO system.
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1 Introduction

MIMO communications with large antenna arrays, widely known as massive
MIMO, has secured its place as one of the main physical layer technologies
in the fifth generation (5G) and future wireless communications networks. It
has been proven in both theory and practice that massive MIMO can provide
a significant capacity boost in the communication network, which helps the
system designers and the operators to meet the network requirements in 5G
and beyond applications. Although in theory a massive MIMO system with
arbitrarily large arrays suggests huge gains in system capacity, implementation
challenges and system power consumption are important limiting factors to
achieve such gains in commercial deployments of massive MIMO systems [1],
[2], [3].

Implementing a massive MIMO system in practice introduces non-ideal
hardware-related effects, commonly known as hardware impairments, which
can significantly affect the overall performance of the system. For example,
hardware impairment sources such as non-linear amplifiers and low-resolution
analogue to digital converters (ADCs) can hinder the massive MIMO capacity
to grow arbitrarily with increasing the number of antennas [4]. On the other
hand, deploying a fully digital massive MIMO system with with fairly high-
quality hardware components can increase the total system costs drastically,
which is not favorable for commercial deployments of massive MIMO in 5G and
beyond. Non-linearity in analogue fronts ends (AFEs), has been shown to be
one of the main limiting hardware impairment sources in designing transceivers
for a communication system [5]. It has been shown that pushing the AFEs re-
quirements toward the linear ideal case can result in a significant leap in the
system power consumption [6], which is not favorable from the cost efficiency
point of view. Digital pre-distortion (DPD) is widely known as a practical
method to compensate the non-linearity effects in transceivers, enabling the
system designer to relax the linearity requirements of the analogue hardware
components [7], [8], [9], [10]. Although this can reduce the power consumption
of the AFE by relaxing its linearity requirements, the DPD itself can consume
a significant share of the system power budget depending on the DPD design
complexity and performance requirements.

DPDs are mainly designed based on the Volterra series and memory poly-
nomial models. Another class of DPDs, gaining more interest in recent years
due to the new wave of machine learning applications, is the neural-network
based DPDs (NN-DPDs). It has been shown that a well-designed and well-
trained NN-DPD can outperform the conventional DPDs at the same level of
complexity and power consumption [11], [12], [13]. Most of the works in this
regard are focusing on designing a novel low-complexity design of an NN-DPD
for a single transceiver chain.

In this paper, we study the trade-off between complexity and performance
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of per-antenna NN-DPDs in a massive MIMO system. In particular, we analyze
the massive MIMO system performance in terms of compensation of the non-
linear hardware distortion for different levels of NN-DPD complexity and the
number of antennas. We exploit this analysis to illustrate the minimum level of
complexity in the trained NN-DPD blocks to approach the performance of an
ideal DPD. In [14] the authors have illustrated the advantages of optimizing the
number of coefficients in conventional per-antenna DPDs for a massive MIMO
systems. The main reasoning behind the importance of such optimization is
the significant variance of antennas contribution in a massive MIMO array
which has been verified by measurement setups [15]. Therefore, we define a
problem of selecting the complexity of each per-antenna NN-DPD in a mas-
sive MIMO system, under limited computation power allocated for DPD, and
show that how selecting the NN-DPDs complexity based on the average fading
conditions of the antennas can benefit the system level performance metrics
such as the signal to interference and noise plus distortion ratio (SINDR) at
the user equipments (UEs) side. In particular, such smart selection will allow
the system designer to reduce the overall DPD block complexity and power
consumption while maintaining the same level of performance. On the other
hand, having a more energy efficient DPD can make room for selecting more
non-linear and cheaper hardware blocks in the AFEs, which is favorable for the
scaling of massive MIMO system in 5G and beyond networks. In summary, the
contributions of this paper are as followed:

• We have designed a per-antenna NN-DPD architecture for massive MIMO
systems which enables us to analyze the relationship between NN-DPDs
complexity and the performance of a multiple-user massive MIMO system
in terms of SINDR.

• We have shown the potentials of selecting per-antenna NN-DPDs com-
plexity based on the channel conditions of the corresponding antennas
in a massive MIMO system where antennas contributions are not equal
along the array.

Throughout the paper, boldface uppercase, boldface lowercase, and italic
letters, are used to denote matrices, vectors, and scalars, respectively. For a
matrix A, tr(A), AH ,AT , A∗, A−1, and Aii represent trace, conjugate trans-
pose, transpose, conjugate, inverse, and the i’th element on the main diagonal
of A. We indicate circularly symmetric complex Gaussian random vectors with
covariance matrix C as a ∼ CN (0,C) and the expectation of a random vari-
able by E{·}. We denote a diagonal matrix with elements a1, ..., aN on the
main diagonal by diag (a1, ..., aN ) and the K ×K identity matrix is indicated
by IK .
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Figure 1: System Model with the architecture of an example NN-DPD.

2 System Model and General Considerations

We consider the downlink of a single-cell multi-user massive MIMO system
withM antennas at the base station (BS) andK single-antenna UEs, randomly
located in the cell area. The massive MIMO BS is assumed to be deployed with
fully digital beamforming with M TX-chains, each having non-linear hardware
components. The channel from BS to each UE is assumed to have a block fading
model, meaning that the channel vector hk ∈ CM is constant in each coherence
block of the time-frequency plane, and changes independently between different
blocks and it is therefore a stationary ergodic random process. Each of the
channel vectors has an uncorrelated Rayleigh fading model with covariance
matrix Rk, which depends on the corresponding UE position in the cell. The
covariance matrices are diagonal with different values on the main diagonal to
model variant contributions of antennas along the array. To compensate for
the non-linearity at the BS transceiver, we assume a per-antenna DPD block
for each TX-chain, implemented as a neural network and trained as described
in Section III.

The received signal at the UEs side after going through the DPDs, the
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non-linear AFE, and the channel is

r =
√
G0H

HfAFE(fDPD(Ws)) + n (1)

where G0 is the power gain of the linearized ideal power amplifiers, H ∈ CM×K

is the channel matrix containing the channel vectors hk from the BS to the
UEs, W ∈ CM×K is the precoder matrix with normalized unit-norm columns
corresponding to each UE, s ∈ CK×1 is the vector containing unit power data
symbols corresponding to each UE, selected randomly and uniformly from a
signal constellation, e.g. QPSK, and n ∼ CN (0, σ2IK) indicates the additive
white Gaussian noise at the UEs. The functions fAFE and fDPD model the
base-band equivalent of the non-linear operations at the AFE and the DPD,
respectively.

3 NN-DPD Architecture

Each of the TX chains are connected to an NN-DPD to compensate the non-
linearity effects in their corresponding AFE blocks. Fig. 1 illustrates a schematic
of the system model including an example architecture of an NN-DPD corre-
sponding to the m’th TX chain. As it is depicted in the NN scheme, the
output layer includes the real and imaginary parts of the corresponding TX
chain which is be fed into the AFE. On the other side, the input layer includes
the real and imaginary parts of the current and the last two input time sam-
ples of the corresponding TX chain which are stored in a buffer depending on
memory concerns and complexity limitations. The complexity of the neural
network architecture is limited by the total available resources allocated for
DPD at the BS. Once the NN-DPD architectures are set, an indirect learning
approach will be adopted to train the network parameters.

3.1 NN-DPD complexity

The NN-DPD complexity during the training and running is a major limiting
factor that should be considered in the DPD system design. The training phase
is performed mostly offline and it is not a concern, therefore most of the DPD
works only focus on running complexity, which is a real-time cost and can limit
the digital system overhead [13], [16]. In our proposed NN-DPD, depending on
the available memory for storing the pre-trained coefficients of the NN-DPD,
the system has different classes of pre-trained NN-DPDs and switch between
the operating DPD classes depending on the system requirements and channel
conditions. The number of floating point operations per second (FLOPs) is a
commonly used measure that can accurately measure the operations complex-
ity in NNs including additions, subtractions, and multiplications. Therefore,
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the number of FLOPs used here has been widely selected as a measure of com-
putational complexity in various types of NN-DPDs. The running complexity
in a NN-DPD can be quantified by the number of multiplications and addi-
tions operated, where each real-valued multiplication or addition accounts for
one FLOP [13], [16]. The computation power for performing the non-linear
activation function is negligible compared to the other operations.

In a fully connected NN-DPD with L− 1 hidden layers of size nl × 1, input
layer of size n0×1, and output layer of size nL×1, the total number of FLOPs
for each use of the DPD during the running phase can be calculated as

FDPD =

L∑
i=1

2nini−1, (2)

derived by summing the total number of additions and multiplications in each
layer, assuming the operation of each layer to be

ai = fact (Ciai−1 + bi) , (3)

where ai is the activation vector in i’th layer, Ci is the coefficients matrix, bi
is the bias vector, and fact(.) indicates the non-linear activation function [17].

For a massive MIMO system with M TX-branches, each equipped with an
NN-DPD, the total number of used FLOPs which can be related directly to
the corresponding level of DPD power consumption is given by

Ftot =

M∑
m=1

Lm∑
i=1

2nm,inm,i−1, (4)

where subscript m indicates the NN-DPD parameters for the m’th TX branch.
The total number of available FLOPs allocated for DPD is a design parameter
that limits the system designer for selecting the NN-DPD size, i.e. the number
of layers and their sizes.

3.2 NN-DPD training

Training data is generated and stored from the input-output data collected at
the AFE. The number of training samples depends on the complexity of the
NN-DPD architectures, i.e. if we have a complex NN with many layers, we need
to generate and store a large number of training data. In an NN-DPD block, the
NN models an inverse function of the non-linear input-output function of the
non-ideal AFE. To find the inverse function, an Indirect Learning (IL) approach
is adopted. The size of the input layer in the each NN-DPD depends on the
concerns about the memory effects in the non-linear AFEs. If we consider a
memory of length Lmem, the total number of neurons in the input layer of the
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NN-DPD will be 2Lmem + 2, corresponding to the real and imaginary parts of
the input values at the current sample time plus the Lmem previous sample.
There will be two output neurons at the output layer of the NN-DPD which
corresponds to the real and imaginary parts of the current AFE output. An
example NN-DPD with fully connected architecture, L = 3, and Lmem = 2 is
depicted in Fig. 1. The parameters to be trained are the weight matrices Ci

and bias vectors bi in (3).

3.3 System-Level performance of the NN-DPDs

The performance of DPD blocks in each TX-chain can be assessed by calcu-
lating the conventional performance metrics such as normalized mean square
error (NMSE) and adjacent channel power ratio (ACPR) [13]. Since we are
studying the trade-off between performance and complexity for the whole mas-
sive MIMO system with per-antenna DPD blocks at each TX-chain, we are
more interested in system level performance metrics such as spectral efficiency
or the signal to interference and noise plus distortion ratio (SINDR). Such a
performance metric can give us insights on the importance of considering the
trade-off between complexity and performance in a massive MIMO transmitter
with NN-DPDs. We select the ergodic SINDR as the metric and calculate it
as follows.

We assume the combination of the AFE and DPD non-linear functions,
fAFE(.) and fDPD(.), as a general non-linear function f(.) in the base-band.
From (1), the received signal at the UEs side will be

r =
√
G0H

Hf(Ws) + n, (5)

where, for an ideal DPD, we have f(Ws) = Ws. Therefore, we can expand
the system model as

r =
√
G0H

HWs+
√
G0H

H (f(Ws)−Ws) + n, (6)

where the term d ≜ f(Ws)−Ws, is the total residual distortion after applying
DPDs to the AFEs. The k’th single-antenna UE receives

rk =
√

G0h
H
k wksk +

√
G0

K∑
i=1,i̸=k

hH
k wisi

+
√

G0h
H
k d+ nk, (7)
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Figure 2: Mean of the SINDR (dB) at the UEs for M = 32 (a), M = 64 (b), and
M = 100 (c) antennas at the BS with per-antenna NN-DPD with hidden layers size
of N , no DPD, and ideal DPD.

and its corresponding SINDR can be calculated as

ρk =
G0EH

[∣∣hH
k wk

∣∣2]
G0

∑K
i=1,i̸=k EH

[∣∣hH
k wi

∣∣2]+G0EH,s

[∣∣hH
k d
∣∣2]+ σ2

. (8)

If we use the zero-forcing precoder, we haveW = W̃GW where W̃ = H(HHH)−1

and

GW = diag

(
1

∥w̃1∥2
,

1

∥w̃2∥2
, ...,

1

∥w̃K∥2

)
, (9)

which is defined to normalize W such that each of its columns has a unit
norm-2. By replacing this precoder scheme in (6) the SINDR in (8) is derived
as

ρk =

G0

EH∥[w̃k∥2]

G0EH,s

[∣∣hH
k d
∣∣2]+ σ2

. (10)

3.4 NN-DPD Size Selection

As mentioned in Section I, the massive MIMO system can benefit from the
smart allocation of DPD resources among the per-antenna DPDs [14], which
is the case because not all the antennas contribute equally [15]. In the current
study on the trade-off between performance and complexity for an NN-DPD, we
propose to have different classes of pre-trained NN-DPDs for each TX-chain
and select the NN-DPD with the proper size based on the average channel
conditions between each TX-chain and the UEs. To be able to perform this
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size selection, there should be enough accessible memory to store the NN-DPDs
pre-trained coefficients. For each of the NN-DPD classes, the total number of
coefficients to be stored in memory for the M -antenna system described above
can be calculated as

Mtot =

M∑
m=1

Lm∑
i=1

nm,i (nm,i−1 + 1) . (11)

Depending on the total available memory and memory cell precision, the
system designer can select the number of NN-DPD classes to be deployed in
the proposed smart size selection of each TX-chain NN-DPD. To the best of
our knowledge, it is not feasible to find an analytical relation between the
NN-DPD complexity and its performance. Therefore, it is not possible to
define an analytical optimization problem for selecting the NN-DPDs sizes.
However, we propose to select the complexity of each NN-DPD class based on
the memory limitations and add a size selection block that performs a heuristic
search among the possible classes for the NN-DPD of each antenna and select
the best combination by taking into account a decision criteria such as the
proposed average SINDR in (8).

4 Performance Analysis

We analyze the performance of a multi-user massive MIMO transmitter for
different NN-DPD architectures. We assume a massive MIMO system with M
antennas at the BS and K = 10 single-antenna UEs. Each BS antenna has an
NN-DPD to compensate for the non-ideal hardware effects at the corresponding
transmitter chain. To have a better understanding of the performance com-
parison, we have also included two extreme cases in our results, one with no
DPD (worst-case scenario), and the other with a perfect DPD (full compensa-
tion of hardware impairments). For other cases, we have deployed per-antenna
NN-DPDs with different architectures. As explained in Section 3, the main con-
straint in selecting the architecture complexity is the total number of FLOPs
to be allocated among the NN-DPDs.

To simplify the analysis and to alleviate the interpretation of the results, we
have assumed a fully connected NN-DPD with two hidden layers (L = 3) of the
same size, N , which is selected as the design parameter for the NN-DPDs. We
also assume a memory-less model for the NN-DPD to reduce the complexity of
the analysis, which means that the number of input and output neurons is set
to 2. For each NN-DPD, there is a data set consisting of 2× 105 input-output
data samples. The data samples are generated using a memory polynomial
model whose coefficients are extracted by curve-fitting to the AM/AM and
AM/PM distortions of a measured GaN amplifier operating at 2.1 GHz [18].
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We have added Gaussian noise to the data to account for possible errors during
the measurements. The dataset is divided into three sets: 80% for training,
10% for validation, and 10% as a test set. The Rectified Linear Unit (ReLu)
function, defined as fReLu(x) = max(0, x), is used as the activation function
since it is easy to implement and has shown great performance in previous
NN-DPD works [13]. The Adam Optimizer with an initial learning rate of
0.001 is adopted where the learning rate is decreased by a factor of 0.90 in each
iteration of the training set. The batch size is set to 100 and the number of
epochs is 5.

In Fig. 2, we study the performance of the system for different levels of NN-
DPD complexity by adjusting the parameter N from 6 to 64 for each of the
per-antenna NN-DPDs. The analysis is performed for three different number
of antennas to illustrate the effect of scaling up a MIMO system. Firstly, we
can see that by going from a low-power low-end NN-DPD (N = 6) to a power
hungry high-end NN-DPD (N = 64), we can approach the performance of the
case with an ideal DPD at each antenna. The performance is already close to its
upper limit for N = 20. One should note that if the severity of the hardware
non-linearity at the AFEs increases, the minimum NN-DPD complexity to
approach the ideal case also increases which may not be feasible in practice
where we have a limited DPD power budget. Nevertheless, this analysis implies
that NN-DPDs are very powerful in compensation the non-linearity effect, even
for a fairly simple NN architecture. Secondly, it is important to notice that
the performance gain achieved by increasing the NN-DPD complexity is much
more significant for larger arrays. In Fig. 3, the difference of the achieved
performance gain by increasing the NN-DPD complexity can be seen more
clearly. In fact, we can conclude that compared to a MIMO system with a
low number of antennas, investing the system resources in implementing a
well-trained NN-DPD with fairly high complexity pays off in a massive MIMO
system.

In Fig. 4, the cumulative distribution function (CDF) of the SINDR is
depicted for different architecture selection strategies of the NN-DPDs. Unlike
the previous figures where we had assumed Rayleigh channels with the same
fading conditions for all the antennas, we have now assumed that 20% of the
antennas have 7dB higher channel gain compared to the others, which is based
on the difference in antennas contribution in massive MIMO systems [15]. First
of all, it can be seen that by adopting a high-end NN-DPD, with layer size
N = 16, at each TX-branch we can have a performance fairly close to the
optimal case, which implies the power of neural networks in performing the
DPD tasks. However, one should note that having such high-end DPDs in a
massive MIMO system with hundreds of Tx-branches is not practically feasible
in scenarios with limited digital computation powers.

The two middle plots in Fig. 4 are the practical scenarios where the compu-
tation power limitation is taken into account. The uniform NN-DPD strategy
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Figure 3: Mean of the SINDR (dB) at the UEs for M = 32 (a), M = 64 (b), and
M = 100 (c) antennas at the BS with per-antenna NN-DPD with hidden layer size
of N .
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Figure 4: CDF of SINDR (dB) for a UE randomly located at the cell area.

assumes allocation of the total FLOPS uniformly among the TX-chains which
corresponds to N = 10. The smart NN-DPD corresponds to adopting the low-
end NN-DPD with N = 8 for 80% of the antennas and the high-end NN-DPD
with N = 16 for the 20% antennas with higher contribution, which in total
consumes the same number of FLOPs as the uniform strategy with N = 10.
As it can bee seen in the figure, by adopting our proposed method, which is
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namely selecting the NN-DPDs architectures based on their large-scale fading
conditions, we can have a significant boost in the SINDR of a UE which is ran-
domly allocated in the cell area, compared to the case with uniform allocation
of the DPD resources. This performance gain allows the system designer to
decrease the overall system cost, either by decreasing the total number of active
TX-chains, or the linearity requirements of the hardware equipments adopted
at the BS. Such cost reductions are crucial in massive MIMO and Large Intel-
ligent Systems (LIS) where the number of antenna elements are in the range
of hundreds to thousands.

5 Conclusion

In this paper we have studied the trade-off between complexity and performance
in a massive MIMO system with per-antenna NN-DPDs. In particular, we have
shown that by training multiple classes of NN-DPDs and selecting the class for
each antenna based on the channel conditions of the massive MIMO array,
we can improve the performance for the same level of total complexity in the
DPD blocks. We also investigate the performance of the NN-DPDs for different
levels of complexity in the neural networks architecture, which indicates that
a well designed NN-DPD with fairly high complexity can have near-optimal
performance in compensating the hardware non-linearity effects.
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1 Introduction

LISs have emerged as one of the next major steps in the future development
of MIMO communication systems [1], [2], [3]. While LISs are sometimes con-
sidered to be a scaled up version of the widely known massive MIMO systems,
they have some unique properties which distinguishes them from the massive
MIMO systems. For instance, their physical size can be compared to the user-
equipment (UE) distance to the LIS, which introduces near-field effects in the
wireless channel. As a result, the common assumptions about the massive
MIMO channels are no longer valid and new effects emerge. This requires
different channel models, and more investigation into the already known facts
about the transmit and receive schemes in massive MIMO systems [4].

The LIS technology was initially introduced in [1] as a large surface of elec-
tromagnetically active material in a line of sight (LOS) channel model. LIS
was first proposed as a continuous model where any point of a continuous sur-
face can transmit and receive signals. While this continuous model is useful
to understand the concepts of a LIS system, it can not be implemented with
current technology in the near future. Instead, a dense antenna array deployed
throughout a large surface is more realistic which can also be interpreted as a
sampled version of the continuous LIS model. It has been shown that, if sam-
pling is dense enough, e.g half wavelength spatial sampling, the continuous and
sampled versions of LIS have the same performance in terms of available spatial
degrees of freedom due to the spatially-band-limited nature of the channels [1],
[5]. More practical implementations of LIS consider dividing the LIS surface
into dense multi-antenna panels with a lower number of antennas, which is a
more flexible and scalable design with reduced system complexity [6]. What
we refer to as LIS in this manuscript, corresponds to an active sampled-surface
or panel-based array which should not be confused with a Reconfigurable In-
telligent Surface (RIS) and an Intelligent Reflecting Surface (IRS).

The deployment of LISs is envisioned to be much more challenging because
of the enormous leap in the number of transceiver chains, and the associated
processing complexities. One important challenge is the cost efficiency of the
whole system, where hundreds to thousands of transceiver chains are to be
deployed, which may force systems designers to consider the use of inexpen-
sive hardware components in each of these transceiver chains [7]. Therefore,
it is of high importance to study and mitigate the effects of hardware distor-
tion in transceiver chains when scaling up LIS to allow the use of cost-efficient
transceiver chains. There has been previous works on the design and opti-
mizing IRS and RIS based system with hardware impairment [8], [9], [10],
[11]. However, these works have no direct applicability to our study due to
the intrinsically different system model associated to passive reflective surfaces
compared to active transceiver technologies which we refer to as LIS.

The vision for future antenna arrays in the next generation of wireless com-
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munication systems highly depends on deploying arbitrarily large arrays due to
the compelling gains in terms of multiplexing and beamforming performance
through increasing spatial resolution [12]. With traditional design approaches,
implementing such a huge array may not be economically favored for operators
and vendors, since each antenna is typically equipped with an analog and a
digital front-end (AFE and DFE) [6]. The requirements for each transceiver
chain may lead to unreasonable implementation costs [13]. On the other hand,
the power consumption of each transceiver can also become a bottleneck, es-
pecially if there are tight requirements on the non-linearity of amplifiers and
the out-of-band emissions. AFEs are considered to be one of the main sources
of hardware distortion in receivers [14], [15], [16]. Not only the non-linearity
effect of AFEs are important to consider, but also the limitations in the total
power consumption of the receiver chain is of great importance. Linearity re-
quirements in the RX-chains can result in a huge leap in power consumption
of the whole system [17], which is not favorable neither in terms of cost nor
energy efficiency.

To deal with these challenges, we need to make the receiver design as effi-
cient as possible, from a system perspective. In general, the path to follow is to
optimize the signal processing schemes and system designs while maintaining
the hardware quality at a minimum level. In other words, we want to get the
most gain from each transceiver chain while limiting the implementation costs,
e.g., by using inexpensive hardware components. In [18] and [19], we have pro-
posed approaches to address such challenges in massive MIMO systems, mainly
by optimizing the per-antenna digital pre-distortion (DPD) resources. Another
approach is to perform antenna selection methods and only use a portion of
the array for transmission and reception. By doing so, we only use antennas
which have a significant contribution to the performance and thereby increase
energy efficiency.

In this paper, we focus on optimizing the performance of LIS with non-
ideal RX-chains. We first analyze the SNDR with the purpose of studying the
scaling behavior and asymptotic limits of LIS with hardware distortion. Then,
we propose receive antenna selection schemes for a LIS with non-ideal AFEs.
Optimization problems are defined and solved to illustrate the importance of
performing antenna selection when scaling up LIS. We show that selecting
antennas with the strongest channels is not always the optimal solution. We
then focus on more practical cases where the LIS is implemented as a grid
of panels, and transform the antenna selection problem into a panel selection
problem. Low-complexity closed-form sub-optimal solutions are proposed for
the panel selection. We also show that, by adopting such antenna selection and
panel selection schemes, we can improve the system performance significantly
for a fixed receive-chain hardware quality.
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1.1 Contributions

The contributions of this paper are listed as follows.

• We provide a framework to study the hardware distortion effect on LIS
performance while considering high-complexity non-linear polynomial model
at RX-chains.

• We derive close-form expressions for the SNDR of the LIS under polyno-
mial hardware distortion model to enable scaling and asymptotic analysis.

• We introduce antenna selection problems in LIS with hardware distortion
and illustrate the achievable gains of adopting optimal antenna selection.
We also consider the the more practical case with a panel-based LIS and
propose closed-form solutions for panel selection with hardware distortion
effects.

1.2 Paper Outline

The rest of this paper is organized as follows. In Section 2, the system model is
introduced, which includes the LIS deployment configurations, channel model,
and hardware distortion model. In Section 3, we characterize the SNDR and
propose closed-form expressions to evaluate the LIS performance, which is ex-
ploited for asymptotic and scaling analysis. Sections 4 and 5 introduce the
antenna and panel selection problems, respectively, and some proposed solu-
tions are presented for the corresponding LIS scenarios. In Section 6, numerical
results are used to further illustrate the results from previous sections. Finally,
Section 7 concludes the paper results.

1.3 Notation

Matrices, vectors, and scalars are denoted by boldface uppercase, boldface
lowercase, and italic letters, respectively. For a vector a, conjugate transpose,
transpose, Euclidean norm, and the i’th element of a are represented by aH ,
aT , ∥a∥, and ai, respectively. For a scalar a, the complex conjugate is denoted
by ā. We indicate zero-mean circularly-symmetric complex Gaussian random
vectors with covariance matrix C as a ∼ CN (0,C) and the expectation of a
random variable by E{·}. We denote a diagonal matrix with elements a1, ..., aN
on the main diagonal by diag (a1, ..., aN ) and the N×N identity matrix by IN .

2 System Model

We consider an uplink scenario where an active LIS consisting of N ≫ 1 an-
tenna elements serves a single-antenna UE, which transmits the complex base-
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Figure 1: LIS and UE configuration. The LIS is centered around origin and the UE
is on the bore-sight of the LIS.

band symbol s ∈ C with E{|s|2} = P , over a channel h ∈ CN×1. Each receive
antenna is equipped with a non-ideal RX-chain, introducing distortion into
the received signal. The received signal after going through the RX-chains is
expressed as

r = f (hs) + n, (1)

where f(·) : CN×1 → CN×1 models the overall non-ideal effects at the receiver
AFEs and DFEs of the LIS, and n ∼ CN (0, σ2IN ) is the additive noise.

The LIS is assumed to span the x-y plane with its center located at the
origin, and the UE is assumed to be located at (0, 0, d), where d denotes the
distance of the UE to the center of the LIS. Fig. 1 illustrates the configuration of
the LIS and the UE. The UE is assumed in the far-field region of each antenna
element, i.e. d > 2D2

a/λ, where Da is the maximum length of individual
antenna elements. However, since the number of antenna elements can grow
extremely large, the UE may be enter the near-field region of the LIS [4], [20],
i.e. d < 2D̄2/λ, where D̄ is the largest distance between two antenna elements
on the array. Therefore, it is important to consider both phase and amplitude
variations across the array, and consider near-field effects in the channel model.

In, [4], the effect of considering near-field properties in the channel model is
studied, including the variation of distance from each antenna element to the
UE, different effective area, and different polarization losses due to different
angle of arrivals. The results in [4] imply that only considering the first two
effects or considering all the three effects , even if the number of antenna
elements grows extremely large, have negligible difference. Therefore, we only
consider the first two effects and adopt the near-field LOS channel model as
considered in [1]. The narrow-band channel h(x, y) = |h(x, y)| exp (−jϕ(x, y))
between the UE and a point on the LIS with coordinates (x, y, 0) has amplitude
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Figure 2: Panels configuration, the panel-based LIS is centered around origin with
a fixed distance δp between adjacent panels.

given by

|h(x, y)| =
√
d

2
√
π(d2 + x2 + y2)3/4

, (2)

and the phase based on propagation delay as

ϕ(x, y) = 2π

√
d2 + x2 + y2

λ
, (3)

where λ is the wavelength. For the n’th antenna element, located at (xn, yn, 0)
with effective area A small enough such that |h(x, y)|2 is almost fixed inside its
effective area1, the channel gain is |hn|2 = A|h(xn, yn)|2.

While this form of deployment is a common vision for the LIS implemen-
tation in the future of wireless networks [21], it is not favorable with current
technology from a practical point of view [22]. A potentially more favorable
option, without losing practicality and cost efficiency is to implement the LIS
as grid of panels, each equipped with some equally distanced antenna elements
[6]. Fig. 2 illustrates an example of panel configuration of a LIS on the x-y
plane.

2.1 Hardware distortion model

There are several models to opt for the distortion function f(·) in (1) and the
model selection is always a trade-off between accuracy and analytical tractabil-

1This assumption is valid in most practical MIMO scenarios since the effective area is in

the orders of λ2

4
and the UE is in the far-field of each individual antenna element, i.e. d ≫ λ

2
.
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ity. One of the common models in the literature is the memory-less polynomial,
which has an high accuracy in most cases, at the cost of high complexity in
the analytical results. We mainly focus on this model throughout this paper to
guarantee the accuracy of the analysis. In this model, the input-output relation
of an RX-chain for a complex input xin ∈ C is given by

yout = f(xin) =

L−1∑
k=0

a2k+1 xin|xin|2k, (4)

where a2k+1 ∈ C are the model parameters, typically estimated based on input-
output measurements on the RX-chains. This model only considers odd orders
since they are the main source of in-band distortion [23]. For an ideal RX-chain,
we have L = 1 and a1 = 1.

Let us first analyze the distortion behavior for a single RX-chain. To isolate
the distortion from the desired signal, we can rewrite (4) by using the LMMSE
of y given x as

yout =
Cyoutxin

Cxin

xin + η, (5)

where Cyoutxin
is the covariance between yout and xin, Cxin

is the auto-correlation
of xin, and η is the estimation error. Equation (5) also corresponds to the Buss-
gang decomposition, which is a popular tool in hardware distortion analysis
[24]. By defining g = Cyoutxin

/Cxin
as the Bussgang gain and noting that η is

uncorrelated with x, the auto-correlation of η is given by

Cη = Cyout − |g|2Cxin , (6)

which can be calculated using the following lemma.

Lemma 3 Given the memory-less polynomial model in (4), together with its
Bussgang equivalent form, and assuming a Gaussian input distribution, i.e.
xin ∼ CN (0, P ), we can calculate the Bussgang gain as

g =
E [yinx̄in]

E [|xin|2]
=

L−1∑
k=0

a2k+1(k + 1)!P k, (7)

and the distortion power as

Cη = E
[
|η|2
]
=

2L−1∑
k=1

(
k!P k

k∑
i=1

a2i−1ā2k−2i+1

)
− |g|2P, (8)

where P = E
[
|xin|2

]
.
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Proof See Appendix 8. □

In practice, the 3rd order non-linearity term, a3, is the dominant source
of RF-hardware distortions [23], [25]. For the special case of 3rd order non-
linearity, i.e. L = 2, Lemma (3) gives

g = a1 + 2a3P, (9)

and

Cη = 2|a3|2P 3. (10)

2.2 AGC and back-off

As mentioned earlier, the model coefficients are estimated based on input-
output measurements of the RX-chain. The results are usually reported for
a normalized input with unit maximum amplitude [26]. Given the estimated
parameters â2k+1, for the normalized input, if the actual input to the receiver
has an amplitude range of 0 < |x| < Vmax, we can use the following conversion
to adapt the normalization

a2k+1 =
â2k+1

(V 2
max)

k
. (11)

The value of Vmax can be controlled in the receiver by applying back-off to its
input, either by using attenuator or by performing gain control schemes in the
RX-chain amplifiers. The back-off is applied to prevent clipping, which may
cause severe hardware distortion at the receivers. In our system, we define
V 2
max = boffPmax, where boff is the fixed back-off factor and Pmax depends on

the gain control scheme at the receiver. In a typical LIS scenario, the received
power at each antenna element can have a high dynamic range, which makes
the interplay between the back-off, gain control, and hardware distortion of
great importance.

The back-off value, boff, is a design parameter which can be selected based
on the dynamic range of the received power across the LIS. The gain control
term, Pmax, on the other hand can be set either to a fixed value for all the
antenna elements, or depending on the received power on each antenna, which
may be achieved by introducing per-antenna AGC in the amplifiers. The latter
case may be of less interest from a practical point of view in LIS scenarios
since there are hundreds to thousands of RX-chains across the LIS, with a high
variation of the received power. Therefore, having a perfect gain control unit
on each antenna element can contribute to the already high complexity of the
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whole system, apart from increasing implementation costs. On the other hand,
applying a fixed gain control is simpler and less expensive to implement, but
has the disadvantage of excessive gain reduction on some antennas, which can
reduce the energy efficiency of the amplifiers. In this paper we study both cases
and compare their performance.

If all RX-chains are capable of performing individual AGC, the per-antenna
coefficients ak,n become

a2k+1,n =
â2k+1

(boffP |hn|2)k
, (12)

and, in this case, calculating the Bussgang parameters in Lemma 3 results in
a fixed Bussgang gain

g̃ =

L−1∑
k=0

â2k+1

bkoff
(k + 1)! (13)

for all antenna elements. The distortion power, on the other hand, is a linearly
increasing function of the input power to the corresponding antenna, i.e. Cn =
κ |hn|2 P , where

κ =

2L−1∑
k=1

(
k!

bk−1
off

k∑
i=1

â2i−1
¯̂a2k−2i+1

)
− |g̃|2 . (14)

We may thus note that by assuming per-antenna perfect AGC, the Bussgang
gain and the distortion growth rate are independent of the input power or the
antenna index across the LIS.

As we will see in the next section, the assumption of per-antenna AGC can
reduce the complexity of the analysis. Interestingly, the linear growth rate in
(14) can be seen as a bridge from the memory-less polynomial model in (4)
to the conventional additive linear distortion model, which is widely used in
literature [27]. One should note that the additive linear distortion model is
a rough and simple approach of modeling the hardware distortion, where the
single parameter κ denotes the severeness of the hardware distortion and can be
interpreted as a measure of RX-chain hardware quality. In general, perfect per-
antenna AGC assumption and the additive linear model are not accurate. Such
assumptions imply that, no matter what the input power is, the Bussgang gain,
g̃, and the distortion growth rate, κ, are constants. Nevertheless, we consider
both the case where per-antenna AGC is employed, as well as the case with
fixed gain control, for completeness and to gain better understanding of the
impact of such assumptions.
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3 SNDR Characterization

By using the same technique as in (5) which is based on LMMSE or Bussgang
decomposition, the received signal in (1) may be expressed as

r = Ghs+ η + n, (15)

where G = diag (g1, . . . , gN ), with gn corresponding to the Busssgang gain for
the n’th antenna as given in (7), and η is the vector containing additive distor-
tion at the LIS, with covariance matrix Cηη, which is a non-diagonal matrix in
general. The distortion correlation effect among antennas can be neglected in
some cases, resulting in over-estimating the SNDR, which is often considered
in the literature [28]. The effect of disregarding the distortion correlation is
studied in Section 6.3.

The LIS applies a combing vector v to the received signal r to equalize the
transmitted signal. Maximum Ratio Combining (MRC) is an attractive option
in LIS scenarios because of its simplicity and reasonable performance, since
it still allows us to exploit the available spatial degrees of freedom[1]. In our
scenario, the MRC vector may be expressed as vT = h̃H/∥h̃∥ where h̃ = Gh,
can be interpreted as the effective channel, which includes the physical channel
and the multiplicative hardware distortion effect. In fact, the LIS would only
be able to estimate the effective channel h̃ from the uplink UE pilots since the
signals received during channel estimation are also affected by the hardware
distortion. We assume that the LIS has a perfect estimate of h̃ so that we
can isolate the effect of hardware distortion from that of channel estimation
imperfections. Note that the estimation error would only correspond to an
uncorrelated additive term, which would effectively not affect our analysis on
hardware distortion.

By applying the combining vector vT = h̃H/∥h̃∥ to r, we reach

vTr =
h̃H h̃s+ h̃Hη + h̃Hn

∥h̃∥
. (16)

The signal, distortion, and noise power can be calculated from (16) considering
that the distortion term is uncorrelated with the signal and has covariance
Cηη. The instantaneous SNDR is therefore given by

γ =
P h̃H h̃

h̃HCηηh̃

h̃H h̃
+ σ2

. (17)

If we assume that the distortion correlation among the antennas are negli-
gible, i.e., Cηη is diagonal, the instantaneous SNDR can be simplified, which
results in more analytical tractability for studying the impact of hardware dis-
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tortion on LIS systems. We analyze the effect of this assumption in Section 6.3
and show that it does not invalidate the conclusions drawn regarding scaling up
of LIS systems with hardware distortion. Moreover, it leads to significant sim-
plification of the proposed methods, at the cost of only a minor performance
loss. Assuming diagonal Cηη given by Cηη = diag (C1, . . . , CN ), where Cn

corresponding the distortion power for the n’th antenna as given in (8), the
instantaneous SNDR is simplified to

γ =
P
∑N

n=1

∣∣∣h̃n

∣∣∣2∑N
n=1 Cn|h̃n|2∑N

n=1|h̃n|2 + σ2

, (18)

where
∣∣∣h̃n

∣∣∣2 and Cn may be calculated using Lemma 3. Noting that the input

power to the n’th RX-chain is P |hn|2, we have

∣∣∣h̃n

∣∣∣2 = |hn|2
∣∣∣∣∣
L−1∑
k=0

a2k+1,n(k + 1)! P k|hn|2k
∣∣∣∣∣
2

, (19)

and

Cn =

2L−1∑
k=1

(
k! P k|hn|2k

k∑
i=1

a2i−1,nā2k−2i+1,n

)
−
∣∣∣h̃n

∣∣∣2 P, (20)

where the variables ak,n indicate the coefficients for the n’th antenna RX-chain
non-linear function in (4).

For the case with per-antenna AGC, since h̃n = g̃hn and Cn = κ |hn|2 P ,
the SNDR in (18) is simplified to

γ =
P |g̃|2

∑N
n=1 |hn|2

κP
∑N

n=1|hn|4∑N
n=1|hn|2

+ σ2
. (21)

We are now interested in finding closed-form approximations for the SNDR
to facilitate the LIS scaling analysis. We assume the LIS and UE configuration
as depicted in Fig. 1. This specific LIS-UE configuration is selected to reduce
the complexity of the analytical derivations; however, this loss of generality has
reduced impact when considering general scenarios with a large enough LIS [2].

If we assume that the LIS consists of
√
N ×

√
N square antenna elements

with effective area A, placed edge to edge such that the distance between ad-
jacent antennas is

√
A, we can approximate the summations in (21) by using

the Riemann Integral approximation [29]. Since N ≫ 1 in LIS scenarios, we
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can approximate the LIS surface as a disk with radius R, with the same area
as the square-shaped LIS, i.e. NA = πR2. Therefore, the N antenna elements
are assumed in a disk-shaped region S with a distance smaller than R from
the center of the LIS, i.e., the antennas with x2

n + y2n < R. Numerical re-
sults show that this approximation results in negligible error in the summation
approximations when N ≫ 1. We have

N∑
n=1

|hn|2 ≈
∫∫
S

|h(x, y)|2dxdy

=

∫ 2π

ϕ=0

∫ R

r=0

|h(r)|2rdrdϕ, (22)

where |h(r)|2 corresponds to the polar representation of the channel gain, with
variable changes x = r cosϕ, y = r sinϕ. Similarly, we can approximate the
other summation appearing in (21) by

N∑
n=1

|hn|4 ≈ A

∫ 2π

ϕ=0

∫ R

r=0

|h(r)|4rdrdϕ. (23)

The following lemma gives close-form approximations for these summations,
which can be leveraged to further develop the SNDR expression in (21).

Lemma 4 Assume we have a LIS with N ≫ 1 antenna elements with x2
n+y2n <

R, each with effective area A. We can then approximate the summations in (21)
by

N∑
n=1

|hn|2 ≈ 1

2

(
1− d√

d2 +R2

)
, (24)

N∑
n=1

|hn|4 ≈ A

32π

(
1

d2
− d2

(d2 +R2)2

)
, (25)

and their ratio as∑N
n=1 |hn|4∑N
n=1 |hn|2

≈ A

16π

(
1 +

d√
d2 +R2

)(
1

d2
+

1

d2 +R2

)
. (26)

Proof See Appendix 8. □
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γAGC ≈
P
2

∣∣∣∑L−1
k=0 â2k+1(k + 1)!

∣∣∣2 (1− d√
d2+R2

)
Pdistortion + σ2

, (27)

Pdistortion =
PA

16π

2L−1∑
k=1

(
k!

k∑
i=1

â2i−1
¯̂a2k−2i+1

)
−

∣∣∣∣∣
L−1∑
k=0

â2k+1(k + 1)!

∣∣∣∣∣
2


(
1 +

d√
d2 +R2

)(
1

d2
+

1

d2 +R2

)
.

By adopting Lemma 4 and the Bussgang parameters in (13) and (14), we reach
the SNDR approximate expression in (27) at the top of this page. This SNDR
approximation also applies to the additive distortion model, widely used in the
literature [27].

We can also exploit the derived expressions from Lemma 4 to perform an
asymptotic analysis when the LIS size grows without bounds, leading to

lim
R→∞

N∑
n=1

|hn|2 =
1

2
, (28)

lim
R→∞

∑N
n=1 |hn|4∑N
n=1 |hn|2

=
A

16πd2
, (29)

and

lim
R→∞

γAGC =
1
2 |g̃|

2P
κPA
16πd2 + σ2

. (30)

The asymptotic channel gain in (28) implies that, for an infinitely large LIS
deployed as a plane in front on the UE, the channel gain approaches 0.5, i.e.
half of the transmitted power is received by the LIS if there are no losses,
in accordance with the law of conservation of energy since half of the space
will be covered by an infinitely large LIS. The other two asymptotic results
show that, even for an infinitely large LIS, the hardware distortion does not
vanish completely. However, we shall see that the hardware distortion may be
negligible in some cases, depending on hardware quality.

3.1 The cost of ideal-hardware assumption

In many analytical results and preliminary studies on LIS, e.g. [1], [2], [30],
ideal hardware components are assumed. When the LIS is implemented, hard-
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ware distortion and other non-ideal effects are unavoidable. However, the per-
formance gap can generally be covered by scaling the LIS, which increases the
array gain, allowing higher spatial multiplexing, and causes the uncorrelated
hardware distortion to average out. To have a better understanding of the
effects of hardware distortion when scaling the LIS, we can study the required
number of receive antennas to achieve a minimum performance requirement. In
particular, we consider a fixed number of receive antennas with ideal RX-chains
and find the minimum number of antennas with non-ideal RX-chains to achieve
the same performance. Such analysis may be useful to better understand how
much one should scale the system when adopting real-world non-ideal hard-
ware.

For analytical tractability, we mainly focus on the case with perfect per-
antenna AGC in this part. Let us first define the ideal-hardware case as the
reference point for the analysis. If all the RX-chains are equipped with ideal
hardware, i.e. κ = 0, and the radius of the reception area is R = R0, the SNDR
becomes

γ0 ≈ P

2σ2

(
1− d√

d2 +R2
0

)
. (31)

We are interested in finding the minimum number of RX-chains, equivalent
to the minimum reception radius R, with non-ideal hardware components, i.e.
when κ > 0, to achieve the same level of SNDR as given in (31). From (27),
we would like to find the minimum R fulfilling the following inequality

P |g̃|2
2

(
1− d√

d2+R2

)
κPA
16π

(
1 + d√

d2+R2

)(
1
d2 + 1

d2+R2

)
+ σ2

≥ γ0. (32)

Finding the minimum R is in general highly non-trivial. However, low com-
plexity algorithms can effectively approximate the solution to this inequality.
An algorithm to solve this problem numerically is introduced in Appendix 9.

Another approach is to define an approximate expression for (32) and find
bounds on R. Let us define the distortion power, which is the denominator in
(32) excluding the noise power, as

β =
κPA

16π

(
1 +

d√
d2 +R2

)(
1

d2
+

1

d2 +R2

)
. (33)

The distortion power β is a decreasing function of R, i.e. it reduces if we have
more antennas for reception. The minimum and maximum of the distortion
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power can be found for R → ∞ and R = 0, respectively, as

βmin =
κPA

16πd2
, (34)

βmax =
κPA

4πd2
.

To find an upper bound on the minimum R for the inequality (32) to hold,
we can consider the worst case scenario, i.e., β = βmax, and rewrite the in-
equality as (

1− d√
d2 +R2

)
≥ βmax + σ2

|g̃|2σ2

(
1− d√

d2 +R2
0

)
= δmax (1−Υ) , (35)

where

δmax =
βmax + σ2

|g̃|2σ2
(36)

and

Υ =
d√

d2 +R2
0

. (37)

The variable δmax is a factor containing all the imperfections, i.e., noise, gain
compression, and distortion. The upper bound for the minimum R can be
calculated as

R2
ub = d2

(
1

(1 + δmaxΥ− δmax)2
− 1

)
, (38)

which means any R ≥ Rub guarantees that (32) holds.
Similarly, a lower bound on the minimum R can be found by substituting

βmax for βmin in (35), where we can now define δmin = βmin+σ2

|g̃|2σ2 to find

R2
lb = d2

(
1

(1 + δminΥ− δmin)2
− 1

)
. (39)

An important detail to keep in mind in this analysis is the feasibility of
fulfilling (32). As an example, imagine that the reference ideal point is selected
too optimistic, i.e., R ≫ 0; then, inequality (32) can not hold even if R → ∞.
To formulate feasibility condition, we evaluate (32) for R → ∞, which results
in the distortion power to be β = βmin. Therefore, the feasibility of finding an
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R to satisfy (32) is equivalent to the feasibility of finding an R that satisfies(
1− d√

d2 +R2

)
≥ δmin (1−Υ) , (40)

which is only possible if δmin (1−Υ) ≤ 1, resulting the following condition on
R0,

R2
0 ≤ d2

(
δ2min

(δmin − 1)2
− 1

)
. (41)

The previous expression thus gives the maximum R0 for which we can still
guarantee the existence of an R fulfilling (32).

4 LIS Antenna Selection

The contribution of each antenna to the signal and distortion power depends on
the received power to that individual antenna. Antennas receiving more power
may contribute more to the useful signal power at the cost of introducing more
distortion. In Section 3, we have seen how the receiver array size, given by
the LIS radius, affects the performance of the whole system. We assumed that
the area for signal reception was selected as a disk around the center of the
array, assuming that UE was also aligned with the central perpendicular line.
The question that arises here would be: Can we improve the signal reception
performance, i.e. SNDR, by selecting the antennas from another region? In
other words, can we get an improvement from considering a reception area with
a different shape than a disk with a center aligned with the UE position? This
question can be formulated as an antenna selection problem, where we consider
a LIS with N ≫ 1 elements, and a resource constraint which forces the LIS to
only use Nmax of the antenna elements for signal reception.

If the LIS is restricted to perform MRC on the received signals from the
selected antennas, the optimization problem for antenna selection can be for-
mulated as

max
z1,...,zN

P
∑N

n=1 zn

∣∣∣h̃n

∣∣∣2∑N
n=1 znCn|h̃n|2∑N

n=1 zn|h̃n|2 + σ2

, (42)

s.t. zn ∈ {0, 1} ∀n ∈ {1, . . . , N}
N∑

n=1

zn ≤ Nmax,
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where zn is the binary antenna selection parameter. In general, this problem
cannot be solved in closed-form. However, the LIS can perform a simple low-
complexity heuristic search to find the optimal solution.

For the case with perfect AGC, we can simplify the optimization problem
(42) by exploiting the SNDR approximations from Section 3. Let us consider
the setup from Section 2 to simplify this problem. Since the transmitter is
located at (0, 0, d), i.e. on the boresight of the LIS, the antennas with the same
distance from the center of the array have equal received power. Therefore, if
an antenna is in the set of the selected antennas, all the antennas with the same
distance from the center should also be in that set unless the maximum number
of selected received antennas is reached. This implies that the optimal solution
for the selected antennas is in general an annulus, i.e., the region between two
concentric circles.

Let us define the set of selected antennas as F = {i ∈ N | r < x2
i +y2i < R}.

Therefore, we have zi = 1 if i ∈ F . By leveraging Lemma 4, the following
approximation then holds for the numerator in (42),

P

N∑
n=1

zn

∣∣∣h̃n

∣∣∣2 = P |g̃|2
∑
n∈F

|hn|2 (43)

≈ Pd |g̃|2

2

(
1√

d2 + r2
− 1√

d2 +R2

)
,

and for the denominator, we have

∑N
n=1 znCn

∣∣∣h̃n

∣∣∣2∑N
n=1 zn

∣∣∣h̃n

∣∣∣2 =
Pκ
∑

n∈F |hn|4∑
n∈F |hn|2

(44)

≈ PκdA

16π

(
1√

d2 + r2
+

1√
d2 +R2

)(
1

d2 + r2
+

1

d2 +R2

)
,

where g̃ and κ are given in (13) and (14). By exploiting the above approxima-
tions, the optimization problem (42) converts to

max
r,R

Pd|g̃|2
2

(
1√

d2+r2
− 1√

d2+R2

)
PκdA
16π

(
1√

d2+r2
+ 1√

d2+R2

)(
1

d2+r2 + 1
d2+R2

)
+ σ2

, (45)

s.t. r, R ≥ 0

π(R2 − r2) ≤ NmaxA

which has the benefit of being a continuous function of only two variables, and
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it has a reduced complexity over (42) when solved by numerical methods. An
algorithm to solve this problem numerically is introduced in Appendix 9.

5 LIS Panel Selection

The analysis so far was based on the assumption that LISs are going to be
implemented as very large surfaces with N ≫ 1 antennas equally spaced on
a plane, e.g., a wall or a ceiling of a building. As mentioned earlier, this is a
common vision for LIS implementations in future wireless networks. However,
it may be impractical when considering current base station technologies, e.g.,
massive MIMO. A more favorable option, without losing practicality and cost-
efficiency, is to implement LIS as a grid of Np distributed panels, each equipped
with M uniformly spaced antennas. Therefore, we extend our previous results
to a panel-based LIS scenario.

Let us assume that M ≪ Np and the UE is far enough to be the far-
field for each panel such that the channel gain amplitude |hn|2 has a negligible
variation for all the antenna elements on each panel, and the only significant
change across the panel is carried in the phase. Therefore, the SNDR after
applying MRC is given by

γ =
PM

∑Np

n=1 |h̃n|2∑Np
n=1 Cn|h̃n|2∑Np

n=1 |h̃n|2
+ σ2

, (46)

where |h̃n| and Cn correspond to the channel gain and the distortion power for
all the antennas from the n’th panel. By comparing (46) and (18), we can see
that they look the same except for the panel array-gain factor M . However, we
should note that |h̃n| has a slightly different meaning now since it corresponds
to the common channel gain of the whole panel instead of the channel gain for
each antenna. Nevertheless, we expect a similar behavior in performance when
scaling this type of LIS.

Taking into account (46), we can transform the antenna selection problem
in (42) into a panel selection problem

max
zn

PM
∑Np

n=1 zn

∣∣∣h̃n

∣∣∣2∑Np
n=1 znCn|h̃n|2∑Np

n=1 zn|h̃n|2
+ σ2

, (47)

s.t. zn ∈ {0, 1} n ∈ {1, ..., N}
Np∑
n=1

zn ≤ Nmax
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where the binary variable zn determines if the n’th panel is active or not, and
Nmax ≤ Np is the maximum number of panels that can be selected for signal
decoding. This panel selection problem can also be interpreted as the original
antenna selection problem after grouping the antenna elements on the LIS into
a grid of rectangular panels.

While performing a heuristic search to solve (47) has reasonable complexity,
it may still be beneficial, from a practical point of view, to consider closed-form
sub-optimal solutions for specific cases. Such closed-form solutions can also
provide some intuition about how to optimize the design of LIS architectures,
e.g., for defining suitable panel placement strategies. For analytical tractability,
we will focus on the 3rd order non-linear model, i.e., where the hardware model
is given by (4), with L = 2, which retains much of the practicality since the 3rd
order non-linearity is known to be the dominant source of in-band hardware
distortion [23], [25]. Nevertheless, in case higher orders of non-linearity are of
interest, one can fit the higher order model to a 3rd order model and adopt our
proposed solution with the cost of a marginal deviation from the optimum.

Let us start with the case where only one panel is selected, i.e., Nmax = 1. In
this case, the panel selection problem boils down to optimizing the input power
for a SISO scenario. The reason is that we can find the optimum input power
for the SISO scenario and select the panel with the closest input power to that
optimum value. In the general case, where Nmax ≥ 1, the LIS can simply select
the Nmax panels with the input power closest to the optimum value. Therefore,
finding the optimum input power for the SISO case is of great importance. For
a SISO scenario where a symbol s ∼ CN (0, P ) is transmitted over the channel
h ∈ C, the input to the RX-chain will be x ∼ CN (0, ρ), where ρ = P |h|2. If
the receiver RX-chain has a 3rd order non-linearity as described above, from
(9) and (10), the SNDR may be expressed as

γSISO =
|a1 + 2a3ρ|2ρ
2|a3|2ρ3 + σ2

. (48)

As previously motivated, we are interested in solving the optimization prob-
lem

max
ρ

|a1 + 2a3ρ|2ρ
2|a3|2ρ3 + σ2

, (49)

s.t. 0 < ρ < ρmax

where ρmax is the maximum expected received power, which is imposed by the
specific scenario. Note that the optimization variable ρ can be altered either
by adjusting P , e.g., via power control, or |h|2, e.g., via UE movements or
panel selection. Since we are interested in this problem only for the purpose of
panel selection, the transmit power is assumed to be fixed, while |h|2 can be
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controlled by selecting different panels across the LIS.
The optimization problem (49) is concave and finding its optimal solution

in the current format, involves solving a 5th order equation after taking the
first derivative. However, we can try to find a suitable approximation for the
numerator and simplify the objective function. For example, we can approxi-
mate the term |a1 + 2a3ρ|2 in the numerator as a linear function of ρ, α+ βρ,
for 0 < ρ < ρmax. According to (11), we have a1 = â1 and a3 = â3/ρmax, which
gives approximation parameters α = |â1|2 and

β =
|â1 + 2â3|2 − |â1|2

ρmax
. (50)

Applying the above approximation and taking the first derivative of the ap-
proximate SNDR, we end up with the 4th order equation

2β|a3|2ρ4 + 4α|a3|2ρ3 − 2βσ2ρ− ασ2 = 0. (51)

Considering amplifier characterizations from [26], we note that the factor 2β|â3|2
is much smaller than other factors in the equation. Therefore, we approximate
(51) by

ρ3 − βσ2

2α|a3|2
ρ− σ2

4|a3|2
= 0, (52)

which is a depressed cubic equation ρ3 + c1ρ+ c0 = 0 with

c0 = − σ2

4|a3|2
(53)

and

c1 = − βσ2

2α|a3|2
. (54)

According to Cardano’s formula [31], and since ∆ = c20/4 + c31/27 is positive,
this equation has only one real solution given by

ρopt =
3

√
−c0

2
+
√
∆+ 3

√
−c0

2
−

√
∆. (55)

The numerical results in Section 6 indicate a high accuracy in the approxima-
tion. Hence, (55) provides a suitable closed-form approximate solution to the
panel selection problem.



100 PAPER III

6 Numerical Results

In this section, we provide numerical examples to gain more insights about the
aforementioned methods and derivations. As performance metric, we consider
a lower bound on the spectral efficiency given by Ra = log2(1 + γ), which cor-
responds to an achievable rate. This achievable rate comes from assuming a
Gaussian additive distortion term in the Bussgang decomposition, correspond-
ing to the worst case scenario [32]. The UE is assumed to be at distance
d = 25λ from the center of LIS transmitting with transmit power P such that
SNR= 10dB at the center of LIS. The gray areas in all the figures in this
section illustrate the range of parameters for which the UE is in far-field of the
LIS. For the hardware distortion model, we use the measurements from one of
the 3GPP reports [26], which also estimates the parameters for the memory-less
polynomial model (4) based on real-world RF hardware at different frequencies
and bandwidths. To have a better understanding of the difference in hardware
distortion effects for different RF components, we have employed (13) and (14)
to calculate g̃ and κ based on a range of measurements in [26], which have been
performed at the frequencies 2.1 GHz and 28 GHz, for GaA, CMOS, and GaN
amplifiers. Table 1 summarizes the results. Note that, for ideal hardware, we
would have |g̃|2 = 1 and κ = 0.

Type Freq. BW BO κ |g̃|2
GaA 2.1 GHz 40 MHz 10 dB 0.208 0.937
CMOS 28 GHz 400 MHz 10 dB 0.252 0.894
GaN 2.1 GHz 40 MHz 8 dB 0.035 0.811
GaN 28 GHz 400 MHz 8 dB 0.132 0.884

Table 1: Examples of Hardware Distortion Parameters in (13) and (14) for different
amplifier types at specific frequencies, bandwidth(BW), and back-off (BO).

6.1 Scaling Analysis Example

We begin with studying the scaling performance of LISs for different levels of
hardware distortion. Let us consider the model based on a Gallium Nitride
(GaN) amplifier designed for operation at 2.1 GHz as a case study, where the
model parameters have been estimated from input-output measurements at a
sample rate of 200 MHz and a signal bandwidth of 40 MHz. We would have
similar results and conclusions if we select another data set from [26] and table
1. The report provides the coefficients for normalized inputs, i.e., â2k+1 in (11)
and (12), for 3rd, 5th, 7th, and 9th order non-linearity. We consider a discrete
LIS with antenna elements separated by λ/2 on a rectangular grid.
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Figure 3: Achievable data rate vs LIS radius in terms of λ. The UE is at distance
d = 25λ from the center of LIS.

In Fig. 3, we illustrate the achievable rate Ra for different levels of back-
off in (11). By comparing our results to the performance of an ideal system,
we can see that the hardware distortion can degrade the system performance
significantly even if we use 7 dB of back-off, which is a typical value for low-
power receivers. One should also note that for a sufficiently large back-off, e.g.
8 dB or higher, the performance approaches the ideal case at the cost of low
energy efficiency in the RF amplifiers, which is not favorable, especially in LIS
scenarios. Since the case with 8 dB has a similar performance to the ideal case,
we only focus on the lower back-off values from now on.

In Fig. 4 we consider the case with perfect per-antenna AGC, where we
plot the achievable rate for different levels of back-off. So as to evaluate the
approximation error for the proposed close-form expressions, we consider both
the closed-form expression and the exact numerical values. Firstly, we can see
that the close-form approximations overlap closely with the numerical values,
which means the approximations are valid and can be used for analytical results
with very low approximation error. Secondly, we can see that similar to Fig. 3
which was without per-antenna perfect AGC, the hardware distortion degrades
the system performance significantly, which implies that hardware distortion
may potentially limit the performance in LIS scenarios no matter if we have
perfect AGC or not.
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Figure 4: Numerical and Closed-form achievable data rate with perfect AGC vs LIS
radius in terms of λ. The UE is at distance d = 25λ from the center of LIS.

6.2 Antenna and Panel selection

In Fig. 5, the performance of using the proposed optimal antenna selection in
comparison to using the dominant antennas, i.e. antennas with highest received
power, is illustrated. We have used the 9th order distortion model for a GaN
amplifier at 2.1 GHz, as described in the previous section, with a 7 dB of back-
off. The UE transmit power is again selected such that the SNR at the center
of LIS reaches 10 dB, which corresponds to the respective value of Pmax in
(11). We also assume that Nmax = ⌈0.1N⌉ is selected as the antenna selection
constraint. As we can see in Fig. 5, adopting the optimal antenna selection can
improve the system performance significantly for medium to large LIS radius.
We can also see that the gain from adopting antenna selection is negligible if
the UE is in the far-field of the LIS.

In Fig. 6 we have illustrated the performance of panel-based LIS when
adopting the proposed optimal panel selection versus the baseline approach
corresponding to performing dominant panel selection, for different number of
panels. The panel selection constraint in (47) is set to Nmax = ⌈0.1N⌉. We
also assume that each panel consists of M = 16 antennas with λ/2 spacing,
and the distance between the centers of adjacent panels is set to δp = 5λ. The
same distortion model as in Fig. 5 is used for each antenna element of the LIS
panels. We can see that there is a significant gain from applying the proposed
optimal panel selection. In comparison to the results from Fig. 5 for antenna
selection, the achievable performance gains are much higher, which implies that
in the practical case of panel-based LIS deployment, it is even more important
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Figure 5: Achievable data rate with perfect AGC vs LIS radius in terms of λ with
fixed back-off for optimal antenna selection solved from (42) and dominant antenna
selection where the antennas with highest received power are selected.

to consider the panel selection schemes in the presence of hardware distortion.

For panel-based LIS and as previously mentioned, we have assumed that
the UE is in the far-field of each panel such that we can simplify the panel
selection problem into (46). To illustrate the validity of this assumption in
this section, we need to compare the distance between the closest and furthest
antenna elements on each panel to the UE, which are denoted by d1 and d2
respectively. In Fig. 7, we have compared the maximum ratio of these distances
for the panel-based LIS scenario as described above. We can see that the far-
field assumption for individual panels holds for d = 25λ and beyond, which is
the case we have considered in this section.

In Fig. 8, we have evaluated the performance of the approximate closed-
form solution to the panel selection problem in comparison to the numerical
optimal solution and the dominant panel selection. We have used the 3rd order
non-linearity model for the hardware distortion as motivated in section 5. The
panel selection constraint and panel placement is the same as in Fig. 6. As
we see, the optimal panel selection and closed-form panel selection outperform
the dominant panel selection significantly, and the close-form panel selection
performance is very close to the numerical optimal method, which implies that
the proposed close-form solution is accurate enough to use in LIS panel selection
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Figure 6: Achievable data rate with perfect AGC vs number of panels with fixed
back-off for optimal panel selection solved from (47) and dominant panel selection.
The UE is at distance d = 25λ from the center of LIS, the panel selection constraint
in (47) is Nmax = ⌈0.1N⌉, and Each panel consists of M = 16 antennas with λ/2
spacing. The distance between the centers of adjacent panels is δp = 5λ.

problems with hardware distortion. In Fig. 9, we compare the performance gain
of adopting such schemes for 3 different distance of the UE. We can see that
the gain is higher if the UE is more into the near-field of the LIS, and it is still
significant if the UE is placed at further distances. The results from Fig. 5, 6,
8, and 9 show that we can improve the system performance by performing the
proposed antenna and panel selection without using more resources in terms of
extra antennas and panels. This implies that the proposed selection methods
can improve the system energy efficiency (EE) which is favorable when scaling
up LIS systems for future generations of wireless networks.

To have a better understanding of the importance of panel selection in
LIS applications, we simulate a practical panel-based LIS deployment scenario
where a panel-based LIS consisting of 4×4 panels covers the ceiling of a 7m×7m
room. The carrier frequency is set to 2.1 GHz to match the hardware distortion
measurements for the GaN amplifier from [26]. The distance between panels
is 5λ, the antenna spacing is λ/2, and the panel selection constraint is set to
Nmax = ⌈0.1N⌉. With these setup parameters, there are in total N = 81
panels covering the ceiling and the selection schemes allocate Nmax = 9 panels
to serve the UE, which is randomly located at the bottom of the room. We
consider three different room heights, 3.57m, 7.14m and 10.71m, corresponding
to perpendicular distance of 25λ, 50λ, and 75λ, between the UE and LIS,
respectively. In Fig. 10, we compare the CDF of the achievable rate for the
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Figure 7: The maximum ratio between the furthest and closest antenna element on
each panel to the UE vs the number of panels, for different distances of the UE to
the center of LIS.

case where the proposed optimal panel selection is adopted in comparison to
the case where the dominant panels are assigned to the UE. We can see that
for this scenario with typical setup parameters of a LIS indoor application, the
gain from adopting the proposed panel selection is significant, and the LIS can
provide a higher data rate with high probability just by adopting our proposed
panel selection. We can also see that the data rate becomes worse in buildings
with higher ceiling if the dominant panel selection is used, while the proposed
panel selection can make the data rate more stable and higher, no matter if
the ceiling is high or low.
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Figure 8: Achievable data rate vs number of panels with fixed back-off for optimal
panel selection solved from (47), close-form panel selection in (55), and dominant
panel selection. The setup parameters are the same as Fig. 6.
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Figure 9: Percentage achievable data rate improvement for different UE distances
with fixed back-off for optimal panel selection and dominant panel selection. The
setup parameters are the same as Fig. 6.
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Figure 10: CDF of achievable data rate with fixed back-off for optimal panel selec-
tion and dominant panel selection for randomly located UE in a 7m× 7m room with
different ceiling heights. Low, medium, and high ceiling, corresponding to perpen-
dicular distance of 25λ, 50λ, and 75λ, between the UE and LIS, respectively. Other
setup parameters are the same as Fig. 6.

6.3 Distortion Correlation

As remarked in Section 3, the distortion covariance matrix Cηη is in general
non-diagonal, and assuming it diagonal, i.e., disregarding the correlation, re-
sults in an over-estimation of the SNDR. In this section, we study the impact
of disregarding the distortion correlation on the scaling behavior and on the
performance of the panel selection schemes. Assuming a 3rd order non-linearity
model, i.e. L = 2, for the non-linearity model in (4), the non-diagonal distor-
tion covariance matrix elements are given by

[Cηη]ij = 2a3,iā3,j |ρij |2ρij , (56)

where ρij = E{xix̄j}, and xi is the input signal to the i’th antenna. While
characterizing the non-diagonal elements of Cηη for higher order non-linearities
is beyond the scope of this paper, we expect the 3rd order case to capture the
main impact of disregarding distortion correlation.

In Fig. 11, we have analyzed the scaling behavior of LIS by comparing
the achievable rate Ra for different levels of back-off, both with and without
considering the distortion correlation. The transmit power is selected such
that SNR = 0 dB at the center of the LIS. We can see that as we scale up the
LIS, the impact of disregarding the distortion grows progressively. However,
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Figure 11: Achievable data rate vs LIS radius in terms of λ, with and without
considering distortion correlation. The UE is at distance d = 25λ from the center of
LIS.

for reasonably large LISs, the impact is still quite limited. On the other hand,
taking into account the distortion correlation will only strengthen the important
finding that hardware distortion has a significant impact on the performance
of scaled-up LIS systems.

In Fig. 12 we analyze the performance of the panel selection schemes when
these are either aware or unaware of the distortion correlation. For that pur-
pose, we have plotted the achievable data rate with hardware distortion cor-
relation for three cases: dominant panel selection, sub-optimal panel selection
which performs the panel selection unaware of the distortion correlation, and
the optimal panel selection which takes into account the distortion correlation
for panel selection. All the simulation parameters are the same as in Fig. 8. We
can see that, although Fig. 11 shows that disregarding distortion correlation
can result in considerable over-estimation of the data rate, this approximation
can be leveraged for low-complexity panel selection, still resulting in close-to-
optimum performance and significant gain compared to the baseline approach.

7 Conclusion

In this paper, we have studied the impact of hardware distortion when consider-
ing LIS implementations with non-ideal RX-chains. We have derived analytical
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Figure 12: Achievable data rate with distortion correlation vs number of panels.
The UE is at distance d = 25λ from the center of LIS, the panel selection constraint
in (47) is Nmax = ⌈0.1N⌉, and Each panel consists of M = 16 antennas with λ/2
spacing. The distance between the centers of adjacent panels is δp = 5λ.

expressions for the SNDR considering the memory-less polynomial model for
non-ideal hardware at the RX-chains. Such expressions enabled us to evalu-
ate the performance of the LIS with hardware distortion when scaling up the
system. We observe that the hardware quality can effectively limit the system
performance even for extremely large LISs. We have also proposed antenna
selection schemes for LIS and we have shown that adopting such schemes can
improve the performance significantly. We also consider a more practical case
where the LIS is deployed as a grid of multi-antenna panels, and define panel
selection problems to improve the system performance. For the special case
of 3rd-order nonlinear model, we have introduced a close-form panels selection
solution, which can be exploited to efficiently switch panels with near-optimum
performance.
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8 Proof of Lemmas

Proof of Lemma 3

Considering the memory-less polynomial model (4) with xin ∼ CN (0, P ), we
first calculate E [youtx̄in] as

E [youtx̄in] = E

[
L−1∑
k=0

a2k+1xin|xin|2kx̄

]

=

L−1∑
k=0

a2k+1E
[
|xin|2(k+1)

]
, (57)

where the term |xin|2 is a Rayleigh variable, with E|xin|2 = P . The (k + 1)’th
moment of this Rayleigh variable is given by

E
[
|xin|2(k+1)

]
= P k+1Γ [1 + (k + 1)] = P k+1(k + 1)!, (58)

which can be replaced in (57) to find g as

g =
E [youtx̄in]

E [|xin|2]
=

L−1∑
k=0

a2k+1(k + 1)! P k. (59)

In order to find Cη, we need to calculate Cyout
, which is given by

E [youtȳout] = E

[
L−1∑
m=0

a2m+1xin|xin|2m
L−1∑
n=0

ā2n+1x̄in|xin|2n
]
. (60)

We can simplify it using a change of variable and considering the moments of
a Rayleigh variable to get

E [youtȳout] =

2L−1∑
k=1

(
k! P k

k∑
i=1

a2i−1ā2k−2i+1

)
. (61)
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Proof of Lemma 4

From (22) and (23), we need to calculate the following integrals,

d

2

∫ R

r=0

1

(d2 + r2)
3
2

rdr, (62)

d2

8π

∫ R

r=0

1

(d2 + r2)3
rdr, (63)

where we have simplified the phase part with a 2π factor before the integrals.
By a change in variable as, x = r2 and rdr = 1

2dx, while using the following
indefinite integral formulas,∫

1

(d2 + x)
3
2

dx =
−2√
d2 + x

, (64)∫
1

(d2 + x)3
dx =

− 1
2

(d2 + x)2
, (65)

we can find the results in (24) and (25), and a simple factorization gives (26).

9 Algorithms

Algorithm 1 provides a simple low-complexity numerical method to solve (32),
where the accuracy of the solution depends on the number of iterations, T .

Algorithm 1 Numerical Method to solve (32)

Define: Rub = (38), Rlb = (39), ∆ = Rub − Rlb, Ropt = Rlb, Rnew =
Rlb, T ∈ N where T >> 1.

for t = 1 to T :
Calculate γ from (32) for R = Rnew

if γ ≥ γ0:
Ropt = Rnew

break
else:

Rnew = Rlb + t
T ∆

endif
endfor

Algorithm 2 can be used to find a sub-optimal solution to the optimization
problem (45). By selecting a sufficiently large value for T , the sub-optimal
solution from this algorithm can approach the optimal solution.
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Algorithm 2 Sub-Optimal Solution to Problem (45)

Define: R̃ = NA/π, r0 = 0,R0 =
√

NmaxA/π, γ0 = (27) withR = R0, ropt =
0, Ropt = R0, γopt = γ0, T ∈ N where T >> 1.

for t = 1 to T :

rnew = t
T

√
R̃2 −NmaxA/pi,

Rnew =
√
NmaxA/π + r2opt,

γnew = (45) with r = rnew and R = Rnew,

if γ < γopt:
break

else:
ropt = rnew,
Ropt = Rnew,
γopt = γnew,

endif

endfor
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Hardware Distortion Modeling for

Panel Selection in Large Intelligent

Surfaces

Hardware distortion in large intelligent surfaces (LISs) may limit their

performance when scaling up such systems. It is of great importance

to model the non-ideal effects in their transceivers to study the hard-

ware distortions that can affect their performance. Therefore, we have

focused on modeling and studying the effects of nonlinear RX-chains in

LISs. We first derive expressions for SNDR of a LIS with a memory-less

polynomial-based model at its RX-chains. Then we propose a simplified

double-parameter exponential model for the distortion power and show

that compared to the polynomial based model, the exponential model can

improve the analytical tractability for SNDR optimization problems. In

particular, we consider a panel selection optimization problems in a panel-

based LIS scenario and show that the proposed model enables us to derive

two closed-form sub-optimal solutions for panel selection, and can be a

favorable alternative to high-order polynomial models in terms of compu-

tation complexity, especially for theoretical works on hardware distortion

in MIMO and LIS systems. Numerical results show that the sub-optimal

closed-form solutions have a near-optimal performance in terms of SNDR

compared to the global optimum found by high-complexity heuristic search

methods.
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“Hardware Distortion Modeling for Panel Selection in Large Intelligent Surfaces,”

in 2024 58th Asilomar Conference on Signals, Systems, and Computers, Pacific Grove,

CA, USA, 2024, pp. 822-826.





PAPER IV 121

1 Introduction

The rapid increase in number of devices and quality of service demands within
5G and forthcoming 6G networks has led to a substantial escalation in overall
network requirements. To address these demands, the development and imple-
mentation of novel physical layer technologies are essential for accommodating
the heightened performance expectations and ensuring network reliability and
efficiency. LISs are regarded as a pivotal advancement in the ongoing evolu-
tion of wireless communication networks. In theory, LISs have demonstrated
significant potential to meet these expectations, primarily by offering greater
degrees of freedom compared to conventional massive MIMO systems [1], [2],
[3]. While the anticipated benefits of deploying LIS technology are promising,
considerable debate persists regarding the feasibility and hardware implemen-
tation challenges associated with integrating LIS into future wireless networks.
LISs are envisioned to have hundreds to thousands of active transceiver chains
which can result in a huge leap in the implementation cost, power consumption,
and overall processing complexity of the system [4].

Achieving the expected theoretical gains when implementing LISs in future
wireless networks may only become feasible by deploying less expensive hard-
ware components in the transceiver chains. The drawback from selecting these
low-cost components are mainly the non-ideal effects that can introduce hard-
ware distortion in the system, which can degrade the overall performance [5].
The inter-play between system performance, non-linearity, power consumption,
and hardware complexity is one of the most important aspects in the design
of future wireless transceivers [6], [7]. Mitigating non-ideal hardware distor-
tion is expected to be an important subject when implementing LISs for future
wireless networks.

In addition, to save on resources, we would also like to activate as few
transceiver chains as possible. Full control of the activation of individual
transceivers means full flexibility, but also lead to excessive system complexity.
To limit complexity, we can arrange antennas in panels where all transceiver
chains in a panel are switched on or off at the same time, which we call panel-
based LIS. While there are many classic models and methods to model, study,
and compensate the hardware distortion effects in MIMO transceivers [8], [9],
[10], [11], applying them to LIS scenarios generally results in high-complexity
problems when designing and optimizing the system. For example, while poly-
nomial models are of great interest in the MIMO literature, employing them in
a panel-selection optimization for a panel-based LIS, results in high complexity
problems which can only be solved by heuristic methods [4]. Therefore, there
is a need for more analytically favorable models for hardware distortion in LISs
with negligible loss in the performance.

In this paper, we study the problem of receiver hardware distortion in
LISs with non-linear RX-chains. We first analyze the distortion effect for the
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memory-less polynomial (MLP) model and derive the SNDR for MRC scheme.
Then, we propose a double-parameter exponential model for the hardware dis-
tortion power to reduce the complexity of the SNDR optimization problems.
In particular, we formulate the problem of panel selection in panel-based LISs
and show that with the MLP model, the panel selection problem can only be
solved by heuristic search. On the other hand, the proposed model leads to
more tractable optimization problems. We will show that the simplified panel
selection problem can be approximated and solved into close-form sub-optimal
solutions which can be adopted for the original panel selection problem, with
near-optimum performance in terms of the SNDR.

2 System Model

We consider an uplink scenario where a single-antenna UE is served by a LIS
through a narrow-band LOS channel2. The LIS consists of N ≫ 1 antenna
elements with non-linear RX-chains. The N × 1 received vector at the LIS is

r = f (hs) + n, (1)

where s ∈ C, with E{|s|2} = P , is the base-band (BB) symbol transmitted
by the UE, and h ∈ CN×1 is the LOS channel vector. The component-wise
function f(·) : CN×1 → CN×1 models the overall hardware distortion effects
of the LIS non-linear RX-chains, and n ∼ CN (0, σ2IN ) models the receiver
thermal noise.

2.1 RX-chain non-linearity

To analyze the effect of RX-chain hardware distortion, we can transform the
RX-chain output z ≜ f (hs) into an additive form by leveraging the LMMSE
of z given x ≜ hs, which is

z = CzxC
−1
xxx+ η, (2)

where η is the estimation error. This is the same technique as applying the
Bussgang theorem to the non-linearity function [12]. We can therefore re-write
r as

r = Ghs+ η + n, (3)

2We have considered a single-user case to isolate the effect of hardware distortion at the
LIS RX-chains from other non-ideal effects such as inter-user interference, since hardware
distortion is the main focus of this work.
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where G = CzxC
−1
xx . If we assume that the output of each RX-chain depends

solely on its input and it is independent of other RX-chains, i.e., zn only
depends on xn, we have G = diag {gn}, Cηη = diag {Cn}, with gn and Cn

corresponding to the Busssgang gain compression and distortion power for the
n’th antenna.

One of the most widely used models for non-linearities in wireless transceivers
is the memory-less polynomial model [8], [13], given by

f(xn) =

L−1∑
k=0

a2k+1 xn|xn|2k, (4)

where xn is the input to one of the RX-chains of the LIS, and a2k+1 are the
model parameters. The model coefficients can be calculated by curve fitting to
input-output measurements data from transceivers [14] for a limited range of
input amplitude. For a Gaussian input xn ∼ CN (0, ρn) which is a high peak-
to-average signal, we need to normalize the model coefficients and consider a
sufficient back-off at the RX-chains. The Bussgang parameters ∀n ∈ {1, . . . , N}
can then be calculated as [4]

gn =

L−1∑
k=0

a2k+1(k + 1)!ρkn, (5)

Cn =

2L−1∑
k=1

(
k!ρkn

k∑
i=1

a2i−1ā2k−2i+1

)
− |gn|2ρn, (6)

which we will use to analyze the SNDR in the reminder of this paper.

2.2 SNDR for MRC

Let us assume that the LIS employs a combining vector v to equalize the
received signal r. It has been shown that MRC can leverage the available spatial
degrees of freedom[2] effectively in LIS scenarios, and it is more favorable due to
its reduced complexity. In our system model, we have an effective channel given
by h̃ = Gh. Therefore, the MRC vector is expressed as vT = h̃H/∥h̃∥. This
effective channel accounts for both the physical channel and the multiplicative
hardware distortion effects. Since the signals used for channel estimation are
also influenced by hardware distortion, the UL UE pilots would only allow the
LIS to estimate the effective channel h̃ [4]. For the purposes of this analysis,
we assume that the LIS has a perfect estimate of h̃.

By applying the MRC combining vector vT = h̃H/∥h̃∥ to the received
signal r, while taking into account the Bussgang decomposition from (3), we
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can calculate the SNDR as

γ =
P
∑N

n=1

∣∣∣h̃n

∣∣∣2∑N
n=1 Cn|h̃n|2∑N

n=1|h̃n|2 + σ2

. (7)

For the memory-less polynomial model we have

∣∣∣h̃n

∣∣∣2 = |hn|2
∣∣∣∣∣
L−1∑
k=0

a2k+1,n(k + 1)! P k|hn|2k
∣∣∣∣∣
2

, (8)

Cn =

2L−1∑
k=1

(
k! P k|hn|2k

k∑
i=1

a2i−1,nā2k−2i+1,n

)
−
∣∣∣h̃n

∣∣∣2 P, (9)

which are calculated according to (5) and (6).

2.3 Exponential Model for Distortion Power

While it is possible to derive closed-form expressions for SNDR with the memory-
less polynomial model [4], a simplified model with fewer number of parameters
is of fundamental interest, especially when dealing with optimization problems
involving the SNDR. The model should be an increasing function of the input
power, and follow the general form of the distortion power (6). Another down-
side with the distortion power function for memory-less polynomial model is
that the distortion power may increase unboundedly when input power grows,
an effect that can not occur in reality. In particular, when considering high
peak-to-average power signals, such as Gaussian symbols, this can have a signif-
icant influence on the accuracy of the analysis. Therefore, the proposed model
for the distortion power should not grow unboundedly with the input power.

With the given conditions on the model properties, we propose the following
double-parameter exponential model for the distortion power

C̃n = ρ
(
1− e−βρq

)
, (10)

where β > 0 and q > 2 are the model parameters and are calculated by curve-
fitting to hardware measurements, or potentially, to the distortion power of
any other well-known model such as (6) for memory-less polynomial model.
We will show that this model can be exploited as a tool to simplify the SNDR
optimization problems for systems with hardware distortion. In particular, we
will show an application of this model in the LIS panel selection problem in
the next section.
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Figure 1: LIS configuration and Panel Selection. Each panel, represented by a
square, has the same number of antennas and green squares indicate the active panels.
Each antenna is equipped with a non-linear analogue front end (AFE).

3 Panel Selection in LIS

One of favorable approaches in terms of practicality for LIS deployment is to
construct them as a grid of panels [15]. We consider a panel-based LIS with
Np panels each consisting of M antenna elements with non-linear RX-chains.
We assume that there is a resource constraint in the system which forces the
LIS to only use Nmax panels for received signal combining. Fig. 1 illustrates an
example system architecture with panel selection. We select the SNDR after
MRC as the objective function and formulate a panel selection problem with
the aim of finding the set of Nmax panels to achieve the highest SNDR.

The panel selection problem can be translated into the following optimiza-
tion problem

max
zn

PM
∑Np

n=1 zn

∣∣∣h̃n

∣∣∣2∑Np
n=1 znCn|h̃n|2∑Np

n=1|h̃n|2
+ σ2

, (11)

s.t. zn ∈ {0, 1} n = 1, 2, ..., N

Np∑
n=1

zn ≤ Nmax,

where zn is the binary variable for panel selection, and |h̃n|2 is the effective
channel gain between the antenna elements on the n’th panel and the UE.
The considered formulation of the problem assumes that the distance between
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Figure 2: MLP and EXP Distortion Models.

antenna elements of each panel is negligible compared to the UE-LIS distance,
which corresponds to having the users in the far-field of each LIS-panel, while
they can still be in the near-field of the whole LIS. In general, we are able
to solve this problem by heuristic search methods for any hardware distortion
model.

An alternative approach, equivalent to a large extent to the original prob-
lem, is to consider a SISO case and find the optimum received power for max-
imum SNDR, and then select the Nmax panels with the closest received power
to that optimum value. For the memory-less polynomial model, the panel
selection problem is reduced to

max
ρ

|
∑L−1

k=0 a2k+1(k + 1)!ρk|2ρ∑2L−1
k=1

(
k!ρk

∑k
i=1 a2i−1ā2k−2i+1

)
− |g|2ρ+ σ2

(12)

s.t. 0 < ρ < ρmax,

which is still not analytically tractable. We are thus interested in approximating
the objective function in this optimization problem to find effective closed-form
solutions.

The panel selection problem defined above constitutes a good application of
the proposed distortion model, which may help increasing tractability. We ap-
proximate the objective function in (12) by deploying the proposed exponential
model in (10). We also neglect the gain compression parameter in the numer-
ator since it has a negligible effect on SNDR compared to the distortion power
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3. After applying these assumptions, we end-up with the following simplified
problem.

max
ρ

ρ

ρ (1− e−βρq ) + σ2
(13)

s.t. 0 < ρ < ρmax,

We will show that, unlike (12), this problem can be solved into closed-form
approximated solutions with near-optimal performance.

Lemma 5 The closed-form solution to the optimization problem (13) can be
approximated by either of the following optimal values for ρopt with negligible
error.

ρopt1 ≈

1−
√
1− 4σ2

q

2β

1/(q+1)

, (14)

ρopt2 ≈ exp

(
Ln(σ2)− Ln(qβ)

q + 1

)
. (15)

Proof See Appendix 6. □

We will study the performance of these approximated sub-optimal solutions
and show that both have negligible error compared to the global optimum, while
ρopt2 is generally more accurate. The LIS can thus exploit these closed-form
results for efficient panel selection. Although this is a sub-optimal approach
to deal with the original problem in (11), we will show that the performance
is very close to the global optimal case achieved with heuristic search meth-
ods, which means that we can get a near-optimum solution with significantly
lower computation complexity by adopting the proposed distortion model and
approximated panel selection solutions.

4 Numerical Results

In this section, we analyze the hardware distortion in LISs for the memory-
less polynomial model (MLP) and the proposed exponential model (EXP).
For the RX-chains non-linearity model parameters, we have considered an 11-
th order memory-less polynomial model based on [14] for a Gallium Nitride
(GaN) amplifier operating at 2.1 GHz at a sample rate of 200 MHz and a

3We have studied and verified this numerically for the measurement data from [14]. We
will also show that this assumption has negligible impact on the performance of the proposed
sub-optimal solutions.
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Figure 3: Mean square error (MSE) for optimum ρ approximations from lemma 5.

signal bandwidth of 40 MHz. Different levels of back-off are considered which
adjust the severeness of the distortion as described in [4].

In Fig. 2 we have compared the approximated EXP distortion power (10)
to the exact MLP distortion power (6) for the GaN amplifier with three dif-
ferent levels of back-off. The EXP model parameters β and q calculated with
MATLAB curve fitting. We can see that the approximated EXP model follows
the exact model closely, and the difference is lower for higher values of back-off.
We will show that this difference has negligible effect on the performance of
the proposed sub-optimal solutions for panel selection.

In Fig. 3 we illustrate the MSE of the proposed approximations in Lemma 5
with respect to the accurate optimum solution to problem (13), found by heuris-
tic search. We can see that both approximations have very low MSE, while the
second approximation performs better for all levels of back-off. Therefore, we
focus on the second approximation for solving the approximate version of the
panel selection problem (11).

Fig. 4 illustrates the performance of LIS, in terms of lower bound on spec-
tral efficiency (SE), when adopting the proposed sub-optimal solution for panel
selection compared to the global optimum case found by solving (11) with
heuristic search. We have also included a base-line approach where the LIS
only selects the panels with highest channel gain which is the optimal solution
in ideal systems. Firstly, we can see that in the presence of RX-chain hardware
distortion, panel selection can improve the system performance significantly.
Secondly, we can see that the proposed sub-optimal solution based on the sec-
ond approximated power level from Lemma (5) has near-perfect performance.
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Figure 4: SE lower bound vs number of panels. The UE is at distance d = 50λ from
the center of LIS transmitting with power P such that SNR= 10dB at the center
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Nmax = ⌈0.1N⌉, boff = 7dB, and there is a distance of δp = 5λ between the center of
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5 Conclusion

In this paper, we have studied the hardware distortion effects in LISs with
non-ideal RX-chains. Firstly, we considered the memory-less polynomial model
and formulated the SNDR for the LIS. Although the SNDR can be character-
ized in closed-form this model, the resulting expression gives poor analytical
tractability towards solving optimization problems such as LIS panel selection.
Thus, we have proposed a double-parameter exponential model for the distor-
tion power and employed it to characterize close-form approximate solutions to
the LIS panels. The proposed methods attain close-to-optimum performance,
essentially overlapping the performance achieved by global optimum solutions
found through heuristic search.

Appendices 1 6 Proof of Approximations

To solve (13), we can show that the problem is convex4. We can therefore
solve it by finding the roots of the first derivative of the objective function. The

4The proof is not included but it is straightforward.
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equation to find the roots can be simplified to

σ2 − qβρq+1e−βρq

= 0. (16)

By defining x ≜ βρq+1 and approximating e−βρq

with e−x, we have

σ2 − qxe−x ≈ 0. (17)

Fitting the proposed exponential model to the measurement data from [14] shows
that in all cases β ≪ 1, which results in x ≪ 1. Therefore, we can use the
Taylor approximation to write qxe−x ≈ x(1−x). Replacing this in (17) results
in a quadratic equation which gives the first approximated solution ρopt1 .

The second approximation ρopt2 can be found by taking the natural logarithm
of (16) which results in

Ln(σ2) = (q + 1)Ln(ρ) + Ln(qβ)− βρq. (18)

As discussed above, βρq ≪ 1, therefore we can neglect the last term, and solve
the above equation for ρ which results in the closed form approximated solution
ρopt2 .
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[5] J. V. Alegŕıa and F. Rusek, “Achievable rate with correlated hardware
impairments in large intelligent surfaces,” in 2019 IEEE 8th Interna-
tional Workshop on Computational Advances in Multi-Sensor Adaptive
Processing (CAMSAP), 2019, pp. 559–563.

[6] A. Sheikhi, F. Rusek, and O. Edfors, “Massive MIMO with per-antenna
digital predistortion size optimization: Does it help?” In ICC 2021 - IEEE
International Conference on Communications, 2021, pp. 1–6.

https://arxiv.org/abs/2411.04702


PAPER IV 131
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Over-the-Air DPD and Reciprocity

Calibration in Massive MIMO and

Beyond

Non-linear transceivers and non-reciprocity of downlink and uplink

channels are two major challenges in the deployment of massive MIMO

systems. We consider an OTA approach for DPD and reciprocity cal-

ibration to jointly address these issues. In particular, we consider a

memory-less non-linearity model for the BS transmitters, and we propose

a method to perform both linearization and reciprocity calibration based

on mutual coupling OTA measurements between BS antennas. We show

that, by using only the OTA-based data, we can linearize the transmitters

and design the calibration to compensate for both the non-linearity and

non-reciprocity of BS transceivers. This allows alleviating the require-

ment to have dedicated hardware modules for transceiver linearization.

Moreover, the proposed reciprocity calibration method is solely based

on closed-form linear transformations, achieving a significant complexity

reduction over state-of-the-art reciprocity methods, which assume linear

transceivers, and rely on iterative methods. Simulation results showcase

the potential of our approach in terms of the calibration matrix estimation

error and downlink data-rates when applying ZF precoding after using our

OTA-based DPD and reciprocity calibration method.
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1 Introduction

Massive MIMO has been one of the main technologies in the development of
the fifth-generation (5G) of wireless networks, by enabling significant improve-
ments in network capacity and reliability [1]. In the early stages of massive
MIMO development, several proposals motivated the adoption of FDD in mas-
sive MIMO deployments. While some advantages may arise from considering
FDD [2], the over-head in downlink channel estimation is an important draw-
back which limits the system scalability. Therefore, TDD is selected as the
more viable approach for the deployment of massive MIMO in 5G and beyond,
since it enables downlink channel estimation based on uplink channel state
information (CSI) and channel reciprocity [3].

In ideal TDD systems, perfect channel reciprocity allows the BS to use
the UL CSI for DL precoding. However, in practical deployments, the dif-
ferences between TX and RX hardware may compromise this assumption [4].
To compensate the differences, reciprocity calibration methods are employed.
There are several approaches for reciprocity calibration in massive MIMO.
OTA-based reciprocity calibration methods relying on mutual-coupling mea-
surements are specially promising since they do not require dedicated hard-
ware for calibration [4], [5], [6], [7]. Another challenge in implementing massive
MIMO systems is the non-linear response of the transceivers. There are sev-
eral methods to compensate these non-linear effects, with per-antenna DPD
being the most favorable option because of its effectiveness. To perform the
DPD, many approaches rely on input-output measurements of the TX-chains
with the aim of designing an inverse function for canceling the non-linear effects
[8]. OTA-based DPD approaches, such as methods based on wireless links with
near-field or far-field probes, have emerged as an efficient alternative to linearize
the amplifiers [9]. To the best of our knowledge, no prior work has addressed
the joint problem of reciprocity calibration and TX-chain linearization using
OTA techniques. Specifically, existing literature does not explore approaches
that unify DPD and reciprocity calibration within a shared framework, thereby
reducing the need for dedicated DPD modules.

In this paper, we propose a method exploiting OTA measurements of inter-
antenna mutual couplings at the BS to perform both the DPD and reciprocity
calibration. The literature on reciprocity calibration has focused on the latter
by assuming linearized transceivers [4], [5], [6], [7]. This assumption is not
accurate in practical cases, especially when scaling up massive MIMO systems,
which necessitates deploying less expensive non-linear components and non-
ideal linearization techniques for cost-efficiency reasons. Therefore, we assume
that the TX-chains in the BS are non-linear and we propose a method to lin-
earize them based on mutual coupling measurements. Our approach relies on
the same hardware available for OTA-based reciprocity calibration, which im-
proves resource efficiency by eliminating the need for dedicated hardware to
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perform per-antenna DPD. Considering the linearized transmitters after ap-
plying our OTA-based method, we derive a reciprocity calibration approach
which depends only on linear closed-form transformations. Thus, the proposed
reciprocity calibration allows for a significant complexity reduction over iter-
ative methods focusing on the reciprocity calibration problem [4], [5], [6], [7].
Numerical results show that, even with the extra challenge of having to deal
with non-linear TX-chain compensation, the calibration matrix estimation er-
ror approaches the Cramer-Rao Lower Bound (CRLB), which was derived in
[5]. We also evaluate the system performance in downlink data transmission us-
ing ZF precoding and show that the proposed method can approach the perfect
calibration performance even though we are considering non-linear TX-chains.

2 System Model

We consider a TDD multi-user-MIMO scenario where an M -antenna BS serves
K ≤ M UEs through a narrow-band channel. For the UEs, we assume that
the TX- and RX-chains are both operating in the linear regime. For the BS,
we assume that the RX-chains are also operated in the linear regime, but the
TX-chains exhibit non-linear response.5

2.1 Uplink

The M × 1 vector of received symbols at the BS during an UL transmission
may be expressed as

yB = HULsU + nB, (1)

where sU is the K × 1 vector of input symbols to each UE TX-chain and
nB ∼ CN (0, N0,BIM ) models the additive white Gaussian noise (AWGN) at
the BS. The M ×K channel matrix, is given by

HUL = RBHTU, (2)

where RB = diag(rB1 , . . . , r
B
M ) and TU = diag(tU1 , . . . , t

U
K) are associated with

the linear response of the BS receivers and the UE transmitters, respectively,
and H corresponds to the M ×K reciprocal propagation channel matrix [5].
The UL channel in (2), which includes the effects of the UE transmitters and
the BS receivers, can be estimated at the BS based on UL pilots transmitted by
the UEs, allowing for effective implementation of linear processing techniques,
e.g., ZF and MRC.

5Assuming non-linear behavior only in the BS TX-chains is reasonable taking into account
that this is where the input power is significantly higher, pushing the power amplifiers to the
non-linear regime [10]. For the UEs, this non-linearity may be compensated with a single
DPD module per UE.



PAPER V 139

Note that, if the UEs transmitters had non-linear behavior, the term TU in
the estimated UL channel would be substituted by a non-linear function of the
pilot matrix. A thorough study of this case may be considered in future work,
but the presented method would still be able to cope with the non-linearity
and non-reciprocity originated at the BS side.

2.2 Downlink

During the DL transmission phase, the K×1 vector of symbols received at the
UEs may be expressed as

yU = RUH
Tf(xB) + nU, (3)

where xB is the M × 1 vector of input symbols to each BS TX-chain, nU ∼
CN (0,diag(N0,U1

, . . . , N0,UK
)) models the AWGN at the UEs,

RU = diag(rU1 , . . . , r
U
K) is associated with the linear response of the UE re-

ceivers, and f : CM×1 → CM×1 is a vector-valued function modeling the non-
linear response of the BS TX-chains. We assume that the transmitted symbols
are generated such that

xB = g(WsB), (4)

where sB is the K × 1 vector of symbols intended for the UEs, W is the
M ×K linear precoding matrix applied at the BS baseband unit (BBU), and
g : CM×1 → CM×1 is the non-linear vector-valued function associated to the
DPD applied at each TX-chain.

Let us assume that the cross-talk between TX-chains is negligible so that
f(·), and correspondingly g(·), are component-wise functions. Considering a
third-order memory-less polynomial model [11], we have

fm(x) = tBmxm + βmxm|xm|2, ∀m ∈ {1, . . . ,M}, (5)

where tBm and βm are two complex scalars characterizing the non-linear response
of the m’th TX-chain at the BS. In general, the BS TX-chain and UEs RX-
chain responses are unknown, which means that the non-linear parameters tBm
and βm, as well as the diagonal entries of RU, are unknown at the BS. Note
that, unlike state-of-the-art work on reciprocity calibration [4], [5], [6], [7],
where f(·) is associated to a linear transformation TB = diag(tB1 , . . . , t

B
M ), we

cannot hereby define an aggregated DL channel matrix due to the non-linear
nature of the TX-chains.

2.3 Background: OTA Reciprocity Calibration

As mentioned earlier, previous work has addressed the problem of reciprocity
calibration in massive MIMO assuming BS TX-chains operating in linear regime
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[4], [5], [6], [7]. Under such assumptions, we may define the DL channel matrix
as

HDL = RUH
TTB, (6)

which may be also derived from the presented system model, assuming βm = 0
in (5).6 The main goal of reciprocity calibration methods is to estimate the
reciprocity matrix,

C = TBR
−1
B . (7)

The reason is that, if we have knowledge of C, we can transform the estimated
UL channel matrix into

H̃DL = (CHUL)
T

= TUH
TTB.

(8)

Note that H̃DL corresponds to HDL up to an unknown K×K diagonal matrix,

namely D = TUR
−1
U , multiplied from the left. Hence, H̃DL can be effectively

used for linear precoding, with the only caveat that the symbols received by
the UEs would end up multiplied by an unknown scalar, which has negligible
impact on system performance [12].7 We may thus ignore the non-reciprocity
associated to the UEs hardware, modeled by RU and TU, and focus on char-
acterizing the non-reciprocity associated to the BS. An important advantage
of the OTA-based calibration methods which are based on mutual coupling
measurements is that they avoid the need for dedicated hardware to character-
ize the linear response of each TX-chain, and can improve the cost-efficiency of
massive MIMO systems [5]. Similarly, we can argue that having dedicated hard-
ware to perform DPD may compromise the cost-efficiency of MIMO systems
with increasing number of antennas, e.g., massive MIMO and beyond. Thus,
we next propose a method to jointly characterize the non-linear response of the
BS TX-chains, as well as the resulting reciprocity matrix, to suitably design
g(·) and W for effectively serving the UEs in the DL.

3 OTA DPD and reciprocity calibration

Our proposed method may be divided into three stages:

• First, the non-linear response of the BS TX-chains, associated to f(·), is
estimated based on OTA mutual coupling measurements.

• Second, the DPD, associated to g(·), is designed based on the estimated
non-linear response.

6Equivalently, reciprocity calibration problems in [4], [5], [6], [7] may be obtained by
assuming perfect DPD up to unknown scalars, i.e., f(g(x)) = TBx.

7In practice, this issue is addressed by sending a DL pilot [5].
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• Third, reciprocity calibration is performed based on the DPD-linearized
BS TX-chains, after which effective DL precoding, associated to W , be-
comes available at the BS.

3.1 OTA non-linearity characterization

In this stage each BS antenna transmits Ndpd ≥ 2 inter-antenna pilot signals to
estimate the non-linearity parameters. The signal received at the j’th antenna
when the ℓ’th pilot, ℓ ∈ {1, . . . , Ndpd}, is transmitted by the i’th antenna may
be expressed as

yij,ℓ = hijrj
(
tixi,ℓ + βixi,ℓ|xi,ℓ|2

)
+ nij,ℓ, (9)

where hij is the mutual coupling gain between antennas i and j, which is
assumed fixed and known at the BS,8 xi,ℓ is the ℓ’th pilot symbol transmitted
by the i’th antenna, and nij,ℓ ∼ CN (0, N0) models the measurement noise.
Note that we have removed the superscript B from the parameters rj and ti
for notation convenience since, as previously reasoned, we may focus on the
non-reciprocity associated to the BS.

For each pair of non-linearity parameters associated to one TX-chain, there
are M − 1 relevant DPD measurements per pilot transmission, i.e., all of those
originated in the same antenna, but received at different antennas. Thus, each
of these measurements would share the same ti and βi in (5), but they would be
related to a different complex gain rj , associated to the linear response of the
RX-chain from the respective receiving antenna. Since the complex gains rj are
unknown, it is not possible to directly estimate the non-linearity parameters ti
and βi from this dataset. However, we may combine the M − 1 measurements
by averaging them after compensating for the known mutual coupling gains,
so as to reduce the uncertainty, as well as the resulting noise. The combined
measurements are then given by

ỹi,ℓ =
1

M − 1

∑
j ̸=i

yij,ℓ
hij

= qi(tixi,ℓ + βixi,ℓ|xi,ℓ|2) + ñi,ℓ,

(10)

where the uncertainty is now captured in the unknown parameter qi, given by

qi =
1

M − 1

∑
j ̸=i

rj . (11)

8The coupling gains may be characterized with a single measurement of the antenna
system using a network analyzer [5]. Thus, knowledge of these may be assumed in any
MIMO-related scenario with co-located TX antennas.
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Note that one could also explore alternative optimized combinations to the
simple average in (6). For example, a weighted average could be optimized
assuming a specific model for hij or a concrete probability distribution for rj ,
but this is out of scope for this paper and may be considered in future work.
On the other hand, explicit knowledge of hij could be avoided by absorbing it
into qi, as further remarked in Sec. 3.3.

The Ndpd× 1 data vector ỹi = [ỹi,1, . . . , ỹi,Ndpd
]T may then be used to esti-

mate the non-linearity parameters of each antenna up to the unknown factor qi.
Since our initial aim is to compensate the non-linear response of the TX-chains,
this is still possible if we know the non-linear response up to an unknown linear
factor, which would only have a linear effect after the non-linearity compensa-
tion. In this case, the DPD would be designed as if the non-linearity parameters
are θ1i = qiti and θ2i = qiβi. We may thus rewrite the combined data vector
as

ỹi = Φiθi + ñi, (12)

where θi = [θ1i, θ2i]
T is the 2 × 1 vector of parameters to be estimated,

Φi is the Ndpd × 2 known pilot matrix whose columns are given by Φi,1 =
[xi,1, . . . , xi,Ndpd

]T and Φi,2 = [xi,1|xi,1|2, . . . , xi,Ndpd
|xi,Ndpd

|2]T, and ñi ∼
CN (0, ςiINdpd

) is the resulting noise vector where

ςi =
N0

(M − 1)2

∑
j ̸=i

1

|hij |2
. (13)

Since the noise vector is white i.i.d Gaussian, the least-squares (LS) estimator
is also the minimum-variance unbiased (MVU) estimator [13], and can be used
to estimate the scaled non-linearity parameters as

θ̂i = (ΦH
i Φi)

−1ΦH
i ỹi. (14)

Note that, while we have presented our method for a 3rd order non-linearity
model (5), which is the main source of inter-modulation terms falling within
the operating frequencies, the method can be generalized for higher order non-
linearity models as well. In case of considering non-linearity polynomial models
of higher order, the vector θ (correspondingly Φ) would include one term per
polynomial coefficient and the presented method would still be applicable. Al-
ternatively, one can fit any RF non-linear behavior to the 3rd order model,
which should still capture its main impact [14].

3.2 DPD linearization

In this stage the non-linearity parameters estimated in the previous stage are
used to linearize the output via DPD, i.e., by adjusting g(·) in (3). The true
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non-linearity to compensate is the nonlinear function given in (5). However, the
estimated non-linearity parameters in (14), θ1i and θ2i, characterize a different
component-wise function given by

f̃m(x) = θ1mxm + θ2mxm|xm|2

= qmfm(x).
(15)

We may thus express
f(x) = Q−1f̃(x), (16)

where Q = diag(q1, . . . , qM ).
Since the function f̃(·) is fully characterized, we can find its inverse by using

methods such as the postdistortion approach [15]. We may then select

g(·) = f̃−1(·), (17)

which is applied to the the transmitted symbols as described in (3). In practice,
perfect DPD inversion may not be fully achievable, mainly due to limited DPD
size and imperfect estimation of non-linearity parameters. We have considered
imperfect inversion in the numerical results from Section 4.

The resulting symbols transmitted through the reciprocal channel, may then
be expressed as

f(xB) = Q−1f̃(g(WsB))

= Q−1WsB.
(18)

Hence, applying the proposed OTA-DPD, results in an equivalent linear trans-
mitter gain given by T̃B = Q−1. Now that the transmitter is linear, we can
define a DL channel matrix equivalent to (6), but substituting TB for T̃B, so
that reciprocity calibration methods as those presented in [4], [5] are directly
applicable. However, we will show that the reciprocity calibration can be per-
formed without the need for complex iterative methods.

3.3 Reciprocity calibration

The last stage consists of performing OTA-based calibration considering the
TX-chains previously linearized through the OTA-DPD stages. To this end,
each BS antenna transmits pilots to other antennas. The received symbols at
the j’th antenna from the i’th antenna may be expressed as

yij = hijrj t̃ixij + nij , (19)

where the variables have direct correspondence with those defined in (5), but
substituting ti for t̃i = 1/qi and having βi = 0. The measurements defined in
(16) can be directly employed to estimate the product of unknown parameters
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rj t̃i. In fact, we may now use the trivial MVU estimator, given by

r̂j t̃i =
1

hijxij
yij . (20)

However, in order to perform reciprocity calibration, we are actually inter-
ested in the reciprocity parameters, cm = t̃m/rm, which define the adjusted
reciprocity matrix entries from (7).

In [5], it was noted that multiplying all the reciprocity parameters by a
common scalar does not compromise the effectiveness of the reciprocity cali-
bration.9 Thus, we may select one of the calibration parameters, e.g., c1, and
normalize all the rest by that value. The resulting scaled calibration parameters
may then be expressed as

c̃m ≜
cm
c1

=
r1t̃m

rmt̃1
(21)

which corresponds to the ratio of rj t̃i products appearing in (17) for (i, j) ∈
{(1,m), (m, 1)}. Since each of these products can be estimated through (17),
we can find estimates for the scaled calibration parameters by

̂̃cm =
r̂1t̃m

r̂mt̃1

. (22)

The estimation error of ̂̃ci can be reduced by averaging several estimates of
r1t̃i and rit̃1, which is possible if each BS antenna transmits Ncal ≥ 2 pilots
in (16). Note further that, assuming reciprocity of the mutual coupling coef-
ficients, i.e. hij = hji, we could still estimate c̃m using (16) without explicit
knowledge of hij since the coefficients would cancel each other in (19). The
method does not rely on this assumption, since the coupling coefficients can be
estimated in practice. Nevertheless, the coupling coefficients between antennas
are reciprocal per definition since we are absorbing the non-reciprocity within
our model.

We have thus shown that we can estimate all the entries of the calibration
matrix up to a constant, i.e., we can estimate C̃ = 1

c1
C, by means of simple

linear estimators. This allows achieving reciprocity without the need for high
complexity iterative algorithms, such as the algorithms used in [5].
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Figure 1: Average MSE of calibration matrix estimation using the proposed OTA
DPD and reciprocity calibration.

4 Numerical results

In this section, we perform simulations to validate the feasibility and assess
the performance of the proposed method. The number of BS antennas and the
number of single-antenna UEs are M = 100 and K = 10, respectively. For
the BS TX-chains non-linearity parameters in (5), we fit a 3rd order polyno-
mial to the measurement data from [14] for a Gallium Nitride (GaN) amplifier
operating at 2.1 GHz at a sample rate of 200 MHz and a signal bandwidth
of 40 MHz. For the RX-chains complex gains, we use the values in [5] given
by rBm = 0.9 + 0.2M−m

M exp(j2πm/M). To implement the imperfect inverse
function in the DPD, we generate a look-up table based on the OTA data. For
the mutual coupling channel gains in (5), we have used the linear LS fit based
on the measurements in [5]. We also define the OTA link SNR as the receive
SNR for the link between the antennas with least mutual coupling gain.

Fig. 1 illustrates the average MSE of the calibration matrix estimation with
our proposed OTA-based method for different levels of SNR. The calibration
matrix is estimated after performing the OTA-DPD, with Ndpd = 500 or 2000
OTA transmissions. In the calibration step, we have considered Ncal = 200,
500, or 2000 OTA transmissions. Note that transceiver characteristics are
slowly-varying parameters, which means that even larger values of Ndpd and

9This constant scalar may be absorbed in the linear response of the UEs RX-chains, given
by RU in (3).
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Ncal would still have a rather small impact on the total overhead. For compar-
ison we have included an upper bound for the performance of the reciprocity
calibration problem at hand, CRLB, derived in [5], which assumes linear TX-
chains. We have also included the case with an ideal DPD followed by the
OTA-based reciprocity calibration. Firstly, we can see that the performance
of the OTA-based DPD and reciprocity calibration approaches the ideal DPD
case. Secondly, we can see that the performance is fairly close to the CRLB,
even though we have the extra challenge of dealing with non-linear TX-chains.
Note that, in order to approach the CRLB, which is the ultimate performance
bound for the reciprocity problem, [5] requires an iterative algorithm of con-
siderable complexity. The reported complexity order in [5], which is consid-
ered state-of-the-art in massive MIMO reciprocity calibration [16], is given by
O(M2Nite), where Nite is the number of iterations of the algorithm. The com-
plexity of our reciprocity calibration method is given by O(MNcal), since it
requires averaging Ncal numbers where each of them is obtained by performing
2 multiplications for each of the M−1 antennas. Thus, for massive MIMO and
beyond, where M ≫ 1, our method may even attain significant complexity re-
duction, since reducing Ncal only has a minor impact on the calibration matrix
MSE, as seen from Fig. 1. Other state-of-the-art reciprocity calibration meth-
ods require even higher complexity, while their performance is still limited by
the CRLB. For example, the one in [7] for mm-Wave systems requires O(M3)
complexity to tackle the non-reciprocity problem with linear transceivers.

Fig. 2 illustrates the CDF of DL data rate under ZF precoding, where we
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have generated 104 DL realizations of an i.i.d. Rayleigh fading channel, and
the DL signal power for each UE is selected to achieve an average SNR of 10
dB at their receivers. We have selected Ncal = 500 for the OTA reciprocity
calibration, OTA reference SNR of 0 dB, and OTA-DPD with Ndpd = 500. We
have also performed the same reciprocity calibration for a case with perfect
DPD. For comparison, we have included two extreme cases both with a perfect
DPD, one with perfect DL CSI (ideal calibration), and one worst-case scenario
with no calibration. We can observe that the limited-size DPD performs very
close to the perfect DPD case, which further confirms the observations from
Fig. 1. As for the calibration performance, we can see that the proposed OTA-
DPD and reciprocity calibration approaches the ideal case with perfect DL
CSI, without requiring high-complexity iterative algorithms, even-though we
are dealing with the extra challenge of non-linear TX-chains. The gain from
adopting the proposed OTA-case is more significant for higher number of an-
tennas, i.e., massive MIMO and beyond, and the OTA-DPD performs closer to
the ideal DPD case.

5 Conclusion

In this paper, we have proposed an OTA-based method for DPD and reci-
procity calibration in massive MIMO and beyond. In particular, we considered
a memory-less non-linearity model for the BS transmitters and proposed to per-
form the linearization and reciprocity calibration by using OTA measurements
of the mutual coupling among the BS antennas. We showed that, by only using
the OTA data, we can effectively linearize the transmitters and perform reci-
procity calibration with reduced complexity over state-of-the-art. Simulation
results showed promising performance of the proposed methodology, both in
terms of the calibration matrix estimation error and the DL data-rates when
applying ZF precoding after our OTA-based DPD and calibration method.
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We consider OTA-based approaches for joint DPD and reciprocity cal-

ibration in LIS systems. We build upon a state-of-the-art OTA-DPD and

reciprocity calibration method, which we adapt for application in a LIS

scenario, under non-linear transmitters modeled by a memory-less poly-

nomial model of arbitrary order. While the OTA-based method can be

effective for LIS systems in general, its performance may degrade un-

der specific channel conditions, especially in panel-based LIS deployment,

which is considered as a more practical implementation scheme for LISs.

Therefore, we propose specific methods to improve the performance of the

OTA-based calibration for panel-based LIS scenarios. We show that, un-

der certain conditions, such as severe channel attenuation between certain

panels, the performance of the original joint DPD and reciprocity calibra-

tion method can degrade substantially. To address this, we propose spe-

cific techniques to improve the performance under such conditions, mainly

by exploiting intra-panel and inter-panel OTA transmissions separately,

for DPD and calibration. Numerical results show that the proposed tech-

niques significantly enhance the performance of OTA-based methods, ef-

fectively enabling the OTA-DPD and calibration for practical panel-based

LIS systems.
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1 Introduction

LISs have emerged as one of the promising technologies to enable the future ad-
vancements in wireless communication networks [1], [2]. While massive MIMO
has already reached its maturity with the vision to meet the requirements of
5G networks, there is still significant gap between the initial visions and the
practical deployments, and LISs are envisioned to potentially fill those gaps
[3]. In theory LISs are proposed as continuous electromagnetically active sur-
faces, practical deployments are mostly leaning toward implementing the LIS
as a dense array of antenna elements, or more practically, as a large number of
multi-antenna panels [4]. In that sense, LIS is considered as scaled up massive
MIMO systems, where the number of antenna elements grows even larger, en-
abling more exploitation of the spatial domain and near-field communication
[5].

LISs are envisioned to work in TDD mode, same as massive MIMO, which
means reciprocity calibration methods as the ones proposed for massive MIMO
are needed to enable downlink precoding for LIS-based networks. Practical
deployments and testbed have shown that OTA-based reciprocity calibration
methods are very effective for massive MIMO systems [6], [7]. On the other
hand, when scaling up massive MIMO systems, the necessity to deploy less-
expensive non-ideal transmit and receive chains is of great importance. With a
larger number of antenna elements, the linearization techniques can also cause
an overhead in system complexity and overall power consumption. OTA-based
DPDmethods that jointly deal with non-linearity compensation and reciprocity
calibration have been shown to be effective for massive MIMO scenarios with
3rd order non-linearity [8].

In this paper, we first formulate the OTA-based DPD and reciprocity cal-
ibration for a panel-based LIS scenario, and formalize the results to consider
non-linearity memory-less polynomial models of arbitrary order. Then, we show
that under specific conditions on the inter-antenna and inter-panel channels,
the performance of state-of-the-art calibration methods can suffer from signif-
icant degradation. Therefore, specific techniques are needed to improve the
OTA-based methods performance for the panel-based LIS. We present specific
techniques to achieve this, mainly proposing to perform the OTA-based DPD
and calibration in two steps by exploiting the inter-panel and inter-panel OTA
links separately. Numerical results show that the OTA-based method is effec-
tive for DPD and calibration in LIS systems. Moreover, when the performance
is degraded because of the channel conditions, the proposed techniques are
effective to compensate that effect and improve the calibration performance.
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2 System Model

We consider a DL TDD multi-user-MIMO scenario where a LIS serves K
single-antenna UEs through a narrow-band channel. We assume imperfect
transceivers at the LIS antenna elements, and uplink-downlink channel non-
reciprocity due to different TX-chain and RX-chain hardware components at
the LIS. The LIS consists of N panels, each equipped with M antenna ele-
ments. The i’th antenna RX-chain linear response is modeled by a complex
gain, ri ∈ C, and the TX-chain non-linear response is given by

fi(xi) =

L−1∑
k=0

a2k+1,i xi|xi|2k, (1)

where xi ∈ C is the input signal and a2k+1,i, k ∈ {1, . . . , L}, are the unknown
model coefficients for the i’th TX-chain, with i ∈ {1, . . . ,MN} corresponding
to the antenna element located at panel n = ⌈ i

M ⌉ and antenna element m =
mod(i − 1,M) + 1. For the UEs, we assume linear TX-chain and RX-chain
gains tUk and rUk .

During the DL transmission phase, the K × 1 vector of symbols received at
the UEs may be expressed as

yU = RUH
Tf(xL) + nU, (2)

where xL is the MN × 1 vector of input symbols to each LIS TX-chain,
nU ∼ CN (0,diag(N0,U1

, . . . , N0,UK
)) models the AWGN at the UEs, RU =

diag(rU1 , . . . , r
U
K) , and f : CM×1 → CM×1 is a vector-valued function modeling

the non-linear response of the LIS TX-chains. We assume that the transmitted
symbols are generated as

xL = g(Ws), (3)

where s is the K×1 vector of symbols intended for the UEs, W is the MN×K
linear precoding matrix applied at the LIS, and g : CMN×1 → CMN×1 is the
non-linear vector-valued function associated to the DPD applied at each TX-
chain.

Let us assume that the cross-talk between the LIS TX-chains is negligible so
that f(·), and correspondingly g(·), are component-wise functions. Therefore,
the input-output relation for the i’th element of f is directly given by (1). In a
TDD system, the LIS selects W based on the UL CSI. During the UL channel
estimation phase, the linear response of the UEs TX-chains and the LIS RX-
chains affect the CSI, which compromises the reciprocity between the DL and
UL effective channels. The MN ×K UL channel is given by

HUL = RLHTU, (4)
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where RL = diag(r1, . . . , rMN ) and TU = diag(tU1 , . . . , t
U
K), and H corresponds

to the MN ×K reciprocal propagation channel matrix [7].

3 OTA-DPD and reciprocity Calibration

In this section, we generalize the OTA-based DPD and calibration method
proposed in [8] for a LIS system with non-linear transceivers of an arbitrary
order. We formulate the OTA-based method for a panel-based LIS scenario in
the general case with and without inter-coupling coefficients knowledge. Then,
we show that, in common panels-based LIS scenarios, the OTA-based method
performance can degrade significantly due to the increased path-loss between
some of the LIS panels, for which we need specific techniques to compensate
for this performance loss.

Let us start by formulating the original OTA-based DPD and reciprocity
calibration method for a LIS scenario. The OTA-based solution may be divided
into three stages:

• First, the non-linear response of the LIS TX-chains, associated to f(·),
is estimated based on OTA mutual coupling measurements between the
LIS antennas.

• Second, the DPD, associated to g(·), is designed based on the estimated
non-linear response.

• Third, reciprocity calibration is performed based on the DPD-linearized
LIS TX-chains, after which effective DL precoding, associated to W ,
would become available at the LIS.

In the first stage, each antenna element from all the panels transmitsNdpd ≥
2 inter-antenna pilot signals to other panels. The signal received at the j’th
antenna when the ℓ’th pilot, ℓ ∈ {1, . . . , Ndpd}, is transmitted by the i’th
antenna may be expressed as

yij,ℓ = hijrj

(
L−1∑
k=0

a2k+1,i xi,ℓ|xi,ℓ|2k
)

+ nij,ℓ, (5)

where hij is the mutual coupling gain between antennas i and j, xi,ℓ is the ℓ’th
pilot symbol transmitted by the i’th antenna, and nij,ℓ ∼ CN (0, N0) models
the measurement noise. For the non-linearity parameters, a2k+1,i, associated
to one TX-chain, there are NM − 1 relevant DPD measurements per pilot
transmission. Thus, each of these measurements would share the same a2k+1,i,
but they would be related to a different complex gain rj , associated to the linear
response of the RX-chain from the respective receiving antenna. Since the the
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coupling gain hij and the complex gains rj are unknown, it is not possible to
directly estimate the non-linearity parameters from this dataset. However, we
may combine the measurements and estimate and scaled version of the desired
coefficients. In general, the combined measurements are given by

ỹi,ℓ =
∑
j ̸=i

wijyij,ℓ

= qi

(
L−1∑
k=0

a2k+1,i xi,ℓ|xi,ℓ|2k
)

+ ñi,ℓ,

(6)

where wij is the combining weights, and the uncertainty is now captured in the
unknown parameter qi, given by

qi =
∑
j ̸=i

wijhijrj . (7)

The Ndpd × 1 data vector ỹi = [ỹi,1, . . . , ỹi,Ndpd
]T may then be used to

estimate the non-linearity parameters of each antenna up to the unknown fac-
tor qi. Since our initial aim is to compensate the non-linear response of the
TX-chains, this is still possible if we know the non-linear response up to an
unknown linear factor, which would only have a linear effect after the non-
linearity compensation [8]. In this case, the DPD would be designed as if the
non-linearity parameters are θk+1,i = qia2k+1,i for k = 0, 1, . . . , L− 1. We may
thus rewrite the combined data vector as

ỹi = Φiθi + ñi, (8)

where θi = [θ1i, θ2i, . . . , θLi]
T is the L×1 vector of parameters to be estimated,

Φi is the Ndpd × L known pilot matrix whose k’th column is given by

ϕi,k = [xi,1|xi,1|2k, . . . , xi,Ndpd
|xi,Ndpd

|2k]T. (9)

ñi ∼ CN (0, ςiINdpd
) is the resulting noise vector where

ςi = N0

∑
j ̸=i

|wij |2. (10)

Since the noise vector is independent and identically distributed Gaussian, the
LS estimator is also the MVU estimator [9], and can be used to estimate the
scaled non-linearity parameters as

θ̂i = (ΦH
i Φi)

−1ΦH
i ỹi. (11)
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In the second stage, the non-linearity parameters estimated in the previous
stage are used to linearize the output via DPD, i.e., by adjusting g(·) in (3).
For analytical tractability, let us assume for now that θi has been perfectly
estimated from (8). The actual non-linearty to compensate is the nonlinear
function given in (1), while the estimated non-linearity parameters in (11)
characterize a different component-wise function given by

f̃i(x) = qifi(x). (12)

We may thus express
f(x) = Q−1f̃(x), (13)

where Q = diag(q1, . . . , qMN ).
Since the function f̃(·) is fully characterized, we can find its inverse by using

methods such as the postdistortion approach [10]. We may then select

g(·) = f̃−1(·), (14)

which is applied to the the transmitted symbols as described in (3). We con-
sider a perfect inverse function here while the effects of an imperfect inversion
is studied in the numerical results. The symbols transmitted through the re-
ciprocal channel are then given by

f(xB) = Q−1f̃(g(WsB))

= Q−1WsB.
(15)

Hence, applying the proposed OTA-DPD, results in an equivalent linear trans-
mitter gain given by T̃B = Q−1. Now that the transmitter is linear with an
unknown complex gain, we can define a DL channel matrix, but substituting
TB for T̃B, so that reciprocity calibration methods as those presented in [6], [7]
are directly applicable. However, we will show that the reciprocity calibration
can be performed without the need for complex iterative methods.

In the third stage, OTA-based reciprocity calibration is performed consid-
ering the TX-chains previously linearized through the DPD linearization stage.
To this end, each LIS antenna transmits Ncal ≥ 1 inter-antenna pilots to other
antennas. The received symbols at the j’th antenna from the i’th antenna may
be expressed as

yij = hijrj t̃ixij + nij , (16)

where the variables have direct correspondence with those defined in (5), but
substituting a1,i for a1,i = 1/qi and having all other coefficients a2k+1,i =
0. The measurements defined in (16) can be directly employed to estimate a
product of unknown parameters, given by τij ≜ hijrj t̃i. In fact, we may now



160 Paper VI

use the trivial MVU estimator, given by

τ̂ij = E
[
yij
xij

]
. (17)

where the expectation is taken over the Ncal pilot transmission. We are in-
terested in finding the calibration coefficients cm = t̃m/rm from the estimates
τ̂ij . In [7], it was noted that multiplying all the reciprocity parameters by a
common scalar does not compromise the effectiveness of the reciprocity cali-
bration.10 Thus, we may select one of the calibration parameters, e.g., c1, and
normalize all the rest by that value. The resulting scaled calibration parameters
may then be expressed as

c̃m ≜
cm
c1

=
r1t̃m

rmt̃1
. (18)

Since we are capturing the non-reciprocity in the unknown parameters, the mu-
tual coupling coefficients will be reciprocal per definition, i.e., hij = hji. The
term c̃m corresponds to the ratio of the parameters τij for (i, j) ∈ {(1,m), (m, 1)}.
Therefore, we can estimate c̃m as

̂̃cm =
τ̂m1

τ̂1m
. (19)

We have thus shown that we can estimate all the entries of the calibration
matrix up to a constant, i.e., we can estimate C̃ = 1

c1
C, by means of simple

linear estimators. While this method can be effectively used for DPD and cal-
ibration in LIS, the performance may be degraded significantly under specific
channel conditions. In particular, the calibration performance depends heavily
on the channel between the reference antenna and the rest of the LIS. Nu-
merical results in section 5 show that under specific channel conditions, such
as when inter-panel channels suffer from severe attenuation or shadowing, the
performance of the OTA-based method can degrade significantly. In the next
section, we propose three different techniques to improve the performance of
the OTA-based method for panel-based LIS.

4 OTA-based techniques for panel-based LIS

As remarked above, the OTA-based method performance may degrade signif-
icantly under specific conditions in of the channel gain between the reference

10Note that this constant may be absorbed in the linear response of the UEs RXs-chain,
given by RU.
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antenna and the rest of the LIS. In this section, we propose specific techniques
to improve the performance under such conditions.

To reduce dependence of the calibration error on the channel between the
reference antenna and a particular antenna element, we can use the estimations
τ̂ij from another antenna as follows. Let us assume that the antenna 1 located
on panel 1 is the reference antenna, and we are estimating the calibration co-
efficient ̂̃cm for antenna m on panel n. If the channel conditions between these
two antennas are poor, but there is an atenna on another panel, for exam-
ple antenna i, which has a more favorable channel conditions to the reference
antenna and antenna m, we can estimate ̂̃cm as follows.

̂̃cm =
r̂it̃mr̂1t̃i

r̂it̃1r̂mt̃i
=

τ̂miτ̂i1
τ̂1iτ̂im

(20)

Numerical results in section 5 shows the effectiveness of this technique to further
improve the performance of calibration.

While the above technique is shown to be effective for improving the perfor-
mance of the OTA-based calibration for panel-based LIS, it still relies on the
channel conditions between a specific antenna element from another panel and
the local panel, and if for some reason this channel exhibit high attenuation, the
performance improvement would be negligible. Alternatively, we can exploit
the fact that unlike mutual coupling channels between antennas at different
LIS-panels, intra-panel mutual coupling links are less likely to suffer form poor
channel conditions due to being co-located and less dependent on the changes
in the environment. Therefore, we propose to divide the reciprocity calibration
stage from the original OTA-based method method into two steps, where the
first step focuses on intra-panel calibration, and the second step focuses on
inter-panel calibration.

In the first step, each panel performs an intra-panel, i.e., local, OTA-based
DPD and calibration, while selecting one of the antenna elements on each panel
as the reference. This results in a linearized transmitter gain, T̃n, and a local
calibration matrix

C̃n = αnT̃nR
−1
n , (21)

where αn is the unknown scalar associated to the reference antenna in the
n’th panel. Since there are several unknown scalars αn, the LIS panels can-
not coherently serve the UEs through a fully calibrated channel. Therefore, a
second step exploiting the inter-panel transmissions is needed to find the ratio
between αns, which can then be used to combine all the local calibration ma-
trices C̃n into an overall calibration matrix C̃. To find the ratios between αns,
we consider two options, time averaging and spatial averaging.

In the case of time averaging, one antenna from each panel, e.g., antenna
element i, sequentially transmits inter-panel pilots. During each inter-panel
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pilot transmission, the received signal on an antenna element, e.g., antenna
element j, associated to another panel, i.e., ⌈ j

M ⌉ ≠ ⌈ i
M ⌉, is given by

yj = rjgij t̃iwis+ nj , (22)

where gij is the propagation channel between antenna i and j, s is a pilot
symbol (which can be selected as unity), and wi is a linear precoder. The
transmitting antenna has access to the its corresponding entry from the local
calibration matrix which can be used for the precoder as

wi =
1

αi
t̃−1
i ri. (23)

Therefore, by sending Nα pilots over the same link to average out the noise,
we can have an estimate of 1

αi
r̃jgij r̃i. By doing the same transmission in the

opposite direction and taking into account the reciprocity of the propagation
channel between the panels, i.e., gij = gji, we can have an estimate of 1

αj
r̃igjir̃j .

By dividing both estimates, we can then obtain an estimate for the ratio αi

αj
.

If we do the same process between a reference panel and all other panels, we
will have the calibration matrix C̃ as described above.

The above technique relies on time averaging to estimate αn ratios, obtained
throughout Nα pilot transmission between single antenna elements from dif-
ferent panels. Alternatively, we can exploit the complete inter-panel channels,
i.e., employing the full M antennas at each panel, to find these ratios, which we
refer to as spatial averaging. For this purpose, each M -antenna panel transmits
M pilots to other panels. Combining the M pilot vectors into a matrix form,
the matrix containing the received signal vectors at panel p can be written as

Yp = RpGnpT̃nWnS +Np, (24)

where Gnp is the M × M channel matrix between LIS-panels n and p, S is
the M × M pilot matrix, and Wn is the M × M precoding matrix. Panel
n can exploit the inverse of the local calibration matrix C̃−1

n to precode the
transmitted pilot as

Wn = C̃−1
n =

1

αn
T̃−1
n Rn. (25)

If the transmitted pilot matrix S is invertible, we have

YpS
−1 =

1

αn
RpGnpRn +NpS

−1. (26)

By transmitting pilots in the opposite direction with the same procedure, we
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Figure 1: MSE of calibration matrix estimation using the proposed OTA-based
DPD and Calibration under different levels of channel blockage.

have

YnS
−1 =

1

αp
RnG

T
npRp +NnS

−1. (27)

Therefore, Zp = YpS
−1 and Zn = (YnS

−1)T are noisy versions of the same
matrixRpGnpRn scaled by 1/αn and 1/αp, respectively. By averaging over the
M2 entry-by-entry divisions of Zn and Zp, we can find an accurate estimate of
the ratio between αn and αp. The same process can be done between a reference
panel and all other panels to effectively characterize the LIS calibration matrix.

5 Numerical Results

In this section, we present numerical results to study the performance of the
OTA-based methods introduced in this paper. The LIS panels are placed on a√
N ×

√
N grid with equal distance of 5λ. Each panel corresponds to a square

uniform planar array with inter-antenna spacing of 0.5λ. The BS TX-chains
non-linearity parameters are obtained from an 11-th order polynomial model
based on [11] for a Gallium Nitride (GaN) amplifier operating at 2.1 GHz at a
sample rate of 200 MHz and a signal bandwidth of 40 MHz. The coupling gain
model from [7] is adopted for intra-panel and inter-panel channel models. The
complex gains associated to the RX-chains from each panel are modeled using
the values in [7], which consider rm = 0.9+0.2M−m

M exp(j2πm/M). To perform
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Figure 2: Average MSE of calibration matrix estimation using the proposed OTA-
based DPD and Alternative Calibration.

the DPD, we generate a look-up table based on the OTA data to implement the
inverse function of the non-linear response. For the mutual coupling channel
gains, we have used the linear LS fit based on the measurements in [7]. We
perform the simulations for different levels of a reference OTA link SNR, given
by the RX-SNR for the link between the antennas with least mutual coupling
gain. For the performance metric, we use the MSE of the calibration matrix
C̃, defined as

MSE = E

[
∥diag(C̃ −C)∥2

MN

]
(28)

which represents the average estimation error of the calibration coefficients over
all the antenna elements on the LIS.

In Fig. 1, we analyze the performance of the OTA-based method for a
panel-based LIS scenario, where we have selected antenna 1 from panel 1 as
the reference element, and assumed that panel 2 has a blockage in its channel to
reference antenna causing an extra −6 dB, −10 dB, and −20 dB attenuation on
the channel between panel 1 and 2. We can see that the estimation performance
is degraded significantly for medium to high values of blockage. Therefore,
alternative approaches and techniques are needed to improve the performance
of the OTA-based method under such conditions.

In Fig. 2, we consider the high blockage case from previous figure, and apply
the two-way OTA-based approach to improve the calibration performance. We
have considered two cases, one with a limited length NDPD, and one with an
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Figure 3: MSE of calibration matrix estimation using the proposed OTA-based
DPD and Calibration under different levels of channel blockage.

ideal DPD. We can see that in both cases, the proposed method can boost the
performance of the calibration matrix estimation, and the gain of adopting this
technique is more significant if the DPD is more accurate in the first stage of
the OTA-based method.

In Fig. 3, we have performed the second and third proposed technique which
performs the calibration in two steps, one based on time-averaging and the other
one on spatial-averaging. We have considered the same channel conditions as in
Fig. 2, and performed the simulations for different lengths of Nα in the second
step. We can see that, for a large enough Nα, the calibration error reduces
significantly compared to the original OTA-based method. On the other hand,
the spatial-averaging technique achieves a better performance for lower number
of pilot transmission.

6 Conclusion

In this paper, we have proposed OTA-based reciprocity calibration and DPD
schemes for LIS systems. In particular, we present an OTA-based method to
perform DPD on a LIS with non-linear TX-chains modeled by an arbitrary-high
order polynomial, followed by an OTA-based reciprocity calibration. We show
that, although this method can be effective in general for LIS systems, its per-
formance can be degraded under unfavorable channel conditions, such as severe
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attenuation. In particular, in panel-based LIS, which is widely considered as a
more practical implementation scheme for LIS, the original OTA-based method
performance can be affected by unfavorable inter-panel channel conditions. For
this scenarios, we propose two techniques to further improve the OTA-based
DPD and calibration. Numerical results show that the proposed techniques can
improve the performance of the OTA-based methods significantly, effectively
enabling the OTA-DPD and calibration for practical panel-based LIS systems.
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Power Scaling Laws for Radio Receiver

Front Ends

In this paper, we combine practically verified results from circuit the-

ory with communication-theoretic laws.As a result, we obtain closed-form

theoretical expressions linking fundamental system design and environ-

ment parameters with the power consumption of analog front ends (AFEs)

for communication receivers.This collection of scaling laws and bounds is

meant to serve as a theoretical reference for practical low power AFE de-

sign.We show how AFE power consumption scales with bandwidth, SNDR,

and SIR.We build our analysis based on two well established power con-

sumption studies and show that although they have different design ap-

proaches, they lead to the same scaling laws.The obtained scaling laws are

subsequently used to derive relations between AFE power consumption

and several other important communication system parameters, namely,

digital modulation constellation size, symbol error probability, error con-

trol coding gain, and coding rate.Such relations, in turn, can be used

when deciding which system design strategies to adopt for low-power ap-

plications.For instance, we show how AFE power scales with environment

parameters if the performance is kept constant and we use these results

to illustrate that adapting to fading fluctuations can theoretically reduce

AFE power consumption by at least 20x.
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1 Introduction

Low power consumption is one of the main design targets for communication
receivers, and its importance is especially high when it comes to wireless de-
vices, which are often battery-powered and therefore energy-limited. At the
same time, receivers also need to satisfy some performance requirement, such
as minimum throughput and maximum bit error rate (BER). Designing re-
ceivers that jointly meet power consumption and performance criteria tends to
be predominantly based on the experience of hardware designers. Additionally,
more often than not, receiver designs are optimized based on the worst-case
scenario of operation (the most adverse possible combination of environment
conditions under which satisfying performance must be delivered). The lat-
ter, conservative design methodology in particular is what prevents hardware
designs from exploiting their full potential for low-power operation.

It would be of significant interest to be able to theoretically predict how
much power would be consumed by a receiver with certain performance require-
ments, with all system and environment constraints taken into consideration.
Such a result would serve as a benchmark and motivation for both practical
hardware and system design, an indicator of how low the power consumption
can really be driven. If combined with the knowledge of the statistical proper-
ties of environment variables, it can also provide a measure of how much power
can be saved if the receiver adapts to the communication environment.

The analog front end (AFE) (the chain of analog signal blocks of the receiver
excluding the oscillator) typically has a defining impact on the overall perfor-
mance of the receiver, while also consuming a substantial portion of its power.
Therefore, the achieved performance gain by scaling the AFEs power consump-
tion is an important aspect in designing low-power receivers. As an example,
it can help the designer to know how much power can be saved by relaxing
the AFE design when techniques such as error-control coding are adopted in
the system. It can also determine the saved power when the receiver is made
adaptive to communication environment conditions (e.g. channel fading or out-
of-band interference), compared to a design based on worst-case conditions.

The theoretical analysis of the relation between analog circuit power con-
sumption and performance appears not to have gained a lot of attention in
the scientific community. The relation between power consumption and perfor-
mance for individual analog blocks is analyzed in [1] and [2]. It is found that
power consumption grows linearly with the dynamic range of an analog circuit
block11. Analysis of this relation for a chain of analog blocks becomes rather
involved because performance metrics for the entire chain exhibit a complex
dependence on gain, noise and linearity properties for individual blocks. More-
over, there are practically infinitely many combinations of per-block parameters

11The definitions of dynamic range differ slightly between these two papers. As will be
shown, here we adhere to the definition given in [1] and adopted in [3].



174 PAPER VII

that satisfy the performance requirements for the entire chain, with each com-
bination resulting in a unique power consumption. A sensible approach is then
to find the combination that yields the minimum power consumption, which
then makes it possible to reveal the implicit or explicit connection between the
performance requirement and the obtained optimal power consumption. In [3],
[4], [5], [6], this approach is adopted, with the focus being mostly on how to con-
veniently model the power-performance relation for individual blocks and how
to solve the power optimization problem. The analysis in [5] extends the ideas
from [4], with the power-performance relation also being given some treatment
in the context of communication systems.

There also exists a body of academic work [7], [8], [9], [10], [11] that ex-
amines the topic of environment-adaptive AFEs and receivers, with the focus
being primarily on practical hardware implementations. It is demonstrated
that adaptive receivers are implementable, and various implementation strate-
gies are suggested. Furthermore, measured power numbers from these designs
indicate that substantial power reduction is attainable if environment-adaptive
receiver techniques are adopted.

What is found to be largely missing in the existing literature is a work
that takes the power-performance laws from circuit theory and combines them
with classical results from communication theory to formulate joint circuit-
communication-theoretical laws of system behavior 12. With such laws at
hand, system design initial questions can be addressed in a precise and im-
mediate fashion, with less educated guessing or iterative hardware redesign
and simulation/measurement cycles.

Here we aim at bridging this gap between circuit and communication theory.
The idea is to obtain theoretical expressions that will describe how optimal AFE
power consumption scales with important system and environment parameters
such as signal-to-noise-and-distortion ratio (SNDR), signal to interference ratio
(SIR) and bandwidth. We first derive our scaling laws from a known relation
between performance and minimum power consumption for AFEs which is
presented and verified in actual hardware implementations [3]. In this design
approach, noise and linearity of the AFE blocks are optimized to give the
minimum total power consumption. We also consider another design approach
presented in [5], [6] where AFE power consumption is minimized by deriving
the optimum gain and linearity for the AFE blocks. Although [3], [5] and [6] are
different in the sense of their AFE power consumption model, design approach,
and the proposed optimum power consumption, we are able to derive the same
scaling laws from both of them, which suggests that the laws are both general
and widely applicable to different AFEs.

The AFE power consumption relations are modified so that they can be

12A rare example is [5], but with the analysis limited only to the connection between
throughput and relative level of the out-of-band blocking signal.
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seamlessly combined with communication-theoretic laws. The results are then
employed in finding closed-form expressions for AFE power scaling with QAM
constellation size, symbol error rate and error-control coding gain, which are
further used to decide on appropriate system-level strategies for low-power de-
sign. In another line of results, we obtain power-law type relations between
AFE power and environment parameters. These are combined with fading
and blocker statistics, yielding important theoretical bounds on average power
savings of environment-adaptive front ends, which demonstrate that substan-
tial power savings are possible if the environment-adaptive design approach is
adopted.

2 Optimal power consumption of AFEs

Let us observe a chain of analog circuit blocks that form the front end of
a communications receiver. One example of such a chain can be the direct
conversion receiver with the structure LNA - downconversion mixer - channel
select filter - variable gain amplifier. While the direct conversion receiver is
given as an example, we emphasize that the forthcoming analysis holds for any
type of receiver chain.

Each of the blocks in the chain can be qualitatively characterized by noise
and linearity properties (serving as performance quantifiers) and by an as-
sociated power consumption. Noise performance is commonly quantified by

noise power spectral density V
2

N

[
V2/Hz

]
, and linearity as V 2

IIP3 [V2], the
input-referred third-order intercept voltage squared. Additionally, we denote
by FAFE the total noise factor and by V 2

IIP3, AFE the total IIP3 voltage squared
of the AFE chain. These are usually set by performance requirements dictated
by the digital baseband. Given FAFE and V 2

IIP3, AFE, one would preferably like

to select V
2

N and V 2
IIP3 of individual blocks such that the power consumption

of the entire chain is minimized.
In order to solve this task, we first need to look into the nature of the

relation between the performance quantifiers and power consumption for each
block. The dynamic range of a block with index j is defined as

DRj ≜
V 2
IIP3,j

V
2

N,j

. (1)

As presented [1] and [3], for a wide range of the most common front-end blocks,
the power consumption of a circuit is linear with the dynamic range and can
be modeled as

Pj = κjDRj , (2)

where κj is a proportionality factor that can be taken as a natural figure-of-
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merit for analog blocks.
Starting from this simple but powerful relation, the authors in [3] have

devised a method of finding V
2

N,j and V 2
IIP3,j that results in minimum power

consumption of the whole AFE chain. Although proof is given in [3] that re-
lation (2) holds for standard CMOS circuits (such as a common-source stage
LNA, a double-balanced Gilbert cell mixer and an OTA-C baseband filter),
the results of the optimization are valid for any chain of analog blocks that
satisfy (2) and are hence not limited only to CMOS circuits. Moreover, [3]

provides a comparison of theoretically optimal V
2

N,j and V 2
IIP3,j with measured

noise PSD and IIP3 from an actual “hand-optimized” Bluetooth receiver im-
plementation, with a good match between the two. This hardware verification
naturally extends to our analysis, which considers optimally designed AFEs in
communication system settings.

What is important for our analysis is that the method from [3] provides the
connection between the optimal power consumption of the entire AFE, denoted
by PAFE, and V 2

IIP3, AFE and FAFE, which reads [3, eq. (60)]

PAFE =
V 2
IIP3, AFE

(FAFE − 1)kTRref

 M∑
j=1

3
√

κj

3

, (3)

where k is Boltzmann constant, T temperature in Kelvin and Rref a reference
resistance, usually 50 Ω. Remarkably, the optimal power consumption of the
chain is independent of power/voltage gains of individual blocks. If we are to
use (3) for drawing conclusions on the system-level behaviour of receivers, it
would be convenient to “translate” these result to system designer parlance, so
that it features power-related parameters:

• received wanted signal power at the antenna - pS,

• total input-referred thermal noise power - pN,

• power of the out-of-band (OOB) interfering signal at the antenna - pI.
13

As a first step, we can relate pN and FAFE through

pN = kTBFAFE, (4)

with B being the noise-equivalent bandwidth of the system, and IIP3 power

13The results (1) and consequently, (3) were derived with the assumption of a two-tone
interference model. For the sake of consistency, we maintain this model throughout our
analysis, and pI then denotes the total power of the two interfering tones. However, we
conjecture that the obtained trends hold even in the case of modulated interferers.
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and voltage are related by

pIIP3, AFE =
V 2
IIP3, AFE

Rref
. (5)

In order to directly assess the impact of third-order nonlinearity on system
performance, we need to relate the IIP3 to pIM3, the power of the in-band
third-order intermodulation (IM3) distortion. A well-known relation linking
pIIP3, pI and pIM3 reads [12]

pIIP3 =

√
p3I

pIM3

. (6)

For the purpose of notational convenience, we denote the AFE power coefficient
in (3) as

κcircuit ≜

 M∑
j=1

3
√
κj

3

(7)

and use (4), (5) and (6) in conjunction with (3) to obtain

PAFE = B
p
3/2
I

pN
√
pIM3

FAFE

FAFE − 1
κcircuit. (8)

For the analysis at hand it is convenient to define the power ratio of intermod-
ulation distortion and noise

αIM3 ≜
pIM3

pN
, (9)

which combined with (8) yields

PAFE =
B

√
αIM3

(
pI
pN

)3/2
FAFE

FAFE − 1
κcircuit, (10)

with pI > 0, which follows from the constraint V 2
IIP3, AFE > 0. The obtained

formula for AFE power consumption in (10) will be used as a basis for deriving
simple but very useful scaling laws, as presented in the following section.

3 Scaling laws of AFE power consumption

A holistic receiver system design benefits greatly from the availability of closed
form relations between receiver power consumption and other system parame-
ters. This way, a mathematically tractable analysis of the tradeoffs encountered
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during receiver system design is made possible. When it comes to real-world
hardware, obtaining such relations is not a trivial task, and there always exists
a tradeoff between the accuracy of the functional dependencies and their ana-
lytical tractability. Ideally, they should appear in form of simple power scaling
laws. It turns out that (10), under some realistic assumptions, can yield such
simple relations. The advantage of using (10) for this purpose is that it is
soundly grounded in circuit theory which has also been verified against real-life
receiver designs in [3], so it enables striking a good balance between accuracy,
simplicity and theoretical rigour.

We derive and formulate these power scaling laws in Section III-A. Ideally,
we would like to validate the laws individually by circuit verification and mea-
surement setups. This is however an overwhelming task and beyond the scope
of this paper. What we can do to support and validate the laws nonetheless
is to show that they are not specific to the design approach and models in [3].
For that purpose, in Section III-B, we will show that the same scaling laws can
be derived for a different AFE design approach and power consumption model.
Additionally, in Section III-C, we apply our laws to reported noise and non-
linearity parameters of an existing front end implemented in 180 nm CMOS.
Power scaling predicted by our laws is in line with the power numbers reported
for the front end, which further corroborates the validity of our analysis.

Figure 1: Illustration of system parameters for the cell center scenario (left: strong
wanted signal, weak OOB interference, high SNDR requirement) and cell edge sce-
nario (right: weak wanted signal, strong OOB interference, low SNDR requirement).

3.1 Deriving the Scaling Laws

To start with, a performance metric is needed that will provide a link between
baseband metrics, like bit error rate (BER), via power-related system param-
eters, with circuit parameters FAFE and V 2

IIP3, AFE. A commonly used such
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metric is the signal-to-noise-and-distortion ratio14, which is defined as

SNDR ≜
pS

pN + pIM3

=
pS

(1 + αIM3) pN
. (11)

Now we focus our attention on four fundamental receiver design parame-
ters, namely, SNDR and B (the values of which are determined by the par-
ticular application), and pS and pI (which describe the environment and are
generally stochastic). The values of the fundamental parameters define distinct
application-environment scenarios. We structure our analysis around a pair of
such scenarios: an initial (pre-scaling) and a target (post-scaling) scenario. An
illustration of the relations between parameters of importance for an example
scenario pair is given in Fig. 1. For each of the two scenarios–under prac-
tical constraints on parameter values–we assume that an AFE with minimal
power consumption is designed using the procedure described in [3]. Further,
we assume that κcircuit is the same for both pre- and post-scaling circuits. In
practice, this usually implies that the two front ends being compared consist
of the same number of blocks having identical, or very similar, structure. Our
aim is relating the scaling of fundamental parameter values between the two
scenarios and the scaling of optimal front end power consumption. To this end,
we label variables corresponding to pre-scaling and post-scaling scenarios with
indices 1 and 2, respectively. The scaling of the optimal power consumption is
denoted as

ςP ≜
PAFE,2

PAFE,1
. (12)

The scaling factors of bandwidth, SNDR, signal and interference power are
defined analogously to ςP and denoted respectively as ςB, ςSNDR, ςS and ςI. By
using (10) and (11), the scaling of front end power reads

ςP = φ δ ςBς
3/2
SNDR ς

3/2
I ς

−3/2
S , (13)

where, for analytical convenience, we have introduced the factors

φ ≜
FAFE,2

FAFE,1

FAFE,1 − 1

FAFE,2 − 1
(14)

14It is commonly assumed that the third-order distortion is the dominant nonlinear impair-
ment in analog systems. Therefore, along with thermal noise, we consider it a determining
factor of system performance. All other possible impairments, such as second-order dis-
tortion, flicker noise, phase noise–either in-band or due to reciprocal mixing–are through
appropriate design assumed to be dominated by thermal noise and third-order distortion in
all scenarios considered.
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and

δ ≜

√
αIM3,1

αIM3,2

(
1 + αIM3,2

1 + αIM3,1

)3/2

. (15)

Expression (13) is a universal tool for calculating AFE power scaling and can
be used for all application-environment scenarios, under the condition that the
corresponding AFEs are implementable. However, one does need to use (13) in
a careful and structured way due to interdependencies between the fundamen-
tal parameters (SNDR, B, pS, pI) and noise-distortion ratio αIM3, system-level
design parameters (pN, pIM3, pIIP3) and circuit-level parameters (FAFE, V

2
IIP3).

More specifically, for a particular scenario, SNDR, B, pS, pI and αIM3 will
through (6), (9) and (11) yield pN, pIM3 and pIIP3, which through (4) and (5)
result in FAFE and V 2

IIP3. Combining FAFE from pre- and post-scaling scenarios
yields φ from (14), noise-distortion ratios αIM3 give the value of δ from (15),
and the values of fundamental parameters result in respective scaling ratios,
all of which is combined in (13) for the final result.

3.2 Validation of the Scaling Laws: Theory

In order to show that the power scaling laws are both general and widely
applicable to different AFEs, we also consider another AFE design approach
presented in [5], [6] and show that the same scaling laws can be derived for
them as well. To avoid misunderstanding, we use superscript * to explicitly
show that a parameter is based on the results from [5], [6]. In [5], [6], the power
consumption minimization is conducted by optimizing the gain and linearity
of each AFE block. It is shown that the the power consumption of each block
in the AFE can be modeled as

P ∗
j = θjAjpIIP3,j (16)

where θj is the effective figure of merit (EFOM), Aj is the block power gain,
and pIIP3,j is the IIP3 power. This is a generic model for individual blocks
power consumption and the value of EFOM depends on the IC technology,
circuit topology etc [5], [6]. Considering this model for each AFE block, the
problem of minimizing the total power consumption of the AFE is formulated
and solved analytically using Lagrangian multiplier method. This optimization
is performed over Aj and pIIP3,j, for given individual noise figures, total AFE
gain, non-linearity, and noise figure which defines a constraint on Aj via the
Friis’ Formula. The optimal values of pIIP3,j and Aj are calculated and the
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final solution for minimum power consumption is

P ∗
AFE = pIIP3, AFE

(√
θMAAFE +

√
Fw

FAFE − f1

)2

, (17)

where

Fw =

M−1∑
j=1

3

√
θj (fj+1 − 1)

3

(18)

and fi denotes the noise figure of the i− th block. By following the same steps
and using the same definitions that turned (3) into (10), the power consumption
P ∗
AFE in (17) can be reformulated as

P ∗
AFE =

B
√
αIM3

(
pI
pN

)3/2

FAFE Γ, (19)

where

Γ =

(√
kTθMAAFE +

√
kTFw

FAFE − F1

)2

. (20)

One should note that the optimal power consumption results in (10) and (19)
are different for two reasons. Firstly, they are based on different modeling of
individual blocks power consumption. Secondly, (10) is derived by optimizing
the power consumption over noise and linearity of AFE blocks, whereas (19) is
obtained by optimizing the power with respect to the individual blocks gains
and linearity. By exploiting the definitions in (11) and (12), the power scaling
law for P ∗

AFE reads

ςP∗ = τ δ ςBς
3/2
SNDR ς

3/2
I ς

−3/2
S , (21)

where

τ ≜
FAFE,2

FAFE,1

Γ2

Γ1
. (22)

By comparing (13) and (21), it can be seen that no matter which design
approach one chooses to optimize the AFEs power consumption, the power
scaling behaviour with SNDR, bandwidth, pS, and pI are the same, which
suggests that the scaling laws are general and can be widely applied to different
AFEs.
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Table 1: Measured numbers and environment parameter values for the three test
scenarios in [7]: relaxed, high-linearity demanding (HLD), and low-noise demanding
(LND).

Scenario
Test conditions

Front end parameters at
optimal working point

pS (dBm) pI (dBm)15 F (dB) IIP3 (dBm) Current (mA)

Relaxed -75 -35 11.5 -7 11.2

HLD -68 -25 18.2 3.7 20.6

LND -87.5 N/A 4.8 -12.2 17.6

3.3 Validation of the Scaling Laws: Published Perfor-
mance

Another way of checking the validity of our scaling laws is to test them on mea-
sured performance parameters of an actual front end implementation. Here, we
opt to use the numbers for the adaptive front end presented in [7]. This direct-
conversion front end, implemented in 180 nm CMOS, is capable of attaining
a wide range of gain, noise figure and IIP3 values that are efficiently traded
off with power consumption using dynamic biasing of LNA, mixer and analog
baseband filter. The architecture presented in [7] also supports real-time adap-
tation to a wide range of pS , pI values and SNDR requirements, guaranteeing
that the operating point with minimum power consumption for a given setting
is always found. All in all, the design setup in [7] fits very well with the setup
of our analysis which makes the (very well documented) measurement results
from [7] a prime choice for testing our findings.

There are three scenarios described in [7]: relaxed, high-linearity demand-
ing (HLD), and low-noise demanding (LND). Table 1 lists out the reported
noise figure, IIP3 and current consumption for optimal working points for each
of the scenarios, together with environment parameters for the scenarios. In all
scenarios, optimal points are found such that they satisfy the SNDR require-
ment of 12.7 dB. More details about the data can be found in [7, Table II, Fig.
23, Sect. VII].

Numbers reported in Table 1 are used as input to our power scaling law
(13) for all three combinations of optimal designs (scaling from HLD setup
to relaxed, etc.). The obtained scaling results, compared with actual power

15A modulated blocker with power pB = −40/− 30 dBm is accompanied by a single-tone
blocker with 5 dB larger power, resulting in SNDR approximately equal to one obtained
through (6) and (11) with pI = −35/− 25 dBm.
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Table 2: Ratios of power consumption between pairs of optimal designs: measured
values (final column in Table I) vs. values predicted by the scaling law.

Power Scaling
Measured

[7]
Predicted by the
scaling law (13)

ςP,relaxed/HLD 0.54 0.42

ςP,relaxed/LND 0.64 0.51

ςP,LND/HLD 0.85 0.83

scaling as reported in Table 1, are given in Table 2. One probable reason for
the discrepancy between the measured power scaling and the one predicted by
the scaling law is individual elements in the chain not having optimal noise
figure and linearity as per the recipe in [3] (which is understandable since the
approach in [3] was never claimed to be followed in [7], and per-block optimality
would be hard to achieve anyway in a tunable design). Regardless of this, the
scaling law gives an overall good prediction of achievable downscaling of power
when switching from one operating point of the front end to the other.

3.4 Detailed discussion of the scaling laws

In order to isolate the scaling of power with only one of the fundamental param-
eters, we assume that the value of the parameter in question scales between the
scenarios while other parameters remain constant. In this way, we obtain a re-
stricted set of application-environment scenarios with high practical relevance,
examined in detail in Section 4. Additionally, in all scenarios it is assumed
that pre- and post-scaling αIM3 values are the same, i.e. that input-referred
thermal noise and third-order distortion levels are kept at a constant ratio.
Available literature on systematic receiver design suggests that in practice, the
value of αIM3 is chosen to be small so that the third-order distortion is much
weaker than the thermal noise, with the choice being consistent over different
application-performance scenarios [12, Ch. 13]. This consistency over scenarios
is in line with our constant-αIM3 assumption.

The laws describing the scaling of front end power with fundamental pa-
rameters are given in Table 3, expr. (23)-(26). Note that the constraints
on the scaling of B also double as explicit design requirements. It is well
known that the power consumption of standard analog blocks scales linearly
with bandwidth [2]. The bandwidth scaling law in (23) demonstrates that the
linear power-bandwidth relation extends also to a chain of analog blocks. The
SNDR scaling law in (24) serves as a fundamental relation for analyzing power-
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performance tradeoffs in analog receiver design, as analyzed more in-depth in
Sections 4.2 and 4.3. The received power scaling law in (25) will be useful in
analyzing power savings of a front end that adapts to a fluctuating received
signal level while maintaining constant performance, as will be presented in
Section 4.4. By defining the signal-to-interference ratio SIR = pS/pI, the scal-

ing law in (26) can be reformulated as ςP = ς
−3/2
SIR , where ςSIR is the scaling of

the SIR. This result is of importance when analyzing the power consumption
of an AFE that dynamically adapts its linearity to the interference level while
maintaining constant performance. A detailed theoretical analysis of such an
AFE will be given in Section 4.5.

Laws (23) - (25) are characterized by the fact that the underlying scaling
asks for tuning of the noise figure, which in turn makes the parameter φ scaling-
dependent. More specifically, for ς∗, where ∗ ∈ (B,SNDR),

φ =
FAFE,1 − 1

FAFE,1 − ς∗
, (27)

whereas for ςS we have

φ =
FAFE,1 − 1

FAFE,1 − 1
ςS

. (28)

The dependence of φ on the scaling parameters is outlined in the last column
of Table 3. The constraint φ > 0, i.e. the fact that it is physically impossible
to have an AFE with F < 1 imposes theoretical limitations on the values
of scaling ς. Furthermore, dependence of φ on ς causes deviations from the
ideal scaling of power (linear with bandwidth or following the 3/2 power law
in case of SNDR and received power). In order to have proper scaling laws,
it is necessary for φ to be independent of ς. This condition is approximately
satisfied in two cases:

• FAFE,1 ≫ 1 ⇒ φ ≈ 1;

• ςB, ςSNDR ≪ 1 or ςS ≫ 1 ⇒ φ ≈ FAFE,1−1
FAFE,1

.

At first, it can appear that the set of scenarios in which power scaling laws
(23)-(25) are close to ideal (φ ≈ 1) is based on such a restrictive sequence of
assumptions that their practical relevance is questionable. However, a closer
look reveals that all the assumptions we used are commonplace in practice
and/or of high practical interest for low-power design. To start with, FAFE,1 ≫
1 is typical for worst-case AFE designs with a large OOB blocking signal present
[12, Ch. 13], [13]. Moreover, radical scaling down of system bandwidth (e.g.
going from a wideband to a narrowband system), drastic downscaling of SNDR
requirement (due to e.g. use of power-efficient transmission techniques) or
adaptation to wanted signal power that becomes much larger than worst-case
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(reference sensitivity) due to fading fluctuations are all use-cases of interest for
low-power applications [14], [15]. It can be shown that the parameter τ is also
scaling-independent in each of the proposed scaling laws.

4 Ramifications of the scaling laws

The scaling laws presented in the previous section constitute a set of tools which
prove to be very useful in the design of receivers where power consumption is of
high importance. Namely, as the laws in the preceding section formally show,
the power consumption of the AFE can be lowered by using one (or more) of
the following techniques:

• Intentionally degrading the bit/symbol error rate (SER), which conse-
quently reduces the SNDR requirement;

• Keeping BER or SER constant while applying some transmission tech-
nique that allows for lower SNDR (e.g. use of error control coding);

• Keeping the SNDR constant while making the AFE reconfigurable so that
it adapts to the changes in the environment (e.g. fading level fluctuations,
OOB interference level).

The scaling laws serve as a basis for estimates of the extent of power savings
that can be achieved in the AFE if the aforementioned techniques are applied.
System designers can then decide on which techniques to incorporate in their
systems, and hardware designers are provided with general guidelines on how
to increase the power efficiency of circuit designs.

4.1 Preliminaries: limitations on hardware relaxation

Throughout the analysis that follows, we consider AFEs designed for different
target values of noise and distortion. When it comes to realistic hardware
designs, however, it is reasonable to assume that the range of these values is
limited. Naturally, there are fundamental physical constraints on the minimum
noise (or distortion) level that a circuit can deliver, but, equally important,
there are also upper bounds, imposed by either functionality or technology
process constraints [2]. Hence, in line with considerations from the previous
section, we establish a permissible tuning range µ that applies to both noise
figure and IP3. It is defined as the value of scaling of noise/linearity for which,
given all architectural and physical limitations, the following holds:

• The noise figure FAFE can be degraded from the reference value FAFE,1

to a maximum value of FAFE,2 = µFAFE,1,
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• It is possible to degrade IP3 from the reference value V 2
IIP3,1 to a minimum

possible value of V 2
IIP3,2 = 1√

µV
2
IIP3,1.

Apart from functionality or process constraints, data rate requirements of
the overlying data transmission can also impose limits on how much the front-
end hardware can be degraded. More specifically, in some applications (such
as voice calls) there is a minimum requirement on data rate, and performance
cannot be compromised beyond what is necessary to support the minimum
data rate. More details on this topic are given in [16].

4.2 Power- and energy-efficient AFEs through intentional
degradation of performance, uncoded case

In this section, we focus on systems using M-QAM without any error control
coding. With the aim of saving power, System 2 either uses a lower QAM
constellation order M or operates at a higher symbol error probability Pe,
formally, M2 ≤ M1 or Pe,2 ≥ Pe,1. As indicated in Section 3, the two systems
are otherwise assumed to use the same bandwidth (and thus the same symbol
rate Rs), are affected by same OOB interference level and experience the same
wanted signal power.

We assume that the classical matched-filter detector is employed at the
receiver. If the thermal Gaussian noise dominates the IM316, i.e. αIM3 ≪
1, the matched-filter receiver is optimal in the sense of maximum aposteriori
detection. Under these circumstances, an upper bound on SER for a square
M-QAM (M = 22k, k ∈ N) can be determined [18], which yields the inequality

SNDR ≤ ρ
M − 1

3 log2 M

[
Q−1

(
Pe

4

)]2
, (29)

where ρ = Rb/B is the spectral efficiency of the uncoded system (Rb is the
information bitrate) and Q−1(·) the inverse of the upper tail probability func-
tion of a unit-variance Gaussian random variable. At high SNDRs, the upper
bound in (29) is tight.

We proceed by constructing a ratio of the upper bounds from (29) that
apply to the two distinct scenarios under analysis. This ratio is given as

ςSNDR ≥ M2 − 1

M1 − 1

[
Q−1 (Pe,2/4)

Q−1 (Pe,1/4)

]2
, (30)

16In case that nonlinear distortion is non-negligible, it can to a certain extent be estimated
and cancelled in digital baseband, following the so-called ”dirty-RF” approach [17]. This
would improve the performance at the cost of increased power consumption.
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Figure 2: Savings in AFE power consumption when symbol error probability and/or
constellation order are degraded, for uncoded square QAM. For limited flexibility
AFEs, the savings cap at values indicated by horizontal dashed lines.

where the fact that B is the same for the two systems is used. Taking into
account the practical limits on noise/linearity scaling, discussed in Section 4.1,
along with law (24), the achievable scaling of AFE power, ςP, a, is found to be

ςP, a < max{ς3/2SNDR, µ
−3/2}. (31)

By combining this together with (30) and the fact that the slack of the SER
upper bound increases with decreasing SNDR, we obtain the upper bound on
the achievable AFE power downscaling:

ςP, a ≤ max

{(
M2 − 1

M1 − 1

)3/2 [
Q−1 (Pe,2/4)

Q−1 (Pe,1/4)

]3
, µ−3/2

}
. (32)

In other words, the AFE power can be decreased by at least the value of the
right hand side of (32). For large SNDRs and large FAFE,1, the bound is tight.

The obtained bound enables the derivation of laws describing the performance-
power consumption tradeoff in systems using uncoded QAM when there are no
limits on SNDR tuning, µ → ∞. In one case, we keep Pe constant but reduce
the number of bits per symbol b = log2 M by ∆b = b1 − b2. This yields

ςP <

(
M2

M1

)3/2

= 2−
3
2∆b . (33)
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Therefore, the power consumption of an infinitely flexible AFE decreases at
least exponentially with the difference in bits/symbol, or equivalently, with the
difference in raw uncoded bitrate. In another setting, we assume M is the same
between the two systems but target SER is increased from Pe,1 to Pe,2. Using

the bound Q(x) ≤ e−x2/2, we get

ςP ≤

[
Q−1

(
Pe,2/4

)
Q−1

(
Pe,1/4

)]3 ≤

(
1− 1.66 log10 Pe,2

1− 1.66 log10 Pe,1

)3/2

. (34)

Assuming additionally that the order of magnitude ωe = log10 Pe of SER is
low enough, we get

ςP ≤

(
ωe,2

ωe,1

)3/2

. (35)

In other words, we can say that the power consumption of the AFE with infinite
flexibility scales at least as O

(
ω3/2

)
.

For convenience of presenting numerical results, we define the percentage
savings of AFE power

∆P ≜ 100(1− ςP) [%]. (36)

These savings, represented in Fig. 2 imply that, if presented with a choice of
whether to sacrifice bitrate or error rate in order to save power in the receiver,
we should in general opt for the former. Taking into account hardware design
limitations, substantial savings are achievable even when it is possible to scale
down the SNDR by as little as e.g. 3 dB; naturally, in order to harvest the
full potential of the savings, the AFE should be made as flexible as hardware
constraints permit.

In order to provide a completely fair comparison between the systems,
degradation of the performance and reduction of power consumption should
be considered jointly. A joint metric for performance and power consumption
is needed for this task, and one is readily found in the form of energy efficiency

ηAFE ≜
Rb

PAFE

[bits/J]. (37)

In the case when constellation size M changes but error rate Pe stays fixed and
with unlimited flexibility, the ratio of the two efficiencies is

ηAFE,2

ηAFE,1

=
1

ςP

Rb,2

Rb,1

≥
(
M1 − 1

M2 − 1

)3/2
log2 M2

log2 M1
. (38)

From here we can conclude that, for a fixed Pe, ηAFE will always improve if
the size of the square QAM constellation is reduced. We note that, in the case
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when η is defined with respect to transmit signal power, it is a well known fact
that the energy efficiency increases with decreasing QAM constellation size [18].
However, we show that this energy efficiency property of QAM constellations
extends to the case of power consumption of analog receiver hardware.

4.3 Power- and energy-efficient AFEs through use of er-
ror control coding

Error control coding (ECC) techniques are used to improve reliability (error
rate performance) of communication systems when SNDR is kept fixed. Seen
from another angle, when the error rate is constrained to be the same for
uncoded and coded systems, coding can be used to improve the power efficiency
of communication systems as a consequence of relaxed requirements on SNDR.
Here we analyze the case when this potential for increased power efficiency is
used by the receiver (it can also be used by the transmitter, or be distributed
between the two).

Power efficiency gain of coded systems is usually expressed in terms of the
coding gain gc. By assuming that αIM3 ≪ 1, we can approximate the PSD
of the sum of all impairments by additive white Gaussian noise PSD N0 and
define the ratio Eb/N0 of energy per bit Eb and N0. Given the Eb/N0 values
required to achieve the same error probability with and without coding, the
coding gain is defined as

gc ≜
(Eb/N0)uncoded
(Eb/N0)coded

. (39)

For finding the achievable AFE power reduction, we need to connect the
coding gain gc with the SNDR downscaling ςSNDR, where SNDR1 corresponds
to the uncoded system and SNDR2 to the coded one. We do this by assuming
that the system bandwidth is equal for both systems, which is a reasonable
assumption for all applications where bandwidth is a limited resource. Con-
sequently, using ECC will reduce spectral efficiency from ρuncoded to ρcoded =
rcρuncoded, where rc is the coding rate. We additionally use the fact that
Eb/N0 = SNDR/ρ to obtain

ςSNDR =
rc
gc

, (40)

and the associated achievable AFE power reduction (cf. (31)) is then given by

ςP, a < max

{(
rc
gc

)3/2

, µ−3/2

}
. (41)
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Figure 3: Savings in AFE power consumption coming from use of error control
coding. For limited flexibility AFEs, the savings cap at values indicated by horizontal
dashed lines.

The savings function (36) for systems using coding is illustrated in Fig. 3.
An important observation to make here is that a large portion of the power
savings (in absolute power terms) is harvested by low to intermediate coding
gains. Additional absolute power savings that are brought about by employing
stronger codes with larger coding gains are only marginal. This point is further
elaborated in the follow-up.

Numerical example

here we provide a system design scenario that serves to illustrate the potential
savings of AFE power consumption when ECC is used, and also to give some
system-level design guidelines. We assume a system with passband bandwidth
of 40 MHz, BPSK modulation and single carrier transmission using raised
cosine pulses with roloff of 0.5 over a flat-faded channel. Total receiver power
(AFE + decoder) is calculated for three versions of the system: one uncoded
and two with different types of ECC. If coding is used, the AFE design is relaxed
accordingly. Power consumption values used here are ballpark quantities based
on actual hardware designs. For the decoders, the power numbers obtained
from the designs are modified to match the information bitrate (assuming that a
linear extrapolation of decoder power consumption is possible at lower bitrates)
and scaled to the same process (65 nm CMOS) and voltage (1.2 V).

System parameters and calculated power numbers are listed out in Table 4.
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The use of coding allows for relaxation of the AFE by making it noisier and less
linear, so its power consumption is ideally reduced as per (41). However, the
overhead in power consumption stemming from the channel decoders also needs
to be taken into account in order for the full story to be told. It can be seen that
in the case of the system using convolutional codes (CC), a massive reduction
of AFE power comes with a relatively small power overhead for the decoding.
Using turbo codes allows for further reductions of AFE power compared to the
CC case, but at a cost of a relatively high decoding power overhead, which
is due to the iterative nature of the turbo decoder. Dividing the information
bitrate with total power consumption yields the energy efficiency of the receiver,
which indicates that coding indeed enables an improvement of the receiver
energy efficiency, but the best strategy is to use “light” codes, with moderate
coding gains and simpler decoders. We note that the relation between error
control coding and overall energy efficiency of the system is a long-standing
research topic, examined both empirically and theoretically in, e.g., [22] and
[23]. However, these papers analyze the combination of decoding power and
transmit power, whereas we focus on the total power of the receiver, that is, the
sum of decoding power and power consumed by supporting analog hardware.

As for the energy efficiency of the AFE alone, it can be quickly shown that
it always improves with coding. This is done by setting up the ratio of energy
efficiencies (37) for the coded and uncoded system, which gives

ηcoded
ηuncoded

=
1

ςP

Rb,coded

Rb,uncoded

=
rc
ςP

>
g
3/2
c√
ςP

(42)

in the case of infinite AFE flexibility. But the obtained ratio is always > 1 for
gc > 1 (for a properly designed code operating at a large enough SNDR).

Overall, the results in this section lead to the conclusion that low power
applications that harness error control coding gains for the goal of relaxing the
receiver favor simple codes with modest coding gains and simpler decoders over
more powerful codes that ask for more involved decoding algorithms. If we, on
the other hand, consider solely the AFE, it can be shown that coding always
improves its energy efficiency.

4.4 Power-efficient AFEs through adaptation to fading

In this section, we assume a single carrier transmission over a frequency flat
wireless channel. Due to fading, received power pS will be time varying and
can be well described as a random process, pS(t) = βϕ(t), where β subsumes
the transmit power, transmit and receive antenna gains, pathloss and large-
scale fading, which are all assumed constant in this context. Additionally,
ϕ(t) = |h(t)|2, where h(t) is a zero-mean unit-variance complex Gaussian ran-
dom process, i.e. the small-scale fading adheres to the common Rayleigh fading
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model. It is well known that ϕ(t) has an exponential pdf, fΦ(ϕ) = e−ϕ, ϕ ≥ 0.
[24]

A common design parameter for wireless systems is the outage probability
Ω, defined as the probability that the normalized fading power ϕ falls below
some minimum acceptable level ϕmin [24]. In conjunction with ϕmin, an outage
SNDR is usually defined, which represents the minimum SNDR that provides
acceptable performance. Using ϕmin and SNDRmin, a minimum (worst-case)
thermal noise level is calculated as

pN, min =
βϕmin

(1 + αIM3)SNDRmin

. (43)

Therefore, a minimum noise level pN, min and a minimum third-order distortion
pIM3, min need to be delivered by the AFE at least at the time instants where
ϕ(t) = ϕmin. For all practical purposes, however, AFEs are built so that they
deliver minimum noise and distortion all the time. Since the outage probability
Ω is typically chosen to be quite low (for example, on the order of 10−2), this
means that for the vast majority of time, SNDR delivered by these worst-case
designs will be much larger than SNDRmin and performance far better than
the minimum acceptable one.

Unless the variations in SNDR are leveraged for increasing throughput (via
adaptive modulation and coding), having the front end operate in a fixed man-
ner represents a waste of power. If a fixed throughput and error rate are
acceptable for a particular application, front end noise and linearity can be
tuned to track the variations of received power and maintain constant SNDR
(effectively “equalizing” the channel). As indicated by results of Section 3, such
an approach would result in a reduction of power consumed by the front end.

We now turn to quantifying this reduction. Firstly, in line with consid-
erations in Section 4.1, it is reasonable to assume that the noise level in an
adaptive front end can be tuned only in a limited range

(
pN, min, µpN, min

)
while being kept constant at the range boundaries for too small/large values
of ϕ(t). The same logic extends to adapting the distortion level by means
of tuning the nonlinearity, which yields the allowed range for the distortion
of
(
pIM3, min, µpIM3, min

)
. The adaptation rule for thermal noise in a fading-

adaptive front end with limited adaptation range is given in Table 5, with the
most important parameters of interest illustrated in Fig. 4. Using relations (4)
- (6), αIM3,1 = αIM3,2 and the set of constraints from the third row of Table 3,
these rules can be translated to feature circuit design parameters. We further
denote by PAFE, wc the power consumption of the non-adaptive, worst-case
front end architecture, designed to deliver pN, min and pIM3, min throughout.
Taking into account scaling law (25), the power consumption of the adaptive
front end PAFE(t) normalized by PAFE, wc depends on ϕ(t) and is given in Table
5. From there, assuming that ϕ(t) is an ergodic process, the expected value of
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Figure 4: Illustration of time-varying fading and system parameters for the fading-
adaptive front end design

power scaling ςP for the adaptive front end can be calculated as

E {ςP} ≤ 1 − e−ϕmin + µ−3/2e−µϕmin (44)

+ 2ϕmine
−ϕmin

(
1− 1

√
µ
e(1−µ)ϕmin

)
+ 2ϕ

3/2
min

[
Γ

(
1

2
, µϕmin

)
− Γ

(
1

2
, ϕmin

)]
,

where Γ(a, x) is the upper incomplete gamma function [25].
Achieving continuous tuning of noise and linearity can be challenging in

practical implementations. Apart from adapting to the environment, the issue
of random PVT (process, voltage, temperature) variations also needs to be ac-
counted for. In fact, process variations can be considered as a major obstacle in
implementing adaptive circuits, because real-world adaptive circuits may need
to correlate electrical parameters like bias voltage and currents to non-linearity
and noise parameters. There exist solutions for jointly solving these practical
problems, such as the one presented in [10], where LNAs with orthogonally
tunable noise and linearity are combined with a simple online optimization
algorithm, yielding substantial power savings.

An alternative way of tackling this issue is to form a bank of front ends
that are optimally designed for different noise and linearity settings. During
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Figure 5: Theoretical power savings and conceptual illustrations of architectures for
adaptive receivers

operation, the receiver would switch between different front ends based on the
measured received power, keeping one front end active and switching off the
rest. In the most basic case, such a bank would consist of only two front
ends. A switching rule for this two-step adaptive front end that guarantees
SNDR ≥ SNDRmin can be defined as

pN =

{
pN, min, ϕ(t) ≤ µϕmin,

µpN, min, ϕ(t) > µϕmin.
(45)

Average power downscaling for the two-step front end is found to be

E {ςP}two-step ≤ 1−
(
1− µ−3/2

)
e−µϕmin . (46)

Average power scaling for flexible and two-step front ends is converted to
average savings as per (36) and shown in Fig. 5a. When the tuning range µ is
small, normalized signal power ϕ(t) is either in outage or above µϕ(t) for most
of the time, so continuous and two-step front ends have similar power savings.
As the tuning range increases, more power can be saved, but in the case of large
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Table 5: Noise tuning parameters and normalized power consumption of fading-
adaptive AFEs

Fading level pN(t)
PAFE(t)
PAFE, wc

SNDR
SNDRmin

ϕ(t)
ϕmin

≤ 1 pN, min = 1 < 1

1 < ϕ(t)
ϕmin

≤ µ βϕ(t)

(1+αIM3)SNDRmin
<

[
ϕ(t)
ϕmin

]−3/2

= 1

ϕ(t)
ϕmin

> µ µpN, min < µ−3/2 > 1

outage probability, ϕ(t) is rarely larger than µϕ(t). This means that in the case
of the two-step front end, the noisy, nonlinear, low power front end rarely gets
activated and the power savings are significantly lower compared to continuous
adaptation. In any case, the obtained savings are substantial17, which should
serve as a motivation for implementing fading-adaptive front ends in practice.
In the case of two-step adaptation, such implementations can have an appealing
simplicity. As means of illustration, we provide a high-level conceptual sketch
of how they might look like, shown in Fig. 5c. Under the condition that the
channel select filter removes most of the OOB interference, the wanted signal
power can be measured in the baseband by a simple power detector. This
information, properly calibrated to account for in-band gains, can be used by
a logic circuit which will drive the switching between the two front ends.

4.5 Power-efficient AFEs through adaptation to out-of-
band interference

The analysis of practical implications of the AFE power scaling laws is con-
cluded by looking into how much power can be saved if the AFE adapts its lin-
earity to the OOB interferer level. It is assumed that the wanted signal, whose
level does not change, is accompanied by two interferers with total power pI and
equal, slowly time varying amplitudes, so that they can be well approximated
by two tones.

We analyze a receiver structure that is able to adjust its linearity in two
discrete steps and in doing so, adapt to the fluctuating interference level. To
this end, suppose that we have two analog front end designs at our disposal.
One of them is designed for the worst-case interference level pI, wc (a value
commonly prescribed in communication standards) and its linearity is equal to
pIIP3,wc. On the other hand, the IP3 of the other design has been degraded down

17We reiterate that the front end power can be scaled down by at least the values given
by the right hand side of (44) and (46), i.e. Fig. 5a illustrates a lower bound on possible
savings!
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to the limits of implementability and is equal to pIIP3,wc/
√
µ 18. Otherwise,

the bandwidth and noise figure of the two front ends are the same.
The task of the receiver is to track the interference power and switch be-

tween the two front ends so that a minimum performance requirement is always
satisfied, SNDR ≥ SNDRmin, or equivalently, that the intermodulation distor-
tion is always kept below a certain level:

pIM3 ≤ pIM3,wc =
p3I, wc

p2IIP3,wc

. (47)

Condition (47) is met by a receiver which will tune its IP3 by switching between
the described front ends in line with the following rule:

pIIP3 =

{
pIIP3,wc,

1
3
√
µpI, wc < pI ≤ pI, wc,

1√
µpIIP3,wc, pI ≤ 1

3
√
µpI, wc,

(48)

with one front end with desired linearity being on and the other one switched
off.

In order to characterize average power savings, it is not necessary to have
the knowledge of the actual distribution of pI. It is sufficient to assume that
the probability of pI > pI, wc is negligible (which is why this case is not covered
by the adaptation rule), and that only the probability δ of interference being
“high” is known, i.e.

Pr

{
1
3
√
µ
pI, wc < pI ≤ pI, wc

}
= δ, (49)

Pr

{
pI ≤

1
3
√
µ
pI, wc

}
= 1− δ.

As in the preceding section, we normalize the power consumption of the adap-
tive receiver with the power consumed by a non-adaptive receiver that utilizes
only the high linearity front end. By using (26), we obtain

PAFE, adaptive

PAFE, fix
=

{
1, 1

3
√
µpI, wc < pI ≤ pI, wc,

1√
µ , pI ≤ 1

3
√
µpI, wc,

(50)

which, combined with (49), yields

E {ςP} = δ +
1− δ
√
µ

. (51)

18This value is chosen in line with considerations from Section 4.1 and provides a fair
comparison with other results in this section.
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Average power savings of such a receiver are shown in Fig. 5d. For example,
given that µ = 10 dB, the range of OOB interferer values for which the high
linearity AFE is activated (worst-case interference) is (0.46 pI, wc, pI, wc). If
the interference power is inside this range for 10% of the time, the low linearity
AFE would be used for the remaining 90% of the time and the average power
savings compared to a non-adaptive design are 60%. Taking the ballpark power
numbers for a front end from [19], this signifies a reduction of average front end
power from 35 mW to 14 mW. Paper [19] also suggests a practical implemen-
tation of the interference sensing circuit, consisting of a passband filter and an
energy detector. We include this sensor in the high-level conceptual illustra-
tion of an interference-adaptive receiver, shown in Fig. 5d. The sensor from
[19] consumes 10 mW, which combined with the reduced average AFE power
consumption (and neglecting the consumption of the logic circuitry) yields 24
mW, which is still 30% less than the power consumed by the non-adaptive
receiver.

5 Conclusion

Based on a known result from circuit theory that has also been verified in prac-
tice, we determine scaling laws between performance and power consumption of
an analog front end (AFE). The power consumption of the AFE is found to scale

as SIR−3/2 and at least as SNDR3/2. These simple scaling laws can be used
in a wide variety of communication-theoretic contexts, and some of the most
important ones are explored. Namely, the power-SNR scaling law is extended
to find the scaling laws between AFE power consumption and QAM constella-
tion size, symbol error probability for QAM and error control coding gain and
rate. Some general rules for low-power system design can be drawn from these
laws: one example rule is that low-power applications favor “light” channel
codes with moderate coding gains (such as simple convolutional codes) over
more powerful ones, like turbo codes. Moreover, we derive laws that describe
how front end power scales with environment parameters when performance is
kept constant. Combined with fading and out-of-band blocker statistics, this
enables us to determine theoretical average power savings of AFEs that adapt
to the environment. The impressive results (about one order of magnitude re-
duction of power consumption in some cases) indicate that designing the front
end so that it adapts to the environment is definitely a worthwhile effort.
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