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We derive a microscopic expression for the mechanical pressure P in a system of spherical active
Brownian particles at density ρ. Our exact result relates P, defined as the force per unit area on a bounding
wall, to bulk correlation functions evaluated far away from the wall. It shows that (i) PðρÞ is a state function,
independent of the particle-wall interaction; (ii) interactions contribute two terms to P, one encoding the
slow-down that drives motility-induced phase separation, and the other a direct contribution well known
for passive systems; and (iii) P is equal in coexisting phases. We discuss the consequences of these results
for the motility-induced phase separation of active Brownian particles and show that the densities at
coexistence do not satisfy a Maxwell construction on P.
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Much recent research addresses the statistical physics
of active matter, whose constituent particles show autono-
mous dissipative motion (typically self-propulsion), sus-
tained by an energy supply. Progress has been made in
understanding spontaneous flow [1] and phase equilibria in
activematter [2–6], but as yet there is no clear thermodynamic
framework for these systems. Even the definition of basic
thermodynamic variables such as temperature and pressure is
problematic. While “effective temperature” is a widely used
concept outside equilibrium [7], the discussion of pressure
P in activematter has been neglected until recently [8–14]. At
first sight, becauseP can be definedmechanically as the force
per unit area on a confining wall, its computation as a
statistical average looks unproblematic. Remarkably, though,
it was recently shown that for activematter the force on awall
can depend on details of the wall-particle interaction so that
P is not, in general, a state function [15].
Active particles are nonetheless clearly capable of exerting

a mechanical pressure P on their containers. (When
immersed in a space-filling solvent, this becomes an osmotic
pressure [8,10].) Less clear is how to calculate P; several
suggestions have beenmade [9–12] whose interrelations are,
as yet, uncertain. Recall that for systems in thermal equilib-
rium, the mechanical and thermodynamic definitions of
pressure [force per unit area on a confining wall, and
−ð∂F=∂VÞN for N particles in volume V, with F the
Helmholtz free energy] necessarily coincide. Accordingly,
various formulas for P (involving, e.g., the density distri-
bution near a wall [16], or correlators in the bulk [17,18]) are
always equivalent. This ceases to be true, in general, for
active particles [11,15].
In this Letter we adopt the mechanical definition of P.

We first show analytically that P is a state function,

independent of the wall-particle interaction, for one impor-
tant and well-studied class of systems: spherical active
Brownian particles (ABPs) with isotropic repulsions.
By definition, such ABPs undergo overdamped motion
in response to a force that combines an arbitrary pair
interaction with an external forcing term of constant
magnitude along a body axis; this axis rotates by angular
diffusion. While not a perfect representation of experiments
(particularly in bulk fluids, where self-propulsion is created
internally and hydrodynamic torques arise [19]), ABPs have
become the mainstay of recent simulation and theoretical
studies [3,5,6,20–24]. They provide a benchmark for the
statistical physics of active matter and a simplified model for
the experimental many-body dynamics of autophoretic
colloidal swimmers, or other active systems, coupled to a
momentum reservoir such as a supporting surface [24–29].
(We comment below on the momentum-conserving case.)
By generating large amounts of data in systems whose
dynamics and interactions are precisely known, ABP sim-
ulations are currently better placed than experiments to
answer fundamental issues concerning the physics of active
pressure, such as those raised in Refs. [9,10].
Our key result exactly relates P to bulk correlators,

powerfully generalizing familiar results for the passive
case. The pressure for ABPs is the sum of an ideal-gas
contribution and a nonideal one stemming from inter-
actions. Crucially, the latter results from two contributions:
one is a standard, “direct” term (the density of pairwise
forces acting across a plane), which we call PD, while the
other, “indirect” term, absent in the passive case, describes
the reduction in momentum flux caused by collisional
slow-down of the particles. For short-ranged repulsions and
high propulsive force, PD becomes important only at high
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densities; the indirect term dominates at intermediate
densities and is responsible for motility-induced phase
separation (MIPS) [2–4]. The same calculation establishes
that, for spherical ABPs (though not in general [15]),
P must be equal in all coexisting phases.
We further show that our ideal and indirect terms

together form exactly the “swim pressure,” PSðρÞ at density
ρ, previously defined via a force-moment integral in
Refs. [9,10], and moreover that (in 2D) PS is simply
ρvð0ÞvðρÞ=ð2DrÞ, where vðρÞ is the mean propulsive speed
of ABPs and Dr their rotational diffusivity. We interpret
this result and show that (for PD ¼ 0) the mechanical
instability dPS=dρ ¼ 0 coincides exactly with a diffusive
one previously found to cause MIPS among particles
whose interaction comprises a density-dependent swim
speed vðρÞ [2–4]. We briefly explain why this correspon-
dence does not extend to phase equilibria more generally,
deferring a full account to a longer paper [33].
To calculate the pressure in interacting ABPs, we follow

Ref. [15] and consider the dynamics in the presence of an
explicit, conservative wall-particle force Fw. For simplicity,
we work in 2D and consider periodic boundary conditions
in y and confining walls parallel to ey ¼ ð0; 1Þ. We start
from the standard Langevin dynamics of ABPs with bare
speed v0, interparticle forces F, and unit mobility [5,6,34],

_ri ¼ v0uðθiÞ þ FwðxiÞex þ
X

j≠i
Fðrj − riÞ þ

ffiffiffiffiffiffiffiffi
2Dt

p
ηi;

_θi ¼
ffiffiffiffiffiffiffiffi
2Dr

p
ξi: ð1Þ

Here, riðtÞ ¼ ðxi; yiÞ is the position and θiðtÞ the orienta-

tion of particle i at time t; uðθÞ ¼ (cosðθÞ; sinðθÞ); Fw ¼
∥Fw∥ is a force acting along the wall normal ex ¼ ð1; 0Þ;Dt
is the bare translational diffusivity; and ηiðtÞ and ξiðtÞ are
zero-mean unit-variance Gaussian white noises with no
correlations among particles.
Following standard procedures [2,3,35,36], this leads to

an equation for the fluctuating distribution function
ψ̂ðr; θ; tÞwhose zeroth, first, and second angular harmonics
are the fluctuating particle density ρ̂ ¼ R

ψ̂dθ, the x
polarization P̂ ¼ R

ψ̂ cosðθÞdθ, and Q̂ ¼ R
ψ̂ cosð2θÞdθ,

which encodes nematic order normal to the wall,

_̂ψ ¼−∇ ·

��
v0uðθÞþFwðxÞexþ

Z
Fðr0− rÞρ̂ðr0Þd2r0

�
ψ̂

�

þDr∂2
θψ̂þDt∇2ψ̂þ∇ ·

� ffiffiffiffiffiffiffiffiffiffiffi
2Dtψ̂

p
η
�
þ∂θ

� ffiffiffiffiffiffiffiffiffiffiffiffi
2Drψ̂

p
ξ
�
;

ð2Þ

where ηðr; tÞ and ξðr; tÞ are δ-correlated, zero-mean, and
unit-variance Gaussian white noise fields. In the steady
state, the noise averages ρ ¼ hρ̂i, P ¼ hP̂i, and Q ¼ hQ̂i
are, by translational invariance, functions of x only, as is
the wall force FwðxÞ [37]. Integrating (2) over θ and then

averaging over noise in the steady state gives ∂xJ ¼ 0, with
J the particle current. For any system with impermeable
boundaries, J ¼ 0. Writing this out explicitly gives

0 ¼ v0P þ Fwρ −Dt∂xρþ I1ðxÞ; ð3Þ

I1ðxÞ≡
Z

Fxðr0 − rÞhρ̂ðr0Þρ̂ðrÞid2r0: ð4Þ

Applying the same procedure to the first angular harmonic
gives

DrP ¼ −∂x

�
v0
2
ðρþQÞ þ FwP −Dt∂xP þ I2ðxÞ

�
; ð5Þ

I2ðxÞ≡
Z

Fxðr0 − rÞhρ̂ðr0ÞP̂ðrÞid2r0: ð6Þ

Note that the integrals I1 and I2 defined in (4) and (6) are,
by translational invariance, functions only of x.
The mechanical pressure on the wall is the spatial

integral of the force density exerted upon it by the particles.
The wall force obeys Fw ¼ −∂xUw, where an origin is
chosen so that Uw is nonzero only for x > 0. The wall is
confining, i.e., Fwρ → 0 for x ≫ 0, whereas x ¼ Λ ≪ 0
denotes any plane in the bulk of the fluid, far from the wall.
By Newton’s third law, the pressure is then

P ¼ −
Z

∞

Λ
FwðxÞρðxÞdx: ð7Þ

In Eq. (7) we now use (3) to set −Fwρ ¼ v0P−
Dt∂xρþ I1,

P ¼ v0

Z
∞

Λ
PðxÞdxþDtρðΛÞ þ

Z
∞

Λ
I1ðxÞdx: ð8Þ

We next use (5), in which P and Q vanish in the bulk and
all terms vanish at infinity, to evaluate

R
Pdx, giving

P ¼ v0
Dr

	
v0
2
ρðΛÞ þ I2ðΛÞ



þDtρðΛÞ þ

Z
∞

Λ
I1ðxÞdx:

ð9Þ

Using Newton’s third law, the final integral in (9) takes a
familiar form, describing the density of pair forces acting
across some plane through the bulk (far from any wall),

Z

x>Λ
dx

Z

x0<Λ
d2r0Fxðr0 − rÞhρ̂ðr0Þρ̂ðrÞi≡ PD: ð10Þ

Thus, in the passive limit (v0 ¼ 0) we recover in PD the
standard interaction part in the pressure [18]. We call PD
the “direct” contribution; it is affected by activity only
through changes to the correlator. Activity also enters (via
v0) the well-known ideal pressure term [9,10,13,15],
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P0 ≡
	
Dt þ

v20
2Dr



ρðΛÞ: ð11Þ

Having set friction to unity in (1),Dt ¼ kBT, so that within
P0 (only) activity looks like a temperature shift.
Most strikingly, activity in combination with interactions

also brings an “indirect” pressure contribution

PI ≡ v0
Dr

I2ðΛÞ ð12Þ

with no passive counterpart. Here, I2ðΛÞ is again a wall-
independent quantity, evaluated on any bulk plane
x ¼ Λ ≪ 0. We discuss this term further below.
Our exact result for mechanical pressure is finally

P ¼ P0 þ PI þ PD; ð13Þ
with these three terms defined by (11), (12), and (10),
respectively. P is thus for interacting ABPs a state function,
calculable solely from bulk correlations and independent of
the particle-wall force FwðxÞ. Because the same boundary
force can be calculated using any bulk plane x ¼ Λ, it
follows that, should the system undergo phase separation,P
is the same in all coexisting phases [37]. This proves for
ABPs an assumption that, while plausible [10,38], is not
obvious, and indeed can fail for particles interacting via a
density-dependent swim speed rather than direct interpar-
ticle forces [15].
Notably, although ABPs exchange momentum with a

reservoir, (1) also describes particles swimming through a
momentum-conserving bulk fluid, in an approximation
where interparticle and particle-wall hydrodynamic inter-
actions are both neglected. So long as the wall interacts
solely with the swimmers, our results above continue to
apply to what is now the osmotic pressure.
The physics of the indirect contribution PI is that

interactions between ABPs reduce their motility as the
density increases. The ideal pressure term P0 normally
represents the flux of momentum through a bulk plane
carried by particles that move across it (as opposed to those
that interact across it) [17]. In our overdamped system
one should replace in the preceding sentence “momentum”
with “propulsive force” (plus a random force associated
with Dt). Per particle, the propulsive force is density
independent, but the rate of crossing the plane is not.
Accordingly, we expect the factor v20 in (11) to be modified
by interactions, with one factor v0 (force or momentum)
unaltered, but the other (speed) replaced by a density-
dependent contribution vðρÞ ≤ v0,

P0 þ PI ¼
	
Dt þ

v0vðρÞ
2Dr



ρ: ð14Þ

This requires the mean particle speed to obey

vðρÞ ¼ v0 þ 2I2=ρ: ð15Þ

Remarkably, (14) and (15) are exact results, where (15) is
found from the mean speed of particle i in bulk v ¼
v0 þ huðθiÞ ·

P
j≠iFðrj − riÞi. To see why this average

involves I2, note that the system is isotropic in bulk, so
x and y can be interchanged in I2ðxÞ, and that
cosðθÞ≡ u · ex. Relation (6) then links v to I2 via the
hρ̂ P̂i correlator, which describes the imbalance of forces
acting on an ABP from neighbors in front and behind.
Furthermore, the self-propulsive term in (14) is exactly

the “swim pressure” PS of Refs. [9,10],

v0vðρÞ
2Dr

ρ ¼ PS ≡ ρ

2
hr · Fai; ð16Þ

with Fa ¼ v0u a particle’s propulsive force and r its
position. (The particle mobility v0=Fa ¼ 1 in our units.)
The equivalence of (12), (14), and (16) is proven analyti-
cally in the Supplemental Material [39] and confirmed
numerically in Fig. 1 for ABP simulations performed as
in Refs. [20,21].
Thus, for Dt ¼ 0, (13) may alternatively be rewritten as

P ¼ PS þ PD [9,10]. Together, our results confirm that PS,
defined in bulk via (16), determines (with PD) the force
acting on a confining wall. This was checked numerically
in Ref. [9] but is not automatic [15]. Moreover, our work
gives via (14) an exact kinetic expression forPS with a clear
and simple physical interpretation in terms of the transport
of propulsive forces. This illuminates the nature of the
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ρ / ρ0
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P0 + PI , Eq. (14), Pe = 20

2(P0 + PI), Eq. (14), Pe = 20

P0 + PI, Eq. (12), Pe = 40

P0 + PI, Eq. (14), Pe = 40

PS, Eq. (16), Pe = 40

PD, Eq. (10), Pe = 20

PD, Pe = 40

ρ = ρ~

FIG. 1 (color online). Numerical measurements of P0 þ PI , PS,
and PD in single-phase ABP simulations at Péclet number
Pe≡ 3v0=ðDrσÞ ¼ 40, where σ is the particle diameter. Expres-
sions (12), (14), and (16) for P0 þ PI and PS show perfect
agreement. Also shown are data for Pe ¼ 20, unscaled and
rescaled by factor 2. This confirms that PS ¼ P0 þ PI is almost
linear in Pe; small deviations arise from the Pe dependence of the
correlators. In red is PD for Pe ¼ 20; 40, with no rescaling. Pe
was varied using Dr, at fixed v0 and with Dt ¼ Drσ

2=3. Solid
lines are fits to piecewise parabolic (PS) and exponential (PD)
functions used in the semiempirical equation of state. ρ0 is a near-
close-packed density at which vðρÞ vanishes and ~ρ is the
threshold density above which PD > PS. See the Supplemental
Material [39] for details.
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swim pressure PS and extends to finite ρ the limiting result
PS ¼ P0 [9,10].
The connections made above are our central findings;

they extend statistical thermodynamics concepts from
equilibrium far into ABP physics. Before concluding, we
ask how far these ideas extend to phase equilibria.
In the following, we ignore for simplicity the Dt term

(negligible in most cases [3,5,20,34]). Then, assuming
short-range repulsions, we have PS ¼ ρv0vðρÞ=ð2DrÞ, with
vðρÞ≃ v0ð1 − ρ=ρ0Þ and ρ0 a near-close-packed density
[5,6,20]. PD should scale as σρv0Sðρ=ρ0Þ, where σ is the
particle diameter and the function S diverges at close
packing; here, the factor v0 is because propulsive forces
oppose repulsive ones, setting their scale [10]. Figure 1
shows that both the approximate expression for PS (with a
fitted ρ0 ≃ 1.19 roughly independent of Pe) and the scaling
of PD hold remarkably well. Defining a threshold value ~ρ
by PSð~ρÞ ¼ PDð~ρÞ (see Fig. 1), it follows that at large
enough Péclet numbers Pe ¼ 3v0=ðDrσÞ, PS dominates
completely for ρ < ~ρ, with PD serving only to prevent the
density from moving above the ~ρ cutoff. When ρ < ~ρ, PD is
negligible; the criterion PS

0ðρÞ < 0, used in Refs. [10,38] to
identify a mechanical instability, is then via (16) identical to
the spinodal criterion ðρvÞ0 < 0 used to predict MIPS in
systems whose sole physics is a density-dependent speed
vðρÞ [2,3]. Thus, for ABPs at large Pe,
the mechanical theory reproduces one result of a long-
established mapping between MIPS and equilibrium col-
loids with attractive forces [2,3].
We next address the binodal densities of coexisting

phases. According to Refs. [2,3], particles with speed
vðρÞ admit an effective bulk free-energy density fðρÞ ¼
kBT½ρðln ρ − 1Þ þ R ρ

0 ln vðuÞdu�. [Interestingly, the equal-
ity of P in coexisting phases is equivalent at high Pe and
ρ < ~ρ to the equality of kBT logðρvÞ, which is the chemical
potential in this “thermodynamic” theory [2,4].] The
binodals are then found using a common tangent con-
struction (CTC, i.e., global minimization) on f, or equiv-
alently an equal-area Maxwell construction (MC) on an
effective thermodynamic pressure Pf ¼ ρf0 − f, which
differs from P [11]. Formally, f is a local approximation
to a large-deviation functional [41], whose nonlocal terms
can (in contrast to equilibrium systems) alter the CTC or
MC [11,20]; we return to this issue below.
An appealing alternative is to apply the MC to the

mechanical pressure P itself; this was, in different lan-
guage, proposed in Ref. [38]. (The equivalence will be
detailed in Ref. [33].) It amounts to constructing an
effective free-energy density fPðρÞ ≠ f, defined via P ¼
ρfP0 − fP, and using the CTC on fP. However, fP has no
clear link to any large-deviation functional [41], and since
it differs from f, these approaches generically predict
different binodals.
To confirm this, we turn to the large Pe limit; here, for

ABPs with vðρÞ ¼ v0ð1 − ρ=ρ0Þ and ~ρ ¼ ρ0, we can

explicitly construct fðρÞ [and hence PfðρÞ] alongside
PðρÞ [and hence fPðρÞ], using our hard-cutoff approxima-
tion (i.e., a constraint ρ < ~ρ). All four functions are plotted
in the Supplemental Material [39]; the two distinct routes
indeed predict different binodals at high Pe (see Fig. 2)
[43]. Each approach suffers its own limitations. That via f
(or Pf) appears more accurate, but neglects nonlocal terms
that can alter the binodals: although f0ðρÞ remains equal in
coexisting phases, Pf is not equal once those terms are
included [11]. The most serious drawback of this approach,
currently, is that it cannot address finite Pe, where PD no
longer creates a sharp cutoff. Meanwhile, the “mechanical”
route captures the equality of P in coexisting phases but
unjustifiably assumes the MC on P, asserting in effect that
fP, and not f, is the effective free energy [41]. Nonlocal
corrections [44] are again neglected.
At finite Pe where the crossover at ~ρ is soft, (13) shows

how PI and PD compete, giving Pe-dependent binodals
(see Fig. 2). To test the predictions of the mechanical
approach (equivalent to Ref. [38]), we set PD ¼
σρv0Sðρ=ρ0Þ as above, finding the function S by numerics
on single-phase systems at modest Pe (see Fig. 1). Adding
this to PS (assuming PS ∝ Pe scaling) gives P ¼ Pðρ; PeÞ.
At each Pe the binodal pressures and densities do lie on this

FIG. 2 (color online). Simulated coexistence curves (binodals)
for ABPs (red) and those calculated via the Maxwell construction
(black) on the mechanical pressure P using the semiempirical
equation of state for PS and PD fitted from Fig. 1. Dashed lines:
predicted high Pe asymptotes for the binodals calculated via f or
Pf (lower line) and calculated via P or fP (upper line). Inset:
measured binodal pressures and densities (diamonds) fall on
the equation-of-state curves but do not match the MC values
(horizontal dashed lines). Stars show the PðρÞ relation across the
full density range from simulations at Pe ¼ 40 and Pe ¼ 100.
The latter includes two metastable states at low density (high
ρ0=ρ) that are yet to phase separate.
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equation of state, validating its semiempirical form, but
they do not obey the Maxwell construction on P, which
must therefore be rejected (see Fig. 2, inset). We conclude
that, despite our work and that of Ref. [38], no complete
theory of phase equilibria in ABPs yet exists.
In summary, we have given in (10)–(13) an exact

expression for the mechanical pressure P of active
Brownian spheres. This relates P directly to bulk correlation
functions and shows it to be a state function, independent of
the wall interaction, something not true for all active systems
[15]. As well as an ideal term P0, and a direct interaction
term PD, there is an indirect term PI caused by collisional
slowing-down of propulsion. We established an exact link
between P0 þ PI and the so-called “swim pressure” [10],
allowing a clearer interpretation of that quantity. We showed
that when MIPS arises in the regime of high Pe ¼ 3v0=
ðDrσÞ, the mechanical (P0 < 0 [10]) and diffusive (f00 < 0
[2,3]) instabilities coincide. That equivalence does not
extend to the calculation of coexistence curves, for reasons
we have explained. For simplicity we have worked in 2D;
generalization of our results to 3D is straightforward [33] but
notationally cumbersome.
The established description of MIPS as a diffusive

instability [2,3,11,20] is fully appropriate in systems whose
particles are “programed” to change their dynamics at high
density (e.g., via bacterial quorum sensing [45,46]), but it is
not yet clear whether the same theory, or one based
primarily on the mechanical pressure P, is better founded
for finite-Pe phase equilibria in ABPs whose slow-down is
collisional. Meanwhile, our exact results for P in these
systems add significantly to our growing understanding of
how statistical thermodynamic concepts can, and cannot,
be applied in active materials.
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